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Robust Linear Classifier for Unequal  
Cost Ratios of Misclassification 

 
Oludare S, Ariyo1 and  A.O. Adebanji2  

 
This paper focuses on the robust classification procedures when the assumption of equal cost of 
misclassification is violated. A normal distribution based data set is generated using the Statistical Analysis 
System (SAS) version 9.1. Using Barlett’s approximation to chi-square, the data set was found to be 
homogenous and was subjected to three linear classifiers namely: Maximum Likelihood Discriminant 
Function (MLDF), Fisher’s linear Discriminant Function and Distance Based Discriminant Function. To 
Judge the performances of these procedures, the Apparent Error Rates for each procedure is obtained for 
different cost ratios 1:1, 1:2, 1:3, 1:4 and 1:5 and sample sizes 5:5, 10:10, 20:20, 30:30, and 50:50. The 
results shows that the three procedures are insensitive to cost ratio exceeding ratio 1:2 and that MLDF was 
observed as robust discriminant function among classification functions considered. 
 
 
Key Words:  Apparent Error Rates, Maximum Likelihood Discriminant Function, Distance Based 

Discriminant Function,  Fisher’s linear     
 
 
1.0    Introduction  
 
Fisher (1936) was the first to suggest a linear function of variables representing different characters, 
hereafter called the linear discriminant function (discriminator) for classifying an individual into one 
of two populations. Fisher’s linear discriminant function (LDF) method is well established for equal 
covariance multivariate normal predictors (Aderson, 1958).It optimally deteriorates, however, as the 
assumption of normality gets unrealistic (Krzanowski, 1988). Qian Du and Chein-I Chang (2001) 
used distance-based discriminant function (DBDF) that uses a criterion for optimality derived from 
Fisher's ratio criterion. It not only maximizes the ratio of inter-distance between classes to intra-
distance within classes but also imposes a constraint that all class centers must be aligned along 
predetermined directions. A method of discrimination, based on maximum likelihood estimation, is 
described. On a variety of mathematical models, including and extending the models most 
commonly assumed in discriminant theory, the discriminant reduces to multivariate logistic 
analysis. Even when no simple model can be assumed, other considerations show that this method 
should work well in practice, and should be very robust with respect to departures from the 
theoretical assumptions. The method is compared with others in its application to a diagnostic 
problem. The consideration of Cost-sensitive Studies in linear discriminant function has received 
growing attention in the past years. (Elkan, 2001; Margineantu and Dietterich, 2000). One way to 
incorporate such costs is the use of a cost matrix, which specifies the misclassification costs in the 
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class dependent manner. (Elkan, 2001). Brefeld et al, (2003) discuses the ideal to let the cost depend 
on the single example and not only on the class of the example. Authors also presented a natural 
cost-sensitivities extension of the Support Vector Machine (SVM) and discused its relation to Bayes 
rule. Ariyo and Adebanji (2010) compared the performance of both Linear and Quadratic classifier 
under unequal cost of misclassification and concluded that both classifiers are insensitive to the cost 
ratio exceeding ratio 1:2. Adebanji et al (2008) investigated the performance of the homoscedastic 
discriminant function (HDF) under the non-optional condition of unequal group representation 
(prior probabilities) in the population and the asymptotic performance of the classification function 
under this condition. The results obtained showed that the misclassification of observation from the 
smallest group escalate when the sample size ratio 1:2 is exceeded and this increases in error rate is 
not corrected by increasing the sample size. They observed that the performance of the function is 
more susceptible to higher variability in the reported error rates. Several Authors had looked into 
issue of cost-sensitivity when costs and prior probabilities are both unknown (Zandrozny and Elkan, 
2001) and its application in different areas especially in neural Network (Berardi and Zhang., 1999; 
Xingye, and Yufeng, 2008 and Zheng, et al, 2007). The issue of different misclassification costs for 
balanced data has not been given much attention. Hence, the study is motivated to evaluate the 
performance and robustness of selected linear classifiers when the assumption of equal cost of 
Misclassification is violated. 
 
