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The discounting of future felicity flows transposes to the intertemporal optimization 
context the assumption of interest-bearing wealth or savings. The validity of the hypothesis has 
been challenged by empirical (ir)regularities and by theoretical implications for human decision 
processing. In this article, we explore the modifications induced by generalizing the typical 
welfare function in order to accommodate retrospective influences. Sensitivity of the Ramsey 
optimal path to the new formulation is inspected. 

The principle has useful production theory applications: in supply chain modelling, in 
the determination of the optimal depth of production processes. Growth models are extended to 
allow for the hypothesis. 
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ABSTRACT

On Depth and Retrospect: “I Forget, and Forgive – but I Discount.” 

The discounting of future felicity flows transposes to the intertemporal optimization 
context the assumption of interest-bearing wealth or savings. The validity of the hypothesis has 
been challenged by several empirical (ir)regularities and by the theoretical implications for 
human decision processing. In particular, it implies a very special weight of past decisions on 
current welfare prospects, which appears largely inconsistent with forgetfulness – even if not with 
learning – and memory effects, often stressed or embedded in behavioral science studies. In this 
article, we explore the modifications induced by generalizing the typical welfare function in order 
to accommodate such retrospective influences. The idea is simple – and can be thought inspired 
in felicity functions encompassing habit formation: to allow for accumulated welfare – of 
hypothetically “compounded” but also depreciating past-to-current felicity streams – to affect the 
periodic utility function – which therefore enjoy some durable good properties. Sensitivity of the 
Ramsey optimal path to the new formulation is also inspected. 

The mathematical principle has useful production theory applications: in supply chain 
modelling. Then the optimal depth of a production process stems from a standard problem that 
now also embeds delay evaluation – discounting; a rationale for a particular pattern of the term 
structure of interest rates was also forwarded. Growth – general equilibrium - models are 
extended to allow for the hypothesis. 

February 2007 

JEL Classification: D90. E40. E43. G00. C61. O40. L22. (D85) 
Keywords: Time Discount; Time Preference. Interest. Retrospect Theory. Durable 

Goods (Durable Felicity Functions). Vertical Production Systems. Intertemporal Economies of 
Depth. Supply Chains; Networks. Complexity. Consistency. Term Structure of Interest Rates. 
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On Depth and Retrospect: “I Forget, and Forgive – but I Discount” 

“I make known the end from the beginning, from ancient times, what is still to come.” In 
Isaiah, 46: 10. 

“If only you had paid attention to my commands, your peace would have been like a 
river, your righteousness like the waves of the sea.” In Isaiah, 48: 18. 

“The memory of the [uncompromisingly] righteous is a blessing, but the name of the 
wicked shall rot.” In Proverbs, 10: 7. 

“The foundation of the temple of the LORD was laid in the fourth year, in the month of 
Ziv. In the eleventh year in the month of Bul, the eighth month, the temple was finished in all its 
details according to its specifications. He had spent seven years building it. It took Solomon 
thirteen years, however, to complete the construction of his palace. He built the Palace of the 
Forest of Lebanon a hundred cubits long, (…)” In I Kings, 6: 37-38 and 7: 1-2. 

Introduction 

The cumulative discounting of future flows of periodic utility – felicity functions - has 
become a generally accepted hypothesis in intertemporal choice modelling. Its justification 

1
 is 

usually prospective: individuals praise the present more than the future, and the close future more 
than the distant one. It is the purpose of these lines to state, on the one hand, a backward-looking 
argument for its convenience in theoretical representations of multi-period lived agents, and on 
the other, to generalize the welfare maximand to incorporate retrospect influences echoing on 
current felicity. Some applications of the same mechanics to product-chain systems modelling are 
also illustrated. 

The standard perspective stems from the arithmetic of a conventional intertemporal 
wealth constraint: if the future is discounted, the past is implicitly compounded and at the same 
rate. The hypothesis has been abandoned in several studies that tried to explain empirical 
anomalies, observed in asset markets or in behavioral experiments, incompatible with the 
principle. Those extensions took two different directions: incorporating re-enforcing effects of 

1
 See Frederick, Loewenstein and O’Donoghue (2002) for a recent survey. 
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future decisions – that is the case of prospect theory; and of past practices – in which analysis of 
habit formation is an example. We follow the second branch of the literature 

2
.

The reason is simple: we want a filter of previous recollections to dim the marginal rate 
of substitution between past and current prospects. Therefore, we introduce cumulative past-to-
current welfare as an argument of the current felicity (function) itself. Then, utility has a potential 
akin to that of a durable good – once materialized, it accrues to all future wealth. If allowed to 
depreciate, the weight of past well-being can reproduce forgetfulness. In growth terms, it is as if 
the passage of time allowed for a stock 

3
 (of welfare) to accumulate, accruing as an utility flow 

enhancing factor. In any case, the hypothesis would suggest felicity smoothing proneness and a 
complexification of inter-period links embedded in efficiency constraints 

The principle has an obvious production application: in supply chain modelling: we can 
admit that the periodic production depends on the use of other inputs and on the product. 
Moreover, if such a product chain is attached to an intertemporal – firm or representative agent’s 
- objective function, an interpretation of decision-making over a dynamically spanned production 
system is immediate. Optimal depth can then become endogenous. The issue has gained previous 
attention: Keren and Levhari (1983) model the organization of subsequent tasks that concur to a 
general input to a final production function; our approach generalizes and extends the argument, 
taking into account eventual discounting as depreciation along the dynamic process – and allow 
for other than intertemporally additive CRS of the periodic flow generation technology. 

The juxtaposition of the supply chain to the Ramsey’s structure and allowing for direct 
consumption of intermediate products was also inspected. 

The exposition proceeds as follows: section 1 manipulates a standard intertemporal 
wealth constraint. The analysis is replicated for the case where retrospective traits are recognized 
in felicity functions in section 2. First-order conditions of the infinite-horizon consumption 
allocation problem are inspected in section 3. Trajectories of a standard Ramsey economy under 
the new preferences are studied in section 4. Section 5 explores potential applications to the 
modelling of vertical production arrangements. A final appraisal produces a concluding section. 

2
 See section 5.2, specially 5.2.1, of Frederick, Loewenstein and O’Donoghue (2002). 

3
 In habit formation literature, this stock is usually made of cumulative past consumption – see Becker and 

Murphy (1988), for example - of the addictive good. 
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1. Notation: The Effect of Standard Discounting 
4

Let an individual be born at time 0; Ut denotes his felicity in period t, and he is endowed 
with a stream Ut, t = 1,2,…,n. If he discounts the future at a periodic rate r – for simplicity, 

assume it constant -, at time 0, his prospective welfare is: 

(1.1) W0  = �
�

�1t
t

t

r
U

)1( �
  = �

�

T

t 1
t

t

r
U

)1( �
 + Tr)1(

1
� �

�

�1t
t

tT

r
U

)1( �
�

Standing at time T > 0, the individual’s welfare prospects are WT = �
�

�1t
t

tT

r
U

)1( �
� ; his 

evaluation, at that moment T, of all his life’s initial potential is: 

(1.2) W0
T  =  W0 (1 + r)T  = �

�

T

t 1
Ut (1 + r)T-t + �

�

�1t
t

tT

r
U

)1( �
�  = �

�

T

t 1
Ut (1 + r)T-t + WT = 

(letting j =T – t:) =  �
�

�

1

0

T

j
UT-j (1 + r)j  +  WT

Then, WT = W0
T - �

�

�

1

0

T

j
UT-j (1 + r)j. All else (including total life’s prospects) fixed, 

jT

T

dU
dW

�

�  is how much of an increase of current – time T’s - prospects he would have to be (have 

been…) given to let go of one unit of a good memory of time (T – j). Using the last expression,  

(1.3)
jT

T

dU
dW

�

�   =  (1 + r)j

Such “price” of one unit of UT-j for an individual located at T – the value at T of UT-j – 

in terms of units of prospects at time T is larger than 1 and increases with j – with how distant in 
the past (T – j) is of T… So discounting mimics an increasing value and, therefore, effect 
(positive or negative: the argument would also apply to losses…) on current decisions, of 
previous remembrances as these become more distant in the past. 

Also, as

4
 In appendix A, we derived the first results for variable periodic discount rates. The analysis becomes 

more complex but we derive similar views of the subject. 
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(1.4) W0 = (1 + r)-T �
�

�

1

0

T

j
UT-j (1 + r)j  + (1 + r)-T WT = (1 + r)-T’ �

�

�

1'

0

T

j
UT’-j (1 + r)j

+ (1 + r)-T’ WT’

the last equality suggests how accumulated prospects are relatively valued along lifetime 
indifference curves; if total wealth changes and that is not to affect Ut, t � Max(T, T’), the relative 

impact on accumulated prospects at the two points in time is  

(1.5)

T

T

dW
dW
dW
dW

0

'

0

  =
'T

T

dW
dW   =  (1 + r)T-T’

and we can write

(1.6)
jT

T

dW
dW

�

  =  (1 + r)j  =  
jT

T

dU
dW

�

�

In another angle, we note that: 

(1.7)  (W0
T – WT) = �

�

T

i 1

Ui (1 + r)T-i  =  (W0
T-1 – WT-1) (1 + r) + UT > (W0

T-1 – WT-1)

The aggregate representing recollections of past-to-present welfare at time T always 
increases with time. And: 

(1.8) �
�

�

1

0

T

j
UT-j (1 + r)j / �

��

�

11

0

T

j
UT-1-j (1 + r)j  =  (W0

T - WT) / (W0
T-1 – WT-1)  =

=  [(W0
T-1 – WT-1) (1 + r) + UT] / (W0

T-1 – WT-1)  =  (1 + r) + UT / (W0
T-1 – WT-1)  = 

 =  (1 + r) + UT / [ �
��

�

11

0

T

j
UT-1-j (1 + r)j]

If Ui grows at a constant rate g, so that Ui = U0 (1 + g)i,

(1.9) �
��

�

11

0

T

j
UT-1-j (1 + r)j  =  �

�

�

2

0

T

j
U0 (1 + r)j (1 + g)T-1-j  =  U0 (1 + g)T-1 �

�

�

2

0

T

j
[(1 

+ r) / (1 + g)]j  =  U0 (1 + g)T-1 {1 – [(1 + r) / (1 + g)]T-1} / [1 - (1 + r) / (1 + g)]  =  UT {1 – [(1 + 

r) / (1 + g)]T-1} / (g - r) 

Then (1.9) is equal to (1 + r) + (g – r) / {1 – [(1 + r) / (1 + g)]T-1}. As T goes to �,
provided r < g, the rate of growth of past accumulated welfare, (W0

T-1 – WT-1), also goes to g: 
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(1.10) lim
T ��

 (W0
T - WT) / (W0

T-1 – WT-1)  =  1 + g 

A special case of constant Ut (g = 0) implies, after (1.1), that Ut = r W0, for all t = 1,2,... 
Then, lim

T ��
 (W0

T - WT) / (W0
T-1 – WT-1)  =  1. 

We conclude that utility discounting – as emergence of real interest-earning credits or 
loans - is compatible with (more or less exponentially…) increasing importance of past (first…) 
impressions with the time elapse, characterizing human behavior. We would be willing to pay a 
lot to change the past…  

Proposition 1: Under conventional time discounting, the individual accepts a trade-off 

1.1. of cumulative future prospects at a (future) moment in time with past felicity 

at a past moment in time, at a rate larger than 1 and increasing with the time 

distance as in (1.3) – the price at T of felicity at T - j. 

 1.2. of accumulated future prospects at a (future) moment in time with past ones 

at a rate larger than 1 and increasing with the time distance between them as in 

(1.5).

2. Retrospective Felicity Functions 

. Suppose now that periodic felicity is a function of past experiences: 

(2.1)  Ut  =  U[�
�

t

i 1
Ui (1 + r)t-i]  =  U(W0

t – Wt)

We have felicity functions that depend on accumulated past (and current) well-being, or 
of its memories. At each point in time, (1.1) and (1.2) – and (1.7), implying an increasing 
argument of U(.) over time - still apply, but now welfare is an implicit function: the current flow 
is itself a function of a stock backlog to which it contributes.

As we can write Ut  =  U[�
�

�

1

1

t

i
Ui (1 + r)t-i + Ut] = U[(W0

t-1 – Wt-1) (1 + r) + Ut], it is 

always possible to re-arrange and solve for Ut  =  V[�
�

�

1

1

t

i
Ui (1 + r)t-i]  =  V[(1 + r) �

�

�

1

1

t

i
Ui (1 + 

r)t-1-i] = V[(W0
t-1 – Wt-1) (1 + r)]. Yet, if r goes to -1, (2.1) tends to a function of the standard 

form, of itself, Ut; in that case, a linear U(.) reverts welfare to the conventional discount aggregate 

of section 1. 
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(2.2) WT = W0
T-�

�

�

1

0

T

j
U[�

�

�

jT

i 1
Ui (1 + r)T-j-i] (1 + r)j = W0

T -�
�

�

1

0

T

j
U(W0

T-j – WT-j) (1 + r)j

Then,
jT

T

dU
dW

�

�  is still (1 + r)j. One can infer that  

(2.3)
0|Wjt

t

dW
dW

�

 =  U’(W0
t-j – Wt-j) (1 + r)j

that measures how much of current prospects would one be willing to trade for one unit 
of prospects j periods ago.

Now

(2.4) W0 = (1 + r)-T �
�

�

1

0

T

j
U(W0

T-j – WT-j) (1 + r)j  + (1 + r)-T WT = (1 + r)-T’

�
�

�

1'

0

T

j
 U(W0

T’-j – WT’-j) (1 + r)j  + (1 + r)-T’ WT’

Then, for T > T’,

(2.5)

T

T

dW
dW
dW
dW

0

'

0

 = 
'T

T

dW
dW  = (1 + r)T-T’ [1 – U’(W0

T’ – WT’)]

Hence,

(2.6)
jt

t

dW
dW

�

 = [1 - U’(W0
t-j – Wt-j)] (1 + r)j

If U’(.) = 0, we return to the standard case; but not otherwise. And as U’(.) > 0, the 
trade-off is smaller than in the standard case. Still, provided U’(.) < 1 – a reasonable assumption, 
implying one unit of “memories” – “echoes” of past to present welfare - are worth less than one 
unit of current felicity – the trade-off is still positive. 

