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Equilibria in Health Exchanges:

Adverse Selection vs. Reclassi�cation Risk

Ben Handel�, Igal Hendely, and Michael D. Whinstonzx

January 7, 2015

Abstract

This paper studies regulated health insurance markets known as exchanges, motivated by the

increasingly important role they play in both public and private insurance provision. We develop a

framework that combines data on health outcomes and insurance plan choices for a population of

insured individuals with a model of a competitive insurance exchange to predict outcomes under

di¤erent exchange designs. We apply this framework to examine the e¤ects of regulations that

govern insurers� ability to use health status information in pricing. We investigate the welfare

implications of these regulations with an emphasis on two potential sources of ine¢ ciency: (i)

adverse selection and (ii) premium reclassi�cation risk. We �nd substantial adverse selection leading

to full unraveling of our simulated exchange, even when age can be priced. While the welfare cost

of adverse selection is substantial when health status cannot be priced, that of reclassi�cation risk

is �ve times larger when insurers can price based on some health status information. We investigate

several extensions including (i) contract design regulation, (ii) self-insurance through saving and

borrowing, and (iii) insurer risk-adjustment transfers.

1 Introduction

Health insurance markets almost everywhere are subject to a variety of regulations designed to encour-

age the e¢ cient provision of insurance. One such approach is known as �managed competition� [see,

e.g., Enthoven (1993) or Enthoven et al. (2001)]. Under managed competition, a regulator sets up an

insurance market called an exchange in which insurers compete to attract consumers, subject to a set
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of regulations on insurance contract characteristics and pricing. There are many important examples of

managed competition in practice. A leading case is the state-by-state insurance exchanges set up under

the A¤ordable Care Act (ACA) in the United States that were required to begin o¤ering insurance

in 2014 [see, e.g., Kaiser Family Foundation (2010)]. Other examples include the national insurance

exchanges set up in the Netherlands, starting in 2006, and Switzerland, starting in 1996 [see van de Ven

(2008) and Leu et al. (2009)]. In addition, large employers in the United States have been increasingly

outsourcing their insurance provision responsibilities to private health exchanges that resemble these

publicly regulated exchanges [see, e.g., Pauly and Harrington (2013)].

This paper sets up and empirically investigates a model of insurer competition in a regulated market-

place, motivated by these exchanges. We develop a framework that combines data on health outcomes

and insurance plan choices for a population of individuals with a model of a competitive insurance

exchange to predict outcomes under di¤erent exchange designs. The challenges in conducting this

analysis are both theoretical and empirical. From the theoretical perspective, the analysis of compet-

itive markets under asymmetric information, speci�cally insurance markets, is delicate. Equilibria are

di¢ cult to characterize and are often fraught with non-existence. On the empirical side, any prediction

of exchange outcomes must naturally depend on the extent of information asymmetries, that is, on the

distributions of risks and risk preferences, and the information that insurers can act on relative to that

in the hands of insurees. Thus, a key empirical challenge is identifying these distributions.

As the main application of our framework, we analyze one of the core issues faced by exchange

regulators: the extent to which they should allow insurers to vary their prices based on individual-level

characteristics, and especially health status (i.e., �pre-existing conditions�). For example, under the

ACA, insurers in each state exchange are allowed to vary prices for the same policy based only on age,

geographic location, and whether the individual is a smoker. Prohibitions on pricing an individual�s

health status can directly impact two distinct determinants of consumer welfare: adverse selection and

reclassi�cation risk.1 Adverse selection is present when there is individual-speci�c information that

can�t be priced, and sicker individuals tend to select greater coverage.2 Reclassi�cation risk, on the

other hand, arises when changes in health status lead to changes in premiums. Restrictions on the extent

to which premiums can be based on health status are likely to increase the extent of adverse selection,

but reduce the reclassi�cation risk that insured individuals face. For example, when pricing based on

health status is completely prohibited, reclassi�cation risk is eliminated but adverse selection is likely

to be present.3 At the other extreme, were unrestricted pricing based on health status allowed, adverse

selection would be completely eliminated when consumers and �rms possess the same information. We

would then expect e¢ cient insurance provision conditional on the set of allowed contracts, although at

1Each of these phenomena is often cited as a key reason why market regulation is so prevalent in this sector in the

�rst place.
2See Akerlof (1970) and Rothschild and Stiglitz (1976) for seminal theoretical work.
3 Insurer risk adjustment is one policy that regulators typically consider to reduce the extent of adverse selection in

an exchange, conditional on a given set of price regulations. We consider insurer risk adjustment, and its implications

for equilibrium outcomes and welfare, in Section 6.
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a very high price for sick consumers.4 Thus, in determining the degree to which pricing of health status

should be allowed, a regulator needs to consider the potential trade-o¤ between adverse selection and

reclassi�cation risk.5

Our approach combines a model of a competitive insurance exchange with an empirical analysis

aimed at uncovering the joint distribution of individuals� risks and risk preferences. To this end,

we start by developing a stylized model of an insurance exchange that builds on work by Rothschild

and Stiglitz (1976), Wilson (1977), Miyazaki (1977), Riley (1985) and Engers and Fernandez (1987)

who all modeled competitive markets with asymmetric information. Our approach can be viewed as an

extension of the model in Einav, Finkelstein, and Cullen (2010c) to the case of more than one privately-

supplied policy, each of which must break even in an equilibrium.6 In the model, the population is

characterized by a joint distribution of risk preferences and health risk, and there is free entry of

insurers. We assume that all individuals buy insurance in the marketplace as a result of either a fully-

enforced individual mandate or participation subsidies. (We relax this assumption in an extension

in Online Appendix E.) Throughout the analysis, we �x two classes of insurance contracts that each

insurer can o¤er. In our baseline analysis, the more comprehensive contract has 90% actuarial value

and mimics the most generous coverage tier under the ACA, while the less comprehensive contract has

60% actuarial value and mimics the least generous coverage tier under the ACA.7 (We also examine

other actuarial values in Section 6.)

To deal with the Nash equilibrium existence problems highlighted by Rothschild and Stiglitz (1976)

we focus on another concept developed in the theoretical literature: Riley equilibria [Riley (1979)]. Un-

der the Riley notion, �rms consider the possibility that rivals may react to deviations by introducing

new pro�table policies so that deviations rendered unpro�table by such reactions are not undertaken.

The main roles of our theoretical analysis are (i) to prove the existence and uniqueness of Riley equi-

librium in our context and (ii) to develop algorithms to �nd both the Riley equilibrium and any Nash

equilibria, should they exist.

As the second input into our analysis, we empirically estimate the joint distribution of risk prefer-

ences and ex ante health status for the employees of a large self-insured employer. We estimate these

consumer micro-foundations using proprietary data on employee health plan choices and individual-level

health claims (including dependents) over a three-year time period. To do so, we develop a structural

choice model that generalizes Handel (2013), leveraging the unusually detailed information in our data

4This abstracts away from liquidity concerns that could be present in reality, especially for low income populations.
5See, e.g., Bhattacharya et al. (2013) or Capretta and Miller (2010) for policy-oriented discussions that advocate

relaxing the pricing restrictions present in the ACA (subject to some complementary market design changes).
6 In contrast, in the Einav, Finkelstein and Cullen (2010c) model, there is only one privately-supplied policy that must

break even. As we discuss in Section 2, this di¤erence can lead to substantially di¤erent outcomes.
7Actuarial value re�ects the proportion of total expenses that an insurance contract would cover if the entire population

were enrolled. In addition to the contracts we study, the ACA permits insurers to o¤er two classes of intermediate contracts

with 70% and 80% actuarial value respectively. In the legislation, 90% is referred to as �platinum�, 80% �gold�, 70%

�silver�, and 60% �bronze.�
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about individuals� health status. To model health risk perceived by employees at the time of plan

choice, we use the methodology developed in Handel (2013), which characterizes both total cost health

risk and plan-speci�c out-of-pocket expenditure risk. The model incorporates past diagnostic and cost

information into individual-level and plan-speci�c expense projections using both (i) sophisticated pre-

dictive software developed at Johns Hopkins Medical School and (ii) a detailed model of how di¤erent

types of medical claims translate into out-of-pocket expenditures in each plan.

We use these estimates, along with our theoretical model of an exchange, to simulate exchange

equilibria under di¤erent pricing regulations. These regulations range from requiring pure community

rating to allowing perfect risk rating (full pricing of health risk). Between these two extremes, we

consider, for example, the case in which insurers can price based on health status quartiles. Because

we study a sample of consumers from a large self-insured employer, our analysis is most relevant for a

counterfactual private exchange o¤ered by this employer, or other similar large employers. While less

externally valid for exchanges with di¤erent populations (such as the uninsured qualifying for the ACA

exchanges), the depth and scale of the data we use here present an excellent opportunity to illustrate

our framework at a general level and, more speci�cally, to study the interplay between adverse selection

and reclassi�cation risk as a function of regulation in such markets.

We use the outputs of this equilibrium market analysis (premiums and consumers�plan choices) to

evaluate long-run welfare under the di¤erent pricing regulations. Our analysis measures the gain or

loss from allowing health-based pricing from the perspective of a 25-year old consumer, who anticipates

participating in many consecutive one-year markets characterized by the static model, taking into

account the underlying health transition process. We evaluate lifetime welfare under two di¤erent

scenarios. On the one hand, we consider �xed income over time, which is a reasonable assumption when

borrowing is feasible. Alternatively, to capture potential borrowing frictions, we also evaluate welfare

under the observed income pro�le. One bene�t of pricing health conditions is that the population is

healthier at younger ages, when their income is lower. Health-based pricing, which results in lower

premiums early in life, can therefore be bene�cial for steep enough income pro�les if borrowing is not

possible.

In our baseline scenario with 90% and 60% plans, our results show substantial within-market ad-

verse selection with pure community rating. The Riley equilibrium results in full unravelling, with all

consumers purchasing a 60% plan at a premium equal to plan average cost for the entire population.

The welfare cost of this unraveling is large: a consumer with �xed income over time would be willing to

pay $619 per year to be able to purchase instead the 90% plan at a premium equal to its average cost for

the whole population. This amount is roughly 10% of the average medical expenses in the population.

Health-based pricing reduces this unraveling: as insurers can price on more and more health-relevant

information the market share of consumers enrolled in the 90% policy increases due to reduced adverse

selection.

Although greater ability to price health-status information reduces adverse selection, our long-run
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welfare results illustrate the extent to which such policies exacerbate reclassi�cation risk. Under the

case of �xed income from age 25 to 65, welfare is highest when health-status pricing is banned. For

example, from an ex ante perspective an individual with median risk aversion would be willing to pay

$3,082 each year from age 25 to 65 to be in a market with pure community rating rather than face

pricing based on health-status quartiles, even though the latter yields greater within-year coverage.

This is approximately �ve times the $619 welfare loss that occurs from adverse selection under pure

community rating, and roughly half of the average annual medical expenses in the population. Thus,

the welfare losses due to reclassi�cation risk, even for fairly limited pricing of health status, can be

quantitatively large. Moreover, we show that as the ability to price on health-status becomes greater,

the welfare loss grows. Finally, when we change the �xed lifetime income assumption and allow for

increasing income pro�les the losses from reclassi�cation risk are attenuated because health-status

based pricing decreases premiums earlier in life when income is lower and thus smooths consumption

over time. (This bene�cial e¤ect of health-based pricing is eliminated, however, if age-based pricing is

allowed.)

We also examine several extensions that address the robustness of our �ndings, or illustrate how our

framework can be used to address other issues that arise in exchange design. We consider (i) the e¤ects

of altering the actuarial value of the low coverage policy, (ii) the implications of allowing age-based

pricing, with and without health-based pricing, (iii) the possibilities for self-insurance through saving

and borrowing to ameliorate the losses due to reclassi�cation risk, and (iv) the e¤ect of introducing

insurer risk adjustment transfers to mitigate adverse selection (as seen in many insurance exchanges in

practice).

This paper builds on related work that studies the welfare consequences of adverse selection in

insurance markets by examining it in the setting of a competitive exchange in which more than one

type of policy is privately supplied and by adding in a long-term dimension whereby price regulation

induces a potential trade-o¤ with reclassi�cation risk. Relevant empirical work that focuses primarily

on adverse selection includes Cutler and Reber (1998), Cardon and Hendel (2001), Carlin and Town

(2009), Lustig (2010), Einav et al. (2010c), Bundorf et al. (2012), Handel (2013), and Einav et al.

(2013).8 Ericson and Starc (2013) and Kolstad and Kowalski (2012) study plan selection and regulation

in the Massachusetts Connector health insurance exchange. Perhaps the closest paper in spirit to ours

is Finkelstein et al. (2009) which examines the welfare consequences of allowing gender-based pricing

of annuities in the United Kingdom.9 These papers all focus on welfare in the context of a short-run

or one-time marketplace.

There is more limited work studying reclassi�cation risk and long-run welfare in insurance markets.

8See also Crocker and Snow (1986) and Hoy (1982) for theoretical analyses of discriminatory pricing in insurance

markets. Both papers show the possibility for such pricing to generate Pareto improvements in the two-type Rothschild-

Stiglitz model, with the former paper considering an equilibrium environment (focusing on �Wilson� equilibria) and the

latter demonstrating an expansion of the second-best Pareto frontier.
9See also Shi (2013) who studies the impact of risk adjustment and premium discrimination in health exchanges, �nding

that premium discrimination (across age groups) need not increase trade in the absence of risk adjustment transfers.

5



Cochrane (1995) studies dynamic insurance from a purely theoretical perspective, showing that in the

absence of asymmetric information �rst-best insurance can be achieved using single-period contracts

that are priced based on a consumer�s health status and that insure both current medical expenses

and changes in health status, provided that both consumers and �rms can commit to making the

required payments (perhaps through bonding). Herring and Pauly (2006) studies guaranteed renewable

premiums and the extent to which they e¤ectively protect consumers from reclassi�cation risk. Hendel

and Lizzeri (2003) and Finkelstein at al. (2005) study dynamic insurance contracts with one-sided

commitment, while Koch (2010) studies pricing regulations based on age from an e¢ ciency perspective.

Bundorf et al. (2012), while focusing on a static marketplace, also analyze reclassi�cation risk in

an employer setting using a two-year time horizon and subsidy and pricing regulations relevant to

their large employer context.10 Crocker and Moran (2003) study the role that job immobility plays

in committing employees to employer sponsored insurance contracts and shows that the quantity of

employer provided insurance is larger in professions with greater employee commitment / longevity.

The rest of the paper proceeds as follows: In Section 2 we present our model of insurance exchanges,

characterize Riley and Nash equilibria, and discuss the trade-o¤ between adverse selection and reclassi-

�cation risk. Section 3 describes our data and estimation. In Section 4 we analyze exchange equilibria

for a range of regulations on health-based pricing using our baseline case of 90% and 60% actuarial

value policies. Section 5 analyzes the long-run welfare properties of these equilibria. Section 6 dis-

cusses a number of extensions including (i) alternative contract con�gurations (ii) age-based pricing

(iii) self-insurance through saving and borrowing and (iv) insurer risk adjustment. Finally, Section 7

concludes.

2 Model of Health Exchanges

Our model can be viewed as an extension of the model developed in Einav, Finkelstein, and Cullen

(2010c) (henceforth, EFC) to the case in which competition occurs over more than one policy. (We

discuss below the relation to their model.) Our results provide the algorithm for identifying equilibria

using our data, which we do in Section 4.

Throughout the paper, we focus on a model of health exchanges in which two prescribed policies

are traded, designated as H for �high coverage�and L for �low coverage.�In our baseline speci�cation

in Section 4, these policies will cover roughly 90% and 60% respectively of an insured individual�s

costs. Within each exchange, the policies o¤ered by di¤erent companies are regarded as perfectly

10We �nd substantially larger welfare consequences of reclassi�cation risk than Bundorf et al. (2012). This re�ects the

di¤erent contexts studied and modeling assumptions employed. First, their environment includes a cheap HMO option,

which consumers can always switch to, that substantially lessens total expenditures for high risk consumers. Second,

their model of risk-rated premiums truncates premiums at 2 times the spending of the population average health risk in

each plan (for the HMO, this premium is quite low). Third, they study two sequential utilization years for a young and

healthy population.
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homogeneous by consumers; only their premiums may di¤er. There is a set of consumers, who di¤er in

their likelihood of needing medical procedures and in their preferences (e.g., their risk aversion). We

denote by � 2 [�; �] � R+ a consumer�s �type,�which we take to be the price di¤erence at which he is
indi¤erent between the H policy and the L policy. That is, if PH and PL are the premiums (prices)

of the two policies, then a consumer whose � is below PH � PL prefers the L policy, a consumer with

� above PH � PL prefers the H policy, and one with � = PH � PL is indi¤erent. We denote by F

the distribution function of �. Throughout our main speci�cation, we assume that there is either an

individual mandate or su¢ cient subsidies so that all individuals purchase one of the two policies. (See

Online Appendix F for an analysis of participation.)

Note that consumers with a given � may have di¤erent underlying medical risks and/or preferences,

but will make identical choices between policies for any prices. Hence, there is no reason to distinguish

among them in the model. Keep in mind, as we de�ne below the costs of insuring type � consumers, that

those costs represent the expected costs of insuring all of the � possibly heterogeneous � individuals

characterized by a speci�c �.

This setup involves two restrictions worth emphasizing. First, as in EFC, consumer choices depend

only on price di¤erences, not price levels; that is, there are no income e¤ects. In our empirical work, we

estimate constant absolute risk aversion preferences, which leads to this property. Second, we restrict

attention to the case of an exchange with two policies. We do so because in this case we can derive

a simple algorithm for identifying equilibria. With more than two policies, we would likely need to

identify equilibria computationally.

We denote the costs of insuring an individual of type � under policy k by Ck(�) for k = H;L and

de�ne �P = PH � PL. Given this, we de�ne the average costs of serving the populations who choose

each policy for a given �P to be

ACH(�P ) � E[CH(�)j� � �P ]

and

ACL(�P ) � E[CL(�)j� � �P ]:

We also de�ne the di¤erence in average costs between the two policies, conditional on a price di¤erence

�P 2 [�; �], to be

�AC(�P ) � ACH(�P )�ACL(�P )

Our characterization results hinge on the following assumption (which we verify in Section 4 holds in

our data):

Adverse Selection Property ACH(�) and ACL(�) are continuous functions that are strictly increas-
ing at all �P 2 (�; �), with ACH(�) > ACL(�) for all �.
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This Adverse Selection Property will hold, for example, if CH(�) and CL(�) are continuous increasing

functions, with CH(�) > CL(�) for all �, and if the distribution function F is continuous. In that case,

a small increase in �P shifts the consumers who were the best risks in policy H to being the worst

risks in policy L, raising the average costs of both policies. We denote the lowest possible levels of

average costs by ACH � ACH(�) and ACL � ACL(�), and the highest ones by ACH � ACH(�) and

ACL � ACL(�).

We refer to the lowest prices o¤ered for the H and L policies as a price con�guration. We next de�ne

the pro�ts earned by the �rms o¤ering those prices. Speci�cally, for any price con�guration (PH ; PL)

de�ne

�H(PH ; PL) � [PH �ACH(�P )][1� F (�P )]

and

�L(PH ; PL) � [PL �ACL(�P )]F (�P )

as the aggregate pro�t from consumers who choose each of the two policies. Let

�(PH ; PL) � �H(PH ; PL) + �L(PH ; PL)

be aggregate pro�t from the entire population.

The set of break-even price con�gurations, which lead each policy to earn zero pro�ts, is P � f(PH ; PL) :
�H(PH ; PL) = �L(PH ; PL) = 0g. Note that the price con�guration (PH ; PL) = (ACL+�;ACL), which
results in all consumers purchasing policy L, is a break-even price con�guration (i.e., it is in set P),
as is the �all-in-H� price con�guration (PH ; PL) = (ACH ; ACH � �). There may also be �interior�

break-even price con�gurations, at which both policies have a positive market share. We let �PBE

denote the lowest break-even �P with positive sales of policy L, de�ned formally as:

�PBE � minf�P : there is a (PH ; PL) 2 P with �P = PH � PL > �g:11 (1)

The price di¤erence �PBE will play a signi�cant role in our equilibrium characterizations below.

2.1 Equilibrium Characterization

The literature on equilibria in insurance markets with adverse selection started with Rothschild and

Stiglitz (1976). Motivated by the possibility of non-existence of equilibrium in their model, follow-on

work by Riley (1979) [see also Engers and Fernandez (1987)] and Wilson (1977) proposed alternative

notions of equilibrium in which existence was assured in the Rothschild-Stiglitz model. These alternative

equilibrium notions each incorporated some kind of dynamic reaction to deviations [introduction of

additional pro�table policies in Riley (1979), and dropping of unpro�table policies in Wilson (1977)],

in contrast to the Nash assumption made by Rothschild and Stiglitz. In addition, follow-on work also

allowed for multi-policy �rms [Miyazaki (1977), Riley (1979)], in contrast to Rothschild and Stiglitz�s

assumption that each �rm o¤ers at most one policy.

11The price di¤erence �PBE is well-de�ned provided that �AC(�) 6= �.
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Our health exchange model di¤ers from the Rothschild-Stiglitz setting in four basic ways. First,

the prescription of two standardized policies limits the set of allowed policies. Second, in our model

consumers face many possible health states. Third, while the Rothschild-Stiglitz model contemplated

just two consumer types, we assume there is a continuum of consumer types. Finally, we allow for

multi-policy �rms.

In our main analysis we focus on the Riley equilibrium (�RE�) notion, which we show always

exists and is (generically) unique in our model. We also discuss how these compare to Nash equilibria

(�NE�), which need not exist. (In addition, we consider Wilson equilibria in Online Appendix B.)

In what follows, the phrase equilibrium outcome refers to the equilibrium price con�guration and the

shares of the two policies.

We present a formal de�nition of Riley equilibrium in Appendix A. In words, a price con�guration is

a RE if there is no pro�table deviation that would remain pro�table regardless of reactions by rivals that

introduce new �safe�policy o¤ers, where a safe policy o¤er is one that will not lose money regardless

of any additional contracts that enter the market after it.

Our result for RE is:

Proposition 1. A Riley equilibrium always exists, and results in a unique outcome whenever �AC(�) 6=
�.

(i) If �AC(�) < �, then it involves all consumers purchasing policy H at price P �H = ACH .

(ii) If �AC(�) > �, it then involves the break-even price con�guration (P �H ; P
�
L) with price di¤erence

�P � = �PBE, the lowest break-even �P with positive sales of policy L.

We prove Proposition 1 in Appendix A. Here we discuss the result, contrast RE with Nash equilibria,

and discussion the relation of our result to EFC and Hendren (2013).

Figure 1 illustrates the result. The �gure shows a situation in which �AC(�) > � and there are

multiple price di¤erences at which both policies break even (including price di¤erences at which all

consumers buy policy H, and price di¤erences at which all consumers buy policy L). In this case, our

result tells us that the unique RE involves positive sales of policy L and price di¤erence �PBE . In

contrast, if instead we had �AC(�) < �, then all consumers purchasing policy H would have been the

unique RE outcome. Finally, if instead �AC(�) > � for all �, then �PBE = � and all consumers

purchase policy L.

To understand the result, consider �rst when there is an all-in-H RE. (Readers not interested in

the details of why the RE take the form described in Proposition 1 can skip this and the next two

paragraphs.) In Appendix A, we �rst show that any RE must involve both policies breaking even.

