NOTA DI LAVORO
41.2016

Institutions and the Environment: Existing Evidence and Future Directions

Shouro Dasgupta, Fondazione Eni Enrico Mattei and Centro Euro-Mediterraneo sui Cambiamenti Climatici
Enrica De Cian, Fondazione Eni Enrico Mattei and Centro Euro-Mediterraneo sui Cambiamenti Climatici
Climate Change: Economic Impacts and Adaptation
Series Editor: Francesco Bosello

Institutions and the Environment: Existing Evidence and Future Directions
By Shouro Dasgupta, Fondazione Eni Enrico Mattei and Centro Euro-Mediterraneo sui Cambiamenti Climatici
Enrica De Cian, Fondazione Eni Enrico Mattei and Centro Euro-Mediterraneo sui Cambiamenti Climatici

Summary

In this review we synthetize the existing contributions that use econometric approaches to examine the influence of institutions and governance on environmental policy, environmental outcomes, and investments. The paper describes how the relationship between institutions and various response variables related to environmental performance and environmental policy have been conceptualized and operationalized in the literature, and it summarizes the main findings. The second part of the paper outlines avenues for future research in the specific context of energy and climate change. We identify various opportunities for empirical work that have recently emerged with the growing availability of data in the field of green investments, climate, and energy policy. Expanding the current empirical literature towards these research topics is of scientific and policy relevance, and can provide important insights on the broader field of sustainability transition and sustainable development.

Keywords: Institutions, Environmental Performance, Environmental Policy, Investments

JEL Classification: O10, Q5, Q00, P16

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603942 (PATHWAYS)

Address for correspondence:
Enrica De Cian
Fondazione Eni Enrico Mattei
Isola di San Giorgio Maggiore, 8
30124 Venezia
Italy
E-mail: enrica.decian@feem.it

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Abstract

In this review we synthesize the existing contributions using econometric approaches to examine the influence of institutions and governance on environmental policy, environmental outcomes, and investments. The paper describes how the relationship between institutions and various response variables related to environmental performance and environmental policy have been conceptualized and operationalized in the literature and summarizes the main findings. The second part of the paper outlines avenues for future research in the specific context of climate change and energy. We identify various opportunities for empirical work that have recently emerged with the growing availability of data in the fields of green investments, climate, and energy policy. Expanding the current empirical literature towards these research topics is of scientific and policy relevance and can provide important insights into the broader field of sustainability transition and sustainable development.

Keywords: Institutions, environmental performance, environmental policy, investments

JEL Codes: O10, Q5, Q00, P16

Acknowledgements: The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603942 (PATHWAYS)

* Fondazione Eni Enrico Mattei and Centro Euro-Mediterraneo sui Cambiamenti Climatici
1. Introduction

The transition toward a low-carbon and sustainable economy will require a fundamental transformation of energy, economic, and social systems. Designing targeted economic and environmental policies will play a crucial role in steering and fostering the transition but will need to be combined with a more general improvement of institutions to ensure that policies are implemented and monitored effectively (Dasgupta, De Cian, and Verdolini 2016). Environmental interventions are essentially economic policies ultimately implemented by bureaucrats in a broader institutional setting (Lockwood 2013). Therefore, the ability of environmental policies to achieve their objectives depends on the political process leading to policy adoption as well as on the nature of the underlying institutions, dominant ideas and cultural discourses, the industrial structure, and the distribution of resources and power (Jacobsson and Lauber 2006; Meyer 2003; Hughes and Lipsy 2013).

While the role of governance and institutions has been generally overlooked by the scenario analysis approach to sustainability transition using quantitative system models (van Vuuren and Kock 2012), other disciplines such as socio-technical transition studies do highlight the importance of these contextual factors (Turnheim et al. 2015). The methods used by these approaches are usually qualitative in nature and often limited to specific case studies, which makes up-scaling or generalization difficult. Empirical studies within the applied economic literature on institutions and environment fall in-between these two approaches. They examine the relationship between institutions, or more broadly political economy factors and indicators of policy adoption, policy effectiveness, and environmental outcomes quantitatively. They rely on observed cross-sectional time series, or longitudinal data, and in some cases on natural experiments. Reduced-form equations building on hypotheses grounded in theoretical frameworks are generally utilized to formalize simple models testing a causal relationship between quantifiable variables. The degree of aggregation varies from
studies focusing on country aggregates to more micro approaches analyzing the behaviors of consumers, households, and firms.

In this review we synthetize the existing contributions from the applied economic literature using econometric approaches to examine the influence of institutions and governance on environmental policy, environmental outcomes, and investments at the national level. We describe how the relationship between institutions and various response variables influencing environmental performance or environmental policy have been conceptualized and operationalized and summarize the main findings.

Review papers usually face a trade-off between inclusiveness and degree of detail. In this paper we review 55 papers dealing with the impact of institutions and governance on a range of environmental performance and policy adoption indicators. We classify the main indicators of institutional quality, environmental performance, and policy that have been used and summarize the main hypotheses that have been tested. We conclude by outlining avenues for future research in the specific context of climate change and energy and describe opportunities for future work. We find that 39 out of the 55 reviewed papers have evaluated the impact of institutions and governance on environmental performance indicators such as emissions (methane, carbon dioxide, sulphur dioxide, and nitrogen dioxide), other pollutants (carbon monoxide, chlorofluorocarbon, and lead), deforestation, land degradation, and protected areas, while only 5 of these 39 studies have examined the impact of institutions and governance on green investments. Of the reviewed papers, 16 have investigated the impact of institutions and governance on policy adoption, half of which use policy stringency as the dependent variable. The remaining papers focused on the decisions to participate into international or multilateral environmental agreements.

Our review points out three main findings; first, democratic countries and open societies are more likely to provide public goods such as environmental protection, and civil and political
rights are rather influential in ensuring environmental quality, especially in comparison to authoritarian regimes. More democratic countries are generally associated with greater participation into international environmental agreements and with better environmental performance. Second, good governance encourages the adoption of environmental policies and generally leads to better environmental outcomes. Finally, corruption can be a channel for environmental degradation, as it could lead to a sub-optimal use of resources and inefficiencies.

We also highlight that, although the empirical literature on this topic is quite broad, it has mostly focused on physical performance indicators (e.g. emissions or different kinds of pollutants) or on policy adoption choices that have become dated (e.g. signing and ratification of the Kyoto Protocol). We conclude that the field of research to analyze the impact of institutions on green investments or policy stringency in a more systematic manner is ripe for investigation and review the few papers that have started approaching this topic.

The remainder of paper is structured as follows; Section 2 provides definitions and concepts of institutions and governance, Section 3 presents the review of the existing literature organized in three sections looking into the impacts of institutions and governance on environmental performance (3.1), environmental policy (3.2), and investments (3.3), Section 4 discusses research gaps and priorities with a focus on the political economy of green transition, while Section 5 concludes.