(2.7)
dj

dW
dWd

jt

t
	
	



�
�
�



�

�  = ln(1 + r) [1 - U’(W0
t-j – Wt-j)] (1 + r)j - U”(W0

t-j – Wt-j) (1 + r)j

� �
dj

WWd jt
jt

�
� �0
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� �
dj

WWd jt
jt

�
� �0 � �

��

�

1

1

jt

i
Ui (1 + r)t-j-1-i - �

�

�

jt

i 1
Ui (1 + r)t-j-i =  - Ut-j + [ �

��

�

1

1

jt

i
Ui (1 + r)t-j-1-

i] (1 - 1 – r) = - Ut-j - r [W0
t-j-1 – Wt-j-1]. Then: 

(2.8)
dj

dW
dWd

jt

t
	
	



�
�
�



�

� � ln(1 + r) [1 - U’(W0
t-j – Wt-j)] (1 + r)j + U”(W0

t-j – Wt-j) (1 + r)j [Ut-

j + r (W0
t-j-1 – Wt-j-1)]

The first term measures the effect of the passage of time on 
jT

T

dU
dW

�

� , weighing the 

marginal utility of memories. The second one, the effect over marginal utility of the changes in 
past memories. 

It will be larger than zero when U’(.) < 1 iff

(2.9) - [Ut-j + r (W0
t-j-1 – Wt-j-1)] U”(W0

t-j – Wt-j) / [1 - U’(W0
t-j – Wt-j)] < ln(1 + r) � r

i.e., if – {U”(W0
t-j – Wt-j) / [1 - U’(W0

t-j – Wt-j)]} Ut-j < (- {U”(W0
t-j – Wt-j) / [1 - 

U’(W0
t-j – Wt-j)]} (W0

t-j-1 – Wt-j-1) + 1) r. If U(.) is convex, it will be…

It will be smaller than ln(1 + r) (1 + r)j iff  

(2.10) ln(1 + r) U’(W0
t-j – Wt-j) �  r [U’(W0

t-j – Wt-j) – 1] > U”(W0
t-j – Wt-j) [Ut-j + r 

(W0
t-j-1 – Wt-j-1)] 

or  r [U’(W0
t-j – Wt-j) - U”(W0

t-j – Wt-j) (W0
t-j-1 – Wt-j-1)] > U”(W0

t-j – Wt-j) Ut-j

. If memories depreciate, we can postulate instead that:  

(2.11)  Ut  =  U[�
�

t

i 1

Ui(1 - d)t-i]  =  U(W’0
t – W’t)

Eventually, (1 - d) can be thought as (1 - d) = (1 – d”) (1 + r), i.e., net of capitalization or 
net of compounding. Now, W’0

t differs from W0
t as W’t from Wt; W’t and W’0

t are defined and 

linked according to: 

(2.12) W’0
T = W’0 (1 - d)T =�

�

T

t 1
Ut (1 - d)T-t +�

�

�1t
t

tT

d
U

)1( �
�  =�

�

T

t 1
Ut (1 - d)T-t + W’T = 

(letting j =T – t:) = �
�

�

1

0

T

j
UT-j (1 - d)j  +  W’T
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W’T appears as memory prospects at time T. 
0|

'
'

Wjt

t

dW
dW

�

 would have the same features of 

the previous ratio 
0|Wjt

t

dW
dW

�

 with r replaced by – d: 

(2.13)
0|

'
'

Wjt

t

dW
dW

�

 =  (1 – d)j

As long as d > 0, 
0|

'
'

Wjt

t

dW
dW

�

 decreases with j. Another interesting observation is that W’0
t

– W’t may now decrease with t:  

(2.14) W’0
t – W’t = �

�

t

i 1
Ui(1 - d)t-i  =  (1 – d) �

�

�

1

1

t

i
Ui (1 - d)t-1-i +  Ut = (1 – d) (W’0

t-1

– W’t-1) +  Ut

W’0
t – W’t > W’0

t-1 – W’t-1  iff  Ut  >  d (W’0
t-1 – W’t-1) = d �

�

�

1

1

t

i
Ui (1 - d)t-1-i: the 

second argument increases in time iff d is small – if current felicity, Ut, is larger than depreciation 

of past memories. 

 We can now deduct that (1.7) still applies but now: 

(2.15)�
�

�

1

0

T

j
UT-j (1 - d)j / �

��

�

11

0

T

j
UT-1-j (1 - d)j  =  (W’0

T – W’T) / (W’0
T-1 – W’T-1)  =

 =  (1 - d) + UT / (W’0
T-1 – W’T-1)  =  (1 - d) + UT / [ �

��

�

11

0

T

j
UT-1-j (1 - d)j]

If Ut grows at a constant rate g, the expression will be equal to (1 – d) + (g + d) / {1 – [(1 

- d) / (1 + g)]T-1}. As T goes to �, it tends to 1 + g. 
Welfare prospects at time T are given by: 

(2.16) WT  =  W0
T - �

�

�

1

0

T

j
U[�

�

�

jT

i 1
Ui (1 -d)T-j-i] (1 + r)j

Then

(2.17)
jt

t

dW
dW

�'
  =  U’(W’0

t-j – W’t-j) (1 + r)j
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dj
dW

dWd
jt

t
	
	



�
�
�



�

�'
 = ln(1 + r) U’(W’0

t-j – W’t-j) (1 + r)j + U”(W’0
t-j – W’t-j) (1 + r)j

� �
dj

WWd jt
jt

�
� � ''0

As
� �

dj
WWd jt

jt
�

� � ''0 � �
��

�

1

1

jt

i
Ui (1 - d)t-j-1-i - �

�

�

jt

i 1
Ui (1 - d)t-j-i =  - Ut-j + [ �

��

�

1

1

jt

i
Ui (1 - d)t-

j-1-i] (1 - 1 + d) = - Ut-j + d [W’0
t-j-1 – W’t-j-1],

(2.18)
dj

dW
dWd

jt

t
	
	



�
�
�



�

�'
� ln(1 + r) U’(W’0

t-j – W’t-j) (1 + r)j - U”(W’0
t-j – W’t-j) (1 + r)j [Ut-

j - d (W’0
t-j-1 – W’t-j-1)]

This will be smaller than 0 iff: 

(2.19) ln(1 + r) U’(W’0
t-j – W’t-j) �  r U’(W’0

t-j – W’t-j)  < U”(W’0
t-j – W’t-j) [Ut-j - d 

(W’0
t-j-1 – W’t-j-1)]  

or
(2.20)  r < [U”(W’0

t-j – W’t-j) / U’(W’0
t-j – W’t-j)] [Ut-j - d (W’0

t-j-1 – W’t-j-1)] 

The condition parallels (2.10). The interest rate is smaller than the symmetric of the 
Arrow-Pratt measure of risk aversion – a measure of convexity of the felicity function – times the 
utility net of depreciation of aggregate past welfare. 

Proposition 2: 2.1: Under conventional time discounting and retrospect felicity 

functions, the individual accepts a trade-off of accumulated future prospects at a 

(future) moment in time with past ones at a rate given by (2.6); the rate may no 

longer be larger than 1 and especially it may decrease with the time distance. 

2.2 Under conventional time discounting and retrospect felicity functions 

embedding fading-memory effects, the individual accepts a trade-off of 

accumulated future prospects at a (future) moment in time with past ones at a rate 

given by (2.17); again the rate may no longer be larger than 1 and especially it 

may decrease with the time distance. 
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3. Consumption Choices 

. Let us now operationalize the concept in terms of decision-making. Let felicity depend 

on current consumption and past and current welfare so that Ut = U[Ct, �
�

t

i 1

Ui(1 - d)t-i]. The 

felicity function entails memories of past-to present welfare, fading with time at rate d per period. 
We also want to distinguish the market rate of interest from the individual’s discount rate, and 
assign to him an initial wealth endowment, W0. Capital markets are perfect and offer an interest 

rate (r) on deposited funds – to be used to consume and save in future time, constant and 
exogenous to the individual. Obviously, his budget constraint, that we expect he will exhaust, is: 

(3.1) W0  = �
�

�1t
t

t

r
C

)1( �
  = �

�

T

t 1
t

t

r
C

)1( �
 + Tr)1(

1
� �

�

�1t
t

tT

r
C

)1( �
�

Its mechanics in terms of Ct obey the rules exposed in section 1. A constant Ct, implies 
that (a perpetuity application of W0):

(3.2) Ct  =  r W0  ,       t = 1,2,... 

If Ct is to grow at rate g < r: W0  = �
�

�1t
t

t

r
C

)1( �
  =  C0 �

�

�1t

t

r
g
	


�

�


�

�
�

1
1  = C0

	


�

�


�

�
�

�

	


�

�


�

�
�

r
g

r
g

1
11

1
1

 = 

gr
C
�

1 ; i.e., C1 = (r – g) W0,

(3.3) Ct  =  (r – g) W0 (1 + g)t-1  =
g
gr

�
�

1
 W0 (1 + g)t,      t = 1,2,... 

Of course, for convergency of the series, g < r. g may even be negative, in which case Ct

decreases over time – and therefore to 0, where the individual “lives” only of past memories - at 
rate –g; then, (for positive r) g + r > - 2… 

. The individual’s rational life-cycle path will maximize  

(3.4) �
�

�1t
U[Ct, �

�

t

i 1

Ui(1 - d)t-i] (1 + �)-t
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Current period felicity Ut = U[Ct, �
�

t

i 1
Ui(1 - d)t-i]. d = 1 renders the function to: 

(3.5) Ut  =  U(Ct, Ut)

where echoes are still considered. dUt / dCt =  UC(Ct, Ut) / [1 - UR(Ct, Ut)]. With further 
disappearance of echoes, UR(Ct, Ut) = 0. 

. (3.4) is maximized subject to (3.1). But it will be consistent, i.e., the agent knows that 
he will also solve similar problems every future period. At any point in time, he cannot change 
the past; but he can anticipate that his near future’s actions may be more or less regrettable in the 
less near future… Then, at any time T: 

(3.6)
,..., 21 �� TT CC

Max �
�

�1t
UT+t (1 + �)-t

s.t.: (3.7) UT+t  =  U[CT+t, �
�

T

i 1
Ui(1 - d)T+t-i + �

�

��

tT

Ti 1
Ui (1 - d)T+t-i],  t = 1,2... 

(3.8) WT  =  W0
T - �

�

�

1

0

T

j
CT-j (1 + r)j  = �

�

�1t
CT+t (1 + r)-t

 Given WT and U1, U2,…,UT.
Or (as (3.7) holds also for t = -T + 1, - T + 2,…,0) W0

T (W0 (1 + r)T) and C1, C2,…,CT

The problem of time T gives a solution for (CT+1, CT+2, …)T contingent on (C1, C2, …, 
CT). Consistency is guaranteed iff all future solutions for any C� coincide and therefore coincide 
with that of T = 0 – that requires that FOC for any T give the same recurrent relation for any C� – 
and U�.

In Lagrangean form the problem becomes: 

(3.9)

,...,,
,...,
,...,

2,1,
21
21

TTT
TT
TT

UU
CC

Max

���
��
��

�
�

�1t
UT+t (1 + �)-t  - �

�

�1t
�T,t {UT+t - U[CT+t, �

�

T

i 1
Ui (1 - d)T+t-i + 

�
�

��

tT

Ti 1
Ui (1 - d)T+t-i]}  + �T [WT  - �

�

�1t
CT+t (1 + r)-t]

FOC imply: 
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(3.10)
T t

W
U �

�
�

  =  (1 + �)-t  -  �T,t  + �
�

�0j
�T,t+j  UR[CT+t+j, �

�

T

i 1
Ui (1 - d)T+t+j-i + 

�
��

��

jtT

Ti 1
Ui (1 - d)T+t+j-i]  (1 - d)j  =  0 

(3.11)
T t

W
C �

�
�

 = �T,t UC[CT+t, �
�

T

i 1

Ui (1 - d)T+t-i + �
�

��

tT

Ti 1

Ui (1 - d)T+t-i] - �T (1 + r)-t =  0

Transversality conditions are lim
t��

�T,t UT+t  =  0, and  lim
T ��

�T WT  =  0 – replacing 

terminal conditions of a finite time horizon problem. 
From the second FOC: 

(3.12) �T,t  = �T (1 + r)-t / UC[CT+t, �
�

T

i 1
Ui (1 - d)T+t-i + �

�

��

tT

Ti 1
Ui (1 - d)T+t-i]

Replacing in the first one: 

(3.13) (1 + �)-t  + �T �
�

�0j
{(1 + r)-t-j / UC[CT+t+j, �

�

T

i 1
Ui (1 - d)T+t+j-i + �

��

��

jtT

Ti 1
Ui (1 - 

d)T+t+j-i]} UR[CT+t+j, �
�

T

i 1
Ui (1 - d)T+t+j-i + �

��

��

jtT

Ti 1
Ui (1 - d)T+t+j-i]  (1 - d)j  =  �T (1 + r)-t / 

UC[CT+t, �
�

T

i 1
Ui (1 - d)T+t-i + �

�

��

tT

Ti 1
Ui (1 - d)T+t-i]

Then:

(3.14) [(1 + �) / (1 + r)]-t  =  �T {1 / UC[CT+t, �
�

T

i 1
Ui (1 - d)T+t-i + �

�

��

tT

Ti 1
Ui (1 - d)T+t-

i]  -  �
�

�0j
{(1 + r)-j / UC[CT+t+j, �

�

T

i 1
Ui (1 - d)T+t+j-i + �

��

��

jtT

Ti 1
Ui (1 - d)T+t+j-i]} UR[CT+t+j, �

�

T

i 1
Ui

(1 - d)T+t+j-i + �
��

��

jtT

Ti 1
Ui (1 - d)T+t+j-i]  (1 - d)j }    ,    t = 1,2,...,n 

(3.14) will also be valid for t + 1; dividing the equation for t + 1 by that of t: 
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(3.15) (1 + r) / (1 + �)  =  {1 / UC[CT+t+1, �
�

T

i 1
Ui (1 - d)T+t+1-i + �

��

��

1

1

tT

Ti
Ui (1 - d)T+t+1-

i]  -  �
�

�0j
{(1 + r)-j / UC[CT+t+1+j, �

�

T

i 1
Ui (1 - d)T+t+j+1-i + �

���

��

1

1

jtT

Ti
Ui (1 - d)T+t+j+1-i]}

UR[CT+t+1+j, �
�

T

i 1
Ui (1 - d)T+t+1+j-i + �

���

��

jtT

Ti

1

1
Ui (1 - d)T+t+1+j-i]  (1 - d)j }  / 

/ {1 / UC[CT+t, �
�

T

i 1
Ui (1 - d)T+t-i + �

�

��

tT

Ti 1
Ui (1 - d)T+t-i]  -  �

�

�0j
{(1 + r)-j / UC[CT+t+j,

�
�

T

i 1
Ui (1 - d)T+t+j-i + �

��

��

jtT

Ti 1
Ui (1 - d)T+t+j-i]} UR[CT+t+j, �

�

T

i 1
Ui (1 - d)T+t+j-i + �

��

��

jtT

Ti 1
Ui (1 - 

d)T+t+j-i]  (1 - d)j }              ,    t = 1,2,... 