Given this fact, suppose, �rst, that �AC(�) > �, so that the consumer with the lowest willingness-to-

pay for extra coverage is willing to pay less than the di¤erence in the two policies�average costs when

(nearly) all consumers buy policy H, �AC(�) = ACH �ACL. In that case, starting from a situation
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Figure 1: The �gure shows �PBE , the lowest price di¤erence in any break-even price con�guration that has

positive sales of the 60 policy. It also shows a situation in which all-in-90 is not an equilibrium outcome, because

�AC(�) > �.

in which all consumers buy policy H and P �H = ACH , a deviation o¤ering price bPL = ACH � �� " for
small " > 0 would cream-skim the lowest risk consumers into policy L at a price above ACL, the average

cost of serving them. Moreover, no safe reaction to that deviation can cause the �rm o¤ering it to lose

money: any reduction in PH can only lower the deviator�s average cost, while any undercutting in PL

cannot result in losses for the deviator. On the other hand, when �AC(�) < �, a deviation from this

all-in-H outcome that attempts to cream-skim must lose money, since then the deviation price satis�esbPL � ACH � � < ACL, the lowest possible average cost for policy L. Thus, in that case all-in-H is a

RE.

Now consider break-even price con�gurations with �P 2 (�PBE ; �] (and hence positive sales of
policy L). Starting from such a con�guration, a deviation to bPH = ACH(�P

BE) earns strictly positive

pro�ts [it results in a price di¤erence lower than �PBE , attracting a positive share of consumers to

policy H at an average cost below ACH(�P
BE)]. Moreover, we show in Appendix A that the worst

possible safe reaction to this deviation would involve a reduction in PL to ACL(�P
BE) (a reaction

that leads to zero pro�ts for the reactor), which makes the deviator earn zero, rather than incur losses.

Thus, no such price con�guration can be a RE.

Finally, consider the price con�guration P � = (ACH(�P
BE); ACL(�P

BE)) that results in price

di¤erence �PBE . When �AC(�) < �, this is not a RE. To see this, observe that a deviation o¤ering

price bPH = ACL(�P
BE) + �, attracts all consumers to policy H at a price above the cost of serving
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them, since bPH = ACL(�P
BE) + � � ACL + � > ACH ;

where the last inequality holds because�AC(�) = ACH�ACL < �. Moreover, we show in the appendix

that the worst possible safe reaction to this deviation is an o¤er of policy L at a price that breaks even

given bPH ; i.e., a PL = ACL( bPH �PL). Since we have �AC(�P ) < �P for all �P 2 [�;�PBE) when
�AC(�) < �, this implies that bPH > ACH( bPH � PL), so the reaction can�t make the deviator incur

losses. On the other hand, when �AC(�) > �, the worst safe reaction makes the deviator lose money

for any deviation that o¤ers a lower PH (and we show that only such deviations need be considered),

so P � is a RE.

Note that any Nash equilibrium (NE) must be a RE since the set of deviations that are considered

pro�table under NE contains the set of Riley pro�table deviations. Thus, Proposition 1 also describes

NE, should they exist. However, while RE always exists in our model, NE need not. When�AC(�) < �,

the all-in-H RE outcome is also a NE (in fact the unique one) since, as noted above, no cream-skimming

deviation is then pro�table. However, when �AC(�) > �, the RE � which has positive sales of

policy L � need not be a NE. In particular, we show in Appendix A that it will be a NE if and

only if there is no pro�table entry opportunity that slightly undercuts P �L and undercuts P
�
H : i.e., if

max bPH�P�
H
�( bPH ; P �L) = 0. In our empirical work, NE often fail to exist.12

Our characterization di¤ers in several respects from that in EFC. EFC considers a model in which

there is only one privately-supplied policy over which competition occurs. This yields a Nash equilibrium

at the lowest price P at which P = AC, where AC is the average cost of those consumers who purchase

the policy.13 Their model can apply when there is only one possible type of insurance coverage, or when

a higher coverage level is achieved through purchase of a privately-supplied add-on to a government-

provided policy (such as Medigap coverage). In the latter case, P is the price of the add-on policy,

while AC is the average cost of those consumers who purchase the extra coverage.14 EFC�s equilibrium

always exists, and always involves a positive share of consumers purchasing insurance provided that all

consumers are strictly risk averse and have a strictly positive probability of a loss (in the sense that

their preferences are bounded away from risk neutrality, and their probability of a loss is bounded

away from zero).

In contrast, in our model competition occurs over two policies, and equilibrium when both policies

are purchased involves both breaking even, yielding the lowest �P at which �P = �AC, where �AC

is the di¤erence in the average costs of the two plans, given the consumers who purchase each plan. In

12We also discuss, in Appendix A, Nash equilibria when �rms can o¤er only a single policy, as in Rothschild and Stigltz

(1976). In our empirical work, these always coincide with the RE.
13While EFC do not prove that the lowest break-even price with positive insurance sales is the unique Nash equilibrium,

the argument is straightforward [see Mas-Colell et al (1995, pp. 443-4) for a similar argument].
14The EFC model can also be used to derive equilibria when consumers must opt out of government-provided insurance

if they purchase a higher coverage private plan. (In that case, AC would be the cost of the private plan for consumers

who opt out.) However, in this scenario, EFC�s welfare analysis would not apply, as there would be externalities on the

government�s budget.

11



contrast to EFC, in this setting a NE may fail to exist, a fact that is driven by the possibility of cream

skimming by low coverage plans, a possibility which is absent in their model.15 Moreover, while RE

always exist, they may involve full unraveling, with all consumers purchasing the lowest coverage plan,

even when all consumers are strictly risk averse and have a positive probability of a loss. Intuitively,

unraveling is more likely here than in the EFC model because the price of policy L re�ects the lower

costs of the consumers who choose it, leading even the consumers with the highest willingness to pay

for higher coverage to pool with better risks in policy L.16

Our results are also related to Hendren (2013). Hendren derives a su¢ cient condition for unsub-

sidized insurance provision to be impossible in a model with two states (�loss� and �no loss�) and

asymmetric information about the probability of a loss by characterizing when the endowment is the

only incentive-feasible allocation. As he notes, his condition cannot hold when all consumers are strictly

risk averse and have a strictly positive probability of a loss (bounded away from zero). Consistent with

this result, in our model, when the low coverage involves no insurance, some consumers must purchase

high coverage in the RE.17 However, our results also show that when the lowest coverage policy in an

exchange provides some coverage, the market can fully unravel even when all consumers are strictly

risk averse and have a strictly positive probability of a loss.

2.2 Adverse Selection vs. Reclassi�cation Risk

In the main application of our framework, we examine the trade-o¤ between adverse selection and

reclassi�cation risk that arises with health-based pricing. In that empirical application, we study the

welfare e¤ects of health-based pricing over an individual�s lifetime. Here, to illustrate the main forces

at work, we discuss this trade-o¤ in a simpler static context.18

Consider a single-period setting, in which a consumer�s medical expenses are em = �e"b + (1� �)e"a,
where e"b and e"a are both independently drawn from some distribution H, and � 2 [0; 1]. The realization
of "b occurs before contracting, while that of "a occurs after. With pure community rating, health status

� the realization of "b � cannot be priced, while with health-based pricing it can. The parameter �

captures how much information about health status is known at the time of contracting. (As we will see

15Note that pro�table cream-skimming deviations that reduce P60 involve increases in �P , while in the EFC model

only reductions in P can attract consumers.
16Speci�cally, in the case of an add-on policy (so policy H is then the combined add-on and government policies),

the EFC equilibrium condition is �P = ACH(�P ) �dACL(�P ); where dACL(�P ) is the average cost of policy L for
the population who chooses policy H given �P: In contrast, our (interior) equilibrium condition is �P = ACH(�P ) �
ACL(�P ): Since adverse selection implies that dACL(�P ) > ACL(�P ), when �AC(�) > � the lowest �P satisfying

our equilibrium condition is above the lowest satisfying the EFC condition, implying more unraveling in our setting of

two privately-provided policies. In fact, Weyl and Veiga (2014) show that the equilibrium in the EFC data using our

condition involves complete unraveling.
17To see this, observe that in that case the average cost of policy L is always zero, so �AC(�P ) = ACH(�P ). Thus,

since � > CH(�) = ACH(�) when type � is strictly risk averse and has a positive probability of a loss, we then have

�AC(�) < �, which implies that the RE has some consumers purchasing policy H.
18The lifetime calculation we do later can be viewed as a sequence of static markets.
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in the next section, in our data this ranges between 0.18 and 0.29, depending on the age cohort.) With

community rating, there is an adverse selection problem, as consumers know their "b realization. In

contrast, under perfect health-based pricing, a consumer faces insurance prices that perfectly re�ect the

realization of "b. Consumers are therefore able to perfectly insure the risk in "a, but end up bearing all

of the risk in "b. For example, if the market with community rating fully unravels so that all consumers

end up with insurance covering share sL of their medical expenses, then roughly speaking they pay for

share (1� sL) of their medical expenses with community rating and share � with perfect health-based
pricing.19

Figure 2 shows the results of a simulation in which the distribution of medical expenses H is log-

normal, truncated at $200,000. Its parameters are set so that the mean of total medical expenditures is

$6000 and the ratio of the variance of total medical expenses to this mean is R = 10; 000. The constant

absolute risk aversion (CARA) coe¢ cient is  = 0:00005. The policies in each panel are simple linear

contracts, with the high coverage plan in each panel covering 90% and the low coverage plan covering

share sL, which takes values of 0, 0:2, 0:4, and 0:6 in the four panels.20 Each panel plots three curves.

The horizontal axis measures the share � of medical risk that is realized before contracting. For each

�, the curve marked with Xs shows the market share of the low coverage plan in the RE with pure

community rating, the dashed curve shows a consumer�s (ex ante, before any medical realizations)

certainty equivalent under pure community rating, and the gradually declining solid curve shows the

certainty equivalent arising with perfect health-based pricing.

Comparing the four panels in Figure 2, we see that the greater is sL (the coverage in the low-

coverage policy) the more unraveling there is � speci�cally, for larger sL the market unravels to all

consumers in the low coverage plan at lower levels of �.21 This re�ects the fact that cream-skimming

is easier when the low coverage plan does not expose consumers to too much more risk. In each panel,

the welfare of community rating and perfect health-based pricing is the same when � = 0 (there is

then neither adverse selection nor reclassi�cation risk): When sL = 0, welfare in these two regimes is

also the same when � = 1: in that case, the market fully unravels to zero coverage with community

rating (consumers know exactly their medical expenses when contracting) and there is nothing left to

insure once health status "b is priced with perfect health-based pricing. Between these two extremes

for �, when sL = 0 health-based pricing is better at high � at which the market nearly fully unravels

with community rating, but worse at low � where all consumers get high coverage. A similar pattern

19This is only a rough statement, because e"b and e"b are drawn independently, which reduces the risk under community
rating relative to that in health-based pricing.
20Our aim here is to illustrate the main forces at work in a simple setting. Note that these policies involve the possibility

of consumers having much more extreme out-of-pocket expenses than the actual policies we explore later (which have

caps on an individual�s total out-of-pocket spending), and the risk aversion coe¢ cient is lower than what we estimate.

Our analysis later also allows for a non-degenerate distribution of risk aversion levels, risk aversion that is correlated with

health status, and partial pricing of health status.
21Although it cannot be detected in the �gures, when sL = 0, there are some consumers in the high-coverage 90 policy

at all � < 1.
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Figure 2: Adverse selection vs. reclassi�cation risk, R = 10,000. X curve: market share of low coverage plan;

dashed curve: certainty equivalent with pure community rating; solid curve: certainty equivalent with perfect

health-based pricing.

emerges at higher levels of sL except that full unraveling (which happens with pure community rating

at � = 1) is now much more attractive than no coverage (which happens with health-based pricing

when � = 1). Whether there is a range over which health-based pricing is better than community

rating then depends on the level of � at which the market unravels.22 Our empirical work, which we

now turn to, explicitly quanti�es �;R, and the other key parameters described here and uses these

inputs to study the trade-o¤ between adverse selection and reclassi�cation risk induced by di¤erent

pricing and contract regulations.

3 Data and Estimation

3.1 Data

Our analysis uses detailed administrative data on the health insurance choices and medical utilization of

employees (and their dependents) at a large U.S.-based �rm over the period 2004 to 2009. These propri-

etary panel data include the health insurance options available in each year, employee plan choices, and

detailed, claim-level employee (and dependent) medical expenditure and utilization information. We

describe the data at a high-level in this section: for a more in-depth description of di¤erent dimensions

see Handel (2013).

22 In Online Appendix H, we show a similar �gure for a case with greater medical risk (R = 30; 000). Unraveling

happens at higher � in that case, re�ecting consumers�greater reluctance to choose a low coverage plan.
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The �rst column of Table 1 describes the demographic pro�le of the 11,253 employees who work

at the �rm for some period of time within 2004-2009 (the �rm employs approximately 9,000 at one

time). These employees cover 9,710 dependents, implying a total of 20,963 covered lives. 46.7% of

the employees are male and the mean employee age is 40.1 (median of 37). The table also presents

statistics on income, family composition, and employment characteristics.

Our analysis focuses on a three-year period in the data beginning with a year we denote t0: For t0,

which is in the middle of the sample period, the �rm substantially changed the menu of health plans

that it o¤ered to employees. At the time of this change, the �rm forced all employees to leave their prior

plan and actively re-enroll in one of �ve options from the new menu, with no default option. These

�ve options were comprised of three PPOs and two HMOs. Our analysis focuses on choice among the

three PPO options, which approximately 60% of health plan enrollees chose. We focus on this subset

of the overall option set because (i) we have detailed claims data for PPO enrollees but not for HMO

enrollees and (ii) the PPO options share the same doctors / cover the same treatments, eliminating a

dimension of heterogeneity that would have to be identi�ed separately from risk preferences. Analysis

in Handel (2013) reveals, reassuringly, that while there is substitution across options within the set of

PPO options, and across the set of HMO options, there is little substitution between these two subsets

of plans, implying there is little loss of internal validity when considering choice between just the set

of PPO options.

Within the nest of PPO options, consumers chose between three non-linear insurance contracts

that di¤ered on �nancial dimensions only. We denote the plans by their individual level deductibles:

PPO250, PPO500, and PPO1200. Post-deductible, the plans have coinsurance rates ranging from 10%

to 20%, and out-of-pocket maximums at the family level. In terms of actuarial equivalence value (the

proportion of expenditures covered for a representative population), PPO250 is approximately a 90%

actuarial equivalence value plan (for our sample) while PPO1200 is approximately a 73% actuarial

equivalence value plan (PPO500 is about halfway between PPO250 and PPO1200). Over the three-year

period that we study, t0 to t2, there is substantial variation in the premiums for these plans as well as

for di¤erent income levels and family structure; this variation is helpful for identifying risk preferences

separately from consumer inertia. See Figure 2 in Handel (2013) for speci�c detail on the within-sample

premium variation, which primarily re�ects (i) variation in the average costs of the pool enrolling in

each plan (ii) number of dependents covered (iii) employee income and (iv) the �rm�s rule for subsidizing

coverage.

We restrict the �nal sample used in choice model estimation to those individuals / families that

(i) enroll in a PPO option at the �rm and (ii) are present in all years from t�1, the year before the

menu change, through at least t1. The reasons for the �rst restriction are discussed above. The second

restriction, to more permanent employees, is made to leverage the panel nature of the data, especially

the temporal variation in premiums and health risk, to more precisely identify risk preferences. Column

2 in Table 1 presents the summary statistics for the families that choose one of the PPO options, while
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Sample Demographics

All Employees PPO Ever Final Sample

N - Employee Only 11,253 5,667 2,023

N - All Family Members 20,963 10,713 4,544

Mean Employee Age (Median) 40.1 40.0 42.3
(37) (37) (44)

Gender (Male %) 46.7% 46.3% 46.7%

Income

Tier 1 ( < $41K) 33.9% 31.9% 19.0%

Tier 2 ($41K-$72K) 39.5% 39.7% 40.5%

Tier 3 ($72K-$124K) 17.9% 18.6% 25.0%

Tier 4 ($124K-$176K) 5.2% 5.4% 7.8%

Tier 5 ( > $176K) 3.5% 4.4% 7.7%

Family Size

1 58.0 % 56.1 % 41.3 %

2 16.9 % 18.8 % 22.3 %

3 11.0 % 11.0 % 14.1 %

4+ 14.1 % 14.1 % 22.3 %

Sta¤ Grouping

Manager (%) 23.2% 25.1% 37.5%

White-Collar (%) 47.9% 47.5% 41.3%

Blue-Collar (%) 28.9% 27.3% 21.1%

Additional Demographics

Quantitative Manager 12.8% 13.3% 20.7%

Job Tenure Mean Years (Median) 7.2 7.1 10.1
(4) (3) (6)

Table 1: This table presents summary demographic statistics for the population we study. The �rst column

describes demographics for the entire sample whether or not they ever enroll in insurance with the �rm. The

second column summarizes these variables for the sample of individuals who ever enroll in a PPO option, the

choices we focus on in the empirical analysis. The third column describes our �nal estimation sample, which

includes those employees who (i) enroll in the PPO option at the �rm in t�1 and (ii) remain enrolled in one of

the three new PPO options at the �rm through at least t1.
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Column 3 presents the summary statistics for the �nal estimation sample, incorporating the additional

restriction of being present from t�1 to at least t1. Comparing the second column to the �rst column

reveals little selection on demographic dimensions into the PPO options, while comparing the third

column to the others reveals some selection based on family size and age into the �nal sample, as

expected given the restriction to longer tenure.

3.2 Health Status and Cost Model

We use detailed medical and demographic information together with the �ACG� software developed

at Johns Hopkins Medical School to create individual-level measures of predicted expected medical

expenses for the upcoming year at each point in time.23 We denote these ex ante predictions of the

next year�s expected medical expenditures by � and compute these measures for each individual in the

sample (including dependents as well as employees). We refer to �it as individual i�s �health status�

at time t. Figure H1 in Online Appendix H presents the distribution of � for individuals in the data,

as predicted for year t1; for any individuals in the data (including dependents) present at both t0 and

t1. The average predicted yearly expenditures for an individual are $4,878 and as is typical in the

health care literature, the distribution is skewed with a large right tail. See Table 3 later in this section

and Table H1 in Online Appendix H for additional detailed information on the distribution of health

spending for our primary sample of interest.

The health status variable � measures expected total health expenses. However, to evaluate the

expected utility for consumers from di¤erent coverage options we need to estimate an ex ante distri-

bution of out-of-pocket expenses for each family j choosing a given health plan k (not just their mean

out-of-pocket expense). We utilize the cost model developed in Handel (2013) to estimate these dis-

tributions, denoted Hk(Xjtj�jt;Zjt). Here, �jt is the vector of �it for all i in family j, Zjt are family
demographics, and Xjt are out-of-pocket medical expenditure realizations for family j in plan k at time

t.

The cost model is described in Online Appendix C; here we provide a broad overview. The model

has the following primary components:

1. For each individual and time period, we compute expected expenditure, �it; for four medical

categories: (i) hospital/inpatient (ii) physician o¢ ce visits (iii) mental health and (iv) pharmacy.

2. We next group individuals into cells based on �it. For each expenditure type and risk cell, we

estimate an expenditure distribution for the upcoming year based on ex post cost realizations.

Then we combine the marginal distributions across expenditure categories into joint distributions

using empirical correlations and copula methods.

23The program, known as the Johns Hopkins ACG (Adjusted Clinical Groups) Case-Mix System, is one of the most

widely used and respected risk adjustment and predictive modeling packages in the health care sector. It was speci�cally

designed to use diagnostic claims data to predict future medical expenditures.
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3. Finally, for each plan k we construct the detailed mappings from the vector of category-speci�c

medical expenditures to plan out-of-pocket costs.

The output from this process, Hk(Xjtj�jt;Zjt); represents the distribution of out-of-pocket expenses
associated with plan k used to compute expected utility in the choice model (and counterfactuals).

The cost model assumes both that there is no individual-level private information and no moral

hazard (total expenditures do not vary with k). While both of these phenomena have the potential

to be important in health care markets, and are studied extensively in other research, we believe that

these assumptions do not materially impact our estimates. Because our cost model combines detailed

individual-level prior medical utilization data with sophisticated medical diagnostic software there is

less room for private information (and selection based on that information) than in prior work that

uses coarser information to measure health risk.24 To support these assumptions, we run a �correlation

test� in the spirit of Chiappori and Salanie (2000) that investigates whether the choice of higher

coverage predicts higher ex post total spending (due to either moral hazard or selection on private

information). The test reveals that choice of more comprehensive coverage does not predict higher ex

post expenditures, controlling for other observable information used in our choice model.25

3.3 Risk Preferences: Choice Model

We estimate risk preferences with a panel discrete choice model where choices are made by each house-

hold j at time t, conditional on their household-plan speci�c ex ante out-of-pocket cost distributions

Hk(Xjtj�jt;Zjt): Speci�cally, the utility of plan k for household j at time t is

Ujkt =

Z 1

0

uj(Mjkt(Xjt;Zjt))dHk(Xjtj�jt;Zjt) (2)

where uj is the v-NM or �Bernoulli�expected utility index that measures utility conditional on a given

ex post realized state Xjt from the expenditure distribution Hk: Zjt are individual-level observables

(described shortly) and Mjkt is the e¤ective household consumption, given by

Mjkt =Wj � Pjkt �Xjt + �(Z
B
j )1jk;t�1 + �j(Aj)11200 + �HTCj;t�11250 + "jkt(Aj) (3)

24Pregnancies, genetic pre-dispositions, and non-coded disease severity are possible examples of private information

that could still exist. Cardon and Hendel (2001) �nd no evidence of selection based on private information with coarser

data while Carlin and Town (2009) use claims data that are similarly detailed to ours and also argue that signi�cant

residual selection is unlikely.
25We perform this analysis for the set of families in our estimation sample for the year t0, when all of these families

make an active plan choice. We estimate a robust standard-error OLS speci�cation with total family spending during t0

as the dependent variable, and indicator variables for choice of PPO250 and PPO500 for t0 on the right-hand side, which

also contains observable information such as ex ante predicted family mean spending, past costs, age, income, and other

factors that enter our predictive cost model. The coe¢ cient on PPO250 is $839 (T = 0.78) and on PPO500 is -$531 (T =

-0.52) implying that family plan choice is not predictive of residual spending at t0 above and beyond our rich observable

measures (though because of the noise inherent to medical spending, a medium-sized e¤ect of private information cannot

be ruled out).
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where Wj denotes household wealth, Pjkt is the premium contribution for plan k at time t and 1jk;t�1

is an indicator that equals one if plan k is the incumbent plan (default option) at choice year t. This

variable captures consumer inertia, which may be present for years with a default option (when the

consumer may incur cost � to switch).26 �j(Aj) is a random coe¢ cient, with distribution estimated

conditional on family status Aj (single or covering dependents), that captures permanent horizontal

preferences for PPO1200 arising from the Health Savings Account linked to this plan option. Parameter

� captures preferences for very high-expenditure consumers, who almost exclusively choose PPO250

even when that option is not attractive �nancially (HTCj;t�1 = 1 for the top 10% of the distribution

of expected total costs). The utility of each option k for family j at t is also a¤ected by a mean

zero idiosyncratic preference shock "jkt known to the decision-maker, with variance �" to be estimated

conditional on family status Aj .