2. Definitions and Concepts

The concept of institutions has been used in different contexts but often with different definitions, making it difficult to provide an unequivocal definition. For example, sociology refers to institutions as a broader set of a) regulatory, b) cultural-cognitive, and c) normative rules (Scott 1995). According to this perspective, institutional change refers not only to the
direct effect of policies and formal prescriptions (institutions type a) but also to changes in
how we see and understand the world, how our mindset influences our decision (institutions
type b), as well as changes in our normative aspirations, and what we consider 'good'
institutions type c).
Socio-technical transition studies also use a broad notion of governance and institutions
(Turnheim et al. 2015) as describing the key processes of steering and decision-making. This
discipline gives emphasis to the role of different actors beyond the national and state
governments, including actors, organizations, structures, networks and relationships that
contribute to decision-making and influencing societal processes. It highlights the difference
between institutions as referring to the actions of the state or the government and governance
(e.g. the role of non-state actors, such as businesses and nongovernmental organizations in
the process of societal steering).
In this review we adopt an economic perspective and refer to formal institutions (Acemoglu
et al. 2005) as the rules of ‘how markets operate’. They can be further grouped into legal,
political, and economic institutions. Legal institutions take the form of legislature, public or
state-devised legal institutions, and private legal institutions. In economics, political
institutions are defined as the institutions shaping policy decisions by constraining the set of
feasible choices of the decision-makers. They determine the process of creating and enforcing
laws and of governmental policy making. Economic institutions also have overlapping
characteristics with political institutions and their functions are often difficult to disentangle
(Acemoglu et al. 2005). In the political economy literature, political institutions often
determine the scope of economic institutions. Economic institutions must perform functions
such as establishing and protecting property rights, facilitating transactions, permitting
economic co-operation, and organization (Acemoglu and Robinson 2010). A related and to
some extent overlapping concept is that of governance, which can be broadly defined as the
traditions and institutions that determine how authority is exercised in a country (Kaufmann et al. 2000). The World Bank defines governance as the power exercised through a country’s institutions. In other words, governance is a political concept that includes measures involving setting the rules for the exercise of power and settling of conflicts over these rules. Normative and cognitive institutions as defined by Scott (2005) are difficult to measure and most of the existing environmental economic literature has focused on regulatory institutions or formal institutions (Joskow 2008 and Kunčič 2014). Table A1 summarizes the indicators of institutional quality classified into the groups of economic, legal, and political institutions that have been most frequently used by the economic literature.

3. Institutions and the environment

The theoretical argument for government activity in the context of the environment is provided by the public-good nature of environmental protection. Private agents systematically fail to take into account the full costs of pollution due to the associated externalities, creating the scope for government intervention (Stavins 2004). Relevant questions include the degree of government intervention and how different forms of government (political institutions) and electoral arrangements affect environmental regulations and ultimately environmental performance. The following three sections review the literature examining the relationship between institutions, environmental outcomes (3.1), environmental policy adoption (3.2), and environment-related investments.

3.1. Institutions, Governance and Environmental Performances

A number of papers have investigated whether a statistical relationship exists between various institutional quality indicators and environmental performance. Table A2 summarizes the most common environmental performance indicators\(^1\) used in the literature as dependent

\(^1\) The terms environmental performance and environmental quality are used interchangeably in the literature.
variables. They refer either to pollutants, such as carbon monoxide, chlorofluorocarbon (CFC), methane, carbon dioxide, sulfur dioxide, nitrogen dioxide, and lead content of gasoline, or to activities related to environmental degradation (deforestation). The most commonly used institutional indicators are democracy from Polity IV and Freedom House databases, voice and accountability from the World Governance Indicators (WGI), and corruption perception index from Transparency International (TI). Some papers have also used rule of law from WGI and indicators related to the strength of civil society. Indicators such as lobbying, veto power, and composition of parliamentary systems have also been used. The main hypothesis being tested using the aforementioned indicators is whether democracy, transparency, and free flow of information allow the electorate to exert policy pressure on the government (Barrett and Graddy 2000 and Midlarsky 1998) and facilitate or constraint the ability of governments to implement such measures. Another hypothesis is whether democratic countries and open societies are more likely to provide public goods such as environmental protection (Hughes and Lipsy 2013). In this context, Dasgupta and Mäler (1995) suggest that civil and political rights are rather influential in ensuring environmental quality, especially in comparison to authoritarian regimes.

3.1.1 Democracy and Environmental Performance

The most common indicators of institutions and governance used by this subset of literature are the polity scores and democracy variable from the Polity (III and IV) database, the Freedom House Index, and the rule of law indicator from WGI. Deacon (1999) finds that democracies are more likely to ensure positive environmental performance, arguing that non-democratic regimes or autocracies are less likely to provide such public goods since resources are concentrated in the hands of a small group, as a result, the burden of public good costs fall mostly on those controlling these resources. This finding is further supported by a number of papers including, Deacon (2003); Bueno de Mesquita et al. (2003); and Bernauer and Koubi
Fredriksson et al. (2005) also conclude that both democratic competition and democratic participation reduces lead content in gasoline while Li and Reuveny (2006) find that higher levels of democracy (Polity IV) reduces emissions of CO₂ and NOₓ along with organic pollution in water, deforestation rates, and land degradation. Torras and Boyce (1998) report that political and civil rights as measurement of democracy in low-income countries have a positive effect in reducing smoke, heavy particles, and dissolved oxygen and Etsy and Porter (2005) conclude that civil and political liberties help reduce urban particulates and SO₂. Similarly, Binder and Neumayer (2005) find evidence of greater democracy resulting in lower pollutant levels with respect to sulfur dioxide, smoke, and heavy particulates, while Neumayer (2002), using data from 150 countries concludes that higher democratic quality may result in a greater share of land area being protected. Barrett and Graddy (2000) also find that greater political freedom leads to better air and water quality, while comparing democracies and autocracies Ward (2008) concludes that stable autocracies perform worse on sustainability measures than stable democracies.

However, a number of papers have found negative influence of democracy on environmental performance. Midlarsky (1998) finds negative effects of democracies on CO₂, deforestation, and soil erosion while Shandra (2007) finds that democracy has no significant effect in reducing deforestation. Similarly, Ehrhardt-Martinez et al. (2002) report that weak democracies are unable to reduce deforestation. Carlsson and Lundstrom (2003) conclude that political freedom has no effect on reducing levels of emission of carbon dioxide while Jorgenson (2006) state the same for CH₄ emissions. Deacon (1999) also shows a negative effect of democracy (Polity III) on lead levels. While Scruggs and Rivera (2008), using cross-section OLS find no evidence that countries with long-established democracies have better environmental performance. Statistical and socio-political arguments have been used to explain the differences in results. Statistical arguments include different sample sizes and
different indicators used across the literature. Regarding the issue of sample size, the
environmental data gap between developed and developing countries resulting in selection
bias may have also affected the estimations, while different methodologies have also played
their part. In order to include as many countries as possible authors have often resorted to
using cross-sectional regressions, which only provide a snapshot of situations in a specific
point in time and are more likely to be affected by endogeneity and omitted variable issues.
In general, the use of simple OLS type regressions might lead to results that are not as robust.
A socio-political argument explaining the lack of evidence of a relationship between
democracy and environmental performance has been put forward by Olson (1982), stating
that as democracies become more mature, the growing number of interest groups is less likely
to act and cooperate in common interest since the gains from the collective good
environmental protection decreases. Congleton (1992) also argue that democracies often have
shorter policy span due to political uncertainty hence cannot undertake the long-run reforms
required for climate change.

