Reichert, Arndt; Tauchmann, Harald

Article
When outcome heterogeneously matters for selection: a generalized selection correction estimator

Applied Economics

Provided in Cooperation with:
RWI – Leibniz-Institut für Wirtschaftsforschung, Essen

This Version is available at:
http://hdl.handle.net/10419/142174
When Outcome Heterogeneously matters for Selection:

a Generalized Selection Correction Estimator

Arndt Reichert Harald Tauchmann
RWI FAU, RWI & CINCH*

March 2014

Abstract

The classical Heckman (1976, 1979) selection correction estimator (heckit) is misspecified and inconsistent if an interaction of the outcome variable with an explanatory variable matters for selection. To address this specification problem, a full information maximum likelihood estimator and a simple two-step estimator are developed. Monte-Carlo simulations illustrate that the bias of the ordinary heckit estimator is removed by these generalized estimation procedures. Along with OLS and ordinary heckit, we apply these estimators to data from a randomized trial that evaluates the effectiveness of financial incentives for reducing obesity. Estimation results indicate that the choice of the estimation procedure clearly matters.

*JEL codes: C24, C93.

*Keywords: selection bias, interaction, heterogeneity, generalized estimator.

*All correspondence to: Harald Tauchmann, Friedrich-Alexander-Universität Erlangen-Nürnberg, Lange Gasse 20, 90403 Nürnberg, Germany; harald.tauchmann@wiso.uni-erlangen.de
1 Introduction

The Heckman (1976, 1979) selection correction (heckit) estimator is a workhorse of applied econometrics, commonly used for removing possible bias due to selection on unobservables.\(^1\) In many applications, selection into the subsample of observations with an observed outcome is directly affected by the value of the outcome variable itself. Think, for instance, of estimating a wage equation. Here, wages are only observed for individuals who have accepted a wage offer. Yet, the likelihood of accepting the offer increases with the offered wage. The regular specification of the heckit estimator implicitly accounts for a possible impact of the outcome on selection, given that all exogenous variables enter the selection part of the model.\(^2\)

However, unlike the above case, the regular heckit estimator is misspecified and biased if the offered pay is of differential relevance depending on individual characteristics such as gender. That is, heterogeneous effects of the outcome variable on selection are not accommodated by the regular heckit approach. In order to allow for heterogeneity with respect to a certain individual characteristic, any selection correction estimator must take the interaction of the outcome variable with the relevant covariate into account. The present paper develops generalizations of the regular heckit estimator that overcome the inconsistency of the ordinary heckit model in the presence of heterogeneous effects of the outcome on selection. In particular, we suggest a full information maximum likelihood (FIML) estimator and a computationally very simple two-step approach.

We test the performance of the suggested estimators using Monte Carlo simulations. We also apply the estimators to data gathered from a randomized field experiment, which was conducted to examine the effectiveness of financial incentives to induce weight loss in obese individuals. This experiment represents an exemplary application of the proposed

\(^1\)The model’s popularity notwithstanding, it has been criticized for being very vulnerable to various kinds of misspecification (e.g. Puhani, 2000; Grasdal, 2001), and less restrictive semi-parametric alternatives have been proposed (e.g. Ichimura and Lee, 1991; Ahn and Powell, 1993); see Vella (1998) for a survey.

\(^2\)The commonly used tobit (type 1) (Tobin, 1958) model represents an extreme case with selection \textit{exclusively} depending on the outcome.
generalized selection-correction estimators because the design of the monetary rewards makes favorable outcomes more likely to be reported than unfavorable ones. Thus, a link between the outcome variable and the probability of observing the outcome is first of all expected for those participants who were offered a reward for weight loss, but not for members of the control group who were not exposed to financial incentives.

The remainder of the paper is organized as follows. Section 2 develops the generalized heckit estimators. Section 3 compares the performance of the different estimators using a Monte Carlo experiment. Section 4 provides a real data application and Section 5 concludes.

2 A Generalized Heckit Model

Consider a familiar linear regression model, where the focus of the econometric analysis is on estimating the coefficient vector \(\beta \):

\[
Y_i = \beta'X_i + \epsilon_i. \tag{1}
\]

Here \(i \) indexes observations, and \(Y_i, \epsilon_i, \) and \(X_i \) denote the outcome variable, a random error, and the vector of exogenous explanatory variables, respectively. The latter includes the variable \(D_i \), which is of special relevance to the analysis.

