Emergency liquidity facilities, signalling and funding Costs

Gauthier, Céline; Lehar, Alfred; Pérez Saiz, Héctor; Souissi, Moez

Working Paper

Bank of Canada Staff Working Paper, No. 2015-44

Provided in Cooperation with:
Bank of Canada, Ottawa

Suggested Citation: Gauthier, Céline; Lehar, Alfred; Pérez Saiz, Héctor; Souissi, Moez (2015) : Emergency liquidity facilities, signalling and funding Costs, Bank of Canada Staff Working Paper, No. 2015-44, Bank of Canada, Ottawa

This Version is available at:
http://hdl.handle.net/10419/141987

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Emergency Liquidity Facilities, Signalling and Funding Costs

by Céline Gauthier, Alfred Lehar, Héctor Pérez Saiz and Moez Souissi
Emergency Liquidity Facilities, Signalling and Funding Costs

by

Céline Gauthier,¹ Alfred Lehar,² Héctor Pérez Saiz³ and Moez Souissi⁴

¹Université du Québec
Celine.Gauthier@uqo.ca

²University of Calgary
alehar@ucalgary.ca

³Financial Stability Department
Bank of Canada
Ottawa, Ontario, Canada K1A 0G9
hperezsaiz@bankofcanada.ca

⁴International Monetary Fund
MSouissi@imf.org
Acknowledgements

This paper was previously entitled “Why one facility does not fit all? Flexibility and signalling in the Discount Window and TAF.” We want to thank Hongyu Xiao for excellent research assistance, and we also want to thank for comments and suggestions Jason Allen, Allen Berger, James Chapman, Evren Damar, Scott Hendry, Randall Morck, Teodora Paligorova, Denis Sosyura, Gustavo Suarez and participants at seminars at the Bank of Canada, the Canadian Economics Association (2013), Financial Management Association (2014), International Monetary Fund, Midwest Finance (2014) and Northern Finance (2013).
Abstract

In the months preceding the failure of Lehman Brothers in September 2008, banks were willing to pay a premium over the Federal Reserve’s discount window (DW) rate to participate in the much less flexible Term Auction Facility (TAF). We empirically test the predictions of a new signalling model that offers a rationale for offering two different liquidity facilities. In our model, illiquid yet solvent banks need to pay a high cost to access the TAF as a way to signal their quality, in exchange for more favourable funding in the future. Less solvent banks access the less costly and more flexible DW in case they experience an unexpected run, paying a higher future funding cost. The existence of two facilities with different characteristics allowed banks to signal their level of solvency, which helped to decrease asymmetric information during the crisis. Using recently disclosed data on access to these facilities, we provide evidence consistent with these results. Banks that accessed TAF in 2008 paid approximately 31 basis points less in the interbank lending market in 2010 and were perceived as less risky than banks that accessed the DW. Our results can contribute to a better design of liquidity facilities during a financial crisis.

JEL classification: G21, G28, G01
Bank classification: Financial stability; Financial institutions; Lender of last resort

Résumé

Dans les mois qui ont précédé la faillite de la maison Lehman Brothers en septembre 2008, les banques étaient disposées à payer une prime par-dessus le taux du guichet d’escompte de la Réserve fédérale afin d’accéder aux fonds du mécanisme d’adjudication de prêts à plus d’un jour (TAF). Nous soumettons à des tests empiriques les prédictions d’un nouveau modèle révélateur des effets de signal. Notre modèle permet de justifier l’existence de deux dispositifs différents de financement. Dans ce modèle, des banques à court de liquidités mais solvables accèdent au TAF en défiant payer un prix élevé. Comme le TAF leur sert à envoyer un signal positif sur leur solvabilité, elles paient ce prix en échange d’une amélioration de leurs conditions de financement futures. Confrontées à la méfiance inattendue des prêteurs, les banques moins solvables ont recours au guichet d’escompte, un dispositif de financement moins onéreux et plus souple mais dont l’utilisation dégrade les futures conditions de financement de ces établissements. L’existence de deux mécanismes aux caractéristiques distinctes a permis aux banques d’envoyer au marché des signaux sur leur degré de solvabilité et, par conséquent, de diminuer l’asymétrie d’information pendant la crise. Des données rendues publiques récemment corroborent ces résultats. Les banques qui ont eu recours au TAF
en 2008 ont payé un taux inférieur (environ -31 points de base) au taux pratiqué sur le marché du financement interbancaire en 2010 et étaient considérées comme moins à risque que les établissements qui avaient accédé au guichet d’escompte. Les résultats de notre étude peuvent contribuer à perfectionner la conception des dispositifs qui serviront à l’octroi de liquidités pendant les crises financières.

Classification JEL : G21, G28, G01
Classification de la Banque : Stabilité financière; Institutions financières; Fonction de prêteur de dernier ressort
Non-Technical Summary

The role of central banks as liquidity providers has been a controversial topic since Bagehot (1878). During the recent financial crisis, many solvent banks that experienced a liquidity crunch shied away from using the discount window (DW), the main liquidity facility set by the Federal Reserve to help banks in that very situation. Instead, at the height of the crisis (the failure of Lehman Brothers), some banks were willing to pay up to 150 basis points more in an alternative facility, the Term Auction Facility (TAF), which had more stringent and less flexible lending terms in all dimensions (e.g., loan maturity or availability of funds) than the DW. However, banks that used the TAF were able to access cheaper external funding in the period after the failure of Lehman.

The explanation we pursue in this paper is that the existence of two liquidity facilities with different characteristics allowed banks to signal their level of solvency, which helped to decrease asymmetric information, potentially preventing the failure of financial markets. As a consequence, solvent banks bid aggressively in the TAF, which resulted in lower post-crisis funding costs.

We first propose a signalling model to explain the incentives for banks to use these two facilities. The greater flexibility of the DW compared with the TAF is the key feature that allows for a separating equilibrium. Using the TAF is costly because it is less flexible. Hence some banks in sound financial condition can use it to send a signal to the markets. The funding markets thus infer that banks that access the TAF are of better quality than banks drawing on the DW, and they price subsequent funding according to these updated beliefs.

Our empirical analysis tests the predictions of this model. We use regression analysis to compare funding costs for different types of instruments before and after the height of the financial crisis for banks that used the DW, TAF or neither of these facilities. We find that banks that used the TAF to borrow funds at the height of the crisis have lower post-crisis total funding costs (in 2010) than banks that drew from the DW. We also study how the use of DW or TAF affects the structure of funding. We observe that TAF banks rely more on savings and insured deposits, but they do not pay significantly different rates than DW banks on these deposit accounts. Depositors seem to be less price elastic, which is particularly true for insured deposits. The freeze of alternative funding markets led to an increase in the use of deposits as a source of funding. TAF banks were able to expand their use of these deposits without significantly changing the rates paid.

Our results have relevant implications for the design of liquidity facilities because they give a rationale for providing two facilities with distinct features. The reduced flexibility of the TAF is less costly for good banks than for bad banks and can therefore serve as a credible signal for good banks to show their quality to the market. Our findings also contribute to the extensive literature on the lender-of-last resort (LOLR) role that central banks can play in times of systemic distress. We argue that a “one size fits all” approach with respect to LOLR policy will not let banks signal their quality, while the simultaneous offering of several liquidity facilities with different characteristics allows banks to signal their type.
1 Introduction

The role of central banks as liquidity providers has been a controversial topic since Bagehot (1878). During the recent financial crisis, many solvent banks that experienced a liquidity crunch shied away from using the discount window (DW), the main liquidity facility set by the Federal Reserve to help banks in that very situation. Instead, at the height of the crisis (the failure of Lehman Brothers), some banks were willing to pay up to 150 basis points more (equivalent to $172.6 million in additional costs\(^1\)) in an alternative facility, the Term Auction Facility (TAF), which had more stringent and less-flexible lending terms in all dimensions (e.g., loan maturity or the availability of funds) than the DW. However, banks that used the TAF rather than the DW were able to access cheaper external funding in the period after the failure of Lehman\(^2\) The explanation we pursue in this paper is that the existence of two liquidity facilities with different characteristics allowed banks to signal their level of solvency, which helped to decrease asymmetric information, potentially preventing the failure of financial markets. As a consequence, solvent banks bid aggressively in the TAF, which resulted in lower post-crisis funding costs. In this paper, we propose a theoretical model that explains this trade-off and empirically analyzes its predictions.

We first propose a signalling model to explain the incentives of banks to use these two facilities. The lower flexibility of the TAF compared with the DW makes the TAF more costly and hence allows banks to send a credible signal to the market. The different flexibility is the key feature that allows for a separating equilibrium in our model. Specifically, we assume that banks need to access a liquidity facility because of a random liquidity shock or because of a “run” caused by concerns about their solvency. Banks can anticipate whether they will be hit by a liquidity shock, but runs come as a surprise to them. While good banks experience only the former, bad banks can be hit by both types of shocks. In the separating equilibrium, good banks that expect a liquidity shock will pay the higher rate to access the less-flexible TAF facility to signal that they do not need the flexibility of the DW to respond to sudden runs. The TAF cannot be accessed instantly, so bad

\(^1\)See Bernanke (2009). The largest difference between the TAF auctions and the DW was 150 basis points, which corresponds to the TAF auction of September 22, 2008. Given that the amount offered in the auction was $150 billion of loans with 28-day terms, this represents approximately a difference of $172.6 million in funding costs compared with the DW.

\(^2\)We estimate annual savings of between $82.9 million, when considering interbank borrowing, and $1,323 million, when considering funding costs for total liabilities.
banks do not use the TAF in the hope of avoiding a run, but they need the flexibility of the DW (which can be accessed any time) in case they eventually do experience a run. The funding markets thus infer that banks that access the TAF are of better quality than banks drawing on the DW, and they price subsequent funding according to these updated beliefs.

Our empirical analysis tests the predictions of this model. We use regression analysis with bank-level fixed effects to compare funding costs for different types of instruments before and after the height of the financial crisis for banks that used the DW, TAF or neither of these facilities. We find that banks that used the TAF to borrow funds at the height of the crisis have lower post-crisis total funding costs (in 2010) than banks that drew from the DW. This difference is about 7 basis points in total funding costs, and 23 basis points for rates paid in the interbank lending market. Additionally, this difference in funding costs is larger for banks that had a more intense usage of the TAF (relative to their size), and for banks that were substantially more risky than other banks.

To confirm the robustness of our results, we extend our econometric model in two ways. We first use a matching estimator that allows us to control for non-linearities and selection effects on observables. We then use an instrument to control for potential endogeneity problems related to the decision to use the TAF or the DW. Membership of banks in the Board of the Federal Reserve (henceforth, the Fed) is a variable that should be correlated with the decision to use Fed liquidity facilities, but should not be directly related to the funding cost, making it a valid instrument. In both cases, we confirm our initial findings.

In addition to our main finding that banks accessing the TAF enjoy lower post-crisis funding costs, we find additional evidence about the higher solvency of banks that used the TAF. Consistent with the predictions of our model, the majority of U.S. banks that failed during the crisis (most of them in 2009 and subsequent years), were mainly borrowing from the DW during the pre-Lehman period and only a few of them used the TAF as their main source of liquidity from the Fed.

We also study how the use of DW or TAF affects the structure of funding. We observe that

3 This instrument has already been used by Bayazitova and Shivdasani (2012), Li (2013), and Berger and Roman (2014) as an instrument for the decision of banks to participate in the Troubled Asset Relief Program (TARP). Interestingly, we find that banks that are members of the Board are less likely to use these facilities, which could be due to a desire to avoid a conflict of interest since these banks have a direct role as supervisors and overseers of the Reserve Banks that manage these facilities.
TAF banks rely more on savings and insured deposits, but they do not pay significantly different rates than DW banks on these deposit accounts. Depositors seem to be less price elastic, which is particularly true for insured deposits, which provide customers with a safe place to keep their savings. However, deposits tend to be cheaper than other sources of funding. The freeze of alternative funding markets led to an increase in the use of deposits as a source of funding, which has been well documented in the literature (Gatev and Strahan 2006, Cornett et al. 2011). Compared with DW banks, TAF banks were able to expand their use of these deposits without significantly changing the rates paid.

Our results have relevant implications for the design of liquidity facilities because it gives a rationale for providing two facilities with distinct features. The reduced flexibility of the TAF is less costly for good banks than for bad banks and can therefore serve as a credible signal for good banks to show their quality to the market. During the peak of the crisis, as signalling became more important, good quality banks were willing to pay a much higher rate for more stringent lending terms to signal their quality. This may have helped to decrease the level of uncertainty and asymmetric information during the crisis, and may have prevented the failure of financial markets.

Our findings contribute to the extensive literature on the lender-of-last resort (LOLR) role that central banks can play in times of systemic distress. In his classic paper, Bagehot (1878) argued that central banks should provide liquidity support to any institution willing to offer good collateral but at a penalty rate. Rochet and Vives (2004) and Diamond and Rajan (2005) provide a theoretical foundation for Bagehot’s classical doctrine, suggesting that in times of financial stress, it is hard to distinguish between insolvent and solvent, but illiquid banks, and so the access to LOLR facilities needs to be unconditional on any criteria regarding a bank’s solvency. More recently, other papers have analyzed some unintended consequences of access to LOLR, such as moral hazard leading to

5 Traditionally, it is considered that using the DW has a "stigma". In other words, banks are reluctant to borrow at the DW owing to the concern that such borrowing may be interpreted as a sign of financial weakness (Armantier et al. 2011). In our model, we do not consider stigma explicitly because banks do not have any prior belief about the DW. If banks only have access to the DW, they would still use it but they would not be able to separate themselves. It is the existence of two facilities with distinct features that allows for separation and a decrease of asymmetric information.

