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ABSTRACT

An Oaxaca Decomposition for Nonlinear Models®

The widely used Oaxaca decomposition applies to linear models. Extending it to commonly
used nonlinear models such as duration models is not straightforward. This paper shows that
the original decomposition that uses a linear model can also be obtained by an application of
the mean value theorem. By extension, this basis provides a means of obtaining a
decomposition formula which applies to nonlinear models which are continuous functions.
The detailed decomposition of the explained component is expressed in terms of what are
usually referred to as marginal effects. Explicit formulae are provided for the decomposition
of some nonlinear models commonly used in applied econometrics including binary choice,
duration and Box-Cox models.
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Introduction

Much applied work in economics is devoted to analyzing the sources of differences between
individuals and groups. The Oaxaca decomposition (Oaxaca, 1973) is a method of expressing
the difference between the mean values of a variable — usually the logarithm of earnings — for
two groups based on the coefficients obtained from two group-specific linear regressions'.
The difference is expressed in terms of two components that contribute to the divergence in
group means: an explained part or ‘composition effect’ due to differences in the mean
characteristics of the two groups, and an unexplained component or ‘structure effect’” due to
differences in the estimated coefficients in the group equations. A very similar
decomposition was proposed by Blinder (1973), in the same year but after the publication of
Oaxaca’s article?. The technique was originally developed in order to establish the existence
and extent of wage and other forms of discrimination and is widely used in labour
economics and to some extent other areas. It can also be applied to analyze group
differences, in general. Surveys of this and other decomposition methods are provided by

Beblo, Beninger, Heinze and Laisney (2003) and Fortin, Lemieux and Firpo (2011).

Attempts have been made to use the Oaxaca approach to decompose group differences using
specific nonlinear models, such as the logit and probit models (Nielsen, 1998; Yun, 2000;
Fairlie, 2005; Powers and Pullum, 2006), hazard or duration models (Wagstaff and Nguyen,
2001; Powers and Yun, 2009) and Tobit-type models (Neumann and Oaxaca; 2004,Yun, 2007;
Wolff, 2012). More recently, Bauer and Sinning (2008) have proposed a generalization of the
Oaxaca approach based on the sample means of estimated functions for nonlinear
specifications. This method will be shown to be problematic for the identification of certain
components of interest defined in the Oaxaca-linear approach. In particular, in the original
version, the existence of discrimination is based on assuming that two groups have the same
mean characteristics. The approaches mentioned above are not formulated on this kind of

counterfactual basis.

This paper proposes an Oaxaca-type decomposition for any continuous nonlinear model. It
uses as a basis the difference between two fitted values, which is decomposed into a
composition and a structure effect. It is obtained through an application of the mean value
theorem and the resulting decomposition is exact in the sense that there is no remainder even
though the model is nonlinear. The paper begins in section 1 with a brief examination of the
basis of the Oaxaca decomposition and then explores some of the difficulties encountered
when seeking to generalize this approach to nonlinear relations in section 2. In the following

section, it is shown that the Oaxaca decomposition can be obtained by the application of the

! It is possible to obtain the same estimates in a pooled regression with group specific coefficients and dummy variables.

2 In private correspondence with these authors, it emerges that the two papers were prepared independently but the authors
had met and discussed their research beforehand.



mean value theorem to the estimated relation for one of the groups being compared. The
application of theorem is then used as means of obtaining a decomposition technique, which
can be used with any continuous nonlinear function. In section 4, explicit forms for the
decomposition of some widely used nonlinear models for binary choice and duration
analysis along with a model using the Box-Cox transformation. Empirical examples of each

of these are presented.

I Interpretations of the Oaxaca decomposition

The original Oaxaca decomposition has a certain number of features which are inextricably
linked to the linear regression model, and which limit the extent to which the method can be
directly generalized. It applies to an explicitly linear framework in which the dependent

variable for member i of group ¢ is Y, (often this is the logarithm of earnings), the

explanatory variables are represented in vector form, X, (which contains Kk elements and

gi’
X; is its transpose) and the error term is &;. The decomposition applies to two groups

g =M, F . The group-specific parameters are f, and the linear relationship used is

ygizxgiﬂg-l_ggi g:M’F (1)

The Oaxaca decomposition is obtained by first estimating the parameters using ordinary

least squares (OLS) to obtain ,ég for each group, and then by defining a counterfactual fitted

value of the dependent variable as X; 3, (or X,, 3 ) where X,, and X, are vectors of the

respective means of the right hand side variables for the two groups. Defining the difference
A= YnT/n AM - X; :é F

and adding and subtracting this counterfactual term, results in the following additive

decomposition :

A=X;(ﬁM _BF)—I_B\I-I\;I (YM _YF) (2)

The first term on the right hand side is the unexplained component or structure effect — that
is, what the person with mean characteristics in group F would have obtained if they were
a member of group M relative to what they actually have. The second term is the explained

component or composition effect — the difference due to differences in mean characteristics.
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There is discrimination when X,, = X, (the situation in which the two groups on average
have the same characteristics) and the structure effect is non-zero. This is the original form of
the decomposition presented by Oaxaca (1973, p. 697, equation 13). It has the following

properties :

(i) The decomposition is model-based. A model is specified to determine the value of y that
one group would have if it had the same mean value of X of the other group, YgT ﬁh (g=h).