2.0   Methodology 
 
A Simulated data from SAS 9.1 was used for this study. The data consists of two groups with four 
variables (�� , ��, ��, ��). The Simulation process creates a data set by simulated random variables 
from two normal populations. 
 
The above procedure was repeated for n = 5, 10, 20, 30, 50. For each value of n the, procedure 
returned 10, 20, 40, 60 and 100 sample sizes. To test the equality of mean by multivariate methods, 
Hotelling T2 and Wilks’s lambda was used. The Barlett’s Likelihood ratio test was also used to test 
the homogeneity or other wise of the data sets and the data set was found to be homogenous and 
was subjected to three (3) selected linear classifiers namely: Maximum Likelihood Discriminant 
Function(MLDF), Fisher’s linear Discriminant Function (FLDF) and Distance Based Discriminant  
Function (DBDF). To Judge the performances of these procedures, the Apparent Error Rates 
(APER) for MLDF, FLDF and DBDF under different cost ratio 1:1, 1:2, 1:3, 1:4 and 1:5 were 
obtained. 
 
 2. 1   Discriminant rules  
 
A discriminant rule � corresponds to a division of 	
 into disjoint region 	�, … , 	� 
 

�	�=	�) 
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The rule � defined by allocate x to �� if   x ε 	� for j=1 ,…,n. Discriminant will be more accurate if 

�� has most of its probability concentrated in R for each j. 

 
2. 2  Maximum Likelihood rule (ML rule) 
 

The maximum likelihood discriminant rule for allocating an observation � to one of the population 
��, … , �� is to allocate x to the population which gives the largest likelihood to x. That is the 
maximum likelihood rule says one should allocate x to �� when  

 

  �� � max���� .  (Anderson, 1984)     (1)  
   

Theorem 1 If ��  is the  �
µ� , ∑� population, i =1,…, g and ∑ > 0, then the maximum likelihood 

discriminant rule allocate x to �� where ���1, … , �� is that value of   which minimized the 

mahalanobis distance  � ! µ�""∑#�$� ! µ�% where g=2 the rule allocate x to ��. If &"� ! µ� ' 0  

and (" )� ! �
� �*� + �*��, ' 0 , where -=∑#�$µ� ! µ�% and µ � $µ� + µ�% and to �� otherwise. 

 
2.3  Fisher’s Linear Discriminant rule (FDL rule) 

 

Once the linear discriminant function has been calculated, an observation x can be allocated to one 
of the n population on the basis of its “discriminant scores”("�. The samples �*� have scores 
("�*�=./� . The x is allocated to that population where mean scores is closest to ("� that is allocate x 
to ��  if  "("�-("�*� " < " ("�-("�*� "  for  0 � (Giri,2004) 

 

Fisher’s discriminant function is most important in the special case of g=2 groups. Then B has rank 

one and can be written as  1 � 2�3�4
� 5 ��" where � � �*� ! �*�. Thus, 6#�1 has only one zero 

eigenvalue. This eigenvalue equals to 78 6#�1 =2�3�4
� 5 �" 6#��. The corresponding eigenvalue is 

( �  6#��.Then the discriminant rule becomes; allocate x to �� if   �" 6#� )� ! �
� �*� + �*��, ' 0 

and to  �� otherwise. 

 

2.4  Distance –based discriminant Function 

 

This approach requires a definition of distance between the single observation x and each training 
sample. One possibility is to define a squared distance by the Mahalanobis qualities: 

 

     9�
� � $� ! µ�%

"":#�$� ! µ�%.      (2) 
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Where µ� is the mean of ith training set (i=1,2),and S is the covariance matrix  pooled within the 

training set. 

