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Operational Conditions in Regulatory Benchmarking Models -

A Monte Carlo Analysis ∗

Maria Nieswand Stefan Seifert †

June 7, 2016

Abstract

Benchmarking methods are widely used in the regulation of firms in net-

work industries working under heterogeneous exogenous environments. In this

paper we compare three recently developed estimators, namely conditional DEA

(Daraio and Simar, 2005, 2007b), latent class SFA (Orea and Kumbhakar, 2004;

Greene, 2005), and the StoNEZD approach (Johnson and Kuosmanen, 2011) by

means of Monte Carlo simulation focusing on their ability to identify production

frontiers in the presence of environmental factors. Data generation replicates reg-

ulatory data from the energy sector in terms of sample size, sample dispersion

and distribution, and correlations of variables. Although results show strengths

of each of the three estimators in particular settings, latent class SFA perform

best in nearly all simulations. Further, results indicate that the accuracy of the

estimators is less sensitive against different distributions of environmental fac-

tors, their correlations with inputs, and their impact on the production process,

but performance of all approaches deteriorates with increasing noise. For regula-

tors this study provides orientation to adopt new benchmarking methods given

industry characteristics.
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1 Introduction

External factors outside the control of firms are a proximate cause of heterogeneous

technologies.1 When regulatory outcomes, such as price or revenue caps, rely on firm

comparison, the heterogeneity of technologies requires an appropriate consideration for

obtaining optimal solutions (Shleifer, 1985). If external factors are not considered, the

regulatory outcomes, i.e., price or revenue caps, diverge from the optimum and can lead

to welfare losses due to inefficiently low or high caps, or bankruptcies of the regulated

firms.

For natural monopolies, the regulator aims to implement a cap scheme in which the

regulated prices equal the average costs of firms, i.e., efficient costs.2. This is, how-

ever, only achievable if the regulator is fully informed about the technologies or costs,

respectively. To mitigate the information asymmetries between regulated firms and

regulators (see Laffont and Tirole, 1993), European regulators tend to combine price

or revenue cap schemes with benchmarking techniques, particularly in the regulation

of electricity distribution networks (for overviews see Agrell et al., 2013a; Haney and

Pollitt, 2009; Jamasb and Pollitt, 2001).

Regulators employ benchmarking techniques to estimate production or cost functions

based on observed data to approximate the unknown technologies, and thus, efficient

cost levels. The estimated technology, or “frontier”, and represents the efficient input-

output-combinations measured in physical or monetary terms depending on the chosen

approach. Once estimated, each firm can be compared to the frontier. A firm is

considered efficient if it is on the frontier and inefficient otherwise. The distance of

a firm’s input-output-combination to this frontier is interpreted as inefficiency (and

noise). Regulators use the estimated inefficiency to set the firms’ production or cost

targets, which are ultimately translated into the respective regulatory outcome.

Given that the technology and observed data are likely to be influenced by external

factors, the firms’ observed output (input) will also deviate from its maximum (min-

imum) due to the presence of external factors. Failing to control for external factors

appropriately when estimating the frontier is likely to transfer to the firms’ inefficiency

estimates and penalize or favor firms and customers (see, e.g., Bjørndal et al., 2016,

for an empirical investigation of Norwegian electricity distributors).

This paper assesses the ability of three frontier approaches to account for the influence

of external factors in a production setting. We compare the non-parametric condi-

1In this paper, we use the terms environmental factor, environmental condition, operational con-
dition, and z-variables interchangeably.

2In regulation economics this solution is referred to as the second-best solution (Laffont and Tirole,
1993; Armstrong and Sappington, 2007)
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tional DEA (cDEA, Daraio and Simar, 2005, 2007b) with the parametric latent class

SFA (LC-SFA, Orea and Kumbhakar, 2004; Greene, 2005) and the stochastic semi-

nonparametric envelopment of z variables data (StoNEZD, Johnson and Kuosmanen,

2011). Specifically, we analyze their performance with respect to two criteria, i.e., the

bias and the mean squared error, using Monte Carlo simulation.

Each of the three estimators has been specifically designed to control for heteroge-

neous technologies. They exhibit, however, very different approaches to incorporate

external factors in the frontier estimation and differ considerably in their statistical

characteristics. Each of the three estimators offers advantages depending on the set-

ting in which they are used. To account for their different strengths and weaknesses,

we construct a large number of different scenarios with variations in the sample sizes,

in the distributions of noise and inefficiency, and in the impact of environmental fac-

tors on production possibilities. We construct the data generating processes (DGPs)

to replicate real regulatory data with, e.g., high correlations among inputs, non-normal

distributions of environmental factors and sample sizes including a few large firms.

While yet almost neglected by regulators, cDEA, StoNEZD, and LC-SFA are widely

accepted in the scientific community. Compared to the standard benchmarking ap-

proaches used in regulation, the estimators come with the cost of limited empirical

experience, higher complexity and often difficult implementation,3 but offer better

statistical properties and advanced capabilities to account for firms’ operating environ-

ment.

Whether better statistical properties goes hand in hand with better estimation results

remains open, as empirical evidence for most frontier estimators in terms of simulation

results is limited to the original paper proposing an estimator. Studies of the newer

semi-parametric approaches include Andor and Hesse (2014), who find StoNED to per-

form well in noisy settings compared to SFA and DEA, but also a stronger sensitivity

of StoNED against an increasing number of explanatory variables and a general ten-

dency to underestimate the true frontier. Krüger (2012) compares the semi-parametric

order-m and order-α estimators with DEA, Free Disposable Hull (FDH) and SFA, but

finds no advantage in using them for well behaved production settings and low levels of

noise. Two other simulation studies are relevant to this study’s focus on the impact of

environmental factors in frontier estimation. Yu (1998) examines the frontier estima-

tion in the presence of environmental variables and compares different SFA and DEA

specifications. Results indicate a general advantage of SFA if the model is specified

correctly, and that DEA performs quite well if the effect of the environmental variables

is low. Similarly, Cordero et al. (2009) compare different ways to account for environ-

3From the regulators perspective, DEA and SFA are mature models that that provide well-known
strength and weaknesses and ease of implementation and comprehensibility.
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mental factors in DEA and find the four-stage model introduced by Fried et al. (2002)

dominating other approaches.

To the best of our knowledge we are the first to provide a comparative study cov-

ering non-parametric, parametric, and semi-parametric approaches with a focus on

the estimators’ ability to account for environmental factors. Given the importance of

controlling for external factors in regulatory schemes, they seem to be appealing alter-

natives for regulators to the methods in place. From a practitioners perspective, our

analysis provides guidance to adopt new benchmarking methods given industry size

and industry characteristics.

The remainder of this paper is structured as follows. Section 2 outlines and compares

the different frontier estimators. Section 3 explains the simulation design and the dif-

ferent scenarios considered in the simulation. Section 4 presents the results, and section

5 concludes.

2 Methodology

The following section is based on a production model with n(i = 1, ...n) decision

making units (DMUs, i.e., firms). Each firm employs M inputs xi1, ..., xiM with the

firms input vector xi to produce scalar output yi. All firms have access to the same

production technology with the production function f(x) that gives maximum output

for a given input level. All firms’ actual output can deviate from the maximum due

to random noise vi, non-negative inefficiency ui, and due to the influence of the firms’

environments zi (with zi = zi1...ziL) with the impact δ = (δ1, ..., δL). The multiplicative

model is written as yi = f(xi)∗eεi with ε = δzi+vi−ui, which allows two equally valid

interpretations: δz influences the location of the frontier and the attainable output

for each firm depending on z (yi = f(xi) ∗ δzi), or δzi influences the distance to the

production function (Johnson and Kuosmanen, 2011).

2.1 Conditional DEA

Initially proposed by Cazals et al. (2002) in the order-m framework and further devel-

oped by Daraio and Simar (2005), Daraio and Simar (2007b), and Daraio and Simar

(2007a), the conditional DEA is one extension of the standard DEA to incorporate

environmental factors in performance evaluations. The approach aims to compare only

units that operate under similar operational environments, i.e., the selection of the

reference group for a particular observation is conditional on their z-variables. Condi-

tional DEA does not rely on the separability condition between the output space and
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the space of z-variables (Simar and Wilson, 2007). Hence, the shape of the production

set, and therefore, the frontier are allowed to be influenced by environmental variables.

This frontier shift is exactly what regulators typically aim to compensate for.

The conditional DEA estimator computes efficiency scores based on an attainable pro-

duction set that is conditioned on a set of z-variables, denoted as Ψ̂z
DEA. The statistical

properties of this estimator are derived in Kneip et al. (2008), and its consistency is

established in Jeong et al. (2010). Estimating Ψ̂z
DEA implies the estimation of a non-

standard conditional distribution function, where the production process is conditional

to a particular level of z (Daraio and Simar, 2007b; Bădin et al., 2010). Since the latter

requires the application of a smoothing technique, we conduct kernel estimation with

an Epanechnikov kernel K(·) as suggested in Daraio and Simar (2005) and Daraio and

Simar (2007b). The kernel is defined as

Kh =
|zi − zk|

h
, (1)

where zi is the vector of z-variables of the unit of interest i, zk is the vectors of all other

observations, and h is the vector of selected bandwidths. For each of the environmental

variables a bandwidths is computed based on least squares cross validation following

Hall et al. (2004), Li and Racine (2007) and Li and Racine (2008). The bandwidth se-

lection procedure relies on estimating the conditional probability distribution function

of y given a particular level of z.4 Hall et al. (2004) emphasized that their proposed

method assigns large smoothing parameters to components of z that are irrelevant for

estimating the density of y. Therefore, the sizes of the selected bandwidths themselves

already contain information about the impact of particular z-variables on the output

y. The obtained bandwidths are then used to estimate the kernel function in equation

1 to compute the kernel probabilities. The firms closely located to company i in terms

of z thereby receive higher kernel probabilities, whereas small (or even zero) kernel

probabilities are assigned to firms facing very different operating environments than

company i.5

The conditional DEA efficiency measure θ̂DEA(x, y|z) for a single observation is defined

as (Daraio and Simar, 2007b)

4For a detailed presentation, see Hall et al. (2004)
5We note that the estimated efficiency scores depend on the kernel smoothing procedure. Other

symmetric kernels with compact support and bandwidths selection procedures can be applied, see
e.g., Cazals et al. (2002); Daraio and Simar (2005, 2007b).
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θ̂DEA(x, y|z) = max {θ > 0 | θy ≤
∑n

i|z−h≤zi≤z+h λiyi

x ≥
∑n

i|z−h≤zi≤z+h λixi∑n
i|z−h≤zi≤z+h λi = 1, i = 1, ..., n},

(2)

where h represents the bandwidths. For each observation, the bandwidths determine

the range of z in which other observations are considered as being similar. Hence, only

observations within this range are considered as potential peers for the unit of interest

and are selected into the respective reference group. For implementation, the reference

set of firm i is restricted to those firms with positive kernel probabilities. The frontier

reference point of firm i is obtained by ŷi = θ̂i,DEA(xi, yi|zi) ∗ yi.