We assume that households have constant absolute risk aversion (CARA) preferences:

uj(Mjkt) = �
1

j
e�jMjkt (4)

Parameter j is a household-speci�c CARA risk preference parameter unobserved by the economet-

rician. We estimate a random-coe¢ cient distribution of j that is assumed to have mean �(Z
A
j ;�j)

and be normally distributed with variance �2 .
27 Note that observable heterogeneity impacts risk pref-

erence estimates through a shift in � , while the level of unobserved heterogeneity measured by �
2
 is

assumed constant for the entire population. We use the following speci�cation for �(Z
A
j ;�j):

�(Z
A
j ;�j) = �0+�1 log(�i�j�i)+�2agej+�3 log(�i�j�i)�agej+�41mj+�51mjb�mj+�61nmjb�nmj (5)

In addition to expected household health expenditures (�i�j�i), risk preferences depend on the

maximum household age, denoted agej , and the interaction between health risk and age. 1mj is an

indicator variable that denotes whether the employee associated with the household is a �manager�

(i.e., a high-level employee) at the �rm. 1nmj is the complement of 1mj . b�mj is a measure of ability,
and is computed as the residual to the following regression, run only on the sample of managers in the

population:

Incomej = �0 + �1agej + �2age
2
j + �j (6)

The residual b�nmj is computed from the corresponding regression for non-managers.

Regarding identi�cation, risk preferences are identi�ed separately from inertia by leveraging the

�rm�s insurance menu re-design for year t0, together with the assumption that risk preferences are

26� depends on ZBj , a subset of demographic variables and linked choices. See Table D1 in Online Appendix D for a

list of the variables included in ZBj and Handel (2013) for a discussion of heterogeneity in inertia.
27The left tail of this normal distribution is truncated at a value just above 0, as is required in the CARA model. This

truncation has a very minimal impact empirically.

19



constant within family over time. Households in that year chose plans from a new menu of options

with no default option, while in subsequent years they did have their previously chosen option as a

default option. Conditional on this choice environment, changing prices and health status over time

separately identify inertia from risk preference levels and risk preference heterogeneity. The di¤erent

components of risk preference heterogeneity are identi�ed using the price variation that exists across

income tiers, coverage tiers (number of family members covered) and over time, combined with the

changes to household expected medical spending over time [see Figure 2 in Handel (2013), and the

related discussion in the text for further discussion of this variation]. Finally, consumer preference

heterogeneity for the high-deductible plan option with the linked health savings account (HSA) is

distinguished from risk preference heterogeneity by comparing choices between the two other plans to

those between either of those plans and the high-deductible plan.

We estimate the choice model using a random coe¢ cients simulated maximum likelihood approach

similar to Train (2009). The likelihood function at the household level is computed for a sequence of

choices from t0 to t2, since inertia implies that the likelihood of a choice made in the current period

depends on the previous choice. Since the estimation algorithm is similar to a standard approach, we

describe the remainder of the details, including the speci�cation for heterogeneity in inertia, in Online

Appendix D.

3.4 Preference Estimates

Table 2 presents our choice model estimates. The �rst column presents the estimates of our primary

speci�cation while the second through fourth columns present robustness analyses to assess the impact

of linking di¤erent types of observable heterogeneity to risk preferences. The table presents detailed

risk preference estimates, including the links to observable and unobservable heterogeneity. Since we

only use these parameters in the upcoming exchange equilibrium analyses (plus �"), for simplicity we

present and discuss the rest of the estimated parameters in Online Appendix D (e.g., inertia estimates,

PPO1200 random coe¢ cients, "jkt standard deviations, and income regressions). Parameter standard

errors, which are generally quite small, are also presented in Online Appendix D.

For the primary speci�cation, the population mean for � , the household mean risk-aversion level,

is 4:39 � 10�4. The standard deviation for � (or the standard deviation in risk preferences based on
observable heterogeneity) equals 6:63 � 10�5. The standard deviation of unobservable heterogeneity in
risk preferences, � equals 1:24�10�4. See the results in the bottom section of Table 2 for interpretations
of these risk preference estimates in the context of simple hypothetical gambles.28

28The bottom rows in Table 2 interpret the mean of the average estimated risk aversion � , as well as several quantiles

surrounding that average � . We present the value X that would make a household with our candidate risk aversion

estimate indi¤erent between inaction and accepting a simple hypothetical gamble with a 50% chance of gaining $1000 and

a 50% chance of losing $X. Thus, a risk neutral individual will have X = $1000 while an in�nitely risk averse individual

will have X close to zero. For the population mean of � from the primary model we have X = $693 while for the 25th,

75th, and 95th quantiles of unobserved heterogeneity around that mean X is $736, $653 and $604 respectively (these
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Empirical Model Results

(1) (2) (3) (4)

Parameter / Model Primary Model Robustness 1 Robustness 2 Robustness 3

Risk Preference Estimates

� - Intercept, �0 1:21 � 10�3 1:63 � 10�4 1:06 � 10�3 2:54 � 10�4

� - log(�i�j�i), �1 �1:14 � 10�4 - -1:21 � 10�4 -

� - age, �2 �5:21 � 10�6 3:60 � 10�6 -4:69 � 10�6 3:99 � 10�6

� - log(�i�j�i)�age, �3 1:10 � 10�6 - 1:01 � 10�6 -

� - Manager, �4 4:3 � 10�5 7:45 � 10�5 5:3 � 10�5 5:4 � 10�5

� - Manager ability, �5 1:4 � 10�5 4:49 � 10�5 � -

� - Non-manager ability , �6 7:5 � 10�6 3:24 � 10�5 � -

� - Nominal Income, �7 - - 3:0 � 10�5 -

� - Population Mean 4:39 � 10�4 3:71 � 10�4 4:33 � 10�4 4:73 � 10�4

� - Population � 6:63 � 10�5 7:45 � 10�5 8:27 � 10�5 6:30 � 10�5

� -  standard deviation 1:24 � 10�4 1:14 � 10�4 1:40 � 10�4 1:20 � 10�4

Gamble Interp.:

� Mean 693 728 696 676

� Mean + 25th Quantile � 736 772 748 717

� Mean + 75th Quantile � 653 688 651 640

� Mean + 95th Quantile � 604 638 596 593

Table 2: This table presents the our choice model estimates. The �rst column presents the results from our

primary speci�cation described in Section 3. The second through fourth columns present robustness analyses

that assess the impact of linking preferences to health status and our measure of income earning ability. For

each model, we present the detailed risk preference estimates, including the links to observable and unobservable

heterogeneity. The rest of the parameters (inertia estimates, PPO1200 random coe¢ cients, and "jkt standard

errors) and the standard errors for all parameters are provided in Online Appendix D. The bottom of the table

interprets the population mean risk preference estimates: it provides the value X that would make someone

indi¤erent about accepting a 50-50 gamble where you win $1000 and lose X versus a status quo where nothing

happens. The population distributions of risk preferences are similar across the speci�cations, even though the

additional links between health risk / ability and risk preferences add richness.
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In terms of observable heterogeneity, risk preferences are negatively correlated with mean health

risk: a one point increase in log(
P
�i) reduces � by 8:10 � 10�5 for a 30-year old.29 While a negative

correlation between mean risk (expected total medical expenses) and risk aversion may suggest less

adverse selection than when these factors are independent, Veiga and Weyl (2013) show the opposite

is the case in our application. Using our simulated sample they compute the product of risk aversion

times the variance of the risk faced, which is the appropriate measure of insurance value under some

assumptions. In our case, the correlation between insurance value and mean expected risk is positive,

exacerbating adverse selection. Managers and those with higher ability are slightly more risk averse.

With a log expected total health spending value of 9 (around the median for a household) risk aversion

is increasing in age by 4:69 � 10�6 per year. The speci�cations in the second through fourth columns
in the table, which investigate robustness with respect to the inclusion of and speci�cation for health

status / ability in risk preferences, estimate similar means and variances for risk preferences relative

to our primary speci�cation. While the estimates in the literature span a wide range, and should be

interpreted di¤erently depending on the di¤erent contexts being studied, our estimates generally fall in

the middle of the range of prior work on insurance choice, while the extent of heterogeneity we estimate

is somewhat lower in magnitude [see, e.g., Cohen and Einav (2007)]. The negative estimated correlation

between expected health risk and risk preferences is consistent with that association in Finkelstein and

McGarry (2006) but the opposite sign of the e¤ect found in Cohen and Einav (2007).

3.5 Simulation Sample

We estimate the choice model at the family level because that is the unit that actually makes choices

in the data. For our counterfactual insurance exchange simulations, we focus on individuals to simplify

exposition.

The sample used in the simulations contains individuals between the ages of 25 and 65. Thus,

our simulations include both individuals with single coverage in the data, and individuals who are

members of families with family coverage in our data. To ensure that the data for a given individual

are complete, we require a given simulated individual to be present for at least eight months in each

of two consecutive years.30 The data from the �rst year are used to predict health status while the

presence in the second year is used to ensure the individual was a relevant potential participant in the

�rm�s bene�t program for that year. This ensures that the simulation sample re�ects to some extent the

values are decreasing because they decrease as  increases).
29The coe¢ cient on health risk is more negative than this, while the interaction between age and risk preferences has

a positive coe¢ cient, indicating some reduction in the negative relationship between risk preferences and health risk as

one becomes older.
30For individuals whose past year of cost data is less than one year (between eight months and one year) we assume

that this past data represents one full year of health claims for the purposes of constructing their health status �: We

assume in all of the simulations that individuals buy a plan expecting to be in that plan for the full year (this is not an

issue in choice model estimation, where the sample is restricted to those present for full years). The cost model estimation

is done only for individuals with full years of cost data and these full-year distributions are the ones used in our analysis.
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presence / longevity of the choice model estimation sample. For risk preferences, some of the variables

used in estimation are de�ned at the family level rather than the individual level (e.g., ability, manager

status of the employee in the family). Every individual that comes from a given family is assigned

the relevant family value for these variables when simulating risk preferences for that individual in the

exchange counterfactuals. Table H1 in Online Appendix H describes some key descriptive variables for

this pseudo-sample of 10,372 individuals used for the insurance exchange simulations. Importantly, the

distributions of income and health expenditures are similar to those of the main estimation sample and

the population overall. The proportion female is also similar. Finally, similarly to what we see in the

data overall, the simulation sample covers the range of ages from 25-65 fairly evenly: this is relevant

to our upcoming welfare analysis, which assumes that the population is in a steady state.

Table 3 shows the distribution of expenses for the simulation sample. The �rst two columns shows

the mean and standard deviation of expenditure by age group. The next column represents the standard

deviation within each group of the expected expenditure, followed by the standard deviation of expenses

around the expectation (i.e., the mean of squared deviations from the individual means). The last two

columns show what we denoted as R and � in Section 2.2. R is de�ned as the variance of health expenses

divided by the mean expenses, while � represents the proportion of the variance of expenses that is

revealed prior to contracting, namely, that is known at the time of purchasing coverage. Interestingly, �

decreases in age. Namely, a lower proportion of the uncertainty is revealed prior to contracting for older

groups.31 Moreover, the majority of the variance in expenses remains to be resolved after contracting.

Viewed in the context of the model in Section 2.2, these quantities have direct implications for the

empirical trade-o¤ between adverse selection and reclassi�cation risk as a function of the di¤erent

pricing, contract, and market regulations that we investigate for the remainder of the paper.

4 Equilibrium E¤ects of Risk-Rating

We use the estimates from our choice and cost models to study the e¤ects of pricing and contract

regulations. As in Section 2, we study exchanges in which insurers can o¤er two policies. We assume

here that the two policies cover either 90% or 60% of expenditures in the population, on average. While

there are a variety of potential non-linear contract designs that would imply these coverage levels,

following the discussion of such policies in Consumers Union (2009) we assume that the 90% policy

has no deductible, a 20% coinsurance rate post-deductible, and a $1500 out-of-pocket maximum (all

at the individual level we study here) and the 60% policy has a $3,000 deductible, a 20% coinsurance

rate post-deductible, and a $5,950 out-of-pocket maximum. In Section 6 we study other contract

con�gurations.

31However, comparing R (the ratio of the variance to mean medical expenses) and mean medical expenses, we see that

the overall variance of medical expenses is roughly four times larger in age group 60-65 than in age group 25-30. Thus,

the total amount of information known prior to contracting (measured by its variance) is larger in the former group,

despite the fact that � is decreasing in age.
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Final Sample Total Health Expenditure Statistics

Ages Mean S. D. S. D. of mean S. D. around mean R �

All 6,099 13,859 6,798 9,228 31,369 0.24

25-30 3,112 9,069 4,918 5,017 26,429 0.29

30-35 3,766 10,186 5,473 5,806 27,550 0.29

35-40 4,219 10,753 5,304 6,751 27,407 0.24

40-45 5,076 12,008 5,942 7,789 28,407 0.25

45-50 6,370 14,095 6,874 9,670 31,149 0.24

50-55 7,394 15,315 7,116 11,092 31,722 0.22

55-60 9,175 17,165 7,414 13,393 32,113 0.19

60-65 10,236 18,057 7,619 14,366 31,854 0.18

Table 3: Sample statistics for total health expenditures for (i) the entire sample used in our equilibrium analysis

and (ii) 5-year age buckets within that sample.

The estimated model contains three sources of heterogeneity that we use in this analysis: risk type,

risk aversion, and an idiosyncratic preference shock. For each individual in the population we compute,

based on their demographics and prior diagnostics, the risk type � discussed in the previous section.

For a given �, we take 100 draws from the estimated distribution of  (conditional on � and the other

demographics modeled in equation (5)), creating 100 �pseudo-individuals� for each actual individual

in our sample. Doing so generates a joint distribution of risk preferences and risk type. For each of

the two plan designs we compute the distribution of out-of-pocket expenses Hk(�j�it; Zit). With these
objects, we compute the expected utility of each (pseudo) individual for each plan, and use them to

�nd CE90 and CE60 (gross of premiums), as described in Section 2. Willingness to pay for the extra

coverage of the 90% plan is � = CE90�CE60+", where " is distributed N(0; �2"). Thus, as in equation
(3), there is a random shock to a consumer�s preference between the two plans. For the simulations

that follow we use �" = 525, which is the estimated standard deviation of " for the single population

for PPO1200 relative to PPO250. As we report below, our results are robust to medium-sized changes

in �".

The sample population and the estimated distributions determine F (�): Costs to each plan k, Ck(�)

for k = 90 and 60, are computed using expected plan costs �it � E[Xitj�it; Zit], aggregating over all
individuals associated with each �, while AC90(�) and AC60(�) are determined by aggregating these

costs over the � that select a given plan.

The Adverse Selection Property introduced in Section 2, upon which our theoretical results hinge,

can be veri�ed in our sample: Figure 3 shows that AC90 and AC60 are increasing in �P for each policy,

and that AC90 exceeds AC60 at all �P .
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Figure 3: Plot of average costs vs. the price di¤erence�P . Average costs are increasing in this price di¤erence,

and are larger for the 90 policy at each�P , consistent with the Adverse Selection Property maintained to derive

our theoretical results.

4.1 Pure Community Rating

We start by considering the case of pure community rating, where insurers must price everyone in the

whole population identically. We follow the theoretical results of Section 2 as a roadmap to �nding

equilibria.

The �rst step towards �nding equilibria involves checking whether all consumers pooling in the 90

plan is an equilibrium. Figure 4, which plots �AC(�P ), shows that �AC(�) > �; which implies that

there is a pro�table cream-skimming deviation from all-in-90 that attracts the healthiest customers to

the 60 policy.32 Thus, in our population all-in-90 is not an equilibrium. The equilibrium must involve

purchases of the 60 policy.

The second step towards �nding equilibrium involves �nding the lowest break-even �P , �PBE ;

i.e., the lowest interior �P at which �P = AC90(�P )�AC60(�P ); if any exist, or �P = � otherwise.

This is then the RE �P .

Figure 4 shows that, for the case of pure community rating, there is no interior equilibrium. Namely,

there is no pair of premiums at which both policies have positive market shares and both break even:

for any premium gap between 60 and 90 coverage, the gap in average costs is larger than the gap in

premiums. The market must fully unravel. Thus, by Proposition 1 all-in-60 must be the RE.

32Figures 4 and 5 present �AC(�P ) for only �P > 0, even though empirically a very small proportion of consumers

have � < 0 because they are both healthy and have negative draws of the idiosyncratic preference shock ". The values

for �AC(�) are essentially identical to those for �AC(0) depicted in both �gures.
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Figure 4: Plot of the average cost di¤erence �AC(�P ) and the price di¤erence �P .

All-in-60 is not a Nash Equilibrium as a price cut in P90 in conjunction with an in�nitesimal

reduction of P60 is pro�table.33 The top section of Table 4 summarizes these �ndings for the case of a

pure community rating pricing regulation.

4.2 Health-Based Pricing

We now investigate the e¤ects of allowing pricing of some health status information. Speci�cally, we

�rst consider the case in which consumers are classi�ed into quartiles based on their ex ante predicted

total expenditures � : e.g., the �rst quartile contains the healthiest consumers, while the last contains

the sickest consumers. Insurers can target each quartile with di¤erent prices as they see �t. We

later present results that vary the �neness of information insurers can price on, ranging from pure

community rating all the way up to the case of unrestricted risk rating / price discrimination. These

stylized regulations are meant to be illustrative of potentially more subtle regulations seen in real-world

insurance markets that vary the ability of insurers to price discriminate based on health status. We

follow the same steps as in the previous subsection to �nd equilibria, but now for each market segment

separately.

The implications of this pricing regulation for adverse selection are seen directly when examining

the pricing equilibrium for quartile 1, the healthiest quartile of consumers. For quartile 1, there is an

interior equilibrium. The �rst step, as described above, is to check whether all-in-90 is an equilibrium.

33This type of deviation is pro�table in every all-in-60 RE we report throughout in the paper. Appendix A also

discusses Nash equilibria when �rms can only o¤er single policies (sp-NE). All the RE we found are sp-NE (they need

not be, as the existence of of sp-NE, unlike RE, is not guarateed).
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Equilibria without Pre-existing Conditions

Equilirium Type P60 S60 AC60 P90 S90 AC90

RE 4,051 100.0 4,051 � 0 �

NE Does not exist

Equilibria with Health Status-based Pricing

Market Equilibrium Type P60 S60 AC60 P90 S90 AC90

Quartile 1 RE/NE 289 64.8 289 1,550 35.2 1,550

Quartile 2 RE 1,467 100.0 1,467 - 0 -

Quartile 3 RE 4,577 100.0 4,577 - 0 -

Quartile 4 RE 9,802 100.0 9,802 - 0 -

Table 4: The top section of this table presents the equilibrium results for the case of pure community rating (no

pricing of pre-existing conditions). The bottom section presents the equilibrium results for the case in which

insurers can price based on health status information in the form of health status quartiles. The equilibrium

results are presented for each health status quartile, which act as separate markets under this regulation.

Figure 5 shows that, as in the pure community rating case, �AC(�) > �, implying that all-in-90 is not

an equilibrium.

The second step is to look for interior equilibrium candidates. Figure 5 shows two interior break-

even �P s. By Proposition 1 the lowest �P; the one with the largest share of customers in the 90

policy, is the RE. In this equilibrium, 35.2 percent of quartile 1 consumers obtain high coverage.

In contrast, equilibria in quartiles 2, 3 and 4 are qualitatively identical to the equilibrium under

pure community rating. We omit the graphs, which look similar to Figure 4. The bottom section of

Table 4 summarizes the �ndings for the four quartiles under health status-based pricing. The table

also highlights the potential for reclassi�cation risk when moving from the static equilibrium analysis

to the analysis of long-run consumer welfare: if insurers can price based on health status quartiles,

consumers will �nd themselves paying premiums as low as $289 or as high as $9,802, corresponding

to the di¤erent quartiles, as their health evolves over time. However, under these pricing regulations,

many of the healthiest consumers in the population obtain a greater level of insurance coverage, and

thus are less impacted by adverse selection.

To more completely analyze the trade-o¤ between adverse selection and reclassi�cation risk, we also

consider a range of pricing regulations that allow insurers to price based on health status information

with varying degrees of speci�city. The second column in Table 5 describes the RE share in the 60

policy when insurers instead can price based on 2, 4, 6, 8, 10, 20, or 50 health status partitions, as
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Figure 5: Plot of the average cost di¤erence �AC(�P ) and price di¤erence �P for the healthiest quartile.

Equilibria Welfare Loss from Health Status-based Pricing: Varying Regulation

yHBx;PCR yHBx;PCR yHBx;PCR

# of Health Buckets S60 Fixed Income Non-Manager Income path Manager Income Path

2 100.0 1,920 710 -102

4 90.0 3,082 1,821 -886

6 82.0 3,951 2,377 -232

8 85.1 4,649 2,084 -1,510

10 83.2 5,357 2,269 -1,364

20 81.4 8.590 4,621 -393

50 63.2 11,578 7,302 2,359

1 27.0 14,733 9,944 2,399

Table 5: Equilibria and long-run welfare comparison between the pricing regulations that allow some pricing

based on health status and the case in which no pricing on health status is allowed. The table shows the share

of consumers choosing the 60 policy for each pricing regime. It also presents the values for yHBx;PCR, the

annual payment required under regulation that allows pricing of x evenly-sized health risk buckets that makes

consumers indi¤erent between that regulation and the case of pure community rating (PCR). The regimes x

listed in column 1 correspond to how targeted pricing can be over the range of health status: e.g., 4 corresponds

to the case of quartile pricing while 1 is full risk rating. The results presented are for Riley Equilibria and

 = 0:0004.
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well as the case of full risk-rating (labeled 1). Adverse selection is reduced as the insurers are able to
price on �ner information: with 4, 10, and 50 partitions the 60 plan has 90%, 83%, and 63% market

shares respectively, while with full risk-rating 73% of consumers choose to enroll in the 90 plan.34 (The

welfare numbers in columns 3-5 of Table 5 will be discussed in Section 5.)

5 Welfare E¤ects

Our aim in this section is to evaluate the expected utility of an individual starting at age 25 from

an ex-ante (�unborn�) perspective; that is, before he knows the evolution of his health. The unborn

individual faces uncertainty about how his health status will transition from one year to the next, and

thus what policies he will purchase and what premiums he will pay. Since individuals di¤er in their

risk aversion, we will calculate this expected utility separately for di¤erent risk aversion levels.

To be more speci�c, for any pricing rule x (e.g., pure community rating) the analysis in the previous

section tells us what policy each individual will choose as a function of their health status (�) and risk

aversion (), and the premium they will pay. Given this information, we can compute the certainty

equivalent CEx(�; ) of the uncertain consumption that this individual of type (�; ) will face within

a year because of uncertainty over his health realization.

To measure the welfare di¤erence for an individual with age-25 risk aversion level  between any

two regimes x and x0, we de�ne the �xed yearly payment yx;x0() added to income in regime x that

makes the individual have the same expected utility starting at age 25 under regime x and as under

regime x0:
65X
t=25

�tE[�e�fIt�CEx(�t;)+yx;x0 ()g] =
65X
t=25

�tE[�e�fIt�CEx0 (�t;)g];

or

yx;x0() = �
1


ln

 P65
t=25 �

tE[�e�fIt�CEx0 (�t;)g]P65
t=25 �

tE[�e�fIt�CEx(�t;)g]

!
: (7)

To compute expected utility starting at age 25 from an ex ante perspective, we need to know how

health status will transition over time for an individual with a given risk aversion  at age 25. If risk

was independent of risk aversion the computation would be straightforward. In a steady state, the

observed health realization of the whole population (at di¤erent ages) would be representative of the

expected realization of any individual as he ages. Assuming that our sample represents a steady state

population we would just draw from the realized cost distribution to capture the ex-ante distribution

that any (unborn) individual faces.35

However, our estimates imply that health and risk aversion are correlated, with more risk averse

individuals being healthier on average. Table H2 in Online Appendix H shows, for various risk aversion

34With no " preference shock, with full risk-rating all consumers would enroll in the 90% plan. Here, with the estimated

" standard deviation incorporated, the �rst-best allocation has 73% of consumers in the 90% plan, since some choose the

60% plan due to this preference shock.
35Recall that the age distribution in our sample is close to uniform, as it should be in a steady state population.
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levels ; the average costs of the individuals selected in this manner at ages 25-30, 45-50, and 60-65.