 

2.5  Testing Adequacy of discriminant coefficient 

 

Consider the discriminant problems between two multinormal populations with mean  µ�, µ� and 

common matrix ∑. The coefficient of the MLD discriminat function ("� are given by -=∑#�; 
where     ; � µ� ! µ�. In practice of course the parameters are estimated by �*�, �*� and 

( )211
1 )1()1( SnSnmS −+−= − , where < � �� + �� ! 2. Letting � � �*� ! �*�,the coefficients of 

the sample MLDF given by ( � <  6#��. 
 

A test of hypothesis ?@; &� � 0  using the sample Mahalanobis distances 9

� � <�" 6#�� and    

9�
� � <��

"6��
#���  has been proposed by Rao (1965) this test statistics uses the statistic: 

 

  )B#
C�

#D , E�9
� ! 9D

��/< + E�9
��G       (3) 

      

Where  E� � �3�4
� . Under the null hypothesis (3)  has H
#D,B#
C� distribution and we reject ?@ for 

large value of this statistics. 

 

2.6  Evaluating of Classification Function 

 

One important way of judging the performance of any classification procedure is to calculate the 
“error rates” or misclassification probabilities (Richard and Dean, 1988).  When the forms of parent 
populations are known completely, misclassification probabilities can be calculated with relative 
ease.  Because parent populations are rarely known, we shall concentrate on the error rates 
associated with the sample classification functions.  Once this classification function is constructed, 
a measure of its performance in future sample is of interest. The total probability of 
misclassification (TPM) is given as: 

 

  IJK � J� L M�N3
 �� + J� L M�N4

��         (4)  

 

The smallest value of this quantity obtained by a judicious choice of 	� and	�  is called the 
optimum error rate (OER).  
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OER = Minimum TPM . 

 

Probability of Misclassification 

 

The probability of allocating an individual to population  �� , when in fact he comes from �� is given 
by: 

  J�� � L O���������         (5)       

 

If the parameters of the underlying distribution are estimated from the data, then we get estimated 

probability JP�� . Consider the case of two normal population �
µ�,∑) and �
µ�,∑). If  

 µ � 
�
� $µ� + µ�%, then when x comes from ��,  ("� ! µ�~ �
(

�
�a$µ� ! µ�%, ("∑-).Since the 

disccriminant function is given by R��� � ("� ! µ� with ( � ∑#�µ� ! µ��,we see that if x 

comes from ��,  S���~� 2�
� T�, T�5,where: 

 

  T� � µ� ! µ��"∑#�µ� ! µ��        (6)  
  

Equation (6) is the square Mahalanobis distance between the positions, similarly, if x comes 

from  ��,   S���~� 2�
� T�, T�5.Thus, the misclassification probabilities are given by:  

 

         J�� � US�� ' 0/�� 

         =O!VS�/��� 
          = O#�

� T�   (Giri,2004)     (7)  

  

where O is the standard normal distribution function. 

 

2.7 Error Rates 

 

Optimal error rates (OER) are error rate associated with the best possible allocation rule that could 
be used, if all assumption made are appropriate. This error rate can be calculated when the 
population density functions are known it given by: 

 
  OER �  minimum TPM � �

� O#�
� T� + �

� O 2#�
� T5 � O 2#�

� T5  (8) 
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The performance of sample classification function can be evaluated by calculating the actual error 
rate (AER). 

 

  AER � J� L M�N4
�� �� + L M�N3

����                 (9)                                 

 

Where 	� and 	� represent the classification regions determined by sample size ��, �� respectively. 

 

The AER indicates how the sample classification function will perform in future samples. Like the 
OER, it cannot, in general, be calculated because it depends on the unknown density functions M��� 
and M���.There is a measure of performance that does not depends on the form of the parent 
populations and that can be calculated for any classification function procedure. This measure is 
called the apparent error rate (APER) is defined as the fraction of observation in the training sample 
that are misclassified by the sample classification function. It can be easily calculated from the 
confusion matrix which shows actual versus predicted group membership. For  �� observation from 
�� and ��  observations from ��, the confusion matrix has the form. 