6 Signalling does not necessarily have to be welfare increasing. In times of a financial crisis, however, increased information on banks’ types can prevent market failure. Bouvard et al. (2015) and Goldstein and Leitner (2015) document how increased regulatory disclosure can be beneficial in adverse economic conditions. While we abstract from the optimality of the disclosure decision, we analyze one specific mechanism created by the regulator to allow signalling by banks to the market.
excess illiquid leverage (Acharya and Tuckman, 2013) or the risks of unconditional access to LOLR facilities that can create the "zombie banks" phenomenon (Acharya and Backus, 2009). In this paper, we contribute to the debate on how to design LOLR facilities. We argue that a "one size fits all" approach with respect to LOLR policy will force banks into a pooling equilibrium, while the simultaneous offering of several liquidity facilities with different characteristics allows banks to signal their type (i.e., illiquid versus insolvent), which helps ensure the efficient dissemination of liquidity provisions.

Our paper is also related to the theoretical research on effects associated with DW borrowing. In a recent paper, Ennis and Weinberg (2013) propose a model where informational asymmetries and asset-quality heterogeneity play a crucial role in determining equilibrium interest rates and study the conditions under which DW borrowing may be regarded as a negative signal about the quality of the borrowers. They have two key assumptions: DW borrowing must be at least partially observable, and accessing the DW sends a worse signal than borrowing on the market at a rate higher than the DW rate. Klee (2011) develops a model to explain why Fed funds rates went up as the spread between the DW rate and the target rate went down. In Klee’s model, banks face exogenous non-pecuniary costs (stigma) on top of monetary costs to access the DW. Contrary to these two papers, in our model the two liquidity facilities do not create any exogenous costs to participants per se. Actually, the DW has better lending terms than the TAF, but it is precisely this greater flexibility of the DW that is the key feature that allows banks to separate themselves and signal their relative strength to funding markets.

On the empirical front, evidence has accumulated on the presence of DW stigma effects (Peristiani, 1998; Furune, 2001, 2005; Armantier et al., 2011) and on how LOLR facilities alleviate banks’ funding strains and enhance market liquidity (Fleming, 2011). However, the ex-ante incentives of banks participating in emergency liquidity facilities have not been extensively studied. In a recent paper, Berger et al. (2014) analyze the banks that participated in the DW and TAF.

Armantier et al. (2011) use negative abnormal returns or large overnight funding rates in the interbank market to estimate the stigma costs. They do not find strong evidence of such costs. We think that their approach may underestimate those costs for many reasons. First, it likely takes time for markets to identify which banks went to the TAF and which ones to the discount window, in which case funding costs between the two types of banks would differ after more than a few days of accessing the DW. Second, the authors focus on the period of highest volatility during the crisis, during which even the healthiest corporations were facing extreme increases in funding costs. Third, as detailed above, Klee (2011) documents an increase in the Fed funds rate for banks not accessing the DW, as the spread between the discount rate and the target rate was decreased.
facilities and their aggregate lending behaviour during the recent financial crisis. They find that bank size matters: small banks receiving funds from the DW and TAF were weak banks, whereas large banks generally were not. Also, Puddu and Wälchli (2012) find that banks that borrowed TAF funds exhibit ex-ante higher levels of maturity mismatch and have more illiquid collateral. In this paper, we shed new light on the incentive to participate in different LOLR facilities. In particular, we study how banks’ access to DW and TAF facilities during the crisis affected market perceptions ex-post.

The rest of the paper is organized as follows: Section 2 explains the institutional features of recent central bank liquidity facilities. We develop the theoretical model in Section 3 and present the interesting stylized facts and main empirical results in Section 4. Section 5 extends our empirical analysis and Section 6 concludes.

2 Central Bank Liquidity Facilities

During the recent financial crisis, the Fed undertook a series of unusual policy actions in order to alleviate the strain on bank funding markets. In addition to easing the terms of the DW, the Fed created a number of unconventional programs, including the TAF, a new facility for auctioning short-term credit. These were the two main facilities used by depository institutions (DIs). In this section, we provide a brief perspective of the key features of the DW and TAF.

2.1 Discount window lending

The Federal Reserve Act requires discount window credit to be made on a non-discriminatory basis to all institutions that are eligible to borrow. In August 2007, as a response to the incipient financial crisis, the Fed narrowed the spread in the DW rate over the FOMC’s target federal funds rate.

8 See also other papers, such as Wu (2008), Gilbert et al. (2012), and Drechsler et al. (2013) for the European case.
9 See, for example, Afonso et al. (2011) who document the stressed interbank lending market during the crisis.
10 There were other facilities, such as the Term Securities Lending Facility (TSLF), the Primary Dealer Credit Facility (PDCF), the Commercial Paper Funding Facility (CPFF) and Term Asset-Backed Securities Loan Facility (TALF), but they were either designed for non-depository institutions, or their dimensions were significantly smaller than the DW or TAF.
rate and increased the allowable term for primary credit borrowing to 30 days from overnight. A few months later (on March 16, 2008), in the wake of the takeover of Bear Stearns by JPMorgan Chase, the Fed further narrowed the spread to 25 basis points and extended the maximum maturity of term primary credit loans to 90 days (see Figure 1). Nevertheless, as shown in Figure 2a, total borrowing from the DW remained low, with primary credit loans peaking in late 2008 at just over $100 billion, and secondary loans at only about $1 billion in late 2009 (see Figure 2b). See the appendix for further details about the DW before the recent financial crisis.

Figure 1: Borrowing costs of DW and TAF

This figure displays weekly DW primary rates and stop-out rates for TAF auctions with maturities of 13 days, 28 days, and 84 days. Also, the figure shows the date of the Lehman failure.

2.2 The Term Auction Facility (TAF)

In response to concerns about the reluctance of banks to use the DW, the Fed introduced the TAF on December 12, 2007. The TAF was a series of biweekly auctions for preset amounts of funding available to DIs eligible for primary credit at the DW, including U.S. branches and agencies of foreign banks.

11 The discount window offers three types of lending programs. The "Primary Credit" program is the principal safety valve for ensuring adequate liquidity in the banking system for sound depository institutions (DIs). Primary credit is priced at a rate above the FOMC’s target for the federal funds rate and is normally granted on a “no-questions-asked” basis. There are no restrictions on borrowers’ use of primary credit. Priced slightly higher, "Secondary Credit" is available to DIs not eligible for primary credit. Finally, under the "Seasonal Credit" program, a DI may qualify for funding to meet seasonal borrowing needs due to fluctuations related with construction, college, farming and other sectors.
Figure 2: Total borrowing from TAF, and from primary, secondary and seasonal DW

The figure plots weekly outstanding Federal Reserve credit for the primary DW and TAF programs (panel (a)), and for the secondary DW and seasonal DW programs (panel (b)). The figure is generated using data on DW loans to depository institutions that were released by the Fed in March 2011 in response to a Freedom of Information Act request and subsequent court ruling. The data include loans to individual institutions made between August 20, 2007 and March 1, 2010.

The TAF is a single-price auction whereby all successful bidders pay the stop-out rate, the interest rate of the last accepted bid that all awarded institutions pay upon maturity. TAF loans, which were offered with a maturity of 28 days and, beginning in August 2008, 84 days, were fully collateralized. Collateral eligibility and valuation procedures were the same as for the DW.

Clearly, the lending terms of the TAF were in all aspects more stringent than the DW. Whereas an unlimited amount of money is available on demand through the DW, under the TAF, banks needed to wait for three days to access the funds, funds were auctioned on a biweekly basis, there
Figure 3: Outcome of TAF auctions

The average bid-to-cover ratio is computed as the ratio of total submitted bids to total offered TAF funds. The stop-out rate in excess of the minimum bid rate (dashed line) is the difference between the stop-out rate and the minimum accepted bid rate as set by the Fed. Number of bidders (solid line) is the average number of bidders in auctions held during a given quarter (right-hand scale).

was a cap on individual bids, loans could not be prepaid, loan maturity was limited, and the collateral requirements were the same as under the DW. Absent any stigma effect, banks should be more willing to pay for funds under the DW than under the TAF. Yet during a substantial period of time, banks were willing to pay a premium over the DW rate to access TAF funds (see Figure 1). As the financial crisis ebbed, DW lending rates started to exceed TAF rates, in line with what we would expect given the funding terms.

From its creation, TAF borrowing was in high demand. As shown in Figure 3 auctions were highly competitive prior to the bankruptcy of Lehman Brothers. Total bids were more than 50% larger, on average, than total offered funds over the pre-Lehman period. Demand for TAF funds continued to rise after the collapse of Lehman, exceeding $800 billion in 2009Q1; however, competition among bidders decreased after the Fed doubled the amounts supplied. In response to continued improvements in financial market conditions, the Fed reduced both the amount and maturity of new TAF auctions, until March 8, 2010 when the final auction was held.
2.3 Eligibility for DW and TAF

The TAF was a liquidity facility with virtually the same eligibility and collateral criteria as the primary DW. Therefore, both liquidity facilities could be accessed by the same DIs that were in sound financial condition, including branches and agencies of foreign banks. These branches had to meet the same soundness criteria as U.S. commercial banks.\footnote{Foreign banks were active users of the TAF. Benmelech (2012) argues that many of these foreign banks issued liabilities in U.S. money markets that were denominated in dollars. Thus, foreign banks were subject to a roll-over risk and had to rely on special facilities such as the TAF.}

Although available data on DW usage do not reveal whether borrowing banks were primary or not, we have some evidence that, prior to the failure of Lehman, most institutions that borrowed from the DW were considered as primary by the Fed. The amount of borrowing from the secondary window in the DW was significantly lower than from the primary window (about 100 times less, see Figures 2a and 2b), and these differences were especially significant in the pre-Lehman period. Also, in that period, the number of problem banks that could be considered as non-primary was very low (see Figure 4). Hence, it is reasonable to assume that most of the banks that borrowed from the DW in the pre-Lehman period were primary, and therefore, they had the ability to borrow from either the DW or the TAF.

Figure 4: Number of bank failures and problem banks in the United States

Note that it could be argued that the access to TAF could be constrained by some size or scale effects. In particular, the minimum amount that could be borrowed ($10 million) may have been too high for some small institutions. However, we document that the smallest bank that borrowed
from the TAF in the pre-Lehman period had $146 million in total average assets during 2008, and the 5th percentile was $244 million. This suggests that even relatively small banks were able to win some of the TAF auctions. Therefore, bank size does not seem to have been a constraint and almost all borrowing institutions had the scale to access the TAF if needed.

2.4 Data

Data on DW usage were released following Freedom of Information Act requests by Bloomberg News and Fox Business Network on March 31, 2011. They include the user’s name, Federal Reserve District, amount obtained, origination date and maturity date. The Fed made public the information on banks that borrowed TAF loans on December 1, 2010 as mandated by the Dodd-Frank Act. Data are available from December 12, 2007 to March 8, 2010 (i.e., the lifespan of the program) and include the auction date, the borrower’s name and location, the interest rate and the type of collateral used, among other variables.

This dataset covers all borrowing institutions, including U.S. depository institutions, U.S. chartered, subsidiary banks (FSUBs), and U.S. branches and agencies of foreign banks (FBAs). Because of the unavailability of bank-level data, the latter were dropped from our sample. Interestingly, in the pre-Lehman period, FBAs borrowed heavily from the TAF, as did other types of institutions, despite the fact that they were also eligible to borrow from the primary DW facility.\(^{13}\)

Call Reports provide quarterly financial data for all member banks. We combine this database with the DW and TAF databases using the key attributes (name and Fed region) of all financial institutions that borrowed from the DW and TAF, and manually match these attributes with those available in the Call Reports to identify the certificate number of each bank. We could match with very high certainty over 95% of the names, and discarded institutions that had an ambiguous name.

Following Acharya and Mora (2015), we use Call Reports to calculate implicit rates for funding cost by type of instrument, i.e., we divide quarterly interest expenses by the quarterly average of the respective instrument and express it in basis points. As in Acharya and Mora (2015), we

\(^{13}\)Unlike U.S. depository institutions and other FSUBs, FBAs are integral parts of their parent banks. They are not required to meet specific risk-based capital standards, but in turn, are not permitted to accept domestic retail deposits. Therefore, they are not covered by the Federal Deposit Insurance Corporation (FDIC) and are not required to report bank-level financial information on a stand-alone basis (Goulding and Nolle 2012).
eliminate outliers which are less than 0.5% of the sample size.

We use a single macro index ("State Coincident Index") from the Federal Reserve Bank of Philadelphia to summarize the macroeconomic conditions of each state where banks are located. For multi-state banks, we combine branch-level data from the Summary of Deposits (SOD) database from the FDIC to calculate the average exposure of multi-state banks to state macro conditions.

3 Model

Banks have access to a two-period investment project that requires an investment normalized to $1 and pays either R or zero at the end of the second period. Banks can be classified as "good" or "bad". Good banks realize the positive payoff with certainty, while bad banks obtain R only with probability $1 - \theta$. A bank’s type is private information for each bank and denotes the ex-ante probability of a bank being good as α. The project is financed through two consecutive periods of short-term borrowing. In the second period, we assume that markets are frictionless and that banks can borrow from a competitive financial market at the fair market rate, given the market’s belief about their type. In the first period we assume that banks face a distressed market and are potentially in need of a central bank facility to refinance the project. Specifically, we assume that the bank does not have access to market funding sources should a refinancing need arise.

We model two possible refinancing needs reflecting the idea that banks can either be illiquid owing to the general closure of the market for refinancing, which we refer to as a liquidity shock, or owing to the unwillingness of counterparties to extend financing because of concerns about the bank’s asset quality, which we refer to as a run. Banks receive a liquidity shock with probability λ independent of their type, in which case they need to refinance their project. We think of liquidity shocks as the inability of a bank to roll over its financing owing to adverse market conditions specific to its funding structure. Since banks know their funding structure and can observe market conditions, we assume that banks learn whether they will receive a liquidity shock or not. Specifically, we assume that a bank knows with certainty at the beginning of the first period whether it will be exposed to a liquidity shock or not.

To simplify the exposition of the paper, we assume that the bank needs to refinance the whole project.
The second possible reason for banks to need refinancing is based on adverse information about the bank’s credit quality, which does not allow them to roll over very short-term funding, or causes a sudden withdrawal of callable interbank or retail deposits. We refer to the case of information-driven refinancing needs as a "run", and to simplify the exposition we assume that only bad banks that did not experience a liquidity shock can be subject to a run with probability \(\rho \), while good banks will never experience a run. Runs occur in the middle of the first period (after the liquidity shock is revealed). Since runs can be based on informational cascades and rumours we assume for simplicity that the bad bank has no advance information about runs.