3.1.2 Governance and Environmental Performance
Unlike the indicators of political institutions such as democracy and corruption, rule of law
has a rather clear-cut prediction implication - stronger governance usually leads to better
environmental policy adoption measures and outcomes. Castiglione et al. (2013) show that
stronger rule of law results in a reduction of pollution, while Castiglione et al. (2012) find
negative relationship between rule of law and pollution, demonstrating that when rule of law
is strong, the turning point of the Environmental Kuznet Curve (EKC) occurs at a lower level
of income per capita, thus, decreasing emissions. Culas (2007) conclude that enforceability of
contract by governments reduces rate of deforestation, while Bhattarai and Hammig (2001)
find that political rights and civil liberty results in a reduction of the annual deforestation rate
of forest and woodlands.
However, a selection of papers have found no significant effect or even an opposite relationship. However, these results seem to vary depending on the indicator for environmental performance, e.g. Murdoch et al. (1997) find that civil liberties and political freedom has positive impact on sulfur cutbacks but less so for NO\textsubscript{x} in Europe.

3.1.3 Corruption and Environmental Performance

Corruption can be a channel for environmental degradation as it could lead to a sub-optimal use of resources and inefficiencies. When officials are more susceptible to being bribed, they are more likely to allow activities that are damaging to the environment. Welsch (2004) studies the impact of corruption on pollution and finds that corruption has both direct and indirect impact on pollution, where direct impact refers to the effect of corruption on pollution via less stringent environmental laws and indirect effect refers to the effect of corruption on per capita income and the resultant impact on pollution. The author concludes that corruption increases the levels of pollution regarding NO\textsubscript{2}, CO\textsubscript{2}, total suspended particulate concentration, total suspended particulate concentration, phosphorus concentration, and suspended solids. Similarly, Cole (2007) finds that corruption increases per capita emissions of sulphur dioxide and carbon dioxide while the indirect impact also increased in higher income countries.

A number of other papers have found evidence of corruption adversely affecting biodiversity and negatively affecting sustainability (Lopez and Mitra 2000; Meyer et al. 2003; Damania et al. 2004; Wright et al. 2007; and Koyuncu and Yilmaz 2009). However, a common criticism of these papers is the use of aggregate measure of sustainability such as the Ecological Sustainability Index (ESI).

As summarized in Table 2A, papers considering multiple performance indicators such as Torres and Boyce (1998), Welsh (2004), Li and Revuveny (2006), and Scruggs and Rivera

\footnote{For a detailed review on natural resources and corruption, see Kolstad and Søreide (2009).}
(2008), generally find robust results across indicators. The only studies finding variation across indicators are Murdhoch et al. (1997) and Milarsky (1998).

Figure 1 summarizes the main findings from this branch of literature (also listed in Table 2A) by performance indicators and institutional variables. The studies that find a prevailing positive effect are those on air pollution and other emissions, which include mostly SO₂, NO₂, and CH₄, while the evidence on CO₂ emissions is mixed. The right panel of Figure 1 shows that whereas democracy tends to have an ambiguous effect, civil and political freedom, and governance tend to have a positive impact.

Figure 1: Institutions, Governance, and Environmental Performances - Main findings by performance indicator (left) and by institutional variables (right).

Note: Positive values refer to a positive relationship between institutional quality (e.g. more democratic countries, less corrupted countries, more civil and political freedom, better governance improve environmental performance) and the performance indicator. Negative values refer to a negative relationship. Ambiguous values are studies finding evidence for both. NS refer to a not-statistically significant relationship.
3.2 Institutions, Governance, and Environmental Policy

In this section we examine the literature on the impact of different institutional settings on governments’ decisions to adopt environmental policies. We focus on the literature investigating the impact of institutions and governance on environmental policy adoption and implementation (see Table 3A). This body of the literature is less extensive than the one on institutions and environmental performance. The most commonly used indicators of political institutions are democracy (Polity IV and Freedom House), corruption (TI), composition of parliaments and government, economic institutions, and various governance indicators from WGI.

3.2.1 Democracy and Environmental Policy

Neumayer (2003) concludes that democracies exhibit stronger international environmental commitment than non-democracies while political freedom seems to have a positive impact on environmental policy but economic freedom has no effect. Similarly, Damania et al. (2003) show that civil freedom has an insignificant effect on compliance with international environmental agreements. Murdoch et al. (2003) use a two-stage game and spatial probit analysis to find that democracy can be a barrier to collective action on international environmental treaties. Fredriksson and Ujhely (2005) conclude that greater number of government units reduces the positive impact of environmental agreements and that greater environmental lobby group strength raises the probability of ratification. Fredriksson et al. (2005) find that greater political competition and number of environmental groups raises the stringency of environmental policies but democratic participation affects environmental policy stringency only in countries with sufficiently high degree of political competition. These papers use environmental lobbying, democratic participation, and political competition as the major independent variables. Battig and Bernauer (2009) use a panel regression approach and show that the effect of democracy on levels of political commitment to climate
change mitigation is positive but the effect on policy outcomes, measured in terms of emission levels and trends, is ambiguous (see previous section). In one of the earliest papers on this topic, Congleton (1992) concludes that authoritarian regimes enact less stringent environmental standards than democratic regimes, liberal democracies are more willing to regulate environmental pollution and that international agreements on environmental matters attract more signatories as the number of democratic regimes increases.

3.2.2 Governance and Environmental Policy

Fredriksson et al. (2007) find that increased environmental lobby group activity raises the probability of Kyoto Protocol ratification and that this effect increases with levels of corruption. Fankhauser et al. (2014), using negative binomial and logit models report no significant impact of political orientation on the number of climate laws passed. The authors also find that propensity to legislate is heavily influenced by the passage of similar laws in other countries, indicating towards the potential role of peer pressure and/or learning effects. Very few papers have attempted to investigate the impact of factors such as lobbying and veto power on environmental policy. This remains one of the important gaps in the literature. Roberts et al. (2004) find that freedom of expression and citizens’ ability to participate in selecting their government, and pressure from NGOs are the most important factors in determining a country’s propensity to sign environmental treaties, while Fredriksson et al. (2004), using stratified hazard models find similar results. Fredriksson and Millimet (2004), using propensity score matching find that countries with propositional systems tend to have stricter environmental policies and Fredriksson et al. (2005) show that environmental lobby groups tend to increase the stringency of environmental policy. Moreover, the authors conclude that political competition tends to raise policy stringency, in particular where citizens’ participation in the democratic process is widespread.
3.2.3 Corruption and Environmental Policy

Using the Corruption Perception Index (CPI) to investigate the impact of corruption on environmental policy, Fredriksson et al. (2004) state that corruption increases energy waste by reducing the stringency of energy regulations and that lobbying is less successful in the larger sectors. Murdoch et al. (2003) also suggested that lobbying by environmental groups is an influencing factor for the ratification of Kyoto Protocol. This particular notion has been empirically tested in recent papers that show that the strength of the environmental lobby and the level of corruption in that country are drivers of ratification of Kyoto (Fredriksson et al. 2007 and Fredriksson and Ujhelyi 2005). Damania (2002) state that environmental regulations are imposed and monitored by bureaucrats who may be corrupted and act on their personal interest. While Fredriksson et al. (2004) investigate the impact of corruption on energy policy and find that higher degree of corruption among the bureaucrats result in less stringent policies and increased coordination costs for special interest groups means more stringent policies and capital owners and workers have opposite lobbying interests on energy policy. Fredriksson and Svensson (2003) and Damania et al. (2003) show that higher corruption reduces environmental regulations stringency, which is reflected in lower improvements in energy intensity but this effect declines as political stability increases. Fredriksson and Svensson (2003) also provide evidence of the adverse effects of corruption on the effectiveness of environmental regulations using cross-country data. Furthermore, Pellegrini and Gerlagh (2011) find that an increase in the CPI results in a reduction in the environmental protection index, while Ivanova (2011) concludes that though countries with more effective environmental regulations may have higher reported levels of emissions but their actual pollution levels are likely to be lower than in nations with less effective regulation. As mentioned in section

3 Corruption Perception Index, Transparency International and World Bank WGI
4 Corruption Perception Index, Transparency International
3.2.2, only a few papers have attempted to investigate the impact of factors such as lobbying and veto power on environmental policy.