More compactly: 

(3.16) (1 + r) / (1 + �)  =  {1 / UC(CT+t+1, W’0
T+t+1 – W’T+t+1)  -  �

�

�0j
[UR(CT+t+1+j,

W’0
T+t+1+j – W’T+t+1+j) / UC(CT+t+1+j, W’0

T+t+1+j – W’T+t+1+j)] [(1 – d) / (1 + r)]j }  / 

/ {1 / UC(CT+t, W’0
T+t – W’T+t)  -  �

�

�0j
[UR(CT+t+j, W’0

T+t+j – W’T+t+j) / UC(CT+t+j,

W’0
T+t+j – W’T+t+j)] [(1 – d) / (1 + r)]j } =

=  {1 / UC(CT+t+1, W’0
T+t+1 – W’T+t+1)  -  �

�

�0j
[UR(CT+t+1+j, W’0

T+t+1+j – W’T+t+1+j)

/ UC(CT+t+1+j, W’0
T+t+1+j – W’T+t+1+j)] [(1 – d) / (1 + r)]j }  / 

/ {1 / UC(CT+t, W’0
T+t – W’T+t)  -  [UR(CT+t, W’0

T+t – W’T+t) / UC(CT+t, W’0
T+t – 

W’T+t)] - [(1 – d) / (1 + r)] �
�

�0j
[UR(CT+t+j+1, W’0

T+t+j+1 – W’T+t+j+1) / UC(CT+t+j+1,

W’0
T+t+j+1 – W’T+t+j+1)] [(1 – d) / (1 + r)]j }              ,    t = 1,2,... 

1 / UC(CT+t+1, W’0
T+t+1 – W’T+t+1)  -  �

�

�0j
[UR(CT+t+1+j, W’0

T+t+1+j – W’T+t+1+j) / 

UC(CT+t+1+j, W’0
T+t+1+j – W’T+t+1+j)] [(1 – d) / (1 + r)]j    =

=  [(1 + r) / (1 + �)] {1 / UC(CT+t, W’0
T+t – W’T+t)  -  [UR(CT+t, W’0

T+t – W’T+t) / 

UC(CT+t, W’0
T+t – W’T+t)] - [(1 – d) / (1 + r)] �

�

�0j
[UR(CT+t+j+1, W’0

T+t+j+1 – W’T+t+j+1) / 

UC(CT+t+j+1, W’0
T+t+j+1 – W’T+t+j+1)] [(1 – d) / (1 + r)]j }

Or
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(3.17)  [(1 + �) / (� + d)] {1 / UC(CT+t+1, W’0
T+t+1 – W’T+t+1)  -  [(1 + r) / (1 + �)] / 

UC(CT+t, W’0
T+t – W’T+t)  +  [(1 + r) / (1 + �)] UR(CT+t, W’0

T+t – W’T+t) / UC(CT+t, W’0
T+t – 

W’T+t)}  =  [(1 + �) / (� + d)] [1 / UC(CT+t, W’0
T+t – W’T+t)]

{ UC(CT+t, W’0
T+t – W’T+t) / UC(CT+t+1, W’0

T+t+1 – W’T+t+1)  -  [(1 + r) / (1 + �)] [1 - 
UR(CT+t, W’0

T+t – W’T+t)] }  =

= �
�

�0j
[UR(CT+t+j+1, W’0

T+t+j+1 – W’T+t+j+1) / UC(CT+t+j+1, W’0
T+t+j+1 – W’T+t+j+1)]

[(1 – d) / (1 + r)]j      t = 1,2,...,3 

The first interesting conclusion is that, in spite of complexity, consistency appears to be 
warranted

5
: (3.17) holds for any T + t = �: provided every generation optimizes, including T = 0, 

at any point T, the previous utilities that cannot be changed any longer and are arguments of the 
problem T, are – were - always the optimal ones (chosen at 0, 1, …, T-1) and do not colide with 
future upgrading. 

Also, as 

(3.18) �
�

�0j
[UR(CT+t+j+1, W’0

T+t+j+1 – W’T+t+j+1) / UC(CT+t+j+1, W’0
T+t+j+1 – 

W’T+t+j+1)] [(1 – d) / (1 + r)]j = [(1 – d) / (1 + r)] �
�

�0j
[UR(CT+t+j+2, W’0

T+t+j+2 – W’T+t+j+2) / 

UC(CT+t+j+2, W’0
T+t+j+2 – W’T+t+j+2)] [(1 – d) / (1 + r)]j  +  UR(CT+t+1, W’0

T+t+1 – W’T+t+1) / 
UC(CT+t+1, W’0

T+t+1 – W’T+t+1)]

we can replace in (3.17) and use the lead left hand-side to conclude: 

[(1 + �) / (� + d)]  {1 / UC(CT+t+1, W’0
T+t+1 – W’T+t+1)  -  [(1 + r) / (1 + �)] / UC(CT+t,

W’0
T+t – W’T+t)  +  [(1 + r) / (1 + �)] UR(CT+t, W’0

T+t – W’T+t) / UC(CT+t, W’0
T+t – 

W’T+t)}  =  UR(CT+t+1, W’0
T+t+1 – W’T+t+1) / UC(CT+t+1, W’0

T+t+1 – W’T+t+1)]  +   
[(1 – d) / (1 + r)] [(1 + �) / (� + d)] {1 / UC(CT+t+2, W’0

T+t+2 – W’T+t+2)  -  [(1 + r) / (1 
+ �)] / UC(CT+t+1, W’0

T+t+1 – W’T+t+1)  +  [(1 + r) / (1 + �)] UR(CT+t+1, W’0
T+t+1 – 

W’T+t+1) / UC(CT+t+1, W’0
T+t+1 – W’T+t+1)}

or
(3.19)  {1 / UC(CT+t+1, W’0

T+t+1 – W’T+t+1)  -  [(1 + r) / (1 + �)] / UC(CT+t, W’0
T+t – 

W’T+t)  +  [(1 + r) / (1 + �)] UR(CT+t, W’0
T+t – W’T+t) / UC(CT+t, W’0

T+t – W’T+t)}  = 

                                                
5
 Addiction, in habit formation models, can also be compatible with rational and time consistent behavior. 

See Becker and Murphy (1988) for example. 
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=  [(1 – d) / (1 + r)]  {1 / UC(CT+t+2, W’0
T+t+2 – W’T+t+2)  -  [(1 + r) / (1 + �)] / 

UC(CT+t+1, W’0
T+t+1 – W’T+t+1)  +  [(1 + r) / (1 + �)] UR(CT+t+1, W’0

T+t+1 – W’T+t+1) / 
UC(CT+t+1, W’0

T+t+1 – W’T+t+1)} + [(� + d) / (1 + �)] UR(CT+t+1, W’0
T+t+1 – W’T+t+1) / 

UC(CT+t+1, W’0
T+t+1 – W’T+t+1)]  =   

=  [(1 – d) / (1 + r)]  {1 / UC(CT+t+2, W’0
T+t+2 – W’T+t+2)  -  [(1 + r) / (1 + �)] / 

UC(CT+t+1, W’0
T+t+1 – W’T+t+1) } + UR(CT+t+1, W’0

T+t+1 – W’T+t+1) / UC(CT+t+1, W’0
T+t+1 – 

W’T+t+1)]

. We can then choose T = 0 for a full solution and recognize: 

(3.20)  1 / UC(Ct+1, W’0
t+1 – W’t+1)  -  [(1 + r) / (1 + �)] / UC(Ct, W’0

t – W’t)  +  [(1 + 
r) / (1 + �)] UR(Ct, W’0

t – W’t) / UC(Ct, W’0
t – W’t)  = 

=  [(1 – d) / (1 + r)]  {1 / UC(Ct+2, W’0
t+2 – W’t+2)  -  [(1 + r) / (1 + �)] / UC(Ct+1,

W’0
t+1 – W’t+1) } + UR(Ct+1, W’0

t+1 – W’t+1) / UC(Ct+1, W’0
t+1 – W’t+1)]

or
(3.21)  UC(Ct, W’0

t – W’t) / UC(Ct+1, W’0
t+1 – W’t+1) [1 + (1 – d) / (1 + �)]  -  [(1 – d) / 

(1 + r)]  UC(Ct, W’0
t – W’t) / UC(Ct+2, W’0

t+2 – W’t+2)  -  [(1 + r) / (1 + �)]  = 
=  UR(Ct+1, W’0

t+1 – W’t+1) UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1) - [(1 + r) / 
(1 + �)] UR(Ct, W’0

t – W’t)

(3.21) suggests that a balanced path for consumption is possible with a - steady-state - 
constant UC(Ct, W’0

t – W’t) / UC(Ct+1, W’0
t+1 – W’t+1) and constant UR(Ct, W’0

t – W’t). Then, 
provided d is small (or negative) so that the second argument increases with time, Ct should be 
increasing

6
 if URC(Ct, W’0

t – W’t)  > 0
7
 (provided that URR(Ct, W’0

t – W’t)  < 0) that is, the two 
arguments are complements. It will be decreasing if URC(Ct, W’0

t – W’t)  < 0 – and the 

arguments are substitutes. A large d may reverse the implications. 

If d = 1 and Ut = U (Ct, Ut):
 (3.22)   UC(Ct, Ut) / UC(Ct+1, Ut+1) [1 – UR(Ct+1, Ut+1)]  =  (1 + r) / (1 + �) [1 - 
UR(Ct, Ut)]

If additionally we consider UR(Ct+1, Ut+1) = constant – for instance, equal to zero -, we 

have the standard case: 

                                                
6
 Habit, addiction to consumption, Ct, would be mimicked… Even if here we only have one good. 

7
 We would have that consumption and past welfare enjoy complementarity in the sense of Orphanides 

and Zervos (1995). 
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(3.23) UC(Ct, Ut) / UC(Ct+1, Ut+1)  =  (1 + r) / (1 + �)

. Let d be free and consider that UR tend to 0 – say, a possible steady-state -, the left 

hand-side is of (3.21) is equated to zero. Then: 

(3.24)  UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1) [1 + (1 – d) / (1 + �)]  -  [(1 – d) / 
(1 + r)]  UC(Ct, W’0

t – W’t) / UC(Ct+2, W’0
t+2 – W’t+2)  =  [(1 + r) / (1 + �)]

or
UC(Ct, W’0

t – W’t) / UC(Ct+1, W’0
t+1 – W’t+1) {1 + (1 – d) / (1 + �) - [(1 – d) / (1 + r)] 

UC(Ct+1, W’0
t+1 – W’t+1) / UC(Ct+2, W’0

t+2 – W’t+2)}  =  (1 + r) / (1 + �)   

Then another steady-state value of UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1)

would appear to occur. If along the way a long-run solution with intertemporal MRS constant: 

- [(1 – d) / (1 + r)] [UC(Ct+1, W’0
t+1 – W’t+1) / UC(Ct+2, W’0

t+2 – W’t+2)]2  + 
+  UC(Ct, W’0

t – W’t) / UC(Ct+1, W’0
t+1 – W’t+1) [1 + (1 – d) / (1 + �)]  – 

- (1 + r) / (1 + �) = 0 
Then, one can solve for the steady-state value of: 

(3.25)  UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1)  =  UC(Ct+1, W’0
t+1 – W’t+1) / 

UC(Ct+2, W’0
t+2 – W’t+2)  = ([1 + (1 – d) / (1 + �)] � {[1 + (1 – d) / (1 + �)]2 - 4 (1 – d) / (1 + 

�)]}1/2 ) [(1 + r) / (1 - d)] / 2 = ([1 + (1 – d) / (1 + �)] � {[1 - (1 – d) / (1 + �)]2]}1/2 ) [(1 + r) / (1 - 
d)] / 2 =  {[1 + (1 – d) / (1 + �)] � [1 - (1 – d) / (1 + �)]} [(1 + r) / (1 - d)] / 2

 

Then, in such a steady-state, UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1) equals 

(with the plus sign) (1 + r) / (1 – d) > 1; or (with the minus sign) (1 + r) / (1 + �) (the value of the 
standard model). 

