

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Trabelsi, Emna

Working Paper The relationship between central bank transparency and the quality of inflation forecasts: is it U-shaped?

EERI Research Paper Series, No. 02/2012

Provided in Cooperation with: Economics and Econometrics Research Institute (EERI), Brussels

Suggested Citation: Trabelsi, Emna (2012) : The relationship between central bank transparency and the quality of inflation forecasts: is it U-shaped?, EERI Research Paper Series, No. 02/2012, Economics and Econometrics Research Institute (EERI), Brussels

This Version is available at: https://hdl.handle.net/10419/142631

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Economics and Econometrics Research Institute

The relationship between central bank transparency and the quality of inflation forecasts: is it U-shaped?

Emna Trabelsi

EERI Research Paper Series No 02/2012

ISSN: 2031-4892

EERI

Economics and Econometrics Research Institute Avenue de Beaulieu 1160 Brussels Belgium

Tel: +322 298 8491 Fax: +322 298 8490 www.eeri.eu

The relationship between central bank transparency and the quality of inflation forecasts: is it U-shaped?¹

Emna Trabelsi

Institut Supérieur de Gestion

Abstract. A recent theoretical literature highlighted the potential dangers of further increasing information disclosure by central banks. This paper gives a continuous empirical investigation of the existence of an optimal degree of transparency in the lines of van der Cruijsen et al. [35]. We test a quadratic relationship between central bank transparency and the inflation persistence by introducing some technical and economic modifications. Particularly, we used three new measures of transparency. An appropriate U shape test that was made through a Stata routine, recently developed by Lind and Mehlum [25], indicates a robust optimal intermediate degree of transparency, but its level is not. These results were obtained using a panel of 11 OECD central banks under the period 1999-2009. The estimations were run using a bias corrected LSDVC, a newly recent technique developed by Bruno [5] for short dynamic panels with fixed effects, extended to accommodate unbalanced data.

JEL codes: C23, E58,

Keywords: intermediate optimal transparency degree, inflation forecasts, inflation persistence, u-shaped relationship, non linear modeling, LSDVC, Principal Component Analysis

Corresponding author: Emna Trabelsi. Institut Supérieur de Gestion, 41 Avenue de la Liberté, cité Bouchoucha, le Bardo 2000, Tunisia. E-mail: <u>emna.trabelsi2007@yahoo.fr</u>. Mobile: 00216 21310 931.

1 Introduction

Whether central banks shall increase their information disclosure any further is an issue that has important implications for both theoretical and empirical literature on central bank transparency. Having been characterized by secrecy for a long time ago, central banks seem to bring considerable efforts in enhancing their transparency practices. The importance lies in influencing the management of expectations, which is a key element of monetary policy decision-making.

Central bank transparency seems to be the norm, but how exactly that transparency should go? In fact, central banks face a potential conflict; a maximum of transparency needs not to be optimal for the efficiency of monetary policy. Accordingly, a conflict may occur when giving more information but with less clarity and common understanding among market participants as there are limits on how much information can be digested (Kahneman, [23]). Too much information may crowd out the formation of private beliefs which are crucial sources of information for a central bank, and thus for the effectiveness of the monetary policy decision-making.

Not everyone agrees that maximum transparency is optimal. Looking for example, at inflation targeting countries in Europe: The Norges bank (Norway) and the Sveriges bank (Sweden) have in recent years begun publishing their projections of the policy rate². This issue has fed the debate regarding the possible harmful effects of such excessive transparency, especially with central banks that have an already high score of transparency. Andersson and Hoffman [1] argue that announcing the future interest rate path tracks may neither improve the predictability of monetary policy nor does anchor long term inflation expectations. Theoretically, there are two arguments that favour limiting transparency: uncertainty and confusion/information overload. In fact, by revealing too much information, agents focus on the complexity of the design of monetary policy and the uncertainty surrounding the forecasts. Moreover, the assumption that economic

² "A reason for doing this is to increase leverage over the longer term interest rates in the economy and hence be better in steering the important variables of the economy. As Norges Bank and Riksbank are inflation forecasting central banks, the publication of an endogenous interest rate forecast is important information to the private agents when the central bank publishes its inflation forecast". Danske research Report [9].

agents are able to absorb and attach a weight to all information provided by the central bank is probably high. This can lead to deterioration in the quality of inflation expectations (van der Cruijsen et al., [35]). The question of further information disclosure is especially appealing for central banks with high degree of credibility like OECD countries.

This paper extends the analysis of van der Cruijsen et al. [35] in number of ways;

First by making technical changes:

- 1. Introducing fixed effects³ to the panel model
- **2.** Using another set of control variables different from that used in van der Cruijsen et al. [35].
- **3.** Changing the frequency of data, so we worked on an annual basis while the above authors used quarterly data⁴.

Second, our <u>economic contribution</u> consists of checking the presence of an optimal intermediate transparency degree by trying three other measures of transparency:

- 4. We take the index of Minegishi and Cournède [27] as transparency's parameterization in our framework. The rationale behind the use of such index is its high correlation with the one updated by Dincer and Eichengreen [12], that is the index used in the empirical analysis of van der Cruisjen et al. [35]. To the best of our knowledge, we are the first to exploit such indicator to prove the existence of an optimal transparency degree.
- **5.** A comparative result is made available by using the updated index of transparency by Siklos [31].
- 6. Due to multidimensional character of transparency concept, the hypothesis that the sub-indexes composing the overall index are correlated is very probable. In such case, a Principal Component Analysis (PCA) would be suitable to construct a new transparency index.

³ A Fisher test was conducted prior to estimation in order to check the presence of individual effects.

⁴ A detailed explanation will be given in the text.

Third, we argue that the usual test of non-linear relationship is flawed⁵, and derive the appropriate test for a U-shaped relationship by using a Stata routine recently developed by Lind and Mehlum [25].

The remainder of this paper is as follows: Section 2 provides an overview of literature that favours limiting transparency. Section 3 presents the methodology, explains the new indicator of transparency used, and describes how well this indicator is related to inflation persistence, thereby providing new insights with respect to the robustness of previous research. Section 4 offers some concluding remarks.

2 Literature review and further arguments in favor of limiting transparency

A number of empirical and theoretical studies claim central bank transparency to have favourable effect on the economy (Dincer and Eichengreen [12], Minegishi and Cournède [27], Middeldorp [26], Trabelsi and Ayadi [34]). Some other papers, however, come to a different conclusion and find that either higher transparency is unfavourable or that it has an ambiguous effect at mitigating the uncertainty. In the literature related to the optimal degree of transparency, we find that transparency has not the same benefits or costs following the same theoretical framework. Indeed, the economy specification and the model assumptions can affect the optimal degree of transparency. This explains why theoretical conclusions may seem, at first glance, not robust.

However, even if we restrict the study of transparency by focusing on a specific well-defined model, the optimal degree of transparency can be different depending on the size of the information upon which the asymmetry information is based. This observation coincides with the words of Hahn [21]: "One reason for the controversial debate about transparency, despite the seemingly wide-spread consensus that transparency is desirable, is that people have different views as to what transparency of monetary policy is."

⁵ This includes also the paper of van der Cruisjen et al. [35] which misses such a test.

In practice, while the benefits associated with certain aspects of the information seem indisputable (for example, the publication of a numerical inflation target, the immediate announcement of the decision of the monetary policy ...), conclusions with regard to other dimensions of transparency are not always unanimous. The controversy between Buiter [4] and Issing [22] about the publication of minutes and voting records is an example of the lack of consensus on transparency with respect to certain types of information.

Geraats [19] gives an excellent overview of the pros and cons of transparency with several examples of welfare reducing information in a Barro-Gordon framework. By limiting transparency, Cukierman [8] argues that the expected welfare is improved. Faust and Svensson [15] show that complete transparency lead to inflationary bias. Van der Cruisjen et al. [35] concluded that there might be a limit to the benefit of transparency and that an intermediate degree of transparency might be desirable. Theoretical idea is that agents may become confused by information they receive that is in excess of the optimal level of transparency.

Such idea is consistent with the seminal paper of Morris and Shin [28] based on coordination games. According to theses authors, transparency could be costly if private sector agents put too much weight on the central bank's public signal because they are attempting to second-guess each other and the public signal acts as a focal point for higher order beliefs. Svensson [33] raises doubts over whether the parameter range necessary to deliver costly transparency in Morris and Shin's model is likely to hold in reality⁶. Demertzis and Hoeberichts [10] established a reasonable parameter range for which more transparency is not always desirable when it is costly for the private sector to process information. More public information reduces the incentives for the private sector to gather their own private information.

Recently, Bayeriswyl [2] thinks that accounting for information endogeneity highlights the detrimental effects of central bank transparency. Hence, endogenous information entails a further argument in favour of limiting transparency.

⁶ Morris, Shin, and Tong [29] provide some counter-arguments. They argue that if public signal is correlated with the private signal, then quantitative evaluation supports their original results

3 Econometric modeling

This section describes transparency data along with the other control variables used in the empirical analysis, and explains the econometric methodology employed before discussing the results.

3.1 Model description and preliminary analysis

3.1.1. Data

New measure of inflation persistence and its link to the quality of inflation forecasts

Since it is difficult to measure the quality of inflation forecasts, we follow van der cruijsen et al. [35] and take the degree of backward lookingness as a proxy. The lower the quality of inflation forecasts is, the larger the degree to which inflation will be set in a backward looking manner. It turns that inflation will be more persistent. Let us illustrate this by using a simple hybrid New Keynesian Philippe Curve (NKPC):

$$\pi_{t} = \chi_{f} E_{t} \pi_{t+1} + \chi_{b} \pi_{t-1} + k x_{t}$$
(1)

Where π_{it} is the inflation rate and x_t is the output gap. In the limiting case of $\chi_b = 0$, the equation become the pure forward looking NKPC and there's no endogenous inflation persistence. When $\chi_b > 0$, we get NKPC with endogenous inflation persistence, the higher χ_b is, the higher endogenous inflation persistence will be.