However, \(Y_i \) is observed only for a subsample of observation. In the present application, selection into this subsample, indicated by \(S_i = 1 \), is modeled as suggested by Heckman (1979). Yet, besides a \(K \)-dimensional vector \(Z_i \) that includes \(X_i \) and some further exogenous variables, \(Y_i \) as well as the interaction term \(Y_iD_i \) are allowed to enter the selection equation:

\[
S_i = \begin{cases}
1 & \text{if } \theta'Z_i + \tau Y_i + \gamma Y_iD_i + \nu_i > 0 \\
0 & \text{else.}
\end{cases} \tag{2}
\]

As in the ordinary heckit model, joint normality \(N(0, 0, \sigma_{\epsilon}^2, \sigma_{\nu}^2, \sigma_{\epsilon\nu}) \) is assumed for the
error terms ε_i and ν_i. $\theta_1, \ldots, \theta_K$, τ, and γ denote unknown coefficients. Substituting Y_i by (1) and rearranging terms leads to

$$S_i = \begin{cases} 1 & \text{if } \tilde{\nu}_i > -\alpha'Z_i - \gamma\beta'X_iD_i \\ 0 & \text{else} \end{cases}$$

(3)

$$\tilde{\nu}_i = \nu_i + (\tau + \gamma D_i) \varepsilon_i,$$

(4)

where $\alpha_k = \theta_k + \tau \beta_k$ holds for any regressor k included in X_i and $\alpha_k = \theta_k$ holds for those variables that enter Z_i but do not enter X_i. Evidently, the coefficient τ has no impact on the general structure of the model. Hence, for the special case $\gamma = 0$, (1), (3), and (4) represent the standard Heckman (1979) selection model.

For $\gamma \neq 0$, however, the model deviates from the standard case for two reasons: (i) a full set of interaction terms X_iD_i enters the selection equation and (ii), more important, D_i enters the error $\tilde{\nu}_i$, rendering the the error variance-covariance structure heterogeneous with respect to D_i:

$$\text{var}(\tilde{\nu}_i | D_i) = \sigma^2_{\nu} + 2(\tau + \gamma D_i)\sigma_{\nu\nu} + (\tau + \gamma D_i)^2 \sigma^2_{\varepsilon}$$

(5)

$$\text{cov}(\varepsilon_i, \tilde{\nu}_i | D_i) = \sigma_{\varepsilon\nu} + (\tau + \gamma D_i)\sigma^2_{\varepsilon}.$$

(6)

Ignored heteroscedasticity in the probit and, hence, in the selection part of the heckit model, is well known to render probit estimation inconsistent (Wooldridge, 2002; Harvey, 1976). Thus, a generalized estimator is required.

2.1 FIML Estimation

In order to develop a FIML estimator that accounts for the model structure, with no loss of generality, we introduce the normalization

$$\sigma^2_{\nu} + 2\tau\sigma_{\varepsilon\nu} + \tau^2\sigma^2_{\varepsilon} = 1.$$

(7)

3Effectively, τ only changes the unknown error variance-covariance structure, which is subject to estimation. Hence, τ is not identified.
That is, we assume standard normality for $\tilde{\nu}_i$ conditional on $D_i = 0$. This is equivalent to the familiar normalization required for identifying the coefficients of any probit model. We re-parameterize as follows:

$$\rho \equiv \text{cor}(\varepsilon_i, \tilde{\nu}_i|D_i = 0) = \frac{\sigma_{\varepsilon \nu}}{\sigma_\varepsilon} + \tau \sigma_\varepsilon.$$ (8)

Then the individual log-likelihood l_i reads as

$$l_i = \begin{cases}
\log \Phi \left(\frac{-a'Z_i - \gamma \beta'X_i D_i}{\sqrt{1 + 2 \rho \sqrt{\gamma D_i} + \gamma^2 D_i^2}} \right) & \text{if } S_i = 0 \\
\log \Phi \left(\frac{a'Z_i + \gamma \beta'X_i D_i + (Y_i - \beta'X_i)(\frac{\rho}{\sqrt{\gamma}} + \gamma D_i)}{\sqrt{1 - \rho^2}} \right) & \text{if } S_i = 1.
\end{cases}$$ (9)

See Appendix A.1 for how (9) is derived from the log-likelihood function of the ordinary heckit model. Besides the coefficient vectors α and β, the scalar parameters γ, σ_ε, and ρ are subject to estimation.\(^4\) Note that D_i may either be continuous, a count, or binary.