Figure 2 summarizes the main findings from this branch of literature (also listed in Table 3A) from papers investigating the relationship between institutions and environmental policy adoption or implementation. The agreement among the reviewed papers is almost unequivocal, with only 2 out of 16 studies finding a negative or an insignificant relationship. Most studies in this branch of literature have used cross-section methods but the more recent papers have used panel data analysis.

Figure 2: Institutions, Governance, and Environmental Policy - Main findings by performance indicator (left) and by institutional variables (right).

Note: Positive values refer to a positive relationship between institutional quality (e.g. more democratic countries, less corrupted countries, more civil and political freedom, better governance improve environmental performance) and the environmental policy indicator. Negative values refer to a negative relationship. Ambiguous values are studies finding evidence for both. NS refer to a not-statistically significant relationship.

3.3 Institutions, Governance, Investments, and Innovation

The papers reviewed in Sections 3.1 and 3.2 have mostly used physical indicators such as different types of pollutants or indicators of pollution intensity as indicators of environmental performance. Since investments and innovation, even though not necessarily directly related to energy and the environment, are also important topics in the literature on sustainability
transition, we review the papers that investigate the relationship between institutions, investments, and innovation within and outside the energy and environment domain.

3.3.1 Institutions, Governance, and Investments

There is a rather broad literature on the influence of institutions and governance on investments, especially on Foreign Direct Investments (FDI). Brunetti et al. (1997) conclude that political instability increases uncertainty, which makes a country less attractive to foreign investors while Busse and Hefeker (2007) find that government stability, democratic rights, and law and order have a significantly positive influence on FDI inflows. Jensen (2003, 2006, and 2007) and Feng (2001) also find that democracy reduces political risks in countries and encourages FDI inflows.

The dominant view in the literature is that good governance and low levels of corruption is expected to promote investments and attract FDI and that a malfunctioning government increases both costs and investment risk. These findings have been empirically supported by several studies (Globerman and Shapiro 2003; Biglaiser and DeRouen 2006; Gani 2007; and Staats and Biglaiser 2012). However, a number of papers have provided contrary evidence that corruption often attracts FDI. According to Bellos and Subasat (2012), this is the result of the prevailing effect of “grease the wheels” mechanism, which argues that corruption can compensate for poor governance and speed up inefficient bureaucratic processes in order to attract FDI (Bardhan 1997; Kaufmann and Weim 1999; Meon and Sekkat 2005; Mironovm 2005; and Bellos and Subasat 2011).

In the context of green investments, Gennaioli and Tavoni (2011) study the link between public support schemes for renewable energy and corruption and find that the number of green energy projects increased in Italian provinces with corruption. Specifically, an increase in criminal activity results in an increase in the number of green projects. The authors state that inefficient institutions usually foster corruption. Bellos and Subasat (2012) also use the
term “sand the wheels” in the cases where corruption acts as a deterrent to FDI. A number of papers find a negative relationship between corruption and investment in support of this view (Mauro 1995; Mauro 1998; Beata and Wei 2000; and Habib and Zurawicki 2002). However, the literature on the impact of these factors as determinants of environmental investment and investments on clean energy is rather limited. Iyer et al. (2015), in an Integrated Assessment Model (IAM) framework, find that investment risks are higher in regions with inferior institutions. The authors suggest that institutional reforms leading to lower investment risks could be an important element of cost-effective climate mitigation strategies. Verdolini and Vona (2015) conclude that reduced entry barriers, measured using OECD’s indicators of market regulation (rent on market entry, privatization, and unbundling), results in an increase in investment on renewable energy. However, the authors find no evidence of institutional quality influencing investments in renewable energy. Masini and Menichetti (2013) examine the impacts of non-financial factors in Renewable Energy (RE) investments, including behavioral (priori belief, propensity for radical technologies, investors’ knowledge of the RE operational context) and institutional factors (institutional pressure from peers, consultants, and published sources of information). The authors find that the behavioral context plays an important role at shaping the incentive to invest in RE and the beliefs about technical feasibility and proven performance seem to be particularly important.

3.3.2 Institutions, Governance, and Innovation

The literature on the impact of institutions and governance on innovation spans several decades but includes very few empirical studies. In one of the early studies, Freeman (1987) concludes that quality of institutions is critical for the creation of new technologies while Lundvall (1992) states that the economic structure and the institutional set-up have a strong impact on innovations.
Weak institutions increase uncertainty and are likely to have an adverse effect on innovation while efficient institutions may expedite the process of registering new patents\(^5\), diffusion of knowledge, enforcement of property rights, and reduce the uncertainty of new projects (Romer 1990; Aghion and Howitt 1992; and Grossman and Helpman 2001). Sala-i-Martin (2002) states that it rather difficult to incentivize innovation without existence of efficient institutions. Using a mixed-model approach, Levchenko (2007) shows that countries with better institutions are more likely to specialize in the production of highly technical goods. In a theoretical framework, Tebaldi and Elmslie (2008) shows that the impact of institutions on innovation spillovers to income is likely to improve as the quality of institutions improve. More recent papers also suggest that better institutions are likely to aid innovation (Habiyaremye and Raymond 2013 and Tebaldi and Elmslie 2013). Tebaldi and Elmslie (2013) uses an IV approach to study the impact of control of corruption on US patent counts between 1970 and 2003 and find that improving control of corruption increases the probability of patents filing and registration. Silve and Plekhanov (2015) that good quality of economic institutions (measured by WGI) boosts long-term economic growth through innovation. Dasgupta, De Cian, and Verdolini (2016), using data for 20 OECD countries during 1995 – 2010, investigate the impact of environmental policy stringency (both market and non-market instruments), governance, political orientation of governments, and distribution of resources to energy intensive industries on energy R&D and patents. The authors find that market-based incentives and to some extent non-market based incentives, results in dynamic efficiency gains; countries with better governance are characterized by higher levels of energy-related R&D; left-wing governments are more likely to devote R&D resources to the energy sector; while larger energy intensive sectors can induce market-size effects and have more power to lobby for more resources to be allocated to energy R&D.

\(^{5}\) In the empirical literature investigating the impact of institutions and governance on innovation, patents are generally used as a measure of innovation.
3.3.3 Corruption and Innovation

In general, the literature finds that corruption is harmful to innovation (Anokhin and Schulze 2009; Waldemar 2012). Murphy et al. (1993) argues that corruption from government officials particularly affects innovators due to the fact that these firms have a high demand for government permits and licenses. Similarly, Ayyagari et al. (2010) find that innovative firms are more likely to pay bribes compared to non-innovators. On the other hand, it has also been argued that corruption can be somewhat beneficial by creating opportunities for illicit private gains for firms, such as paying “cash for contracts” (Asiedu and Freeman 2009). These findings are in line with “grease the wheel” and “sand the wheel” by Bellos and Subasat (2011).