Consistent with the liquidity facilities provided by the Fed to commercial banks during the recent crisis, we assume that the Fed provides two funding facilities that banks can access to refinance their projects, the term auction facility (TAF) and the discount window (DW). We capture two stylized facts about these facilities in our model: first, they offer funds at different rates – specifically, banks can borrow funds at rates \(r_T \) and \(r_D \) for the TAF and DW, respectively. Second, the TAF facility is less flexible than the DW. TAF funds cannot be accessed instantly because the Fed requires three business days to transfer funds to successful bidders and because TAF auctions are not held on a daily basis. We capture this institutional feature by assuming that TAF funds are only available at the beginning of the period.

We assume the following timeline (see Figure 5). In period 1a, the bank observes whether it will receive a liquidity shock or not. In period 1b, the Fed offers access to TAF funding. Banks can also access DW in that period. After banks decide to use the TAF/DW or not, bank runs are realized (period 1c). A bank experiencing a bank run that has not secured TAF or DW funding in period 1b is forced to refinance through the DW in period 1c. In period 1d, the market can observe whether a bank has accessed the TAF, the DW, or did not use a liquidity facility, and updates their belief about the bank’s type based on that information. In period 2, markets are open and banks can borrow in the market at a rate that depends on their perceived type. At the end of period 2, the project return is realized, the bank repays its obligations if possible and closes. Note that after period 1a, there are four types of banks: good banks with or without a liquidity shock, and bad

\[\text{Note that in this model we assume that all banks are qualified by the Fed to access both facilities. This is consistent with the facts observed previously about the low use of the secondary DW and the low number of troubled banks before the failure of Lehman (see Figures 2a, 2b, and 3).} \]
banks with or without a liquidity shock. In addition, in period 1c, the bad bank without a liquidity shock can experience a run (with probability \(\rho \)).

Figure 5: Timeline of the model

3.1 Separating equilibrium

We propose that banks use the TAF as a signalling device and, hence, conjecture a separating equilibrium in which: (i) banks that learn that they will be hit by a liquidity shock access the TAF, (ii) bad banks that experience a run access the DW, and (iii) banks that experience neither a run nor a liquidity shock do not access a liquidity facility. We solve the model by backward induction.

Banks that do not access the liquidity facility are either good banks that did not receive a liquidity shock or bad banks that received neither a liquidity shock nor a run. Denote by \(\xi_0 \) the probability that a bank is good, given that it has not accessed any facility, which is

\[
\xi_0 = \frac{\alpha(1-\lambda)}{\alpha(1-\lambda) + (1-\alpha)(1-\rho)(1-\lambda)} = \frac{\alpha}{\alpha + (1-\alpha)(1-\rho)}. \tag{1}
\]

Since both types of banks access the TAF upon receiving a liquidity shock, the market cannot learn from observing a bank accessing the TAF and thus sets the probability of being a good bank upon accessing TAF equal to the unconditional probability, \(\xi_T = \alpha \). Since we assume that only bad
banks are subject to runs, accessing the DW fully reveals the bank’s type and thus $\xi_D = 0$. The market’s belief in the bank being of the good type depends on the bank’s actions as follows.

Lemma 1. The market’s belief that a bank is of the good type is highest for banks that do not access any liquidity facility and lowest for banks that access the discount window, i.e., $\xi_D \leq \xi_T \leq \xi_0$.

The finding in Lemma 1 is consistent with the widely cited stigma effect that banks face when accessing the discount window. In the second period, the market will set the competitive interest rate to break even, given a belief ξ that the bank is good. Good banks always repay and bad banks default with probability θ. The interest rate r_2 for the second period will be set for investors to break even and thus solve the equation

$$1 = (1 - \xi)(1 - \theta)(1 + r_2) + \xi(1 + r_2), \quad (2)$$

or

$$r_2 = \frac{\theta(1 - \xi)}{\theta \xi - \theta + 1}, \quad (3)$$

where – because of the separating equilibrium – ξ is either zero, if the bank has accessed the DW, α in the case that the bank has accessed TAF, or ξ_0 if the bank did not access a liquidity facility.

The following lemma shows with detail the effect of the parameters on r_2 and ξ_0 (see the appendix for proofs of all theoretical results).

Lemma 2. The second-period interest rate r_2 is increasing in the probability of default of the bad bank θ, and decreasing in the market’s belief that the bank is good ξ. The second-period interest rate for banks that do not access a liquidity facility, $r_2(\xi_0)$, is decreasing in the fraction of good banks α, and the probability of a run, ρ. The market’s belief of a bank being of the good type, given that it has not accessed any Fed funding, ξ_0, is increasing in α and ρ.

Most comparative statics in Lemma 2 are intuitive. The set of banks that do not access a liquidity facility is composed of good banks without liquidity shocks and bad banks that have experienced neither a liquidity shock nor a run. The quality of this pool increases with the ex-ante number of good banks α and the probability of a run, ρ, as more runs reduce the number of bad banks in the pool. As the pool quality improves, the second-period interest rate decreases.
From Lemmas 1 and 2, we can rank the second-period interest rates as a function of the banks’ first-period financing needs:

\[r_2(\xi_D = 0) = \frac{\theta}{1-\theta} \geq r_2(\xi_T = \alpha) \geq r_2(\xi_0) \geq r_2(\xi = 1) = 0. \] (4)

Banks that access the DW are assessed as being in a worse financial condition by the market and pay higher financing rates in the second period. Nevertheless, the DW can be attractive for the bad bank owing to its flexibility. If the bad bank has no liquidity shock, it can speculate that it will not experience a run and can pool with the good banks that do not need to access funding from the Fed and thus receive a favourable interest rate in the second period as \(r_2(\xi_0) \). In the case of a run, the bad bank’s type is revealed, and it has to pay a higher second-period rate. If the probability of a run is not too high, the opportunity to pool with the good banks in the absence of a run can create enough value for the bad bank to prefer the flexible DW over the more rigid TAF.

The good bank’s profit function is then as follows: if it experiences a liquidity shock, then it will access the TAF at cost \(r_t \), it will be revealed to the market that it is a good bank with probability \(\xi_T = \alpha \), and the funding cost for the second period is \(r_2(\alpha) \). Therefore, the good bank that receives a liquidity shock obtains a profit of

\[\pi_{g,l} = R - (r_t + r_2(\alpha)). \] (5)

If the good bank is not hit by a liquidity shock, then it does not need any funding in the first period but needs access to funding at \(r_2(\xi_0) \) in the second period. The profit of the good bank without a liquidity shock is then

\[\pi_{g,n} = R - r_2(\xi_0). \] (6)

The bad bank, which will realize the payoff of \(R \) only with probability \(1 - \theta \), can also learn that it will realize a liquidity shock, in which case it would access the TAF and face the same funding costs as the good bank.

\[\pi_{b,l} = (1 - \theta)(R - (r_t + r_2(\alpha))). \] (7)
Otherwise, it can experience a run, in which case it has to access the DW at cost \(r_d \) and is identified as a bad bank, resulting in a funding cost of \(r_2(0) \) in the second period. Or it can have no run, in which case it will pay \(r_2(\xi_0) \) in the second period. Its expected profit is then

\[
\pi_{b,n} = (1 - \theta)(R - \rho(r_d + r_2(0))) - (1 - \rho)\pi_2(\xi_0)).
\]

(8)

We propose the following separating equilibrium.

Separating Equilibrium. In the separating equilibrium, the good bank with a liquidity shock, and the bad bank with a liquidity shock go to the TAF. Also, the bad bank without a liquidity shock goes to the DW if it does experience a run. Finally, the good bank without a liquidity shock and the bad bank without a liquidity shock and without a run do not use any liquidity facility.

3.2 Characterization of separating equilibrium

For this equilibrium to be stable, both types of banks must not have an incentive to deviate from the conjectured strategies. First, neither the good nor the bad bank should find it profitable to access the DW rather than the TAF when receiving a liquidity shock. By accessing the DW instead of the TAF, banks could profit from lower funding costs if \(r_d < r_t \), but suffer from being identified as bad banks by the market and thus pay a higher interest rate in the second period. The corresponding conditions are

\[
R - (r_t + r_2(\alpha)) \geq R - (r_d + r_2(0)) \iff r_d + r_2(0) - r_2(\alpha) \geq r_t
\]

(9)

(10)

for the good bank and

\[
(1 - \theta)(R - (r_t + r_2(\alpha))) \geq (1 - \theta)(R - (r_d + r_2(0))),
\]

(11)

which is identical for the bad bank.

Second, if the good bank does not receive a liquidity shock, it could still access the TAF and
invest the proceeds in a riskless storage technology, for which we assume a normalized return of zero. The corresponding incentive compatibility constraint is

\[R - r_2(\xi_0) \geq R - (r_t + r_2(\alpha)) \Leftrightarrow \]

\[r_2(\xi_0) - r_2(\alpha) \leq r_t. \] (12)

Third, the bad bank could access the TAF even if it has had no liquidity shock and store the proceeds. The bank could then avoid accessing the DW and avoid being identified as a bad bank if there is a run. The corresponding incentive compatibility constraint is

\[(1 - \theta)(R - \rho(r_d + r_2(0)) - (1 - \rho)r_2(\xi_0)) \geq (1 - \theta)(R - (r_t + r_2(\alpha))) \Leftrightarrow \]

\[\rho r_d + \rho r_2(0) + (1 - \rho)r_2(\xi_0) - r_2(\alpha) \leq r_t. \] (14)

Note that equations (10) and (11) are identical, so we can discard one of them. Also, because we assume that \(r_d \geq 0 \) and \(r_t \geq 0 \), and \(r_2(0) \geq r_2(\alpha) \geq r_2(\xi_0) \), equation (13) can be discarded. Therefore, a separating equilibrium is defined by (10) and (15), which leads to Proposition 1.

Proposition 1. The separating equilibrium is fully characterized by equations (10) and (15).

The interest rates for the liquidity facilities \(r_d \) and \(r_t \) that support the separating equilibrium are illustrated in the striped region in Figure 6. Because \(\rho \leq 1 \) and \(r_2(0) \geq r_2(\xi_0) \) from equation (4), it is easy to show that the line corresponding to constraint (10) is above that of constraint (15), thus opening up the equilibrium region between them.

We can see that the equilibrium TAF rate exceeds the DW rate as long as the latter is not too high, which is consistent with the rate pattern observed in the recent financial crisis. Banks are willing to pay a premium to access the TAF rather than the discount window because of the associated signalling benefits. It is also straightforward to show that the equilibrium region is shrinking in the probability of an information-driven run \(\rho \) such that it collapses to a single line when \(\rho = 1 \). As the bad banks are more likely to be caught in the market through a run, the opportunity of pooling with the good banks that have no liquidity shock and enjoying a low
second-period rate vanishes, which makes the DW less attractive. The rate differential between \(r_t \) and \(r_d \) then merely mirrors the rate differential of TAF and DW banks for the second period. Also, in this case, the two incentive constraints \((10)\) and \((15)\) are satisfied with equality.

We characterize some of the properties of the equilibrium in Proposition 2.

Proposition 2. Properties of separating equilibrium:

- \(If r_d \) is small enough, then \(r_t > r_d \).

- \(If \rho \to 1 \), then \(r_t = r_d + r_2(0) - r_2(\alpha) \) and \(r_t > r_d \) for any \(r_d \geq 0 \). Also, the equilibrium region of \(r_t \) is shifted up (i.e., \(r_t \) increases) as \(\rho \to 1 \).

- \(If \theta \) increases, the equilibrium region of \(r_t \) does not have a clear behaviour (\(I_2 \) increases, but \(I_1 \) does not have a clear pattern). However, if \(\theta \to 1 \) then \(r_d \to +\infty \).

- \(If \alpha \) increases, the equilibrium region of \(r_d \) is shifted down (i.e., \(r_t \) decreases).
4 Main Empirical Results

4.1 First-period predictions from the model

The theoretical model considers two periods, with the first being one of heightened uncertainty and high financial stress. To provide empirical evidence of the model’s predictions, we consider 2007 as the first period. The second period is assumed to be the year 2010, when turbulence had scaled down significantly, and markets reacted to the observed access of banks to the different facilities in the first period. This temporal division can be seen in Figure 7, which shows the LIBOR-OIS spread in the 2007-2010 period. The figure illustrates first a progressive increase and then an abrupt increase of the LIBOR-OIS spread around the failure of Lehman and, subsequently, a progressive decrease of the spread in 2009 and 2010. This spread has been widely used as an indicator of financial stress in the interbank lending markets during the recent crisis (Taylor and Williams, 2009; Sengupta and Tam, 2008).

Figure 7: LIBOR-OIS Spread

The model predicts that banks either access the DW or the TAF, but not both. Table A.1 in the appendix reports descriptive statistics on banks’ usage of the DW and TAF facilities before and after the collapse of Lehman. Banks that raised more than 95% of their Fed funds from the DW (as a percentage of total funds from TAF+DW) are called “DW banks”. Similarly, “TAF banks” obtained more than 95% of their Fed funds from the TAF (as a percentage of total funds from TAF+DW). Banks that do not fit into either category, are classified as "other". These are banks...
that either did not have a clear access pattern to these facilities, or did not use them at all. The great majority of U.S. banks are classified as "other".

4.1.1 Characteristics of banks accessing liquidity facilities

The model predicts that, in a separating equilibrium, banks access liquidity facilities depending on their level of liquidity and solvency in the pre-Lehman period. Table C.1 in the appendix shows statistics for key balance-sheet variables in 2007 for banks that mainly used the DW and the TAF, as well as for the rest of the banks in this period. Variable definitions are provided in the appendix. In the right side of the table, we report p-values for one-side tests of significance and show the three null hypotheses that we consider. These hypotheses compare the means of key balance-sheet variables for every type of bank. The p-values show that we cannot reject the null hypotheses that DW or TAF banks are more liquid than the rest of the banks. On average, the rest of the banks have a much larger level of liquidity than DW or TAF banks. This is consistent with the idea in our model that if a bank does not have a liquidity shock, it will not use the DW or TAF.