A constant C = Ct = r W0 will be then possible. If UCR > 0 and retrospective wealth 
increases, UC(Ct, W’0

t – W’t) / UC(Ct+1, W’0
t+1 – W’t+1) < 1 - only possible with the negative 

root.
Ct may decrease over time; as UCC < 0, UC(Ct, W’0

t – W’t) / UC(Ct+1, W’0
t+1 – W’t+1)

< 1 if UCR > 0 and retrospective wealth increases – again, only possible with the negative root. 
If Ct increases over time as UCC < 0, UC(Ct, W’0

t – W’t) / UC(Ct+1, W’0
t+1 – W’t+1) > 1 

if UCR < 0 and the sign of the root can be positive or negative; if UCR > 0, we may achieve a 
constant UC(Ct, W’0

t – W’t) / UC(Ct+1, W’0
t+1 – W’t+1).
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Proposition 3: Under conventional time discounting and retrospect felicity functions 

embedding eventual fading memory effects,  

3.1 standard optimization is time consistent – allowing conclusions to be drawn 

from the beginning moment dated problem. 

3.2 if d is small, an allocation of wealth with perfect capital markets and constant 

market interest rate, may have a steady-state over (3.21), provided a constant 

UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1) and a constant UR(Ct, W’0
t – 

W’t) are compatible. If Ct and memories are complements - URC(Ct, W’0
t – W’t)

> 0 -, and URR(Ct, W’0
t – W’t) < 0, consumption will increase along the steady-

state – or rather optimal balanced - path. 

4. Capital Accumulation 

. Suppose we stage the new intertemporal preferences on the Ramsey’s growth model. 
The representative household problem becomes: 

(4.1)
,..., 21 �� TT CC

Max �
�

�1t
U[CT+t, �

�

T

i 1
Ui (1 - d)T+t-i + �

�

��

tT

Ti 1
Ui (1 - d)T+t-i] (1 + �)-t

s.t. (4.2) UT+t  =  U[CT+t, �
�

T

i 1
Ui(1 - d)T+t-i + �

�

��

tT

Ti 1
Ui (1 - d)T+t-i],  t = 1,2... 

(4.3) (1 + n) kT+t  =  (1 – d’) kT+t-1  +  f(kT+t-1)  - CT+t
 Given kT and U1, U2,…,UT.
 Or (as (4.2) holds also for t = -T + 1, - T + 2,…,0) kT and C1, C2,…,CT

which in Lagrangean form becomes: 

(4.4)

,...,
,...,

,...,
,...,
,...,

21
2,1,

21
21
21

��

��
��
��

TT
TT

TT
TT
TT

UU
kk
CC

Max

��
��

�
�

�1t
UT+t (1 + �)-t  - �

�

�1t
�T,t {UT+t - U[CT+t, �

�

T

i 1
Ui (1 - d)T+t-i + 

�
�

��

tT

Ti 1
Ui (1 - d)T+t-i]}  + �

�

�1t
�T+t [(1 – d’) kT+t-1  +  f(kT+t-1)  -  CT+t  -  (1 + n) kT+t]

Transversality conditions are lim
t��

�T,t UT+t  =  0, and lim
t��

�T+t kT+t  =  0. 

FOC imply: 



20

(4.5)
T t

W
U �

�
�

  =  (1 + �)-t  - �T,t  + �
�

�0j
�T,t+j  UR[CT+t+j, �

�

T

i 1

Ui (1 - d)T+t+j-i + �
��

��

jtT

Ti 1
Ui

(1 - d)T+t+j-i]  (1 - d)j  =  0 ,  t = 1,2,...,n 

(4.6)
T t

W
C �

�
�

  =  �T,t UC[CT+t, �
�

T

i 1
Ui (1 - d)T+t-i + �

�

��

tT

Ti 1
Ui (1 - d)T+t-i]  -  �T+t  =  0 , t = 

1,2,...,n

(4.7)
T t

W
k �

�
�

  =  - �T+t (1 + n)  +  �T+t+1 [(1 – d’) +  f’(kT+t)]  =  0  ,   t = 1,2,...,n 

From the second one: 

(4.8) �T,t  = �T+t  / UC[CT+t, �
�

T

i 1

Ui (1 - d)T+t-i + �
�

��

tT

Ti 1

Ui (1 - d)T+t-i] ,  t = 1,2,...,n 

Replacing in the first one: 

(4.9) (1 + �)-t  + �
�

�0j
{�T+t+j / UC[CT+t+j, �

�

T

i 1
Ui (1 - d)T+t+j-i + �

��

��

jtT

Ti 1
Ui (1 - d)T+t+j-

i]} UR[CT+t+j, �
�

T

i 1
Ui (1 - d)T+t+j-i + �

��

��

jtT

Ti 1
Ui (1 - d)T+t+j-i]  (1 - d)j  =  �T+t / UC[CT+t, �

�

T

i 1
Ui (1 

- d)T+t-i + �
�

��

tT

Ti 1

Ui (1 - d)T+t-i]

From the third FOC:  

(4.10) �T+t+1 / �T+t  =  (1 + n) / [(1 – d’) +  f’(kT+t)]

and

(4.11) �T+t+j  = {�
�

j

i 0

(1 + n) / [(1 – d’) + f’(kT+t+i)]} / {(1 + n) / [(1 – d’) + f’(kT+t+j)]} 

�T+t

Then:

(4.12) (1 + �)-t  =  �T+t {1 / UC[CT+t, �
�

T

i 1

Ui (1 - d)T+t-i + �
�

��

tT

Ti 1

Ui (1 - d)T+t-i]  -  

�
�

�0j
{�

�

j

i 0

(1 + n) / [(1 – d’) + f’(kT+t+i)]} / {(1 + n) / [(1 – d’) + f’(kT+t+j)]} / UC[CT+t+j, �
�

T

i 1
Ui

(1 - d)T+t+j-i + �
��

��

jtT

Ti 1
Ui (1 - d)T+t+j-i]} UR[CT+t+j, �

�

T

i 1
Ui (1 - d)T+t+j-i + �

��

��

jtT

Ti 1
Ui (1 - d)T+t+j-i]  (1 

- d)j }    ,    t = 1,2,...,n 
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(4.12) will also be valid for t + 1; dividing the equation for t + 1 by that of t, and using 
the fact that, from the third order condition: 

(4.13) [(1 – d’) +  f’(kT+t)] / [(1 + n) (1 + �)]  =

{1 / UC[CT+t+1, �
�

T

i 1

Ui (1 - d)T+t+1-i + �
��

��

1

1

tT

Ti
Ui (1 - d)T+t+1-i]  -  �

�

�0j
{�

�

j

i 0

(1 + n) / [(1 

– d’) + f’(kT+t+1+i)]} / {(1 + n) / [(1 – d’) + f’(kT+t+1+j)]} / UC[CT+t+1+j, �
�

T

i 1
Ui (1 - d)T+t+j+1-i + 

�
���

��

1

1

jtT

Ti
Ui (1 - d)T+t+j+1-i]} UR[CT+t+1+j, �

�

T

i 1
Ui (1 - d)T+t+1+j-i + �

���

��

jtT

Ti

1

1
Ui (1 - d)T+t+1+j-i] (1 - d)j

}  / 

/ {1 / UC[CT+t, �
�

T

i 1

Ui (1 - d)T+t-i + �
�

��

tT

Ti 1

Ui (1 - d)T+t-i]  -  �
�

�0j
{�

�

j

i 0

(1 + n) / [(1 – d’) 

+ f’(kT+t+i)]} / {(1 + n) / [(1 – d’) + f’(kT+t+j)]} / UC[CT+t+j, �
�

T

i 1

Ui (1 - d)T+t+j-i + �
��

��

jtT

Ti 1
Ui (1 - 

d)T+t+j-i]} UR[CT+t+j, �
�

T

i 1
Ui (1 - d)T+t+j-i + �

��

��

jtT

Ti 1
Ui (1 - d)T+t+j-i]  (1 - d)j } 

More compactly:  

(4.14) [(1 – d’) +  f’(kT+t)] / [(1 + n) (1 + �)]  =  {1 / UC(CT+t+1, W’0
T+t+1 – W’T+t+1)

- �
�

�0j
[UR(CT+t+1+j, W’0

T+t+1+j – W’T+t+1+j) / UC(CT+t+1+j, W’0
T+t+1+j – W’T+t+1+j)] (1 – d)j

{�
�

j

i 0

(1 + n) / [(1 – d’) + f’(kT+t+1+i)]} / {(1 + n) / [(1 – d’) + f’(kT+t+1+j)]} }  / 

/ {1 / UC(CT+t, W’0
T+t – W’T+t)  -  �

�

�0j
[UR(CT+t+j, W’0

T+t+j – W’T+t+j) / UC(CT+t+j,

W’0
T+t+j – W’T+t+j)] (1 – d)j {�

�

j

i 0

(1 + n) / [(1 – d’) + f’(kT+t+i)]} / {(1 + n) / [(1 – d’) + 

f’(kT+t+j)]} } = 

=  {1 / UC(CT+t+1, W’0
T+t+1 – W’T+t+1)  -  �

�

�0j
[UR(CT+t+1+j, W’0

T+t+1+j – W’T+t+1+j)

/ UC(CT+t+1+j, W’0
T+t+1+j – W’T+t+1+j)] (1 – d)j {�

�

j

i 0

(1 + n) / [(1 – d’) + f’(kT+t+1+i)]} / {(1 + 

n) / [(1 – d’) + f’(kT+t+1+j)]} }  / 
/ {1 / UC(CT+t, W’0

T+t – W’T+t)  -  [UR(CT+t, W’0
T+t – W’T+t) / UC(CT+t, W’0

T+t – 

W’T+t)] – {(1 – d) (1 + n) / [(1 – d’) + f’(kT+t)]} �
�

�0j
[UR(CT+t+j+1, W’0

T+t+j+1 – W’T+t+j+1) / 
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UC(CT+t+j+1, W’0
T+t+j+1 – W’T+t+j+1)] (1 – d)j {�

�

j

i 0

(1 + n) / [(1 – d’) + f’(kT+t+1+i)]} / {(1 + n) 

/ [(1 – d’) + f’(kT+t+1+j)]} } 

Or
(4.15)  1 / UC(CT+t+1, W’0

T+t+1 – W’T+t+1)  -  {[(1 – d’) +  f’(kT+t)] / [(1 + n) (1 + �)]} / 
UC(CT+t, W’0

T+t – W’T+t)  +  {[(1 – d’) +  f’(kT+t)] / [(1 + n) (1 + �)]} UR(CT+t, W’0
T+t – 

W’T+t) / UC(CT+t, W’0
T+t – W’T+t)  =  [(� + d) / (1 + �)] �

�

�0j
[UR(CT+t+j+1, W’0

T+t+j+1 – 

W’T+t+j+1) / UC(CT+t+j+1, W’0
T+t+j+1 – W’T+t+j+1)] (1 – d)j {�

�

j

i 0

(1 + n) / [(1 – d’) + 

f’(kT+t+1+i)]} / {(1 + n) / [(1 – d’) + f’(kT+t+1+j)]}  = 
=  {(1 – d) (1 + n) / [(1 – d’) + f’(kT+t+1)]}  {1 / UC(CT+t+2, W’0

T+t+2 – W’T+t+2)  -  
{[(1 – d’) +  f’(kT+t+1)] / [(1 + n) (1 + �)]} / UC(CT+t+1, W’0

T+t+1 – W’T+t+1)  +  {[(1 – d’) +  
f’(kT+t+1)] / [(1 + n) (1 + �)]} UR(CT+t+1, W’0

T+t+1 – W’T+t+1) / UC(CT+t-1, W’0
T+t+1 – 

W’T+t+1)}  +  [(� + d) / (1 + �)] [UR(CT+t+1, W’0
T+t+1 – W’T+t+1) / UC(CT+t+1, W’0

T+t+1 – 
W’T+t+1)]

using the fact that: 

 [(1 + �) / [(� + d)] {1 / UC(CT+t+1, W’0
T+t+1 – W’T+t+1)  + {[(1 – d’) +  f’(kT+t)] / [(1 + 

n) (1 + �)]} UR(CT+t, W’0
T+t – W’T+t) / UC(CT+t, W’0

T+t – W’T+t) - {[(1 – d’) +  f’(kT+t)] / [(1 + 
n) (1 + �)]} / UC(CT+t, W’0

T+t – W’T+t) }  = 

= �
�

�0j
[UR(CT+t+j+1, W’0

T+t+j+1 – W’T+t+j+1) / UC(CT+t+j+1, W’0
T+t+j+1 – W’T+t+j+1)]

(1 – d)j {�
�

j

i 0

(1 + n) / [(1 – d’) + f’(kT+t+1+i)]} / {(1 + n) / [(1 – d’) + f’(kT+t+1+j)]}

=   [UR(CT+t+1, W’0
T+t+1 – W’T+t+1) / UC(CT+t+1, W’0

T+t+1 – W’T+t+1)] + 

{(1 – d) (1 + n) / [(1 – d’) + f’(kT+t+2)]} �
�

�0j
[UR(CT+t+j+2, W’0

T+t+j+2 – W’T+t+j+2) / 

UC(CT+t+j+2, W’0
T+t+j+2 – W’T+t+j+2)] (1 – d)j {�

�

j

i 0

(1 + n) / [(1 – d’) + f’(kT+t+1+i)]} / {(1 + n) 

/ [(1 – d’) + f’(kT+t+2+j)]}

(4.15)  UC(CT+t, W’0
T+t – W’T+t) / UC(CT+t+1, W’0

T+t+1 – W’T+t+1)  -  {[(1 – d’) +  
f’(kT+t)] / [(1 + n) (1 + �)]}  +  {[(1 – d’) +  f’(kT+t)] / [(1 + n) (1 + �)]} UR(CT+t, W’0

T+t – 
W’T+t)  =
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=  {(1 – d) (1 + n) / [(1 – d’) + f’(kT+t+1)]}  { UC(CT+t, W’0
T+t – W’T+t) / UC(CT+t+2,

W’0
T+t+2 – W’T+t+2)  -  {[(1 – d’) +  f’(kT+t+1)] / [(1 + n) (1 + �)]} UC(CT+t, W’0

T+t – W’T+t) / 
UC(CT+t+1, W’0

T+t+1 – W’T+t+1)  +  {[(1 – d’) +  f’(kT+t+1)] / [(1 + n) (1 + �)]} UR(CT+t+1,
W’0

T+t+1 – W’T+t+1) UC(CT+t, W’0
T+t – W’T+t) / UC(CT+t-1, W’0

T+t+1 – W’T+t+1) }  +  [(� + d) 
/ (1 + �)] [UR(CT+t+1, W’0

T+t+1 – W’T+t+1) UC(CT+t, W’0
T+t – W’T+t) / UC(CT+t+1, W’0

T+t+1 – 
W’T+t+1)]

Then consistency appears to hold; and then for T = 0: 

(4.16)  UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1) [1 + (1 - d) / (1 + �)]  - {(1 – d) 
(1 + n) / [(1 – d’) + f’(kt+2)]} UC(Ct, W’0

t – W’t) / UC(Ct+2, W’0
t+2 – W’t+2)  - [(1 – d’) +  f’(kt)] 

/ [(1 + n) (1 + �)]  = 
=  UR(Ct+1, W’0

t+1 – W’t+1) UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1) - {[(1 – d’) 
+  f’(kt+1)] / [(1 + n) (1 + �)]} UR(Ct, W’0

t – W’t)

(4.16) seems analogous to (3.21). 