The model is straightforwardly transferred to the case where the effect of Y_i on selection differs across $M + 1$ mutually exclusive groups, indexed by $m = 0, \ldots, M$. For group membership being indicated by a set of binary indicators D_{0i}, \ldots, D_{Mi}, the log-likelihood conditional on $D_{mi} = 1$ is identical to (9), besides D_i is substituted by the value one and γ is replaced by γ_m.\(^5\) Here, γ_0 has to be restricted to zero in order to render the model identified.

2.2 Two-Step Estimation

The model (9) is, however, difficult to fit and may cause problems in the optimization procedure. Yet, for a binary variable D_i and, more general, group-wise heterogeneity, a computationally very simple two-step estimator is available. Here, the heterogeneity in the selection mechanism is accounted for by estimating group-wise probit models at

\(^4\)Technically, atanh(ρ) and log(σ_ε) are estimated in the optimization procedure in order to avoid a bounded valid parameter space.

\(^5\)Typically, all dummies D_{mi}, except for D_{0i} indicating the reference category, enter X_i and Z_i.
the first stage. For each group \(m \), a specific coefficient vector \(\alpha_m \) is estimated, where the coefficients attached to \(D_{1i}, \ldots, D_{Mi} \) need to be restricted to the value of zero. At the second stage a vector of group-specific inverse Mills-ratios \(\lambda(\cdot) \) enter as additional regressors

\[
Y_i = \beta' X_i + \sum_{m=0}^{M} \delta_m \lambda(\hat{\alpha}_m' Z_i) D_{mi} + \tilde{\varepsilon}_i \quad \text{if} \quad S_i = 1. \tag{10}
\]

The attached coefficients \(\delta_m \), subject to estimation, capture \(\sigma^{2}_{\varepsilon} \text{ cor}(\varepsilon_i, \tilde{\nu}_i|D_{mi} = 1) \). Two-step estimation, however, comes at the cost of efficiency loss. As in the case of the two-step estimator for the ordinary heckit model, the present model is less efficient than FIML. Moreover, it ignores many parameter restrictions that stem from the structural model, inflating the number of parameters subject to estimation by \(M(K - 1) - M^2 \).

The model in (10) may also suffer from near-collinearity of correction terms and group indicators. On the other hand, two-step estimating involves less assumptions about the selection mechanism than FIML and, hence, also accommodates types of heterogeneity in selection that render (9) misspecified.

3 Monte Carlo Analysis

In order to illustrate the performance of the FIML and the two-step estimators and to compare them with those of ordinary heckit and simple OLS estimation, we run a Monte-Carlo (MC) experiment, where the endogenous variables \(Y_i \) and \(S_i \) are generated according to (1) and (2). The exogenous variables, i.e. the vector \(Z_i \), are drawn once and then kept fixed. We draw the binary indicator \(D_i \) from the \(\text{B}(1, 0.5) \) distribution and two continuous control variables from the uniform \(\text{U}(-1, 1) \) distribution. One of the latter is excluded from the vector \(X_i \), while \(D_i \) enters (2) not only through \(Z_i \) but also interacted with \(Y_i \). For all coefficients \(\beta_k \) and \(\theta_k \), we choose the value of one, except for the constant terms, which both are set to zero. With respect to the variance-covariance matrix of the normal errors, we choose \(\sigma^{2}_{\varepsilon} = 2 \), \(\sigma^{2}_{\nu} = 1 \), and \(\sigma_{\varepsilon\nu} = 0.75 \). We run six different simulations, varying the experimental setup with respect to: (i) \(\gamma \), for which we use the values \(-1, 0, \text{and } 1\); and (ii) \(\tau \), for which we use the two values consistent with
Table 1: Monte-Carlo Simulation Results