Also, the model predicts which banks access liquidity facilities, depending on the level of solvency. Our separating equilibrium implies that if a bank uses the DW, it is necessarily a bad bank. In contrast, the usage of the TAF or the lack of use of any liquidity facility does not have a clear implication in terms of the low solvency of the bank. Related to this prediction, we reject at very low significance levels (2% or less) that the DW banks have higher Tier 1 capital ratios than TAF banks or the rest of the banks. We also find that DW banks tend to have lower-quality assets than TAF banks (although they are of higher quality than the rest of the banks), and that the volatility of their return on assets (ROA) is also higher than for TAF banks. A similar result is found when we compare z-scores (distance to default) or when we consider levels of ROA or return on equity (ROE). These results suggest that banks that accessed the DW were less solvent than TAF banks and the rest of the banks. Results may not be conclusive, however, because there are other variables that do not show a similar behaviour (such as the loan charge-offs or foreclosures). Also, it could be argued that some variables that affect solvency may be unobserved. Perhaps a more definitive argument is obtained when we observe the number of defaults among banks that accessed the DW. Table I shows an interesting simple descriptive statistic. A great majority of
the banks that failed after the failure of Lehman accessed the DW before the failure of Lehman. Following Figure 4, most of these defaults happened after late 2009. Only 3 banks that accessed the TAF failed in the post-Lehman period, whereas 50 banks that accessed the DW failed in the post-Lehman period. This is also true when we consider the percentage of failed banks among the banks that accessed every facility (12.9% for DW banks, 6.67% for TAF banks).¹⁶

Table 1: Banks that accessed DW and TAF before Lehman and failed after Lehman

This table shows statistics about bank failures after the failure of Lehman Brothers and access to TAF and DW before the failure of Lehman Brothers. DW main = Indicator variable equal to 1 if bank was DW mainly in the pre-Lehman period. TAF main = Indicator variable equal to 1 if bank was TAF mainly in the pre-Lehman period.

<table>
<thead>
<tr>
<th></th>
<th>Total access</th>
<th>Total fail</th>
<th>% fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW main</td>
<td>387</td>
<td>50</td>
<td>12.9%</td>
</tr>
<tr>
<td>TAF main</td>
<td>45</td>
<td>3</td>
<td>6.67%</td>
</tr>
</tbody>
</table>

4.1.2 TAF and DW rates

Another prediction of the model for the signalling period is a relationship between TAF and DW rates where the latter are low (see Proposition 2). In Figure 1, we compare TAF stop-out rates and DW rates. TAF rates are consistently higher than DW rates in the months before the failure of Lehman (with a peak difference of 150 basis points in the auction of September 22, 2008). Moreover, the term of TAF loans does not seem to play an important role in determining rates, since we do not observe a differential effect across the 28-day and 84-day terms. It cannot be that banks overbid in the TAF auction just to secure an allocation of funds. Banks had an outside option with an unlimited supply of funds (DW), so if a bank was in need of cash it could still go to the DW after being unsuccessful in the TAF auction and secure funds at a lower rate. Banks had to have an important reason to overpay in the TAF auction, which we believe is signalling. After the failure of Lehman, the relationship between DW and TAF rates is just reversed, with rates being approximately flat for about one year (TAF rates stabilized at 25 basis points and the DW rate was equal to 50 basis points).

These empirical facts have already been studied with much more detail than in our paper by

¹⁶FBAs borrowed heavily from the TAF, as did other types of institutions, despite the fact that they were also eligible to borrow from the primary DW facility. These FBAs were typically very large multinational banks that were in general considered to be solvent, and none of them failed. Therefore, their behaviour is also consistent with the predictions of our model.
Armantier et al. (2011) for the year 2008. These authors had access to the confidential bids submitted by the TAF participants and not only the stop-out rate. The bids submitted by participants were accepted in descending order of rates until the amount of funds supplied by the Fed was exhausted (which determines the stop-out rate). Note that our simple theory model abstracts from any complex auction bidding behaviour and only considers a unique equilibrium rate, r_t, that is generated in the TAF auction (the stop-out rate) and is consistent with the separating equilibrium. Since the bids submitted by TAF participants represent participants’ willingness to pay for the TAF funds, and therefore represent the willingness to separate from the DW, not observing the TAF bids raises concerns about how the bidding behaviour of TAF participants is described by our model. However, we believe that the empirical facts support our model. First, TAF participants that won the TAF auctions had to bid more than the stop-out rate. Second, Armantier et al. (2011) show that the percentage of bids that were above the DW rate was increasing as the auction date was getting close to the failure of Lehman. In addition, in the two months before the failure of Lehman, more than 80% of the bids were above the DW rate, and in the first auction after the failure of Lehman (when the TAF premium with respect to the DW was the highest), this percentage was close to 100%. Therefore, most banks that bid in the TAF auction and did not win, bid above the DW rate. Hence, most bids submitted by banks that participated in the TAF were well above the DW rate.

Another possible concern is the role played by the FBAs in determining TAF rates, since they accounted for about 60% of the borrowing in the TAF in the pre-Lehman period. But as was outlined above, because they were also eligible for the DW, we believe that the FBAs did take into account the stigma effect of the DW, as did other institutions. Also, the stop-out rate in the TAF auctions could be the result of the bids by the FBAs, and not those by the rest of the U.S. banks. However, the U.S. banks that won the auction had to bid above the stop-out rate and, as discussed before, most banks submitted a bid above the DW rate.

4.2 Second-period predictions

We next show some empirical results that confirm the model’s key predictions for the second period. In the first set of results, we provide evidence that banks’ future funding costs are correlated with
their decisions to borrow from the DW or TAF in the first period. The model assumes that the funding cost of a bank in the second period reflects market perceptions of its riskiness, based on its actions in the first period (the "signalling effect"), and is not simply determined by the rate paid to access the liquidity facilities from the Fed, which are just other sources of funding for banks. These perceptions are based on the assumption that markets are able to identify banks that have access to these facilities, even if this is usually confidential information. In our paper, as in other papers that have studied stigma effects, we assume that, in practice, markets are able to identify these banks owing to the interconnected nature of financial markets and the existence of informal information flows such as rumours regarding the identity of these banks.

To identify this effect, we build a panel with quarterly bank-level information for the years 2007 and 2010. Since the amount borrowed from the TAF and DW could affect the overall funding costs of banks if it represents a large share of their liabilities, we use the year 2010, when access to the DW and TAF was significantly reduced compared with previous years (Figure 2a). In practice, this is not problematic because the share of DW and TAF loans in banks’ total liabilities was very small for all years, and for 2010 in particular.

4.2.1 Baseline evidence

For our analysis we use econometric analysis of banks’ funding costs and their funding sources, where we can control for their key variables, including bank-specific variables and macroeconomic indicators. All variables are defined in Appendix C.1.

We consider the following econometric model:

\[
\text{FundingCost}_{i,t} = \alpha_{TAF} TAF_{i,pre} \times Post_t + \alpha_{DW} DW_{i,pre} \times Post_t + \alpha_X X_{i,t} + c_t + \mu_i + \varepsilon_{i,t},
\]

where \(\text{FundingCost}_{i,t}\) is the cost of funding (implicit rate) reported by bank \(i\) in quarter \(t\), \(X_{i,t}\) are bank-specific variables, \(c_t\) are quarterly fixed effects and \(\mu_i\) are bank fixed effects. We use the year

\footnote{Courtois and Ennis (2010) argue that, because of the interconnected bilateral nature of the interbank lending market, it would not be hard for other banks to infer the identity of institutions that borrow from the DW. Purling (2005) finds evidence on DW stigma using data from before the recent crisis, while Armentier et al. (2008) find evidence of stigma effects using federal funds market data during the first year of the recent financial crisis.}
2010 as the post-Lehman period, and the year 2007 as the pre-Lehman period. $TAF_{i,pre}$ ($DW_{i,pre}$) is an indicator variable that takes the value of one if bank i accessed the TAF (DW) in 2008. $Post_t$ is an indicator variable equal to one for the quarters corresponding to the post-Lehman period. To study the cost of funding, we use total interest expense as a percentage of total liabilities. We also show disaggregated results using the cost of funding for domestic deposits, transaction accounts, savings accounts, insured and uninsured time deposits, foreign deposits, interbank borrowing, subordinated debt and other types of borrowing. The coefficients corresponding to the interaction terms $TAF_{i,pre} \times Post_t$ and $DW_{i,pre} \times Post_t$ are our main variables of interest.

This fixed-effects specification is rich enough to control for any possible omitted variable bias that could arise from the correlation between unobserved time-invariant bank fixed effects and our two main variables of interest. In the next sections, we extend the model to verify the robustness of our empirical results.

In the econometric model (16), a natural hypothesis to test from our theoretical model is

$$\text{Hypothesis 1 (H}_1, \text{Funding Cost}) : \alpha_{DW} \leq \alpha_{TAF}. \quad (17)$$

If we reject Hypothesis 1, then we find empirical evidence that banks that access the DW in the pre-Lehman period have a higher funding cost than banks that access the TAF. This is consistent with our theoretical model (see Lemma 1). We can test Hypothesis 1 by considering the total funding costs, or different types of funding used by every bank.
Table 2: Regressions for funding cost for years 2010 and 2007 (total and by type of funding source).

This table shows results of fixed-effects regressions of funding cost by type of funding source. We show the results of total interest expense (as a % of total liabilities) in (1); interest expense for domestic deposits (as % of domestic deposits) in (2); interest expense for transaction accounts (as % of transaction accounts) in (3); interest expense for savings accounts (as % of savings accounts) in (4); interest expense for time deposits of less than 100,000 USD (as %) in (5); interest expense for time deposits of more than 100,000 USD (as %) in (6); interest expense for foreign deposits (as %) in (7); interest expense for interbank borrowing (as % of interbank borrowing) in (8); interest expense for subordinated debt (as % of subordinated debt) in (9); and interest expense for other borrowing (as % of other borrowing) in (10). All regressions use quarterly data for banks in 2010 (post-Lehman period) and 2007 (pre-Lehman period). DW= Dummy equal to 1 if bank was DW mainly in the pre-Lehman period. TAF= Dummy equal to 1 if bank was part of the TARP program.

<table>
<thead>
<tr>
<th>Regressors</th>
<th>Total funding cost</th>
<th>Domestic deposits</th>
<th>Foreign deposits</th>
<th>Interbank borrowing</th>
<th>Subordin. debt</th>
<th>Other borrowing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>DW_post x Post</td>
<td>-0.0337***</td>
<td>-0.0270***</td>
<td>-0.0169</td>
<td>-0.0339***</td>
<td>0.0139</td>
<td>-0.0064***</td>
</tr>
<tr>
<td>TAF_post x Post</td>
<td>-0.0999***</td>
<td>-0.0769***</td>
<td>0.0218</td>
<td>-0.0386</td>
<td>-0.0279</td>
<td>-0.102</td>
</tr>
<tr>
<td>TARP</td>
<td>-0.0493***</td>
<td>-0.0541***</td>
<td>-0.0166*</td>
<td>-0.0749***</td>
<td>-0.0131</td>
<td>-0.0657***</td>
</tr>
<tr>
<td>Asset (log)</td>
<td>0.0248***</td>
<td>0.0184*</td>
<td>0.0220***</td>
<td>-0.0433***</td>
<td>0.0586***</td>
<td>0.0382***</td>
</tr>
<tr>
<td>ROA</td>
<td>-0.0992***</td>
<td>-0.0912***</td>
<td>-0.00159</td>
<td>-0.000126</td>
<td>-0.00226</td>
<td>-0.00323</td>
</tr>
<tr>
<td>Liquidity ratio</td>
<td>3.99e-07</td>
<td>1.98e-07</td>
<td>-6.66e-06***</td>
<td>0.000225*</td>
<td>-9.23e-05***</td>
<td>-3.32e-08</td>
</tr>
<tr>
<td>Sens. to market risk</td>
<td>-0.000416***</td>
<td>-0.000260*</td>
<td>1.92e-07</td>
<td>0.00246***</td>
<td>2.74e-05</td>
<td>-0.00158</td>
</tr>
<tr>
<td>Charge-offs</td>
<td>-0.00666***</td>
<td>-0.00402*</td>
<td>0.000447</td>
<td>-0.0141***</td>
<td>0.00245</td>
<td>0.00164</td>
</tr>
<tr>
<td>Funding mix</td>
<td>-0.000245***</td>
<td>-0.55e-05***</td>
<td>1.58e-05</td>
<td>-0.000884</td>
<td>-0.000125</td>
<td>-0.00133</td>
</tr>
<tr>
<td>High-risk securities</td>
<td>0.000437</td>
<td>0.000502</td>
<td>-0.00230</td>
<td>-0.000262*</td>
<td>0.000279</td>
<td>0.00258</td>
</tr>
<tr>
<td>Long-term securities</td>
<td>0.000150***</td>
<td>0.000164***</td>
<td>0.000589***</td>
<td>0.00274***</td>
<td>0.000435</td>
<td>0.000563</td>
</tr>
<tr>
<td>std. deviation ROA</td>
<td>-0.000973***</td>
<td>-0.00046***</td>
<td>-0.000268</td>
<td>-0.002031</td>
<td>-0.000125</td>
<td>-0.000386</td>
</tr>
<tr>
<td>Z-score</td>
<td>-4.69e-06***</td>
<td>-4.58e-06***</td>
<td>8.62e-07</td>
<td>-7.89e-06***</td>
<td>-5.86e-06**</td>
<td>-8.24e-06**</td>
</tr>
<tr>
<td>Bank age</td>
<td>-0.158***</td>
<td>-0.156***</td>
<td>-0.0353***</td>
<td>-0.114***</td>
<td>-0.214***</td>
<td>-0.281***</td>
</tr>
<tr>
<td>Other bank controls</td>
<td>0.000761</td>
<td>0.000958</td>
<td>0.00112</td>
<td>0.00155</td>
<td>0.00141</td>
<td>0.00163</td>
</tr>
<tr>
<td>Bank fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Quarterly fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>64,490</td>
<td>64,483</td>
<td>57,903</td>
<td>57,955</td>
<td>57,936</td>
<td>57,898</td>
</tr>
<tr>
<td>Number of banks</td>
<td>8,763</td>
<td>8,762</td>
<td>7,912</td>
<td>7,899</td>
<td>7,902</td>
<td>7,917</td>
</tr>
<tr>
<td>R squared</td>
<td>0.890</td>
<td>0.890</td>
<td>0.172</td>
<td>0.703</td>
<td>0.828</td>
<td>0.776</td>
</tr>
</tbody>
</table>

H1: Funding cost for DW banks in post-Lehman period (DW_post x Post) ≤ Funding cost for TAF banks in post-Lehman period (TAF_post x Post)

15% significance: REJECT
10% significance: REJECT
5% significance: REJECT

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
The estimated parameters of the fixed-effects regression for the funding cost of model (16) are presented in Table 2. We have omitted some bank controls for space considerations. All banks experienced a significant drop in their 2010 overall funding costs relative to 2007, reflecting the environment of low nominal interest rates that prevailed during this period (see Figure 8). However, consistent with the prediction of the model, the total funding costs of TAF banks decreased more than DW banks (about 10 basis points for TAF banks and 3 basis points for DW banks). We also look closely at the different sources of funding. We find a significant and economically large effect on interbank borrowing. TAF banks paid lower funding costs for interbank borrowing compared with DW banks (a difference of $24 - 3 = 21$ basis points).