Let d = 1. Then: 

(4.17)  UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1)  - [(1 – d’) +  f’(kt)] / [(1 + n) (1 

+ �)]  = 
=  UR(Ct+1, W’0

t+1 – W’t+1) UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1) - {[(1 – d’) 
+  f’(kt+1)] / [(1 + n) (1 + �)]} UR(Ct, W’0

t – W’t)

With UR = 0, we have the the standard Ramsey model solution: 

(4.18)  UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1)  =  [(1 – d’) +  f’(kt)] / [(1 + n) (1 

+ �)]}

(4.18) is analogous to (3.23). 
Let, as before, UR tend to 0 after (4.16): 

(4.19)   UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1) [1 + (1 - d) / (1 + �)]  - {(1 – d) 
(1 + n) / [(1 – d’) + f’(kt+2)]} UC(Ct, W’0

t – W’t) / UC(Ct+2, W’0
t+2 – W’t+2)  - [(1 – d’) +  f’(kt)] 

/ [(1 + n) (1 + �)]  =  0 

With steady-state level of k* we can generate similar statements as those of section 3… 
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. Under (4.16), a steady-state solution for k* is possible. It may imply that UC(Ct, W’0
t – 

W’t) / UC(Ct+1, W’0
t+1 – W’t+1) is constant and so is UR(Ct, W’0

t – W’t). Then: 

Then the expression becomes – for constant k*: 

(4.20)  UC(Ct, W’0
t – W’t) / UC(Ct+1, W’0

t+1 – W’t+1) [1 + (1 - d) / (1 + �)]  - {(1 – d) 
(1 + n) / [(1 – d’) + f’(k*)]} [UC(Ct, W’0

t – W’t) / UC(Ct+1, W’0
t+1 – W’t+1)]2 - 

-  UR(Ct, W’0
t – W’t) {UC(Ct, W’0

t – W’t) / UC(Ct+1, W’0
t+1 – W’t+1) - [(1 – d’) +  

f’(k*)] / [(1 + n) (1 + �)]}  =  [(1 – d’) +  f’(k*)] / [(1 + n) (1 + �)]

Let us suppose that on such path Ut grows at rate g; then W’0
t – W’t grows at rate  – d + 

(g + d) / {1 – [(1 - d) / (1 + g)]t-1}, that goes to g as t tends to �.
An additively separable felicity function in W’0

t – W’t and Ct – implying URC(Ct, W’0
t

– W’t) = 0 - for example, is compatible with a steady-state path with constant C – then UR(Ct,
W’0

t – W’t) may tend to zero. 

Homogeneous felicity functions in the two arguments may generate paths along which 
UR(Ct, W’0

t – W’t) is constant; g and c = Ct+1 / Ct – 1, must then allow for UC(Ct, W’0
t – W’T+t)

/ UC(Ct+1, W’0
t+1 – W’t+1) to remain constant as well. 

If UR(Ct, W’0
t – W’t) tends to 0, one can expect that UC(Ct, W’0

t – W’t) / UC(Ct+1,
W’0

t+1 – W’t+1)  will tend to  [(1 – d’) +  f’(k*)] / [(1 + n) (1 + �)]; being C constant, [(1 + n) (1 

+ �)] divided by 1 plus the growth rate of marginal utility with respect to consumption will equal 
[(1 – d’) +  f’(k*)]; the interest rate 

8
 will tend to be the same as in the Ramsey case; if URC > 0 – 

say, U(., .) is linear in W’0
t – W’t -, it is possible that f’(k*) is now smaller than in that case and 

therefore, capital stock is larger.  
Finally, a constant UR(Ct, W’0

t – W’t), if URR(Ct, W’0
t – W’t) < 0 but URC(Ct, W’0

t – 
W’t) > 0 

9
, would allow for an increasing Ct

10
 along a balanced path – while the stock of past 

welfare is increasing. URR(Ct, W’0
t – W’t) > 0, though, would be consistent with the opposite 

result. Clearly, consumption becomes more variable than without retrospective effects; 

                                                
8
 The interest rate is still (as usual) the marginal rate of substitution – on a cumulative welfare indifference 

curve - between consumption of two consecutive periods minus 1 – but consumption enters future “past welfare” 

which should be accounted for in that MRS computation. 
9
 We would have that consumption and past welfare enjoy complementarity in the sense of Orphanides 

and Zervos (1995). 
10

 Habit, addiction to consumption, Ct, would be mimicked… 
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intuitively, that would be expected: now there is a stock that already accrues and provides a 
“weight” – a balanced source of felicity.

Proposition 4: Allowing retrospect felicity functions in the Ramsey growth model,  

4.1 standard optimization allows for time consistency – allowing conclusions to 

be drawn from the beginning moment dated problem. 

4.2 steady-states for capital are possible. Then if along the optimal balanced path 

UR(Ct, W’0
t – W’t) is constant (and W’0

t – W’t increasing), if URR < 0 and UCR

> 0, consumption may be increasing. Steady-state capital may then be larger than 

in the standard Ramsey’s world. 

5. Applications: Vertical Systems 
5.1. Vertical Systems and the Optimal Depth 

. The principle has an obvious application in production theory – namely, in the 
modelling of vertical product chains.

Let YT+t denote the output of knot T + t in the production descending hierarchy – i.e., 

interpreted backwardly; each knot requires one unit of time to process. Maximum complexity is 
achieved at knot T = 0, where the final product Y1 is decided or processed and requires G knots 

to develop. The problem faced – at any point in time - by all upstream knots to process T (T = 
0,1,2,...,G-1; YG+1 can be thought as raw material) is: 

(5.1)
121 ,,...,, ��� GGTT YXXX

Max �
�

�

TG

t 1
(PT+t YT+t  -  WT+t XT+t  -  PT+t+1 YT+t+1) �

�

t

i 1

(1 + �T+i) = 

�
�

�1t
�T+t �

�

t

i 1

(1 + �T+i)

s.t. (5.2) YT+t  =  FT+t[XT+t, YT+t+1 (1 - d)] ,    t = 1,2..., G - T 
 Given  Y1, Y2,…,YT
 Or (as (5.2) holds also for t = -T + 1, - T + 2,…,0) X1, X2,…,XT

Each term of the objective function accounts for profits at tier T + t. The costs with the 
intermediate input - revenues of the immediately lower tier - were not discounted, which would 
impose an additional cost factor on the producer – an hypothesis that we proceed below. Optimal 
internal prices would be zero and the first term would disappear with the exception of PT+1 YT+1,
and the last term in parenthesis would disapear with the exception of PG+1 YG+1.

The Lagrangean of the problem is then: 
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(5.3)

GTT
GGTT

GTT
YYYY

XXX
Max

��� ,...,,
,,...,,

,...,,

21
121

21

��
���

��

 PT+1 YT+1 (1 + �T+1) - �
�

�

TG

t 1
WT+t XT+t �

�

t

i 1

(1 + �T+i) - PG+1

YG+1 �
��

�

1

1

TG

i

(1 + �T+i)  + �
�

�

TG

t 1

�T+t {- YT+t  +  FT+t[XT+t, YT+t+1 (1 - d)]} 

FOC yield, along with the restriction: 

(5.4)
1T

W
Y �

�
�

  =  PT+1 (1 + �T+1) - �T+1  = 0 

(5.5)
T t

W
Y �

�
�

  =  -  �T+t  +  �T+t-1  FT+t-1
Y[XT+t-1, YT+t (1 - d)]  (1 - d)  =  0,   t = 

2,3…, G - T 

(5.6)
T t

W
X �

�
�

  =  - �
�

t

i 1

(1 + �T+i) WT+t  +  �T+t F
T+t

X[XT+t, YT+t+1 (1 - d)]  =  0,  t = 

1,2,…, G - T 

(5.7)
1G

W
Y �

�
�

  =  PG+1 �
��

�

1

1

TG

i

(1 + �T+i)  - �G FG
Y[XG, YG+1 (1 - d)] (1 – d) = 0 

From (5.6), Then the current value – at T - of the shadow price of YT+t is: 

(5.8) �T+t  = �
�

t

i 1

(1 + �T+i) WT+t / F
T+t

X[XT+t, YT+t+1 (1 - d)]  , t = 1,2,…, G - T 

(5.8) is the shadow-price of YT+t in the supply chain at date T. If YT+t were available in 

the market - at time T + t – at price  

(5.9) PT+t < �T+t / �
�

t

i 1

(1 + �T+i) =  WT+t / F
T+t

X[XT+t, YT+t+1 (1 - d)],  

it would be worthwhile to buy YT+t rather than producing it. If PT+t > �T+t / �
�

t

i 1

(1 + 

�T+i), it would be worthwhile to produce in excess of YT+t, the requirement of next knot.

Replacing in (5.4) and (5.5): 

(5.10) PT+1  =  WT+1 / FT+1
X[XT+1, YT+2 (1 - d)]  

and
(5.11) (1 + �T+t) WT+t / F

T+t
X[XT+t, YT+t+1 (1 - d)]  =  WT+t-1 / FT+t-1

X[XT+t-1, YT+t

(1 - d)]   FT+t-1
Y[XT+t-1, YT+t (1 - d)]  (1 - d)    ,     t = 2,3…, G - T
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and
(5.12) PG+1 (1 + �G+1)  =  FG

Y[XG, YG+1 (1 - d)] (1 – d) WG / FG
X[XG, YG+1 (1 - d)] 

Consistency is no longer guaranteed, if YT+1 is decided at level T – instead of level T – 

1 or lower -, i.e., obeying (5.4) and (5.10); then, a unique form 
T t

W
Y �

�
�

 does not hold for any T + t 

= �. This provides a rational for vertical integration – or suggest quantity-fixing seeking by the 
uptream entity of the immediate downstream tier output under a decentralized vertical system… 

The objection is withdrawn if (5.4) – and (5.7) only holds for Y1 – for t = 1 at problem T 
= 0; or rather for YT*+1 where T* is the optimal depth.  

The optimal depth T* would be the one at which the most recent optimal profit – the 
marginal effect of switching from the problem of complexity (ordered descendingly) T + 1 to that 
of T (provided they increase with T) - becomes zero: �T*+1 - �T* = 0, where �T denotes optimal 

overall optimal profits of the T – G-length supply chain. 
Fj(., .) may or may not be knot-dependent – i.e., of j. If Fj[Xj, Yj+1 (1 - d)] = F[Xj, Yj+1

(1 - d)], all j, and F(., .) results in just increased production, the problem solves for the optimal 
time-span and total YT*+1.