<table>
<thead>
<tr>
<th>Simulation (i): $\gamma = -1; \tau = -0.75$</th>
<th>FIML</th>
<th>Two-Step</th>
<th>Ordinary Heckit</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Bias</td>
<td>MSE</td>
<td>Bias</td>
<td>MSE</td>
</tr>
<tr>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
<td>0.024</td>
<td>0.496</td>
</tr>
<tr>
<td>control</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>-0.756</td>
</tr>
<tr>
<td>constant</td>
<td>-0.001</td>
<td>0.003</td>
<td>-0.001</td>
<td>0.005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation (ii): $\gamma = -1; \tau = 0$</th>
<th>FIML</th>
<th>Two-Step</th>
<th>Ordinary Heckit</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Bias</td>
<td>MSE</td>
<td>Bias</td>
<td>MSE</td>
</tr>
<tr>
<td>0.001</td>
<td>0.004</td>
<td>0.001</td>
<td>0.009</td>
<td>-1.223</td>
</tr>
<tr>
<td>control</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>-0.197</td>
</tr>
<tr>
<td>constant</td>
<td>0.000</td>
<td>0.002</td>
<td>0.001</td>
<td>0.005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation (iii): $\gamma = 0; \tau = -0.75$</th>
<th>FIML</th>
<th>Two-Step</th>
<th>Ordinary Heckit</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Bias</td>
<td>MSE</td>
<td>Bias</td>
<td>MSE</td>
</tr>
<tr>
<td>-0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.008</td>
<td>-0.003</td>
</tr>
<tr>
<td>control</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>constant</td>
<td>0.000</td>
<td>0.002</td>
<td>0.001</td>
<td>0.002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation (iv): $\gamma = 0; \tau = 0$</th>
<th>FIML</th>
<th>Two-Step</th>
<th>Ordinary Heckit</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Bias</td>
<td>MSE</td>
<td>Bias</td>
<td>MSE</td>
</tr>
<tr>
<td>0.000</td>
<td>0.002</td>
<td>0.002</td>
<td>0.004</td>
<td>-0.001</td>
</tr>
<tr>
<td>control</td>
<td>0.000</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>constant</td>
<td>0.000</td>
<td>0.002</td>
<td>0.001</td>
<td>0.002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation (v): $\gamma = 1; \tau = -0.75$</th>
<th>FIML</th>
<th>Two-Step</th>
<th>Ordinary Heckit</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Bias</td>
<td>MSE</td>
<td>Bias</td>
<td>MSE</td>
</tr>
<tr>
<td>-0.001</td>
<td>0.003</td>
<td>-0.002</td>
<td>0.006</td>
<td>0.724</td>
</tr>
<tr>
<td>control</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.209</td>
</tr>
<tr>
<td>constant</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.724</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation (vi): $\gamma = 1; \tau = 0$</th>
<th>FIML</th>
<th>Two-Step</th>
<th>Ordinary Heckit</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Bias</td>
<td>MSE</td>
<td>Bias</td>
<td>MSE</td>
</tr>
<tr>
<td>-0.001</td>
<td>0.002</td>
<td>-0.002</td>
<td>0.004</td>
<td>0.238</td>
</tr>
<tr>
<td>control</td>
<td>-0.002</td>
<td>0.001</td>
<td>-0.001</td>
<td>0.058</td>
</tr>
<tr>
<td>constant</td>
<td>0.002</td>
<td>0.002</td>
<td>0.001</td>
<td>-0.102</td>
</tr>
</tbody>
</table>

Notes: results based on 2,000 replications; sample size $N = 10,000$; exogenous variables drawn once and then kept fixed; true coefficient values: $\beta_D = 1; \beta_{control} = 1$, and $\beta_{const} = 0$.

As predicted by theory, MC-results display no significant (warranted by simulation based tests on joint unbiasedness of $\hat{\beta}$) bias for the FIML and the Two-Step estimator, while OLS is biased in any simulation; see Table 1. Furthermore, the ordinary heckit estimator does not exhibit a significant bias for $\gamma = 0$, while it is severely biased for $\gamma \neq 0$. Focussing on the coefficient attached to D_i, depending on the sign of γ, an upward or an downward bias may occur. Interestingly, for $\gamma \neq 0$, the ordinary heckit does not perform much better than OLS in terms of the estimated bias. In simulation (vi), it even performs worse. This means that correcting parametrically for selection bias but misspecifying the selection mechanism may not be an improvement compared to simply ignoring selectivity. As expected, in terms of the estimated MSE, Two-Step estimation
performs worse than FIML.6 Even for $\gamma = 0$ (simulations iii and iv), FIML exhibits an MSE that just marginally exceeds the MSE of the ordinary heckit model.