2.2 Latent class SFA

The latent class stochastic frontier (LC-SFA) estimator, proposed by Greene (2002),

Caudill (2003) and Orea and Kumbhakar (2004), belongs to class of stochastic and

parametric approaches, and tries to account for technological heterogeneity, often with

a focus on panel data. It is, to the authors knowledge, so far not used in regulation, but

gathered interest in scientific publications also in regulated sectors such as electricity

distribution (e.g., Cullmann, 2012; Llorca et al., 2014).

The LC-SFA accounts for heterogeneity among firms by endogenously sorting them

into a prespecified number of groups. For each group, a separate frontier is estimated,

and each firm gets a probability to belong to each group. The estimated frontiers of

the different groups are allowed to differ in their parameters, and, thus, in their shape.

Therefore, contrary to standard SFA with environmental factors, LC-SFA accounts

not only for a shift in the technology induced by the environmental factor, but also for

technological heterogeneity.

LC-SFA tries to estimate the group specific parameters for n observations with J(j =

1, ..., J) groups of the form ln yi = f(xi, βj) − ui|j + vi|j = f(xi, βj) + εi|j. Similar to

standard SFA, LC-SFA can be estimated via Maximum Likelihood, and needs several

further assumptions: a functional form for f(x) needs to be specified in advance (e.g.,

Cobb-Douglas or Translog). Distributional assumptions are necessary for the noise and

inefficiency components, which typically enter the likelihood function as normal noise,

v ∼ N(0, σv), and half-normal inefficiency, u ∼ N+(0, σu). Given these assumptions,

a log-density for firm i for each group j can be imposed with the standard param-

eterization σ2 = σ2
uj + σ2

vj, λ = σ2
uj/σ

2
vj and ε = ε(βj) = log y − logf(xi, βj) such
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that

logLFij = −1

2
∗ log

π

2
− 1

2
log σ2 + log Φ

(
− λε√

σ2

)
− ε2

σ2
(3)

The contribution of each firm to the final likelihood function is a function of the like-

lihoods of each observation in each class weighted with the firms probability to belong

to class j, Pij. The total contribution of firm i to the likelihood function is

LFi =
J∑
j=1

LFij ∗ Pij (4)

The probability to belong to a certain group is modeled with standard assumptions

on probabilities (0 ≤ Pij ≤ 1;
∑J

j=1 Pij = 1) using a multinomial logit model. At

this point, the environmental variables enter the likelihood function and determine the

probabilities of each firm to belong to each of the J groups, such that

Pij(ζj) =
exp(ζ ′jzi)∑J
j=1 exp(ζ ′jzi)

(5)

with ζ as logit parameters to estimate with ζJ = 0. Given this parameterization, the

final log-likelihood function to be maximized is obtained as

LF =
n∑
i=1

{
J∑
j=1

LFij ∗ Pij(ζj)

}
(6)

Note that each observation enters the likelihood function J times. Thus, each observa-

tion is influences the shape of each group to a certain degree depending on the weight

Pij(ζj). As a result, each firm has a reference point on each frontier. There are two

possible ways to obtain one final reference point (Orea and Kumbhakar, 2004): One

can either use the group frontier with the highest probability, or calculate a weighted

reference point using the conditional posterior class probabilities P (j|i). Following

Greene (2002) P (j|i) can be calculated as

P (j|i) =
LFij ∗ Pij(δj)∑J
j=1 LFij ∗ Pij(δj)

(7)

This paper uses the weighting approach because it incorporates more information about

the underlying data structure. Thus, a frontier reference point is calculated as weighted
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reference point from the J frontiers such that

ln ŷi =
J∑
j=1

P (j|i) ∗ ln f̂(x, βj) (8)

Finally, the maximization of the likelihood needs the a priori specification of the num-

ber of groups. As the number of parameters to estimate increases considerably with

the number of classes, information criteria, such as the Bayesian Information Criterion

(BIC), are used to account for the higher likelihood in a model with more parameters

as well as to penalize the larger number of parameters.

2.3 StoNEZD

The stochastic semi-nonparametric envelopment of z variables data (StoNEZD) pro-

posed by Johnson and Kuosmanen (2011) is a semi-nonparametric approach that ex-

tends the standard StoNED estimator (Kuosmanen and Kortelainen, 2012) to account

for environmental factors. So far, limited empirical experience has been gathered with

this estimator, but it is currently applied in the regulation of the Finish electricity

distribution sector (Kuosmanen, 2012).

StoNEZD tries to estimate a production frontier in two stages: In the first stage, an av-

erage production function g(x) is estimated using concave non-parametric least squares

(CNLS, Hildreth, 1954) taking into account the presence of z. In the second stage, g(x)

is shifted upwards to obtain a frontier estimate. This shift is based on the expected

value of inefficiency derived from the residuals from the first stage based on parametric

assumptions.6

Johnson and Kuosmanen (2011) show that a multiplicative production model yi =

f(xi) ∗ eε can be estimated with the two stage approach. For the first stage, a

quadratic programming problem (QP) estimates the shape of the average production

function g(x) without any assumptions on a functional form but establishes concav-

ity and monotonicity of the production function. Further, the QP directly takes into

account that the firms deviation from this average is influenced by the existence of z.

No distributional assumptions for u and v are necessary in this stage, but u, v and z

are assumed to be uncorrelated. To estimate g(x), Johnson and Kuosmanen (2011)

propose a minimization of the squared residual accounting for z using the following

6The approach is similar to modified ordinary least squares (MOLS, cp. Greene, 2007), but uses a
very flexible non-parametric first stage, rather than a standard least squares estimate.
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constrained QP:

min
α,β,δ,φ

n∑
i=1

(ln yi − ln φ̂i − z′iδ) (9)

s.t. φ̂i = αi + xiβi ∀i = 1, .., n

αi + xiβi ≤ αh + xiβh ∀h, i = 1, .., n

βi ≥ 0 ∀i = 1, .., n

This QP estimates firm-specific α and β coefficients that create linear hyperplanes φ̂,

which are tangent to the average production function and deliver the fitted values on

g(x) for each observation. α and β can be interpreted as the marginal products of the in-

puts. Microeconomic requirements on production functions are imposed as constraints:

The first constraint establishes a linear form of the hyperplanes. The second constraint

imposes concavity using Afriats inequalities (Afriat, 1967). These concavity constraints

relate the piece-wise linear hyperplanes for all observations against each other leading

to n2 separate constraints. The third constraint ensures monotonicity of the estimated

average production function. Further, the QP estimates the impact of the environmen-

tal factor z, δ̂, which is identical for all firms. Finally, a residual for each observation

containing only noise and inefficiency is given by η̂i = ln yi − ln φ̂i − δ̂zi = ε̂i − δ̂zi.
In the second stage, to shift the average production function ĝ(x) to the frontier, the

residuals η̂i of the QP are used to estimate the expected value of inefficiency µ. Further

distributional assumptions for noise and inefficiency are necessary. Following Kuosma-

nen and Kortelainen (2012), we assume a half-normal distribution for the inefficiency

term, u ∼ N+(0, σu), and a normal distribution for the noise term, v ∼ N(0, σv).

Kuosmanen and Kortelainen (2012) suggest using a method of moments (MM) esti-

mator following Aigner et al. (1977) to derive the expected value of inefficiency.7 This

approach uses the property of the third central moment of a normal-half-normally

distributed residual to be a function of only one parameter, σu. Using the empirical

third moment of the residuals, M̂3, an estimate σ̂u can be recovered by calculating

σ̂u = 3

√
M̂3√

2
π
∗[1− 4

π
]
. Subsequently, the expected value of inefficiency is calculated as

µ̂ = σ̂u ∗
√

2/π. Now, the frontier is derived as f̂(x) = ĝ(x) ∗ exp(µ̂). Firm-specific

frontier reference points can be estimated from the shifted average production function

accounting for the impact of z, such that ŷi = ĝ(xi) ∗ exp(δ̂zi) ∗ exp(µ̂) for each obser-

vation.

7Kuosmanen and Kortelainen (2012) also propose a pseudo-likelihood approach (PSL) following
Fan et al. (1996) to estimate the expected value of inefficiency. Throughout this paper, we use the
MM estimator due to its computational ease.
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2.4 Comparison of the estimators

The three estimators differ in their characteristics considerably, leading also to different

strength and weaknesses. First, their a priori assumptions on the production process

differ since cDEA is a non-parametric methodology, StoNEZD a semi-parametric and

LC-SFA a parametric estimator. While cDEA and StoNEZD need only few assump-

tions on the technology set, as, e.g., monotonicity, convexity of the production set

and certain scaling assumptions, LC-SFA demands a functional form to be specified

in advance (e.g., Cobb-Douglas or Translog). As a result, cDEA and StoNEZD are

more flexible in the frontier estimation; however, LC-SFA also allows for non-convex

production sets. This difference in the nature of the estimators is also reflected in their

asymptotic properties, and in particular in their rates of convergence: LC-SFA con-

verges with the standard parametric rate of convergence, n−1/2. On the contrary, DEA

converges with n−2/(m+q+1) with m and q being the number of inputs and outputs,

respectively. Thus convergence slows down considerably with an increasing number

of dimensions. Further, the conditional version is slower by a factor n−4/4+r with r

being the number of z-variables (Kneip et al., 1998; Jeong et al., 2010). For StoNEZD,

Johnson and Kuosmanen (2011) show that δ converges with the standard parametric

rate, n−1/2, while results for the non-parametric CNLS estimation remains open (Kuos-

manen et al., 2015). However, following Stone (1980, 1982), Johnson and Kuosmanen

(2011) suggest an upper limit n−2d/(2d+m) with d being the degree of differentiability

and m as the number of inputs. Thus, both, cDEA and StoNEZD suffer the “curse of

dimensionality” with increasing data demand for additional dimensions on the input

and output side.

Second, the estimators differ in the treatment of inefficiency and noise. cDEA is purely

deterministic and does not consider the existence of noise, i.e., σ2
v = 0. This makes the

efficiency estimates prone to outliers, which can lead to an overestimation of the fron-

tier. On the contrary, LC-SFA and StoNEZD allow a differentiated treatment based on

distributional assumptions with σ2
v ≥ 0, which makes them less prone to noise but may

lead to an underestimated frontier in settings with very low noise. Further, estimated

frontiers and efficiency point estimates may vary with the distributional assumption

for inefficiency and noise.

Third, the three estimators vary considerably in their treatment of the environmental

factors. cDEA constructs observation-specific reference sets depending of the realiza-

tion of z and the estimated corresponding bandwidth. Thus, the estimated effect of the

z variable on the frontier is also observation-specific. On the contrary, StoNEZD uses
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the whole sample as a reference set resulting in an effect of z on the frontier common

to all observations. LC-SFA uses all observation in the frontier estimation, and the

reference sets are weighted with the probabilities of group membership. As a result,

with LC-SFA the effect of the z variable on the frontier is also weighted and varies

from one firm to the another.