. An interesting special case is the one for which �j = 0, all j. It would apply if all tiers 

work simultaneously. Then 

(5.13)

GTT
GGTT

GTT
YYYY

XXX
Max

��� ,...,,
,,...,,

,...,,

21
121

21

��
���

��

 PT+1 YT+1 - �
�

�

TG

t 1
WT+t XT+t - PG+1 YG+1

s.t. (5.14) YT+t  =  FT+t[XT+t, YT+t+1 (1 - d)] ,    t = 1,2..., G - T 
 Given  Y1, Y2,…,YT

Then, optimality requires: 

(5.15) PT+1  =  WT+1 / FT+1
X[XT+1, YT+2 (1 - d)]  

and
(5.16) WT+t / F

T+t
X[XT+t, YT+t+1 (1 - d)]  =  WT+t-1 / FT+t-1

X[XT+t-1, YT+t (1 - d)]   
FT+t-1

Y[XT+t-1, YT+t (1 - d)]  (1 - d)    ,     t = 2,3…, G - T  

and
(5.17) PG+1  =  FG

Y[XG, YG+1 (1 - d)] (1 – d) WG / FG
X[XG, YG+1 (1 - d)] 

If Yj is homogeneous (then Pj is constant for all j, possibly all j > G + 1), economies of 
depth at level t + T may be linked to FT+t[XT+t, YT+t+1 (1 - d)] - YT+t+1 (1 – d) > FT+t(XT+t, 0). 
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. Another interesting modification considers that an integrated vertical system is being 
evaluated and factors must be paid in advance each period. Then the typical firm solves: 

(5.18)
121 ,,...,, ��� GGTT YXXX

Max �
�

�

TG

t 1

[PT+t YT+t  - (1 + �T+1+t) WT+t XT+t  - (1 + �T+1+t) PT+t+1

YT+t+1] �
�

t

i 1

(1 + �T+i) = �
�

�

TG

t 1

�T+t �
�

t

i 1

(1 + �T+i)  =  (1 + �T+1)  PT+1 YT+1 - �
�

�

TG

t 1
�

�

�

1

1

t

i

(1 + 

�T+i) WT+t XT+t  - �
��

�

1

1

TG

i

(1 + �T+i)  PG+1 YG+1

s.t. (5.19) YT+t  =  FT+t[XT+t, YT+t+1 (1 - d)] ,    t = 1,2..., T - G 
 Given  Y1, Y2,…,YT

The Lagrangean form becomes: 

(5.20)

GTT
GGTT

GTT
YYYY

XXX
Max

��� ,...,,
,,...,,

,...,,

21
121

21

��
���

��

 (1 + �T+1)  PT+1 YT+1 - �
�

�

TG

t 1
�

�

�

1

1

t

i

(1 + �T+i) WT+t XT+t  -  �
��

�

1

1

TG

i

(1

+ �T+i)  PG+1 YG+1  + �
�

�

TG

t 1

�T+t {- YT+t  +  FT+t[XT+t, YT+t+1 (1 - d)]} 

Then:

(5.21)
1T

W
Y �

�
�

  =  PT+1 (1 + �T+1) - �T+1  = 0 

(5.22)
T t

W
Y �

�
�

  =  -  �T+t  +  �T+t-1  FT+t-1
Y[XT+t-1, YT+t (1 - d)]  (1 - d)  =  0,  t = 

2,3,…,G-T

(5.23)
T t

W
X �

�
�

  =  -�
�

�

1

1

t

i

(1 + �T+i) WT+t  +  �T+t F
T+t

X[XT+t, YT+t+1 (1 - d)]  =  0,  t = 

1,2,…,G-T

(5.24)
1G

W
Y �

�
�

 = - �
��

�

1

1

TG

i

(1 + �T+i) PG+1 + �G FG
Y[XG, YG+1 (1 -d)] (1 - d) = 0 

Then the current value – at T - of the shadow price of YT+t is: 

(5.25) �T+t = �
�

�

1

1

t

i

(1 + �T+i) WT+t / F
T+t

X[XT+t, YT+t+1 (1 - d)]  , t = 1,2,…,G-T 

Replacing:
(5.26) PT+1  =  (1 + �T+2)  WT+1 / FT+1

X[XT+1, YT+2 (1 - d)]  
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and
(5.27) (1 + �T+t+1) WT+t / F

T+t
X[XT+t, YT+t+1 (1 - d)]  =  

=  (1 – d) WT+t-1 FT+t-1
Y[XT+t-1, YT+t (1 - d)] / FT+t-1

X[XT+t-1, YT+t (1 - d)],  t = 

2,3,…, G-T 
and
(5.28)    PG+1  =  FG

Y[XG, YG+1 (1 -d)] (1 - d) WG / FG
X[XG, YG+1 (1 - d)] 

The two first conditions now allow for two different interpretations: 
If the sequence of functions Fj(.,) is the only technology available in the market, 

desintegrated supply chains can be efficient with prices obeying (5.25). Then, it must be the case 
– because consistency must then hold – that for any T 

(5.29) PT+t  =  (1 + �T+t+1) WT+t / F
T+t

X[XT+t, YT+t+1 (1 - d)]  = 
 =  PT+t-1 (1 – d) FT+t-1

Y[XT+t-1, YT+t (1 - d)] / (1 + �T+t)  ,  t = 2,3,…,G-T 

i.e., for any knot j: 
(5.30) Pj  =  (1 + �j+1) Wj / F

j
X[Xj, Yj+1 (1 - d)]  = 

 =  Pj-1 (1 – d) Fj-1
Y[Xj-1, Yj (1 - d)] / (1 + �j)  ,   j = 2,3,…,G 

If not, and PT+t is the price at which YT+t is offered in the market, tier T+t-1 will be 

integrated with T+t provided that … 

(5.31) PT+t  <  (1 + �T+t+1) WT+t / F
T+t

X[XT+t, YT+t+1 (1 - d)]  =  (1 – d) WT+t-1

FT+t-1
Y[XT+t-1, YT+t (1 - d)] / FT+t-1

X[XT+t-1, YT+t (1 - d)]  <  PT+t-1

Also, if XT+t-1 is not specific and must be uniformly priced at moment t, for observed 

vertical integration until j:  

(5.32) Pj F
j
X[Xj, Yj+1 (1 - d)] / (1 + �j+1)  =  Wj

or
(5.33) Pj F

j
X[Xj, Yj+1 (1 - d)] / Wj  =  (1 + �j+1)     

As Pj decreases with j, and if Fj
X[Xj, Yj+1 (1 - d)] = FX[Xj, Yj+1 (1 - d)], FXY[Xj, Yj+1

(1 - d)] > 0, and only depends on X, we would expect that – if W is constant - �j+1 to decrease 

with j – to decrease with the distance to the delivery as a final product. Then this implies a 
decreasing interest rate with the distance to maturity 

11
.

Alternatively: 
                                                

11
 Some studies report a downward sloping term structure - see Shiller (1990), page 629. 
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(5.34) (1 – d) Fj-1
Y[Xj-1, Yj (1 - d)]  =  Pj / Pj-1  (1 + �j+1)

If the product is homogeneous and Pj = Pj-1, provided FYY[Xj-1, Yj (1 - d)] < 0, and 
FYX[Xj-1, Yj (1 - d)] is negligible, �j+1 must increase with j. Conversely, interest rate rises with 
term – decreases with time to maturity 

12
. If FYY[Xj-1, Yj (1 - d)] is negligible, and Fj-1

YX[Xj-1,
Yj (1 - d)] > 0, both term structures may emmerge. Note, however, that condition (5.34) is only 

observed for only integrated knots… 

Proposition 5: Considering the product-chain problem of a conventional producer 

5.1 standard optimization will not allow consistency unless the current tier 

product is decided at the downstream stage. Quantity-fixing practices may levy 

the ineficiency of eventual vertical desintegration. 

5.2 (5.29) holds for “shadow” prices of a vertically integrated system. 

5.3 A decreasing discount rate with time to maturity may be observed. 

5.2. Vertical Systems in Growth Models:  
5.2.1. Without Capital 

. In a growth model, assuming there are T (ascending) hierarchic production levels. 
There are potential externalities across the production tiers so that, instead of YT-j,t = FT-j[XT-j,t,
YT-j-1,t-1 (1 - d)], YT-j,t represents value-added at tier T-j and obeys (6.2): 

(6.1)
,...,,...,, 2121 ���� TTTT kkXX

Max �
�

�1t
U(YT,t) (1 + �)-t

s.t.  

(6.2)YT-j,t = FT-j[XT-j,t, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i] - �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i, j = 0,1...,T-1 

(6.3) �
�

�

1

0

T

j
XT-j,t  =  X

 Given  Y1,0, Y2,0,…,YT,0

The problem is equivalent to: 

                                                
12

 See Shiller (1990), page 629. 
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(6.4)
,...,
,...,

,...,,...,,
,...,,...,,

,...,,...,,

21
21

2,1,2,11,1
2,1,2,11,1

2,1,2,11,1

��
��

���� TT
TT

TT
YYYY

XXXX
Max

�
�

�1t
U(YT,t) (1 + �)-t  + �

�

�1t
�

�

�

1

0

T

j
�T-j,t {- YT-j,t  +  fT-j[XT-j,t,

�
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]}  + �

�

�1t
�t (X - �

�

�

1

0

T

j
XT-j,t)

Transversality conditions require that lim
t��

�T-j,t YT-j,t  =  0, j = 0,1,2,…,T-1 

FOC yield: 

(6.5)
,T t

W
Y
�
�

  =  (1 + �)-t U’(YT,t)  - �T,t  = 0 

(6.6)
,T j t

W
X �

�
�

  = �T-j,t f
T-j

X[XT-j,t, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]  - �t  =  0, j = 0,1,…, T -1 

(6.7)
,T j t

W
Y �

�
�

  =  -  �T-j,t  +  �
�

j

s 1

�T-j+s,t+s  f
T-j+s

Y[XT-j+s,t+s, �
���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i]

(1 - d)s  =  0 ,   j = 1,2,…, T -1 

From (6.5) and (6.6) 

(6.8) �t  =  �T,t fT
X[XT,t, �

�

�

1

1

T

i
YT-i,t-i (1 - d)i]  =  (1 + �)-t U’(YT,t) fT

X[XT,t,

�
�

�

1

1

T

i
YT-i,t-i (1 - d)i]  = �T-j,t f

T-j
X[XT-j,t, �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]  ,  j = 0,1,…, T -1 

From (6.6) and (6.7) 

(6.9) �t = fT-j
X[XT-j,t, �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i] �

�

j

s 1

�t+s (1 - d)s fT-j+s
Y[XT-j+s,t+s,

�
���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i] / fT-j+s

X[XT-j+s,t+s, �
���

�

1

1

sjT

i
YT-j+s-i,t+s-i (1 - d)i]  ,   j = 1,2,…, T -1 

Replacing (6.8): 

(6.10)  (1 + �)-t U’(YT,t) f
T

X[XT,t, �
�

�

1

1

T

i
YT-i,t-i (1 - d)i]  = 
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=  fT-j
X[XT-j,t, �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i] �

�

j

s 1

{(1 + �)-(t+s) U’(YT,t+s) f
T

X[XT,t+s, �
�

�

1

1

T

i
YT-

i,t+s-i (1 - d)i]} (1 - d)s fT-j+s
Y[XT-j+s,t+s, �

���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i] / fT-j+s

X[XT-j+s,t+s, �
���

�

1

1

sjT

i
YT-

j+s-i,t+s-i (1 - d)i]    ,    j = 1,2,…, T -1 

or

(6.11)   U’(YT,t) f
T

X[XT,t, �
�

�

1

1

T

i
YT-i,t-i (1 - d)i]  = 

=  fT-j
X[XT-j,t, �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i] �

�

j

s 1

{(1 + �)-s U’(YT,t+s) f
T

X[XT,t+s, �
�

�

1

1

T

i
YT-i,t+s-i

(1 - d)i]} (1 - d)s fT-j+s
Y[XT-j+s,t+s, �

���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i] / fT-j+s

X[XT-j+s,t+s, �
���

�

1

1

sjT

i
YT-j+s-

i,t+s-i (1 - d)i]    ,    j = 1,2,…, T -1 

A steady-state – with YT-j,t = YT-j*, XT-j,t = XT-j* – implies that all multipliers decrease 

at rate �. (6.10) implies: 

(6.12)  fT-j
X[XT-j*, �

��

�

1

1

jT

i
YT-j-i* (1 - d)i]  =  1 / �

�

j

s 1

(1 + �)-s (1 - d)s fT-j+s
Y[XT-j+s*,

�
���

�

1

1

sjT

i
YT-j+s-i* (1 - d)i] / fT-j+s

X[XT-j+s*, �
���

�

1

1

sjT

i
YT-j+s-i* (1 - d)i]   ,   j = 1,2,…, T -1 

That is, optimality requires the inverse of the marginal product with respect to X at a 
knot T-j to equal the discounted sum of those above it, each weighted by the corresponding 
(properly depreciated) marginal product with respect to the intermediate product. 

Proposition 6: Introducing the product-chain system into a representative infinitely 

lived agent’s problem, a steady-state may exist with constant per capita 

aggregates and obeys (6.12), (6.2) and (6.3). Consistency is obeyed. 

5.2.2. Vertical Systems in Growth Models: With Capital Accumulation 

. With capital used in all knots, with YT-j,t = FT-j[XT-j,t, kT-j, YT-j-1,t-1 (1 - d)], build 

along with the final output: 

(6.13)
,...,,...,, 2121 ���� TTTT kkXX

Max �
�

�1t
U(Ct) (1 + �)-t
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s.t.  

(6.14) YT-j,t = FT-j[XT-j,t, kT-j,t-1, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i] + �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i = 

 =  fT-j[XT-j,t, kT-j,t-1, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i] ,  j = 0,1..., T - 1 

(6.15) �
�

�

1

0

T

j
XT-j,t  =  X

(6.16) (1 + n) �
�

�

1

0

T

j
kT-j,t  =  (1 – d’) �

�

�

1

0

T

j
kT-j,t-1  +  YT,t  - Ct

 Given k1,0, k2,0,…,kT,0  and  Y1,0, Y2,0,…,YT-1,0

The problem is equivalent to: 

(6.17)

,...,
,...,

,...,,...,,
,...,,...,,
,...,,...,,

,...,,...,,
,...,

21
21

2,1,2,11,1
2,1,2,11,1
2,1,2,11,1

2,1,2,11,1
21

��
��

���� TT
TT
TT

TT

YYYY
kkkk

XXXX
CC

Max �
�

�1t
U(Ct) (1 + �)-t  + �

�

�1t
�

�

�

1

0

T

j
�T-j,t {- YT-j,t  +  fT-j[XT-j,t, kT-

j,t-1, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]}  +  �

�

�1t
�t (X - �

�

�

1

0

T

j
XT-j,t) +  �

�

�1t
�t [(1 – d’) �

�

�

1

0

T

j
kT-j,t-1  +  YT,t  -  

Ct  - (1 + n) �
�

�

1

0

T

j
kT-j,t]

Transversality conditions require that lim
t��

�T-j,t YT-j,t  =  0, j = 1,2,…,T-1, and lim
t��

�t

�
�

�

1

0

T

j
kT-j,t = 0. 