The pattern of costs re�ects the positive correlation between health status and risk aversion, as well as

the attenuation of this positive relationship with increases in age. The correlation makes the population

as a whole not representative of the health costs faced by individuals after they draw their own :

To identify the stochastic health outcomes a 25-year old with a given risk aversion  foresees at any

given future age t, we isolate those individuals in our simulation sample of age t whose risk-aversion

t falls into a band around the level expected based on our estimates of equation (5), for individuals

with risk aversion level  at age 25.36 For a given discount factor � � 1 and regime x, we calculateP
t �
tE[�e�fIt�CEx(acgt;)g] as follows: �rst, we generate the value of e�fIt�CEx(�t;)g that each

individual of age t in the band associated with  would have if he chose between the 60 and 90 policies

facing the equilibrium prices in regime x and having risk aversion parameter .37 The income level It

is either held �xed (in which case, with CARA preferences, its level doesn�t matter) or comes from

the regression in equation (6) and is estimated separately for managers and non-managers.38 We then

derive Ext [�e�fIt�CEx(�t;)g] by calculating the sample mean of those values for age t individuals in
the  band. We then discount and add these values over t to get

P
t �
tExt [�e�fIt�CEx(�t;)g]: We

proceed similarly for regime x0.

In our primary analysis, we do not allow consumers to borrow and save over the course of their

lifetimes to self-insure against health shocks. We assume this because (i) we don�t observe the extent

to which agents are able to save and borrow in practice and (ii) integrating borrowing and saving into

our full welfare model introduces substantial computational complexity. Our main analysis allows for

two types of consumer income paths. The �rst assumes that income is �xed at the same level over

time (perfect income smoothing prior to health spending) while the second allows for increasing income

paths (as observed in our data) without the possibility of borrowing or saving. In the latter case we

provide a calculation separately for managers and non-managers, whose expected incomes paths di¤er.

We note that, since self-insurance through borrowing and/or saving has the potential to impact our

main conclusions, in Section 6.3 we study a simpli�ed extension of our primary welfare model that

allows for dynamic borrowing and saving decisions over the course of a consumer�s lifetime.

We �rst compare two regimes: ACG-quartile pricing and pure community rating. The latter elim-

inates reclassi�cation risk but exacerbates adverse selection. Health-based pricing also involves some

intertemporal redistribution, as the young tend to face lower premiums. To the extent that this regime

smooths consumption over time (given the fact that income generally rises with age), this creates some

welfare gain as well if agents cannot otherwise borrow to smooth their consumption over time. Table 6

36We use a band radius of 0:00005.
37Thus, we evaluate the welfare of an individual who at age 25 does not foresee his risk aversion changing.
38For managers, the mean income level It starts near income tier 1 at age 25 ($0-$40,000) and is near tier 4 at age 65

($124,000-$176,000). Maximum income for managers occurs at age 66. For non-managers, mean income also starts near

income tier 1 at age 25 and is halfway between tiers 2 ($40,000-$80,000) and 3 ($80,000-$124,000) at age 65. Income

peaks at age 56 for non-managers, with an average near income tier 3. See the discussion of the estimates of equation

(6) in Online Appendix D for more details.
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Welfare Loss from Health Status�based Pricing in RE/sp-NE ($/year)

yHB4;PCR() yHB4;PCR() yHB4;PCR()

 Fixed Income Non-Manager Income path Manager Income Path

0:0002 2,220 1,499 -384

0:0003 2,693 1,688 -613

0:0004 3,082 1,821 -886

0:0005 3,399 1,764 -973

0:0006 3,626 2,115 -891

Table 6: Long-run welfare comparison between the two pricing regulations of (i) pricing based on health status

quartiles (x = �HB4�) and (ii) pure community rating (x0 = �PCR�). The table presents the values for

yHB4;PCR(), the annual payment required under regime HB4 to make consumers indi¤erent between HB4

and PCR. The results presented are based on the RE outcomes presented in Table 4. We present results for

the di¤ering cases of (i) �xed income (ii) the non-manager income path, and (iii) the manager income path.

The assumed discount rate is � = 0:975:

shows the values of yx;x0() comparing pricing based on ACG-quartiles (x = �HB4�) and community

rating (x0 = �PCR�) for � = 0:975.

With a �xed income, the welfare gains from eliminating reclassi�cation through community rating

greatly exceed any losses this rule introduces due to adverse selection. The loss from health-based

pricing on quartiles ranges from $2,220 to $3,626 per year depending on risk aversion level. Losses are

larger for those with greater risk aversion. The annual loss with health status quartile pricing at a risk

aversion level of 0.0004, approximately the mean in our sample, is $3,082, which is about 51% of the

$6,099 annual average total expenses in the population (see Table H1 in Online Appendix H). We can

compare this to the welfare implications of just adverse selection: with �xed income and risk aversion

0.0004 a consumer would be willing to pay $619 per year to face a regime in which everyone receives

the 90 policy at price P90 = AC90 rather than the community rating regime in which pre-existing

conditions cannot be priced and everyone ends up buying the 60 policy at price P60 = AC60. Thus,

the welfare loss from reclassi�cation risk is at least 5 times as large as the welfare loss from adverse

selection under pure community rating.

When individuals cannot borrow, health-based pricing confers an additional bene�t by moving

consumption forward in life. For non-managers the losses from health-based pricing now range from

$1,499 to $2,115 per year. For managers, however, whose income is higher and rises more steeply with

age (see footnote 38), and therefore bene�t more from moving consumption forward in time, health-

based pricing is actually preferred to community rating. For this group, the bene�ts of smoothing

income over time outweigh the costs of reclassi�cation risk. Section 6.3 investigates a model where

consumers can self-insure via dynamic borrowing and saving, and reveals that our main conclusions

about the importance of reclassi�cation risk relative to adverse selection are unchanged once self-
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insurance is possible.

We revisit Table 5 to examine the welfare implications of varying the extent to which insurers can

price health status information. Columns 3-5 illustrate the impact of �ner pricing on long-run welfare

for risk aversion value  = 0:0004. With �xed income (column 3), and for non-managers�income paths

(column 4), the welfare loss from increased reclassi�cation risk swamps the welfare gain from reduced

adverse selection: the welfare loss from pricing 20 health status categories is almost 3 times that from

pricing quartiles. For managers�income paths the e¤ect is not monotone, because of the bene�ts of

income smoothing, but �ne enough pricing does lead to a welfare loss relative to community rating (e.g.,

with 50 health status groups). Overall, the results highlight the trade-o¤ between adverse selection and

reclassi�cation risk, and suggest that reclassi�cation risk is likely to be more important from a welfare

perspective.39 40

6 Extensions

In this section we study several extensions to our primary analysis. First, we investigate how market

equilibria and the welfare trade-o¤ between adverse selection and reclassi�cation risk depend on the

actuarial values of the contracts the regulator allows insurers to o¤er. Second, we allow for age-based

pricing.41 Third, we incorporate self-insurance through saving and borrowing into the analysis. The

ability to borrow after a health shock, or save in anticipation of future shocks, could in theory alter our

conclusions by substantially reducing the costs of reclassi�cation risk. Fourth, we study the impact of

insurer risk-adjustment transfers, whereby insurers are at least partially compensated when enrolling ex

ante sicker consumers. Finally, in Online Appendices F and G we present two additional extensions: (i)

endogenous consumer exchange participation and (ii) an alternative weighting of our sample designed

to re�ect representative U.S. demographics.

6.1 Alternative Contracts and Contract Design

So far we have studied pricing regulation for a given set of contracts. In practice, exchange designers

also regulate contract con�guration. In this section, we replicate our analysis of adverse selection

39 In addition to considering the �xed income case here, in the next section we consider the same comparison between

community rating and pricing based on health status when there is also age-based pricing which eliminates the inter-

temporal consumption-shifting e¤ect of health status-based pricing. When we do so, managers also prefer community

rating.
40One caveat to these results is that they rely on our estimated risk preferences being appropriate for evaluating

reclassi�cation risk. With �ne pricing of health status consumers can face very large monetary losses from reclassi�cation,

and the implied certainty equivalents for risk averse consumers can become implausibly large in magnitude for the reasons

noted by Rabin (2000).
41Age-based pricing is commonly found in health exchanges in practice, including the state exchanges set up under the

ACA. We note that age-based pricing will not impact the extent of reclassi�cation risk, since age is deterministic over

one�s lifetime.
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Equilibrium for Alternative Insurance Contract Designs

Contracts 90% and 80% 90% and 40% 90% and 20%

P90 P80 S80 P90 P40 S40 P90 P20 S20

All - 4800 100 - 2413 100 7345 31 28

Q1 1434 652 71 1253 4 21 1252 0 20

Q2 - 2114 100 2855 76 10 2840 6 9

Q3 - 5491 100 7519 895 26 6794 142 8

Q4 - 10945 100 - 6224 100 13343 685 12

Table 7: RE results for the cases of (i) community rating and (ii) pricing on health status quartiles for a range

of actuarial contract values allowed in the marketplace by the regulator.

and reclassi�cation risk for a range of alternative contract con�gurations. Speci�cally, we investigate

con�gurations that hold the high coverage contract at an actuarial value of 90, and set the low coverage

contract at 80, 40, and 20, respectively.

Table 7 shows market equilibrium results for these alternative contract con�gurations. Consider

�rst pure community rating. Under both the 90-80 and 90-40 con�gurations, community rating results

in full unravelling just as it does for 90-60. However, under 90-20 less than a third of the market ends

up with the lower coverage. The unattractiveness of the low option pushes more consumers to purchase

90, making it cheaper, spiralling into a high share of high coverage. The welfare consequence of having

a less attractive low contract is not immediate. While over 70% of the population end up with high

coverage, the rest has very little coverage.

The top row in each subsection of Table 8 shows welfare numbers under community rating, relative

to all-in-60 (the RE under pure community rating in the 90-60 con�guration) for each pair of alternative

contracts. Consider �rst the entry for pure community rating under �xed income. It compares ex-ante

welfare relative to the equilibrium of community rating pricing in the con�guration 90-60. Naturally,

welfare for �xed income pooling in 80 is better than pooling in 60 ($278 better), which in turn is $4472

better than pooling in 40. Interestingly, the Riley equilibrium in the 90-20 con�guration, while $3900

(=4472-572) better than pooling in 40, is $572 worse than pooling in 60. Trade increases quite a bit

by lowering the minimal coverage from 60 to 20, but welfare goes down.

From the community rating row we also see that managers (who have a steeper income growth),

but not non-managers, may prefer to pool at 60 rather than at 80 in order to reduce premiums earlier

in life when income is lower. In addition, under community rating, only managers prefer the RE in

90-20 to pooling in 60 speci�cally because enrolling in the 20 plan is relatively less costly for them due

to their steeper income pro�le. Both non-managers and managers prefer pooling in 60 to pooling in 40

(the RE outcome for the 90-40 con�guration).

Next we look at the impact of allowing health-based pricing for di¤erent contract con�gurations.

The �rst column of each con�guration in Table 8 shows the market share of low coverage in each
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pricing regime. While it takes a lot of discrimination to get anyone in the 90 policy under the 90-

80 con�guration (with 50 categories only 15% of the population gets high coverage), in the 90-40

con�guration even health quartile pricing gets more than 54% of consumers to choose the 90 policy.

However, as trade increases with more partitions only managers bene�t. Namely, as in Section 5, if

income growth is not steep, the gains from reducing adverse selection are smaller than the additional

losses from reclassi�cation risk. This is also true, in most cases, for managers, who are most likely to

prefer discrimination because of their relatively steep income paths.

6.2 Age-Based Pricing

Age-based pricing is one of the few exceptions to pure community rating typically allowed by health

insurance regulation. In this section, we use our framework to study whether age-based pricing reduces

adverse selection, and how the presence of age-based pricing a¤ects the welfare impact of allowing

health-based pricing [see, e.g., Ericson and Starc (2013) for a lengthier discussion].

We group consumers into �ve-year age bins as usually done in practice, for example in the Mas-

sachusetts Connector. Table 3 (in Section 3) describes each age bucket. The �rst column shows mean

total medical expenses by age in our sample: those age 30-35 have a mean of $3,766 while those age

60-65 have a mean of $10,236.

We �rst consider whether age-based pricing ameliorates the extent of adverse selection. As we saw

in Section 4, by allowing some health status based pricing, additional trade was generated for the

healthiest quartile of the population. Because age � as shown in column 1 � is a proxy for health

type, we may expect more trade in equilibrium.

Surprisingly perhaps, allowing for age-based pricing does not prevent full unraveling. For each age

group, the Riley equilibrium involves all-in-60. Age-based pricing undoes some of the transfers from

the younger, healthier age groups to the older groups that occur in pure community rating. However,

the distributions of health risk and risk preferences still imply that, even for the younger age groups,

full unraveling occurs in equilibrium.42

Finally, we consider the simultaneous pricing of age and health status. The exercise is interesting

for at least two reasons. First, health-based pricing may have a di¤erent impact on equilibrium in a

more homogenous population, grouped by age, than it has in the whole population. Second, when

evaluating the welfare impact of health-based pricing, age-based pricing may neutralize the bene�ts

associated with consumption smoothing, by reducing the transfer from young to old that health-based

pricing otherwise induces.

Table 9 shows the equilibrium when insurers can separate each age group into health status quartiles.

Unlike pure age-based pricing which involved full unraveling to all-in-60 for every age group, we now

have a positive share in 90 for all of the healthiest quartiles except in the oldest cohort, as well as

42We note that these results are robust to medium-sized changes in �", even though this shock to preferences introduces

a source of willingness to pay for coverage unrelated to risk type.
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Welfare Losses from Health-based Pricing: Varying Contract Designs

90% and 80%

# of Health Buckets S80 Fixed Income Non-Manager Income path Manager Income Path

Community Rating 100.0 -278 -83 194

4 92.2 3,265 1,987 -896

10 90.8 5,585 2,974 -1,343

20 87.4 8,920 5,280 -491

50 85.1 11,895 7,409 2,323

500 (1) 31.0 18,166 13,035 4,940

90% and 40%

# of Health Buckets S40 Fixed Income Non-Manager Income path Manager Income Path

Community Rating 100.0 4,472 3,243 2,098

4 45.2 6,664 4,790 953

10 42.5 8,552 5,640 429

20 32.8 11,317 7,396 1,538

50 36.6 14,010 9,491 4,247

500 (1) 3.0 19,986 16,022 9,112

90% and 20%

# of Health Buckets S20 Fixed Income Non-Manager Income path Manager Income Path

Community Rating 28.0 572 573 -45

4 11.8 3,635 2,404 -487

10 18.3 14,885 11,355 3,487

20 13.4 17,125 12,749 6,075

50 12.4 19,399 14,715 9,957

500 (1) 2.0 20,893 17,550 11,861

Table 8: Equilibria and long-run welfare comparison between health-based pricing and pure community rating

for three alternative pairs of contracts (di¤erentiated by actuarial value) that the regulator allows insurers

to o¤er. The welfare numbers presented are the yearly values that make a consumer indi¤erent between the

contract / price regulatory regime and the baseline case of community rating where 90% and 60% contracts

can be o¤ered.
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Joint Health Status Quartile and Age Pricing Regulation: Equilibrium Results

Q1 (Healthy) Q2 Q3 Q4 (Sick) Avg.

Ages S60 P60 P90 S60 P60 P90 S60 P60 S60 P60 S60

25-30 37 126 616 75 375 1,935 100 930 100 5,520 78

30-35 37 156 676 58 337 1,597 100 1,411 100 6,855 74

35-40 48 189 966 50 608 2,028 100 1,867 100 7,246 75

40-45 62 299 1,489 100 1,257 - 100 3,180 100 8,141 90

45-50 37 492 1,592 82 1,574 4,044 100 3,891 100 10,138 80

50-55 73 946 2,936 100 2,304 - 100 5,847 100 10,858 93

55-60 67 1,477 3,617 100 5,159 - 100 6,733 100 11,702 92

60-65 100 2,200 - 100 5,824 - 100 7,666 100 13,321 100

Table 9: RE for pricing regulation that allows insurers to price based on health status quartiles and age.

for the second quartile for the younger groups. The interaction of age and health-based pricing thus

reduces adverse selection, relative to each priced separately. Table H3 in Online Appendix H shows the

compensation required to make an individual indi¤erent between a regime with health status quartile

pricing for each age group, and another in which all individuals in each age band receive the 60 policy

at its average cost for their age band (the result of pure age-based pricing). Once age is priced, health-

based pricing, which appealed to individuals with steeply increasing income, is no longer preferred by

those consumers. The bene�t of health-based pricing is the reduction in adverse selection, and the

postponement of premiums until later in life. With age-based pricing, the latter bene�t is eliminated.

The cost associated with reclassi�cation risk then dominates the bene�ts of reducing adverse selection

across the range of risk aversion types and for the di¤erent income path models studied.43

6.3 Self Insurance: Saving and Borrowing

Our core analysis investigates several models for consumer lifetime income paths, but does not allow

for consumers to either borrow when they receive negative health shocks or save in advance of such

shocks. Such precautionary savings and borrowing could, in theory, mitigate the welfare losses from

risky health shocks, especially in environments in which they lead to signi�cant reclassi�cation risk. To

illustrate the potential impact of savings and borrowing, and study the robustness of our main �ndings,

we study an extension that embeds our basic model into a stylized life-cycle model with capital markets.

As in our main analysis, the consumer has an income �ow, and stochastic health expenses (including

premiums) that may depend on age and health status. We add on top of this a model of health

43Although we do not do so here, one can also examine the welfare e¤ects of allowing age-based pricing versus pure

community rating. Age-based pricing may, in general, a¤ect the extent of unraveling. Even when it doesn�t, it may

generate intertemporal gains. This is true even when consumers can borrow and lend (as in the next subsection) because

it e¤ectively allows borrowing at a zero interest rate (given the break-even condition).
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status transitions, which we estimate with our data, and a model for borrowing and saving that allows

consumers to insulate themselves from health shocks. We describe the important aspects of this model

here, and present the full model in Online Appendix E.

Speci�cally, we modify the model as follows. First, we make the simplifying assumption that each

period in the model corresponds to a �ve-year age bin (25-30, 30-35,.., 60-65). This is done both

to simplify the dynamic computation and to have large enough sample sizes for age-speci�c health

transition matrices.44 In each period the consumer chooses an insurance policy based on their ex ante

information, and then during the period realizes their in-period health expenses and updated health

status. Their updated health status determines (i) the distribution of their health expenses for the next

period (ii) premiums for the next period (if health status can be priced) and (iii) the future evolution

of their health status. We assume that period t saving or borrowing is decided after observing health

expenses for that period. This assumption represents a �uid �nancial market where, e.g., individuals

can take a last minute loan if they were unlucky during the period.45 We note that within each period,

consumers experience �ve years of identical health claims in the insurance contract they chose for that

period, appropriately discounted. For each age bin, health status, and regulatory pricing regime, we

use the static market equilibrium outcomes from our primary analysis and determine the actual choice

each individual makes in each period, yielding her premiums and out of pocket expenses.46 We assume

consumers have �at income pro�les over time (as in the �rst column of Table 6) in order to neutralize

the other channels through which savings could impact welfare. We consider a consumer with risk

aversion coe¢ cient  = 0:0004:

Solving the dynamic life cycle savings problem requires modeling transitions across health states,

which we estimate from our sample using empirical year-to-year transitions in consumers�ACG indices

�it. To this end, we divide the population into 7 cells re�ecting di¤erent health status levels based

on ACG index, and non-parametrically estimate a 7-by-7 transition matrix. We estimate a separate

transition matrix for each of 8 �ve-year age groups. Using these ingredients, we solve an 8-period

dynamic optimization problem where individuals transition over 7 health types as they age and can

save and borrow in each period. We solve the consumer�s dynamic problem using backwards induction,

determine each consumer�s lifetime value for each possible starting state in period 1, and then compute

the ex-ante certainty equivalent of regulatory pricing regime x for an unborn individual who does not

yet know her type (as in Section 5).

44As seen in the results below, this simpli�ed framework yields welfare results that are similar in magnitude to the

model without borrowing or saving presented in our primary analysis.
45Access to capital, especially when a health condition develops, may not be this �uid in practice. To the extent that

true credit markets have frictions we don�t capture, we likely overstate the positive impact of borrowing in mitigating

the welfare loss from reclassi�cation risk.
46Market outcomes are assumed to be the same as those in our primary equilibrium analysis. They thus do not

account for the potential e¤ect that borrowing and saving could have on consumer insurance choices. Accounting for

these dynamic e¤ects would likely push consumers more towards lower insurance, and would therefore likely not have a

large impact on equilibrium outcomes.
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Welfare Loss with Borrowing and Saving ($/year)

Savings Case yPCR;90 yHB4;PCR

Any S 269 1; 540

S � 0 391 1; 977

S � 0 337 2; 480

S = 0 765 3; 352

Table 10: This table presents the long-run welfare results when consumers are allowed to (i) borrow (S � 0)
(ii) save (S � 0) or (iii) borrow and save (Any S). We investigate these models for the cases of (i) pure

community rating and (ii) health status quartile based pricing examined in our primary analysis (S = 0). The

results presented are based on the RE outcomes for each of the two pricing regulations. The assumed discount

rate is � = 0:975 and the consumer�s risk aversion coe¢ cient is  = 0:0004:

We use this framework to compare three regimes: (i) all-in-90 (ii) the Riley equilibrium with pure

community rating (PCR) and (iii) the Riley equilibrium under pricing health quartiles (HB4).47 The

welfare results are presented in Table 10. The �rst column shows the welfare loss from adverse selection

for the case of pure community rating relative to all-in-90. The second column shows the relative

welfare loss from (i) reduced adverse selection but (ii) increased reclassi�cation risk moving from pure

community rating to health status quartile pricing (analogous to Table 6). The results show that, as

expected, access to capital markets lowers the welfare losses for both of these comparisons. Without the

possibility of saving or borrowing ("S = 0"), the welfare loss from health status quartile-based pricing

relative to community rating is $3,352 per person per year, while when full borrowing and saving are

allowed ("Any S"), the loss is reduced to $1,540 per person per year. The corresponding losses from

community rating relative to all-in-90 are $765 and $269 respectively. Thus, while allowing for saving

and borrowing improves consumer welfare in all pricing regimes, the welfare losses from reclassi�cation

risk in health status quartile-based pricing still far outweigh the welfare gains from reduced adverse

selection, relative to the case of pure community rating.

We also examine the two cases where consumers are only allowed to borrow ("S � 0") or only

allowed to save ("S � 0") in order to decompose their e¤ects. While both cases are clearly preferred
by the consumer to the case where neither borrowing nor saving is allowed, borrowing is less helpful in

contending with reclassi�cation risk under health status quartile pricing.