4. Existing Gaps and Future Directions

The literature reviewed in this paper indicates towards two major gaps in the applied economic literature on institutions and environment. The first gap concerns the relationship between institutions and policy adoption. With respect to the choice of policy indicators, only a few papers have studied the impact on policy stringency. As for the institutional factors, very few papers have investigated the influence of lobbying and veto power.

Understanding the drivers of policy adoption and stringency and how various economic and political institutions influence these decisions are some of the topics that need further investigation, especially in the context of climate and renewable energy policies. New and improved data on policies such as the Environmental Policy Stringency dataset by OECD (Botta and Koźluk 2014), offers opportunities to investigate relationships between institutional factors and policy stringency. Questions of potential interest include whether the broader institutional setting affects decisions on the choice of instruments and whether there is a causal relationship between institutions and policy stringency.
The second gap concerns the relationship between institutions and environmental performances. The existing literature has focused on physical environmental performance indicators, whereas only a few recent papers (see Section 3.3) explore how institutional quality affects green investments and clean technology costs. Future research could explore the relationship between institutions and variables related to green investments and the green economy. Possible indicators of green investment include R&D investments and electricity generation from renewable sources such as hydropower, geothermal, solar, tides, wind, biomass, and biofuels or installed capacities of these sources. Future research could also examine the influence of institution on technological change in relation to energy efficiency improvements or decarbonization patterns.

A large body of literature analyze innovation in energy and climate-friendly technologies and their diffusion across borders (see Carraro et al. 2010 for a review), including developing countries (Verdolini and Galeotti 2011; Bosetti and Verdolini 2012) but only a few of these contributions have examined the role of institutional factors. The literature on institution and the environment surveyed in this review suggests that other institutional factors such as corruption, transparency of governments, quality of bureaucratic quality are also likely to influence the ability to adopt and implement environmental policies, choice of policy instruments, and the effectiveness of the policy implemented. Governance is also a key factor, as weak governance creates frictions and leads to increased risks and associated costs in R&D and technological investments. In the case of governance, various institutional indicators are available besides the Worldwide Governance Indicators, including the Institutional Quality Dataset (Kunčič, 2014) and the Government Transparency Index (Hollyer et al. 2011).
5. Conclusion

This paper reviews the main findings of the empirical contributions examining the relationship between institutions and environmental outcomes, environmental policy adoption, green investments, and energy innovation. Our analysis reveals that the literature on environmental performance is more extensive than the one studying environmental policy. Although there is mixed evidence on the impact of institutional quality on performance and policy adoption, the majority of the studies find a positive relationship between different indicators of institutional quality, performance, and policy adoption. Our survey also shows that results are sensitive to the indicator of institutional quality being used and divergent results can often be explained by differences in methodologies and data. For example, in order to include as many countries as possible, authors have often resorted to using cross-sectional regressions, leading to results that more prone to omitted variable bias and endogeneity. Regarding the data, the gap in availability of environmental data between the developed and the developing countries often results in a selection bias.

This review indicates several unexploited opportunities for future empirical work that have emerged thanks to the growing availability of data on environmental policy and performance indicators. It suggests that the time is ripe for expanding the analysis to examine the relationship between governance, institutions, green investments, and energy innovation. Future research could also explore the impact of institutions and governance on indicators more directly related to low-carbon transformations such as carbon and energy intensity and renewable energy mix and shares. The literature on the relationship between institutions and policy also shows a gap regarding the drivers of climate policy adoption which future research could explore. Finally, there is scope of improving the estimates by using robust empirical techniques.
Broadening the empirical evidence on the relationship between institutions, environmental outcomes, and policies could also help improve the representation of institutional factors in the quantitative system models used to develop long-term sustainability transition scenarios. The new scenario framework integrating future climate and society (O’Neil et al. 2015) acknowledges the importance of policy and institutions as one of the dimensions of the Shared Socioeconomic Pathways (SSPs). The economic approach to institutions and the environment reviewed in this paper can offer empirical guidance to models. An example of how the empirical evidence could be used to inform models is provided by Iyer et al. (2015). This particular paper differentiated investment costs across regions on the basis of institutional quality and uses an Integrated Assessment Model to conclude that institutional reforms leading to lower investment risks could be an important element of cost-effective climate mitigation strategies.

Our review suggests that it is critical to expand the existing empirical literature on institutions and the environment by incorporating energy and climate change related issues, which could contribute to the broader field of sustainability transition and sustainable development.
References

van Vuuren, D.P., M. Kok. (2012). Integrated Assessment Modelling, Ch 16, In: Encyclopedia Of Global Environmental Governance And Politics, Edited by Philipp H. Pattberg, VU University Amsterdam, the Netherlands and Fariborz Zelli, Lund University, Sweden

Appendix

Table 1A: Classification of Institutional Proxies

<table>
<thead>
<tr>
<th>INSTITUTIONAL PROXY</th>
<th>SOURCE</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice and Accountability</td>
<td>WORLD GOVERNANCE INDICATORS (WB WGI)</td>
<td>GOVERNANCE</td>
</tr>
<tr>
<td>Government Effectiveness</td>
<td>WORLD GOVERNANCE INDICATORS (WB WGI)</td>
<td>GOVERNANCE</td>
</tr>
<tr>
<td>Regulatory Quality</td>
<td>WORLD GOVERNANCE INDICATORS (WB WGI)</td>
<td>GOVERNANCE</td>
</tr>
<tr>
<td>Ease of Doing Business Index</td>
<td>WORLD DEVELOPMENT INDICATORS (WORLD BANK)</td>
<td>GOVERNANCE</td>
</tr>
<tr>
<td>Total Tax Rate (% of commercial profits)</td>
<td>WORLD DEVELOPMENT INDICATORS (WORLD BANK)</td>
<td>GOVERNANCE</td>
</tr>
<tr>
<td>Time to resolve insolvency (years)</td>
<td>WORLD DEVELOPMENT INDICATORS (WORLD BANK)</td>
<td>GOVERNANCE</td>
</tr>
<tr>
<td>Rule of Law</td>
<td>WORLD GOVERNANCE INDICATORS (WB WGI)</td>
<td>GOVERNANCE</td>
</tr>
<tr>
<td>Informal payments to public officials (% of firms)</td>
<td>WORLD DEVELOPMENT INDICATORS (WORLD BANK)</td>
<td>POLITICAL</td>
</tr>
<tr>
<td>Control of Corruption</td>
<td>WORLD GOVERNANCE INDICATORS (WB WGI)</td>
<td>POLITICAL</td>
</tr>
<tr>
<td>Corruption Perceptions Index (CPI)</td>
<td>Transparency International</td>
<td>POLITICAL</td>
</tr>
<tr>
<td>Bribe Payers Index (BPI)</td>
<td>http://www.transparency.org/bpi2011</td>
<td>POLITICAL</td>
</tr>
<tr>
<td>Institutionalized Autocracy</td>
<td>Policy IV</td>
<td>POLITICAL</td>
</tr>
<tr>
<td>POLITY</td>
<td>Policy IV</td>
<td>POLITICAL</td>
</tr>
<tr>
<td>POLITY2</td>
<td>Policy IV</td>
<td>POLITICAL</td>
</tr>
</tbody>
</table>

Source:
Compiled by the Authors.
Table 2A: Literature Survey: Institutions and Environmental Performance