FOC yield: 

(6.18)
t

W
C

�
�

  =  (1 + �)-t UC(Ct)  - �t  = 0 

(6.19)
,T j t

W
X �

�
�

  =  -  �t  +  �T-j,t f
T-j

X[XT-j,t, kT-j,t-1, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]  =  0, j = 

0,1,2,…,T-1

(6.20)
,T j t

W
Y �

�
�

  =  -  �T-j,t  +  �
�

j

s 1
�T-j+s,t+s  f

T-j+s
Y[XT-j+s,t+s, kT-j+s,t-1+s, �

���

�

1

1

sjT

i
YT-j+s-

i,t-i (1 - d)i]  (1 - d)s  =  0,   j = 1,2,…,T-1 

(6.21)
,T t

W
Y
�
�

  =  - �T,t  + �t  = 0
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(6.22)
,T j t

W
k �

�
�

  =  -  �t (1 + n)  +  �t+1 (1 – d’) + �T-j,t+1 fT-j
k[XT-j,t+1, kT-j,t, �

��

�

1

1

jT

i
YT-j-

i,t+1-i (1 - d)i]  =  0 ,   j = 0,1,2,…,T-1 

From (6.22) and (6.18) 

(6.23) �T-j,t+1 = [(1 + �)-t UC(Ct) (1 + n) - (1 + �)-(t+1) UC(Ct+1) (1 – d’)] / fT-j
k[XT-j,t+1,

kT-j,t, �
��

�

1

1

jT

i
YT-j-i,t+1-i (1 - d)i]   ,  j = 0,1,2,…T-1 

Replacing in (6.20): 

(6.24) �T-j,t  = �
�

j

s 1
[(1 + �)-(t+s-1) UC(Ct+s-1) (1 + n) - (1 + �)-(t+s) UC(Ct+s) (1 – d’)] fT-

j+s
Y[XT-j+s,t+s, kT-j+s,t-1+s, �

���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i] (1 - d)s / fT-j+s

k[XT-j+s,t+s, kT-j+s,t+s-1,

�
���

�

1

1

sjT

i
YT-j+s-i,t+s-i (1 - d)i]    , j = 1,2,…T-1 

Leading one period and equating to (6.23): 

(6.25) [(1 + �)-t UC(Ct) (1 + n) - (1 + �)-(t+1) UC(Ct+1) (1 – d’)] / fT-j
k[XT-j,t+1, kT-j,t,

�
��

�

1

1

jT

i
YT-j-i,t+1-i (1 - d)i]  =  �

�

j

s 1
[(1 + �)-(t+s) UC(Ct+s) (1 + n) - (1 + �)-(t+s+1) UC(Ct+s+1) (1 – 

d’)] fT-j+s
Y[XT-j+s,t+s+1, kT-j+s,t+s, �

���

�

1

1

sjT

i
YT-j+s-i,t+1-i (1 - d)i] (1 - d)s / fT-j+s

k[XT-j+s,t+s+1, kT-

j+s,t+s, �
���

�

1

1

sjT

i
YT-j+s-i,t+s+1-i (1 - d)i]   , j = 1,2,…T-1 

or

(6.26) [UC(Ct) (1 + n) - (1 + �)-1 UC(Ct+1) (1 – d’)] / fT-j
k[XT-j,t+1, kT-j,t, �

��

�

1

1

jT

i
YT-j-i,t+1-

i (1 - d)i]  =  �
�

j

s 1
[(1 + �)-s UC(Ct+s) (1 + n) - (1 + �)-(s+1) UC(Ct+s+1) (1 – d’)] fT-j+s

Y[XT-

j+s,t+s+1, kT-j+s,t+s, �
���

�

1

1

sjT

i
YT-j+s-i,t+1-i (1 - d)i] (1 - d)s / fT-j+s

k[XT-j+s,t+s+1, kT-j+s,t+s, �
���

�

1

1

sjT

i
YT-

j+s-i,t+s+1-i (1 - d)i] ,   j = 1,2,…,T-1 
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A steady-state – with Ct = C*, kT-j,t = kT-j*, XT-j,t = XT-j*, etc. – implies that all 

multipliers decrease at rate �. (6.24) implies: 

(6.27) �T-j,t = (1 + �)-t UC(C*) [(1 + �) (1 + n) - (1 – d’)] / fT-j
k[XT-j*, kT-j*, �

��

�

1

1

jT

i
YT-j-

i* (1 - d)i]  , j = 1,2,…,T-1 

(6.25) then implies that along a balanced path: 

(6.28) fT-j
k[XT-j*, kT-j*, �

��

�

1

1

jT

i
YT-j-i* (1 - d)i]  =  [(1 + n) - (1 + �)-1 (1 – d’)] / 

�
�

j

s 1
[(1 + �)-s (1 + n) - (1 + �)-(s+1) (1 – d’)] fT-j+s

Y[XT-j+s*, kT-j+s*, �
���

�

1

1

sjT

i
YT-j+s-i* (1 - d)i] (1 - 

d)s / fT-j+s
k[XT-j+s*, kT-j+s*, �

���

�

1

1

sjT

i
YT-j+s-i* (1 - d)i]      ,   j = 1,2,…, T -1 

Proposition 7: Introducing the product-chain system into the Ramsey’s growth model, a 

steady-state may exist with constant per capita aggregates and obeys (6.28), (6.14) 

to (6.16). 

5.2.3. Vertical Systems in Growth Models (without Capital 
13

): Possible Direct 
Consumption of Intermediate Products. 

. Finally, a multi-stage consumption felicity can be forwarded: 

(6.29)
,..., 21 �� TT XX

Max �
�

�1t
U(CT,t, CT-1,t,..., C1,t) (1 + �)-t

s.t.  

(6.30) YT-j,t + CT-j,t = FT-j[XT-j,t, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i] - �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i = 

 =  fT-j[XT-j,t, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i] ,  j = 1..., T - 1 

(6.31)  CT,t = FT[XT,t, �
�

�

1

1

T

i
YT-j-i,t-i (1 - d)i] - �

�

�

1

1

T

i
YT-j-i,t-i (1 - d)i = 

  =  fT[XT,t, �
�

�

1

1

T

i
YT-i,t-i (1 - d)i]

                                                
13

With Capital is reproduced in Appendix B.
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(6.32) �
�

�

1

0

T

j
XT-j,t  =  X

(6.33) Given Y1,0, Y2,0,…,YT-1,0,

The problem is equivalent to: 

(6.34)

,...,
,...,,...,,

,...,,...,,
,...,,...,,

,...,

21
2,1,2,11,1

2,1,2,11,1
2,1,2,11,1

21

��
���� TT
TT

TT
YYYY

XXXX
CC

Max �
�

�1t
 U(CT,t, CT-1,t,..., C1,t) (1 + �)-t  + �

�

�1t
�

�

�

1

1

T

j
�T-j,t {- YT-j,t  -  

CT-j,t  +  fT-j[XT-j,t, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]}  +  �

�

�1t
�t (X - �

�

�

1

0

T

j
XT-j,t) + �

�

�1t
�T,t {-  CT,t  +  

fT[XT,t, �
�

�

1

1

T

i
YT-j-i,t-i (1 - d)i]}

FOC yield: 

(6.35)
,T j t

W
C �

�
�

  =  (1 + �)-t UCT-j
(CT,t, CT-1,t,..., C1,t)  - �T-j,t  = 0, j = 0,1,2,..., T-1 

(6.36)
,T j t

W
X �

�
�

  =  - �t  + �T-j,t f
T-j

X[XT-j,t, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]  =  0, j = 0,1,2,…,T-1 

(6.37)
,T j t

W
Y �

�
�

  =  -  �T-j,t  +  �
�

j

s 1
�T-j+s,t+s  f

T-j+s
Y[XT-j+s,t+s, �

���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i]

(1 - d)s  =  0,  j = 1,2,…,T-1 

(6.36) implies: 

(6.38) (1 + �)-t UCT-j
(CT,t, CT-1,t,..., C1,t) f

T-j
X[XT-j,t, �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]  = 

= (1 + �)-t UCT-j’
(CT,t, CT-1,t,..., C1,t) f

T-j’
X[XT-j’,t, �

��

�

1'

1

jT

i
YT-j’-i,t-i (1 - d)i]

or
(6.39)    UCT-j

(CT,t, CT-1,t,..., C1,t) / UCT-j’
(CT,t, CT-1,t,..., C1,t)  = 

=  fT-j’
X[XT-j’,t, �

��

�

1'

1

jT

i
YT-j’-i,t-i (1 - d)i] / fT-j

X[XT-j,t, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]   ,    j,j’ = 

0,1,2,…,T-1

The MRS in consumption between two of each arguments of felicity equals the 
corresponding ratio of marginal products with respect to X. 
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Replacing (6.38) in (6.36) 

(6.40) (1 + �)-t UCT-j
(CT,t, CT-1,t,..., C1,t)  =  �

�

j

s 1
 (1 + �)-t-s UCT-j+s

(CT,t+s, CT-

1,t+s,..., C1,t+s)  f
T-j+s

Y[XT-j+s,t+s, �
���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i]  (1 - d)s    or 

(6.41) 1  =  �
�

j

s 1
 (1 + �)-s [UCT-j+s

(CT,t+s, CT-1,t+s,..., C1,t+s) / UCT-j
(CT,t, CT-1,t,...,

C1,t)] f
T-j+s

Y[XT-j+s,t+s, �
���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i]  (1 - d)s

Using now (6.39): 

(6.42) 1  =  �
�

j

s 1
 (1 + �)-s  fT-j+s

Y[XT-j+s,t+s, �
���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i]  (1 - d)s  fT-

j
X[XT-j,t, kT-j,t-1, �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i] / fT-j+s

X[XT-j+s,t, �
���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i]     or 

(6.43)  1  = �
�

j

s 1
 (1 + �)-s (1 - d)s  fT-j

X[XT-j,t, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]  j = 1,2,…, T-1 

The real interest rate in the economy – the one at which individuals – or rather, 
households - discount consumption, or are willing to trade t’s consumption/real goods for t+1 
ones and therefore ask for to lend – is the marginal rate of substitution between (Lt+1 ct+1) and (Lt
ct) over the individuals welfare function minus 1 14: Now, we must choose the numeraire – the 
consumption good at which the exchange takes place; if the highest level consumption, CT,t – and 
production, YT,t, given (6.35). 

(6.44)    - 
WtTt

tTt

CLd
CLd

|,

1,1

)(
)(

�
�
�

�

�
�
�

 ��  - 1  =  - 
t

t

L
L 1�

WtT

tT

dC
dC

|,

1,

	
	



�
�
�



� �  -1  =  (1 + n) 
	
	
	
	




�

�
�
�
�




�

�
�
�
�

�1,

,

tT

tT

C
W

C
W

 - 1  =

                                                
14

 In the Ramsey’s model, the real rate of return to savings is – equated to - rt = f’(kt-1) – d’ = Rt/Pt – d’ – 

see Barro and Sala-i-Martin (1995), p. 63-69. The term (1 – d’) (Pk,t – Pk,t-1) / Pk,t-1 should be added – see 

footnote 11. p. 69 of the same reference - when Pk,t is the price of capital in units of consumables – in the one-

sector model, fixed to 1.
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=  (1 + n) 
),...,,()1(

),...,,()1(

1,11,11,
)1(

,1,1,

����
��

�
�

�

�

ttTtTC
t

ttTtTC
t

CCCU
CCCU

T

T

�
�

 - 1  =  (1 + n) (1 + �)

),...,,(
),...,,(

1,11,11,

,1,1,

����

�

ttTtTC

ttTtTC

CCCU
CCCU

T

T  - 1  =  (1 + �’)
),...,,(

),...,,(

1,11,11,

,1,1,

����

�

ttTtTC

ttTtTC

CCCU
CCCU

T

T  - 1  =  rT,t

where (1 + �) was replaced by (1 + �) = (1 + �’) / (1 + n) and �’ denotes the individuals’ 
discount rate when future household members are valued and population grows at rate n per 
period. Again, if we consider rj,t j = 1,2,…,T, the term structure of those interest rates can be 

increasing in j – and we observe a decreasing pattern of interest rates relative to maturity - if 

),...,,(

),...,,(

1,11,11,

,1,1,

����

�

ttTtTC

ttTtTC

CCCU
CCCU

j

j  increases with j. In a steady-state path with Cj,t = Cj*, the interest 

rate(s) will be constant and equal �’. 

Proposition 8: Introducing the product-chain system into the one-sector growth model 

(without capital), and allowing intermediate products to also be consumed: 

8.1 a steady-state may exist and obeys (6.41), (6.43) and (6.30) to (6.32). 

8.2 interest rates are indexed to a particular (tier) intermediate product. 

Conclusion

Intertemporal preferences embedding memory effects were allowed to replace standard 
static felicity functions. Discounting – constant discounting – and additive accumulation – first-
order separability - is still assumed; consistency is therefore not threatened by the assumption.  

The intertemporal optimization problem yields interesting interpretations. Decisions 
become less fluid. 

When preferences are coupled with capital accumulation, the equilibrium interest rate in 
the economy may be the same as in the standard case – but economies may prefer, in case of 
consumption-past welfare complementarity, a larger stock of capital. Balanced paths are no 
longer necessarily compatible with steady-state constant levels of per capita consumption – much 
less felicity that here exhibits a durable good nature. 

Possible extension with variable discount and depreciation/forgetfulness rates are not 
expect to alter the problem solution –as long as each periodic rate is time specific and 
accumulating in product terms – guaranteeing time-consistency. 