Now, we need a measure for inflation persistence. There's little agreement in the extant literature on how best to measure inflation persistence or persistence in general. Fuhrer [18] enumerated a battery of measures that attempt to capture the persistence in inflation:

- Conventional unit root tests;
- The autocorrelation function of the inflation series
- The first autocorrelation of the inflation series;

- The dominant root of the univariate autoregressive inflation process⁷;
- The sum of the autoregressive coefficients for inflation;
- Unobserved components decompositions of inflation that estimate the relative contributions of "permanent" and "transitory" components of inflation (for example, the IMA(1,1) and related models proposed by Stock and Watson [32]).

The most employed measures are the second, the third and the fifth ones. This is because the autocorrelation function summarizes much of the information in time series; it may be then the best overall measure of persistence. In what follows, we will show that the measure suggested by van der Cruijsen et al. [35]) is even better (The one given in expression (3)).

Variable of interest: Transparency score

According to Geraats ([Error! Reference source not found.], p. 8), "One of the biggest impediments to transparency research has been the dearth of data. It is not surprising since it is challenging to measure to what extent the private sector has the same information as the monetary policy makers." There were two approaches to measuring transparency. The first one focuses on financial market reactions to monetary policy decisions and communications (See for instance, Blinder [3], Ehrmann and Fratzcher [13]....). The second one, which interests us, focuses on the availability of information that is pertinent to the policy maker: e.g. the survey conducted by Fry et al. [17] for 94 central banks in 1998. Transparency is a qualitative concept for which few measures exist. Generally, we evaluate it punctually or for a restricted number of central banks, based on three criteria: the rapidity by which the central bank explains its decisions of monetary policy, the frequency of prospective analysis and the periodicity of bulletin and speeches published. Eijffinger and Geraats [14] have constructed complete indexes that distinguish five aspects of transparency as designed in the typology of Geraats [19]. Dincer and Eichengreen [12]

⁷ As claimed by van der cruisjen et al. "Critique on the largest autoregressive root is the fact that it does not summarize the impulse response function well, as its shape depends on all the roots".

have expanded theses indexes by exploiting annual data on 100 central banks under the period 1998-2006.

In fact, the first indirect attempt to test the existence of an intermediate degree of transparency was brought by Dincer and Eichengreen [12]⁸ themselves. However, they used a classical definition of the inflation persistence that is the coefficient resulting from the regression of inflation on its first-lagged value. The estimations' results fail, however, to detect any significant impact of transparency in its quadratic form.

Based on central banks' information set, Minegishi and Cournède [27] have constructed the transparency index for 11 OECD central banks over the period 1999-2009. Table A.2 and Table A.3 show some descriptive statistics of that index as well as the correlation with the score of Siklos [31]. It follows that the correlation is quite high between both indicators (0.73) although there are some notable differences such as the ranking of central banks, the methodology of calculating both indexes, for example the index of Siklos which is based initially on Eijffinger and Geraats [14], contains 15 sub-index related to five aspects of transparency (political, economic, procedural, policy and operational) and the procedure is simply to sum up theses sub-indexes. Minegishi and Cournède [27] aggregated the scores relative to four aspects of transparency (policy objective, policy decision, economic analysis and decision-making process) using equal weights within each category. The overall measure includes 22 sub-indexes (See Appendix B for details). The index has significantly increased by 30.4% from 1999 to 2009 as shown in Figure 1 that plots the histogram of data.

⁸ Note that earlier versions of that paper were written in 2007 and 2009.

Fig. 1. Evolution of central bank transparency in OECD countries based on Minegishi and Cournède data. The cells coloured in green are the transparency index in 1999 and the pink ones are transparency index in 2009. There's a significant increase of transparency score by 30.4%

Control variables

- Output gap as a % of GDP: the difference between actual GDP and potential GDP, it is considered as the main indicator of inflationary pressures.
- <u>Exports as % of GDP</u>: it is used as a competition indicator. When competition is fierce, inflation persistence will be lower
- <u>Inflation targeting</u>: the conduct of better monetary policy explains low inflation. To prevent central bank transparency from grasping up an overall better conduct on monetary policy, we correct this for the fact that some countries are inflation targeters.
- <u>Governance factors</u>: the rule of Law measures the extent to which agents have confidence in and abide by the rule of society, and in particular, the quality of contract enforcement, the police and the likelihood of crime and violence.

3.1.2. Model's specification

In a panel context, for a given group of regressors, the estimated econometric model consists of the following equation:

$$\pi_{it} = \alpha_i + \lambda_1 X_{it} + \lambda_2 \pi_{it-1} + \lambda_3 \pi_{it-1} \times T_{it} + \lambda_4 \pi_{it-1} \times T_{it}^2 + \sum_{p=1}^{Q} \lambda_{5+p} \pi_{it-1} \times Y_{it} + \varepsilon_{it}$$
(2)

Where π_{ii} is the inflation rate, expressed as the percentage increase of Consumer Price Index (CPI), X_{ii} is the set of control variables that affect the inflation rate, T_{ii} is the transparency score and Y_{ii} is the set of variables that determines the inflation persistence.

Van der Cruijsen et al. [35] propose an original definition of inflation persistence (P), which is according to equation (2):

$$P = \lambda_2 + \lambda_3 T_{it} + \lambda_4 T_{it}^2 + \sum_{p=1}^{Q} \lambda_{5+p} Y_{it}$$
(3)

Where the coefficient of the squared term, is designed to capture non linearity.

The effect of transparency on inflation persistence is given by:

$$B = \lambda_3 T + \lambda_4 T^2 \tag{4}$$

In order to allow the regression to have a U shape, the standard approach has been to include a quadratic term in a linear model. Given (4) and the assumption of one extreme point, the requirement for a U shape is that the slope of the curve is negative at the start and positive at the end of a reasonably chosen interval of [*T*min, *T*max]. To assure at most one extreme point on [*T*min, *T*max] as assumed before, we require the following conditions:

 $\lambda_3 + \lambda_4 T \min < 0 < \lambda_3 + \lambda_4 T \max$

If either of theses inequalities is violated, the curve is not U-shaped but inversely U shaped or monotone. Figure 2 illustrates the various transparency regimes for different settings of λ_3 and λ_4 .

Accordingly, there exists an optimal intermediate transparency degree if $\lambda_3 < 0$ and $\lambda_4 > 0$.

Fig. 2. Various transparency regimes (van der Cruisjen et al., [35])

3.1.3. Estimation method

We have estimated a fixed effect panel model. That estimation is more appropriate when focusing on a specific set of N individuals that are not randomly selected from some large population⁹. Since the sample data come specifically from OECD countries in this paper, the fixed effects model is more suitable for the analysis. The inclusion of individual effects is also justified by the fact that our control variables are time-variant, contrary to the set of controls used in van der Cruisjen et al. [35].

⁹ The random effects model is applicable if the panel data comprise N individuals drawn randomly from a large population

By looking to the dynamic panel in equation (2), two important econometric issues emerge in the empirical analysis, which need a solution:

- 1- Our cross sectional dimension of our panel is small; so that N consistent GMM estimators may be affected by potentially severe sample bias.
- 2- The unbalanced nature of our panel doesn't permit to correct the within estimator by applying the bias approximation formulae derived in Kiviet [24], Bun and Carree [6] and Bun and Kiviet [7], which is only valid for balanced panels. Our estimation strategy will employ a bias corrected LSDV estimator using formulae derived in Bruno [5] that accommodates also unbalanced panels. It is implemented in Stata, using Bruno's code XTLSDVC. We make our results comparable to the standard LSDV corrected for hetroscedasticity¹⁰ and with Anderson-Hsiao consistent estimators. We think them as reasonable benchmarks as both time series and cross section dimensions are short. We got, indeed, slight differences in the estimated coefficients resulting from LSDV (White, Anderson-Hsiao) and LSDVC. While the first ones are reported for completeness, the more reliable outcomes are those from LSDVC.

3.2 Results and discussion

Results derived from using Minegishi and Cournède transparency index

This study uses annual¹¹ data for 11 OECD countries under the period 1999-2009. The choice of the period and frequency is restricted by the availability of data. These latter were mostly extracted from IMF (International Monetary Fund), WDI (World Development Indicators) databases. Countries and variables are listed in Table A.1. The choice

¹⁰ That method was employed by Minegishi and Counrède [27] when studying the impact of their transparency index on inflation in a dynamic panel model of OECD countries for the same period.

¹¹ Although quarterly data provide more observations, they may be subject to large measurement errors than are annual data.

of central banks' sample is also justified by the fact that their inhabitants are known for processing information.

All estimations were conducted using Stata10MP. In this subsection, we discuss the estimation results of the panel model.