Fourth, StoNEZD is a two-stage approaches, cDEA is a one-stage approach estimated

in two stages, and LC-SFA is a one-stage approach. Under cDEA, inefficiency and

potential noise may influence the bandwidth estimate, which ultimately influence the

reference sets. Similarly, in the first stage of the StoNEZD the δ coefficient might catch

up effects from the so-far neglected inefficiency term. These problems should not be

present in the LC-SFA estimation, since LC-SFA considers environmental factors, noise

and inefficiency in one estimation.

And fifth, the approaches differ with respect to the identification of peer units, which

is a desirable property from a regulatory perspective because it provides guidance to

imitate best practice. cDEA clearly identifies the reference set with similar units, and

the units that span the frontier. StoNEZD allows to identify at least the observations

that share a facet of the frontier. Such identification is not possible with LC-SFA.

Further, the weighting approach in the LC-SFA can project all firms on different levels

between multiple group frontiers.

3 Simulation design

3.1 The DGP

This paper aims on evaluating the methods presented in section 2 using Monte Carlo

simulation techniques with a focus on environmental variables in regulatory bench-

marking. This allows to assess the estimators’ performance as the true position of the

frontier and its characteristics are known. By varying the parameters of the frontier

and components of the observations, such as environmental factors, noise, and ineffi-

ciency, different set-ups likely to be observed in reality can be simulated. Our data

generating processes (DGPs) try to mimic real regulatory data to simulate cases that

could be encountered by regulatory authorities. Therefore, regulatory data of electric-

ity distribution firms from Finland (Kuosmanen, 2012), Norway (Bjørndal et al., 2010),

and Germany (Agrell et al., 2013b) was analyzed.

To construct our datasets, we calculate a one-dimensional output variable yi for each

of the n(i = 1, ..., n) observations. For each firm, yi is a function of the input vector xi

collecting M inputs (xi1, ..., xiM) that are transformed into outputs using a production
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function f(x). Each firm operates under certain environmental conditions zi1...ziL that

influence the maximum output f(xi) with an impact vector δ = (δ1, ..., δL) that is com-

mon to all firms. Each firms observed output may further deviate from this maximum

due to inefficiency ui and noise vi. The output yi is calculated as

yi = f(xi) ∗ exp(δzi) ∗ exp(vi − ui) (10)

Functional form

For the production function f(x) we assume a Translog specification such that

f(x) = po

M∏
m=1

x(pm)
m

M∏
m=1

x(1/2)∗
∑M
l=1 pmllnxl

m (11)

We specify decreasing returns to scale with the following parameters: p0 = 1, pm = 0.15,

pml = 0.05 for m = l and pml = 0.01 for m 6= l.

Sample sizes

The sample sizes takes into account that regulatory authorities typically face a wide

spread in terms of firm size with concentration among the smaller firms, and a small

number of considerably larger firms. We set the number of small firms in the sample to

nsmall = 25, 50, 100, 150, 250. Additionally, we assume that 4% of the firms are at least

twice as large as the largest “small” firm in terms of the upper bound of the inputs,

such that nlarge = d0.04∗nsmalle. Thus, the total number of observations in the sample

is 26, 52, 104, 156, 260.8

Noise and inefficiency

We assume noise to be normally distributed and inefficiency to follow a half-normal,

i.e., v ∼ N(0, σ2
v) and u ∼ |N(0, σ2

u)|. For σ2
v and σ2

u we assume σu = {0.05, 0.1, 0.15}
and σv = {0, 0.05} for a total of nine potential noise/inefficiency set-ups with noise-to-

signal ratios varying between 0 and 2. For the different levels of σu, the expected value

of inefficiency, µ, varies between 4 and 12%. We refrain from higher levels of noise due

to the typically strict standards for data collection and measurement for regulatory

data. Following Badunenko et al. (2012), we discard draws with the wrong (positive)

skewness of the composite error term (v − u).

8Larger sample sizes are not considered because simulation with a large number of replications is
computationally burdensome if not impossible.
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HH
HHHHσv

σu 0.05 0.1 0.15

0 0 0 0
0.05 1 0.5 0.333̄
0.1 2 1 0.666̄

µ 4.0% 8.0% 12.0%

Table 1: Noise-to-signal ratios and expected inefficiency for different σu and σv

Inputs

The number of inputs considered varies by regulator, and, e.g., Finland bases their

regulation of electricity distribution system operators (DSOs) on three inputs, Norway

uses five, and Germany uses even nine. We assume that each firm employs four inputs

(M = 4), which are correlated uniform variables. We define the range of the inputs

to vary between [0, 10] for small firms and [20, 30] for large firms. Correlations among

the inputs are given by the following correlation matrix indicating moderate to high

correlation between 0.55 and 0.85.

ρX =


1 0.55 0.65 0.75

1 0.7 0.8

1 0.85

1

 (12)

The inputs, however, are still random numbers with variation in the observed empirical

correlations in the generated data. To ensure comparability of the data sets, we discard

sets in which at least one correlation deviates from this matrix by ±0.05.

Environmental variables

We consider four environmental factors, z1, ..., z4, of which three are randomly drawn

variables, and one is correlated with the inputs. z1 is drawn from N(1, 0.152). Thus, z1

is symmetrically distributed with mean one, and values below zero are basically ruled

out. The second environmental factor, z2, is drawn from an exponential distribution

with a rate of 5.5 truncated at 1, i.e., z2 ∼ TExp(5.5, 1). Thus, only realizations in

(0, 1] are possible and very small values of z2 are very likely compared to values close to

one. This variable resembles an operational condition measured in percentage, e.g., the

underground cabling in an electricity distribution network. The third environmental

13



Variable Distribution Support Mean ρX

z1 N(1, 0.152) (−∞,∞) 1 0
z2 TExp(5.5, 1) (0, 1] 0.178 0
z3 Γ(2, 1) (0,∞) 2 0
z4 Γ(2, 1) (0,∞) 2 0.5

Table 2: Properties of considered environmental variables

factor, z3, is drawn from a Gamma distribution Γ(2, 1) with a mean of 2. Again, values

below zero cannot be observed, but the distribution is not truncated at the upper

end. The fourth environmental factor, z4, also stems from a Γ(2, 1) distribution, but

is correlated with the inputs with ρX = 0.5. z3 and z4 resemble, for example, weather

conditions, which are extreme in a few cases.

3.2 Scenarios considered

Table 3 lists the twelve scenarios we consider. First, we construct four baseline sce-

narios BL1 to BL4 which include one environmental factor each, z1 to z4. For these

baseline scenarios, the impact of the environmental variables on the frontier is small

to moderate, with an average frontier shift of about 5% (cp. Table 3).

Second, we construct four high impact scenarios (HI1, ..., HI4), which triple the impact

of the environmental variables, δl, on the frontier. For these high impact scenarios, the

average frontier shift varies between 14.7 and 15%. Thus, the firms’ average deviation

from the frontier is driven more by the environmental variables than by inefficiency.

Third, we construct four scenarios with multiple z variables (HI1, ..., HI4), for which

two environmental factors impact the frontier. Four scenarios with multiple z’s are

constructed, MZ1 to MZ4. For these scenarios, the average frontier shift varies be-

tween 9.8 and 19.6%. We use z1 and z2 to influence the firms’ production potentials. In

the scenarios MZ1 and MZ2, the environmental variables are uncorrelated, whereas

in MZ3 and MZ4 we set ρz1,z2 = 0.5.

3.3 Estimation procedure

To cover a large spectrum of potential datasets, we estimate each of the 12 scenarios

for each sample size and for each of the noise-to-signal scenarios in Table 1, which

gives a total of 12*5*9=540 cases to simulate. We set the number of replications at

R = 100 with fixed seeds. This gives a total of 54.000 estimations for each of the three

estimators. This allows obtaining replicable results with considerable generality with

a solvable number of cases to analyze.
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BL1 BL2 BL3 BL4

zl z1 z2 z3 z4
δl ∗ z̄l -0.05 -0.3 -0.025 -0.025
1-exp(δl ∗ z̄l) 4.9% 5% 5% 5%

HI1 HI2 HI3 HI4

zl z1 z2 z3 z4
δl ∗ z̄l -0.15 -0.9 -0.075 -0.075
1-exp(δl ∗ z̄l) 14,7% 15% 15% 15%

MZ1 MZ2 MZ3 MZ4

zl z1, z2 z1, z2 z1, z2 z1, z2
ρz1,z2 0 0 0.5 0.5
δl ∗ z̄l -0.05, -0.3 -0.1, -0.6 -0.05, -0.3 -0.1, -0.6
1-exp(

∑
l δl ∗ z̄l) 9.8% 19.6% 9.8% 19.6%

Table 3: Scenarios

For each of the 540 cases, we generate one set of inputs and environmental factors.

For each of these 540 cases, we generate R random draws of noise and inefficiency and

then calculate the observed output. Therefore, variation among the R draws of one

case stems only from variation in noise and inefficiency, and not from variation in the

inputs or the environmental conditions.

For the StoNEZD estimator, estimation of the expected value of inefficiency is based

on a Method of Moments estimator. Following Kuosmanen and Kortelainen (2012), if

wrong skewness occurs in the estimation of the expected inefficiency, i.e., M̂3 > 0, we

set M̂3 = −0.0001. For the LC-SFA estimator, we use a Cobb-Douglas specification

for all sample sizes. To choose the optimal number of groups, LC-SFA is estimated for

J = {2, 3, 4} and the estimation with the optimal BIC is chosen and reported. Further,

to reduce the risk of local optima in the ML procedure, for each J optimization is

carried out five times with random starting values and the solution with the best BIC

is reported. For the cDEA approach, we use an Epanechnikov kernel following Daraio

and Simar (2005) and Daraio and Simar (2007b). Bandwidths are computed using

least squares cross validation proposed by Hall et al. (2004), Li and Racine (2007) and

Li and Racine (2008).

For all estimators, if the estimations fail for some reason, we exclude the reported

results for these cases. We implement LC-SFA and cDEA using R (R Core Team,

2015) with the packages Benchmarking, np, minqa, and lpSolveAPI. We implement

StoNEZD using GAMS version 24.2.1. We run all simulations with a 32 CPU 2.8 MHz
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AMD with 512 GB memory.

3.4 Performance measures

We evaluate the performance of the different approaches based on the estimated frontier

reference points.9 We consider the bias and the mean squared error (MSE) as the

criteria following the literature on simulation design in efficiency analysis (e.g., Andor

and Hesse, 2014; Kuosmanen et al., 2013). The bias delivers the average total deviation

from the true frontier in percentage. A positive sign indicates overestimation, i.e., the

firms targets are set to high. The MSE, which is the average squared deviation from

the frontier, penalizes larger deviations more strongly, and a higher value indicates a

stronger deviation from the true frontier.