Models of product-chain systems use the same type of mechanics. They were shown to 
have potential consistency problems and suggest an explanation for a term structure of interest 
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rates decreasing with distance to maturity (here, final product stage). Embedded in general 
equilibrium setups – as Ramsey’s growth model – generate possible steady-states. 
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Appendix A 

Let an individual be born at time 0; Ut denotes his felicity in period t, and he is endowed 
with a stream Ut, t = 1,2,…,n. If he discounts the future at (heterogeneous) periodic rates rt, at 

time 0, his prospective welfare is: 

(A.1) W0  = �
�

�1t �
�

�
t

i
i

t

r

U

1

)1(
  = �

�

T

t 1 �
�

�
t

i
i

t

r

U

1

)1(
 + 

�
�

�
T

i
ir

1

)1(

1 �
�

�1t �
�

�

�

�
t

i
iT

tT

r

U

1

)1(

Standing at time T > 0, the individual’s welfare prospects are WT = �
�

�1t �
�

�

�

�
t

i
iT

tT

r

U

1

)1(
;

his evaluation, at that moment T, of all his life’s initial potential is: 

(A.2) W0
T  =  W0 �

�

�
T

i
ir

1

)1(   = �
�

T

t 1

Ut �
��

�
T

ti
ir

1

)1(   +  �
�

�1t �
�

�

�

�
t

i
iT

tT

r

U

1

)1(
 =  �

�

T

t 1

Ut

�
��

�
T

ti
ir

1

)1(   + WT = 

(letting j =T – t:)  =  �
�

�

1

0

T

j
 UT-j

jT

j

i
iT

r

r

�

�
�

�

��
1

)1(
0   +  WT  = �

�

T

j 1
UT-j+1

jT

j

i
iT

r

r

�

�

�
��

�

��
1

)1(
1

0
1

  +  WT

Exemplifying, 

W0
4 =  U1 (1 + r2) (1 + r3) (1 + r4) + U2 (1 + r3) (1 + r4) + U3 (1 + r4)  +  U4  +  W4

where  W4  = �
�

�1t �
�

�

�

�
t

i
i

t

r

U

1
4

4

)1(
, accumulated prospects at moment 4, consistent with 

W0. Then we have a compatible summation writing. 

Then, WT = W0
T - �

�

�

1

0

T

j
 UT-j

jT

j

i
iT

r

r

�

�
�

�

��
1

)1(
0 . All else (including total life’s prospects) 

fixed,
jT

T

dU
dW

�

�  is how much of an increase of current – time T’s - prospects he would have to be 

(have been…) given to let go of one unit of a good memory of time (T – j). Using the last 
expression,
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(A.3)
jT

T

dU
dW

�

�   =
jT

j

i
iT

r

r

�

�
�

�

��
1

)1(
0   =  (1 + rT) (1 + rT-1) …. (1 + rT-j+1)  = �

���

�
T

jTi
ir

1

)1(

Such “price” of units of UT-j for an individual located at T – the value at T of UT-j - is 

larger than 1 and increases with j – with how distant in the past (T – j) is of T… So discounting 
mimics an increasing value and, therefore, effect (positive or negative: the argument would also 
apply to losses…) on current decisions, of previous remembrances as these become more distant 
in the past. 

Also, as

(A.4) W0 = 
�

�

�
T

i
ir

1

)1(

1 �
�

�

1

0

T

j
UT-j

jT

j

i
iT

r

r

�

�
�

�

��
1

)1(
0   + 

�
�

�
T

i
ir

1

)1(

1  WT = 
�

�

�
'

1

)1(

1
T

i
ir

�
�

�

1'

0

T

j
UT’-j

jT

j

i
iT

r

r
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�
�

�

��
'

0
'

1

)1(
  + 

�
�

�
'

1

)1(

1
T

i
ir

 WT’

the last equality suggests how accumulated prospects are relatively valued along lifetime 
indifference curves; if total wealth changes and that is not to affect Ut, t � Max(T, T’), the relative 

impact on accumulated prospects at the two points in time is  

(A.5)

T

T

dW
dW
dW
dW

0

'

0

  =
'T

T

dW
dW   =

�

�

�

�

�

�

'

1

1

)1(

)1(

T

i
i

T

i
i

r

r
  = �

��

�
T

Ti
ir

1'

)1(

and we can write  

(A.6)
jT

T

dW
dW

�

  = �
���

�
T

jTi
ir

1

)1(   =  
jT

T

dU
dW

�

�    ,  for j > 0 

Appendix B 
5.2.3. Vertical Systems in Growth Models (with Capital): Possible Direct 

Consumption of Intermediate Products. 

. Finally, a multi-stage consumption felicity can be forwarded: 
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(6.29)
,...,,...,, 2121 ���� TTTT kkXX

Max �
�

�1t
U(CT,t, CT-1,t,..., C1,t) (1 + �)-t

s.t.  

(6.30) YT-j,t + CT-j,t = FT-j[XT-j,t, kT-j,t-1, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i] + �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i = 

 =  fT-j[XT-j,t, kT-j,t-1, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i] ,  j = 0,1..., T - 1 

(6.31) �
�

�

1

0

T

j
XT-j,t  =  X

(6.32) (1 + n) �
�

�

1

0

T

j
kT-j,t  =  (1 – d’) �

�

�

1

0

T

j
kT-j,t-1  +  YT,t  - CT,t

 Given k1,0, k2,0,…,kT,0  and  Y1,0, Y2,0,…,YT-1,0

The problem is equivalent to: 

(6.33)

,...,
,...,

,...,,...,,
,...,,...,,
,...,,...,,

,...,,...,,
,...,

21
21

2,1,2,11,1
2,1,2,11,1
2,1,2,11,1

2,1,2,11,1
21

��
��

���� TT
TT
TT

TT

YYYY
kkkk

XXXX
CC

Max �
�

�1t
 U(CT,t, CT-1,t,..., C1,t) (1 + �)-t  + �

�

�1t
�

�

�

1

0

T

j
�T-j,t {- YT-j,t  -  

CT-j,t  +  fT-j[XT-j,t, kT-j,t-1, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]}  +  �

�

�1t
�t (X - �

�

�

1

0

T

j
XT-j,t) + �

�

�1t
�t [(1 – d’) 

�
�

�

1

0

T

j
kT-j,t-1  +  YT,t  -  CT,t  - (1 + n) �

�

�

1

0

T

j
kT-j,t]

FOC yield: 

(6.34)
,T t

W
C
�
�

  =  (1 + �)-t UCT
(CT,t, CT-1,t,..., C1,t)  - �t  = 0 

(6.35)
,T j t

W
C �

�
�

  =  (1 + �)-t UCT-j
(CT,t, CT-1,t,..., C1,t)  - �T-j,t  = 0, j = 1,2,..., T-1 

(6.36)
,T j t

W
X �

�
�

  =  -  �t  +  �T-j,t f
T-j

X[XT-j,t, kT-j,t-1, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]  =  0, j = 

0,1,…,T-1

(6.37)
,T t

W
Y
�
�

  =  - �T,t  + �t  =  0
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(6.38)
,T j t

W
Y �

�
�

  =  -  �T-j,t  +  �
�

j

s 1
�T-j+s,t+s  f

T-j+s
Y[XT-j+s,t+s, kT-j+s,t-1+s, �

���

�

1

1

sjT

i
YT-j+s-

i,t-i (1 - d)i]  (1 - d)s  =  0 ,   j = 1,2,…, T-1 

(6.39)
,T j t

W
k �

�
�

  =  -  �t (1 + n)  +  �t+1 (1 – d’) + �T-j,t+1 fT-j
k[XT-j,t+1, kT-j,t, �

��

�

1

1

jT

i
YT-j-

i,t+1-i (1 - d)i]  =  0 , j = 0,1,2,...,T-1 

(6.35), (6.36) and (6.37) imply: 

(6.40) (1 + �)-t UCT-j
(CT,t, CT-1,t,..., C1,t) f

T-j
X[XT-j,t, kT-j,t-1, �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]  = 

= (1 + �)-t UCT-j’
(CT,t, CT-1,t,..., C1,t) f

T-j’
X[XT-j’,t, kT-j’,t-1, �

��

�

1'

1

jT

i
YT-j’-i,t-i (1 - d)i]

or
(6.41) UCT-j

(CT,t, CT-1,t,..., C1,t) / UCT-j’
(CT,t, CT-1,t,..., C1,t)  = 

=  fT-j’
X[XT-j’,t, kT-j’,t-1, �

��

�

1'

1

jT

i
YT-j’-i,t-i (1 - d)i] / fT-j

X[XT-j,t, kT-j,t-1, �
��

�

1

1

jT

i
YT-j-i,t-i (1 - 

d)i]   ,    j,j’ = 0,1,2,…,T-1 

The MRS in consumption between two of each arguments of felicity equals the 
corresponding ratio of marginal products with respect to X. 

Replacing (6.34) to (6.37) in (6.38): 

(6.42) (1 + �)-t UCT-j
(CT,t, CT-1,t,..., C1,t)  =  �

�

j

s 1
 (1 + �)-t-s UCT-j+s

(CT,t+s, CT-

1,t+s,..., C1,t+s)  f
T-j+s

Y[XT-j+s,t+s, kT-j+s,t-1+s, �
���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i]  (1 - d)s    or 

(6.43) 1  =  �
�

j

s 1

 (1 + �)-s [UCT-j+s
(CT,t+s, CT-1,t+s,..., C1,t+s) / UCT-j

(CT,t, CT-1,t,...,

C1,t)] f
T-j+s

Y[XT-j+s,t+s, kT-j+s,t-1+s, �
���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i]  (1 - d)s

Using now (6.41): 

(6.44) 1  =  �
�

j

s 1

 (1 + �)-s  fT-j+s
Y[XT-j+s,t+s, kT-j+s,t-1+s, �

���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - d)i]  (1 

- d)s  fT-j
X[XT-j,t, kT-j,t-1, �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i] / fT-j+s

X[XT-j+s,t, kT-j+s,t-1, �
���

�

1

1

sjT

i
YT-j+s-i,t-i (1 - 

d)i]     or 
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(6.45)  1  =  �
�

j

s 1

 (1 + �)-s (1 - d)s  fT-j
X[XT-j,t, kT-j,t-1, �

��

�

1

1

jT

i
YT-j-i,t-i (1 - d)i]  , j = 

1,2,…, T-1 

Using (6.34) to (6.37) and (6.39): 

(6.46) (1 + �)-t UCT
(CT,t, CT-1,t,..., C1,t)  (1 + n)  +  (1 + �)-t UCT

(CT,t+1, CT-1,t+1,...,

C1,t+1)   (1 – d’) + (1 + �)-t-1 UCT-j-1
(CT,t+1, CT-1,t+1,..., C1,t+1)  fT-j

k[XT-j,t+1, kT-j,t, �
��

�

1

1

jT

i
YT-j-

i,t+1-i (1 - d)i]  =  0 , j = 1,2,...,T-1 

or
(6.47) [UCT

(CT,t, CT-1,t,..., C1,t) / UCT
(CT,t+1, CT-1,t+1,..., C1,t+1)] (1 + �) (1 + n)  = - (1 

+ �) (1 – d’) +  [UCT-j-1
(CT,t+1, CT-1,t+1,..., C1,t+1) / UCT

(CT,t+1, CT-1,t+1,..., C1,t+1)]  fT-j
k[XT-

j,t+1, kT-j,t, �
��

�

1

1

jT

i
YT-j-i,t+1-i (1 - d)i]  =  0 , j = 1,2,...,T-1 

Then: UCT-j-1
(CT,t+1, CT-1,t+1,..., C1,t+1) fT-j

k[XT-j,t+1, kT-j,t, �
��

�

1

1

jT

i
YT-j-i,t+1-i (1 - d)i]

will be constant for j = 1,2,…,T-1: 

(6.48) UCT-j-1
(CT,t+1, CT-1,t+1,..., C1,t+1) / UCT-j’-1

(CT,t+1, CT-1,t+1,..., C1,t+1) = 

fT-j’
k[XT-j’,t+1, kT-j’,t, �

��

�

1'

1

jT

i
YT-j’-i,t+1-i (1 - d)i]  / fT-j

k[XT-j,t+1, kT-j,t, �
��

�

1

1

jT

i
YT-j-i,t+1-i (1 

- d)i]  ,   j,j’ = 1,2,…,T-1 

The marginal rate of substitution equals the marginal rate of transformation between any 
two intermediate products. 

The real interest rate in the economy – the one at which individuals – or rather, 
households - discount consumption, or are willing to trade t’s consumption/real goods for t+1 
ones and therefore ask for to lend – is the marginal rate of substitution between (Lt+1 ct+1) and (Lt
ct) over the individuals welfare function minus 1 15: Now, we must choose the numeraire – the 

15
 In the Ramsey’s model, the real rate of return to savings is – equated to - rt = f’(kt-1) – d = Rt/Pt – d – 

see Barro and Sala-i-Martin (1995), p. 63-69. The term (1 – d) (Pk,t – Pk,t-1) / Pk,t-1 should be added – see 

footnote 11. p. 69 of the same reference - when Pk,t is the price of capital in units of consumables – in the one-

sector model, fixed to 1.
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consumption good at which the exchange takes place; if the highest level consumption, CT,t – and 
production, YT,t, given (6.31). 

(6.49)    - 
WtTt

tTt

CLd
CLd

|,

1,1

)(
)(

�
�
�

�

�
�
�

 ��  - 1  =  - 
t

t

L
L 1�

WtT

tT

dC
dC

|,

1,

	
	



�
�
�



� �  -1  =  (1 + n) 
	
	
	
	




�

�
�
�
�




�

�
�
�
�

�1,

,

tT

tT

C
W

C
W

 - 1  =

=  (1 + n) 
),...,,()1(

),...,,()1(

1,11,11,
)1(

,1,1,

����
��

�
�

�

�

ttTtTC
t

ttTtTC
t

CCCU
CCCU

T

T

�
�

 - 1  =  (1 + n) (1 + �)

),...,,(
),...,,(

1,11,11,

,1,1,

����

�

ttTtTC

ttTtTC

CCCU
CCCU

T

T  - 1  =  (1 + �’)
),...,,(

),...,,(

1,11,11,

,1,1,

����

�

ttTtTC

ttTtTC

CCCU
CCCU

T

T  - 1  =  rT,t

where (1 + �) was replaced by (1 + �) = (1 + �’) / (1 + n) and �’ denotes the individuals’ 
discount rate when future household members are valued and population grows at rate n per 
period. It has correspondence with (6.44). In a steady-state path for Cj,t = Cj*, the interest rate 

will be constant. 

Proposition 8: Introducing the product-chain system into the Ramsey’s growth model, 

and allowing intermediate products to also be consumed: 

8.1 a steady-state may exist and obeys (6.41), (6.47), (6.30) to (6.32). 

8.2 interest rates are indexed to a particular (tier) intermediate product. 