In other words, a model is used to construct a counterfactual situation. Furthermore, the

decomposition is only meaningful if the “factual” mean, Y,, is equal to the model’s

prediction 7; B, - The treatment of the factual and counterfactual means is not symmetric.

(ii) The original focus was on the decomposition of differences in sample means, Yy,, — Y,
using estimated coefficients from a linear model. However, when the parameters of the
model are estimated by OLS, the Oaxaca decomposition is exact only if the model contains a

constant, i.e. if it is an affine function :
T
ygi = ﬂOg + Xgiﬂg + ggi (3)

The presence of a constant ensures that the sum and therefore the mean of the estimated OLS

residuals, £, are both equal to zero — or equivalently that the mean of the fitted values is

gi’

equal to the sample mean of the dependent variable :

It is this equality that permits the decomposition of the difference in means, Y,, — Y, into

the characteristics and structure components. This numerical property is a consequence of
OLS estimation. Oaxaca (1973) assimilates the constant term into the coefficient vector.
Blinder (1973, p. 439), for reasons of interpretation separates the constant term from the other

components and presents the decomposition as :
NG NG N . ‘ 7T N
Ym = Ye =ﬂ0M + Xy Bu _(ﬂOF +XFIBF)

:/§0M _/§0F +Y;(/§M _IéF )+B\ITII (YM _XF) “4)



(iii) Although it was not presented in this form originally, it is common nowadays to express
the decomposition in terms of the expectations of variables for the population relationships
(for example, Fortin et al, 2011, and Rothe, 2012). The decomposition is based on the

parameters of a linear specification (1). The Oaxaca decomposition at the population level is :

E(XI/H )ﬂM - E(X;i )/BM + E(X|T=i )ﬂM - E(XlT:i ),BF
E(Xli)[ﬂM - Bk ]"‘ [E(XI/Ii)_ E(X|T=i )]ﬂM 5)

E(Yw )—E(Yr)

since, by assumption, E(gMi): E(g,:i): 0. In other words, the relation need not contain a

constant in order to obtain an exact two component decomposition of the difference in group
population means. Note that this form of the decomposition is in terms of population
parameters, rather than OLS estimates.

Properties (ii) and (iii) differ since the sample mean of the estimated residual, £, in the

gi’

linear model without a constant (1) will not be equal to zero.

(iv) The Oaxaca decomposition is subject to an index number problem. If the difference is
calculated around X, ,ép , the structure effect is X,, (,é - ,6A’F ), rather than X/ (BM - ,&F ) as in

equation (2). The choice of reference group characteristics for the decomposition affects the
size of the each of components. In general, there is no unique, unambiguous measure of the

extent of discrimination in terms of the structure effect.

II Extending the Oaxaca method to nonlinear relations

Extending the Oaxaca (linear) approach to nonlinear relations is not straightforward. First,
OLS cannot generally be applied due to the presence of nonlinearities in the relation. The
decomposition will not have the original Oaxaca form. Furthermore, as has been pointed out
above, the decomposition has certain properties that are related explicitly to the numerical
properties of least squares estimation and these will no longer apply. Second, and more
importantly, when applied to nonlinear models, an Oaxaca-type decomposition of
differences in either sample means or expectations of the left hand side variable will not be
exact, and so neither of properties (i) and (ii) carries over to nonlinear functions. This is due

to Jensen’s inequality, a consequence of which is that, in general, for a nonlinear function

V(X):



Even an exact Oaxaca-type decomposition at the population level in terms of expectations, as
in (5), will not be obtained in general®. Due to the (near?) impossibility of obtaining an exact
decomposition of the group difference in sample means for nonlinear models in terms of the
group means of the explanatory variables, the basis for a decomposition using a nonlinear

model needs to be rigorously specified.

Call the estimated functions or fitted values for each group Y,, =G,, (XMi) and Y =G (XFi ),

respectively. These functions would normally be the estimated conditional expectations in
econometric applications. The original Oaxaca decomposition of difference in the sample

means of the left hand side variable, Y,, — Y, is possible because when the functions are

affine and the parameters estimated by OLS, and the following equality is obtained :

- -~ = 1
yg:ygzeg(xg) where yg:n_zygi g=F.M
g i=l

This implies that the group difference in any of these means can be used as basis for a
decomposition in the affine case. When the function is nonlinear these three quantities are
not identical. Thus when extending the Oaxaca approach to nonlinear relations, the possible

candidates as a basis are the decomposition of the difference in :
(a) the sample means of the left hand side variable, Yy,, — V¢,

(b) the sample means of the fitted values of estimated functional relationship,

= = 1 & 1 &~
Ym = Ye :_ZyMi __ZyFi =Gy, (XMi)_GF(XFi)?