From Table 1 and Table 1bis, we can draw the following observations: clearly the coefficients associated with the quadratic form highly significant, particularly $\lambda_3 < 0$ and $\lambda_4 > 0$. are In fact, transparency, in level, enters with a negative and significant coefficient and transparency squared enters positively and significantly. A large number of articles tried to test non monotone relationship, but hardly any of theses used adequate formal procedures when they test for the presence of the U shape. This includes van der Cruisjen et al. [35] analysis. They find that both λ_3 and λ_4 have the right sign and are individually significant. Based on this, they conclude that there's a U shape. Lind and Mehlum [25] developed a nice test to detect such a non monotone relationship. The results are given at the last lines of the Tables and show a significant intermediate degree of transparency in all estimated. This strongly confirms a U-shaped specifications relationship between transparency and the inflation persistence. LSDV estimates exhibit a satisfactory fit of our hypothesis, but an optimal intermediate transparency is more pronounced when we use LSDVC estimates. The result seems to be strong even when we consider lagged values of transparency (Table 2, Table 2bis), however, when the lag is equal or exceeds 3, the impact turns to be insignificant¹². The procedure consists, as we mentioned in the above section, of two steps: first, we test for the existence of an intermediate degree of transparency. Second, it is interesting to determine the value of this intermediate score. For each regression, we determined the threshold at which the effect on inflation persistence is minimized. The values range between 0.65 and 0.68. The estimated thresholds (extreme points) generated by the test are very close to the optimum. To illustrate this, we take for example the regression (1) from Table 1bis, we see that the effect is powerful when opaque central banks begin to open up and diminishes once a bank reached the level of transparency equal to 0.68. This level will change when we introduce control variables.

Besides our main variable (transparency), we used a set of variables to serve as control determinants in the panel regressions. We

¹² The results are available upon request from the author.

consider economic and political factors among those likely to affect the level of inflation or its persistence. Inflation targeting as a dummy seems to affect the inflation level, but not its persistence. The output gap is highly significant in all specifications and determines the level of inflation as well as its persistence. This is very logical because output gap is a key indicator of inflation; a positive output gap shows inflation pressures and a signal that policy may need to tighten. The exports ratio to GDP impacts on inflation level, which is an indicator of competition¹³, but doesn't affect the persistence of inflation. However, the rule of law has a significant and negative impact on the inflation persistence (See Table 2).¹⁴ We find similar results by using LSDVC estimates. However, the significance of control variables is less pronounced by considering a bias correction à la Bruno (2005). The hypothesis of an intermediate transparency degree is confirmed by a graphical analysis. A visual inspection of the Figure 3 shows the form of parabola, each one corresponds to the regressions from (1) to (3) relative to Table 2bis.

¹³ Normally, we expect that more open economies have low inflation, but we found a positive impact. It is known in literature that the relationship openness-inflation has been considered as a puzzle.

¹⁴ We also tried other political instruments such as political stability and regulatory quality but their respective coefficients were insignificant. We included them successively to avoid multicolinearity problem.

Fig. 3. Effect of Central Bank Transparency on inflation persistence: $B = \lambda_3 T + \lambda_4 T^2$ based on regressions (1) to (3) from Table 2bis. We divided the transparency score by 100 to aid the presentation of the results. TMC=Transparency index of Minegishi and Cournède [27].

1 aute	I. Cenu	al Dalik	uranspa.	rency a		non pe	ISISICIIC	e: actus		agged \	alues o	I trans	oarency	
		<u>(</u>]		2)	<u> </u>	3)	7)	æ		5)		()		5
	Coe f.	Sd.	Coe f.	. Sd	Coe f.	. Sd	Coe f.	. Sd	Coe f.	. Sd	Coe f.	Sd	Coe f.	. Sd
α	2.2 37***	(0. 243)	2.8 38***	(0 .435)	2.2 38***	(0 .244)	$3.0 \\08^{***}$	(0 .393)	2.2 66***	(0 .249)	2.3 28***	(0 .289)	2.3 15***	(0 .293)
IT_{it}			- 0.747*	() .449)		~	- 0.925* *	.390) (0		`		~		~
							- 0.925	(716.						
${\cal H}_{it-1}$	$^{1.6}_{21^{**}}$	(0. 769)a	1.4 83*	0) (608.	$1.6 \\ 07^{**}$	(0 .726)	1.4 33	(0 (965)	$1.6 \\ 00^{**}$	(0) (688)	1.654^{**}	(0) (778)	1.4 22*	(0 .722)
		(0) 790)b		(0 (030)	$^{I.6}_{07*}$	(0 .827)	1.4 33*	(0 .846)	$1.6 \\ 00^{*}$	(0) (292)	1.6 54*	(0 .894)	1.4 22	1) (600.
$\pi_{it-1} x T_{it}$	- 5.415* *	434) 2.	5.063* *	(2 .526) (2	- 5.406* *	(2 .397) (2								
		575)	5.063*	(219.		.595)								
$\pi_{it-1} x T_{it}^2$	3.9 96**	(1. 835)	3.7 76**	(1 .886)	3.9 86**	(1) (789)								
		(2. 028)	3.7 76*	(2 .050)	3.9 86*	(2 .047)								
$\pi_{it-1} x T_{it-1}$							- 5.184*	(3)	- 5.554*	(2 (171)				
								(2 (808)	- 5.554* *	(2 .827)				
$\pi_{it-1} x T_{it-1}^2$							4.0 05*	(2 .349)	4.2 53*	(2 .239)				
								(2 .215)		(2 .242)				
$\pi_{_{it-1}}xT_{_{it-2}}$											- 5.785* *	(2) .602)	- 5.469* *	(2 .356)
											- 5 785*	²⁾		(040)
$\pi_{it-1} x T_{it-2}^2$											4.3 31**	(2 .040)	4.0 58**	(1 .852)
											4.3 31*	(2 .350)	4.0 58*	(2 .422)

$\pi_{it-1}x_i$	IT_{it}			$\begin{array}{c c} 0.0 & (0 \\ 15 & .302) \\ & (0 \\ .255) \end{array}$		$\begin{array}{ c c c c } & - & & & & & & & & & & & & & & & & & $		0.1 (0 78 .407)
Sample		1999-2009	1999-2009	1999-2009	1999-2009	1999-2009	1999-2009	1999-2009
N°obsei s	rvation	100	100	100	100	100	06	06
Optimu	m	0.68	0.67	0.68	0.65	0.65	0.67	0.67
Interv	Low	-0.541	-0.541	-0.541	-0.505	-0.505	-0.505	-0.505
al	er boun d							
	Upp er	3.523	3.523	3.523	3.692	3.692	3.552	3.552
	poun d							
Slope	Low er	-9.740** [0.015]	-9.151** [0.024]	-9.720** [0.013]	-9.234** [0.048]	-9.854** [0.031]	-10.164** [0.016]	-9.573** [0.013]
	boun d	-	- -	- -	- -	- -	-	-
	Upp	22.715**	21.551**	22.685**	24.394**	25.853**	24.981**	23.362**
	er boun	[0.017]	[0.025]	[0.015]	[0.045]	[0.030]	[0.019]	[0.019]
	q							
U test		<mark>2.16**</mark>	1.99**	<mark>2.20**</mark>	1.68**	1.89**	2.10**	2.16**
[p-value	[]	[0.017]	[0.025]	[0.015]	[0.048]	[0.031]	[0.019]	[0.017]
Extrem	e point	0.677	0.670	0.678	0.647	0.653	0.674	0.674
Note: R	esults of	f the estimation of re	egression expressed	d in (2). T= Transp.	arency index, IT=	inflation targeting	(set 1 at the date o	of adoption and 0
otherwis	se), *, **	*, *** imply statistica	il significance at 10	0, 5, and 1%, respec	tively. ^a Robust sta	ndard errors are bet	tween (). ^b Andersc	on-Hsiao standard
errors at	e given	in blue italic.						

ζ	0)
-	\geq	•
Ę	1	
+	-	Ì
	>	
	ŝ	2
	ē	5
	231	3
	S	2
	5	3
	F	5
-	P C	5
	b	ן ר
-	ň	ŝ
-	C	\$
	an	
-	~	ļ
	SIL S	Ś
	S	Ş
	e C)
	P H	5
	5	2
•	2	5
	e e	5
	Ξ	1
	Ē	2
	2	3
ξ	ļ	1
:	Ξ	2
	nΩ	
	č,	Ś
	5)
	E L	5
	ar	1
	5	2
	a P	
	Ē	5
÷	4	1
	27	3
-	C)
1	r3	3
-	ţ	
7		
	_	:
•	SIC	
		ł
	٩	
		2
F	6	
-		

		T AUTE TU	IS. CUIUAI	ually uallyba	nciirg ailu i	IIIIauoni pei	SISICILCO. AL	inal allu lag	geru uansp	al clich_L				
		(1)		(2)		(3)		(4)	;)	5)		(9)	0	()
	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.
IT_{it}			-0.742	(1.305)			-0.921	(1.321)						
$\pi_{i,i}$	1.621^{**}	(0.00299)	1.484^{***}	(0.00566)	1.607^{***}	(0.00315)	1.433^{***}	(0.00729)	1.600^{***}	(0.003)	1.654^{***}	(0.00702)	1.422^{***}	(0.0173)
1-11	*									15)				(