We calculate a firm’s optimal output given its environmental conditions, f̂ z(xi), using

the true value on the frontier f(xi) corrected by the effect of the environmental variable

f z(xi) = f(xi) ∗ exp(
∑

l δlzli). Based on the estimated frontier reference point f̂(x|z)

for n observation and R simulation replications, the performance measures are defined

as follows:

BIAS =
1

nR

R∑
r=1

n∑
i=1

f̂(x|z)− f z(xi)
f z(xi)

(13)

MSE =
1

nR

R∑
r=1

n∑
i=1

(f̂(x|z)− f z(xi))2 (14)

4 Results

4.1 Baseline scenarios

Results of the BL scenarios in terms of bias and MSE are shown in Figures 1 to 4.

Detailed numerical results are provided in the appendix, Tables 4 to 7.

BL1, the baseline scenario with a normally distributed operational condition, shows

very different patterns for the three estimators. Common to all of them, however, is

that although the average bias does not necessarily increase with increasing noise, a

decline in accuracy occurs in terms of MSE. This indicates declining accuracy, but not

over- or underestimation.

9Alternatively, efficiency scores of the DMUs could be evaluated, but this requires additionally
selecting an efficiency estimator. Using frontier reference points avoids, e.g., the widely used but
inconsistent JLMS point efficiency estimate (Jondrow et al., 1982) for StoNEZD and LC-SFA. As
Kuosmanen (2012) points out, a consistently estimated frontier could be more suitable then an incon-
sistent point estimate of efficiency.
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cDEA shows that the bias increases with the number of observations, increases strongly

with the level of noise, but is stable with the level of inefficiency in the model. Under

nearly all simulated conditions with noise, cDEA tends to overestimate the reference

points leading to unreasonably high output requirements for the firms. This indicates

that cDEA undercompensates for the environmental conditions if noise is present.

LC shows the lowest bias and MSE among the three estimators, irrespective of sample

size and noise-to-signal ratio. The estimated absolute bias is low already for small

samples, is nearly identical for different values of σu, and decreases with σv, whereas

the MSE decreases with sample size, but increases with noise. LC overestimates the

true frontier if low inefficiency is present, but slightly underestimates the true frontier

if inefficiency increases, thus leading to an overcompensation of environmental condi-

tions.

StoNEZD shows a good performance with small samples, and no reduction of the abso-

lute bias but shrinking MSE with increasing sample size in most cases. Results indicate

a better performance with lower values of inefficiency, whereas the level of noise seems

to be of minor importance. The MSE indicates that StoNEZD leads to the compar-

atively worst results if no noise but moderate to high inefficiency is present, whereas

under high noise levels StoNEZD can compete with LC in terms of MSE, but tends to

underestimate the frontier and overcompensates for environmental conditions.

BL2 to BL4, the other baseline scenarios, show strikingly similar patters. cDEA

shows an underestimation of the frontier only for no-noise scenarios with small samples,

whereas it overestimates the frontier in all other cases. StoNEZD generally underesti-

mates the frontier and overcompensates for the environmental conditions. LC, which

shows the lowest absolute bias, performs well in all settings with some noise, whereas

there is a downward bias for data without noise. StoNEZD competes with LC in terms

of MSE in high noise scenarios. Thus, the distribution of the z-variables seems to be

of minor importance as the results are similar for BL1 to BL3. Comparing BL3 and

BL4 also indicates that a high correlation of inputs and operational conditions does

not influence the estimators’ accuracy.
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Figure 1: BL1 - Bias (upper 3*3 panels) and MSE (lower 3*3 panels)
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Figure 2: BL2 - Bias (upper 3*3 panels) and MSE (lower 3*3 panels)
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Figure 3: BL3 - Bias (upper 3*3 panels) and MSE (lower 3*3 panels)
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Figure 4: BL4 - Bias (upper 3*3 panels) and MSE (lower 3*3 panels)
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4.2 High Impact scenarios

Next, we double the impact of the operational conditions on the output potential of

the firms by doubling the δ-coefficient. Results for these four high impact scenarios

HI1 to HI4 in terms of bias and MSE are shown in Figures 5 to 8. Detailed numerical

results are provided in the appendix, Tables 8 to 11.

Again, the three estimators react differently to the changing conditions in terms of

noise, sample size, and inefficiency. Generally, HI1 shows deteriorating accuracy of the

estimators in terms of MSE with increasing noise.

cDEA shows an increase of bias and MSE with increasing sample size and with increas-

ing noise levels, whereas the level of inefficiency seems to be of minor importance. Again

in nearly all cases, cDEA overestimates the output potential of the firms and under-

compensates for the environmental conditions. The effect, which is more pronounced

in noisy settings, indicates that cDEA controls for the environment, but suffers from

its deterministic nature.

LC shows a reduction of bias with increasing noise, but no considerable effect of in-

efficiency and sample sizes. LC performs best in nearly all considered noise-to-signal

ratios in terms of bias and MSE.

StoNEZD shows a general tendency to underestimate the frontier, a negative influence

of increasing inefficiency on model accuracy, but no clear impact of noise levels and

sample sizes on estimation accuracy. StoNEZD performs well with moderate and high

noise and accounts well for the stronger impact of environmental factors, but performs

poorly when inefficiency increases. Only under high noise and high inefficiency can

StoNEZD compete with LC in terms of MSE, but with on average higher absolute

bias.

A comparison of the four different high impacts scenarios indicates that the patterns for

the different estimators are similar irrespective of the distribution of the operational

conditions, and irrespective of the correlation among inputs and z-variable. cDEA,

however, shows a higher estimated bias and MSE higher for the non-normal cases,

HI2, HI3 and HI4.

Compared to the baseline scenarios, the three estimators show the same patterns. How-

ever, while the results for the normally distributed environmental variables are similar

(compare BL1 and HI1), a stronger impact of the truncated exponentially distributed

environmental factor has a negative effect on cDEA’s accuracy (compare BL2 and

HI2). The same applies to the Gamma-distributed environmental factor (compare

BL3 and HI3).
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Figure 5: HI1 - Bias (upper 3*3 panels) and MSE (lower 3*3 panels)
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Figure 6: HI2 - Bias (upper 3*3 panels) and MSE (lower 3*3 panels)
Note: StoNEZD with n=260, σu = σv = 0.05 failed to converge
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Figure 7: HI3 - Bias (upper 3*3 panels) and MSE (lower 3*3 panels)
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Figure 8: HI4 - Bias (upper 3*3 panels) and MSE (lower 3*3 panels)

26



4.3 Multiple-z scenarios

Next, we increase the number of z-variables that influence firms’ output potential from

one to two variables. One of the variables follows a normal, the other a truncated expo-

nential distribution; different levels of impact and correlation are considered. Results

for the four multiple-z scenarios MZ1 to MZ4 in terms of bias and MSE are shown in

Figures 9 to 12. Detailed numerical results are provided in the appendix, Tables 12 to

15.

The results of the multiple-z scenarios show generally similar patterns as the baseline

and high impact scenarios. For MZ1, cDEA performs well in no-noise scenarios, but

shows tendencies to overestimate output potentials if noise is included in the data gen-

eration. Further, the bias and MSE of cDEA increases with sample size.

LC shows the best results in noisy scenarios, whereas the performance deteriorates

compared to the other estimators if no noise is considered. However, in all cases with

a certain level of noise and inefficiency, LC outperforms the other two estimators in

terms of both performance measures.

StoNEZD shows a general tendency to underestimate the frontier. This downward bias,

however, is stable irrespective of the sample sizes, but tends to increase with considered

inefficiency. Nevertheless, despite this downward bias, overall accuracy measured with

MSE indicates a good performance of StoNEZD in cases with moderate and high noise

and all levels of inefficiency.

A comparison among the different MZ scenarios shows that these patterns are sta-

ble across different levels of impact of the operational conditions (compare MZ1 and

MZ2), but also across different correlations among z-variables and inputs (compare

MZ1 and MZ3, and MZ2 and MZ4, respectively). Therefore, the patterns revealed

by the simulation results are generalizable for a large number of different settings.

Compared to BL and HI, cDEA shows a deteriorating performance in the scenarios

with multiple z’s. However, this negative effect can be due to including the exponen-

tially distributed z-variable, having a second environmental factor, or having an overall

higher impact compared to BL. LC and StoNEZD show no considerable differences in

terms of bias and MSE.
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Figure 9: MZ1 - Bias (upper 3*3 panels) and MSE (lower 3*3 panels)
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Figure 10: MZ2 - Bias (upper 3*3 panels) and MSE (lower 3*3 panels)
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Figure 11: MZ3 - Bias (upper 3*3 panels) and MSE (lower 3*3 panels)
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Figure 12: MZ4 - Bias (upper 3*3 panels) and MSE (lower 3*3 panels)
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5 Discussion & conclusion

This paper compares conditional DEA (Daraio and Simar, 2005, 2007b), latent class

SFA (Orea and Kumbhakar, 2004; Greene, 2005), and StoNEZD (Johnson and Kuos-

manen, 2011), in terms of their ability to identify production frontiers in the presence

of environmental factors. In a Monte Carlo simulation, data generation processes repli-

cate regulatory data from the energy sector in terms of sample size, sample dispersion

and distribution, and correlations of variables. Twelve scenarios modeling different

impacts of environmental factors on production are considered. In terms of estimation

accuracy, our results show several patterns that hold across the different scenarios.

cDEA performs well in cases without noise, but the results do not indicate consistency

of the estimator. Further, results indicate a general tendency of cDEA to overesti-

mate production potentials and, therefore, undercompensation for the impact of the

operational conditions, in noisy and non-noisy settings. This is surprising, given the

typical finding of DEA to show a downward bias (see, e.g., Simar and Wilson, 1998,

2000). While inferring that the reference set restriction based on kernel estimation

may not sufficiently separate observations according to their environmental factors,

kernel estimates do not necessarily lead to an excessive reference set restriction. The

results suggest that regulators can use cDEA in cases that demand clearly identified

reference units, comprise very low noise, and preferably with small samples up to 100

observations.

LC outperforms the other two estimators in all cases considered except for no-noise

scenarios. It should be noted that the results are obtained using a Cobb-Douglas spec-

ification of the estimator, whereas the DGP follows a Translog specification. Thus,

although the initial purpose of LC is to account for (unobserved) technological het-

erogeneity, i.e., changes in the parameters of the production function, LC-SFA is also

suitable to account for differences in operational conditions. However, two caveats

should be kept in mind. First, LC models have strong predictive power, but the co-

efficients may have counterintuitive signs. Therefore, the chosen and reported results

often include estimations with negative marginal products of some inputs. Such es-

timation results could be discarded by researchers since they violate microeconomic

theory. Second, contrary to cDEA, LC-SFA does not generate reference units, i.e., the

used frontier reference points in the models do not indicate which firms are used to set

the benchmarks. In regulatory benchmarking models, such peer units may be benefi-

cial to provide guidance for firms apart from the frontier. Nonetheless, the results of

the simulation indicate that LC is the regulators’ low-risk choice, since bias and MSE

indicate most often the best results, whereas overestimation of the frontier, i.e., setting

overly optimistic output targets, occurs in only a few cases.
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StoNEZD performs well in cases with considerable noise, and especially in cases with

a strong noise-to-signal ratio, i.e., low inefficiency, which is in line with the finding

by Andor and Hesse (2014) for the standard StoNED without z-variables. StoNEZD

performs worse than its competitors in cases with high inefficiency and very low noise.