<table>
<thead>
<tr>
<th>Paper</th>
<th>Dependent Variable(s)</th>
<th>Explanatory Variables</th>
<th>Methodology</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete (1993).</td>
<td>Methane and NOx</td>
<td>Democracy (Gardell, 1997)</td>
<td>2SLS and cross-section Logit 118 countries</td>
<td>Democratic regimes produce more methane in total but significantly less per unit of national output.</td>
</tr>
<tr>
<td>Midlarsky (1998).</td>
<td>Deforestation, carbon dioxide emission, soil erosion by water, and protected land area</td>
<td>Democracy</td>
<td>OLS Panel regression</td>
<td>No evidence of democracies improving soil erosion by chemicals, and freshwater availability, and even negative effects of democracies over CO2, deforestation, and soil erosion by water. The study only finds a positive effect of democracy on protected land.</td>
</tr>
<tr>
<td>Bhattacharyya and Humming (2001).</td>
<td>Deforestation</td>
<td>Sum of political rights and civil liberty (Freedom House)</td>
<td>FGLS 66 countries from Latin America, Africa, and Asia 1972-1991</td>
<td>Political rights and civil liberty reduces annual deforestation rate of forest and woodlands.</td>
</tr>
<tr>
<td>Neumayer (2002).</td>
<td>Percentage of their land area under protection status</td>
<td>Combined index of political rights and civil (Freedom House), combined index of democracy and autocracy (Polity IV), Varsamian’s index of democracy, and Voice and accountability (WB)</td>
<td>Cross-section OLS 206 countries</td>
<td>Democracies and countries with higher Freedom Index put greater percentage of their land area under protections status.</td>
</tr>
<tr>
<td>Carlson and Lundstrom (2003).</td>
<td>CO2 emissions</td>
<td>Political and civil freedom (Freedom House)</td>
<td>Box-Cox regression 75 countries 1975-1995</td>
<td>Political freedom has no effect on reducing levels of emission of CO2.</td>
</tr>
<tr>
<td>Deacon (2003).</td>
<td>Lead content of gasoline</td>
<td>Cross-National Time Series Data Archive (Ratke, 1997) and Polity IV</td>
<td>FE OLS 130 countries 1980-1996</td>
<td>Lead concentrations are lower under democracy than autocracy.</td>
</tr>
<tr>
<td>Meyer et al. (2003).</td>
<td>Rate of deforestation</td>
<td>Control of corruption</td>
<td>Cross-section OLS 99-115 countries</td>
<td>Improved control of corruption reduces rate of deforestation.</td>
</tr>
<tr>
<td>Meyer et al. (2003).</td>
<td>Deforestation</td>
<td>Property Rights (Freedom House) and Control of Corruption Index (WB)</td>
<td>Cross-section OLS 117 countries</td>
<td>Countries with less corruption are less likely to liquidate forest assets.</td>
</tr>
<tr>
<td>Fredriksson et al. (2005).</td>
<td>Lead content of gasoline</td>
<td>Number of environmental lobby groups, democratic participation, and political competition</td>
<td>Cross-section OLS, Tobit, and 2SLS 104 countries Around the year 1996</td>
<td>Increase in the number of environmental lobby groups, democratic competition and participation reduces lead content in gasoline.</td>
</tr>
<tr>
<td>Neumayer (2003).</td>
<td>Sulphur dioxide: nitrogen dioxide: carbon monoxide: carbon dioxide</td>
<td>Left-wing party strength (the share of green-left/libertarian party seats as a percentage of all seats, the share of traditional left-wing party seats, and the share of cabinet portfolios of left-wing parties - Comparative Parties Data Set of Swank, 2002)</td>
<td>FE/RE regression 21 OECD countries, 1980, 1990, and 1999</td>
<td>Green or left-libertarian parliamentary strength is associated with lower levels for all five air pollutants. Traditional left-wing party strength is possibly also associated with lower pollution levels, but the evidence is less consistent and robust.</td>
</tr>
<tr>
<td>Welch (2004).</td>
<td>Urban SO2 concentration, Urban NO2 concentration, urban total suspended particulate concentration, dissolved oxygen demand, phosphorus concentration, suspended solids, SO2, NO2, volatile organic compound emissions, fertilizer consumption, pesticide use, industrial organic pollutants</td>
<td>Corruption (EBM)</td>
<td>Cross-section OLS and SUR 122 countries Most recent year available; 1990-1996</td>
<td>Corruption generally increases pollution and the effect is particularly strong in low income countries.</td>
</tr>
<tr>
<td>Binder and Neumayer (2005).</td>
<td>Sulphur dioxide, smoke, and heavy particles</td>
<td>ENGOs’ strength and Democracy (Policy IV)</td>
<td>Panel OLS, RE, and IV regression</td>
<td>ENGOs’ strength is effective in reducing air pollution levels in the form of SO2.</td>
</tr>
<tr>
<td>An empirical analysis</td>
<td>Urban particulate levels, and sulphur dioxide</td>
<td>Civil and political liberties - Environmental Sustainability Index (ESI)</td>
<td>OLS</td>
<td>Civil and political liberties help reduce urban particulates and SO2.</td>
</tr>
</tbody>
</table>

| National Environmental Performance: An Empirical Analysis of Policy Results and Determinants | CH4 intensity | Index of democratization | Cross-section OLS with listwise deletion | Democracy has no effect on methane intensity |

| “Global warming and the neglected greenhouse gas: a cross-national study of the social causes of methane emissions intensity | Carbon dioxide, nitrogen oxides, organic pollution in water, deforestation, and land degradation | Democracy and autocracy (Polity IV) | Panel and cross-section OLS 105-143 countries 1961-1997 | Democracy improves environmental quality regarding all the dependent variables. |

| Democracy and Environmental Degradation | Sulfur dioxide and carbon dioxide | Corruption (ICRG) | Instrumental Variable RE 94 countries 1987-2000 | Corruption is estimated to have a positive direct impact on per capita emissions. Indirect effects are found to be negative and larger in absolute value than direct effects for the majority of the sample income range. |
| Cole (2007) | |

| Corruption, income and the environment: An empirical Analysis. | National Environmental Performance: An Empirical Analysis of Policy Results and Determinants | CH4 intensity | Index of democratization | Democracy has no effect on methane intensity |

| Democratic institutions versus autocratic regimes: The case of environmental policy | Greenhouse gases - reductions in carbon dioxide per unit of GDP, and carbon dioxide emitted per capita | Democracies - parliamentary, presidential-congressional, proportional, and/or majoritarian systems compared to dictatorships. | Cross-section Propensity score matching 163 countries from late 1990’s. | Parliamentary democracies achieve greater reductions in greenhouse gases. While presidential democracies act similarly to autocracies. |

| Economic dependency, repression, and deforestation: A quantitative, cross-national analysis. | Deforestation | Average of political rights and civil liberties (Freedom House) | Cross-section OLS 67 countries around 1990 | Deforestation increases in nations with higher levels of repression. |
| Wingle et al. (2007) | 2004 |

| Poverty and corruption compromise tropical forest reserves. | Number of fires | Corruption (TI) | Non-parametric sign test and OLS 37 countries 2002-2004 | Reserves are least effective at reducing fire frequency in many poorer countries and in countries beset by corruption. |
| Scruggs and Rivera (2008) | 2004 |

| Liberal Democracy and Sustainability | Carbon footprint | Polity score, political system | Cross-sectional analysis of strong sustainability than stable core democracies. Liberal democracy too generally promotes weak sustainability |