Figure 8: Fed target rate vs. average funding cost for U.S. banks

In general, we do not find large or significant effects for the rest of the sources of funding. When considering individual deposits, we do not find significant differences. Interestingly, on aggregate, we find a small difference of $7.69 - 2.7 \approx 5$ basis points when considering all deposits. We expect to observe a small effect for domestic deposits, since the deposit insurance limit was increased to $250,000 per beneficiary in the middle of our sample.\(^\text{18}\)\(^\text{18}\) Regarding other types of borrowing, we also find some relatively large difference (but significant only at the 15% level).

Compared with DW banks, this lower funding cost for TAF banks translates into annual savings of $82.9 million when considering interbank borrowing, and $1,323 million when considering the

\(^\text{18}\)From October 14, 2008 until December 2012, the FDIC increased the deposit insurance from $100,000 to $250,000. Unfortunately, the Call Reports do not show deposits of less than $250,000 for the years before 2009. Therefore, we cannot use the new deposit insurance limit in our difference-in-difference regressions that use 2007 and 2010.
funding costs for total liabilities. Interestingly, these savings are much larger than the additional funding costs (compared with DW banks) of $172.6 million paid by TAF banks at the auction of September 22, 2008. This result suggests that, overall, TAF banks were obtaining a profit from using the TAF, despite the initial larger cost paid at the height of the crisis, as shown by our model.

4.2.2 Intensity of access to DW and TAF

The previous results assume that the effect on funding costs for banks that use the DW or TAF is independent of the total amount borrowed. This is a simplistic view of the behaviour of banks. We would expect that the more aggressive the banks are using these two liquidity facilities, the larger the effect on the funding cost. Since signalling is costly for TAF banks because they have to pay more than DW banks, funding markets should take this into account and react differently to banks that are more aggressive in using these facilities.

Actually, there is some anecdotal evidence that some banks used the TAF marginally without having a real need for it. For instance, in August 2007, Citigroup, Bank of America, JPMorgan Chase and Wachovia each borrowed $500 million from the DW, which is an insignificant amount compared with their size. In a joint statement, JPMorgan, Bank of America and Wachovia alleged that they were using the discount window in an effort to "encourage its use by other financial institutions."\(^\text{19}\) According to Jerry Dubrowski, a spokesman for Bank of America “we participated at the request of the Federal Reserve to help stabilize the global banking system in a period of unprecedented stress [...] At the time we were participating, we weren’t experiencing liquidity issues."\(^\text{20}\) This anecdotal evidence shows that some banks may have used some Fed liquidity facilities for reasons that did not have anything to do with their financial situation. Hence, we would expect that banks that had a real need to use these two facilities would be much more aggressive in using them.

To verify this effect, we modify model (16) by considering the intensity of access to the TAF or

the DW. We estimate the following equation:

\[\text{FundingCost}_{i,t} = \alpha_{TAF} \text{AmtTAF}_{i,\text{pre}} \times \text{Post}_{t} + \alpha_{DW} \text{AmtDW}_{i,\text{pre}} \times \text{Post}_{t} + \alpha_{X} X_{i,t} + c_{t} + \mu_{t} + \varepsilon_{i,t}, \]

(18)

where \(\text{AmtTAF}_{i,\text{pre}} \) and \(\text{AmtDW}_{i,\text{pre}} \) are defined as the log of the ratio of the total amounts borrowed in the TAF and DW as a percentage of total assets.

The results we find are consistent with our prior conjecture and are shown in Table 3. Banks that increased their borrowing from the TAF (as a fraction of their total assets) by 1% experience a decrease in the post-Lehman funding cost in the interbank borrowing markets of 10 basis points. The effect for the DW is about 3.5 basis points; therefore, the difference between both types of banks is about 6.5 basis points. When considering other types of funding, we do not find an effect in domestic deposits. We find an effect in foreign deposits and other types of borrowing. When considering total funding costs, the difference is economically small, and equal to about 3 basis points.

4.2.3 Interacting with bank riskiness pre-Lehman

The equilibrium in our model makes several interesting predictions. First, since the only banks that use the DW are bad banks, we should expect that banks that are in relatively poor condition tend to use more DW than TAF. Second, since banks that use the DW are banks that experience a run, but do not experience a liquidity shock, we should expect that DW banks are more liquid than TAF banks. We test these predictions by extending the model in (16) to study the specific effect on banks that were considered to take risks that were too high or were too liquid in the pre-Lehman period. In particular, we augment (16) by including interaction terms \(\text{HighRisk}_{i} \) and \(\text{LowL}_{i} \). \(\text{HighRisk}_{i} \) is a dummy variable equal to 1 if bank \(i \) was in the 6th sextile of the distribution of risk-weighted assets over total assets in 2007. \(\text{LowL} \) follows a similar definition using liquidity ratio instead. These two interaction terms are our two main variables of interest. We can test a similar hypothesis as in (17) for these two variables. The hypothesis we want to test is

\[\text{Hypothesis 2 (H2, Funding Cost)} : \alpha_{TAF} \leq \alpha_{DW} \text{ (for riskier and more liquid banks)}. \]

(19)
Table 3: Regressions for funding cost for years 2010 and 2007 considering the intensity of access to DW and TAF.

This table shows results of fixed-effects regressions of funding cost by type of funding source, where we control for the intensity of use of the DW or TAF. We use the same assets in 2007. Post= Dummy equal to one for the post-Lehman period (2010), and equal to zero for 2007. TARP= Dummy equal to 1 if bank was part of the TARP program.

<table>
<thead>
<tr>
<th>Regressors</th>
<th>Total funding cost (1)</th>
<th>Domestic deposits</th>
<th>Foreign deposits (7)</th>
<th>Interbank borrowing (8)</th>
<th>Subordin. debt borrowing (9)</th>
<th>Other borrowing (10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW_{pre} × Post</td>
<td>-0.00957***</td>
<td>(0.00359)</td>
<td>0.0117***</td>
<td>-0.0161**</td>
<td>-0.00535</td>
<td>-0.0123</td>
</tr>
<tr>
<td>Post</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAF_{pre} × Post</td>
<td>-0.0296**</td>
<td>(0.0123)</td>
<td>0.00463</td>
<td>-0.0451*</td>
<td>0.00864</td>
<td>-0.0115</td>
</tr>
<tr>
<td>TARP</td>
<td>-0.0527***</td>
<td>(0.00503)</td>
<td>0.00135</td>
<td>0.0247</td>
<td>0.0201</td>
<td>0.0312</td>
</tr>
<tr>
<td>Asset (log)</td>
<td>0.0257***</td>
<td>(0.00829)</td>
<td>0.00749</td>
<td>0.0114</td>
<td>0.0106</td>
<td>0.0139</td>
</tr>
<tr>
<td>ROA</td>
<td>-0.00836***</td>
<td>(0.00241)</td>
<td>0.000084</td>
<td>0.000187</td>
<td>0.000173</td>
<td>-0.00365</td>
</tr>
<tr>
<td>Liquidity ratio</td>
<td>3.97e-07</td>
<td></td>
<td>18.7e-07</td>
<td>6.76e-06***</td>
<td>0.000227*</td>
<td>9.23e-05***</td>
</tr>
<tr>
<td>Sens. to market risk</td>
<td>-0.000439***</td>
<td>(0.000078)</td>
<td>0.00138</td>
<td>0.00137</td>
<td>0.001179</td>
<td>0.000056</td>
</tr>
<tr>
<td>Charge-offs</td>
<td>-0.00669***</td>
<td>(0.000166)</td>
<td>0.000311</td>
<td>0.00119</td>
<td>0.000246</td>
<td>0.000123</td>
</tr>
<tr>
<td>Funding mix</td>
<td>-7.69e-05***</td>
<td>(1.88e-05)</td>
<td>1.59e-05</td>
<td>0.000083</td>
<td>0.000125</td>
<td>0.0000135</td>
</tr>
<tr>
<td>High-risk securities</td>
<td>0.000483</td>
<td>0.000462</td>
<td>0.000325</td>
<td>0.000262*</td>
<td>0.000297</td>
<td>0.0000258</td>
</tr>
<tr>
<td>Long-term securities</td>
<td>0.00153***</td>
<td>(0.000224)</td>
<td>0.000208</td>
<td>0.000316</td>
<td>0.000280</td>
<td>0.0000353</td>
</tr>
<tr>
<td>std. deviation ROA</td>
<td>-0.00979***</td>
<td>(0.00236)</td>
<td>0.000236</td>
<td>0.000133</td>
<td>0.000690*</td>
<td>-0.00524</td>
</tr>
<tr>
<td>Z-score</td>
<td>-4.61e-06***</td>
<td>(3.16e-06)</td>
<td>1.38e-06</td>
<td>1.87e-06</td>
<td>3.94e-06</td>
<td>1.37e-06</td>
</tr>
<tr>
<td>Bank age</td>
<td>-0.158***</td>
<td>(0.000960)</td>
<td>0.0000135</td>
<td>0.000154</td>
<td>0.000138</td>
<td>0.000165</td>
</tr>
<tr>
<td>Other bank controls</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Bank fixed effects</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Quarterly fixed effects</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>64,490</td>
<td>64,483</td>
<td>57,903</td>
<td>57,955</td>
<td>57,936</td>
<td>57,898</td>
</tr>
<tr>
<td>Number of banks</td>
<td>8,763</td>
<td>8,762</td>
<td>7,912</td>
<td>7,899</td>
<td>7,902</td>
<td>7,917</td>
</tr>
<tr>
<td>R squared</td>
<td>0.890</td>
<td>0.889</td>
<td>0.172</td>
<td>0.704</td>
<td>0.828</td>
<td>0.775</td>
</tr>
</tbody>
</table>

H0: Funding cost for DW banks in post-Lehman period (DW_{pre} × Post) ≤ Funding cost for TAF banks in post-Lehman period (TAF_{pre} × Post)

15% significance: REJECT, ACCEPT, ACCEPT, REJECT, ACCEPT, ACCEPT, REJECT, REJECT, ACCEPT, ACCEPT

10% significance: REJECT, ACCEPT, ACCEPT, ACCEPT, ACCEPT, ACCEPT, REJECT, REJECT, ACCEPT, ACCEPT

5% significance: ACCEPT, ACCEPT, ACCEPT, ACCEPT, ACCEPT, ACCEPT, REJECT, REJECT, ACCEPT, ACCEPT

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Table 4 shows the results of the estimates of this augmented model. We omit the estimates corresponding to bank controls to simplify the exposition of the results. We find that our previous result that rejects Hypothesis 1 for the case of interbank borrowing rates is confirmed for the case of high-risk banks. It is interesting to note that the difference in funding costs between TAF and DW banks is substantially larger (a difference of $45 + 12 = 57$ basis points) than the result obtained without interactions. Additionally, as we have shown in Table 1, a great majority of banks that failed after the failure of Lehman accessed the DW before the failure of Lehman.

In contrast, we do not find any significant effect when considering low-liquidity banks. This is not a result that would be predicted by our model. A possible explanation to this result is the fact that liquidity is a variable the level of which banks may find easier to adjust in the short run, whereas it is much harder for banks to adjust the level of the riskiness of their assets.

It could be argued that banks that used the DW were troubled banks that were forced to access the secondary window because they did not qualify for the primary window. However, as we have shown in Figure 2b and Figure 4, most DW banks were considered as primary before the failure of Lehman, and therefore should have been able to access the primary window if necessary. Gilbert et al. (2012) show that only a few banks that failed during the 2008-10 period borrowed from the Fed during their last year prior to failure, and only a few had outstanding Fed loans when they failed. They also show that the Fed did not provide significant credit to undercapitalized or critically undercapitalized banks. In summary, the majority of banks that borrowed from the Fed and failed used the DW. But this use occurred mainly at the beginning of the crisis, in the pre-Lehman period, when some of these banks were not yet perceived as risky. This suggests that the access to the DW by banks affected the perceptions of the markets about banks in financial stress, which could have led to their default in a later period.

Finally, we also study how size interacts with the results found so far. We consider an interaction term Small, which corresponds to banks that have less than 1 billion in assets. We would expect that these banks would be more interested in signalling, since their smaller size makes them more opaque. Also, they are not too-big-to-fail banks, and therefore may be subject to more scrutiny by funding markets. Table 4 shows the results of the effect of size. Confirming our intuition, we find that the effect on funding costs is also substantially larger than we found before.
Table 4: Regressions for funding cost for years 2010 and 2007 (total and by type of funding source), including interaction effects with banks of different types (as in 2007).