Ny ‘= N o

(c) the values of the group estimated functions (or fitted values) evaluated at the means of

the right hand side variables for that group, Y —y© =G,, (YM )— G (YF )

These different bases will not be equal and therefore a choice has to be made. In view of
Jensen’s inequality, basis (a) is unlikely to prove fruitful for a generalization. Even in the
linear regression case, (a) is appropriate only when the relation contains a constant. The
earlier approaches of Nielsen (1998) and Yun (2004) and more recently Bauer and Sinning
(2008) and Schwiebert (2015), propose using basis (b). This produces a decomposition of the
differences in the sample means of the fitted values (or equivalently the sample means of the

estimated function) :

3 The equality E [V (X)] =V (E [X]) only holds with certainty for affine functions.

# An equality could occur in certain situations since the function here is nonlinear but not necessarily monotonic.



?M _§F :GM (XMi)_GM (XFi)+GM (XFi)_GF(XFi) (6)

n

9
where G, (X;) = nizl:Gg (Xgi ) The logic of this choice is clear in that in population terms,
g i

this corresponds to a decomposition of the following difference E[G,, (XMi)]— E[GF(XFi )],

and by the law of iterated expectations, the expectation of this difference will be equal to the

difference in the unconditional population means : E(yMi )— E(y f )

However, there are at least two reasons why (6) may be unsatisfactory as a generalization of

the Oaxaca method. Firstly, if the functions G,, (XMi) and GF(XFi) are not affine, then in

general from Jensen’s inequality :

GM (YM)_GF(XF)iGM (XMi)_GF(XFi) 7)

Using (b) as a basis therefore entails disconnecting the decomposition from the mean vectors
Xy and X.. It does not involve the use of a counterfactual defined in terms of mean

characteristics. In other words, when the two groups have identical means, the explained
component or composition effect is not equal to zero (as it is in the Oaxaca decomposition)
and the decomposition does not reduce to the structure effect. This is serious weakness as the
identification of the latter is one of the main reasons for undertaking a decomposition of this
kind: this is precisely the component that is associated with discrimination. Secondly, if the

means of the estimated functions or fitted values are used, there is no guarantee that

Yu — Ve =Gy (X4 )= G (X, ) : this equality is not valid in the case of the probit model for

example.

A decomposition using basis (b) is therefore not generally expressed in terms of the means of
the variables ¥y and X and can diverge from the Oaxaca approach on both sides of the
equation. Using this basis with nonlinear functions will generally involve an approximation
(i.e. there will be a remainder). Some approaches, for example, are explicitly based on
assuming that (7) is close to being an equality (see, Powers and Pullum, (2006), and Powers
and Yun (2009)).

An alternative approach can be derived from the original “Oaxaca-linear” method which is
applicable to both linear and nonlinear functions using basis (c), G, (YM )—GF (KF ) In the

next section we show that using this same basis, applying the mean value theorem® to one of

> An earlier version of this paper was entitled “The MV decomposition’. Since writing that version, an
article by Schwiebert (2015) appeared which uses the mean value theorem to obtain a decomposition
7



these functions (G,, (YM ) or Gp (YF )) and then subtracting the other function, gives precisely

the Oaxaca decomposition presented in equation (2) when the functions are linear. By
extension, the same operation enables a decomposition method to be derived which is

applicable to any smooth parametric function. When the latter is defined on a single linear
index, X/ 3, a very straightforward decomposition formula is obtained. The form of the

decomposition for some commonly used econometric models is then presented in the

subsequent section.

II1 An Oaxaca decomposition for nonlinear models

Applying the mean value theorem to one of the functions over the intervals between X and

Xui

; for each of the variables 1=12,.,kK in the vector X, produces an equation that

resembles the Oaxaca decomposition. The mean value theorem applied to the function

G, (YM) over the intervals [Xy ;, X ;] states that there exists a vector X' = (il, Xyyuens Yk)

where ij lies in the interval between X, i and X i for j=1, 2,...,K such that:

Gy (% ) =G (e )+ VGyy (X)X — X ]

where VG, (i) is the vector of partial derivatives evaluated at the vector X . Subtracting

G, (X ) from both sides gives a decomposition formula for the difference G,, (X,, ) -G (X; ):

yM _yF =G, (YM)_GF(XF):[GM (XF)_GF(YF)]—I—VGM (X)T[XM — X ] (8)

The first component on the right hand side is immediately recognizable as the structure
effect — for identical mean characteristics, what is the model’s prediction of the difference in
y between the two groups? Given that Oaxaca decompositions are identities, the remaining
term must be the composition effect, G,, ()_(M )— Gy (XF ) This term will be zero if the groups

have identical means, which is the defining property of the measurement of discrimination

in the Oaxaca decomposition.