4 Real Data Application

We further apply the estimators to data from a randomized trial; see Augurzky et al. (2012) for a detailed description and a comprehensive empirical analysis. This experiment aims at analyzing the effectiveness of financial incentives for assisting obese individuals in losing body weight. By the end of a rehab hospital stay, 698 overweight individuals were given an individual weight-loss target of 6 to 8 percent of current body weight, which they were prompted to realize within four months. Participants were then randomly assigned to two incentive groups and one control group. Contingent on success, a reward of up to €150 (group 150) and €300 (group 300), respectively, was offered to members of the treatment groups. The control group received no financial incentive. Rewards were offered as a function of the degree of target achievement, i.e., participants who lost some weight but failed to realize the weight-loss target received less than the maximum reward. After four months, participants were requested to visit an assigned pharmacy for verifying actual weight loss, but a substantial number of participants failed to show up at the weigh-in. More precisely, 178 individuals selected themselves out of the trial, while 520 complied and attended the weigh-in. The compliance rate varied substantially between groups: it was 66.5 percent for the control group, 72.9 percent for group 150, and 84.3 for group 300. This nicely meets our prior expectation that the probability of reporting weight is affected by the interaction of actual weight loss and group membership, as only those who were both successful and members of one of the treatment groups had a financial incentive to attend the weigh-in.

6For simulations based on a small sample ($N = 400$), this shortcoming of two-step estimation becomes even more prominent. There, in terms of the MSE, two-step estimation may even be outperformed by the biased ordinary heckit estimator.
loss divided by targeted weight loss, serves as the dependent variable.\footnote{Since participants may gain weight or exceed the weigh-reduction target, the dependent variable has support over the entire real line.} Indicators for group membership are the key explanatory variables, with the control group serving as the reference. In addition, age and indicators for being female and being born in Germany enter the regression equation as controls. A further dummy indicating that a participant had to visit a nearby pharmacy, i.e., one within the same zip-code area as the place of residence, exclusively enters the selection equation. This exclusion restriction is justified by travel time representing a likely determinant for the decision of whether to show up at the weigh-in, but having no obvious link to success.

Table 2 displays regression results for FIML, two-step, ordinary heckit, and OLS. Test results do not clearly argue for selection on unobservables since the estimate for ρ does not significantly deviate from zero, neither for ordinary heckit nor for FIML estimation. This equivalently holds for the two-step approach, where the group-specific Mill’s ratios are jointly insignificant. Yet, conditional on selection correction, both FIML and two-step are clearly favored over ordinary heckit by Wald-test of the respective restrictions (p-values 0.03 and 0.01).

Focussing on the estimated treatment effects, the choice of estimation method clearly matters. OLS and ordinary heckit both suggest that receiving a financial incentive increases the success rate by roughly 40 to 50 percentage points. Yet, the amount of the financial reward seems to be immaterial. FIML and two-step estimation of the generalized model, however, yield a different picture. For the latter, no significant incentive effect is found. Here, the inefficiency of two-step estimation is underpinned by rather large standard errors. For FMIL, the estimated treatment effect for group 300 is similar to its counterpart from OLS and ordinary heckit estimation. Yet, the estimated effect for group 150 is substantially smaller and even becomes statistically insignificant. Hence, on basis of FIML, one concludes that the amount of the reward matters for weight loss. The estimates for γ_{e150} and γ_{e300} have the expected positive sign. However – contrary to expectations – the latter is much smaller. Moreover, a large standard error renders the
Table 2: Results for Weight-Loss Experiment