) <u>-</u> (1.294) 5.550***	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-0.0341 (0.360) 0.179 (0.421	1999-2009 1999-2009 1999-2009 100 90 90	0.66 0.67 0.67	-0.505 -0.505 -0.505	3.692 3.552 3.552 3.552	-9.847*** -10.167*** -9.579*** ro.0001 ro.0001 ro.0001	25.760*** 24.989*** 23.378*** [0.000] [0.000] [0.003]	3.27*** 3.50*** 2.78*** [0.000] [0.000] [0.003]	0.655 0.677 0.673	standard errors using 50 iterations are between () (cf. Bruno, 2005). *, **, *** imply statistic
- (0.848) 5.181***	3.988*** (1.020)		1999-2009 100	0.65	-0.505	3.692	-9.213*** 0.0001	24.269*** [0.000]	<mark>3.62***</mark> [0.000]	0.649	the LSDV bias. Bootstrapped
$\begin{array}{c} - \\ 5.447^{***} \\ 4.009^{***} \end{array} (1.102) \end{array}$		0.0231 (0.358)	1999-2009 100	0.68	-0.541	3.523	-9.785*** [0.000]	22.805*** [0.000]	<mark>3.41***</mark> [0.000]	0.679	ed out by the first leading term of
$\begin{array}{c} - \\ 5.084^{***} \\ 3.789^{***} \end{array} (0.994) \end{array}$			1999-2009 100	0.67	-0.541	3.523	-9.183*** [0 0001	21.615*** [0.000]	<mark>3.48***</mark> [0.000]	0.670	nator. Bias approximation is carrie
$\begin{array}{c} - \\ 5.438^{***} \\ 4.007^{**} \\ * \end{array} $ (0.945)			1999-2009 100	0.68	-0.541	3.523	-9.773*** [0.0001	22.798*** [0.000]	<mark>3.86***</mark> [0.000]	0.678	nitialized by Anderson-Hsiao estin
$ au_{ii-1} x T_{ii} \ au_{ii-1} x T_{ii} \ au_{ii-1} x T_{ii}^2 \ au_{ii-1} x T_{ii}^2 \ au_{ii-1} x T_{ii-1}^2$	$egin{array}{lll} \pi_{ii-1}^{} x T_{ii-1}^{2} \ \pi_{ii-1}^{} x T_{ii-2}^{} \ \pi_{ii-1}^{} x T_{ii-2}^{} \ \pi_{ii-1}^{} x T_{ii-2}^{-} \end{array}$	$\pi_{it-1} x IT_{it}$	Sample N°observations	Optimum	Interval Lower bound	Upper bound	Slope Lower bound	Upper bound	U test [p-value]	Extreme point	Note: Bias correction in

		(1)	, c	2)	(3)	(4	4)
		Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.
α		2.405*	(0.49	1.943*	(0.2	-1.260	(0.9	2.367*	(0.2
		**	3)	**	74)	0.100*	20)	**	24)
$exgdp_{it}$						0.109* **	(0.0		
							(0.0		
		0.171*	(0.07				33)		
outgap _{it}	•	0.1/1* *	(0.07 9)a						
		0.171*	(0.05						
		**	<i>9)b</i>						
IT_{it}		-0.570	(0.48						
			(0.91						
		1.0.4.6%	<i>0)</i>	0.050*	(0, 6	1 0 7 0	(0.0	2.025*	(1.0
$\pi_{_{it-1}}$		1.846*	(0.81	2.078*	(0.6 92)	1.372	(0.8 89)	2.93/*	(1.0 92)
			(0.81	2.078*	(0.8	1.572	(0.8	2.938*	(1.2
			7)	*	47)		01)	*	31)
$\pi_{it-1} x T_{it}$		- 6.190**	(2.52	- 6.551***	(2.2 69)	- 4.821*	(2.7	- 7.455***	(2.7 97)
			(2.72	-	(2.7		(2.6	-	(3.0
		4.92(*	6) (1.02	6.551**	14)	2.065*	66)	7.455**	07)
$\pi_{it-1} x T_{it}^2$		4.830*	(1.93	5.158* **	(1.7	5.905*	(2.1	0.222** **	(2.1
			(2.17	5.138*	(2.1		(2.1		(2.3
			3)	*	<i>90)</i>		00)		88)
$\pi_{it-1} x IT_i$	it			-0.135	(0.1 90)				
					(0.2				
					59)				(0.2
$\pi_{it-1} xrl_{it}$	t							- 0.689**	(0.2 91)
								-	(0.3
				0.0(0*	(0,0	0.057*	(0.0	0.689**	58)
$\pi_{it-1} xou$	tgap _{it}			0.068* *	(0.0	0.057*	(0.0		
				0.068*	(0.0	**	(0.0		
				**	22)		21)		
Sample		1999	-2009	1999-	-2009	1999	-2009	1999	-2009
N°observa	itions	8	30	8	0	7	79	9	0
Optimum		0	.64	0.	64	0.	61	0.	<u>60</u>
Interval	Lower	-0.	541	-0.:	041	-0.	541	-0.1	041
	Unner	3	523	3.5	523	3 4	523	3.4	523
	bound	5.		5.5		5		5.5	
Slope	Lower	-11.4	23***	-12.1	11***	-9.1	12**	-14.1	89***

Table2. Alternative estimates by including other control variables

bound	[0.007]	[0.002]	[0.038]	[0.004]
Upper	27.890***	29.658***	23.121**	36.394***
bound	[0.007]	[0.003]	[0.03]	[0.002]
U test	<mark>2.48***</mark>	<mark>2.83***</mark>	<mark>1.80**</mark>	<mark>2.76***</mark>
[p-value]	[0.007]	[0.003]	[0.038]	[0.004
Extreme point	0.639	0.637	0.61	0.60

Note: Results of the estimation of regression expressed in (2). T= Transparency index, IT= inflation targeting (set 1 at the date of adoption and 0 otherwise), *, **, *** imply statistical significance at 10, 5, and 1%, respectively. ^a Robust standard errors are between (). ^b Anderson-Hsiao standard errors are given in blue italic.

			(1)		(2)	((3)
		Coef.	Sd.	Coef.	Sd.	Coef.	Sd.
exgdp _{it}						0.080 9*	(0.03
outgap	it	0.183*	(0.079			,	57)
IT_{it}			1)				
${\pi}_{_{it-1}}$		1.955 [*] **	(0.001 40)	1.964 [*] **	(0.001 38)	1.300^{*}	(0.02 82)
$\pi_{it-1} x T_{it}$	f	- 6.485 ^{****}	(0.918)	- 6.607 ^{***}	(0.918)	- 4.465 ^{****}	(0.82 9)
$\pi_{it-1} x T_{it}$	2	5.019 [*] **	(1.048)	5.077 [*] **	(1.041)	3.325 [*]	(0.96 8)
$\pi_{it-1} x IT$	it .						
$\pi_{it-1}xrl_{it}$	it				<i>(</i> 1 1 1 1		
$\pi_{it-1}xou$	ıtgap _{it}			0.0728	(0.030 9)		
Sample		199	9-2009	199	9-2009	1999	-2009
N°observ	ations		80		80	9	99
Optimum		().65	0	.65	0	.67
Interval	Lower bound	-0	0.541	-0	.541	-0.	.541
	Upper bound	3	.523	3.	.523	3.	523
Slope	Lower	-11.	915***	-12.	101***	-8.0	63***
-	bound	[0]	.0001	[0.	.0001	[0,	0001

Table2bis. Alternative estimates by including other control variables_LSDVC

Upper	28.881***	29.172***	18.967***
bound	[0.000]	[0.000]	[0.001]
U test	<mark>4.45***</mark>	<mark>4.53***</mark>	<mark>3.15***</mark>
[p-value]	[0.000]	[0.000]	[0.001]
Extreme point	0.646	0.650	0.671
Note: Bias correction initial	lized by Anderson-Hsiao estin	nator. Bias approximation is	carried out by the first

leading term of the LSDV bias. Bootstrapped standard errors using 50 iterations are between () (cf. Bruno, 2005). *, **, *** imply statistical significance at 10, 5, and 1%, respectively.

Results by using Siklos (2011) data

We replicated the same estimations by using the same sample of central banks over the same period, but we replaced the index of Minegishi and Cournède [27] by a measure that is updated by Siklos [31]. Data can be extracted from the website: http://www.central-bank-communication.net/links/

The results are presented in Tables 3, Table 3bis and Table 4, Table 4bis and suggest broadly favourable effects of transparency on the inflation persistence, particularly $\lambda_3 < 0$ and $\lambda_4 > 0$. However, theses coefficients lose their significance when we consider lags of 2 and 3 in LSDV estimates, but when we consider LSDVC estimates, a lag of 3 of transparency turns to be significant. The U test confirms theses observations, as well as the graphical analysis which shows the Ushaped curve (See Figure 4). Turning to the control variables, they are significant and most of them have the expected signs. Contrary to the results using the index of Minegishi and Cournède [27], the inflation targeting dummy doesn't have a significant impact nor on inflation level, neither on its persistence¹⁵. This is because transparency is picking up the effect of that variable. In fact, IT turns to be significant and has its expected sign when we drop transparency from the regression. Compared to the findings of Dincer and Eichengreen [12], the impact of transparency on inflation persistence has well improved, and we could detect the presence of an intermediate optimal transparency degree. The existence of an optimal intermediate transparency seems to be robust to various settings, but the exact value of the optimum is not. However, we could observe that it is high because OECD are better skilled to process information as we mentioned above, and theses skills are country-specific. Nevertheless, we should note that the value of this level is not the same for all central banks: it doesn't only depend on the communication tactics perceived by the central bank (e.g. is the central bank inflation targeter? Does it use a simple rule of monetary policy?), but also, on the nature of the committee's decision-making process (whether it is collegial or individualistic). There's no unique approach for determining the

¹⁵ We haven't reported these results to avoid the proliferation of tables, but are available upon request.

optimal degree of transparency, it differs through central banks' communication strategy despite the same beneficial effects.