| Sulphur dioxide | Democracy (Mesquita et al., 2003), Presidential vs. Parliamentary (Mesquita et al., 2003), Civil liberties (Freedom House) | RE GLS 107 cities in 42 countries from 1971-1996 | Democracy reduces pollution, presidential democracies provide a cleaner environment than parliamentary democracies, and civil liberties improve the environment. |

| Ivanova (2011) | 2000 |

| Corruption and air pollution in Europe. | Sulphur emissions | Corruption and law and order (ICRG) | ML with FE and SUR 39 European countries 1999-2003 | Decline in corruption and improvements in law and order reduces sulphur emissions. Actual emission levels in countries with more effective regulations are likely to be lower. |
| Taroni and Gennarioli (2011) | 2003 |

| Clean or “Dirty” Energy: Evidence on a Renewable Energy Resource Curse | Number of wind plants and total capacity installed | Number of charges made by police for criminal association activity and total criminal activity. | Panel OLS, difference-in-differences 34 South-Italian provinces 1991-2007 | Expansion of the wind energy sector has been driven by quality of political institutions, through their effect on criminal association. |
| Castiglione et al. (2012) | 2007 |

| Rule of Law and the Environmental Kuznets Curve: Evidence for Carbon Emissions. | EKC and carbon emissions | Rule of law Kaufman (2010) | 28 countries 1996 to 2008 | Negative relationship between pollution and rule of law, when rule of law is strong, the turning point of the EKC occurs at a lower level of income per capita, thus, decreasing emissions |
| Castiglione et al. (2013) | 2008 |

| Castiglione et al. (2013) | 2008 |

| Climate variability, economic growth, and civil conflict. | 1st stage: Economic growth | Polity (Polity IV) | 2SLS Global dataset 1980-2004 | No evidence that climate variability affects economic growth. Weak evidence that non-democratic countries are more likely to experience civil conflict when economic conditions deteriorate. |
| Koubt et al. (2012) | 2008 |

| Renewable energy share in the investment portfolio | Institutional pressure from industry peers, consultants, and published technical information | Cross-section OLS and logistic regression. Survey data from 93 investors in Europe | Institutional pressure of both peers and outside consultants has a strong negative impact on portfolio - forces them to concentrate investments on a few specific technologies. |

| Improved representation of investment decisions in assessments of CO2 mitigation. | Institutional quality | IAM - Global Change Assessment Model | Institutional quality is lower in regions with inferior institutions. | Investment in low-carbon technologies is lower in regions with inferior institutions. |
| Iyer et al. (2015) | 2015 |
Vona and Verdolini (2015)
Drivers of investments in cleaner energy.

Drivers of investments in cleaner energy.

Change in installed capacity of renewable and fossil efficient as a fraction total capacity
Policy instruments supporting either renewable or fossil efficient technologies - WEO Policy Database
FE difference-in-differences 27 OECD countries over the years 1990-2007
Environmental policy has a positive effect on investment in renewable energy technologies but fossil efficient technologies seem less affected.

Dasgupta, De Cian, and Verdolini (2016).
The political economy of energy innovation.

Innovation measured by power and energy R&D intensity and power and environmental patent intensity
Institutional quality (WGI), governments’ political orientation, and lobbying
FE-OLS 20 countries 1995-2010
Stringent environmental policies better governance provide incentives for energy innovation while left-leaning governments and market size attract energy R&D investments but not patents.

Source: Compiled by the Authors. This table summarizes 39 studies on institutions, governance, and environmental performance. Studies dealing with investments and innovation not explicitly related to the energy and environmental domains are not included in this table.
Table 3A: Literature Survey: Institutions, Governance, and Environmental Policy (Adoption and Implementation)

<table>
<thead>
<tr>
<th>Paper</th>
<th>Dependent Variable(s)</th>
<th>Explanatory Variables</th>
<th>Methodology</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congleton (1992).</td>
<td>Signature of Vienna and Montreal Protocol on CPC</td>
<td>Democracy (Freedom House, Polity IV, Vanhanen’s Index, and Voice and Accountability - WB)</td>
<td>Cross-section Logit, 118 countries</td>
<td>Authoritarian regimes enact less stringent environmental standards than democratic regimes. Liberal democracies are more willing to regulate environmental effluents and international agreements on environmental matters attract more signatories as the number of democratic regimes increases.</td>
</tr>
<tr>
<td>Neumayer (2002).</td>
<td>Signing and ratification of multilateral environmental agreements; membership in environmental intergovernmental organizations; reporting requirements for the Convention on International Trade in Endangered Species of Fauna and Flora; percentage of a country’s land area under protection; existence of a National Council on Sustainable Development; and availability of environmental information</td>
<td>Democracy (Freedom House, Polity IV, Vanhanen’s Index, and Voice and Accountability - WB)</td>
<td>Cross-section Probit and OLS, 100-175 countries, around the year 2000</td>
<td>Democracies sign and ratify more multilateral environmental agreements, participate in more environmental intergovernmental organizations, comply better with reporting requirements under the Convention on International Trade in Endangered Species of Fauna and Flora.</td>
</tr>
<tr>
<td>Fredriksson and Svennson (2003).</td>
<td>Index of stringency of environmental regulations on agricultural sector</td>
<td>Corruption (Political Risk Services and ICRG) and Democracy (Freedom House)</td>
<td>Cross-section OLS, 63 countries for 1990</td>
<td>More corrupt countries have less stringent environmental regulations while democratic countries also have less stringent regulations.</td>
</tr>
<tr>
<td>Damania et al. (2003).</td>
<td>Compliance with international environmental agreements.</td>
<td>Judicial efficiency (Kaufmann), political stability (Kaufmann), civic freedom (Friser Institute), and corruption (TI)</td>
<td>Cross-section OLS and 2SLS</td>
<td>Corruption reduces the level of compliance of environmental regulations while civic freedom and judicial efficiency increases compliance.</td>
</tr>
<tr>
<td>Fredriksson et al. (2004).</td>
<td>Sector specific energy policy stringency</td>
<td>Corruption (TI), worker influence, and lobbying</td>
<td>Panel OLS, 12 OECD countries (11 sectors) 1992–1996</td>
<td>Corruption increases energy waste by reducing stringency of energy regulations. Worker lobby is relatively influential in those sectors in which the capital owners have relatively minor impact, and vice versa.</td>
</tr>
<tr>
<td>Fredriksson and Millimet (2004).</td>
<td>Environmental Sustainability Index, Environmental Governance Index, Environmental Efficiency Index, International Environmental Agreements Participation Index, and Greenhouse Gas Emissions Index</td>
<td>Rules governing the assignment of legislative seats</td>
<td>Cross-section OLS and 2SLS, 86 countries</td>
<td>Governments adopt stricter environmental policies under proportional, as opposed to majoritarian systems.</td>
</tr>
<tr>
<td>Roberts et al. (2004).</td>
<td>Environmental Treaty Participation Index - participation on 22 international environmental treaties</td>
<td>Index of Voice and Accountability; Government Effectiveness Index (Kaufman et al., 2003), and Number of NGOs</td>
<td>Cross-section OLS, 192 countries, 1999</td>
<td>Positive relationship with national propensity to sign environmental treaties.</td>
</tr>
<tr>
<td>Fredriksson et al. (2005).</td>
<td>Regulation of lead content in gasoline</td>
<td>Environmental lobby; Democratic participation; and Democratic competition</td>
<td>Cross-section OLS, 2SLS, Tobit, 104 countries, 1993, 1996, and 2000</td>
<td>Greater political competition and number of environmental groups raises the stringency of environmental policies. However, democratic participation affects environmental policy stringency only in countries with sufficiently high degree of political competition.</td>
</tr>
<tr>
<td>Fredriksson and Millimet (2007).</td>
<td>Environmental protection and pollution taxation</td>
<td>Veto, bicamerality, political instability, and corruption (Kaufmann et al. (2003) index</td>
<td>Three-stage game, Cross-section, 86 countries</td>
<td>Bicamerality has a positive effect on gasoline taxes, which is magnified as political stability increases and veto players are less compatible. Similar interaction effect of bicameralism and the degree of compatibility for several other measures of environmental policy stringency.</td>
</tr>
<tr>
<td>Cole and Fredriksson (2006).</td>
<td>Institutionalized pollution havens.</td>
<td>Government checks and balances; political constraints within the legislature; and government honesty (ICRG)</td>
<td>1S Eng 2SLS, 33 countries 1982-1992</td>
<td>IF it raises environmental policy stringency where number of legislative units is high.</td>
</tr>
<tr>
<td>Fredriksson et al. (2007).</td>
<td>Kyoto Protocol ratification</td>
<td>Democracy (Freedom House, corruption (TI), integrity (WB, TI, ICRG), and Cox proportional hazard model, 70 countries</td>
<td>Democratic countries ratify earlier, environmental lobbying raises the ratification probability, while</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Methodology</td>
<td>Data</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Fankhauser et al. (2014). Domestic dynamics and international influence: What explains the passage of climate change legislation?</td>
<td>Number of climate laws passed and flagship legislation</td>
<td>Policy2 (Polity IV), party-political orientation of the government, and international influences</td>
<td>Negative binomial and FE Logit 63 countries 1990–2012</td>
<td>No significant impact of political orientation. Propensity to legislate is heavily influenced by the passage of similar laws in other countries.</td>
</tr>
</tbody>
</table>