<table>
<thead>
<tr>
<th>Main equation:</th>
<th>FIML</th>
<th>Two-Step</th>
<th>Ordinary Heckit</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>€150</td>
<td>0.215</td>
<td>0.238</td>
<td>0.429**</td>
<td>0.408**</td>
</tr>
<tr>
<td>€300</td>
<td>0.470**</td>
<td>0.272</td>
<td>0.566**</td>
<td>0.452**</td>
</tr>
<tr>
<td>age</td>
<td>0.001</td>
<td>-0.001</td>
<td>-0.003</td>
<td>-0.005</td>
</tr>
<tr>
<td>female</td>
<td>-0.160**</td>
<td>-0.147*</td>
<td>-0.172**</td>
<td>-0.178**</td>
</tr>
<tr>
<td>native</td>
<td>0.020</td>
<td>0.020</td>
<td>0.013</td>
<td>0.008</td>
</tr>
<tr>
<td>δ_control</td>
<td>-</td>
<td>0.059</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>δ_150</td>
<td>-</td>
<td>0.470</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>δ_300</td>
<td>-</td>
<td>0.762</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>constant</td>
<td>0.340</td>
<td>0.409</td>
<td>0.445</td>
<td>0.655**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selection equation:</th>
<th>FIML</th>
<th>Two-Step</th>
<th>Ordinary Heckit</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>€150</td>
<td>-0.077</td>
<td>-</td>
<td>0.200</td>
<td>-</td>
</tr>
<tr>
<td>€300</td>
<td>0.521*</td>
<td>-</td>
<td>0.595**</td>
<td>-</td>
</tr>
<tr>
<td>age</td>
<td>0.020**</td>
<td>-</td>
<td>0.019**</td>
<td>-</td>
</tr>
<tr>
<td>female</td>
<td>0.115</td>
<td>-</td>
<td>0.076</td>
<td>-</td>
</tr>
<tr>
<td>native</td>
<td>0.039</td>
<td>-</td>
<td>0.057</td>
<td>-</td>
</tr>
<tr>
<td>nearby pharmacy</td>
<td>0.332**</td>
<td>-</td>
<td>0.309**</td>
<td>-</td>
</tr>
<tr>
<td>constant</td>
<td>-0.817**</td>
<td>-</td>
<td>-0.741**</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selection equation control group:</th>
<th>FIML</th>
<th>Two-Step</th>
<th>Ordinary Heckit</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>-</td>
<td>-0.042</td>
<td>-0.018</td>
<td>-</td>
</tr>
<tr>
<td>female</td>
<td>-</td>
<td>0.075</td>
<td>0.327</td>
<td>-</td>
</tr>
<tr>
<td>native</td>
<td>-</td>
<td>0.300*</td>
<td>0.537**</td>
<td>-</td>
</tr>
<tr>
<td>constant</td>
<td>-</td>
<td>-0.569</td>
<td>-0.856**</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selection equation €150 group:</th>
<th>FIML</th>
<th>Two-Step</th>
<th>Ordinary Heckit</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>-</td>
<td>0.024**</td>
<td>0.019**</td>
<td>-</td>
</tr>
<tr>
<td>female</td>
<td>-</td>
<td>0.023</td>
<td>0.321</td>
<td>-</td>
</tr>
<tr>
<td>native</td>
<td>-</td>
<td>-0.018</td>
<td>-0.175</td>
<td>-</td>
</tr>
<tr>
<td>nearby pharmacy</td>
<td>-</td>
<td>0.537**</td>
<td>0.856**</td>
<td>-</td>
</tr>
<tr>
<td>constant</td>
<td>-</td>
<td>-0.856</td>
<td>-0.522</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selection equation €300 group:</th>
<th>FIML</th>
<th>Two-Step</th>
<th>Ordinary Heckit</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>-</td>
<td>0.019**</td>
<td>0.019**</td>
<td>-</td>
</tr>
<tr>
<td>female</td>
<td>-</td>
<td>0.308</td>
<td>0.548</td>
<td>-</td>
</tr>
<tr>
<td>native</td>
<td>-</td>
<td>0.175</td>
<td>0.606</td>
<td>-</td>
</tr>
<tr>
<td>nearby pharmacy</td>
<td>-</td>
<td>-0.056</td>
<td>-0.746**</td>
<td>-</td>
</tr>
<tr>
<td>constant</td>
<td>-</td>
<td>-0.077</td>
<td>-0.522</td>
<td>-</td>
</tr>
</tbody>
</table>

γ_150	1.206**	0.484	-	-
γ_300	0.142	0.495	-	-
ε_150	0.836**	0.034	0.802**	0.036
ρ	0.199	0.252	0.260	0.271

Notes: ** significant at 5%; * significant at 10%; total number of obs. is 698; for 178 obs. weight-loss information is missing.

estimate for γ_300 statistically insignificant. This may be explained by the small number of dropouts in group 300, which makes the identification of γ_300 difficult.