Fig. 4. Effect of Central Bank Transparency on inflation persistence: $B = \lambda_3 T + \lambda_4 T^2$ based on regressions (1) to (5) from Table 3bis. TS=Transparency index of Siklos [31]

Interval	Lower	-7.096		-7.096		-7.096	-7.	060	-7.096		-7.096
	pound										
	Upper	55.426		55.426		55.426	55.	.426	55.426		55.426
Slope	Lower	-0.979**		-1.050**		-0.992**	-0.9	53**	-1.383***		-1.066**
•	ponnd	[0.022]		[0.03]		[0.024]	[0.0	034]	[0.0007]		[0.016]
	Upper	2.403**		2.556**		2.505**	2.3	87**	3.682***		2.653**
	pond	[0.021]		[0.034]		[0.021]	[0.0	028]	[0.0002]		[0.016]
U test		2.403**		1.79**		2.00**	1.8	S**	3.32***		2.16**
[p-value]		[0.021]		[0.040]		[0.0246]	[0.0	034]	[0.0007]		[0.017]
Extreme po	oint	11.009		11.108		10.645	10.	.740	9.974		10.821
Note: Resul significance	Its of the estin at 10, 5, and 1	nation of regression exp %, respectively. ^a Robus	ressed in (2). T= t standard errors a	 Transparer are between 	ncy index, I7 (). ^b Anderse	Γ= inflation targ on-Hsiao standa	geting (set 1 at th rd errors are given	e date of adopt in blue italic.	tion and 0 otherwi	se), *, **, ***	imply statistical
		Ē		-		- - - -	100				
		Table 3t	is. Comparati	ive results	using the u	updated index	of Siklos (201	1): TSDVC (estimates		
		(1)		(2)			(3)		(4)		(5)
		Coef. Sd	. Coe	ef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.
outgap _{it}						0.171*	(0.0857)				
$exgdp_{it}$										0.0896^{**}	(0.0344)
IT_{it}											

			I AULE JULS. CU	uuparauve res	n on Billen and	npuareu IIIuea	INT SOLVE IN S	1). LOUVC	Sumatos		
			(1)		(2)		(3)		(4)		(5)
		Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.
outgap	it					0.171^{*}	(0.0857)				
$exgdp_{it}$										0.0896^{**}	(0.0344)
IT_{it}											
$\pi_{_{it-1}}$		2.995***	(0.0000355)	3.153***	(0.0000250)	3.017***	(0.0000567)	2.954***	(0.0000649)	3.196^{***}	(0.0000219)
$\pi_{_{it-1}}xT_{_i}$	*	-0.598***	(0.0523)	-0.643***	(0.0730)	-0.598***	(0.0620)	-0.575***	(0.0597)	-0.645***	(0.0487)
$\pi_{_{it-1}}xT_{_i}$	<i>t</i> 5	0.0272***	(0.00446)	0.0290***	(0.00472)	0.0281***	(0.00471)	0.0268***	(0.00450)	0.0298***	(0.00387)
$\pi_{it-1} x I I$	r it										
$\pi_{it-1}xrl$	it										
$\pi_{it-1} xoi$	utgap _{it}							0.0650^{*}	(0.0312)		
Sample		19	99-2009	199	9-2009	195	9-2009	199	9-2009	199	9-2009
N°observ	ations		100		100		80		80		66
Optim	um		11		11		10.5		10.5		11
Interval	Lower		-7.096		7.096	`1	7.096	1	7.096	`1	7.096
	pound										
	Upper	.,	55.426	5:	5.426	5	5.426	5	5.426	5	5.426

	pound					
Slope	Lower	-0.984***	-1.053***	-0.996***	-0.955***	-1.067***
	pound	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
	Upper	2.417***	2.568***	2.516***	2.392***	2.659***
	pound	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
U test		5.44***	<u>5.57***</u>	5.45***	5.43***	6.97***
[p-value]		[0000]	[0.000]	[0.000]	[0.000]	[0.000]
Extreme	ooint	10.993	11.093	10.635	10.742	10.816
Note: Bia: between (s correction ir (cf. Bruno, 2	nitialized by Anderson-Hsiao estir 005). *, **, *** imply statistical s	lator. Bias approximation is carried ignificance at 10, 5, and 1%, respect	d out by the first leading term of the ctively.	re LSDV bias. Bootstrapped stand	ard errors using 50 iterations are

		Table 4. R	esults using t	the updated	l index of Sil	clos (2011)	: Lagged val	ues of trans	sparency			
		(1)	(2)	3)		4)	;)	5))	()
	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.
α	2.291***	(0.238)	2.020***	(0.264)	2.373***	(0.278)	1.738***	(0.374)	1.907 * * *	(0.367)	1.768***	(0.393)
$outgap_{it}$			0.172**	(0.079)					0.209**	(0.091)		
$\pi_{i_{l-1}}$	1.965*	(1.117)a	2.135*	(1.109)	0.811	(1.080)	0.796	(1.267)	0.764	(1.145)	0.709	(1.311)
$\pi_{_{it-1}}xT_{_{it-1}}$	-0.404** -0.404*	(0.208) (0.208) (0.235)	-0.433** -0.433*	(1.2.17) (0.212) (0.245)		(101.1)		(047.1)		(0+(-1)		(07(1)
$\pi_{i_{t-1}}xT_{i_{t-1}}^2$	0.018**	(0.009) (0.010)	0.020** 0.020*	(0.009) (110)								
$\pi_{_{it-1}} x T_{_{it-2}}$					-0.190	(0.194)	-0.163	(0.232)				
$\pi_{i_{l-1}}xT_{i_{l-2}}^2$					0.008	(0.008) (0.008)	0.009	(010)				
$\pi_{i_{l-1}}xT_{i_{l-3}}$						(coord)		(010:0)	-0.229	(0.220)	-0.221	(0.239)
$\pi_{i_{l}-1}^{2} x T_{i_{l}-3}^{2}$									0.014	(0.010)	0.014	(0.010) (0.012)
$\pi_{i_{l-1}} xoutgap_{i_l}$							0.072**	(0.035) (0.024)			0.084^{**} 0.084^{***}	(0.034) (0.025)
Sample	199	9-2009	1999-	-2009	1999	-2009	1999	-2009	1999	-2009	1999	-2009
N° observations	. 7	100	8	0	6	0		2	9	54	9	4
Optimum		11	1	1	I	2		6		~		~

Interval	Lower bound	-7.096	-7.096	960.7-	-7.096	-7.539	-7.539
	Upper bound	55.426	55.426	55.426	55.426	55.426	55.426
Slope	Lower bound	-0.668**	-0.731**	-0.315	-0.290	-0.445	442
		[0.026]	[0.019]	[0.159]	[0.223]	[0.117]	[0.136]
	Upper bound	1.661**	1.891**	0.782	0.836	1.360*	1.402*
		[0.024]	[0.015]	[0.151]	[0.188]	[0.068]	[0.072]
U test		1.97**	2.10**	1.00	0.77	1.20	1.11
[p-value]		[0.026]	[0.019]	[0.16]	[0.224]	[0.117]	[0.136]
Extreme p	ooint	10.850	10.343	10.844	9.042	7.997	7.566
Note: Resu	alts of the estimatic	on of regression expressed in (2). T= Transparency index, I	T = inflation targeting (set 1 s	at the date of adoption and 0 c	otherwise), *, **, *** imply s	atistical significance at 10,

sion expressed in (2). 1 = 1 ransparency index, 11 = initiation targeting (set 1 at the date of adoption and 0 otherwise), ", "", """ imply statistic	rd errors are between (). ^b Anderson-Hsiao standard errors are given in blue italic		
Note: Results of the estimation of regression (5, and 1%, respectively. ^a Robust standard err		

T	able 4bis. F	cesuits using	the update	a index of S	1KIOS (2011): Lagged	values of tra	insparency		umates		
		(1)		(2))	3))	4)	<u>(</u>	())	()
	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.
outgap _{it}			0.173	(0.115)					0.209^{*}	(0.099		
$\pi_{i_{t-1}}$	1.966**	(0.0007 98)	2.136** *	(0.0008 05)	0.811^{**}	(0.112	0.797** *	(0.127	0.765***	0) (0.135)	0.710^{**}	(0.141)
$\pi_{i_{t-1}}xT_{i_{t-1}}$	- 0.407***	(0.0548	- 0.436 ^{***}	(0.0774		~		~		`		~
$\pi_{i_{l-1}}xT_{i_{l-1}}^2$	0.0188*	(0.0046 1)	0.0211 [*] **	(0.0059 8)								
$\pi_{_{it-1}}xT_{_{it-2}}$					-0.190*	(0.092 3)	-0.163	(0.122				
$\pi_{i_{t-1}}xT_{i_{t-2}}^2$					0.0087 8	(0.007 82)	0.0090 2	(0.009 88)				
$\pi_{i_{l-1}}xT_{i_{l-3}}$									- 0.229***	(0.069 5)	- 0.223***	(0.065 9)
$\pi_{i_{l-1}}xT_{i_{l-3}}^2$									0.0143^{*}	(0.005 97)	0.0147^{*}	(0.005 81)
$\pi_{i_{t-1}} xoutgap_{i_t}$							0.0729	(0.063 2)			0.0850^{*}	(0.035 1)
Sample	199	9-2009	199	9-2009	1999	-2009	1999	-2009	1999-	.2009	6661	-2009
N° observations		100		80		06		'2	6	4		54

I CDV/C actimate ţ --(11). T £ C:1-100 1 :..... 1-4-6 f • 1 Ē Table Abic

Optimum		11	10.5	11	6	8	7.5
Interval	Lower bound	-7.096	-7.096	-7.096	-7.096	-7.539	-7.539
	Upper bound	55.426	55.426	55.426	55.426	55.426	55.426
Slope	Lower bound	-0.673***	-0.735***	-0.314*	-0.290	-0.445***	-0.445***
		[0000]	[0000]	[0.061]	[0.131]	[0.003]	[.002]
	Upper bound	1.676^{***}	1.904^{***}	0.782	0.836	1.360^{**}	1.410^{***}
		[0000]	[000.0]	[0.158]	[0.198]	[0.012]	[00:0]
U test		3.65***	3.24***	1.01	0.85	2.28**	<mark>2.42***</mark>
[p-value]		[0000]	[0000]	[0.158]	[0.199]	[0.013]	[0.00]
Extreme po	oint	10.826	10.325	10.842	9.042	7.797	7.565
Note: Bias (correction initialized	l by Anderson-Hsiao estima	tor. Bias approximation is c	arried out by the first leadi	ng term of the LSDV bias.	Bootstrapped standard erro	rs using 50 iterations are
between () ((cf. Bruno, 2005). *,	**, *** imply statistical sig	nificance at $10, 5$, and 1% , r	espectively.			