<table>
<thead>
<tr>
<th>Regressors</th>
<th>Total cost</th>
<th>Domestic deposits</th>
<th>Foreign deposits</th>
<th>Interbank borrowing</th>
<th>Subordin. debt</th>
<th>Other borrowing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Deposits</td>
<td>Accounts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Transaction</td>
<td>Savings</td>
<td>Time dep. (<100)</td>
<td>Time dep. (>100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>DW_{pre} × Post</td>
<td>-0.0299*</td>
<td>(0.0161)</td>
<td>-0.00151</td>
<td>-0.0348</td>
<td>0.0410</td>
<td>0.0171</td>
</tr>
<tr>
<td>TAF_{pre} × Post</td>
<td>-0.120***</td>
<td>(0.0271)</td>
<td>-0.04118</td>
<td>0.0429</td>
<td>0.0316</td>
<td>-0.0097</td>
</tr>
<tr>
<td>DW_{pre} × Post × HighRisk</td>
<td>-0.0565***</td>
<td>(0.0156)</td>
<td>-0.00149</td>
<td>0.02092</td>
<td>0.00277</td>
<td>0.00322</td>
</tr>
<tr>
<td>TAF_{pre} × Post × HighRisk</td>
<td>-0.0365**</td>
<td>(0.0451)</td>
<td>-0.00177</td>
<td>0.03021</td>
<td>0.00395</td>
<td>0.00446</td>
</tr>
<tr>
<td>DW_{pre} × Post × LowL</td>
<td>-0.0588***</td>
<td>(0.0188)</td>
<td>-0.00167</td>
<td>-0.00191</td>
<td>0.152*</td>
<td>-0.00103</td>
</tr>
<tr>
<td>TAF_{pre} × Post × Small</td>
<td>-0.0354**</td>
<td>(0.0480)</td>
<td>0.00162</td>
<td>0.00237</td>
<td>-0.0088</td>
<td>-0.0418</td>
</tr>
<tr>
<td>Bank controls</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Bank fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Quarterly fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>63,999</td>
<td>63,992</td>
<td>57,464</td>
<td>57,517</td>
<td>57,497</td>
<td>57,452</td>
</tr>
<tr>
<td>Number of banks</td>
<td>8,639</td>
<td>8,638</td>
<td>7,801</td>
<td>7,789</td>
<td>7,791</td>
<td>7,805</td>
</tr>
<tr>
<td>R squared</td>
<td>0.891</td>
<td>0.890</td>
<td>0.173</td>
<td>0.705</td>
<td>0.829</td>
<td>0.777</td>
</tr>
</tbody>
</table>

H_1: Cost for DW banks in post-Lehman period ($DW_{pre} × Post < Cost for TAF banks in post-Lehman period (TAF_{pre} × Post)$)

- 15% significance: REJECT
- 10% significance: REJECT
- 5% significance: REJECT

H_2: Cost for small DW banks in post-Lehman period ($DW_{pre} × Post × Small < Cost for small TAF banks in post-Lehman period (TAF_{pre} × Post × Small)$)

- 15% significance: ACCEPT
- 10% significance: ACCEPT
- 5% significance: ACCEPT

H_3: Cost for high risk DW banks in post-Lehman period ($DW_{pre} × Post × HighRisk ≤ Cost for high risk TAF banks in post-Lehman period (TAF_{pre} × Post × HighRisk)$)

- 15% significance: ACCEPT
- 10% significance: ACCEPT
- 5% significance: ACCEPT

H_4: Cost for low liq. DW banks in post-Lehman period ($DW_{pre} × Post × LowL ≤ Cost for low liq. TAF banks in post-Lehman period (TAF_{pre} × Post × LowL)$)

- 15% significance: ACCEPT
- 10% significance: ACCEPT
- 5% significance: ACCEPT

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
5 Extensions

5.1 Matched-sample analysis

As a robustness check, we can provide an alternative specification to the model in (16) by using a matching method combined with bank-level fixed effects (see Lemmon and Roberts 2010, Duchin and Sosyura 2014, among others). We use the propensity score to match the banks that accessed the DW or the TAF in the pre-Lehman period to the banks that did not access any facility. This allows us to select banks that are similar in 2007, based on the observed control variables. Then, we can use these matched observations in a fixed-effects model as in (16). This method provides a robustness check of our baseline model and provides a number of advantages. First, the matching estimator helps to relax the linearity assumption existing between funding costs/sources of funding and bank characteristics. Using the fixed-effects estimator helps to eliminate selection bias due to unobservable time-invariant bank effects. This methodology can also alleviate potential concerns over the violation of the unconfoundedness assumption of the traditional propensity score matching model (see Lemmon and Roberts 2010, Roberts and Whited 2012).

In the first stage of this method, we do a matching of covariates using a propensity score. We separately match banks that did not use the TAF or the DW in the pre-Lehman period with DW and TAF banks. We use a logit probabilistic model to find the score of every sample and use similar control variables as in the baseline model. Table C.2 shows the quality of the match. We test differences between means of covariates for treated and matched samples to show the quality of the match. Matched samples are observationally equivalent to a relatively high level of significance for most covariates.

Table C.3 shows the fixed-effects regression for matched samples for the case of funding costs. We find similar results to those shown in Table 2. The difference in funding costs for interbank borrowing of TAF banks with respect to DW banks decreases to about 15 basis points compared with the baseline model, but the difference is significant at a 10% significance level. The difference in terms of total funding costs decreases to about 4 basis points compared with the baseline model.
5.2 Endogenous treatment effect

Estimation of the baseline model in (16) can be affected by biases, owing to the potential endogeneity of variables $DW_{i,pre}$ and $TAF_{i,pre}$. We follow the dummy-endogenous variable literature (Heckman, 1978) and use a two-step procedure. In the first step, we run a probit regression for the choice of using TAF or DW by banks using the previous bank controls and an instrumental variable as regressors. In the second step, we augment our objective regression with the hazard rates calculated from the first stage. This method has been used in a similar context for TARP by Berger and Roman (2014) and Duchin and Sosyura (2014). The use of an appropriate instrument is the key identifying assumption. The instrumental variable that we use is presence on the board of directors of a Federal Reserve District. This instrument has been used as an instrumental variable for access to TARP by Bayazitova and Shivdasani (2012), Li (2013) and Berger and Roman (2014).

Each of the 12 Reserve Banks is subject to the supervision of a nine-member board of directors. Six of the directors are elected by the member banks of the respective Federal Reserve District, and three of the directors are appointed by the Board of Governors. Some of the directors appointed by the Board of Governors are executives of firms not related to the banking industry, with interests in the agriculture, commerce or other sectors. The rest of the directors are usually top executives of banks. The Board of the Fed expects these directors to have a good understanding of the economic conditions of their district and the economy as a whole, and to be respected individuals in their communities and able to meet their financial obligations.

Directors play an important role in the effective functioning of the Federal Reserve System and participate in the formulation of monetary policy. In addition, they are responsible for supervising the administration of their Reserve Bank’s operations or overseeing the Reserve Bank’s corporate governance function. However, directors are not involved in any matters related to banking supervision, including specific supervisory decisions. Banks that are part of the Board of the Fed System could have an advantage in obtaining useful information about accessing the DW and TAF. Therefore, being a Board member may be positively or negatively correlated with the access to these facilities. However, because members of the Board are elected by the district banks and because

22 For more information, see http://www.federalreserve.gov/aboutthefed/directors/about.htm.
of the required qualifications, it is reasonable to conjecture that a bank’s Board membership is not
directly related to a bank’s funding cost. Successful candidates may be especially well connected
with their colleagues in other banks and should be regarded as having the skills and qualifications
for the position. All these factors should not be directly related to funding costs. Therefore, Board
membership is a good instrument for our purpose.

In Table C.4 we show the results of the first-stage probit regression. Controlling for all the
other bank-level variables, we find that banks that are part of the Board are less likely to access
these two facilities. One interpretation that we give to this result is that banks that are members of
the Board are better informed about these liquidity facilities and prefer to access alternative sources
of funding. Another interpretation is that since these banks have a direct role as supervisors and
 overseers of the Reserve Banks, they may prefer to avoid using these facilities, since access could
potentially create a conflict of interest.

In Table C.5 we show the results from the second-stage regressions. We do not obtain significant
differences from the baseline specification. Effects for total funding costs are very similar to the
previous case, whereas the effect for interbank borrowing is smaller, but we still find a difference of
about 18 basis points between TAF and DW banks.

5.3 Effect on funding structure

We next study the changes in the structure of funding by DW and TAF banks in the post-Lehman
period. This analysis complements the results on the cost of funding obtained in previous sections,
and helps us to better understand the effect of using these two liquidity facilities on the banks’
liabilities. The use of wholesale funds can be a good indicator of markets’ perceptions of a bank’s
financial soundness. A large literature that tries to explain the role of wholesale funds, and their
increasing use during the last decades (Feldman and Schmidt 2001), emphasizes that these funds
are less stable than the traditional insured retail deposits, and therefore are considered to provide
market discipline to banks (Calomiris 1999). As shown by Calomiris and Kahn (1991), wholesale
funding is provided by sophisticated financiers who discipline bad banks through monitoring and
refinance solvent ones. Showing evidence of a relationship between banks’ usage of wholesale funding
in the second period, and their decision to borrow from the DW or TAF is a relevant empirical exercise that can provide some evidence of the "signalling effect" in our model.

Our stylized model provides testable results on funding rates but not on quantities. We would expect that TAF banks would use certain types of funding that are more sensitive to the perceived quality of banks. We estimate a similar equation to \((16)\) where we consider different sources of funding measured as a percentage of total liabilities:

\[
\text{SourceFunding}_{i,t} = \beta_{TAF} \text{TAF}_{i,pre} \times \text{Post}_t + \beta_{DW} \text{DW}_{i,pre} \times \text{Post}_t + \beta_X X_i,t + c_t + \mu_i + \xi_{i,t}, \tag{20}
\]

where \(\text{SourceFunding}_{i,t}\) is the percentage of a certain type of funding source over total liabilities. We use controls similar to model \((16)\). Our variables of interest are \(\beta_{TAF}\) and \(\beta_{DW}\). Our objective is to understand the types of funding that TAF banks tended to depend upon more in the post-Lehman period, compared to DW banks. Therefore, we want to focus on the sources of funding where we can reject the following hypothesis:

\[
\text{Hypothesis 3 (H}_3, \text{Sources of Funding)} : \beta_{TAF} \leq \beta_{DW}. \tag{21}
\]

Table 5 shows results of the estimates of model \((20)\) for relative amounts of funding by type. We use the amount of wholesale funding (as a percentage of total liabilities), a narrower definition of wholesale funding, and we also use more specific sources of funding (domestic deposits, savings accounts, transaction accounts, time deposits, foreign deposits, interbank borrowing, subordinated debt and other borrowing).

In line with the prediction of our model that accessing the TAF signals quality, we find that TAF banks were able to attract more deposits than DW banks during the financial crisis, which is consistent with a large literature on depositor discipline (see e.g., Goldberg and Hudgins 2002; Park and Peristiani 1998; Oliveira et al. 2014). Most of that increase comes from savings accounts.
Table 5: Regressions of sources of funding for years 2010 and 2007 (total and by type of funding source).

This table shows results of fixed-effects regressions of different sources of funding (as a % of total liabilities) between 2010 and 2007. Wholesale funding in (1); wholesale funding (narrow definition) in (2); domestic deposits in (3); transaction accounts in (4); saving accounts in (5); time deposits of less than 100,000 USD in (6); time deposits of more than 100,000 USD in (7); foreign deposits in (8); interbank borrowing in (9); subordinated debt in (10); and other liabilities in (11). DW= Dummy equal to 1 if bank was DW in the pre-Lehmans period. TAF= Dummy equal to 1 if bank was TAF in the pre-Lehmans period. Post= Dummy equal to 1 for the post-Lehmans period (2010), and equal to zero for 2007. TARP= Dummy equal to 1 if bank was part of the TARP program.

<table>
<thead>
<tr>
<th>Regressors</th>
<th>Wholesale funding narrow (1)</th>
<th>Wholesale funding (2)</th>
<th>Domestic deposits</th>
<th>Foreign deposits (8)</th>
<th>Interbank borrowing (9)</th>
<th>Subordin. debt (10)</th>
<th>Other borrowing (11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW<sub>pre × Post</sub></td>
<td>-2.738***<sup>**</sup></td>
<td>-2.126***<sup>**</sup></td>
<td>0.897***</td>
<td>0.268</td>
<td>0.198</td>
<td>1.627***</td>
<td>-1.219**</td>
</tr>
<tr>
<td>TAF<sub>pre × Post</sub></td>
<td>-1.568</td>
<td>-0.202</td>
<td>5.957***</td>
<td>1.559</td>
<td>4.070**</td>
<td>3.449***</td>
<td>-2.993*</td>
</tr>
<tr>
<td>TARP</td>
<td>-2.303***</td>
<td>-1.77***<sup>***</sup></td>
<td>0.757***</td>
<td>-0.0970</td>
<td>1.218***</td>
<td>0.153</td>
<td>-0.684**</td>
</tr>
<tr>
<td>Asset (log)</td>
<td>1.308***</td>
<td>-1.612***<sup>***</sup></td>
<td>-2.012***</td>
<td>-3.503***<sup>***</sup></td>
<td>-0.271</td>
<td>1.373***<sup>***</sup></td>
<td>0.963*</td>
</tr>
<tr>
<td>ROA</td>
<td>-0.289**</td>
<td>-0.0966</td>
<td>0.128</td>
<td>0.137</td>
<td>-0.134</td>
<td>-0.144</td>
<td>0.216**</td>
</tr>
<tr>
<td>Sens. to market risk</td>
<td>0.119***<sup>***</sup></td>
<td>0.147***<sup>***</sup></td>
<td>0.04884</td>
<td>0.00671</td>
<td>0.000838</td>
<td>0.000717</td>
<td>0.000864</td>
</tr>
<tr>
<td>Charge-offs</td>
<td>-0.727***<sup>***</sup></td>
<td>-0.657***<sup>***</sup></td>
<td>0.263***</td>
<td>-0.0373</td>
<td>-0.121</td>
<td>0.292***</td>
<td>0.052</td>
</tr>
<tr>
<td>Funding mix</td>
<td>0.00799*</td>
<td>0.00979</td>
<td>0.0079</td>
<td>0.00751</td>
<td>0.00838</td>
<td>0.00717</td>
<td>0.000864</td>
</tr>
<tr>
<td>High-risk securities</td>
<td>0.00949*</td>
<td>0.00286</td>
<td>0.000406</td>
<td>0.000139</td>
<td>0.000314</td>
<td>0.0000184</td>
<td>0.000189</td>
</tr>
<tr>
<td>Long-term securities</td>
<td>0.0145</td>
<td>0.0285</td>
<td>0.0314</td>
<td>0.0369</td>
<td>0.0678</td>
<td>0.0622</td>
<td>0.0376</td>
</tr>
<tr>
<td>std. deviation ROA</td>
<td>-0.260</td>
<td>-0.116</td>
<td>0.0987</td>
<td>0.0401</td>
<td>0.0539</td>
<td>0.101</td>
<td>0.0187</td>
</tr>
<tr>
<td>Z-score</td>
<td>-0.0000347</td>
<td>-0.0004444***<sup>***</sup></td>
<td>-1.84e-05</td>
<td>-0.000836***<sup>***</sup></td>
<td>-0.00131e-05</td>
<td>-2.79e-05</td>
<td>-2.16e-05</td>
</tr>
<tr>
<td>Bank age</td>
<td>-3.35***<sup>***</sup></td>
<td>-2.887***<sup>***</sup></td>
<td>0.588***</td>
<td>0.641***</td>
<td>1.197***<sup>***</sup></td>
<td>0.153</td>
<td>-0.684**<sup>***</sup></td>
</tr>
<tr>
<td>Other bank controls</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Bank fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Quarterly fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>64,598</td>
<td>64,586</td>
<td>64,586</td>
<td>64,597</td>
<td>64,627</td>
<td>64,627</td>
<td>58,548</td>
</tr>
<tr>
<td>Number of banks</td>
<td>8,763</td>
<td>8,763</td>
<td>8,763</td>
<td>8,763</td>
<td>8,763</td>
<td>8,763</td>
<td>8,763</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.497</td>
<td>0.489</td>
<td>0.0710</td>
<td>0.0427</td>
<td>0.119</td>
<td>0.168</td>
<td>0.0388</td>
</tr>
</tbody>
</table>