47The welfare loss from pricing health status quartiles, relative to pure community rating, under �at income is $3,082

per consumer per year, in our primary analysis (see Table 6). Here, this value is slightly larger, equal to $3,352, because

our model with saving and borrowing makes some necessary simpli�cations relative to our primary speci�cation. The

primary simplifcation is modeling health status transitions across seven possible health states (and for �ve year age bins)

rather than assuming a continuous health state and steady state population.
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6.4 Risk Adjustment

Risk adjustment transfers are a key policy implemented in many health insurance markets in order

to ameliorate adverse selection. It is tempting to think that risk adjustment can solve the adverse

selection problem entirely, by simply providing a transfer to each �rm that gives that �rm an expected

cost from each enrollee in each plan equal to the average cost of the plan if there was no selection (i.e.,

equal to the population average cost in that plan), thereby eliminating the impact of selection on cost.

However, even if the government were to accomplish this, so that �P = ACH � ACL, an e¢ cient

outcome will result only if � � ACH �ACL, as otherwise the consumers with willingness to pay below
ACH � ACL will still choose to purchase policy L. Moreover, doing so can result in the government

running a de�cit. Still, risk adjustment can reduce the losses from adverse selection.

In this subsection, to illustrate how our framework can incorporate risk adjustment transfers, and

the impact of these transfers on equilibrium, we use the risk adjustment formula proposed by the

Federal government [see, e.g., Dept. of Health and Human Services (2012a) or Dept. of Health and

Human Services (2012b)] for the ACA.48 In practice risk adjustment can lead to a number of problems,

such as insurers up-coding enrollees to qualify for larger transfers. We will abstract from such issues

and assume that the regulator can perfectly observe the health status of each enrollee.

The HHS risk-adjustment policy is designed to always break even. It provides a transfer payment

per member to each plan i equal to

Ti =

��
RiP
i siRi

�
�
�

AViP
i siAVi

��
P ; (8)

where Ri is plan i�s �risk score�(equal to plan i�s average cost divided by the average cost of all plans in

the market), AVi is plan i�s actuarial value (i.e., 0.60 or 0.90 in our model), si is plan i�s market share,

and P is the average premium in the market. Intuitively, if the average cost of the 90 policy was 50%

more than of the 60 policy, as it would be if each had a random sample of consumers, transfers would

be zero. When the average cost in the 90 policy is more than 50% greater than that of the 60 policy,

transfers �ow to the 90 plan. Note that
P

i Ti = 0 , so the transfers are balanced. These transfers alter

insurers�average costs, which are now AC90�T90 and AC60�T60 in the 90 and 60 policy, respectively.
Since in a RE all policies break even and the transfers are balanced, the market average premium

must equal the market average cost:49

P = AC(�P ) � s90(�P )AC90(�P ) + s60(�P )AC60(�P ):

48See the concurrent work of Glazer et al. (2014) and Mahoney and Weyl (2014) for further discussions of insurer

risk-adjustment transfers and their impact on equilibria in insurance markets.
49Formally, in equilibrium each policy will break even given its post-transfer average cost. Thus, recalling that Ti is a

per member transfer, we have P90 = AC90(�P ) � T90(�P ) and P60 = AC60(�P ) + T90(�P )
�
s90(�P )
s60(�P )

�
: The market

average premium is therefore P = s90(�P )P90 + s60(�P )P60 = AC(�P ):
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Plan i�s risk score is Ri = AC90(�P )=AC(�P ). Substituting into (8), we get

T90(�P ) =

��
AC90(�P )

AC(�P )

�
�
�

0:9

AV (�P )

��
AC(�P )

= AC90(�P )�AC(�P )
�

0:9

AV (�P )

�
where AV (�P ) � s90(�P )(0:9) + s60(�P )(0:6):

Observe that the transfers depend on the market prices (through �P ), while the market prices

depend on the transfer rule. Thus, the equilibrium prices are determined as a �xed point. Speci�cally,

the prices will be

P90(�P ) = AC90(�P )� T90(�P ) = AC(�P )

�
0:9

AV (�P )

�
and

P60(�P ) = AC(�P )

�
0:6

AV (�P )

�
:

This leads to a �xed point condition for �P :

�P = AC(�P )

�
0:3

AV (�P )

�
: (9)

Applying formula (9) to our data, we �nd that with pure community rating the equilibrium with risk

adjustment has prices P90 = 6; 189 and P60 = 4; 139 (so �P = 2; 050), and the 90 policy capturing a

49% market share for the whole population.50

To study the welfare implications we compare the long-run implications of equilibrium outcomes

with and without insurer risk adjustment, for the case of pure community rating. Table H4 in Online

Appendix H shows the yearly amount yPCR;risk�adj an individual would need to receive with pure

community rating to be as well o¤ as when risk adjustment occurs. The risk adjustment outcome is

preferred, re�ecting the reduction in adverse selection compared to the case with no insurer transfers.

For example, an individual with �xed income and  = 0:0004 would need to receive $349 per year under

pure community rating to be as well o¤ as when risk adjustment occurs.

7 Conclusion

In this paper we have developed a framework to study equilibrium and welfare for a class of regulated

health insurance markets known as exchanges. The framework combines a theoretical model of an

exchange (and results characterizing equilibria) with estimates of the joint distribution of health risk

50 In contrast, if the government were to instead implement risk adjustment transfers that result in price di¤erence

�P = ACH �ACL = 1; 571 in this market, 66% of consumers would purchase the 90 policy and the government would

run a de�cit of $274 per consumer (on average), losing $2,139 per consumer in the 90 policy and gaining $3,348 per

consumer in the 60 policy.
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and risk aversion in a population of interest, allowing us to analyze exchange outcomes under various

possible regulations. In our main application of the framework, we study the e¤ects of health-based

pricing on market outcomes and welfare for a population of employees at a large employer. While

allowing even partial health-based pricing increases coverage compared to the full unraveling that

arises under pure community rating, if consumers can smooth their income over time or if pricing

based on age is also allowed (eliminating any consumption smoothing bene�t of health-based pricing),

the welfare loss from the reclassi�cation risk it induces far outweighs the welfare gain from reduced

adverse selection. (For a more detailed summary of our results, refer back to the Introduction.) We

have also illustrated how our framework can be applied to study other related issues, such as the e¤ect

of varying the coverage levels of available plans, age-based pricing, self-insurance through consumer

saving and borrowing, and insurer risk adjustment transfers.

There are a number of dimensions on which our stylized model could be extended to more closely

model most exchange environments. In our setting, products are di¤erentiated only on �nancial dimen-

sions. While in some settings (e.g., the Netherlands and Germany) this is essentially true in reality,

in the U.S. context exchanges include insurers that o¤er products that are di¤erentiated in terms of

medical care and the network of available physicians. Incorporating product di¤erentiation, and, ad-

ditionally, the possibility of imperfect competition, could enrich both our equilibrium predictions and

understanding of long-run welfare. In addition, it would be interesting to model more subtle consumer

micro-foundations such as inertia, limited consumer information, or issues of consumer choice adequacy,

all of which prior research has demonstrated may be important factors in insurance markets.

Finally, the exchanges analyzed here (and those operating in reality) have short-term annual policies.

An interesting question is the extent to which longer-term contracts can serve to reduce reclassi�cation

risk. While these kinds of contracts have been discussed to some extent [Hendel and Lizzeri (2003),

Crocker and Moran (2003), Herring and Pauly (2006)], there has been little to no empirical analysis of

the bene�ts of such contracts. This seems an interesting direction for future research.
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A Appendix: Proofs

We use (a slightly modi�ed version of) the de�nition provided in Engers and Fernandez (1987):

De�nition 1. A Riley equilibrium (RE) is a pro�table market o¤ering S, such that for any non-

empty set S0 (the deviation), where S [ S0 is closed and S \ S0 = ;, if S0 is strictly pro�table when
S [ S0 is o¤ered then there exists a set S00 (the reaction), disjoint from S [ S0 with S [ S0 [ S00 closed,
such that:

(i) S0 incurs losses when S [ S0 [ S00 is tendered;

(ii) S00 does not incur losses when any market o¤ering bS containing S [ S0 [ S00 is tendered (we then
say S00 is �safe�or a �safe reaction�).

A deviation S0 that is strictly pro�table when S[S0 is o¤ered, and for which there is no safe reaction
S00 that makes S0 incur losses (with market o¤ering S [ S0 [ S00), is a pro�table Riley deviation.

In our setting, a market o¤ering is simply a collection of prices o¤ered for the two policies. De�nition

1 says that a set of o¤ered prices is a Riley equilibrium if no �rm, including potential entrants, has

a pro�table deviation that also never leads it to incur losses should other �rms introduce additional

�safe�price o¤ers (where a �safe�price o¤er is one that would never incur losses were any further price

o¤ers introduced).51

A.1 Safe price o¤ers

We begin by considering which price o¤ers are �safe�in the sense that they do not incur losses regardless

of any additional o¤ers being introduced.

Lemma 1. Given price con�guration (PH ; PL), single-policy o¤er P 00L < PL is safe if and only if

�L(PH ; P
00
L) � 0.

Proof. If �L(PH ; P 00L) < 0, then P
00
L makes losses absent any reaction, and hence is not safe. So suppose

that �L(PH ; P 00L) � 0. Any price o¤ers bP = ( bPH ; bPL) with a bPL < P 00L gives the �rm o¤ering P 00L
a pro�t of zero. Any price o¤ers bP with bPH � PH and bPL � P 00L cannot make the �rm o¤ering

P 00L incur losses. Finally, any price o¤ers bP with bPH < PH and bPL � P 00L weakly lowers the sales

of the �rm o¤ering P 00L . If that �rm makes no sales at ( bPH ; P 00L), then its pro�t is zero. If it has

positive sales at ( bPH ; P 00L), then it must also at (PH ; P 00L). This implies that �L( bPH ; P 00L) � 0 since

then ACL( bPH � P 00L) � ACL(PH � P 00L) � P 00L .

De�nition 2. The lowest safe policy L price given PH is PL(PH) � minfP 00L : �L(PH ; P 00L) � 0g.
51 In fact, it su¢ ces to restrict attention to deviations by potential entrants.
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Remark 1. The lowest safe price given PH is given by

PL(PH) =

8>><>>:
PH � � if PH � ACL + �ePL(PH) if PH 2 (ACL + �;ACL + �)
ACL if PH � ACL + �

9>>=>>;
where ePL(PH) � f ePL : ePL = ACL(PH � ePL)g. When PH � ACL + �, all consumers buy policy H at

prices (PH ; PL(PH)); when PH 2 (ACL + �;ACL + �) there are positive sales of both policies at prices
(PH ; PL(PH)); and when PH � ACL+� all consumers buy policy L at prices (PH ; PL(PH)). Note that

for PH 2 (ACL+�;ACL+�), the price PL(PH) and price di¤erence PH�PL(PH) are both continuous
and strictly increasing in PH . [The price di¤erence PH � PL(PH) must increase if PL(PH) does since
PL(PH) = ACL(PH � PL(PH)) for PH in this range.]

Remark 2. Observe that if a two-policy reaction (P 00H ; P
00
L) is safe and causes the pro�table single-

policy deviation P 0H to instead make losses, then the single-policy reaction P 00L is also safe and causes

the single-policy deviation P 0H to make losses. To see why, note �rst that it cannot be that P 00H < P 0H

(otherwise the deviator�s pro�t would not be strictly negative). The result is immediate if P 00H > P 0H . So

suppose that P 00H = P 0H . Since the �rms make losses on policy H and the reaction is safe, we must have

�L(P
0
H ; P

00
L) � 0. But then Lemma 1 implies that the single-policy reaction P 00L is safe and clearly also

causes the deviating �rm to make losses. Hence, in looking at safe reactions to single-policy deviations

in PH , we can restrict attention to single-policy safe reactions in PL.

Lemma 2. If at (PH ; PL(PH)) we have positive sales of policy H and �H(PH ; PL(PH)) � 0, then

�H(PH ; PL) � 0 at all PL > PL(PH):

Proof. Since there are positive sales of policy H, it follows that PH � ACH(PH�PL(PH)) � ACH(PH�
PL) for any PL > PL(PH), where the second inequality follows from that fact that increases in PL

weakly lower ACH .

Remark 3. In light of Remark 2, Lemma 2 implies that a pro�table single-policy deviation to P 0H can

be rendered unpro�table by a safe reaction if and only if it is rendered unpro�table by a single-policy

reaction to PL(P
0
H).

A.2 RE and NE Characterizations

We �rst establish three properties shared by RE and NE: (i) both policies break even; (ii) all-in-H is

an equilibrium if and only if �AC(�) � �, (iii) if �AC(�) > �, then the equilibrium price di¤erence

must be �PBE .

Lemma 3. If (P �H ; P
�
L) is a RE (resp. NE), then �H(P

�
H ; P

�
L) = �L(P

�
H ; P

�
L) = 0.

Proof. Since any NE is a RE, we establish the result by showing it for RE. We �rst show that

�L(P
�
H ; P

�
L) � 0. Suppose otherwise, so that �L(P �H ; P

�
L) > 0. Then for small " > 0 we would
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have �L(P �H ; P
�
L � ") > 0. By Lemma 1, a single-policy deviation that o¤ers P �L � " would then be

safe, and there would therefore be no reaction that could render it unpro�table. But then (P �H ; P
�
L)

would not be a RE, a contradiction.

We next show that �H(P �H ; P
�
L) � 0. The result is immediate if policy H makes no sales at (P �H ; P �L).

So suppose that �P � < � and that contrary to the claim (P �H ; P
�
L) is a RE with �H(P

�
H ; P

�
L) > 0. If

PL(P
�
H) > P �L, then a single-policy deviation to P

�
H � " for small enough " > 0 would be a pro�table

Riley deviation as no safe reaction in PL could render it unpro�table. So we must have PL(P
�
H) � P �L.

Now if PL(P
�
H) < P �L, then there can be no policy L sales at (P

�
H ; P

0
L) for any P

0
L 2 [PL(P �H); P �L), since

otherwise a single-policy deviation to P
0

L+" for su¢ ciently small " > 0 would be strictly pro�table and

safe. Thus, PL(P
�
H) � P �L implies that �H(P

�
H ; PL(P

�
H)) = �H(P

�
H ; P

�
L) > 0. By continuity, we then

have that �H(P �H � "; PL(P
�
H � ")) > 0 for small enough " > 0, so a single-policy deviation to such a

P �H � " cannot be rendered unpro�table by any safe reaction, yielding a contradiction.
Thus, we have �L(P �H ; P

�
L) � 0 and �H(P �H ; P �L) � 0: But if either is strictly negative, then some

�rm must be earning strictly negative pro�ts, and would do better by dropping all of its policies. The

result follows.

Lemma 4. There is a RE (resp. NE) in which all consumers buy policy H if and only if �AC(�) � �.

Proof. By Lemma 3, P �H = ACH in any all-in-H equilibrium. Suppose that �AC(�) > �, so that

ACH � � > ACL. Then a single-policy deviation o¤ering bPL = ACH � � � " for small enough " > 0

attracts a positive measure of consumers at an average cost close to ACL and thus makes positive

pro�ts: i.e., �L(ACH ; ACH � � � ") > 0. Moreover, this deviation is safe, so cannot be made

unpro�table by any reactions. Hence, all-in-H is not an RE, and hence not a NE.

Now suppose that �AC(�) � �. Let P �H = ACH and P �L � ACH � � be o¤ered by more than

one �rm We show that there are then no pro�table deviations, even before considering any reactions,

implying that all-in-H is a RE and NE. Consider any deviation ( bPH ; bPL) � (ACH ; P
�
L). To be

pro�table, some consumers must buy policy L in the deviation, so bPL < ACH � � and � bP > �P �.

But the most pro�table such deviation has bPH equal to or arbitrarily close to P �H . (Otherwise, bothbPH and bPL could be raised by a small and equal amount.) But, since the reduction in PL makes

policy H at price P �H either strictly unpro�table or have no sales, this deviation is weakly less pro�table

than a single-policy deviation to bPL. But since bPL < ACH � � � ACL, this single-policy deviation is

unpro�table.

Lemma 5. Among all price pairs (PH ; PL) at which both policies break even and there are positive

sales of policy L, only the one with the lowest sales of policy L (i.e., having �P = �PBE) can be a RE

(resp. NE).

Proof. Suppose that at price con�gurations P 0 = (P 0H ; P
0
L) and P

00 = (P 00H ; P
00
L) both policies break even,

minf�P 0;�P 00g > �, and there is a larger share for policy L in P 00 than in P 0. Then �P 0 < �P 00
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and there are positive sales of policy H at P 0.52 In addition, P 0L = ACL(�P
0) < ACL(�P

00) = P 00L .

Starting at price con�guration P 00, consider an entrant deviation o¤ering price P 0H = ACH(�P
0) <

ACH(�P
00) = P 00H . Since P

0
H � P 00L < �P 0, after the deviation the share of policy H positive and

moreover P 0H � ACH(P
0
H � P 00L) > 0. Thus, the deviation is pro�table. Now, observe that the lowest

safe policy L price given P 0H is P 0L; i.e., PL(P
0
H) = P 0L, so �H(P

0
H ; PL(P

0
H)) = 0. Hence, there are no

safe reactions that make the deviator incur a loss (Remark 3). This implies that (P 00H ; P
00
L) is not a RE,

which is a contradiction. Since it is not a RE, it also cannot be a NE.

Remark 4. Note that in the proofs of the above results, all pro�table deviations were single-policy

deviations. Thus, the same properties hold for NE in which �rms can o¤er only a single policy.

We now separately complete the characterization of RE and NE. We �rst note the following fact

about RE:

Lemma 6. Suppose that at P � = (P �H ; P
�
L) there are positive sales of policy L (so �P

� 2 (�; ��]) and
both policies break even. Then P � is a RE if and only if there are no single-policy Riley pro�table

deviations in PH .

Proof. Consider a multi-policy pro�table Riley deviation P 0 = (P 0H ; P
0
L). We will show that we neces-

sarily have �H(P 0H ; P
�
L) > 0 and �H(P 0H ; ePL) � 0 for all ePL 2 [PL(P 0H); P �L]. Thus, a single-policy

deviation to P 0H would be a pro�table Riley deviation.

The claim is immediate if P 0L > P �L since then dropping o¤er P
0
L would a¤ect neither the deviation

pro�t, nor the deviator�s pro�t after any reaction. So henceforth we shall assume that P 0L � P �L.

Moreover, we must have P 0H � P �H : otherwise the deviator can sell only policy L at price P
0

L � P �L =

ACL(�P
�) � ACL(�P

0), contradicting P 0 being a pro�table Riley deviation. So P 0 � P �.

Next, observe that we must have �P 0 < �P � and an increased share of policy H being purchased. If

not, then since the average costs of both policies would be no lower than they were before the deviation,

and both deviation prices would be weakly lower, the deviation could not generate a strictly positive

pro�t. Note that this also implies that we must have P 0H < P �H .

Suppose, �rst, that PL(P
0
H) < P 0L. If �H(P

0
H ; PL(P

0
H)) < 0, then the safe single-policy reaction to

PL(P
0
H) makes the deviator incur losses, in contradiction to the assumption that P

0 is a pro�table Riley

deviation. So in this case we must have �H(P 0H ; PL(P
0
H)) � 0. Moreover, there must be positive sales

of policy H at prices (P 0H ; PL(P
0
H)) because, if not, then (see Remark 1) PL(P

0
H) = ACL � P �L � P 0L.

Thus, �H(P 0H ; ePL) > 0 for all ePL 2 (PL(P 0H); P �L], implying that the single-policy deviation to P 0H is a

pro�table Riley deviation.

On the other hand, if PL(P
0
H) � P 0L, then �L(P

0
H ; P

0
L) � 0, which implies that �H(P 0H ; P

0
L) > 0

(since the deviation to P 0 is pro�table). This, in turn, implies that �H(P 0H ; ePL) > 0 for all ePL 2
[PL(P

0
H); P

�
L] , which establishes the result.

52Note that we may have �P 00 = �.
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With these results in hand, we now prove Proposition 1:

Proof. of Proposition 1: Suppose, �rst, that �AC(�) � �. By Lemma 4 we know that there is

an all-in-H RE (and any such RE has a unique outcome, with P �H = ACH). We now show that if

�AC(�) < �, then this is the unique RE outcome. By Lemma 5 we know that any RE involving

positive sales of policy L must involve the lowest break-even price di¤erence, �PBE . Let (P
��
H ; P ��L ) =

(ACH(�PBE); ACL(�PBE)) denote the corresponding break-even prices. Consider a single-policy

deviation to bPH = P ��L + �, which will attract all consumers to policy H. Since bPH > ACL+ � > ACH ,

this is a pro�table deviation absent any reaction. Since bPH 2 (ACL + �;ACL + �), we know that

PL(
bPH) = ACL( bPH � PL(

bPH)) (see Remark 1). Since �AC(�P ) � �P for all �P 2 [�;�PBE),
this implies that bPH > ACH( bPH � PL( bPH)), so by Remark 3 no safe reaction can make the deviation
unpro�table.

Suppose, instead, that �AC(�) > �. By Lemma 5 we know that the only candidate for a RE

involves the lowest break-even price di¤erence with positive sales of policy L, �PBE . Again, let

(P ��H ; P ��L ) = (ACH(�PBE); ACL(�PBE)) denote the corresponding break-even prices. By Lemma 6

we need only consider single policy deviations in PH to verify that this is an equilibrium. Any such

deviation bPH that is strictly pro�table must have bPH < minfP ��H ; P ��L +�g and bPH > ACH( bPH �P ��L ).
By the latter inequality, bPH > ACH > ACL+�. Then, by Remark 1, the lowest safe reaction in PL has

PL(
bPH) = ACL( bPH � PL(

bPH)) and results in positive sales of policy H. Since �AC(�P ) > �P for

all �P 2 [�;�PBE), this implies that bPH < ACH( bPH �PL( bPH)), so the deviation is unpro�table.
We now turn to NE:

Lemma 7. If �AC(�) < � there is a unique NE outcome and it involves all consumers purchasing policy

H. If �AC(�) > �, there is a unique NE outcome and it involves the break-even prices (PBEH ; PBEL )

corresponding to the lowest break-even price di¤erence with positive sales of policy L (�PBE), i¤

�(PBEH ; PBEL ) = 0 = max bPH�P�
H
�( bPH ; PBEL ), that is, if there is no pro�table multi-policy deviation by

an entrant that reduces PH and lowers PL slightly to capture all consumers.

Proof. Since any NE is a RE, the uniqueness result for �AC(�) < � follows directly from Proposition

1. Suppose, instead, that �AC(�) > �. By our previous results for RE, any NE outcome must involve

price con�guration (PBEH ; PBEL ). Observe, �rst, that no deviation from (PBEH ; PBEL ) that raises �P

(including single-policy deviations in PL) can be pro�table, as this raises the average costs of both

policies.

Now consider deviations that lower �P . A single-policy deviation o¤ering policy H at price bPH <

PBEH , since it makes policy L at price PBEL earn strictly positive pro�ts, is less pro�table than the multi-

policy deviation ( bPH ; PBEL �") for su¢ ciently small " > 0, as this captures the entire market. However,
any multi-policy deviation ( bPH ; bPL) << (PBEH ; PBEL ) is dominated by a deviation ( bPH + �; bPL + �) for
some � > 0. As � bP < �PBE , the supremum of deviation pro�ts is therefore max bPH�PBE

H
�( bPH ; PBEL ).
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Remark 5. If �rms can only o¤er one policy, the only change to Lemma 7 would be that if �AC(�) > �,

then there is a NE at the break-even prices (PBEH ; PBEL ) corresponding to the lowest break-even price dif-

ference with positive sales of policy L (�PBE), if and only if �(P
BE
H ; PBEL ) = 0 = max bPH�PBE

H
�H( bPH ; PBEL ),

that is, if there is no pro�table single-policy deviation in PH by an entrant.