In the case of one explanatory variable, this form of the decomposition can be presented
graphically as in Figure 1. The segment BE is parallel to the tangent representing G,, '()7 )

The graphical representation of the decomposition is identical in form to that presented by

and uses that name. The decomposition here is quite different from that presented in Schwiebert
(2015) which uses a different basis and applies only to nonlinear models defined on a linear index.



Oaxaca method when applied to linear models, as shown in Figure 2 except for the

difference that corresponding function values in the vertical axis are not the sample means.

The decomposition obtained by applying the mean value theorem permits an exact detailed
decomposition of the composition effect once the vector X has been determined. In the scalar
case there is no difficulty in determining X . However, when the functions are defined on a
vector, this is a theoretical possibility but it is nearly impossible to implement in practice,
since X cannot be determined on an a priori basis. This would require the determination of

every element in the vector @' = (0{1 Oy Oy ), which are such that :

~

X; = a;Xy; +(1—aj)YFj where 0<a; <1 for j=12,...,k

An alternative approach is to calculate the vector of derivatives of the function, VG,, (i),

directly rather than determine the vector X itself. This is shown for the general case in the

following proposition.

Proposition 1. Let x(4)=A4 X, +(1— 1) Xg; where A€ [0,1]. The composition effect of the

decomposition is equal to :

VG (X)' (% - XF):g (YMJ' ~ X )j-GMj '(x(2))d2 )
where GMJ-'(X(A)) - 6C;MXT)((§})“))

Proof : Define the function: h(1)=G,, [x(1)]. Since h(1)=G,, (X, ) and h(0)=G,, (X.), the

composition effect can be therefore be written as:
1
Gy (%)= Gy (%) =h(1)-h(0)=[h'(2)d2
0

The derivative of the function h (i) is the scalar product :

0'(1)= 3% - %, )Gy (x(2)]

j=1

Integrating this derivative across the range of 4 € [0,1] and using equation 8 gives the result.m



In this formulation, the individual contribution of each variable (X;) to the overall

composition effect is weighted by an average value of the marginal effect over the interval

1
between the group means of the variable in question, .[G'V'J' ' (X (l))dl. Cameron and Trivedi
0

(2003) propose this formula as one of the methods of calculating marginal effects (p. 122).

In the linear model, the marginal effect is constant and the Oaxaca approach is a special case

of the decomposition presented here.

Proposition 2: The “Oaxaca-linear” decomposition (2) can be obtained by applying the mean

value theorem to the function G, (YM ): X, ﬁM over the intervals [Xy;,Xg;] for
j=1,2,...k, and subtracting G, (X. )= X S (where ,ég are vectors of OLS estimates in the

equations Y, = g(Xgi): X;ﬂg +e&, for g=M,F).

Proof: 1If the model is linear, GMj'(X(/i)): ,&Mj and independent of X; and A, so that

Gy’ (X (’U)d;t = /éMj -

O ey

The method can be simplified when a nonlinear function is defined on a linear index, so that

Gg(xg):Gg(X;— ﬁg) In this case the marginal effects are proportional to the parameters,

~

VG, (YQT ﬁg): Kyo B, In this special case, the decomposition has the following attractive

form:
VM _VF =Gy, ()_(M)_GF(YF)z[GM ()_(F)_GF(YF)]+kM01éT[)_(M — Xe] (10)

where k. =k|(X" 3. | is a fixed scalar. The term K, .3, is the vector of marginal effects
MO M MoPm g

evaluated at X . Since many nonlinear econometric models are defined in this way (see the
examples presented below), the detailed first order decomposition of the composition effect
has a very straightforward interpretation since the marginal effects are proportional to the

coefficients. Furthermore the value of the scalar K,,, must be equal to :

10



Ko = k(iT,&M ): Cu (X'\TA'&M )_GF(YF'@M)

B (% — %]

Given this tautology, there is no need to determine the elements of the vector X that

characterize the vector of marginal effects VG, (i) Written in this way, the detailed

decomposition of the composition effect is :

VGy, (X) [Xy — %] = kMOBMl[YU\A — X ]+ kmoﬁmz [Xom = Xoe 1+...+ kMOEMk [Xaw — Xie ]

The weights in the detailed decomposition in fact resemble those in Yun (2004), but are
applied to a different basis®. This common feature is a consequence of the function being

defined on a single linear index.