These results are independent of the sample size, and although MSEs indicate consis-

tency of the estimator, the estimator performs quite well already with small samples.

Generally, StoNEZD tends to considerably underestimate the frontier. The deviations,

however, are most often in a small range as indicated by low MSE. The results suggest

that StoNEZD is the choice of the regulators expecting overall low potential efficiency

improvements but rather strong noise, e.g., by impact from unobserved environmental

factors. Further, the general downward bias of the frontier makes the estimator ap-

pealing to ensure feasible output targets.

All our result show that increasing noise negatively affects estimators’ accuracy in terms

of MSE. Hence, regulators need to scrutinize data quality, set strict standards for data

collection, and account for potential heterogeneity on the firm level before applying

frontier estimation. Reliable estimation results can help to set feasible improvement

targets, and possibly support the acceptance of regulatory schemes by regulated firms.

However, the results need to be interpreted with some care because the simulation

is limited to the parameter space covered by the DGP. The DGP considered in this

simulation models a large number of potential realizations, but cannot account for the

entirety of datasets regulators may face. Future studies including technological het-

erogeneity induced by environmental factors and less well-behaved functional forms in

the DGP may provide additional insights.
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6 Appendix

6.1 BL - Bias and MSE

BL1 cDEA LC StoNEZD

n
HHHHHσv

σu 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

26

0
-0.024 -0.033 -0.089 -0.078 -0.104 -0.113 -0.086 -0.205 -0.238

(0.023) (0.024) (0.025) (0.011) (0.021) (0.028) (0.019) (0.054) (0.067)

0.05
0.056 -0.061 0.032 0.001 -0.026 -0.079 -0.134 -0.195 -0.237

(0.041) (0.046) (0.043) (0.028) (0.036) (0.045) (0.031) (0.050) (0.071)

0.1
0.180 0.101 0.079 0.040 0.028 -0.004 -0.131 -0.185 -0.226

(0.100) (0.096) (0.080) (0.060) (0.065) (0.072) (0.037) (0.060) (0.075)

52

0
0.041 -0.121 -0.026 -0.066 -0.086 -0.113 -0.086 -0.195 -0.236

(0.027) (0.032) (0.021) (0.009) (0.014) (0.022) (0.018) (0.044) (0.062)

0.05
0.163 0.151 0.104 0.005 -0.045 -0.089 -0.138 -0.186 -0.223

(0.068) (0.076) (0.077) (0.022) (0.028) (0.036) (0.029) (0.048) (0.064)

0.1
0.305 0.284 0.163 0.036 -0.042 -0.052 -0.129 -0.188 -0.236

(0.170) (0.163) (0.130) (0.041) (0.041) (0.048) (0.032) (0.051) (0.073)

104

0
0.050 0.063 0.019 -0.067 -0.089 -0.112 -0.123 -0.196 -0.243

(0.023) (0.033) (0.021) (0.009) (0.014) (0.022) (0.021) (0.045) (0.064)

0.05
0.297 0.241 0.222 -0.024 -0.085 -0.100 -0.125 -0.198 -0.235

(0.137) (0.116) (0.112) (0.018) (0.026) (0.036) (0.024) (0.048) (0.064)

0.1
0.461 0.429 0.416 0.004 -0.028 -0.068 -0.125 -0.193 -0.240

(0.314) (0.283) (0.254) (0.033) (0.035) (0.036) (0.027) (0.047) (0.065)

156

0
0.085 0.050 0.060 -0.058 -0.086 -0.095 -0.123 -0.197 -0.242

(0.029) (0.024) (0.027) (0.007) (0.014) (0.017) (0.020) (0.044) (0.063)

0.05
0.342 0.296 0.300 -0.022 -0.080 -0.122 -0.131 -0.196 -0.240

(0.172) (0.139) (0.142) (0.017) (0.023) (0.034) (0.024) (0.045) (0.064)

0.1
0.573 0.530 0.410 0.009 -0.040 -0.078 -0.130 -0.196 -0.243

(0.424) (0.380) (0.275) (0.031) (0.032) (0.040) (0.026) (0.046) (0.066)

260

0
0.144 0.088 0.089 -0.069 -0.092 -0.105 -0.114 -0.197 -0.243

(0.048) (0.030) (0.034) (0.009) (0.014) (0.019) (0.020) (0.043) (0.064)

0.05
0.410 0.402 0.359 -0.044 -0.087 -0.101 -0.135 -0.199 -0.241

(0.219) (0.224) (0.193) (0.015) (0.022) (0.028) (0.024) (0.046) (0.064)

0.1
0.672 0.665 0.606 -0.011 -0.063 -0.114 -0.127 -0.194 -0.240

(0.572) (0.553) (0.491) (0.022) (0.028) (0.038) (0.025) (0.044) (0.064)

Table 4: Bias (MSE) for Scenario BL1
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BL2 cDEA LC StoNEZD

n
HH

HHHσv

σu 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

26

0
-0.033 -0.097 -0.148 -0.071 -0.103 -0.123 -0.116 -0.203 -0.234

(0.017) (0.022) (0.042) (0.012) (0.020) (0.029) (0.021) (0.049) (0.064)

0.05
0.096 0.053 -0.023 0.008 -0.045 -0.086 -0.125 -0.185 -0.239

(0.058) (0.047) (0.043) (0.027) (0.030) (0.043) (0.033) (0.050) (0.074)

0.1
0.167 0.103 0.122 0.071 0.017 -0.028 -0.125 -0.193 -0.224

(0.109) (0.083) (0.093) (0.056) (0.061) (0.070) (0.040) (0.059) (0.073)

52

0
0.032 -0.038 -0.060 -0.059 -0.091 -0.114 -0.096 -0.194 -0.242

(0.021) (0.020) (0.024) (0.008) (0.015) (0.022) (0.018) (0.044) (0.066)

0.05
0.171 0.162 0.123 0.002 -0.033 -0.073 -0.125 -0.186 -0.241

(0.071) (0.075) (0.070) (0.024) (0.022) (0.033) (0.026) (0.045) (0.068)

0.1
0.353 0.315 0.251 0.044 -0.010 -0.037 -0.122 -0.191 -0.244

(0.224) (0.181) (0.148) (0.039) (0.045) (0.047) (0.032) (0.051) (0.072)

104

0
0.076 0.069 -0.012 -0.055 -0.082 -0.108 -0.114 -0.194 -0.245

(0.026) (0.032) (0.023) (0.008) (0.013) (0.020) (0.020) (0.043) (0.066)

0.05
0.329 0.280 0.253 0.014 -0.046 -0.099 -0.114 -0.192 -0.234

(0.177) (0.139) (0.138) (0.022) (0.022) (0.034) (0.023) (0.044) (0.063)

0.1
0.492 0.465 0.425 0.051 -0.006 -0.060 -0.123 -0.191 -0.238

(0.340) (0.325) (0.298) (0.043) (0.039) (0.042) (0.027) (0.046) (0.066)

156

0
0.096 0.113 0.043 -0.048 -0.086 -0.114 -0.110 -0.197 -0.242

(0.039) (0.043) (0.025) (0.007) (0.014) (0.020) (0.019) (0.045) (0.063)

0.05
0.373 0.338 0.311 -0.020 -0.050 -0.084 -0.122 -0.195 -0.240

(0.198) (0.170) (0.164) (0.018) (0.024) (0.028) (0.024) (0.044) (0.064)

0.1
0.642 0.534 0.471 0.017 -0.035 -0.080 -0.115 -0.192 -0.240

(0.531) (0.384) (0.327) (0.031) (0.037) (0.040) (0.024) (0.045) (0.065)

260

0
0.112 0.108 0.079 -0.055 -0.076 -0.110 -0.131 -0.199 -0.242

(0.037) (0.040) (0.033) (0.007) (0.012) (0.019) (0.022) (0.044) (0.063)

0.05
0.442 0.425 0.392 -0.040 -0.074 -0.102 -0.123 -0.196 -0.243

(0.269) (0.249) (0.230) (0.016) (0.020) (0.027) (0.023) (0.044) (0.065)

0.1
0.752 0.699 0.630 0.001 -0.040 -0.080 -0.129 -0.191 -0.242

(0.709) (0.620) (0.505) (0.024) (0.026) (0.034) (0.024) (0.044) (0.064)

Table 5: Bias (MSE) for Scenario BL2
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BL3 cDEA LC StoNEZD

n
HH

HHHσv

σu 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

26

0
-0.087 -0.054 -0.070 -0.068 -0.090 -0.120 -0.108 -0.188 -0.233

(0.020) (0.025) (0.027) (0.011) (0.019) (0.032) (0.020) (0.046) (0.065)

0.05
-0.032 0.052 0.037 0.013 -0.053 -0.034 -0.116 -0.183 -0.236

(0.042) (0.043) (0.045) (0.026) (0.033) (0.041) (0.030) (0.052) (0.070)

0.1
0.158 0.149 0.073 0.106 0.038 0.054 -0.128 -0.184 -0.222

(0.105) (0.099) (0.100) (0.072) (0.060) (0.112) (0.039) (0.057) (0.073)

52

0
-0.049 -0.015 -0.058 -0.051 -0.067 -0.076 -0.128 -0.186 -0.237

(0.018) (0.023) (0.021) (0.009) (0.013) (0.017) (0.022) (0.042) (0.063)

0.05
0.166 0.142 0.095 0.005 -0.034 -0.056 -0.129 -0.184 -0.227

(0.070) (0.065) (0.068) (0.022) (0.022) (0.029) (0.028) (0.046) (0.064)

0.1
0.206 0.282 0.300 0.067 0.025 -0.017 -0.132 -0.180 -0.230

(0.134) (0.175) (0.175) (0.044) (0.042) (0.055) (0.033) (0.049) (0.066)

104

0
0.096 0.056 0.049 -0.061 -0.060 -0.072 -0.126 -0.198 -0.243

(0.033) (0.030) (0.032) (0.010) (0.011) (0.014) (0.022) (0.045) (0.065)

0.05
0.302 0.274 0.248 -0.013 -0.034 -0.052 -0.127 -0.193 -0.242

(0.134) (0.124) (0.115) (0.019) (0.020) (0.025) (0.025) (0.045) (0.066)

0.1
0.457 0.410 0.415 0.039 -0.009 -0.032 -0.129 -0.195 -0.236

(0.315) (0.271) (0.293) (0.035) (0.032) (0.032) (0.029) (0.048) (0.066)

156

0
0.095 0.074 0.060 -0.052 -0.062 -0.068 -0.129 -0.197 -0.242

(0.030) (0.031) (0.029) (0.008) (0.011) (0.014) (0.022) (0.044) (0.064)