Although it will not pay a role in our analysis, we note the following result:

Lemma 8. If � > CH(�) � CL(�) for all � 2 [�; �], then some consumers must be buying policy H in

any NE.

Proof. Suppose all consumers are purchasing policy L. Then, by Lemma 3, P �L = ACL and P �H = P �L+�.

Now consider a deviation to (P �H � "; P �L). We will show that for small " > 0, aggregate pro�ts are

strictly positive. Aggregate pro�ts equal

 (") � �(P �H � "; P �L) =
Z �

��"
[P �H � "� CH(�)]f(�)d� +

Z ��"

�

[P �L � CL(�)]f(�)d�:

Now

 0(") = [P �H � "� CH(� � ")]f(� � ")� [P �L � CL(� � ")]f(� � ")� [1� F (� � ")];

so

 0(0) = [P �H � CH(�)]f(�)� [P �L � CL(�)]f(�)

= f(�)f� � [CH(�)� CL(�)]g > 0:

Since, by Lemma 3,  (0) = �(P �H ; P
�
L) = 0, this implies that for small " > 0 aggregate pro�t is strictly

positive. As a result, there is a � > 0 such that (P �H � "; P �L � �) is a pro�table deviation.

The assumption that � > CH(�)� CL(�) for all � 2 [�; �] is an implication of risk aversion; it says
that all consumers prefer the greater coverage of policy H if it is priced at fair odds (for that consumer).

However, in our analysis the presence of a (behavioral) idiosyncratic preference shock for each policy

could mean that consumers do not satisfy this condition.

B Online Appendix: Wilson Equilibria

B.1 Characterization of Wilson Equilibria

A price con�guration P = (PH ; PL) is a Wilson equilibrium (WE) if there is no deviation by an entrant

to a price pair that is strictly pro�table once any o¤ers are withdrawn that make losses after the

deviation.53 We will say that a deviation from price con�guration P that is strictly pro�table after

53Note that since at least one of PH and PL is undercut by any pro�table entrant deviation, there is no ambiguity

about which polices to withdraw in the event that one of the o¤ers in the price con�guration makes losses.
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any such withdrawals is a �pro�table Wilson deviation.�54 Note that no policy L o¤ers will ever be

withdrawn after a deviation, because a reduction in PH can never cause a PL o¤er to make losses (since

a reduction in PH lowers ACL).

We establish the following result, which we use to identify WE in our data:

Proposition 2. Let (PBEH ; PBEL ) be the break-even price con�guration associated with �PBE, and

let �Pw 2 Argmax�P2[�;�PBE ]�(P
BE
L + �P; PBEL ). If �AC(�) > �, then the break-even price

con�guration (PwH ; P
w
L ) associated with price di¤erence �P

w is a WE, and is the unique WE whenever

�Pw = Argmax�P2[�;�PBE ]�(P
BE
L + �P; PBEL ) 2 (�;�PBE). If instead �AC(�) < �, then the

unique WE outcome has all consumers purchasing policy H at price P �H = ACH .

We establish Proposition 2 through a series of lemmas. First, we identify some properties that any

WE must satisfy:

Lemma 9. If Pw = (PwH ; P
w
L ) is a WE price con�guration, then

(a) �(PwH ; P
w
L ) = 0;

(b) �H(P 0H ; P
w
L ) � 0 for all P 0H � PwH ;

(c) �Pw = (PwH � PwL ) � �P
BE, the lowest break-even �P with positive sales of policy L.

Proof. (a) If�(PwH ; P
w
L ) < 0, then some �rm would be better o¤dropping its o¤ers, while if�(P

w
H ; P

w
L ) >

0 then an entrant could pro�t by o¤ering (PwH �"; PwL �") for su¢ ciently small " > 0. (b) If this is viol-
ated at P 0H , then �H(P

0
H�"; PwL ) > 0 for su¢ ciently small " > 0. A entrants�o¤ering of P 0H�" would be

a pro�table Wilson deviation. (c) This is immediate if�PBE = �. So suppose that�PBE < � and that

�Pw > �PBE , which implies that there are positive sales of policy L at Pw. Since both policies break

even at �PBE , and �L(PwH ; P
w
L ) � 0 by parts (a) and (b), it must be that the break-even price con-

�guration associated with �PBE , (PBEH ; PBEL ), has PBEL = ACL(�P
BE) < ACL(�P

w) � PwL . Since

PBEL < PwL and �PBE < �Pw, we also have PBEH < PwH . So an entrant�s o¤er of (P
BE
H + "; PBEL + ")

for su¢ ciently small " > 0 is a pro�table Wilson deviation.

Consider the following problem:

min(PH ;PL) PL

s.t. (i) �(PH ; PL) = 0

(ii) �H(P 0H ; PL) � 0 for all P 0H � PH

(iii) PH � PL 2 [�;�PBE ]

(10)

Lemma 10. Any P � = (P �H ; P
�
L) that solves problem (10) is a WE price con�guration.

54Note that, in principle, a NE need not be a WE, as a pro�table Wilson deviation may not be pro�table if no policies

are withdrawn.
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Proof. We construct an equilibrium in which all prices P � P � are o¤ered by multiple �rms and each

�rm has an equal share of sales of both policies. Thus, all active �rms earn zero, and we need only

consider deviations by entrants.

To begin, it follows from constraint (ii) of problem (10), and the fact that L o¤ers are never

withdrawn, that there is no pro�table Wilson deviation in which an entrant makes sales only of the H

policy (which would require a price bPH < P �H).

Next, there is no pro�table Wilson deviation in which an entrant makes sales only of policy L.

Suppose there were and let the deviation price be bPL < P �L. If everyone buys policy L at prices

(P �H ;
bPL) then no policy H o¤ers will be withdrawn and bPL > ACL. But then prices (P �H ; ACL) would

be feasible in problem (10) and attain a lower value of PL than P �L, contradicting P
� being a solution.

Suppose instead that some consumers still buy policy H at prices (P �H ; bPL). Then �H(P �H ; bPL) < 0,

which implies that o¤er P �H will be withdrawn, as will every PH up to the lowest PH above P �H such

that �H(PH ; bPL) = 0. The entrant�s pro�t will therefore be �L(PH ; bPL). However, it cannot be that
�L(PH ; bPL) > 0: if so then we have �(PH ; bPL) > 0. But this would imply that there is an � > 0

such that price pair (PH � �; bPL � �) is feasible in problem (10) and achieves a lower PL than P �L, a

contradiction to P � solving problem (10).55

Finally, suppose that there is a pro�table Wilson deviation for an entrant o¤ering bP = ( bPH ; bPL),
in which the entrant makes sales of both policies. Then since o¤ers for policy L are never withdrawn,bPL � P �L. We �rst argue that �H(PH ; bPL) � 0 for all PH � bPH . If bPH < P �H , then this follows

because P � satis�es constraint (ii) and bPL � P �L. If, instead, bPH > P �H , then it follows because the

entrant can make sales of the H policy only if �H(PH ; bPL) < 0 for all PH < bPH , so that rivals�o¤ers
are withdrawn. Next, observe that if �H( bPH ; bPL) � 0 and �( bPH ; bPL) > 0, then for some � > 0 price
pair ( bPH � �; bPL � �) is feasible in problem (10) and achieves a lower PL than P �L, a contradiction to

P � solving problem (10).

To solve for the Wilson equilibrium, we examine a relaxed version of problem (10). For �P 2 [�; �],
we �rst de�ne PBEL (�P ) by

[PBEL (�P )�ACL(�P )]F (�P ) + [PBEL (�P ) + �P �ACH(�P )][1� F (�P )] = 0;

and PBEH (�P ) � PBEL (�P ) + �P . Note that PBEL (�P ) and PBEH (�P ) are continuous functions.

Note as well that, for �P 2 [�; �], [PBEL (�P )�ACL(�P )] T 0 if and only if �AC(�P ) T �P .56

We will consider the relaxed problem

min�P2[�;�PBE ] PBEL (�P ) (11)

55This � would set �(PH � �; bPL � �) = 0, and would satisfy constraint (ii) of problem (10) since �H(PH ; bPL � �) � 0
for all PH � PH .
56This follows because

�AC(�P ) T �P , PBEL (�P )�ACL(�P ) T PBEH (�P )�ACH(�P ):
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Note that in problem (11) the constraint set is closed and bounded, and the objective function

is continuous, so a solution exists. In Lemma 11, we show the equivalence of this problem when

�AC(�) > � to the problem of �nding the pro�t-maximizing multi-policy Nash deviation from price

con�guration (PBEH ; PBEL ):

max�P2[�;�PBE ] �(PBEL +�P; PBEL ) (12)

Lemma 11. Suppose that �AC(�) > �. Then Argmin�P2[�;�PBE ] P
BE
L (�P ) = Argmax�P2[�;�PBE ]�(P

BE
L +

�P; PBEL ):

Proof. Letting �(�P ) � PBEL � PBEL (�P ), we have

�(PBEL +�P; PBEL ) = �(PBEL (�P ) + �P + �(�P ); PBEL (�P ) + �(�P ))

= �(PBEL (�P ) + �P; PBEL (�P )) + �(�P )

= PBEL � PBEL (�P );

so for any �P and �P 0 we have

�(PBEL +�P; PBEL )��(PBEL +�P 0; PBEL ) = PBEL (�P 0)� PBEL (�P ):

Thus, the solution to the relaxed problem (12) is exactly the �P � �PBE that maximizes the

multi-policy deviation pro�ts from �PBE . By Lemma 10, any solution to problem 12 for which there

is a price con�guration (PH ; PL) with PH � PL = �P that is feasible in problem 10 is a WE. This is

the case whenever the solution to problem 12 is �P = �PBE .

The usefulness of the relaxed problems (11) and (12) also stems from the following result:

Lemma 12. Suppose that �AC(�) > � and that �P � = argmin�P2[�;�PBE ] P
BE
L (�P ). Then the

price con�guration (PBEH (�P �); PBEL (�P �)) is the unique solution to problem (10).

Proof. By Lemma 11, we need only show that (PBEH (�P �); PBEL (�P �)) is feasible in problem (10). By

construction (PBEH (�P �); PBEL (�P �)) satis�es constraints (i) and (iii) of problem (10). We therefore

need only show that (PBEH (�P �); PBEL (�P �)) satis�es constraint (ii). Observe that when �AC(�) > �,

at any �P 2 [�;�PBE ] we have �AC(�P ) > �P . This implies that for all �P 2 [�;�PBE ]

�H(P
BE
H (�P ); PBEL (�P )) � 0:

Since PBEL (�P �) � PBEL (�P ) for all �P 2 [�;�PBE ] by virtue of �P � being the solution to prob-
lem (11), we therefore have �H(PBEH (�P ); PBEL (�P �)) � 0 for all �P 2 [�;�PBE ]. Continuity of
PBEH (�P ) in �P then implies that

�H(PH ; P
BE
L (�P �)) � 0 for all PH 2 [ACH ; PBEH (�P �)].
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Since we also have that

�H(PH ; P
BE
L (�P �)) � 0 for all PH � ACH ,

(PBEH (�P �); PBEL (�P �)) satis�es constraint (ii) of problem (10).

We next show that, when �AC(�) 6= � , a unique solution P � to problem (10) is the only WE

whenever �P � 2 (�;�PBE).

Lemma 13. Suppose that �AC(�) > �, there is a unique solution P � of problem (10), and that

�P � 2 (�;�PBE). Then P � is the unique WE price con�guration.57

Proof. Lemma 9 shows that any WE price con�guration must satisfy the constraints of problem (10).

We next argue that when P � is the unique solution to problem (10), any price con�guration eP =

( ePH ; ePL) that satis�es the constraints but is not a solution cannot be a WE price con�guration. By
de�nition, P �L < minfACH � �; ePLg. 58
If (P �H ; P

�
L) << ( ePH ; ePL) then at price con�guration ( ePH ; ePL) an entrant has a pro�table Wilson

deviation to (P �H + "; P �L + ") for small " > 0. So, for the rest of the proof, suppose instead that

P �H � ePH , which also implies that � eP < �P � since P �L < ePL.
We will show that

�H(PH ; P
�
L) < 0 for all PH 2 ( ePH ; P �H ] (13)

which will imply that at eP an entrant has a pro�table Wilson deviation o¤ering prices (P �H + "; P �L+ ")
for " > 0 such that �H(P 0H ; P

�
L + ") < 0 for all P 0H 2 [ ePH ; P �H + "] and P �L + " < ePL, which results in

all H policy o¤ers in [ ePH ; P �H + "] being withdrawn.
Condition (13) follows immediately if P �H � ACH , since PH � P �L < �P

� for all PH � P �H implies

that there are positive sales of policy H at price con�guration (PH ; P �L). So suppose henceforth that

P �H > ACH :

Because �AC(�) > �, we have �AC(�P ) > �P for all �P 2 (�;�PBE), which implies that

�H(P
BE
H (�P ); PBEL (�P )) < 0 for all �P 2 (�;�PBE). Moreover, continuity of PBEH (�) implies that

for each PH 2 [ACH ; P �H ], there is a �P 0 2 (�;�P
BE) such that PBEH (�P 0) = PH . Thus, we have

�H(PH ; P
�
L) < 0 for all PH 2 (ACH ; P �H ] (14)

since there are positive sales of policy H at price con�guration (PH ; P �L) and

PH = PBEH (�P 0) < ACH(P
BE
H (�P 0)� PBEL (�P 0)) < ACH(P

BE
H (�P 0)� P �L) = ACH(PH � P �L),

[the �rst inequality follows because �H(PBEH (�P 0); PBEL (�P 0)) < 0 and the last inequality follows

because P � being the solution to problem (10) implies that P �L < PBEL (�P 0)]. If ePH > ACH , then this

establishes (13).

57We conjecture, but have not proven, that the result extends to cases in which �P � = �PBE .
58The inequality P �L < ACH �� holds because the price con�guration (ACH ; ACH ��), which results in all consumers

choosing policy H, is feasible in problem (10), but is not the solution.
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Finally, suppose that ePH � ACH . Then

�H(PH ; P
�
L) < 0 for all PH 2 [ ePH ; ACH ] (15)

since PH � P �L < �P � implies that there are positive sales of policy H at price con�guration (PH ; P �L)
and PH � P �L > � if PH = ACH (since P �L < ACH � �) implies that there are positive sales of policy L
at price con�guration (ACH ; P

�
L). Then (14) and (15) together imply (13).

Finally, for the case where �AC(�) < � we have the following result:

Lemma 14. Suppose that �AC(�) < �. Then the unique WE outcome has all consumers purchasing

policy H at price P �H = ACH .

Proof. In Lemma 4 we established that all-in-90 is a RE when �AC(�) < � by arguing that when

P �H = ACH and P �L > ACH � �, there was no pro�table single-policy deviation in PL. Since the exit

of policy H cannot make policy L pro�table (it would raise ACL), there are also no pro�table Wilson

single-policy deviations in PL. It is also immediate that there are no pro�table Wilson deviations in

only PH or in both prices. The proof of uniqueness follows much as in the proof of Proposition 1: Now

any WE P �� must have P ��L � ACL(�P
��) by Lemma 9. A single policy deviation to bPH = P ��L + �

attracts all consumers to policy H. Since bPH > ACL(�P
��) + � > ACL + � > ACH it is pro�table

absent any exit of policy L, and policy L will not exit since it does not make losses (and could not make

policy H unpro�table even if it did exit).

Remark 6. Proposition 2 implies that [provided that �ACH(�) 6= �] any NE is a WE, and that

whenever WE and RE outcomes coincide, they are also a NE outcome. Another implication of our

discussion is that WE outcomes weakly Pareto dominate RE outcomes. In particular, when �AC(�) <

� and �Pw < �PBE, we have PwL < PBEL (by Lemma 12) and PwL < PBEL (since PwL < PBEL and

�Pw < �PBE).
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Wilson Equilibria: Community Rating and Health Status-based Pricing (Quartiles)

Market P60 S60 AC60 P90 S90 AC90

Full Population 4,006 83.7 2,477 7,105 16.3 14,961

Quartile 1 302 60.2 290 1,502 39.8 1,519

Quartile 2 1,307 64.7 1,155 3,307 35.3 3,586

Quartile 3 4,443 70.0 3,337 7,193 30.0 9,648

Quartile 4 9,704 73.6 7,259 13,204 26.4 20,007

Table B1: Equilibrium results for Wilson solution concept for (i) pure community rating (no pre-existing

conditions) and (ii) health-based pricing with quartiles.

Welfare Loss from Health-Status-based Pricing (Quartiles) in Wilson Equilibrium ($/year)

yHB4;no�pre() yHB4;no�pre() yHB4;no�pre()

 Fixed Income Non-Manager Income path Manager Income Path

0:0002 2,101 1,390 -468

0:0003 2,577 1,592 -682

0:0004 2,964 1,711 -950

0:0005 3,277 1,628 -1,076

0:0006 3,506 1,923 -1,050

Table B2: Long-run welfare based on the Wilson Equilibrium results. Compares the two pricing

regulations of (i) pricing based on health status quartiles (x = �HB4�) and (ii) pure community rating

/ no pre-existing conditions (x0 = �no� pre�).

B.2 Empirical Results for Wilson Equilibria

We identify WE using Proposition 2, focusing on our baseline case of a 90 and a 60 policy. When

�AC(�) > � (which is the case in our data), the price di¤erence that maximizes the pro�t from a

multi-policy deviation from (PBE90 ; P
BE
60 ), the break-even price con�guration associated with �P

BE , is

a WE.59 Table B1 shows the equilibria with community rating and with health status quartile pricing.

Wilson equilibrium policies break even in total, but they do so allowing the policy L to cross-subsidize

policy H. The cross-subsidization can be seen by comparing the prices to the average costs for each

policy. We see that in every population the WE has a positive share of consumers purchasing the 90

policy, in contrast to the RE/sp-NE of Section 4.

Table B2 shows welfare results for WE, which are of a similar order of magnitude to those for RE.

59As noted above, this is the unique Wilson equilibrium when �Pw 2 (�;�PBE). We conjecture, but have not proven
that the same is true if �Pw 2 f�;�PBEg:
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C Online Appendix: Cost Model Setup and Estimation

This appendix describes the details of the cost model, which is summarized at a high-level in Section

3, and similar to that used in Handel (2013). The output of this model, Fjkt, is a family-plan-time-

speci�c distribution of predicted out-of-pocket expenditures for the upcoming year. This distribution

is an important input into the empirical choice model, where it enters as a family�s predictions of its

out-of-pocket expenses at the time of plan choice, for each plan option. We predict this distribution in

a sophisticated manner that incorporates (i) past diagnostic information (ICD-9 codes) (ii) the Johns

Hopkins ACG predictive medical software package (iii) a non-parametric model linking modeled health

risk to total medical expenditures using observed cost data and (iv) a detailed division of medical

claims and health plan characteristics to precisely map total medical expenditures to out-of-pocket

expenses. The level of precision we gain from the cost model leads to more credible estimates of the

choice parameters of primary interest (e.g., risk preferences and health risk). Crucially, the cost model

output is also used to predict consumer expected average costs for the upcoming year, �, which is used

to determine plan costs (as a function of who selects which plans) in our equilibrium analyses.

In order to predict expenses in a precise manner, we categorize the universe of total medical claims

into four mutually exclusive and exhaustive subdivisions of claims using the claims data. These cat-

egories are (i) hospital and physician services (ii) pharmacy (iii) mental health and (iv) physician o¢ ce

visits. We divide claims into these four speci�c categories so that we can accurately characterize the

plan-speci�c mappings from total claims to out-of-pocket expenditures since each of these categories

maps to out-of-pocket expenditures in a di¤erent manner. We denote this four dimensional vector of

claims Cit and any given element of that vector Cd;it where d 2 D represents one of the four categories

and i denotes an individual (employee or dependent). After describing how we predict this vector of

claims for a given individual, we return to the question of how we determine out-of-pocket expenditures

in plan k given Cit.

Denote an individual�s past year of medical diagnoses and payments by �it and the demographics

age and sex by �it. We use the ACG software mapping, denoted A, to map these characteristics into a

predicted mean level of health expenditures for the upcoming year, denoted �:

A : � � � ! �

In addition to forecasting a mean level of total expenditures, the software has an application that

predicts future mean pharmacy expenditures. This mapping is analogous to A and outputs a prediction

� for future pharmacy expenses.

We use the predictions � and � to categorize similar groups of individuals across each of four claims

categories in vector in Cit. Then for each group of individuals in each claims category, we use the

actual ex post realized claims for that group to estimate the ex ante distribution for each individual

under the assumption that this distribution is identical for all individuals within the cell. Individuals

are categorized into cells based on di¤erent metrics for each of the four elements of C:
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Pharmacy: �it

Hospital / Physician (Non-OV): �it

Physician O¢ ce Visit: �it

Mental Health: CMH;i;t�1

For pharmacy claims, individuals are grouped into cells based on the predicted future mean pharmacy

claims measure output by the ACG software, �it. For the categories of hospital / physician services (non

o¢ ce visit) and physician o¢ ce visit claims individuals are grouped based on their mean predicted total

future health expenses, �it. Finally, for mental health claims, individuals are grouped into categories

based on their mental health claims from the previous year, CMH;i;t�1 since (i) mental health claims are

very persistent over time in the data and (ii) mental health claims are generally uncorrelated with other

health expenditures in the data. For each category we group individuals into a number of cells between

8 and 10, taking into account the tradeo¤ between cell size and precision. The minimum number of

individuals in any cell is 73 while almost all cells have over 500 members. Thus, since there are four

categories of claims, each individual can belong to one of approximately 104 or 10,000 combination of

cells.

Denote an arbitrary cell within a given category d by z. Denote the population in a given category-

cell combination (d; z) by Idz. Denote the empirical distribution of ex-post claims in this category for

this population ^GIdz (�). Then we assume that each individual in this cell has a distribution equal to a
continuous �t of ^GIdz (�), which we denote Gdz:

$ : ^GIdz (�)! Gdz

We model this distribution continuously in order to easily incorporate correlations across d. Otherwise,

it would be appropriate to use GIdz as the distribution for each cell.

The above process generates a distribution of claims for each d and z but does not model correlation

over D. It is important to model correlation across claims categories because it is likely that someone

with a bad expenditure shock in one category (e.g., hospital) will have high expenses in another area

(e.g., pharmacy). We model correlation at the individual level by combining marginal distributions Gidt

8 d with empirical data on the rank correlations between pairs (d; d0).60 Here, Gidt is the distribution
Gdz where i 2 Idz at time t. Since correlations are modeled across d we pick the metric � to group

people into cells for the basis of determining correlations (we use the same cells that we use to determine

group people for hospital and physician o¢ ce visit claims). Denote these cells based on � by z�. Then

for each cell z� denote the empirical rank correlation between claims of type d and type d0 by �z� (d; d
0).

60 It is important to use rank correlations here to properly combine these marginal distribution into a joint distribution.