IV Examples of decompositions for nonlinear models

The proposed decomposition has the advantage of having a coherent basis — it compares a
model-based estimate of an actual situation with a model-based estimate of a counterfactual
one, where both are specified in terms of a parametrically defined function and the vectors of

group means (X, ). It means that any parametric function can be decomposed into a structure

effect and a composition effect, where the latter is zero when X,, — X =0. This contrasts

with Yun (2004), Fairlie (2005) and Bauer and Sinning (2008) who use sums of fitted values
divided by the sample size (i.e. the other side of the Jensen inequality).

Decomposing augmented linear models such as the sample selection model has already been
addressed by Neumann and Oaxaca (2001) based on mean characteristics along the lines
proposed here, although they stress the importance of how one interprets the selectivity
term’. Other functions of interest in applied work are probability models (in which the
population rate is decomposed) and hazard models (which involves either the hazard itself
or the average duration of a spell). In this section, we derive explicit formulae the

decomposition for these types of model using equation (10). Hereafter, any parameter

covered by a hat (for example, é) is assumed to be an appropriate estimate of that

parameter.

GM (X-If\;ﬁﬂM )_ GF (X-l\r/liﬂM )
ﬁr& [YM - XF ]

7Yun (2007) and Wolff (2009) provide alternative decomposition procedures for the sample selection model.

® In Yun (2004) the formula for the composition effect is X ﬂ,& [YM — Xk ]

11



(a) Logit and Probit models

Logit and probit models have the same generic form for each of the groups :
E(ygi ‘ xgi): Prob(ygi =1‘ xgi): D(Y;,Bg ) g=M,F

where D is a cumulative distribution function with a common form for both groups. Since
the latter is defined on a linear index, the vector of first derivatives has the following,

straightforward form :
VD(Y;,BQ ): d(xgﬁg )ﬂg

where d is the associated density function (note that d is a scalar and S a vector of

parameters). Using parameters estimated by maximum likelihood (ﬁ), the implied

decomposition for the probit model® is :

7' -5 =0 (), - (x5 )

=0 (XEIBM )_(D ()_(;:éF )"’ kPB\MT[XM _YF]

where Kk, =¢ ()YT ﬁM ) and @ and ¢ are the standard normal cumulative distribution and
density functions, respectively. It is important to note that K, is fixed scalar in this

decomposition, in the sense that each element in the vector f,, is multiplied by the same

constant. The value of K is trivially given by:

@ (x; By )-@ (<3,
IBMT[)_(M _YF]

k, =

Unlike the probit model, the function to be decomposed in the logit model has a closed form:

8 The variance is normalised equal to one.

12



L()‘(T ,6’)= exp(iTﬂ)

1+exp(x’ B)

For maximum likelihood estimates of ,6'9 , the decomposition formula can be written in the

same form as for the Probit model :

M

y _yF =L ()_(I\T/ném )_L (YFﬁF)
=L (YFﬁM )_ L (X;BF )"’ kLﬁAMT[YM _YF]

where K, BM is the vector of the first derivatives with respect to the vector X evaluated at X .

This vector of marginal effects has the following special form:

kL:éM = LI(XTBM ): L(YTIBM )[1_ L(YTIBM )]X BM

where, tautologically,

k. =

L (x5 Au )-L (%£ ) and 0<k, <0.25.
—X¢

B Ry

Various authors have attempted to decompose the difference in sample means using logit
and probit models (Nielsen (1998), Yun (2000, 2004) and Fairlie (2005)). In fact for a logit
model containing a constant term, when the parameters are estimated by maximum likelihood,

the sample mean is related to the estimated function in the following way” :

This mean property has been used to obtain a decomposition for the logit model given by :

9 Thisis a consequence of the first order conditions for obtaining a maximum likelihood estimate of the constant term.

13



VM - yF = ni% L(XMiﬁM )_ninzF L(XFiIéM )"'i _nF L(XFiIéM )_i ) L(XFiﬁF)
M i=1l EF i=l F i=l F i=l

Note that this decomposition contains the sample means of the dependent variable but not

the means of the right hand side variables, X, . This is a consequence of Jensen’s inequality.

This form of decomposition has been used to obtain a detailed decomposition of both the
unexplained and explained components. However, because of different sample sizes,
simulation methods have to be used to provide extra data when undertaking detailed

decompositions (see Fairlie, 2005). Such an approach cannot be applied in an exact manner to

the probit model since y # 1 z CI)(XiT ,3 )
Nz

(b) Hazard functions and duration models

One of the key differences with duration models is that in most data sets, durations are
censored at the time of the survey. This is the case for example with unemployment
durations in the Labour Force Surveys used to estimate the unemployment rate according to
the ILO definition. In order to analyse differences in unemployment duration or hazard rates
between groups, using the difference in sample means as the basis for an Oaxaca-type
decomposition is not appropriate because censoring. Most econometric analyses take account
of censoring in the estimation of models, but there is an issue of which quantity is to be
decomposed. It is in this context that the approach proposed here is particularly relevant. By
using the fitted value corresponding mean characteristics as the basis, the decomposition can

be straightforwardly obtained.