5 Conclusions

In this article we demonstrate that the classical Heckman (1976, 1979) selection correction estimator is misspecified and inconsistent when an interaction of the outcome with an explanatory variable matters for selection. Randomized trials assessing the effects of an
incentive scheme may serve as a typical example for this kind of sample selection problem. A FIML and a simple two-step estimator that both address this specification problem are developed. Monte-Carlo simulations illustrate that the bias of the ordinary Heckman (1976, 1979) estimator is removed by these generalized estimation procedures. Finally, the suggested estimators are applied to data from a randomized trial that evaluates the effectiveness of financial incentives for assisting obese in their attempt to lose weight. Estimation results indicate that the choice of the estimation procedure clearly matters.

Acknowledgements

This work has been supported in part by the Collaborative Research Center “Statistical Modelling of Nonlinear Dynamic Processes” (SFB 823) of the German Research Foundation (DFG). The authors are grateful to “Pakt für Forschung und Innovation” for funding the field experiment from which data was used in this paper. We are also grateful to the medical rehabilitation clinics of the German Pension Insurance of the federal state Baden-Württemberg as well the Association of Pharmacists of Baden-Württemberg for their support in carrying out the experiment. We also like to thank Rüdiger Budde, Viktoria Frei, Karl-Heinz Herlitschke, Klaus Höhner, Julia Jochem, Mark Kerßenfischer, Lionita Krepstakies, Claudia Lohkamp, Thomas Michael, Carina Mostert, Stephanie Nobis, Alfredo R. Paloyo, Adam Pilny, Margarita Pivovarova, Gisela Schubert, and Marlies Tepaß (all RWI) for research assistance.
References

A Appendix

A.1 Generalizing the Log-Likelihood Function

In order to generalize the log-likelihood function of the ordinary heckit model (see e.g. Amemiya, 1985, p. 386), we augment the index function $a'Z_i$ by $\gamma \beta'X_iD_i$ and replace the scalar parameters σ^2 and σ_{ev} by the functions (5) and (6), respectively:

$$ l_i = \begin{cases}
\log \Phi \left(-\frac{a'Z_i - \gamma \beta'X_iD_i}{\sqrt{\text{var}(\tilde{\epsilon}_i|D_i)}} \right) & \text{if } S_i = 0 \\
\log \Phi \left(\frac{a'Z_i + \gamma \beta'X_iD_i + (Y_i - \beta'X_i)(\text{cov}(\epsilon_i, \tilde{\epsilon}_i|D_i))}{\sqrt{\text{var}(\tilde{\epsilon}_i|D_i)\left(1 - \frac{\text{cov}(\epsilon_i, \tilde{\epsilon}_i|D_i)^2}{\sigma^2 \text{var}(\tilde{\epsilon}_i|D_i)}\right)}} \right) & \text{if } S_i = 1.
\end{cases} \quad (11) $$

Then we apply the normalization (7) to (5), and eliminate τ and σ_{ev} by entering (8) into the equation, yielding

$$ \text{var}(\tilde{\epsilon}_i|D_i) = 1 + 2\gamma(\sigma_{ev} + \tau \sigma^2)D_i + \sigma^2 \gamma^2 D_i^2 $$

$$ = 1 + 2\rho \sigma_{ev} \gamma D_i + \sigma^2 \gamma^2 D_i^2, \quad (12) $$

which is nonnegative, by ρ being bounded to the $[-1, 1]$ interval. Further, using (6) and, once more, eliminating τ and σ_{ev} by entering (8) into the equation yields

$$ \frac{\text{cov}(\epsilon_i, \tilde{\epsilon}_i|D_i)}{\sigma^2} = \frac{\sigma_{ev} + (\tau + \gamma D_i)\sigma^2}{\sigma^2} = \frac{\rho}{\sigma_{ev}} + \gamma D_i. \quad (13) $$

Finally, using (13) and (12) we simplify

$$ \text{var}(\tilde{\epsilon}_i|D_i) \left(1 - \frac{\text{cov}(\epsilon_i, \tilde{\epsilon}_i|D_i)^2}{\sigma^2 \text{var}(\tilde{\epsilon}_i|D_i)}\right) = \text{var}(\tilde{\epsilon}_i|D_i) - \sigma^2 \left(\frac{\rho}{\sigma_{ev}} + \gamma D_i\right)^2 $$

$$ = \text{var}(\tilde{\epsilon}_i|D_i) - \rho^2 - 2\rho \sigma_{ev} \gamma D_i - \sigma^2 \gamma^2 D_i^2 $$

$$ = 1 - \rho^2, \quad (14) $$
and substitute (12), (13), and (14) into (11), yielding (9).