Results using constructive transparency index by PCA

The index of transparency used by Siklos [31] is an updated version of the one constructed by Dincer and Eichengreen [12]. Theses authors have also updated the index of transparency based on the popular index of Eijffinger and Geraats [14]. The index of Eijffinger and Geraats has been criticized on a number of grounds. They remark themselves that it is obviously questionable to simply add the scores of the 15 components in order to obtain a meaningful measure. In this section, we fill in this gap by constructing a weighted index of central bank transparency. Much of the past research has focused on constructing an index, but ignores the possible correlations between the variables forming the index and may carry redundant variables. The principal component analysis (PCA) is a feasible solution to these issues by distilling components from a Pearson correlation matrix. This applies to the transparency index of Siklos [31] which is based on the aggregation procedure followed by Eijffinger and Geraats [14]. Di Bartolomeo and Marchetti [11] remarked that even the partition elaborated by theses authors is comprehensive, the possibility of correlations between the sub-indexes and the strong multidimensionality of the concept require the use of the standard methods of multivariate eigen-analysis (the most classical of which is the PCA) appear particularly suited.

Pearson correlation matrix of the set of initial sub-indexes of Siklos [31], given in Table C.1, shows a highly and significant pair wise correlations. Then, we proceeded to a PCA in order to extract a set of uncorrelated principal components, which are a weighted linear combination of the original data set:

$$PC_i = \sum_{i=1}^{15} \omega_i t_i \tag{5}$$

Where t_i is the sub-index of transparency score in Siklos [31]. Table C.3 displays the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy. KMO takes values between 0 and 1, with high values (0.845) indicating that overall the variables have too much in common to warrant a PCA analysis. We used, then the first principal component as a proxy for the new transparency score. It explains 37.74% of the total variance (See Table C.2). Results of our estimations are given in Table 5. An intermediate level of transparency is found to have the

largest influence on inflation persistence especially when we introduce output gap as % of GDP as control determinant of inflation and inflation persistence, respectively. Again, while the U shape test indicates a significant intermediate optimal level of transparency, the level itself is not the same in all specifications. The impact of transparency on inflation persistence, however, is weaker when introducing lagged values of transparency (lags 1 and 2) though λ_3 and λ_4 have their expected signs.

Fig. 5. Effect of Central Bank Transparency on inflation persistence: $B = \lambda_3 T + \lambda_4 T^2$ based on regressions (1) to (4) from Table 5bis. Tpca=Transparency index constructed by PCA.

Note that we didn't consider endogenous aspects of transparency (in all of the three cases) as in Dincer and Eichengreen [12]¹⁶. However, as noted by van der Cruisjen et al., "*it is hard to find reliable instruments that strongly relate to central bank transparency*".

¹⁶ The fitted value of transparency was taken, based on a regression relating transparency to a constant and rule of law in their framework. Van der Cruisjen et al. [35] note that the quality of the model of Dincer and Eichengreen suffers from an omitted variable bias and it doesn't perform well according to R² criteria, whose value is close to zero.

		I ar	in relination of all		ally allu illiau	oll persistence	C. FUA III	Tex		
		(1)	[]		3			(4)		
	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.
α	2.316* ** 2.271*	(0.333) (0.232) (0.279)	2.028*** 1.975*** 1.804***	(0.254) (0.260) (0.338)	2.002*** 1.949*** 1.723***	(0.269) (0.271) (0.364)	2.419* ** 2.340* **	(0.227) (0.332)	-0.637 -0.585 -0.704	(0.774) (0.773) (0.804)
	2.356* **		*********							
outgap _{it}			0.1/1"**0.1/11" ** 0.175**	(0.078)(0.00) (0) (0.080)(0.06)						
				(0.093) (0.06 6)						
$exgdp_{ii}$				~					$0.091^{**}0.09I^{*}$	(0.023)(0.02)
									0.087***	(0.023)(0.02)
										(0.025)(0.02)
${\cal R}_{i_{t-1}}$	0.469	(0.526)a(0.466)	0.513	(0.536)(0.50)	0.479	(0.585)(0.50)	1.322* *	(0.613)(0.75	0.575	(0.474)(0.43)
4	-0.021	(0.433)a(0.402)	0.0990	(0.436)(0.42)	0.104	(0.475)(0.42)	0.738	(0.688)(0.75)	0.281	(0.237)(0.31)
		$\int_{b}^{b} (0.352) a(0.352)$		(0.436)(0.42)		(0.473)(0.41)		6		() (0.337)(0.33 6)
$\pi_{it-1}xT_{it}$	-0.295	(0.226)(0.202)	-0.276	(0.228)(0.21)	-0.245	(0.239)(0.21)	-0.363	(0.236)(0.227)	-0.356 -0.356*	(0.221)(0.19 1)
$\pi_{i_{t-1}} x T_{i_t}^2$	0.029	(0.020) <i>(0.018)</i>	0.029	(0.021)(0.01)	0.026	(0.021)(0.01)	0.044* *	(0.020) <i>(0.02</i> I)	0.036* 0.036**	(0.021) <i>(0.01</i> 7)
$\pi_{n-1} x T_{n-1}$	-0.172	(0.177)(0.168)	-0.164	(0.181)(0.17)	-0.155	(0.188)(0.17)	-0.131	(0.237)(0.20)	-0.215	$(0.173)(0.15)_{0.15}$
$\pi_{i_{t-1}} x T_{i_{t-1}}^2$	0.017	(0.015)(0.015)	0.019	(0.016)(0.01)	0.018	(0.016)(0.01	0.020	(0.021)(0.01)	0.022	(0.016)(0.01)
$\pi_{i_{t-1}}xT_{i_{t-2}}$	-0.086	(0.143)(0.146)	-0.032	(0.174)(0.17)	-0.026	(0.180)(0.17)		\$	-0.199	(0.147)(0.14)
$\pi_{i_{t-1}}xT_{i_{t-2}}^2$	0.008	(0.012)(0.013)	0.005	(0.015)(0.01)	0.005	(0.016)(0.01) 6)			0.017	(0.013)(0.01)
$\pi_{_{it-1}}xrl_{_{it}}$							-0.626* -0.516	(0.335)(0.35)2) $(0.332)(0.35)$		
$\pi_{it-1}xoutgap_{it}$					0.063** 0.067**0.067*	(0.030) <i>(0.02</i> 2)				

DCA inde aiotar d inflation ntral hank tr Tahla 5 Ca

(1) ** (1	-3.009	30.432 30.432	00] -0.455*[0.100] -0.402[0.139]	5] -0.066[0.400] -0.060[0.412]	0] 1.528*[0.080] 1.342[0.111]	3] 1.017[0.114] 0.962[0.129]	[C+C:0]02C:0 [24C:0] [1.28*[0.100] [1.28*[0.	1 1.00[0.159] 0.92[0.180] 0 0.25[0.401] 0.22[0.412]
	Lower -3.009 bound	Upper 30.432 bound	Lower -0.471*[0.090]		Upper 1.485*[0.070]	bound 0.903[0.128]	e test 1.35*[0.090]	1.03[0.1.53] 0.63[0.266]

Table 5. Continued

F

	(1)	(2)	(3)	(4)	(5)
Extreme point	5.052	4.662	4.704	4.120	4.930
	4.886	4.237	4.223	3.290	4.874
	5.311	2.807	2.253		5.779
Note: Results of the estimation of re	egression in (2). T= Constructed tra	nsparency indexed using PCA. ^a Robu	ist standard errors are between ().	^b Anderson-Hsiao standard eri	rors are given in italic.

			(1)		(2)		(3)		(4)
		Coef.	Sd.	Coef.	Sd.	Coef.	Sd.	Coef.	Sd.
outgap	i4			0.177*	(0.0848				
01	11			0.179)				
				0.186	(0.0967				
)				
eradn					(0.103)			0.0952**	(0.0352
engap _{it}								0.0891*)
								0.0981**	(0.0364
)
									(0.0367
)
π_{\cdot} .		0.469***	(0.105)	0.514**	(0.130)	0.619**	(0.132)	0.576***	(0.0911
11-1		0.218*	(0.0927	*	(0.135)	*	(0.132)	0.312**)
		0.0214)	0.280^{*}	(0.150)	0.291*	(0.151)	0.283*	(0.113)
			(0.125)	0.0994		0.105			(0.135)
πxT		-	(0.0809	-	(0.0976	-	(0.0966)	-0.366***	(0.0781
<i>it</i> -1 ^{<i>s</i>r} <i>i</i>	t	0.308***)	0.294**)	0.321***)
$\pi_{it-1} x T_i$	2 t	0.0305*	(0.0116	0.0315*	(0.0130	0.0320^{*}	(0.0127)	0.0371***	(0.0106
		0.192*)	0.175)	0.101*	(0,0002)	0 222**)
$\pi_{it-1} x T_i$	<i>t</i> -1	-0.183	(0.0789	-0.1/5	(0.103)	-0.191	(0.0902)	-0.223	(0.0766
π rT	2	0.0187	(0.0112	0.0205	(0.0137	0.0221	(0.0120)	0.0228^{*}	(0.0102
it-1 $it-1$ i	<i>t</i> -1)))
$\pi_{it-1}xT_i$	t-2	-0.0967	(0.106)	-0.0340	(0.137)	-0.0307	(0.124)	-0.215*	(0.0873
$\pi \dots xT$	2	0.00931	(0.0151	0.0059	(0.0180	0.0063	(0.0155)	0.0192	(0.0109
it-1	<i>t</i> -2)	4)	2)
$\pi_{it-1}xot$	utgap _{it}					0.0552 0.0703 [*]	(0.0308)		
						0.0711	(0.0318) (0.0368)		
							(0.0500)		
Interval	Lower	-3	3.009	-3	3.009	-3	3.009	-3	.009
	bound								
	Upper	30	0.432	30	0.432	30	0.432	30	.432
Slope	Lower	-0 491*	*** [0.000]	-0 483*	*** [0.003]	-0 513*	***[0.001]	-0 589*	**[0.000]
Stope	bound	-0.295	** [0.020]	-0.297	/* [0.054]	-0.324	**[0.023]	-0.360*	**[0.004]
		-0.152	2 [0.216]	-0.06	9 [0.386]	-0.06	8 [0.373]	-0.330*	**[0.015]