Linear correlation would not translate empirical correlations to this joint distribution appropriately.
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Then, for a given individual i we determine the joint distribution of claims across D for year t, denoted

Hit(�), by combining i�s marginal distributions for all d at t using �z� (d; d
0):

	 : GiDt � �z�it (D;D
0)! Hit

Here, GiDt refers to the set of marginal distributions Gidt8d 2 D and �z�it (D;D
0) is the set of all

pairwise correlations �z�it (d; d
0)8(d; d02. In estimation we perform 	 by using a Gaussian copula to

combine the marginal distribution with the rank correlations, a process which we describe momentarily.

The �nal part of the cost model maps the joint distribution Hit of the vector of total claims C over

the four categories into a distribution of out of pocket expenditures for each plan. For each of the three

plan options we construct a mapping from the vector of claims C to out-of-pocket expenditures Xk:


k : C ! Xk

This mapping takes a given draw of claims from Hit and converts it into the out-of-pocket expenditures

an individual would have for those claims in plan k. This mapping accounts for plan-speci�c features

such as the deductible, co-insurance, co-payments, and out-of-pocket maximums described in the text.

We test the mapping 
k on the actual realizations of the claims vector C to verify that our mapping

comes close to reconstructing the true mapping. Our mapping is necessarily simpler and omits things

like emergency room co-payments and out of network claims. We constructed our mapping with and

without these omitted categories to insure they did not lead to an incremental increase in precision.

We �nd that our categorization of claims into the four categories in C passed through our mapping 
k

closely approximates the true mapping from claims to out-of-pocket expenses. Further, we �nd that

it is important to model all four categories described above: removing any of the four makes 
k less

accurate. See Handel (2013) for �gures describing this validation exercise with the data used in this

paper.

Once we have a draw of Xikt for each i (claim draw from Hit passed through 
k) we map individual

out-of-pocket expenditures into family out-of-pocket expenditures. For families with less than two

members this involves adding up all the within family Xikt. For families with more than three members

there are family level restrictions on deductible paid and out-of-pocket maximums that we adjust for.

De�ne a family j as a collection of individuals ij and the set of families as J . Then for a given family

out-of-pocket expenditures are generated:

�k : Xij ;kt ! Xjkt

To create the �nal object of interest, the family-plan-time speci�c distribution of out of pocket ex-

penditures Fjkt(�), we pass the claims distributions Hit through 
k and combine families through �k.

Fjkt(�) is then used as an input into the choice model that represents each family�s information set over
future medical expenses at the time of plan choice. Eventually, we also use Hit to calculate total plan

cost when we analyze counterfactual plan pricing based on the average cost of enrollees.
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We note that the decision to do the cost model by grouping individuals into cells, rather then by

specifying a more continuous form, has costs and bene�ts. The cost is that all individuals within a

given cell for a given type of claims are treated identically. The bene�t is that our method produces

local cost estimates for each individual that are not impacted by the combination of functional form

and the health risk of medically di¤erent individuals. Also, the method we use allows for �exible mod-

eling across claims categories. Finally, we note that we map the empirical distribution of claims to a

continuous representation because this is convenient for building in correlations in the next step. The

continuous distributions we generate very closely �t the actual empirical distribution of claims across

these four categories.

Cost Model Identi�cation and Estimation. The cost model is identi�ed based on the two as-

sumptions of (i) no moral hazard / selection based on private information and (ii) that individuals

within the same cells for claims d have the same ex ante distribution of total claims in that category.

Once these assumptions are made, the model uses the detailed medical data, the Johns Hopkins pre-

dictive algorithm, and the plan-speci�c mappings for out of pocket expenditures to generate the �nal

output Fjkt(�). These assumptions, and corresponding robustness analyses, are discussed at more length
in the main text and in Handel (2013).

Once we group individuals into cells for each of the four claims categories, there are two statistical

components to estimation. First, we need to generate the continuous marginal distribution of claims

for each cell z in claim category d, Gdz. To do this, we �t the empirical distribution of claims GIdz
to a Weibull distribution with a mass of values at 0. We use the Weibull distribution instead of the

lognormal distribution, which is traditionally used to model medical expenditures, because we �nd

that the lognormal distribution overpredicts large claims in the data while the Weibull does not. For

each d and z the claims greater than zero are estimated with a maximum likelihood �t to the Weibull

distribution:

max
(�dz;�dz)

�i2Idz
�dz
�dz

(
cid
�dz

)�dz�1e
�( cid�dz

)�dz

Here, �̂dz and ^�dz are the shape and scale parameters that characterize the Weibull distribution.

Denoting this distributionW (�̂dz; ^�dz) the estimated distribution Ĝdz is formed by combining this with

the estimated mass at zero claims, which is the empirical likelihood:

^Gdz(c) =

8<: GIdz (0) if c = 0

GIdz (0) +
W ( ^�dz; ^�dz)(c)
1�GIdz

(0) if c > 0

Again, we use the notation ^GiDt to represent the set of marginal distributions for i over the categories

d: the distribution for each d depends on the cell z an individual i is in at t. We combine the distributions
^GiDt for a given i and t into the joint distribution Hit using a Gaussian copula method for the mapping

	. Intuitively, this amounts to assuming a parametric form for correlation across ^GiDt equivalent
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to that from a standard normal distribution with correlations equal to empirical rank correlations

�z�it
(D;D0) described in the previous section. Let �i1j2j3j4 denote the standard multivariate normal

distribution with pairwise correlations �z�it (D;D
0) for all pairings of the four claims categories D. Then

an individual�s joint distribution of non-zero claims is:

^Hi;t(�) = �1j2j3j4(��11 ( ^Gid1t);�
�1
2 ( ^Gid2t);�

�1
3 ( ^Gid3t);�

�1
4 ( ^Gid4t))))

Above, �d is the standard marginal normal distribution for each d. Ĥi;t is the joint distribution of

claims across the four claims categories for each individual in each time period. After this is estimated,

we determine our �nal object of interest Fjkt(�) by simulating K multivariate draws from Ĥi;t for each

i and t, and passing these values through the plan-speci�c total claims to out of pocket mapping 
k

and the individual to family out of pocket mapping �k. The simulated Fjkt(�) for each j, k, and t is
then used as an input into estimation of the choice model.

Table C1 presents summary results from the cost model estimation for the �nal choice model

sample, including population statistics on the ACG index �, the Weibull distribution parameters �̂dz

and ^�dz for each category d, as well as the across category rank correlations �z�it (D;D
0). These are the

fundamentals inputs used to generate Fjkt, as described above, and lead to accurate characterizations of

the overall total cost and out-of-pocket cost distributions (validation exercises which are not presented

here).
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Final Sample

Cost Model Output

Overall PPO250 PPO500 PPO1200

Individual Mean (Median)

Unscaled ACG Predictor

Mean 1.42 0.74 0.72

Median 0.83 0.37 0.37

Pharmacy: Model Output

Zero Claim Pr. 0.35 (0.37) 0.31 (0.18) 0.40 (0.37) 0.42 (0.37)

Weibull � 1182 (307) 1490 (462) 718 (307) 596 (307)

Weibull � 0.77 (0.77) 0.77 (0.77) 0.77 (0.77) 0.77 (0.77)

Mental Health

Zero Claim Pr. 0.88 (0.96) 0.87 (0.96) 0.90 (0.96) 0.90 (0.96)

Weibull � 1422 (1295) 1447 (1295) 1374 (1295) 1398 (1295)

Weibull � 0.98 (0.97) 0.99 (0.97) 0.98 (0.97) 0.98 (0.97)

Hospital / Physician

Zero Claim Pr. 0.23 (0.23) 0.21 (0.23) 0.26 (0.23) 0.26 (0.23)

Weibull � 2214 (1599) 2523 (1599) 1717 (1599) 1652 (1599)

Weibull � 0.58 (0.55) 0.59 (0.55) 0.55 (0.55) 0.55 (0.55)

(> $40; 000) Claim Pr. 0.02 (0.01) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)

Physician OV

Zero Claim Pr. 0.29 (0.20) 0.26 (0.20) 0.33 (0.46) 0.34 (0.46)

Weibull � 605 (553) 653 (553) 517 (410) 529 (410)

Weibull � 1.15 (1.14) 1.15 (1.14) 1.15 (1.14) 1.14 (1.14)

Correlations

Rank Correlation Hospital-Pharm. 0.28 (0.34) 0.26 (0.32) 0.31 (0.34) 0.32 (0.34)

Rank Correlation Hospital-OV 0.73 (0.74) 0.72 (0.74) 0.74 (0.74) 0.74 (0.74)

Rank Correlation Pharm.-OV 0.35 (0.41) 0.33 (0.37) 0.38 (0.41) 0.39 (0.41)

Table C1: This table describes the output of the cost model in terms of the means and medians of individual

level parameters, classi�ed by the plan actually chosen. These parameters are aggregated for these groups but

have more micro-level groupings, which are the primary inputs into our cost projections in the choice model.

Weibull �, Weibull �, and Zero Claim Probability correspond to the cell-speci�c predicted total individual-level

health expenses as described in more detail in Appendix C.
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D Online Appendix: Choice Model Estimation Algorithm De-

tails and Additional Results

This appendix describes the details of the choice model estimation algorithm. The corresponding section

in the text provided a high-level overview of this algorithm and outlined the estimation assumptions

we make regarding choice model fundamentals and their links to observable data. In addition, after

the presentation of the estimation algorithm, we discuss further speci�cation details and results for our

primary choice model.

We estimate the choice model using a random coe¢ cients simulated maximum likelihood approach

similar to that summarized in Train (2009). The simulated maximum likelihood estimation approach

has the minimum variance for a consistent and asymptotically normal estimator, while not being too

computationally burdensome in our framework. Since we use panel data, the likelihood function at

the family level is computed for a sequence of choices from t0 to t2, since inertia implies that the

likelihood of a choice made in the current period depends on the choice made in the previous period.

The maximum likelihood estimator selects the parameter values that maximize the similarity between

actual choices and choices simulated with the parameters.

First, the estimator simulates Q draws from the distribution of health expenditures output from

the cost model, Fjkt, for each family, plan, and time period. These draws are used to compute plan

expected utility conditional on all other preference parameters. It then simulates S draws for each

family from the distributions of the random coe¢ cients j and �j , as well as from the distribution of

the preference shocks �k. We de�ne the set of parameters � as the full set of ex ante model parameters

(before the S draws are taken):

� � (�; �; �2 ; ��(Aj); ��(Aj); �; ��K (Aj); ��K(Aj); �0; �1):

We denote �sj one draw derived from these parameters for each family, including the parameters

constant across draws:

�sj � (j ; �j ; �; �KT ; �0; �1)

Denote �Sj the set of all S simulated draws for family j. For each �sj the estimator then uses all Q

health draws to compute family-plan-time-speci�c expected utilities Usjkt following the choice model

outlined in earlier in Section 3. Given these expected utilities for each �sj , we simulate the probability

of choosing plan k in each period using a smoothed accept-reject function with the form:

Prsjt(k = k�) =

(
1

�Usjk�t
(�)

�K
1

�Usjkt
(�) )

�

�k(
1

�Us|̂kt
(�)

�K
1

�Usjkt
(�) )

�
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This smoothed accept-reject methodology follows that outlined in Train (2009) with some slight modi-

�cations to account for the expected utility speci�cation. In theory, conditional on �sj , we would want

to pick the k that maximizes Ujkt for each family, and then average over S to get �nal choice probabil-

ities. However, doing this leads to a likelihood function with �at regions, because for small changes in

the estimated parameters �, the discrete choice made does not change. The smoothing function above

mimics this process for CARA utility functions: as the smoothing parameter � becomes large the

smoothed Accept-Reject simulator becomes almost identical to the true Accept-Reject simulator just

described, where the actual utility-maximizing option is chosen with probability one. By choosing � to

be large, an individual will always choose k� when 1
�Ujk�t >

1
�Ujkt 8k 6= k�. The smoothing function

is modi�ed from the logit smoothing function in Train (2009) for two reasons (i) CARA utilities are

negative, so the choice should correspond to the utility with the lowest absolute value and (ii) the logit

form requires exponentiating the expected utility, which in our case is already the sum of exponential

functions (from CARA). This double exponentiating leads to computational issues that our speci�ca-

tion overcomes, without any true content change since both models approach the true Accept-Reject

function.

Denote any sequence of three choices made as k3 and the set of such sequences as K3. In the limit as

� grows large the probability of a given k3 will either approach 1 or 0 for a given simulated draw s and

family j. This is because for a given draw the sequence (k1; k2; k3) will either be the sequential utility

maximizing sequence or not. This implicitly includes the appropriate level of inertia by conditioning

on previous choices within the sequential utility calculation. For example, under �sj a choice in period

two will be made by a family j only if it is optimal conditional on �sj , other preference factors, and the

inertia implied by the period one choice. For all S simulation draws we compute the optimal sequence

of choices for k with the smoothed Accept-Reject simulator, denoted k3sj . For any set of parameter

values �Sj the probability that the model predicts k3 will be chosen by j is:

^P k
3

j (�; Fjkt;Z
A
j ;Z

B
j ;Hj ; Aj) = �s2S1[k

3 = k3sj ]

Let ^P k
3

j (�) be shorthand notation for
^P k
3

j (�; Fjkt; Z
A
j ; Z

B
j ;Hk; Aj). Conditional on these probabil-

ities for each j, the simulated log-likelihood value for parameters � is:

SLL(�) = �j2J�k32K3djk3 ln
^P k
3

j

Here djk3 is an indicator function equal to one if the actual sequence of decisions made by family j

was k3. Then the maximum simulated likelihood estimator (MSLE) is the value of � in the parameter

space � that maximizes SLL(�). In the results presented in the text, we choose Q = 100, S = 50, and

� = 6, all values large enough such that the estimated parameters vary little in response to changes.
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D.1 Speci�cation for Inertia

In the main text we did not describe the details for our speci�cation for consumer inertia. The model

for inertia, which is similar to that in Handel (2013), speci�cs an inertial cost �(ZBj ) that is linearly

related to consumer characteristics and linked choices, ZBj :

�(ZBj ) = �0 + �1Z
B
jt

The characteristics in ZBj include family status (e.g., single or covering dependents), income, several

job status measures, linked choice of Flexible Spending Account (FSA), and whether the family has

any members with chronic medical conditions (and, if so, how many chronic conditions total in the

family).

D.2 Additional Results

In the interest of space, the text only presented the risk preference parameter estimates from our primary

speci�cation, since this was the key object of interest recovered there for our equilibrium analysis of

insurance exchange pricing regulations. Here, for completeness, in Tables D1 and D2 we include the

full set of estimates in the primary model for reference, including inertia parameters, PPO1200 random

coe¢ cients, and " standard deviations. Overall, the parameters not discussed in the text have similar

estimates to those in Handel (2013), though the risk preference estimates di¤er here because they are

linked explicitly to health risk to estimate correlations between those two micro-foundations.
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Empircal Model Results

(1) Paramater

Parameter / Model Primary Model Standard Error

Risk Preference Estimates

� - Intercept, �0 1:21 � 10�3 5:0 � 10�5

� - log(�i�j�i), �1 �1:14 � 10�4 9:8 � 10�6

� - age, �2 �5:21 � 10�6 1:0 � 10�7

� - log(�i�j�i)�age, �3 1:10 � 10�6 1:3 � 10�7

� - Manager, �4 4:3 � 10�5 5:2 � 10�5

� - Manager ability, �5 1:4 � 10�5 1:2 � 10�5

� - Non-manager ability , �6 7:5 � 10�6 2:4 � 10�6

� - Population Mean 4:39 � 10�4 -

� - Population � 6:63 � 10�5 -

� -  standard deviation 1:24 � 10�4 3:5 � 10�5

Inertia Estimates

�0; Intercept 1,336 76

�1; Family 2,101 52

�1; FSA Enroll -472 44

�1; Income 96 15

�1; Quantitative 6 27

�1; Manager 162 34

�1; Chronic Condition 108 24

Table D1: This table presents the �rst half of the full set of primary choice model estimates: the set of estimates

relevant for our analysis of exchange pricing regulation is presented and interpreted in much more detail in the

main text. Standard errors are presented in column 2.
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Empircal Model Results

(1) Parameter

Parameter / Model Primary Model Standard Error

PPO1200 Preferences

�� : Single -2,504 138

�� : Single 806 47

�� : Family -2,821 424

�� : Family 872 48

Other

�; High-Cost, PPO250 -805 79

"500 , �", Single 50 340

"1200 , �", Single 525 180

"500 , �", Family 141 56

"1200 , �", Family 615 216

Table D2: This table presents the second half of the full set of primary choice model estimates: the set of

estimates relevant for our analysis of exchange pricing regulation is presented and interpreted in much more

detail in the main text. Standard errors are presented in column 2.
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E Online Appendix: Self-Insurance Model

Section 6.3 describes our extension that allows for consumers to save and borrow to self-insure against

health shocks. That section in the main text describes the key features of our model of saving and

borrowing as well as the results from that model. In this section we provide some additional details on

this model and present a more formal treatment of it.

We allow for borrowing and saving by solving a �nite horizon dynamic problem. To clarify notation

and timing, we de�ne the following terms:

� Wt � income in period t

� pit � price of policy i in period t

� mt �medical expenses in period t

� �t � ACG health status realization for period t (realized in period t� 1)

� Oi(m) � out of pocket expense for policy i with medical expenses outcome m

� St � savings chosen in period t

� W t �Wt + (1 + r)St�1 are funds available in period t

� c(mjit) = pit +Oit(m) is the consumer�s total medical expenses under policy it given m

Timing:

In each period t, the consumer chooses an insurance policy, (�t+1;mt) is realized, and then a

savings decision, St, is made. Given �t+1, mt+1 is then drawn in period t + 1 from a distribution

Ft+1(mt+1j�t+1). Thus, period t savings are decided after observing health expenses for period t and
period t + 1�s health status. This assumption re�ects a �uid �nancial market where individuals can

take a last minute loan if they were unlucky or deposit extra cash if they were healthier than expected.

Solving the model:

We start in period T and solve for optimal savings backward. In period T given realization �T and

starting savings plus income WT consumer expected utility is:

�E[e�[WT�c(mT jiT )]j�T ] = �E[e�[WT�c(mT jiT )]j�T ]e�(1+r)ST�1

Given that i�T (�T ) is the consumer�s policy choice at T when he has health status �T , expected period

T utility is:

�E[e�[WT�c(mT ji�T (�T ))]j�T ]e�(1+r)ST�1
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which is a function of �T and ST�1. We can thus denote the value function in period T as a function

of the state, VT (�T ; ST�1). Optimal period T � 1 saving ST�1 (saving for period T ) solves:

max
ST�1;iT�1

�E[e�[WT�1�c(mT�1jiT�1)]j�T�1]eST�1 + �VT (�T ; ST�1)

which in turn delivers VT�1(�T�1; ST�2):

In this manner, we recursively solve the optimal savings level all the way backwards to period 1 for

every possible history. Once we have V1(�1; 0) we compute the ex-ante welfare of an unborn individual

who does not yet know her future �1 as:

W0(W ) = E�1(V1(�1; 0)):

The ex-ante welfare depends on the income pro�le W = [W1;W2; ::;WT ], on the initial distribution

of types, and on the regulatory pricing regimes we want to evaluate. A pricing regime a¤ects expected

welfare through both the out of pocket expenses Oi(mt) as well as the premium paid, pi(�t): We

translate the ex ante welfare di¤erence between pricing regimes into yearly certainty equivalent values

as in Section 5 in the main text.

E.1 Computation

To implement the dynamic problem we need assumptions about the evolution of the state variable.

Unlike the primary welfare analysis in the paper (which assumed a steady state population) the com-

putation here requires transitions across health states (predictive ACG index) over time. Namely, at

any point in time, we need to compute the expected evolution of the future uncertainty, to �gure out

optimal savings.

We estimate health state transitions using the observed transitions in our sample. So that we have

enough sample size to non-parametrically estimate this transition matrix, we divide the population into

7 groups based on health status and compute a 7-by-7 transition matrix for each of 8 �ve year age bins

(25-30, 30-35,..). We assume that the estimated transition matrix for each �ve year age bin re�ects the

transition probabilities for consumers in that �ve year age bin transitioning to a given health status

level for the next �ve year age bin. Within each period, consumers experience �ve years of identical

health claims in the insurance contract they chose for that period, appropriately discounted. For each

age bin, health type, and regulatory pricing regime, we use the static market equilibrium outcomes

from our primary analysis i�(�) and determine the actual choice each individual makes in each period,

yielding her premia and out of pocket expenses.61 We assume consumers have �at income pro�les over
61Market outcomes are assumed to be the same as those in our primary equilibrium analysis. They thus do not

account for a potential e¤ect that borrowing and saving would have on consumer insurance choices. Accounting for these

dynamic e¤ects would likely push consumers more towards lower insurance, and thus likely not have a large impact on

equilibrium outcomes. This re�ects the goal of this section, which is to quantify the impact of savings on the welfare

numbers, keeping other things (including static market equilibrium outcomes) equal. In that spirit we keep the equilibrium

prediction unchanged, as described in the paper for each pricing regime, and see how a representative individual�s welfare

would change if she is allowed to borrow or save.
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time (Wt = W ) (as in the �rst column of Table 6) in order to neutralize the other channels through

which savings could impact welfare.

Given this setup, we solve the 8-period dynamic problem as described above. Once we recover the

value function for an unborn individual (prior to age 25) for each possible realization of the initial

health state, we compute the certainty equivalent of each regime x as:

�
T=8X
t

�te�CEx = �
7X
j

pje
�V1(�j ;0):

The results from this model are presented and discussed in Section 6.3.
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F Online Appendix: Exchange Participation

Our market analysis in the main text assumed full participation in the market. This could result

from, for example, a legally enforced individual mandate (as in the ACA) with a large penalty, or,

alternatively, an employer requiring all workers to remain in the insurance pool of a private exchange.

In reality, such a requirement may be di¢ cult to enforce, or the penalty for not purchasing insurance

may be small, leading to a scenario where certain consumers, especially healthy ones, may prefer to

opt out of the market.

To understand the role of mandated participation, we investigate the case where individuals can opt

out of the exchanges should their expected utility from being uninsured be higher than joining their

favorite insurance plan in the market. Uninsured means that the consumer pays zero premium and

pays for the total cost of their health expenses. We again focus on the case of a 90% policy and a 60%

policy in the market. We �nd equilibria allowing individuals to opt out without any penalty.62

Recall that equilibria without age-based pricing unraveled to all-in-60. The column �Better-o¤ In�

in the �Community Rating� section of Table F1 shows the percentage of each age group (and of the

population as a whole) that is better o¤ insured at the equilibrium premium of $4,068 than remaining

uninsured. For example, 44.2% (= 100�55:8) of 25 to 30 year old individuals prefer to opt out as their
expected utility from non-insurance is higher than being pooled with the whole population.

Naturally, those that prefer to opt out are younger, healthier and less risk averse. The expected

costs of insuring consumers who prefer to decline coverage is $3,107 versus $5,107 for those that prefer

to participate. The average risk aversion coe¢ cient of those that prefer to participate is 4:26 � 10�4

versus 4:03 � 10�4 for those that prefer to decline coverage.
Allowing healthier individuals to opt out increases the cost of covering the remaining pool, which

in turn draws more people out of the pool. The process stops with a RE premium of $5,339 when no

more individuals want to drop out (that is, the RE for the remaining pool has P60 = $5; 339). The

equilibrium without the mandate involves full unraveling to 60, with 74.3% of the population voluntarily

covered. The column �No Mandate: Participation�under �Community Rating� shows participation

by age in the non-mandate equilibrium.