 

Actual 
Membership  

Predicted Membership 

��c          ��d 
��c         ��d 

 

Where  

��c= Number of  �� items correctly as �� items. 

��c= Number of  �� items correctly as �� items. 

         ��d = Number of  �� items misclassified as �� items. 

        ��d = Number of  �� items misclassified as �� items. 

 

This is called the Apparent Error Rate (APER) and is defined as: 

 

APER� �3eC�4e
�3fC�4f

      (Richard and Dean, 1998)   (10) 
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3.0  Results  
 

Table1 shows that Likelihood test ( Barlett’s approximation to Chi-square) statistics is not 
signification at 5% level of significant, we accept the null hypothesis that the simulated data has 
equal variance covariance matrix. 

 

Table 1:   The Test results for testing Equality of Variance. 
 Data       Chi – square           Df          P-value (5%)                     Null Hypothesis 
  A               6.411                     10         0.7796                              Equal Variance 

 

Table 2 shows the error for the three classification procedures under different cost ratio, the APER 
for the three discriminant rules becomes unchanged as the cost assign g�� is tripled. For cost ratio 
1:1 and 1:2 MLDF rule gave the least “error rate” compared to the classification rules considered. 
 

Table 2 : Apparent Error rate for the classification rules under different cost ratio. 
Cost  ratio               ML rule                          FL rule                         DB rule 
   1:1                        47.83                              48.00                           49.67        
   1:2                        50.17                              51.67                           50.00                      
   1:3                        50.00                              50.33                           50.00                                     
   1:4                        50.00                              50.00                           50.00 
   1:5                        50.00                               50.00                           50.00           

 

In Table 3, the value of Apparent Error rate (APER) for diffract Sample size under different cost 
ratios was presented. The result shows that on only the Distance based Discriminnat Function 
(DBDF) is sensitive to Small Sample sizes. At Sample size 5:5, DBDF had that least APER but this 
value increases as the sample size increases. It  is also clear that sample sizes considered has little 
effect on the performance of classification functions considered under different cost ratio. 

 
Table 3: The Apparent Error rate for the Classification rules for different Sample sizes and cost Ratio 

Sample ratio 
 n; 5:5 n; 10:10 n; 20:20 n; 30:30 n; 50:50 
 ML FL DB ML FL DB ML FL DB ML FL DB ML FL DB 
Cost ratio 
1:1  39.4 49.0 30.3 41.9   48.0 30.3 38.0 50.1 30.2 39.0 50.0 39.2 47.8  48.0 49.7 
1:2  40.1 49.0 48.0  43.0  47.0  49.0 51.0  50.2 49.1 49.9 51.0 50.0 50.2 51.7 50.0 
1:3  49.7 50.0 50.3 51.0  53.0 50.0 50.1 50.0 49.0 50.0  50.0 50.0 50.0 50.3 50.0 
1:4 50.0 50.0 50.0 50.0  50.0 50.0  50.0 50.0 50.0  50.0 50.0 50.0 50.0 50.0  50.0 
1:5 50.0  50.0 50.0 50.0 50.0 50.0  50.0 50.0 50.0  50.0 50.0  50.0 50.0 50.0 50.0 
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4.0 Conclusion/Recommendation 
 
Three Linear dicsriminant rules: MLDF, FLDF, and DBDF were studies when classical cost 
assumption is violated. In each allocation rule, introduction of different cost ratios causes 
imbalances in the proportion of misclassification also the error rates. At cost ratio 1:1, 1:2 all 
classification rules except MLDF gave equal misclassification proportion. The APER for the three 
classification rules under different cost ratio were also examined in this study, for cost ratio 1:1 and 
1:2 MLDF gave the least error rate. At cost ratio exceeding ratio 1:3, the APER remain unchanged 
for all classification rules. We conclude that APER for all classifications considered is insensitive to 
cost ratio exceeding ratio 1:3. 
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