 Table 5bis. Central bank transparency and inflation persistence: PCA index_LSDVC estimates

Upper	1.550*** [0.007]	1.621** [0.011]	1.625*** [0.009]	1.892***[0.000]
bound	0.955* [0.060]	1.071* [0.075]	1.152**[0.038]	1.168**[0.018]
	0.470[0.283]	0.327 [0.368]	0.353 [0.335]	0.953*[0.053]
U shape test [p-	2.45*** [0.007]	2.33** [0.011]	2.40***[0.009]	3.32***[0.000]
value]	1.56* [0.06]	1.45* [0.07]	1.79** [0.038]	2.11**[0.018]
	0.57 [0.284]	0.29 [0.386]	0.32 [0.374]	1.63*[0.053]

Table 5bis. Continued

Table Sols. Commuea						
	(1)	(2)	(3)	(4)		
Extreme	5.040	4.671	5.016	4.930		
point	4.890	4.267	4.332	4.872		
	5.191	2.862	2.429	5.604		

Note: Bias correction initialized by Anderson-Hsiao estimator. Bias approximation is carried out by the first leading term of the LSDV bias. Bootstrapped standard errors using 50 iterations are between () (cf. Bruno, 2005).

35

4 Conclusion and avenue for future research

In this paper, we gave a further check of a recent result brought by van der Cruijsen et al. [35] who concluded the presence of an intermediate transparency at the optimum, based on the findings of a significantly negative coefficient on transparency term and a significantly positive estimate on the quadratic term and take them as evidence supporting the U shape curve. According to Lind and Mehlum [25], that conventional approach-although intuitive- is flawed. We revisit the hypothesis of an intermediate optimal central bank transparency by introducing both technical and economic differences in our specification. Particularly, we have used three other transparency indexes recently developed by Minegishi and Cournède [27], by Siklos [31] and an index constructed by PCA based on Siklos's data. We found that the hypothesis of U-shaped relationship was strongly depicted in the case of central banks considered in our sample. The test results overwhelmingly reject the combined null hypothesis of an inverted-U or monotone relationship in favour of a U-shaped linkage between inflation persistence and central bank transparency by using an appropriate test developed by Lind and Mehlum [25]. The results are robust for controlling other determinants of inflation and inflation persistence, but a little bit weaker when we used lagged values of transparency.

We acknowledge that results obtained here as well as in van der Cruijsen et al. [35] depend crucially on the transparency indexes used. Although they are complete in the sense that they cover all aspects and dimensions of transparency, they are based mainly on a quantitative side. However, it would be misleading to evaluate transparency only on the basis of the amount of released information. The concept also encompasses features like accuracy, quality, truthfulness, and information relevance. These issues require further attention in forthcoming researches.

5 References

- 1. Andersson, M., and B. Hofmann, (2010), "Twenty Years of Inflation Targeting: Lessons Learned and Future Prospects", chapter "Gauging the effectiveness of quantitative forward guidance: evidence from three inflation targeters". Cambridge University Press.
- 2. Baeriswyl, R. (2011), "Endogenous central bank information and optimal degree of transparency", *International Journal of central banking* 7(2), 85-111.
- 3. Blinder, A. S. (2000), "Central-bank credibility: Why do we care? How do we build it?" *American Economic Review* **90**(5), 1421–1431.
- 4. Buiter, W. (1999), "Alice in Euroland," Journal of Common Market Studies 37(2), 181–209.
- Bruno, G.S.F. (2005), "Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models." *Economics Letters*, 87, 361-366.
- 6. Bun, M.J.G. and M.A. Carree, (2005). "Bias-corrected estimation in dynamic panel data models." *Journal of Business and Economic Statistics* 23, 200–210.
- 7. Bun, Maurice J. G. and Jan F. Kiviet, (2003), "On the diminishing returns of higher-order terms in asymptotic expansions of bias," *Economics Letters*, Elsevier **79**(2), 145-152.
- 8. Cukierman, A. (2001), "Accountability, credibility, transparency, and stabilization policy in the Eurosystem," in (C. Wyplosz, eds.), The Impact of EMU on Europe and the Developing Countries, 40–75, Oxford: Oxford University Press.
- 9. Danske Research Report, SNB-an information vacuum, http://mediaserver.fxstreet.com/Reports/84b09524-ee5c-468e 911a9bda692a4d22/f04a8876-47f8-40b4-976f-8b1e9406c1de.pdf

- 10. Demertzis, M. and M. Hoeberichts (2007), "The costs of increasing transparency," *Open Economies Review* **18**(3), 263-280.
- 11. Di Bartolomeo G. and E. Marchetti (2004), "Central banks and information provided to private sector", Working Paper http://wp.comunite.it/works/Transparency.pdf
- 12. Dincer, N. and B. Eichengreen (2010) "Central Bank Transparency: Causes, Consequences and Updates," *Theoretical Inquiries in Law* **11**(1),
- Ehrmann, M., and M. Fratzscher (2007), "Communication and decisionmaking by central bank committees: different strategies, same effectiveness?" *Journal of Money, Credit and Banking* 39(2–3), 509-541.
- 14. Eijffinger, S. C. and P. M. Geraats (2006), "How transparent are central banks?" *European Journal of Political Economy* **22**(1), 1–21.
- 15. Faust, J. and Svensson, L. E. O. (2001), "Transparency and credibility: monetary policy with unobservable goals," *International Economic Review* **42**(2), 369–97.
- 16. Forte, A. (2010), "The European Central Bank, the Federal Reserve and the Bank of England: Is the Taylor Rule a useful benchmark for the last decade?" *Journal of Economics and Econometrics*, **53**(2), 1-31.
- Fry, M., Julius, D., L. Mahadeva, Roger, S. and G. Sterne (2000), "Key issues in the choice of monetary policy framework", *in* L. Mahadeva and G. Sterne, eds, 'Monetary Policy Frameworks in a Global Context', Routledge, London, 1–216.
- 18. Fuhrer, J. (2009), "Inflation persistence," Working Paper No 09-14, Federal Reserve Bank of Boston.
- Geraats, P. M. (2002), "Central bank transparency", *Economic Journal* 112 (483), 532–565.
- 20. Geraats, P. M. (2009), "Trends in Monetary Policy Transparency," International Finance 12(2), 235-268, 08.
- 21. Hahn, V. (2002), "Transparency in Monetary Policy: a Survey," *ifo Studien* **28**(3), 429–455.

- 22. Issing, O. (1999), "The Eurosystem: Transparent and Accountable or Willem in Euroland," *Journal of Common Market Studies* 37(3), 503–519.
- 23. Kahnemann, D. (2003), "Maps of bounded rationality: Psychology for behavioural economics." *American Economic Review* **93**(5), 1449-1475.
- 24. Kiviet, J.F., (1995), "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models." *Journal of Econometrics* 68, 53–78.
- 25. Lind Thori Jo, and H. Mehlum (2010), "With or Without U? The Appropriate Test for a U-Shaped Relationship," *Oxford Bulletin of Economics and Statistics*, Department of Economics, University of Oxford, **72**(1), 109-118, 02.
- 26. Middeldorp, M. (2011), "Central bank transparency, the accuracy of professional forecasts, and interest rate volatility," Staff Reports 496, Federal Reserve Bank of New York.
- 27. Minegishi, M. and B. Cournède (2009), "The role of transparency in the conduct of monetary policy", OECD Economics Department WP No 724.
- 28. Morris, S., and H. S. Shin (2002), "The Social Value of Public Information," *American Economic Review*, **92**, 1521-1534.
- 29. Morris, S., Shin, H. S. and Tong, H. (2006), "Response to Social value of information: Morris and Shin (2002) is actually pro transparency, not con," *American Economic Review* **96**(1), 453–455.
- 30. Pétursson (2004), "Formulation of inflation targeting around the World." Monetary Bulletin, 57-84.
- 31. Siklos, P. (2011), "Central Bank Transparency: Another Look," *Applied Economics Letters* **18**(10), 929-933.
- 32. Stock, J.H. and M. Watson (2007), "Has inflation become harder to forecast?" Journal of Money, Credit, and Banking **39**, 3-34.
- Svensson, L. (2006), "Social Value of Public Information: Morris and Shin (2002) Is Actually Pro Transparency, Not Con." *American Economic Review* 96(1), 448-451.

- 34. Trabelsi, E., and M. Ayadi (2011), "The role of central bank transparency in a macroeconomic perspective: Evidence from a pooled cross-country setting," *The Empirical Economics Letters* **10**(9), 927-934.
- 35. Van der Cruijsen, Carin A.B., Sylvester C.W. Eijffinger, and Lex H Hoogduin (2010), "Optimal Central Bank Transparency", *Journal of International Money and Finance* **29**(8), 1482-1507.