We can also compute the welfare impact of removing the mandate. Those individuals that remain

covered, 74.3% of the population, su¤er a loss equal to the premium increase $1,271 (= 5; 339�4; 068).
Comparing the certainty equivalent of remaining uninsured versus participation in the exchange for the

25:7% of the population that opts out, we �nd that they are better o¤ by $1,972, on average. Thus,

removing the mandate entails a welfare loss of $434:3 [= 0:743(1; 271)� 0:257(1; 972)] per person. On
the right side of Table F1 we show the corresponding numbers for age-based pricing. As we saw in

Section 6.2, all the equilibria under the mandate (with no opting out) for the di¤erent age groups

62More concretely, we �nd the equilibrium with the mandate, and eliminate from the sample those individuals that are

better o¤ uninsured. We then iterate �nding equilibria and eliminating the worse o¤ consumers, until all buyers want to

remain in the market.
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Implications of Individual Mandate

Community Rating Age-Based Pricing

Mandate: No Mandate: Mandate: No Mandate:

Ages Better-O¤ In Participation Premium Better-O¤ In Premium Participation

All 78.3% 74.3% - 80.7% - 77.0%

25-30 55.8% 50.6% 1,786 70.1% 2,732 63.1%

30-35 59.6% 54.1% 2,215 70.0% 3,409 62.5%

35-40 68.7% 62.2% 2,542 75.9% 3,476 70.8%

40-45 75.1% 70.9% 3,242 77.7% 4,233 74.5%

45-50 82.5% 79.3% 4,103 82.9% 4,976 80.6%

50-55 90.6% 87.2% 5,038 88.6% 5,714 86.9%

55-60 94.7% 92.5% 6,304 92.1% 6,927 89.9%

60-65 95.8% 93.9% 7,259 91.6% 7,959 90.2%

Table F1: Implications of the individual mandate for equilibrium prices and market participation.

involve unravelling to 60. At the equilibrium premium, reported in the �Mandate: Premium�column,

only some of the population would voluntarily participate in the exchange. Column �Mandate: Better-

o¤ In,�shows that the share that prefers to participate is an increasing share in age. Older individuals

are more likely to bene�t from participation, but the di¤erences across ages are less pronounced once

age is priced.

For each age, as individuals opt out, the cost of coverage increases. The column �No Mandate:

Premium� reports the equilibrium premia for each age group absent a mandate. It is substantially

higher than under the mandate, especially so for younger cohorts for whom the mandate is binding for

a larger proportion of individuals. In a similar fashion we can use the model to study the participation

level for di¤erent subsidy or penalty levels (analysis available upon request).
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G Online Appendix: Population Re-Weighting

The analysis in the main text uses health choice and utilization data from a large �rm with approxim-

ately 10,000 employees and 20,000 covered lives. While these data have a lot of depth on dimensions

that are essential to model health risk and risk preferences, they represent a speci�c population working

for a speci�c large employer. Our results thus represent the case of exchange design as if this population

were the population of interest. This could correspond closely to the case where either (i) this large

employer (or a similar one) sets up a private exchange or (ii) our population represents a population of

general interest for a public exchange (such as the ACA state exchanges). While our analysis thus far

is clearly relevant for (i), and conceptually relevant for (ii), it is also likely that our sample is not the

same as the sample of interest for policymakers setting up state insurance exchanges under the ACA.

To provide a rough sense of how our results could change under a population more similar to

that enrolling in state insurance exchanges under the ACA, we extend the analysis by applying our

framework to a more externally relevant sample from the Medical Expenditures Panel Survey (MEPS),

which was speci�cally created to study medical care decisions for a nationally representative population.

Column 1 in Table G.1 contains the summary statistics for the entire MEPS population during the

years we focus on (2004-2008) with no sample cuts (N = 166,539). We analyze exchange equilibria and

welfare outcomes using an �ACA relevant�sample composed of individuals in the MEPS data who are

(i) between the ages of 25-65 and (ii) either uninsured or covered by a plan on the individual market

(N = 21,856). This sample is similar in spirit to the sample that actually enrolls in the state insurance

exchanges proposed under the ACA (which contain few people who already have access to existing

public or employer-sponsored insurance). We note that, in addition to this �ACA relevant�MEPS

sample, we also perform our equilibrium and welfare analysis for a second, broader, sample composed

of all individuals in MEPS between the ages of 25 and 65, including those with employer sponsored or

public insurance (Column 2 in Table G.1, N = 81,733). For the remainder of this section, we focus on

the �ACA relevant�MEPS sample, our primary sample of interest.

Our analysis matches individuals in the employer data used throughout our analysis to the MEPS

�ACA relevant�population and creates a new simulation sample with demographic weights similar to

the MEPS sample but with detailed health and risk preference data from our estimates.63 We match

individuals in our data to those in the MEPS data based on three demographics: age, income, and

gender. To do this, we probabilistically model cells of age, gender, and income in the MEPS sample,

and then draw randomly from individuals in those bins in our data with weights proportional to the

MEPS cell weights. We note that, before we construct the MEPS cell weights, we incorporate the

survey sample weights in the MEPS data, which are intended to correct for sampling and response

issues. Table G.2 describes the non-parametric age, income, and gender cell multivariate cell weights

63We bring in the cost data from our data set because it is more detailed on the health risk dimension and our setting

provides more precise plan characterizations, with which it is possible to estimate risk preferences.
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for this MEPS sample.64 65

For the uninsured / individual market MEPS reweighted sample, we reproduce our earlier equilib-

rium and welfare analysis for the cases of (i) pure community rating and (ii) health status- based pricing

for health status quartiles in the market setup where insurers can o¤er either 90% or 60% insurance

contracts. Table G.4 presents the main results for this sample, and can be directly compared to Table

4 from our primary analysis. The comparison yields several important insights. First, the equilibrium

premia and market shares are similar in this MEPS re-weighted sample and our main analysis: the

market fully unravels to all-in-60 for the case of pure community rating. Under health-based pricing,

in both cases the healthiest quartile has substantial market share in both 60 and 90: in our main

analysis 64.8% in this quartile choose 60% coverage, while 57.5% do in the exchange-relevant MEPS

re-weighted sample. Interestingly, while no consumers from the second healthiest quartile enroll in 90%

coverage in our primary analysis, in the MEPS re-weighted sample 30.4% do. Thus, under our frame-

work, if the exchanges are comprised of only uninsured individuals and those that would have been on

the individual market, there will be higher insurance rates for the within-exchange population under

health status-based pricing. For both our primary and MEPS analysis, the market unravels for the two

sickest quartiles. Finally, and importantly, we note that the population expense levels are very similar

between our main sample and the re-weighted MEPS sample: if all enroll in 60, the average costs in

the former are $4,051 while in the latter they are $3,901.66 Overall, the analysis of MEPS data in this

section suggests that, at a �rst pass, our main results are not substantially changed when applied to a

sample that more closely re�ects the demographic pro�le of individuals who will sign up for the ACA

state exchanges. 67 Table G.5 and G.6 present, respectively, the demographics and equilibrium results

for the broader sample of all individuals in MEPS between the ages of 25 and 65, including those with

employer sponsored or public insurance within-sample.

64We note that in this analysis, we do not match our sample to MEPS using health expenditure data (conditional on

the other demographics) since our sample has more detailed medical information on consumers. However, the analysis

and tables below show that average costs conditional on demographic bins are similar in our data and in the MEPS data.

Table G.3 provides more detail on the health risk for both MEPS samples.
65We note that Table G.1 presents the data �as is.�In our analysis, we use MEPS sample weights, which re-weight this

�as is� population to correct for survey sampling bias. In addition, as in our main analysis, we assume that the market

is purely an individual market: there could be multiple people from one family in each sample represented in Table G.1.
66Though the means are similar, the exchange-relevant MEPS sample is more heavily skewed in both directions, with

more very healthy and more very sick individuals.
67The market unravelling we �nd under community rating (with or without age-based pricing) is somewhat consistent

with experience in the Massachusetts exchange, where most buyers opted for the Bronze (60%) plan in the early years of

this ACA-like exchange [see, e.g., Ericson and Starc (2013)].
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Entire MEPS All Ind. 25-65 25-65 Unins/Ind
(1) (2) (3)

N - Individual-Year Obs. 166,539 81,733 21,856

N - Individuals in Panel 105,353 51,922 13,804

N - Family-Year Obs. 58,647 - -

N - Families in Panel 36,317 - -

Avg. Family Members 2.90 - -

Age-Individual

Mean 33.82 43.15 42.6

10th Qtile 5 28 27

25th Qtile 14 34 32

Median 32 43 42

75th Qtile 51 52 52

90th Qtile 66 59 60

Gender-Individual

Male % 47.7% 46.6% 50.2%

Total Income-Family-Year* **

Mean 53613 64058 42746

10th Qtile 9240 12733 8000

25th Qtile 19000 26000 17068

Median 39080 50000 31114

75th Qtile 72375 85584 54995

90th Qtile 115086 131080 89600

Wage Income-Family-Year**

Mean 44583 59945 38882

10th Qtile 0 7348 300

25th Qtile 8000 24000 14280

Median 32000 48300 30000

75th Qtile 65000 83753 52000

90th Qtile 104438 124996 82680

Region-Individual

Northeast 14.5% 15.0% 10.1%

Midwest 19.2% 19.6% 15.0%

South 38.3% 38.7% 46.3%

West 26.9% 26.8% 28.7%

Table G1: This table describes demographic data for key samples of interest in the MEPS data, for the pooled

data from 2004-2008. A more detailed description of each column�s sample is contained in the text.

*In individual samples, a given family�s income may count twice since two individuals can be from same family.
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MEPS Weights Incorporated

All 25-65 Sample

Age Bucket / Fam. Wages 0-$35,000 $35,000-$70,000 $70,000-$105,000 � 105,000 Total

25-29 4.1% 4.5 2.7 1.9 13.1%

30-34 3.3% 4.4 2.6 1.9 12.3%

35-39 3.5% 4.2 2.8 2.3 12.9%

40-44 3.6% 4.5 3.0 2.8 13.9%

45-49 3.5% 4.2 3.0 3.1 13.9%

50-54 3.5% 3.8 2.8 2.9 13.1%

55-59 3.8% 3.2 2.3 2.3 11.7%

60-64 4.4% 2.3 1.3 1.2 9.2%

Total 29.7% 31.1% 20.5% 18.4% 100%

% Male by Income* 45.6% 49.9% 50.3% 51.4%

25-65 Unins./ Private

Age Bucket / Fam. Wages 0-$35,000 $35,000-$70,000 $70,000-$105,000 � 105,000 Total

25-29 7.4% 5.0 1.9 1.6 15.9%

30-34 6.0% 4.4 1.3 0.7 12.4%

35-39 6.4% 3.5 1.1 0.6 11.6%

40-44 6.1% 4.0 1.4 0.8 12.2%

45-49 6.2% 3.1 1.6 0.9 10.8%

50-54 5.9% 2.9 1.1 0.9 10.8%

55-59 7.0% 2.5 1.1 0.8 11.4%

60-64 10.1% 2.3 0.8 0.8 14.0%

Total 55.1% 27.7% 10.3% 7.1% 100%

% Male by Income* 51.4% 56.2% 55.4% 56.8%

Table G2: This table describes the discrete age probabiliities for di¤erent age / gender / income categories for

(i) all individuals in MEPS, age 25-65, and (ii) all uninsured / individual market insured individuals in MEPS,

age 25-65. These weights incoporate MEPS sample weights as well, as an additional weighting factor.

*Percentages of gender across age are essentially constant conditional on income, which is why those �gures are

not presented here.
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MEPS Weights Incl.

All 25-65 Sample

Age Bucket / Quantile 10th 25th 50th 75th 90th 95th Mean

25-29 0 (0) 0 (203) 125 (843) 620 (2833) 2109 (7638) 4155 (12007) 997 (2820)

30-34 0 (0) 0 (241) 224 (940) 922 (3179) 2815 (9040) 5582 (13122) 1376 (3146)

35-39 0 (0) 0 (239) 331 (925) 1314 (2928) 3499 (8158) 6333 (13595) 1696 (3126)

40-44 0 (0) 25 (258) 450 (967) 1669 (2955) 4513 (7844) 9099 (13843) 2235 (3544)

45-49 0 (0) 115 (365) 703 (1342) 2425 (3827) 6423 (9143) 12125 (15505) 3016 (3838)

50-54 0 (90) 221 (563) 1114 (1860) 3385 (4744) 8562 (10683) 16271 (17135) 4187 (4551)

55-59 0 (102) 410 (781) 1837 (2437) 4953 (5820) 11929 (13615) 21069 (22741) 5315 (6129)

60-64 71 (255) 707 (1109) 2337 (2906) 5916 (6771) 15261 (14493) 27033 (24997) 6790 (6666)

25-65 Unins./ Private

Age Bucket / Quantile 10th 25th 50th 75th 90th 95th Mean

25-29 0 (0) 0 (0) 0 (166) 173 (758) 819 (2959) 1824 (5502) 391 (952)

30-34 0 (0) 0 (0) 0 (180) 254 (852) 1062 (3234) 2024 (6095) 608 (1322)

35-39 0 (0) 0 (0) 0 (174) 328 (1024) 1650 (3187) 3164 (5748) 744 (1223)

40-44 0 (0) 0 (0) 50 (308) 750 (1459) 2929 (3966) 4500 (6908) 1381 (2449)

45-49 0 (0) 0 (0) 120 (425) 857 (1846) 3108 (4566) 6719 (9658) 2089 (1967)

50-54 0 (0) 0 (144) 340 (798) 1576 (2866) 5590 (7462) 11851 (12952) 2474 (3085)

55-59 0 (0) 24 (176) 1076 (1312) 3565 (3996) 9290 (9990) 16419 (19459) 3898 (4941)

60-64 0 (60) 449 (732) 1966 (2398) 5166 (5730) 13749 (12017) 24157 (21839) 6003 (6043)

Table G3: This table describes the expenditure quantiles for (i) all individuals in MEPS age 25-65 (top panel)

and (iii) all uninsured / individual market insured individuals in MEPS, age 25-65 (bottom panel). Female

numbers presented in parantheses, male numbers are not.

77



MEPS Unins. Weighted: Equilibria without Pre-existing Conditions

Equilirium Type P60 S60 AC60 P90 S90 AC90

RE 3,901 100.0 3,901 � 0 �

NE Does not exist

MEPS Unins. Weighted: Equilibria with Health Status-based Pricing (Quartiles)

Market Equilibrium Type P60 S60 AC60 P90 S90 AC90

Quartile 1 RE 311 57.5 311 1,476 42.5 1,476

Quartile 2 RE 1,128 69.6 1,128 3,228 30.4 3,228

Quartile 3 RE 4,121 100.0 4,121 - 0 -

Quartile 4 RE 9,751 100.0 9,751 - 0 -

Table G4: This table presents the analogous table to Table 5 on equilibrium outcomes, applied to the sample

reweighted by characteristics of the uninsured / individual coverage MEPS, described in the text. The top

presents the equilibrium results for the case of pure community rating (no pricing of pre-existing conditions)

and the bottom for the case where insurers can price based on health status quartiles.
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Entire MEPS All Ind. 25-65 25-65 Unins/Ind
(1) (2) (3)

Family-Year: Coverage Type*

Private (Employer or Ind.) 66.3% 73.3% 41.0%

Medicaid (someone) 30.7% 33.4% 45.4%

Medicare (someone) 29.01% 14.0% 16.4%

Uninsured** (someone) 26.7% 35.0% 84.7%

Only Public in Fam 22.5 % 15.1% 0%

Always O¤ered Employer (someone) 48.8 % 62.1% �

O¤ered Employer Sometimes (someone) 62.0% 76.1% �

Family Member Emp. Always 69.7% 84.7% 76.2%

Family Member Emp. Once 77.5% 92.3% 87.4%

Individual-Year: Coverage Type*

Private (Employer or Ind.) 54.5% 64.0% 16.8%

Medicaid 25.4% 12.4% 0.72%

Medicare 13.4% 3.9% 1 .25%

Uninsured** 16.6% 22.3% 83.2%

Only Public 27.6% 12.7% 0%

Always O¤ered Employer 21.3 % 38.9% �

O¤ered Employer Sometimes 32.5% 55.0% �

Individual Emp. Always 37% 65.4% 37.5%

Individual Emp. Once 48% 78.3% 48.0%

Table G5: This table describes insurance coverage, expenditures, and other statistics in the MEPS data for

the pooled data from 2004-2008. A more detailed description of each column�s sample is contained in the text.

*Coverage type re�ects whether a family ever had this kind of coverage (for any member) throughout the year,

so these numbers add to more than 100%.

**Uninsured variable occurs when none of other coverage types are held, and the family is uninsured for whole

year.
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MEPS Weighted: Equilibria without Pre-existing Conditions

Equilirium Type P60 S60 AC60 P90 S90 AC90

RE 3,852 100.0 4,051 � 0 �

NE Does not exist

MEPS Weighted: Equilibria with Health Status-based Pricing (Quartiles)

Market Equilibrium Type P60 S60 AC60 P90 S90 AC90

Quartile 1 RE 321 60.2 321 1,521 39.8 1,521

Quartile 2 RE 1,445 100.0 1,445 - 0 -

Quartile 3 RE 4,239 100.0 4,239 - 0 -

Quartile 4 RE 9,347 100.0 9,347 - 0 -

Table G6: This table presents the analogous table to Table 5 on equilibrium outcomes, applied to the sample

reweighted by characteristics of the MEPS full population, as described in the text. The top presents the

equilibrium results for the case of pure community rating (no pricing of pre-existing conditions) and the bottom

for the case where insurers can price based on health status quartiles.
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Figure H1: This �gure presents the distribution of � predicted for t1; for all individuals in the data

(including dependents) present during both t0 and t1. Predicted expected expenses are normalized

by the average in this sample of $4,878 (thus equal to 1 in this chart). The distribution presented is

truncated at 5 times for this chart, but not in estimation / analysis.

H Online Appendix: Additional Analysis

This appendix contains several additional �gures and tables discussed in the text. Figure H1 presents

the distribution of � predicted for t1; for all individuals in the data (including dependents) present

during both t0 and t1. Predicted expected expenses are normalized by the average in this sample

of $4,878 (thus equal to 1 in this chart). The distribution presented is truncated at 5 times for this

chart, but not in estimation / analysis. See Handel (2013) for additional detailed analysis of expected

expenditures for employees at dependents at the �rm we study.

Table H1 presents descriptive statistics for the pseudo-sample of individuals used in our insurance

exchange simulations. The sample has a risk preference mean and standard deviation similar to those

of the choice model estimation sample. Moreover, the distribution of income and health status are

similar to those in the estimation sample and in the general population. The table just below in the

text here illustrates that the simulation sample (as in our data overall) has a fairly uniform distribution

of age between 25 and 65, consistent with our assumption of a steady state population in the welfare

analysis. See Section 3.6 for further details on the sample used in our counterfactual analyses.

Quantile 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Age 26 28 33 37 41 45 49 52 56 60 62

Table H2 shows average costs as a function of age 25 risk preferences, to illustrate the relationship

between risk preferences and age that exists in our welfare framework. Following the choice model
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estimates, costs are negatively related to risk aversion conditional on age. See Section 5 in the main

text for more details.

Table H3 supports the analysis in our age-based pricing extension in Section 6 in the main text.

The table shows the compensation required to make an individual indi¤erent between a regime with

health status quartile pricing for each age group, and another in which all individuals in each age

band receive the 60 policy at its average cost for their age band (the result of pure age-based pricing).

Once age is priced, health-based pricing, which appealed to individuals with steeply increasing income,

is no longer preferred by those consumers. The bene�t of health-based pricing is the reduction in

adverse selection, and the postponement of premiums until later in life. With age-based pricing, the

latter bene�t is eliminated. The cost associated with reclassi�cation risk then dominates the bene�ts

of reducing adverse selection across the range of risk aversion types and for the di¤erent income path

models studied.

Table H4 presents the long-run welfare implications of allowing for insurer risk-adjustment trans-

fars, as speci�ed in the HHS risk adjustment formula, described in Section 6 in the main text. Risk

adjustment transfers partially reduce the extent of adverse selection under pure community rating,

improving consumer welfare.

Figure H2 presents an additional calibration of the framework developed in Section 2 that highlights

the tradeo¤ between adverse selection and reclassi�cation risk, as a function of the fraction of health

risk information known by consumers at the time of contracting. This is similar to a �gure in that

section, but calibrated so that consumers face more health risk. (R = 30; 000). Unraveling occurs

at higher � when R is greater (larger variance of medical expenditures), re�ecting the fact that with

greater variance consumers are more reluctant to choose a low coverage plan. As a result, in the �gure

in the appendix there is a smaller range of � over which health-based pricing is better than community

rating.
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Simulation Sample

Simulation Sample

N - Families -

N - Individuals 25-65 10,372

Mean Age 44.5

Median Age 45

Gender (Male %) 45

Income

Tier 1 ( < $41K) 20%

Tier 2 ($41K-$72K) 40%

Tier 3 ($72K-$124K) 24%

Tier 4 ($124K-$176K) 8%

Tier 5 ( > $176K) 8%

Predicted Mean Total Expenditures

Mean $6,099

25th quantile $1,668

Median $3,654

75th quantile $8,299

90th quantile $13,911

95th quantile $18,630

99th quantile $34,008

Risk Preferences

Mean � 4:28 � 10�4

Standard Deviation � 7:50 � 10�5

Table H1: This table presents descriptive statistics for the pseudo-sample of individuals used in our insurance

exchange simulations. The sample has risk preference means and standard deviations that are similar to those

of the choice model estimation sample. Moreover, the distributions of income and health status are similar to

those in the estimation sample and general population.
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Average Costs at Various Ages

Conditional on Age 25 Risk Aversion

 30-35 45-50 55-60

0:0002 5,586 7,196 10,857

0:0003 4,212 6,390 10,319

0:0004 3,100 5,687 9,767

0:0005 2,328 4,911 9,271

0:0006 1,775 4,373 8,813

Table H2: Average costs as a function of age 25 risk preferences. Following the choice model estimates,

costs are negatively related to risk aversion conditional on age.

Welfare Loss from Health Status-quartile Age-based pricing ($/year)

yHB4+age;age() yHB4+age;age() yHB4+age;age()

 Fixed Income Non-Manager Income path Manager Income Path

0:0002 2,111 2,129 1,100

0:0003 2,911 2,028 920

0:0004 3,707 1,842 778

0:0005 4,510 1,646 1,353

0:0006 5,137 1,612 1,876

Table H3: Long-run welfare comparison between the two pricing regulations of (i) pricing based on health

status quartiles by age (x = �HB4 + age�) and (ii) pricing based on just age (x0 = �age�). The results

presented are based on the RE outcomes for each of the two pricing regulations. As before, the assumed

discount rate is � = 0:975:

Welfare Bene�t of Risk-Adjustment Transfers: RE ($/year)

yPCR;risk�adj() yPCR;risk�adj() yPCR;risk�adj()

 Fixed Income Non-Manager Income path Manager Income Path

0:0001 316 261 106

0:0002 327 202 27

0:0003 336 139 18

0:0004 349 84 0

0:0005 368 36 38

0:0006 386 23 72

Table H4: Long-run welfare implications of insurer risk adjustment regulation (transfers based on the HHS

risk adjustment formula).
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Figure H2: Adverse selection vs. reclassi�cation risk, R = 30,000. X curve: market share of low

coverage plan; dashed curve: certainty equivalent with pure community rating; solid curve: certainty

equivalent with perfect health-based pricing.
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