Using the same notation as above, where D is the cumulative distribution function and d

the associated density function for durations or spell lengths, t, the hazard rate is defined as:

where S is the survivor function. The difference between this and earlier models is the
dependence of the hazard on time as well as on characteristics. The decomposition technique

can be straightforwardly applied for differences in the expected duration” :

10 Note that the effect of a variable on the duration of a completed spell is of opposite sign to its effect on the hazard rate.

14



Efs[x,)=6,(%,)

where the survivor function, and thus the hazard function, is linked to the average

completed spell duration through the following equality :

In what follows, the link between a parametric hazard specification and the corresponding
formula for the expected duration is used to obtain decompositions for two popular hazard
specifications — the Weibull and loglogistic.

One of the more widely used parametric specifications of the function is the Weibull hazard

given by :
Atx)=a t“exp(’ ) a>0 (13)

In this case, the expected duration of a completed spell (S) for an individual with the mean

value of X, is given by a nonlinear function defined on a linear index :

E(s| %)= r(“—“j exp(— ' gj (14)

a

F(O‘)E)(p(iT,B*) where = B
o

The first term on the right hand side is the gamma function and is independent of both X
and S. As noted in the definition of the decomposition, the basis is the difference between
two estimated functions evaluated at the means of the explanatory variables, X, which is

denoted as Y,, — Y¢ . In the current case the decomposition is :
Tio =T =T Jexplit 3 )= T(Ge Jexlst )+ i 1 T3 %]

1+ ay,

Oy

where the fixed scalar k, is given by Kk, =F( jexp(iT ﬁ; ) Tautologically, this is
equal to :
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This specification contains the exponential specification as a special case when a =1, since

r(2)=1.

The Weibull specification applies only to cases where the hazard rate is monotonic - it is
either increasing, o >1, or decreasing, 0 <a <1, but cannot be one then the other during
time spent in a given state. A hazard specification that permits a non-monotonic form is the

log-logistic specification:

A(t)= y exp(x' gt

= - where y >0.
1+exp(x p)t”

When 0<y <1, the hazard rate is first increasing and then decreasing. For y >1, it is

monotonic. The corresponding expected duration when 0 < y <1 is given by :

E(s |x)= B(1+1, 1—% exp(— X" ﬁj _B()exp(x p°) po=-L
y' y y

where B() is the beta function. This expectation formula identical in structure to the

Weibull case, in that the first derivatives will all be defined in terms of a scalar multiplicative

factor, which in the log-logistic case given by

o _ B Jexole, 3 )-exolxt 4 )
N B T [% — %

The decomposition will thus have a similar form to the Weibull specification.

Uncertainty over the nature of duration dependence in the presence of unobserved
heterogeneity has led to the use of specifications involving mixtures of distributions. A final
example of a widely used specification is the mixture Weibull hazard function with gamma

heterogeneity. The hazard specification is :
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Alt;x)=a t*Fexp(x ) v,

where Vv, has a gamma distribution with unit mean and variance equal to . The expected

duration in this case (Lancaster, 1979, p. 952) is given by :

P ),

Bl ———— |exp| - X —

E(s|x)=—%2 ; 22 =V(a, o)exp(x" )
o' —a

and the decomposition will have the same form the two earlier specifications with

V(.6 )(gxp(i& fru - expl% B ))
we ,BJ [XM _XF]

Example 1: Duration to obtaining a permanent employment for young persons

The data used come from the French Generation 2004 survey, which follows a cohort of
individuals leaving the education system in 2004. The age of the person in that year is
obviously related to the number of years spent in the education system. However in France,
the correspondence between educational attainment in terms of the highest diploma
obtained and the age at which the person leaves the system is clouded by the widespread
phenomenon of spending more than one year in a particular grade. For example, many
university students take their first year twice over. The same occurs lower down the
education ladder, where a pupil may spend two years in a particular grade (some pupils
even skip a grade). When analyzing access to permanent employment, this lag acts as a
signal to employers. The average education lag in the sample is more than two years (see
Table 1). The duration of until finding a permanent job is modelled as a function of two
education variables: educational attainment measured as the theoretical number of years
necessary to obtain a given diploma and the education lag. In addition the overall
unemployment rate in the geographical locality of the person’s domicile in 2004 is used to
measure the influence of the state of the labour market. The duration variable used is the

number of months following exit from the education system.

A second phenomenon often associated with difficulty finding a permanent job among
young persons is cultural and ethnic origin, and specifically whether the person has parents
who are immigrants. In the sample used, 16% have parents who are not of French origin.
There are differences in educational attainment and education lag that also suggest that
children of immigrants are likely to fare less well in the labour market. In addition to these

factors there may also be discrimination in the recruitment of young persons which favours
17



those whose parents are not immigrants. We therefore use the proposed decomposition to
quantify the different components of the difference in durations between the two groups of

young persons.