0.05
0.369 0.318 0.305 -0.038 -0.049 -0.061 -0.123 -0.188 -0.238

(0.197) (0.172) (0.160) (0.015) (0.019) (0.022) (0.024) (0.043) (0.064)

0.1
0.501 0.541 0.496 0.022 -0.020 -0.057 -0.134 -0.196 -0.240

(0.355) (0.397) (0.353) (0.028) (0.029) (0.033) (0.025) (0.047) (0.066)

260

0
0.097 0.095 0.096 -0.045 -0.063 -0.071 -0.136 -0.199 -0.241

(0.032) (0.035) (0.037) (0.006) (0.011) (0.013) (0.023) (0.044) (0.062)

0.05
0.456 0.400 0.358 -0.020 -0.055 -0.064 -0.126 -0.192 -0.240

(0.268) (0.217) (0.186) (0.013) (0.015) (0.018) (0.022) (0.043) (0.063)

0.1
0.693 0.678 0.607 0.002 -0.031 -0.048 -0.130 -0.194 -0.244

(0.603) (0.576) (0.487) (0.022) (0.023) (0.023) (0.025) (0.044) (0.066)

Table 6: Bias (MSE) for Scenario BL3
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BL4 cDEA LC StoNEZD

n
HH

HHHσv

σu 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

26

0
-0.018 -0.113 -0.133 -0.063 -0.095 -0.111 -0.101 -0.182 -0.244

(0.023) (0.028) (0.039) (0.012) (0.019) (0.028) (0.020) (0.044) (0.071)

0.05
0.113 -0.052 0.033 0.027 -0.008 -0.048 -0.135 -0.193 -0.233

(0.052) (0.047) (0.039) (0.030) (0.035) (0.040) (0.032) (0.051) (0.069)

0.1
0.179 0.118 0.076 0.086 0.047 -0.007 -0.134 -0.184 -0.211

(0.108) (0.096) (0.098) (0.073) (0.069) (0.061) (0.039) (0.057) (0.069)

52

0
-0.057 -0.077 -0.041 -0.059 -0.081 -0.085 -0.135 -0.196 -0.243

(0.014) (0.018) (0.029) (0.008) (0.014) (0.019) (0.023) (0.045) (0.067)

0.05
0.198 0.010 0.038 0.010 -0.026 -0.074 -0.143 -0.192 -0.244

(0.080) (0.044) (0.056) (0.021) (0.026) (0.032) (0.030) (0.047) (0.070)

0.1
0.272 0.213 0.138 0.081 0.014 -0.024 -0.125 -0.187 -0.242

(0.139) (0.119) (0.112) (0.046) (0.038) (0.045) (0.031) (0.050) (0.073)

104

0
0.002 0.040 -0.071 -0.051 -0.076 -0.078 -0.131 -0.197 -0.244

(0.015) (0.024) (0.027) (0.008) (0.013) (0.014) (0.023) (0.044) (0.065)

0.05
0.280 0.223 0.062 0.011 -0.045 -0.067 -0.117 -0.198 -0.243

(0.132) (0.105) (0.063) (0.016) (0.021) (0.028) (0.024) (0.046) (0.067)

0.1
0.477 0.396 0.330 0.048 -0.007 -0.039 -0.129 -0.194 -0.242

(0.330) (0.247) (0.204) (0.040) (0.034) (0.037) (0.027) (0.047) (0.067)

156

0
0.000 0.057 -0.035 -0.048 -0.076 -0.081 -0.138 -0.199 -0.244

(0.017) (0.024) (0.019) (0.007) (0.013) (0.015) (0.024) (0.044) (0.064)

0.05
0.341 0.267 0.098 -0.021 -0.039 -0.053 -0.122 -0.193 -0.244

(0.169) (0.130) (0.071) (0.016) (0.017) (0.022) (0.022) (0.045) (0.066)

0.1
0.512 0.500 0.416 0.029 -0.011 -0.080 -0.130 -0.184 -0.238

(0.364) (0.358) (0.280) (0.028) (0.031) (0.037) (0.026) (0.042) (0.064)

260

0
0.088 0.077 0.054 -0.048 -0.052 -0.084 -0.126 -0.197 -0.242

(0.028) (0.030) (0.023) (0.006) (0.008) (0.015) (0.021) (0.044) (0.062)

0.05
0.319 0.364 0.246 -0.017 -0.070 -0.083 -0.125 -0.198 -0.241

(0.158) (0.199) (0.123) (0.013) (0.018) (0.022) (0.022) (0.045) (0.063)

0.1
0.683 0.615 0.590 0.015 -0.047 -0.055 -0.128 -0.195 -0.238

(0.583) (0.498) (0.460) (0.026) (0.027) (0.028) (0.024) (0.045) (0.063)

Table 7: Bias (MSE) for Scenario BL4
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6.2 HI - Bias and MSE

HI1 cDEA LC StoNEZD

n
H
HHHHσv

σu 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

26

0
-0.014 -0.057 -0.128 -0.077 -0.109 -0.127 -0.072 -0.107 -0.239

(0.017) (0.026) (0.038) (0.012) (0.021) (0.031) (0.017) (0.023) (0.068)

0.05
-0.056 0.052 -0.008 -0.005 -0.035 -0.079 -0.128 -0.180 -0.234

(0.043) (0.050) (0.047) (0.027) (0.032) (0.043) (0.029) (0.049) (0.070)

0.1
0.195 0.141 0.124 0.086 0.023 0.023 -0.121 -0.185 -0.228

(0.120) (0.090) (0.081) (0.071) (0.058) (0.096) (0.037) (0.053) (0.070)

52

0
0.034 -0.034 -0.050 -0.074 -0.093 -0.110 -0.116 -0.194 -0.244

(0.019) (0.016) (0.019) (0.010) (0.017) (0.023) (0.021) (0.044) (0.066)

0.05
0.144 0.125 0.098 -0.012 -0.048 -0.066 -0.106 -0.194 -0.235

(0.070) (0.062) (0.068) (0.020) (0.025) (0.031) (0.025) (0.048) (0.067)

0.1
0.349 0.228 0.254 0.051 0.008 -0.045 -0.130 -0.185 -0.236

(0.201) (0.157) (0.139) (0.042) (0.040) (0.044) (0.031) (0.051) (0.067)

104

0
0.038 0.036 0.027 -0.062 -0.085 -0.108 -0.129 -0.196 -0.241

(0.019) (0.020) (0.029) (0.008) (0.014) (0.022) (0.022) (0.044) (0.064)

0.05
0.286 0.250 0.204 -0.030 -0.068 -0.096 -0.121 -0.193 -0.243

(0.131) (0.116) (0.088) (0.019) (0.023) (0.029) (0.024) (0.045) (0.066)

0.1
0.500 0.430 0.387 0.006 -0.046 -0.062 -0.124 -0.191 -0.237

(0.354) (0.282) (0.259) (0.033) (0.034) (0.037) (0.027) (0.047) (0.066)

156

0
0.096 0.065 0.035 -0.055 -0.085 -0.105 -0.122 -0.200 -0.242

(0.032) (0.026) (0.024) (0.007) (0.013) (0.020) (0.021) (0.045) (0.064)

0.05
0.373 0.290 0.278 -0.037 -0.062 -0.089 -0.117 -0.196 -0.239

(0.203) (0.141) (0.137) (0.017) (0.022) (0.029) (0.023) (0.045) (0.064)

0.1
0.537 0.529 0.501 0.015 -0.060 -0.088 -0.130 -0.193 -0.241

(0.402) (0.398) (0.368) (0.031) (0.033) (0.040) (0.026) (0.046) (0.066)

260

0
0.100 0.096 0.085 -0.067 -0.082 -0.107 -0.134 -0.200 -0.241

(0.030) (0.034) (0.032) (0.009) (0.013) (0.020) (0.022) (0.045) (0.063)

0.05
0.443 0.392 0.370 -0.038 -0.075 -0.116 -0.122 -0.194 -0.244

(0.262) (0.205) (0.192) (0.015) (0.020) (0.033) (0.022) (0.043) (0.065)

0.1
0.696 0.621 0.303 -0.011 -0.069 -0.083 -0.130 -0.197 -0.239

(0.598) (0.487) (0.220) (0.022) (0.026) (0.033) (0.025) (0.045) (0.063)

Table 8: Bias (MSE) for Scenario HI1
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HI2 cDEA LC StoNEZD

n
HH

HHHσv

σu 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

26

0
-0.100 -0.118 -0.163 -0.049 -0.073 -0.121 -0.093 -0.190 -0.246

(0.024) (0.041) (0.052) (0.015) (0.028) (0.034) (0.018) (0.045) (0.070)

0.05
0.086 0.054 0.060 0.007 -0.022 -0.059 -0.137 -0.192 -0.218

(0.045) (0.055) (0.057) (0.030) (0.049) (0.049) (0.031) (0.049) (0.064)

0.1
0.171 0.104 0.126 0.069 -0.004 0.033 -0.128 -0.190 -0.234

(0.118) (0.095) (0.120) (0.078) (0.058) (0.127) (0.039) (0.063) (0.076)

52

0
0.076 0.042 0.073 -0.001 -0.057 -0.051 -0.122 -0.192 -0.241

(0.035) (0.038) (0.086) (0.035) (0.026) (0.046) (0.022) (0.044) (0.064)

0.05
0.245 0.166 0.215 0.038 -0.020 -0.032 -0.122 -0.201 -0.237

(0.156) (0.115) (0.173) (0.043) (0.046) (0.052) (0.028) (0.051) (0.067)

0.1
0.363 0.350 0.258 0.094 0.013 -0.027 -0.126 -0.194 -0.237

(0.230) (0.225) (0.189) (0.073) (0.056) (0.056) (0.031) (0.051) (0.070)

104

0
0.017 0.105 0.071 -0.021 -0.046 -0.089 -0.135 -0.198 -0.242

(0.021) (0.064) (0.041) (0.022) (0.022) (0.025) (0.023) (0.045) (0.064)

0.05
0.395 0.286 0.273 0.040 -0.035 -0.056 -0.125 -0.195 -0.243

(0.281) (0.161) (0.160) (0.041) (0.032) (0.035) (0.024) (0.045) (0.066)

0.1
0.586 0.504 0.461 0.114 -0.007 -0.024 -0.130 -0.196 -0.232

(0.529) (0.393) (0.380) (0.074) (0.042) (0.059) (0.027) (0.048) (0.063)

156

0
0.194 0.143 0.160 0.008 -0.036 -0.068 -0.124 -0.199 -0.241

(0.115) (0.085) (0.098) (0.029) (0.031) (0.032) (0.021) (0.044) (0.064)

0.05
0.493 0.277 0.394 0.035 -0.019 -0.027 -0.124 -0.197 -0.239

(0.389) (0.151) (0.316) (0.039) (0.033) (0.045) (0.024) (0.045) (0.065)

0.1
0.671 0.623 0.561 0.091 0.006 -0.027 -0.117 -0.191 -0.238

(0.720) (0.605) (0.493) (0.070) (0.047) (0.052) (0.026) (0.046) (0.065)