A. Data, sources and some preliminary statistics

Table A.1 Data	and sample selected

Variable	Definition	Source				
Dependent	Dependent variable					
Inflation (π)	Consumer Price index (annual % increase)	IMF, World Economic Outlook Database http://www.imf.org/external/ns/cs.aspx?id=28				
Independer	nt variables					
Output gap (<i>outgap</i>)	Output gap as % of GDP	IMF, World Economic Outlook Database http://www.imf.org/external/ns/cs.aspx?id=28				
Exports as a % of GDP (<i>exgdp</i>)	Exports as a % of GDP	World Development Indicators, World Bank http://data.worldbank.org/indicator				
IT	Inflation targeting, dummy set to be 1 at the time the country has adopted IT and 0 otherwise	Pétursson (2004)				
Rule of Law (<i>rl</i>)	Rule of Law	Worldwide Governance Indicators (WGI), World Bank http://info.worldbank.org/governance/wgi/sc_country.as p				
Variables of	interest					
Т	Transparency index of M&C	Minegishi and Cournède (2009)				
Т	Transparency index of S	http://www.central-bank-communication.net/links/				
	Cou	Intries considered in our sample				
Australia, Canada, Euro area, Japan, Korea, New Zealand, Norway, Sweden, Switzerland, United Kingdom, United States						

Variable		Mean	SD	Min	Max	N°
						Obs
Trans	Overall	0.670	0.15	0.36	0.98	110
Mac	Between		0.14	0.49	0.881	
	Within		0.08	0.42	0.893	
Trans	Overall	10.481	2.22	6	15	110
3	Between		2.18	7.5	13.77	
	Within		0.80	6.3	11.8	

Table A.2. Descriptive statistics

Note: M&C refers to Minegishi and Cournède and S refers to Siklos.

Table A.3. Correlation matrix

	Trans M&C	Trans S
Trans M&C	1.00	
Trans S	0.73	1.00

Note: M&C refers to Minegishi and Cournède and S refers to Siklos.

Categories	Sub-	Description Val		
Cutegories	indexes	Description	v uiue	
	IIIUCACS		3	
Political	Formal objectives	Explicit communication and/or prioritization of final targets.	1; 0,5; 0	
	Quantitative targets	Presence of targets quantification	1;0	
	Institutional arrangements	Presence of explicit contracts between CB and government (e.g. instrument independence).	1; 0,5; 0	
Economic	Economic data	Provision of data on GDP, money supply, inflation, unemployment and capacity utilization.	1; 0,5; 0	
	Policy models	Disclosure of the CB's formal macro-model(s) used for policy analysis.	1; 0	
	Internal forecasts	Regular communication or publication of CB's forecasts.	1; 0,5; 0	
Procedural Explicit strategy		Provision of a description of a CB's policy rule (strategy).	1; 0	
Minutes		Release of the decision boards minutes (in 8 weeks)	1; 0	
	Voting records	Publication of voting records (in 8 weeks)	1; 0	
Policy Prompt announcement		Decision on the main instruments or target announced at the latest day of implementation	1; 0	
Policy explanation		Provision of explanations of CB's announced decisions on targets/instruments.	1; 0,5; 0	
	Policy inclination	Disclosure of CB's likely future actions	1; 0	
Operational Control errors		Provision of explanation for eventual deviation from the targets	1; 0,5; 0	
Transmission disturbances Evaluation of policy outcomes		Regular provision of information on disturbances affecting the transmission process.	1; 0,5; 0	
		Regular provision of CB's evaluation in light of its macroeconomic objectives.	1; 0,5; 0	

B. Methodology of calculating transparency indexes

Table B.1. - The basics of constructing the transparency index of Siklos (2011)

Source: Di Bartolomeo and Marchetti (2004) according to Eijffinger and Geraats (2006). The index takes values between 0 and 15.

Categories	Sub-	Sub-indexes	Values
	categories		
		I	
Policy objective		Policy objective(s)	1; 0,75 ; 0,5; 0
		Quantification	1; 0,75; 0,5; 0
		Time horizon	1; 0,75; 0,5; 0
Policy decision	Policy changes	Announcement	1; 0,75 ; 0,5; 0
		Explanation	1; 0,75 ; 0,5; 0
	No policy	Announcement	1; 0,75 ; 0,5; 0
	changes	Explanation	1; 0,75; 0,5; 0
		Future policy guidance	1; 0,75; 0,5; 0
Economic		Frequency of projection	1; 0,75 ; 0,5; 0
analysis		publication	
		Endorsement of the decision-	1; 0,75 ; 0,5; 0
		making body	
Inflation		Basic nature	1; 0,75 ; 0,5; 0
projection		Projection time horizon	1; 0,75 ; 0,5; 0
		Projection frequency	1; 0,75 ; 0,5; 0
		Uncertainty	1; 0,75 ; 0,5; 0
	Output projection	Basic nature	1; 0,75 ; 0,5; 0
		Projection time horizon	1; 0,75; 0,5; 0
		Projection frequency	1; 0,75; 0,5; 0
		Uncertainty	1; 0,75; 0,5; 0
		Underlying assumptions	1; 0,75; 0,5; 0
Decision-making	g process	Minutes	1; 0,75 ; 0,5; 0
		Voting records	1; 0,75; 0,5; 0
		Public appearances	1; 0,75; 0,5; 0

Table B.2. The score scheme of Minegishi and Cournède (2009)

Source: Minegishi and Cournède (2009). The index takes the values between 0 and 100.

C. Principal Component Analysis results

	t1	t2	t3	t4	t5	t6	t7
tl	1.0000						
t2	0.1039 0.0003	1.0000					
t3	0.3863 0.0000	0.3026	1.0000				
t4	0.1905 0.0000	0.2505 0.0000	0.3559	1.0000			
t5	0.1426 0.0000	0.2640 0.0000	0.2068	0.4602	1.0000		
t6	0.2012	0.2923 0.0000	0.2983	0.4924 0.0000	0.3871 0.0000	1.0000	
t7	0.2917 0.0000	0.4574 0.0000	0.3303	0.3197 0.0000	0.2505	0.3763	1.0000
t8	0.1049 0.0003	0.1520 0.0000	0.1346 0.0000	0.3453 0.0000	0.4307 0.0000	0.3327	0.1252 0.0000
t9	0.0651 0.0234	0.0381 0.1851	0.1898 0.0000	0.3979 0.0000	0.4484 0.0000	0.3768	0.0185 0.5210
t10	0.2782	0.1431 0.0000	0.2299 0.0000	0.4938	0.4122 0.0000	0.5059	0.3138
t11	0.2141 0.0000	0.2217 0.0000	0.2148 0.0000	0.5275	0.5353 0.0000	0.4494 0.0000	0.2720
t12	0.0474 0.0991	0.0285 0.3213	0.0422 0.1417	0.2872	0.3390 0.0000	0.2289	0.0185 0.5203
t13	0.2049 0.0000	0.2794 0.0000	0.2557 0.0000	0.4479 0.0000	0.4017 0.0000	0.4295	0.2747
t14	0.2164 0.0000	0.2646 0.0000	0.2321 0.0000	0.4231 0.0000	0.3403 0.0000	0.5200	0.2939 0.0000
t15	0.2342	0.2883 0.0000	0.2954 0.0000	0.3719 0.0000	0.3206 0.0000	0.5660 0.0000	0.4220 0.0000
	t8	t9	t10	t11	t12	t13	t14
t8	1.0000						
t9	0.6850 0.0000	1.0000					
t10	0.4041 0.0000	0.3142	1.0000				
t11	0.3760	0.4067 0.0000	0.7646 0.0000	1.0000			
t12	0.3780	0.6311 0.0000	0.2005	0.3842 0.0000	1.0000		
t13	0.4110 0.0000	0.3965	0.3963 0.0000	0.4896 0.0000	0.3069 0.0000	1.0000	
t14	0.3521 0.0000	0.3331 0.0000	0.4906 0.0000	0.4132 0.0000	0.1579 0.0000	0.3690 0.0000	1.0000
t15	0.3012 0.0000	0.2855 0.0000	0.4023 0.0000	0.3393 0.0000	0.1949 0.0000	0.4190 0.0000	0.5379 0.0000
	t15						
t15	1.0000						

 Table C.1. Pearson correlation matrix of sub-indexes: Data from Siklos (2011)

Note: t_i is the sub-index of Siklos overall transparency. P-values are given under each coefficient correlation.

Table C.2. Principal Component Analysis

Prir Rot	Principal components/correlation Rotation: (unrotated = principal)			Number o Number o Trace Rho	of obs = 1209 $ of comp. = 15 $ $ = 15 $ $ = 1.0000$
-	Component	Eigenvalue	Difference	Proportion	Cumulative
-	Comp1 Comp2 Comp3 Comp4 Comp5 Comp7 Comp7 Comp7 Comp10 Comp11 Comp11 Comp13 Comp14 Comp15	5.66163 1.8506 1.00777 .998497 .872376 .675948 .651177 .598881 .531651 .517894 .468595 .429574 .36163 .209853 .163915	3.81103 .842833 .0092738 .126121 .196428 .0247708 .0522965 .0672295 .0137568 .0492991 .0390217 .0679442 .151776 .0459381	0.377 0.123 0.067 0.066 0.058 0.045 0.045 0.045 0.039 0.039 0.035 0.034 0.031 0.028 0.024 0.014	4 0.3774 4 0.5008 2 0.5680 5 0.6346 2 0.6927 1 0.7378 4 0.7812 9 0.8211 4 0.8566 5 0.8911 2 0.9223 6 0.9510 1 0.9751 0 0.9891 9 1.0000

Table C.3. Kaiser-Meyer-Olkin measure of sampling adequacy

Variable	kmo
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15	0.7902 0.7552 0.7935 0.9443 0.9398 0.9223 0.8541 0.7934 0.7416 0.7837 0.8003 0.7617 0.9422 0.9170 0.8923
Overall	0.8455