The decomposition uses a model-based estimate of the mean duration for each group and
decomposes the difference between these. In the current case, we assume that the hazard
function is of the Weibull form - equation (13) — and the corresponding expected duration is
given above in equation (14). The parameters are in fact obtained using an accelerated failure
time model which is estimated separately for the two groups, and the results are presented
in Table 2. The estimated Weibull shape parameters indicate that the hazard function is
increasing with duration. The other estimated coefficients suggest that more education,
shorter education lag and a smaller unemployment local unemployment all reduce the
duration and more so for children of immigrants compared to their French counterparts.
There is however a large difference between the estimated constant terms for the two groups
which suggests that there is discrimination in access to employment in favour of those of

French origin.

The decomposition of the estimated expected duration (in months and not logarithms) is
undertaken using the average French origin characteristics in the counterfactual. The
difference to be decomposed is the difference between two model-based estimates of the
average duration corresponding to the mean characteristics of the respective groups. This is
15.2 months (see Table 3). The structural component of this gap is 13.2 months — or 87%. The
composition effect, the part due to differences in characteristics, therefore accounts for only a
minor part of the gap (2 months). The detailed decomposition of the composition effect
suggests that improving the educational performance (on both fronts) of children whose
parents are immigrants will reduce the expected duration to obtaining a permanent job.
However, this is limited to the extent that for identical characteristics, those with immigrant

parents are at a disadvantage.

(c) Nonlinear models which are not defined on a linear index

The presence of a linear index in a nonlinear function enables the proportional weighting
factor k(.) to be obtained directly, independently of each covariate contribution. An example
where there is no simple form for the decomposition other than the form of result in

Proposition 1 is where a variable is defined using the Box-Cox transformation.

In the case of both dependent and independent variables being transformed, the model to be

estimated with only one explanatory variable is:

r-1 x’ -1
—yl;/ :ﬂo+( '0 jﬂl+ui
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In order to obtain the conditional expectation of Y and proceed to decompose the difference

between groups, a difficulty arises since the error term, U, will appear in the equation when

expressed in terms of Yy alone:

V= {“7(& {Xfﬁ—l} ﬁﬁuﬁ

Following Abrevaya and Hausman (2004), a J-th term Taylor expansion around U =0 can be

used to avoid this difficulty when the error term is normally distributed. The expected value

of Yy conditional on X is:

JE i .
E(y|x)zG(x,u:O)+Zijul—)g’(x,u) (15)
=k

where Gk =0)= 0 V) V0= o+ X2

- 0'G(x,u)

and gj(x,u : .
ou’ u=0

This simplifies in the case when U is normally distributed with a zero mean, since its odd

numbered moments are zero. Thus when J =1 the expected value is :

E(y[ %)= @+ ()

and for J =2:

W|%1+wum+—4 PN N (X))

In both cases the decomposition will not simplify in the same way as for nonlinear models
defined on a linear index and so the integral in Proposition 1 will have to be explicitly

evaluated.

Example 2: Male-female differences in earnings in France

Data from the 2005 French Labour Force Survey are used to examine earnings differences
between males and females. The sample includes individuals aged 20 to 54 who declare
earnings and hours worked enabling an hourly wage to be calculated. The earnings

equations are of the form:

y7

_ﬂo + PE, + p,Paris, +,83( 69 1J+ui (16)
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where Y is earnings, E is education level, Paris is dummy variable equal to one if the
person lives in the Paris area and X which is potential labour market experience and enters
the model as a Box-Cox transformation. In fact there are only small differences in the means
of these variables by gender (see Table 4). Females have more education and almost as much
experience as males. There are a slightly higher proportion of females living in the Paris area
in this sample (15.3% compared to 13.9%). Nevertheless, males earn 8.9% than females. The
parameters of the model are estimated by maximum likelihood, and are presented in Table 5.
For both sexes, the Box-Cox transformations are significant (¢ and y are neither zero nor
unity), so that there is a nonlinear relation between earnings and experience and more
generally between earnings and the other covariates. The coefficients on education and living
in Paris are higher for females, but the constant term is higher for males. The decomposition
of the difference in earnings (rather than log earnings) is based on the approximation in
equation (15) applied to the model given in (16). The difference to be decomposed is 0.838
(less than one euro). Based on the counterfactual, females would earn more than males if
their characteristics were rewarded in the same way as those of males. The structure effect is
therefore the more important component (+1.27). The composition effect is negative and the

key factor indicated by the detailed decomposition is education.