260

0
0.197 0.194 0.160 0.020 -0.022 -0.042 0.100 -0.199 -0.242

(0.112) (0.107) (0.095) (0.030) (0.027) (0.031) (0.267) (0.044) (0.063)

0.05
0.528 0.497 0.463 0.018 -0.010 -0.066 -0.126 -0.196 -0.239

(0.425) (0.381) (0.321) (0.029) (0.035) (0.030) (0.023) (0.044) (0.062)

0.1
0.823 0.784 0.717 0.037 0.005 -0.040 -0.128 -0.194 -0.241

(0.897) (0.916) (0.724) (0.041) (0.047) (0.039) (0.024) (0.045) (0.065)

Table 9: Bias (MSE) for Scenario HI2
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HI3 cDEA LC StoNEZD

n
HH

HHHσv

σu 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

26

0
-0.078 -0.129 -0.058 -0.052 -0.077 -0.096 -0.135 -0.193 -0.239

(0.017) (0.033) (0.031) (0.011) (0.020) (0.033) (0.024) (0.045) (0.067)

0.05
0.094 0.023 0.012 0.027 -0.014 -0.020 -0.114 -0.192 -0.238

(0.058) (0.058) (0.062) (0.036) (0.036) (0.049) (0.031) (0.053) (0.072)

0.1
0.138 0.056 0.148 0.094 0.029 0.040 -0.125 -0.195 -0.235

(0.109) (0.072) (0.117) (0.072) (0.076) (0.084) (0.035) (0.059) (0.075)

52

0
0.031 0.044 0.025 -0.050 -0.054 -0.062 -0.121 -0.189 -0.239

(0.026) (0.037) (0.044) (0.013) (0.021) (0.022) (0.022) (0.043) (0.065)

0.05
0.190 0.146 0.159 0.028 -0.008 -0.049 -0.125 -0.190 -0.239

(0.096) (0.087) (0.099) (0.030) (0.036) (0.043) (0.026) (0.049) (0.067)

0.1
0.342 0.305 0.209 0.096 0.051 -0.012 -0.126 -0.188 -0.229

(0.214) (0.171) (0.159) (0.058) (0.052) (0.051) (0.032) (0.051) (0.068)

104

0
0.116 0.051 0.048 -0.020 -0.039 -0.036 -0.127 -0.201 -0.242

(0.051) (0.040) (0.044) (0.015) (0.021) (0.023) (0.022) (0.046) (0.064)

0.05
0.335 0.265 0.242 0.034 -0.031 -0.031 -0.119 -0.191 -0.236

(0.205) (0.162) (0.148) (0.026) (0.024) (0.035) (0.024) (0.047) (0.065)

0.1
0.518 0.464 0.400 0.064 -0.010 -0.012 -0.129 -0.194 -0.237

(0.388) (0.329) (0.290) (0.043) (0.033) (0.039) (0.027) (0.048) (0.066)

156

0
0.149 0.102 0.066 -0.044 -0.043 -0.058 -0.130 -0.199 -0.242

(0.062) (0.052) (0.038) (0.011) (0.021) (0.017) (0.022) (0.044) (0.064)

0.05
0.408 0.351 0.309 0.010 -0.027 -0.043 -0.125 -0.198 -0.241

(0.253) (0.206) (0.173) (0.023) (0.024) (0.025) (0.023) (0.046) (0.065)

0.1
0.609 0.575 0.552 0.051 0.005 -0.052 -0.134 -0.191 -0.240

(0.512) (0.492) (0.444) (0.042) (0.038) (0.036) (0.027) (0.045) (0.065)

260

0
0.208 0.149 0.132 -0.024 -0.054 -0.051 -0.125 -0.198 -0.243

(0.100) (0.062) (0.067) (0.015) (0.016) (0.017) (0.021) (0.044) (0.064)

0.05
0.464 0.473 0.407 0.005 -0.035 -0.065 -0.129 -0.195 -0.242

(0.288) (0.315) (0.243) (0.018) (0.020) (0.021) (0.023) (0.044) (0.064)

0.1
0.767 0.676 0.679 0.040 0.008 -0.055 -0.125 -0.195 -0.240

(0.744) (0.633) (0.612) (0.027) (0.030) (0.028) (0.024) (0.045) (0.064)

Table 10: Bias (MSE) for Scenario HI3
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HI4 cDEA LC StoNEZD

n
HH

HHHσv

σu 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

26

0
-0.040 -0.100 -0.148 -0.067 -0.083 -0.097 -0.123 -0.205 -0.239

(0.022) (0.027) (0.046) (0.013) (0.024) (0.027) (0.023) (0.050) (0.068)

0.05
0.049 -0.001 0.042 0.012 -0.001 -0.012 -0.138 -0.197 -0.224

(0.041) (0.044) (0.068) (0.033) (0.038) (0.057) (0.034) (0.053) (0.067)

0.1
0.188 0.214 0.003 0.100 0.064 0.063 -0.129 -0.183 -0.234

(0.139) (0.129) (0.093) (0.083) (0.086) (0.088) (0.041) (0.056) (0.074)

52

0
-0.022 -0.112 0.001 -0.019 -0.066 -0.087 -0.116 -0.198 -0.243

(0.016) (0.030) (0.035) (0.017) (0.018) (0.027) (0.021) (0.046) (0.066)

0.05
0.196 0.019 0.031 0.029 0.001 -0.048 -0.109 -0.192 -0.239

(0.090) (0.057) (0.065) (0.027) (0.036) (0.038) (0.025) (0.047) (0.068)

0.1
0.284 0.243 0.225 0.088 0.011 0.029 -0.124 -0.197 -0.237

(0.178) (0.143) (0.143) (0.050) (0.046) (0.059) (0.032) (0.054) (0.069)

104

0
0.054 0.085 0.054 -0.026 -0.057 -0.070 -0.135 -0.197 -0.242

(0.025) (0.039) (0.037) (0.015) (0.016) (0.022) (0.023) (0.044) (0.065)

0.05
0.262 0.183 0.030 0.032 -0.034 -0.061 -0.120 -0.192 -0.239

(0.125) (0.092) (0.066) (0.028) (0.025) (0.030) (0.025) (0.046) (0.065)

0.1
0.330 0.464 0.452 0.064 0.006 -0.001 -0.124 -0.197 -0.242

(0.231) (0.351) (0.311) (0.048) (0.043) (0.040) (0.028) (0.048) (0.068)

156

0
0.133 0.030 0.051 -0.034 -0.060 -0.082 -0.134 -0.197 -0.244

(0.064) (0.024) (0.028) (0.013) (0.018) (0.021) (0.023) (0.043) (0.065)

0.05
0.366 0.235 0.281 0.002 -0.038 -0.062 -0.127 -0.198 -0.238

(0.199) (0.114) (0.152) (0.023) (0.020) (0.027) (0.024) (0.047) (0.064)

0.1
0.626 0.582 0.513 0.050 -0.001 -0.021 -0.129 -0.191 -0.235

(0.503) (0.479) (0.377) (0.036) (0.039) (0.036) (0.026) (0.045) (0.064)

260

0
0.149 0.100 0.070 -0.034 -0.058 -0.072 -0.138 -0.199 -0.244

(0.054) (0.034) (0.029) (0.012) (0.014) (0.019) (0.023) (0.044) (0.063)

0.05
0.414 0.430 0.148 -0.009 -0.046 -0.062 NA -0.196 -0.243

(0.238) (0.260) (0.081) (0.018) (0.021) (0.021) NA (0.044) (0.065)

0.1
0.735 0.728 0.651 0.030 -0.015 -0.053 -0.131 -0.193 -0.242

(0.668) (0.698) (0.556) (0.027) (0.028) (0.034) (0.025) (0.044) (0.064)

Table 11: Bias (MSE) for Scenario HI4
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6.3 MZ - Bias and MSE

MZ1 cDEA LC StoNEZD

n
H
HHHHσv

σu 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

26

0
-0.076 -0.185 -0.188 -0.063 -0.097 -0.109 -0.134 -0.187 -0.239

(0.014) (0.053) (0.057) (0.010) (0.021) (0.029) (0.024) (0.046) (0.068)

0.05
0.114 -0.001 -0.110 0.009 -0.053 -0.043 -0.124 -0.186 -0.229

(0.048) (0.055) (0.080) (0.029) (0.038) (0.045) (0.032) (0.054) (0.070)

0.1
0.160 -0.056 0.094 0.055 0.067 0.010 -0.129 -0.187 -0.218

(0.109) (0.107) (0.089) (0.069) (0.097) (0.078) (0.044) (0.060) (0.072)

52

0
0.013 -0.077 -0.020 -0.053 -0.081 -0.104 -0.132 -0.192 -0.240

(0.021) (0.033) (0.022) (0.008) (0.016) (0.022) (0.024) (0.044) (0.066)

0.05
0.101 0.076 0.102 0.003 -0.043 -0.080 -0.123 -0.185 -0.241

(0.084) (0.059) (0.069) (0.019) (0.027) (0.033) (0.029) (0.046) (0.069)

0.1
0.340 0.258 0.243 0.038 -0.009 -0.025 -0.123 -0.177 -0.232

(0.210) (0.173) (0.120) (0.037) (0.043) (0.046) (0.032) (0.051) (0.068)

104

0
0.082 0.002 -0.084 -0.051 -0.080 -0.097 -0.118 -0.198 -0.245

(0.033) (0.022) (0.056) (0.009) (0.014) (0.019) (0.021) (0.044) (0.066)

0.05
0.311 0.260 0.182 -0.010 -0.020 -0.071 -0.125 -0.194 -0.237

(0.156) (0.131) (0.096) (0.020) (0.021) (0.030) (0.025) (0.045) (0.065)

0.1
0.486 0.400 0.399 0.009 0.012 -0.054 -0.132 -0.187 -0.238

(0.352) (0.244) (0.253) (0.036) (0.035) (0.043) (0.030) (0.046) (0.066)

156

0
0.126 0.088 0.084 -0.047 -0.069 -0.089 -0.102 -0.199 -0.242

(0.046) (0.039) (0.036) (0.008) (0.014) (0.018) (0.018) (0.045) (0.064)

0.05
0.359 0.343 0.301 -0.006 -0.038 -0.060 -0.127 -0.190 -0.241

(0.183) (0.185) (0.153) (0.019) (0.021) (0.024) (0.024) (0.043) (0.064)

0.1
0.598 0.624 0.522 0.018 -0.027 -0.062 -0.120 -0.182 -0.233

(0.492) (0.515) (0.381) (0.030) (0.029) (0.035) (0.026) (0.043) (0.063)

260

0
0.145 0.108 0.095 -0.049 -0.074 -0.087 -0.126 -0.199 -0.242

(0.051) (0.038) (0.037) (0.008) (0.013) (0.016) (0.021) (0.044) (0.063)

0.05
0.385 0.405 0.394 -0.017 -0.052 -0.080 -0.126 -0.194 -0.240

(0.254) (0.237) (0.233) (0.014) (0.018) (0.024) (0.023) (0.044) (0.064)