H₀: Funding for TAF banks in post-Lehmans period (TAF_{pre × Post}) ≤ Funding for DW banks in post-Lehmans period (DW_{pre × Post})

15% significance ACCEPT ACCEPT ACCEPT REJECT REJECT REJECT REJECT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT
10% significance ACCEPT ACCEPT ACCEPT REJECT REJECT REJECT REJECT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT
5% significance ACCEPT ACCEPT ACCEPT REJECT REJECT REJECT REJECT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
We also observe a shift from larger term deposits (above $100,000) to smaller term deposits. We do not find a significant difference for transaction accounts, which is consistent with the introduction of the Transaction Account Guarantee Program (TAGP) by the FDIC on October 14, 2008. This program guaranteed in full all domestic non-interest-bearing transaction deposits and low-interest negotiable order of withdrawal (NOW) accounts through December 2012.

There is usually a greater use of retail deposits during crisis periods owing to explicit and implicit government guarantees, which insulate banks from liquidity risks (Gatev and Strahan, 2006; Cornett et al., 2011). Figure 9 shows a very clear trend toward a greater use of retail deposits for banks of different sizes. Acharya and Mora (2015) also show a similar trend for the post-Lehman period of the recent financial crisis. Deposits are attractive for banks because they usually offer a more stable and less expensive source of funding than wholesale funds. In addition, there was probably a greater demand for insured deposits by investors, reflecting a flight to safety out of more risky investment instruments during the post-Lehman period.

Figure 9: Use of deposits by U.S. commercial banks

We can reconcile the previous results on funding costs with the obtained results in the structure of funding. We found previously that TAF banks pay a lower rate than DW banks in the interbank lending market, but we could not find a statistically different effect for other types of sources of...

\footnote{During normal times, we would interpret such a shift as an increase of insured deposits at the expense of uninsured deposits, since the deposit insurance limit is $100,000 in the United States. However, on October 14, 2008 the deposit insurance limit was temporarily raised to $250,000 until December 2009, through the Emergency Economic Stabilization Act of 2008. We therefore do not have a good interpretation of this shift in the granularity of time deposits.}
funding, such as deposits. The findings in this subsection imply that TAF banks were able to expand their use of savings accounts and smaller time deposits without significantly changing the rates paid. Depositors seem to be less price elastic. This is particularly true for deposits such as current accounts, which provide customers with a safe place to keep their savings and the option to withdraw cash or make electronic payments. In contrast, lenders and borrowers in the interbank lending market collect more information regarding their counterparties and, therefore, their rates paid are more likely to be affected by the perceived quality of their counterparties.

6 Conclusion

In this paper, we have discussed the importance of the TAF liquidity facility in helping banks to signal themselves as financially sound during the recent financial crisis. We show that a "one size fits all" approach with respect to LOLR policy is not useful. In addition, the characteristics of these facilities have relevant implications. A fully flexible TAF would not be very helpful for banks to signal that they are financially sound because it would be equivalent to the DW, and separation would not be costly.

We also provide empirical evidence that the choices made by banks in the period of financial turbulence have later consequences in terms of the cost of funding, access to wholesale markets and perceived riskiness. We use several econometric specifications that are in general robust to the predictions we expect from our model.

Our results contribute to a better understanding of the functioning of financial markets during the recent financial crisis, and highlight the importance of an appropriate design of liquidity facilities in periods of high asymmetric information. Aspects that are unfavourable for banks, such as the lack of flexibility of certain liquidity facilities, are crucial because they can be used by sound financial institutions to separate themselves from banks that are in worse financial condition.
References

Appendices

A The Discount Window Before the Crisis

Sound DIs facing liquidity shortages can borrow from the Fed’s primary lending facility — the discount window — at the "primary lending rate". Before 2003, the discount rate was set below the target federal funds rate, which made borrowing from the Fed cheaper than borrowing on the interbank market, and created potential arbitrage opportunities. Accordingly, DIs were required to show that they had exhausted private sources of funding and that they really needed funds for their business purposes, on top of the regular scrutiny of their soundness. This additional requirement seems to have created a perception of stigma associated with DW borrowing, since it might signal a financial weakness of the borrower if it became known to both peers and the Fed. These concerns may have deterred sound DIs with liquidity shortages from borrowing at the DW, even if their terms and amounts were not made public.

To address concerns about DW stigma, the Fed changed its approach to DW lending in 2003. It had put in place a penalty-rate regime, and classified DW loans into primary and secondary credit. Primary credit, the DW main source of short-term liquidity, is available on a “no-questions asked” basis to financially sound DIs that meet a certain capital threshold. These institutions pay the primary credit rate, which was originally set to 100 basis points above the target federal funds rate. Secondary credit is available to DIs not eligible for primary credit, and entails a higher level of administrative burden. At the outset of the program, the secondary credit rate was 150 basis points above the Fed’s target rate.

24 The primary lending rate is more commonly known as the "discount rate". Prior to the recent financial crisis, DW operations were the Fed’s primary means of implementing its lender-of-last-resort function. Lending through the DW allows DIs to borrow against collateral that is not accepted elsewhere. The Fed would accept virtually anything as collateral, including U.S. Treasury securities, state and local government securities, AAA-rated collateralized mortgage obligations, consumer loans, commercial and agricultural loans, and investment-grade certificates of deposits. In some cases, the Fed even accepted the bank’s buildings and furniture (Cecchetti (2009)).

25 Banks could re-lend cheap DW funds on the interbank market at higher rates, potentially leading to larger reserves and lower rates than levels targeted by the Fed’s monetary policy (Courtois and Ennis (2010)).

26 DW stigma and associated banks’ reluctance do not necessarily make DW useless. Acharya et al. (2012) show that stigma effects rather limit the surplus banks can squeeze out of needy banks.
Table A.1: Summary Statistics for Banks that are DW mainly or TAF mainly

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>P1</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
<th>P90</th>
<th>P99</th>
<th>Max</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Lehman, DW mainly:</td>
<td></td>
</tr>
<tr>
<td>Borrowers/Day</td>
<td>29</td>
<td>35</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>22</td>
<td>29</td>
<td>38</td>
<td>197</td>
<td>209</td>
<td>160</td>
</tr>
<tr>
<td>Amount (millions)</td>
<td>660</td>
<td>2,901</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>32</td>
<td>148</td>
<td>617</td>
<td>14,200</td>
<td>44,110</td>
<td>4,617</td>
</tr>
<tr>
<td>Term (days)</td>
<td>17</td>
<td>42</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>56</td>
<td>140</td>
<td>729</td>
<td>4,617</td>
</tr>
<tr>
<td>Access Frequency</td>
<td>12</td>
<td>63</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>22</td>
<td>154</td>
<td>1,156</td>
</tr>
<tr>
<td>After Lehman, DW mainly:</td>
<td></td>
</tr>
<tr>
<td>Borrowers/Day</td>
<td>55</td>
<td>20</td>
<td>15</td>
<td>16</td>
<td>40</td>
<td>54</td>
<td>67</td>
<td>83</td>
<td>107</td>
<td>118</td>
<td>337</td>
</tr>
<tr>
<td>Amount (millions)</td>
<td>926</td>
<td>3,872</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>37</td>
<td>600</td>
<td>23,500</td>
<td>61,000</td>
<td>18,444</td>
</tr>
<tr>
<td>Term (days)</td>
<td>11</td>
<td>68</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>27</td>
<td>93</td>
<td>1,753</td>
<td>18,444</td>
</tr>
<tr>
<td>Access Frequency</td>
<td>21</td>
<td>114</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>48</td>
<td>188</td>
<td>3,097</td>
<td>899</td>
</tr>
<tr>
<td>Before Lehman, TAF mainly:</td>
<td></td>
</tr>
<tr>
<td>Borrowers/Day</td>
<td>17</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>12</td>
<td>16</td>
<td>23</td>
<td>25</td>
<td>32</td>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td>Amount (millions)</td>
<td>832</td>
<td>1,356</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>16</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>48</td>
</tr>
<tr>
<td>Term (days)</td>
<td>31</td>
<td>11</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>84</td>
<td>84</td>
<td>348</td>
</tr>
<tr>
<td>Access Frequency</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>19</td>
<td>19</td>
<td>48</td>
</tr>
<tr>
<td>After Lehman, TAF mainly:</td>
<td></td>
</tr>
<tr>
<td>Borrowers/Day</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td>Amount (millions)</td>
<td>1,349</td>
<td>2,592</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>16</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>331</td>
</tr>
<tr>
<td>Term (days)</td>
<td>56</td>
<td>28</td>
<td>13</td>
<td>17</td>
<td>28</td>
<td>70</td>
<td>84</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>331</td>
</tr>
<tr>
<td>Access Frequency</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>28</td>
<td>28</td>
<td>39</td>
</tr>
</tbody>
</table>

NOTE: We show key statistics for banks that accessed DW mainly and banks that accessed TAF mainly. We show statistics for the before-Lehman and after-Lehman periods.
B Proofs of Theory Model

B.1 Proof of Lemma 2

We know that \(r^2 = \frac{\theta (1-\xi)}{\theta - 1} \) and \(\xi_0 = \frac{\alpha}{\alpha + (1-\alpha)(1-\rho)} \). Note that

\[
\frac{\partial \xi_0}{\partial \alpha} = \frac{\alpha + (1-\alpha)(1-\rho) - (1 - 1 + \rho)\alpha}{[\alpha + (1-\alpha)(1-\rho)]^2} = \frac{1 - \rho}{[\alpha + (1-\alpha)(1-\rho)]^2} > 0
\]

\[
\frac{\partial \xi_0}{\partial \rho} = \frac{\alpha(1-\alpha)}{[\alpha + (1-\alpha)(1-\rho)]^2} > 0.
\]

Note that \(r_2(\xi) \) is increasing in \(\theta \):

\[
\frac{\partial r_2}{\partial \theta} = \frac{(1 - \xi)(\theta \xi - \theta + 1) - (\xi - 1)(\theta - \theta \xi)}{(\theta \xi - \theta + 1)^2} = \frac{(1 - \xi)}{(\theta \xi - \theta + 1)^2} > 0,
\]

which is intuitive: If \(\theta \) increases, the probability of having a bad outcome is higher, and therefore the risk premium increases. We can also obtain the cross partial derivative:

\[
\frac{\partial^2 r_2}{\partial \theta \partial \xi} = \frac{-(\theta \xi - \theta + 1)^2 - 2(\theta \xi - \theta + 1)\theta(1 - \xi)}{(\theta \xi - \theta + 1)^4} = \frac{(\theta \xi - \theta + 1)[-2(1 - \xi) - 2\theta(1 - \xi)]}{(\theta \xi - \theta + 1)^4} < 0.
\]

We can also show that \(r_2(\xi) \) is increasing in \(\xi \):

\[
\frac{\partial r_2}{\partial \xi} = \frac{-\theta(\theta \xi - \theta + 1) - \theta(\theta - \theta \xi)}{(\theta \xi - \theta + 1)^2} = \frac{-\theta}{(\theta \xi - \theta + 1)^2} < 0.
\]

Therefore, we obtain the following comparative statics:

\[
\frac{dr_2(\xi = \xi_0)}{d\alpha} = \frac{\partial r_2(\xi = \xi_0)}{\partial \alpha} \frac{\partial \xi_0}{\partial \alpha} < 0
\]

\[
\frac{dr_2(\xi = \xi_0)}{d\rho} = \frac{\partial r_2(\xi = \xi_0)}{\partial \xi} \frac{\partial \xi_0}{\partial \rho} < 0
\]

\[
\frac{dr_2(\xi = \xi_0)}{d\theta} = \frac{\partial r_2(\xi = \xi_0)}{\partial \theta} > 0.
\]

B.2 Proof of Proposition 2

In Figure 6, it is easy to see that when \(r_d \) is small enough, then the equilibrium region for \(r_t \) is such that \(r_t > r_d \).
In order to find comparative statics results of the equilibrium rates with respect to \(\alpha, \rho \) and \(\theta \), we need to study how the equilibrium region defined by (10) and (15) changes with these parameters. The equilibrium conditions can be written as \(r_t \leq r_d + I_2 \) and \(r_t \geq \rho r_d + I_1 \). We find a simple expression for the intercept of (15), \(I_1 \equiv \rho r_2(0) + (1 - \rho)r_2(\xi_0) - r_2(\alpha) \):

\[
I_1 \equiv \rho r_2(0) - r_2(\alpha) + (1 - \rho)r_2(\xi_0) = \frac{\theta}{1 - \theta} - \theta \alpha - \theta(1 - \alpha) + (1 - \rho) \frac{\theta(1 - \xi_0)}{\theta \xi_0 - \theta + 1}
\]

\[
= \theta \left[\frac{\rho}{1 - \theta} - \frac{1 - \alpha}{\theta \alpha - \theta + 1} + (1 - \rho) \frac{1 - \xi_0}{\theta \xi_0 - \theta + 1} \right].
\]

(30)

\(I_1 \) can also be written as

\[
I_1 = \rho r_2(0) - r_2(\alpha) + (1 - \rho)r_2(\xi_0) = \rho(r_2(0) - r_2(\xi_0)) + r_2(\xi_0) - r_2(\alpha).
\]

(31)

To study the sign of \(\frac{\partial I_1}{\partial \rho} \), we differentiate (31):

\[
\frac{\partial I_1}{\partial \rho} = r_2(0) - r_2(\xi_0) + (1 - \rho) \frac{dr_2(\xi_0)}{d\rho}.
\]

Since \(r_2(0) - r_2(\xi_0) > 0 \) and from (28) we have \(\frac{dr_2(\xi_0)}{d\rho} < 0 \), then the sign of \(\frac{\partial I_1}{\partial \rho} \) is ambiguous. However, if \(\rho \to 1 \), then \(\frac{\partial I_1}{\partial \rho} > 0 \).