V Conclusion

By recognizing that the Oaxaca technique can be obtained by an application of the mean
value theorem, a new decomposition method applicable to nonlinear models is proposed.
For continuous nonlinear functions, the decomposition proposed here is based on
counterfactuals using the means of the right hand side variables and group differences in
fitted values of the estimated functions. In this decomposition the unexplained component or
‘structure effect’ is completely defined, and a detailed decomposition of the ‘composition
effect’ is possible. There is no remainder. Explicit formulae for decompositions of the binary
logit and probit models, duration models based on the Weibull and log-logistic hazard
specifications and a Box-Cox model are presented, although the method applies to any a

model which is specified as a continuous function of the explanatory variables.

It differs from other approaches in two key respects. First the proposed decomposition is
based on the mean characteristics of each group and the fitted value of the model evaluated
at the vector of means. It is therefore based on the same clearly defined counterfactual as the
original Oaxaca approach. It does not decompose group differences in the observed mean of
the dependent variable; but in general this cannot be done in a nonlinear model in an exact
manner. Furthermore, in the presence of censoring, as in duration models, the sample mean
of the left hand side variable is not a very useful measure. Second, its application is not
restricted to the class of nonlinear models defined on a linear index as is the case in most

other proposed decomposition techniques. This type of model is used in applied work for
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understandable reasons, but there are cases when the nonlinear aspect of the relation

between economic variables goes beyond this form of model as in the Box-Cox case.
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Figure 1 Graphical representation of the decomposition for a nonlinear function

AB=G,(3,)-G.(x,) CE=G, )7, —%;)
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Figure 2 Graphical representation of the Oaxaca decomposition for a linear model
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Table 1 Means and standard deviations of variables used in duration analysis

Parents French Parents Not French Difference
Censored duration 8.64 9.1 0.37
(months) (4.63) (4.43)
Censoring Indicator 04 0.34

(0.49) (0.47)
Education level 13.23 12.64 -0.59
(years) (2.76) (2.84)
Education lag 2.43 2.92 0.59
(years) (1.96) (2.02)
Local unemployment | 8.64 9.13 0.49
rate 2.2) (2.18)
Sample size 13,728 2,639

Table 2 Accelerated Failure Time model estimates for duration analysis

Parents French Parents Not French Difference

Constant 3.314 3.815 -0.53
(0.087) (0.217)

Education level -0.077 -0.106 0.029
(0.004) (0.01)

Education lag -0.0433 -0.012 -0.0213
(0.006) (0.016)

Local unemployment | 0.0267 0.018 0.0087

rate (0.006) (0.015)

Weibull parameter 0.714 0.7 0.014
(0.008) (0.02)

Sample size 13,728 2,639

Estimated standard errors in parentheses
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Table 3 A decomposition of group difference in duration (in months)

Our decomposition Yun's method
N(X, )= Ty )exn(xi 4; ) 51.97 N(x,.) = 56.59
F(x. )=T(a Jexp(x} 3 36.81 Flx.,) = 38.55
Difference to be decomposed: 15.16 18.04
N(X )= T(@y Jexp(x} 45 38.79 N(x,.) =40.72
Structure effect 13.18 15.82
Composition effect 1.98 222
Detailed decomposition:
education level 0.108x(13.23-12.64)x(37.8) = 2.4 2.7
education lag 0.060x(2.43-2.92)x(37.8) = -1.25 -1.26
local unemployment rate | -0.037x (8.64-9.13)x(37.8) = 0.69 0.78

Table 4 Means and standard deviations of variables used in earnings equations

Males Females Difference
Hourly earnings 10.04 9.22 0.78
(3.87) (3.56)
Education level 18.01 18.40 -0.39
e ctuaton | 209
Labour Market 19.41 19.36 0.05
Experience (10.04) (10.24)
Live in Paris 0.139 0.153 0.014
(0.34) (0.36)
Sample size 8,006 7,363
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Table 5 Male and female earnings equations with Box-Cox transformations

Males Females Difference

Constant 0.621 0.541 0.049
(0.007) (0.002)

Education level 0.039 0.044 -0.005
(0.0008) (0.001)

Paris region 0.041 0.054 -0.013
(0.004) (0.004)

Experience 0.041 0.03 0.011
(0.001) (0.001)

Box-Cox parameter | -0.381 -0.353 -0.028

(earnings) (0.025) (0.025)

Box-Cox parameter | 0.227 0.293 -0.065

(experience) (0.052) (0.069)

Sigma 0.119 0.131 -0.012

Sample size 8,006 7,363

Estimated standard errors in parentheses
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Table 6 Decomposition of gender differences in hourly earnings

(24 order Taylor expansion)

G (X, 3. 4 ) 9.961

G (y& B o ) 9.123

Ditference to be decomposed : 0.838

G (X, B A ) 10.347
Structure effect 1.224
Composition effect -0.386

Detailed decomposition

Education level -0.367
Labour Market Experience 0.005
Lives in Paris -0.014
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