0.1
0.738 0.675 0.610 0.012 -0.046 -0.084 -0.125 -0.193 -0.239

(0.679) (0.591) (0.495) (0.025) (0.026) (0.033) (0.024) (0.045) (0.064)

Table 12: Bias (MSE) for Scenario MZ1
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MZ2 cDEA LC StoNEZD

n
HH

HHHσv

σu 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

26

0
-0.059 -0.102 -0.102 -0.065 -0.072 -0.088 -0.117 -0.184 -0.245

(0.018) (0.038) (0.033) (0.013) (0.022) (0.029) (0.022) (0.045) (0.069)

0.05
0.009 0.073 0.052 0.007 -0.020 -0.034 -0.099 -0.174 -0.225

(0.048) (0.059) (0.103) (0.030) (0.043) (0.068) (0.034) (0.051) (0.071)

0.1
0.053 0.111 0.119 0.088 -0.014 0.034 -0.127 -0.186 -0.217

(0.110) (0.103) (0.095) (0.076) (0.062) (0.126) (0.040) (0.060) (0.073)

52

0
0.047 -0.101 0.037 -0.027 -0.069 -0.065 -0.121 -0.196 -0.241

(0.038) (0.036) (0.051) (0.013) (0.018) (0.031) (0.021) (0.045) (0.067)

0.05
0.097 0.199 0.062 0.025 -0.013 -0.041 -0.121 -0.187 -0.230

(0.068) (0.105) (0.091) (0.031) (0.041) (0.039) (0.028) (0.045) (0.064)

0.1
0.391 0.321 0.313 0.064 0.018 -0.017 -0.124 -0.177 -0.229

(0.294) (0.208) (0.219) (0.059) (0.053) (0.050) (0.033) (0.049) (0.068)

104

0
0.057 0.042 0.013 -0.030 -0.053 -0.056 -0.137 -0.199 -0.240

(0.028) (0.036) (0.030) (0.012) (0.018) (0.019) (0.023) (0.045) (0.063)

0.05
0.349 0.224 0.255 0.027 -0.056 -0.053 -0.126 -0.200 -0.237

(0.207) (0.121) (0.131) (0.030) (0.027) (0.032) (0.025) (0.048) (0.064)

0.1
0.510 0.525 0.444 0.080 0.003 -0.049 -0.124 -0.194 -0.243

(0.399) (0.405) (0.327) (0.050) (0.046) (0.045) (0.028) (0.048) (0.069)

156

0
0.095 0.102 0.103 -0.005 -0.040 -0.059 -0.134 -0.200 -0.243

(0.035) (0.059) (0.046) (0.013) (0.018) (0.020) (0.022) (0.045) (0.064)

0.05
0.390 0.381 0.298 -0.010 -0.028 -0.065 -0.115 -0.193 -0.244

(0.240) (0.237) (0.164) (0.023) (0.027) (0.028) (0.023) (0.045) (0.066)

0.1
0.665 0.584 0.542 0.057 0.020 -0.035 -0.116 -0.184 -0.236

(0.597) (0.497) (0.428) (0.046) (0.041) (0.041) (0.025) (0.044) (0.064)

260

0
0.201 0.082 0.123 -0.008 -0.035 -0.036 -0.109 -0.198 -0.243

(0.092) (0.033) (0.056) (0.015) (0.018) (0.018) (0.019) (0.044) (0.064)

0.05
0.511 0.457 0.403 0.010 -0.036 -0.073 -0.119 -0.196 -0.242

(0.354) (0.311) (0.236) (0.024) (0.025) (0.030) (0.022) (0.044) (0.064)

0.1
0.770 0.692 0.666 0.011 -0.029 -0.041 -0.126 -0.192 -0.242

(0.755) (0.612) (0.611) (0.028) (0.031) (0.035) (0.024) (0.044) (0.065)

Table 13: Bias (MSE) for Scenario MZ2
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MZ3 cDEA LC StoNEZD

n
HH

HHHσv

σu 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

26

0
-0.048 -0.095 -0.220 -0.060 -0.086 -0.098 -0.129 -0.190 -0.235

(0.017) (0.037) (0.072) (0.012) (0.020) (0.023) (0.024) (0.047) (0.067)

0.05
0.049 -0.126 0.005 0.003 -0.004 -0.042 -0.125 -0.192 -0.237

(0.044) (0.075) (0.051) (0.029) (0.041) (0.052) (0.034) (0.054) (0.074)

0.1
0.060 -0.026 0.037 0.057 0.030 0.010 -0.122 -0.188 -0.224

(0.082) (0.101) (0.074) (0.056) (0.071) (0.082) (0.045) (0.058) (0.075)

52

0
-0.003 -0.009 -0.073 -0.062 -0.076 -0.087 -0.133 -0.188 -0.240

(0.013) (0.027) (0.028) (0.010) (0.015) (0.021) (0.023) (0.044) (0.065)

0.05
0.189 0.099 -0.110 0.025 -0.037 -0.059 -0.128 -0.192 -0.221

(0.079) (0.070) (0.063) (0.026) (0.030) (0.032) (0.027) (0.048) (0.063)

0.1
0.322 0.306 0.100 0.045 0.022 -0.028 -0.117 -0.192 -0.240

(0.205) (0.167) (0.120) (0.037) (0.047) (0.047) (0.033) (0.053) (0.072)

104

0
0.039 0.049 0.004 -0.043 -0.077 -0.083 -0.133 -0.196 -0.246

(0.026) (0.035) (0.022) (0.008) (0.014) (0.017) (0.023) (0.044) (0.066)

0.05
0.252 0.204 0.225 0.007 -0.031 -0.073 -0.132 -0.188 -0.239

(0.145) (0.091) (0.098) (0.017) (0.025) (0.030) (0.026) (0.044) (0.065)

0.1
0.511 0.327 0.428 0.035 -0.012 -0.033 -0.114 -0.195 -0.240

(0.392) (0.242) (0.292) (0.038) (0.040) (0.040) (0.029) (0.047) (0.068)

156

0
0.099 0.090 0.029 -0.046 -0.079 -0.087 -0.122 -0.196 -0.244

(0.042) (0.029) (0.021) (0.009) (0.014) (0.019) (0.021) (0.043) (0.064)

0.05
0.351 0.314 0.320 -0.012 -0.045 -0.071 -0.124 -0.195 -0.237

(0.182) (0.163) (0.163) (0.017) (0.020) (0.027) (0.024) (0.046) (0.064)

0.1
0.555 0.546 0.564 0.052 -0.023 -0.054 -0.119 -0.188 -0.240

(0.414) (0.422) (0.419) (0.039) (0.032) (0.035) (0.024) (0.046) (0.066)

260

0
0.159 0.118 0.080 -0.043 -0.052 -0.074 -0.106 -0.197 -0.242

(0.064) (0.043) (0.033) (0.008) (0.011) (0.015) (0.018) (0.043) (0.063)

0.05
0.453 0.278 0.360 -0.023 -0.056 -0.066 -0.122 -0.195 -0.241

(0.266) (0.132) (0.183) (0.013) (0.019) (0.023) (0.022) (0.043) (0.063)

0.1
0.718 0.665 0.613 0.008 -0.020 -0.083 -0.127 -0.191 -0.242

(0.647) (0.568) (0.494) (0.025) (0.025) (0.036) (0.025) (0.044) (0.065)

Table 14: Bias (MSE) for Scenario MZ3
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MZ4 cDEA LC StoNEZD

n
HH

HHHσv

σu 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

26

0
-0.029 -0.052 -0.088 -0.060 -0.095 -0.083 -0.104 -0.170 -0.240

(0.018) (0.026) (0.042) (0.010) (0.024) (0.039) (0.020) (0.041) (0.068)

0.05
0.078 0.005 -0.033 0.038 -0.012 -0.031 -0.131 -0.191 -0.235

(0.049) (0.069) (0.057) (0.038) (0.043) (0.049) (0.032) (0.053) (0.071)

0.1
0.189 0.209 0.028 0.152 0.094 0.049 -0.116 -0.185 -0.227

(0.092) (0.134) (0.088) (0.117) (0.124) (0.096) (0.036) (0.056) (0.073)

52

0
0.006 -0.136 -0.026 -0.042 -0.075 -0.095 -0.103 -0.186 -0.239

(0.019) (0.039) (0.024) (0.016) (0.018) (0.028) (0.019) (0.044) (0.064)

0.05
0.189 0.123 0.102 0.034 -0.029 -0.093 -0.129 -0.185 -0.240

(0.100) (0.086) (0.058) (0.027) (0.030) (0.037) (0.028) (0.046) (0.068)

0.1
0.350 0.281 0.235 0.093 0.039 -0.019 -0.114 -0.192 -0.233

(0.229) (0.181) (0.156) (0.060) (0.054) (0.047) (0.029) (0.052) (0.071)

104

0
0.091 0.065 0.028 -0.029 -0.047 -0.048 -0.108 -0.199 -0.241

(0.043) (0.038) (0.030) (0.013) (0.019) (0.025) (0.019) (0.045) (0.064)

0.05
0.316 0.313 0.231 0.019 -0.021 -0.049 -0.131 -0.191 -0.238

(0.176) (0.194) (0.149) (0.026) (0.032) (0.032) (0.026) (0.046) (0.064)

0.1
0.520 0.448 0.474 0.070 0.009 -0.027 -0.118 -0.188 -0.234

(0.465) (0.353) (0.358) (0.048) (0.044) (0.046) (0.027) (0.047) (0.065)

156

0
0.079 0.147 0.019 -0.002 -0.015 -0.066 -0.126 -0.199 -0.243

(0.032) (0.079) (0.038) (0.016) (0.023) (0.020) (0.021) (0.044) (0.064)

0.05
0.331 0.384 0.365 0.008 -0.020 -0.041 -0.129 -0.196 -0.239

(0.201) (0.251) (0.225) (0.022) (0.029) (0.031) (0.025) (0.046) (0.064)

0.1
0.682 0.586 0.528 0.055 -0.016 -0.019 -0.124 -0.195 -0.241

(0.614) (0.503) (0.424) (0.041) (0.036) (0.039) (0.026) (0.047) (0.067)

260

0
0.176 0.165 0.131 -0.007 -0.031 -0.038 -0.122 -0.199 -0.243

(0.076) (0.079) (0.059) (0.019) (0.022) (0.021) (0.020) (0.044) (0.064)

0.05
0.443 0.431 0.434 0.031 -0.040 -0.039 -0.130 -0.197 -0.239

(0.299) (0.266) (0.298) (0.026) (0.024) (0.026) (0.023) (0.044) (0.063)

0.1
0.711 0.734 0.707 0.021 -0.024 -0.048 -0.134 -0.192 -0.240

(0.662) (0.723) (0.663) (0.036) (0.034) (0.034) (0.026) (0.045) (0.064)

Table 15: Bias (MSE) for Scenario MZ4
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