Source: Compiled by the Authors. This table summarizes 16 studies on institutions, governance, and environmental policy.
NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Enrico Mattei Working Paper Series

Our Note of Lavoro are available on the Internet at the following addresses:
http://www.feem.it/getpage.aspx?id=73&szr=Publications&c=address=20&tab=1
http://ideas.repec.org/s/feem/femwpa.html
http://www.econis.eu/LNG=EN/FAM?PPN=505954494
http://ageconsearch.umn.edu/handle/35978
http://www.bepress.com/feem/
http://labs.jstor.org/sustainability/

NOTE DI LAVORO PUBLISHED IN 2016

ET 1.2016 Maria Berrittella, Carmelo Provenzano: An Empirical Analysis of the Public Spending Decomposition on Organized Crime
MITP 2.2016 Santiago J. Rubix: Sharing R&D Investments in Breakthrough Technologies to Control Climate Change
ET 4.2016 Filippo Bello: Employee Representation Legislations and Innovation
EIA 5.2016 Leonid V. Sorokin, Gérard Mondello: Sea Level Rise, Radical Uncertainties and Decision-Maker’s Liability: the European Coastal Airports Case
ET 7.2016 Mary Zak: Access to Short-term Credit and Consumption Smoothing within the Paycycle
MITP 8.2016 Simone Borghesi, Andrea Florè: EU ETS Facets in the Net: How Account Types Influence the Structure of the System
MITP 9.2016 Alice Favero, Robert Mendelsohn, Brent Sohngen: Carbon Storage and Bioenergy: Using Forests for Climate Mitigation
EIA 10.2016 David García-León: Adapting to Climate Change: an Analysis under Uncertainty
MITP 12.2016 Gabriel Chan, Carlo Carraro, Öttmar Edelhofer, Charles Kolstad, Robert Stavins: Reforming the IPCC’s Assessment of Climate Change Economics
ET 15.2016 Jean J. Gabszewicz, Marco A. Marini, Omella Tarola: Vertical Differentiation and Collusion: Cannibalization or Proliferation?
EIA 16.2016 Enrica De Cian, Ian Sue Wing: Global Energy Demand in a Warming Climate
ESP 17.2016 Niaz Bashiri Behmiri, Matteo Manera, Marcella Nicolini: Understanding Dynamic Conditional Correlations between Commodities Futures Markets
MITP 18.2016 Marinella Davide, Paola Vesco: Alternative Approaches for Rating INDCs: a Comparative Analysis
MITP 19.2016 W. Brock, A. Xepapadeas: Climate Change Policy under Polar Amplification
ET 20.2019 Alberto Pench: A Note on Pollution Regulation With Asymmetric Information
MITP 22.2016 Laura Díaz Anadón, Erin Baker, Valentina Bosetti, Lara Aleluia Reis: Too Early to Pick Winners: Disagreement across Experts Implies the Need to Diversify R&D Investment
EIA 25.2016 Doruk İrış, Alessandro Tavoni: Tipping Points and Loss Aversion in International Environmental Agreements
EIA 27.2016 Stefan P. Schleicher, Angela Köppl, Alexander Zeitberger: Extending the EU Commission’s Proposal for a Reform of the EU Emissions Trading System
EIA 29.2016 Silvia Santato, Jaroslav Myšiak, Carlos Dionisio Pérez-Blanco: The Water Abstraction License Regime in Italy: A Case for Reform?
MITP 30.2016 Carolyn Fischer: Environmental Subsidies for Green Goods
MITP 31.2016 Carolyn Fischer: Environmental Protection for Sale: Strategic Green Industrial Policy and Climate Finance
ET 32.2016 Fabio Sabatini, Francesco Sarracino: Keeping up with the e-Joneses: Do Online Social Networks Raise Social Comparisons?
MITP 33.2016 Aurora D’Aprile: Advances and Slowdowns in Carbon Capture and Storage Technology Development
EIA 34.2016 Francesco Bosello, Marinella Davide, Isabella Allosio: Economic Implications of EU Mitigation Policies: Domestic and International Effects
MITP 35.2016 Shouro Dasgupta, Enrica De Cian, and Elena Verdolini: The Political Economy of Energy Innovation
<table>
<thead>
<tr>
<th>MITP</th>
<th>36.2016</th>
<th>Roberta Distante, Elena Verdolini, Massimo Tavoni: Distributional and Welfare Impacts of Renewable Subsidies in Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MITP</td>
<td>37.2016</td>
<td>Loïc Berger, Valentina Bosetti: Ellsberg Re-revisited: An Experiment Disentangling Model Uncertainty and Risk Aversion</td>
</tr>
<tr>
<td>EIA</td>
<td>38.2016</td>
<td>Valentina Giannini, Alessio Bellucci, Silvia Torresan: Sharing Skills and Needs between Providers and Users of Climate Information to Create Climate Services: Lessons from the Northern Adriatic Case Study</td>
</tr>
<tr>
<td>EIA</td>
<td>39.2016</td>
<td>Andrea Bigano, Aleksander Śniegocki, Jacopo Zotti: Policies for a more Dematerialized EU Economy: Theoretical Underpinnings, Political Contest and Expected Feasibility</td>
</tr>
<tr>
<td>EIA</td>
<td>41.2016</td>
<td>Shouro Dasgupta, Enrica De Cian: Institutions and the Environment: Existing Evidence and Future Directions</td>
</tr>
</tbody>
</table>