To study the sign of \(\frac{\partial I_1}{\partial \theta} \), we differentiate (31):

\[
\frac{\partial I_1}{\partial \theta} = \rho \frac{\partial r_2(0)}{\partial \theta} - \frac{\partial r_2(\alpha)}{\partial \theta} + (1 - \rho) \frac{\partial r_2(\xi_0)}{\partial \theta}.
\]

This can be positive or negative depending on the value of the parameters. Because (25) is satisfied, if \(\rho \to 0 \), then \(\frac{\partial I_1}{\partial \theta} > 0 \), and if \(\rho \to 1 \), then \(\frac{\partial I_1}{\partial \theta} < 0 \). Also, using (30), if \(\theta \to 1 \), then \(I_1 \to +\infty \) and if \(\theta \to 0 \), then \(I_1 \to 0 \).

Finally, using (27), we obtain \(\frac{\partial I_1}{\partial \alpha} < 0 \).

We also study the intercept of (10), \(r_2(0) - r_2(\alpha) \),

\[
I_2 \equiv r_2(0) - r_2(\alpha).
\]

(32)

It is easy to show that

\[
\frac{\partial I_2}{\partial \rho} = 0
\]

(33)

\[
\frac{\partial I_2}{\partial \alpha} = 0.
\]

(34)

Also,

\[
\frac{\partial I_2}{\partial \theta} = \frac{\partial r_2(0)}{\partial \theta} - \frac{\partial r_2(\alpha)}{\partial \theta}.
\]
Because (25) is satisfied, then we have

\[
\frac{\partial I_2}{\partial \theta} > 0.
\]

(35)

Using the derivatives of \(I_1\) and \(I_2\), and the graph with the equilibrium (see Figure 6), we show the following:

If \(\rho \to 1\), then \(r_t = r_d + r_2(0) - r_2(\alpha)\), and the equilibrium region of \(r_t\) is shifted up (i.e., \(r_t\) increases).

If \(\theta\) increases, the equilibrium region of \(r_t\) does not have a clear behaviour (\(I_2\) increases, but \(I_1\) does not have a clear pattern). However, if \(\theta \to 1\), then \(r_d \to +\infty\).

If \(\alpha\) increases, the equilibrium region of \(r_d\) is shifted down (i.e., \(r_t\) decreases).
C Empirical Model

C.1 Definition of variables

Next, we define the bank-level variables that we use (which are similar to the variables used in Duchin and Sosyura (2014)):

Camels proxies:

- Capital adequacy: Tier-1 risk-based capital ratio, measured by the ratio of Tier-1 capital to risk-weighted assets.
- Asset quality: Negative of non-current loans and leases scaled by total loans and leases.
- Management quality: Negative of the number of corrective actions that were taken against bank executives by the corresponding banking regulator (Fed, OTS, FDIC, and OCC) each year.
- Earnings: return on equity (ROE), measured by the ratio of quarterly net income to total equity capital.
- Liquidity: cash divided by deposits.
- Sensitivity to market risk: sensitivity to interest rate risk, measured by the ratio of the absolute difference between short-term assets and short-term liabilities to earning assets.

Bank fundamentals:

- Size: natural logarithm of book assets.
- Age: age in years since the year an institution was established.
- Exposure to regional economic shocks: weighted average of quarterly changes in the state-coincident macro indicator ("State Coincident Index") from the Federal Reserve Bank of Philadelphia across all states in which a given bank maintains active branches. This index combines four state-level indicators (non-farm payroll employment, average hours worked in manufacturing, the unemployment rate, and wages and salaries deflated by a price index) to summarize current economic conditions in a single statistic. The weights represent the percentage of the bank’s deposits held in the branches in a given state.
- Foreclosures: backward-looking measure of loan quality and exposure to the crisis, measured as the value of foreclosed assets divided by net loans and leases.
- Loan charge-offs: ratio of net loan charge-offs to total loans.
- Funding mix: ratio of deposit funding from purchased money to core deposits.

Investment portfolios:

- Lower-risk securities: U.S. Treasury securities and securities issued by states and political subdivisions.
- Riskier securities: mortgage-backed securities (excluding government-sponsored agency obligations), other domestic and foreign debt securities, and investments in mutual funds and equity products.
- Long-term debt securities: debt securities with the remaining maturity greater than five years.

Bank risk:

- ROA volatility: standard deviation of quarterly ROA over the trailing year.
- Z-score: ROA plus capital asset ratio divided by the standard deviation of ROA.

Liquidity access variables:

- DW: Indicator variable equal to 1 if the bank obtained at least 95% of its Fed funds from DW (as a percentage of total funds from TAF+DW) before the Lehman Brothers failure.
- TAF: Indicator variable equal to 1 if the bank obtained at least 95% of its Fed funds from TAF (as a percentage of total funds from TAF+DW) before the Lehman Brothers failure.
- TARP: Indicator variable equal to 1 if the bank accessed the TARP program.

Funding:

- Interest expenses are categorized as
 - Interest expense on domestic deposits (total)
 - Interest expense on domestic deposits (transaction accounts)
 - Interest expense on domestic deposits (savings accounts)
 - Interest expense on domestic deposits (time deposits of less than 100,000 USD)
 - Interest expense on domestic deposits (time deposits of more than 100,000 USD)
 - Interest expense on foreign deposits
 - Interest expense on Fed funds purchased (interbank borrowing)
 - Subordinated notes and debentures: interest expense on subordinated notes and debentures
 - Demand notes and other borrowed money: interest expense on demand notes issued to the U.S. Treasury, other borrowed money and interest on mortgage indebtedness and obligations under capitalized leases on a consolidated basis.

- Wholesale funding:
 - % wholesale funds: Ratio of total liabilities (excluding insured deposits) to total liabilities.
 - % wholesale funds (narrow): Ratio of (total liabilities excluding insured deposits, subordinated debt, and other borrowed money) to total liabilities. "Other borrowed money" excludes deposits, federal funds purchased, securities sold under agreements to repurchase in domestic offices of the bank, and trading liabilities.
Table C.1: Summary Statistics for mainly TAF, mainly DW and all other banks

We show key statistics for TAF mainly, DW mainly and all other banks. We also show statistics for the pre-Lehman period and the post-Lehman period.

<table>
<thead>
<tr>
<th></th>
<th>Pre-Lehman (2007)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DW banks mean</td>
<td>TAF banks mean</td>
<td>Other banks mean</td>
<td>DW > TAF p-value</td>
<td>DW > Other p-value</td>
<td>TAF > Other p-value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>se</td>
<td>se</td>
<td>se</td>
<td>p-value</td>
<td>p-value</td>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assets (billions)</td>
<td>7.70</td>
<td>1.72</td>
<td>60.06</td>
<td>13.57</td>
<td>1.45</td>
<td>0.14</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Asset quality (%)</td>
<td>-0.001</td>
<td>0.000</td>
<td>-0.000</td>
<td>0.000</td>
<td>-0.027</td>
<td>0.011</td>
<td>0.03</td>
<td>0.69</td>
<td>0.57</td>
</tr>
<tr>
<td>Return on assets (%)</td>
<td>0.99</td>
<td>0.04</td>
<td>1.27</td>
<td>0.06</td>
<td>0.89</td>
<td>0.02</td>
<td>0.01</td>
<td>0.86</td>
<td>0.91</td>
</tr>
<tr>
<td>Return on equity (%)</td>
<td>10.24</td>
<td>0.27</td>
<td>11.80</td>
<td>0.47</td>
<td>8.72</td>
<td>0.07</td>
<td>0.03</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Tier 1 capital ratio (%)</td>
<td>13.76</td>
<td>0.40</td>
<td>16.58</td>
<td>1.85</td>
<td>21.73</td>
<td>0.59</td>
<td>0.02</td>
<td>0.00</td>
<td>0.26</td>
</tr>
<tr>
<td>Leverage ratio</td>
<td>11.21</td>
<td>0.07</td>
<td>12.36</td>
<td>0.23</td>
<td>10.06</td>
<td>0.02</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Sensitivity to market risk (%)</td>
<td>23.17</td>
<td>0.44</td>
<td>23.65</td>
<td>1.44</td>
<td>23.78</td>
<td>0.10</td>
<td>0.36</td>
<td>0.09</td>
<td>0.46</td>
</tr>
<tr>
<td>Low-risk securities (%)</td>
<td>3.50</td>
<td>0.11</td>
<td>1.31</td>
<td>0.13</td>
<td>4.02</td>
<td>0.03</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>High-risk securities (%)</td>
<td>1.03</td>
<td>0.11</td>
<td>1.41</td>
<td>0.41</td>
<td>0.52</td>
<td>0.01</td>
<td>0.13</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Long-term securities (%)</td>
<td>6.28</td>
<td>0.21</td>
<td>4.68</td>
<td>0.39</td>
<td>6.46</td>
<td>0.04</td>
<td>1.00</td>
<td>0.19</td>
<td>0.00</td>
</tr>
<tr>
<td>Std. deviation of ROA</td>
<td>0.25</td>
<td>0.02</td>
<td>0.15</td>
<td>0.01</td>
<td>0.29</td>
<td>0.00</td>
<td>0.96</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>z-score</td>
<td>225.07</td>
<td>13.69</td>
<td>252.57</td>
<td>33.08</td>
<td>238.22</td>
<td>3.37</td>
<td>0.25</td>
<td>0.20</td>
<td>0.62</td>
</tr>
<tr>
<td>Liquidity ratio (%)</td>
<td>4.87</td>
<td>0.33</td>
<td>4.56</td>
<td>0.37</td>
<td>55.19</td>
<td>12.34</td>
<td>0.63</td>
<td>0.19</td>
<td>0.38</td>
</tr>
<tr>
<td>Macro growth index (%)</td>
<td>1.47</td>
<td>0.03</td>
<td>1.17</td>
<td>0.11</td>
<td>1.62</td>
<td>0.01</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Enforcement last 2 years (%)</td>
<td>0.18</td>
<td>0.01</td>
<td>0.36</td>
<td>0.04</td>
<td>0.09</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Bank age (years) (%)</td>
<td>60.19</td>
<td>1.16</td>
<td>74.28</td>
<td>3.84</td>
<td>67.23</td>
<td>0.24</td>
<td>0.00</td>
<td>0.00</td>
<td>0.99</td>
</tr>
<tr>
<td>Observations</td>
<td>1,524</td>
<td>188</td>
<td>34,385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table C.2: Differences between treated and matched samples (funding cost regressions).

Test of differences between covariates of treated samples (DW and TAF) and matched samples. Matching is done using covariates used in funding cost FE regressions. We report mean values for the entire sample, the DW banks, the TAF banks, the matched banks and the p-values of the test of differences.

<table>
<thead>
<tr>
<th>Variable</th>
<th>All</th>
<th>DW</th>
<th>Others</th>
<th>Difference</th>
<th>p-value</th>
<th>TAF</th>
<th>Others</th>
<th>Difference</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset (log)</td>
<td>-1.930</td>
<td>-0.456</td>
<td>-0.443</td>
<td>-0.013</td>
<td>0.762</td>
<td>2.019</td>
<td>2.135</td>
<td>-0.116</td>
<td>0.452</td>
</tr>
<tr>
<td>ROA</td>
<td>8.479</td>
<td>10.195</td>
<td>10.852</td>
<td>-0.656</td>
<td>0.530</td>
<td>11.797</td>
<td>12.848</td>
<td>-1.051</td>
<td>0.432</td>
</tr>
<tr>
<td>ROE</td>
<td>8.479</td>
<td>10.195</td>
<td>10.852</td>
<td>-0.656</td>
<td>0.530</td>
<td>11.797</td>
<td>12.848</td>
<td>-1.051</td>
<td>0.432</td>
</tr>
<tr>
<td>Liquidity ratio</td>
<td>58.037</td>
<td>4.760</td>
<td>4.406</td>
<td>0.354</td>
<td>0.501</td>
<td>4.505</td>
<td>3.254</td>
<td>1.251</td>
<td>0.096</td>
</tr>
<tr>
<td>Asset quality</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>0.638</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>0.347</td>
</tr>
<tr>
<td>Sensitivity to market risk</td>
<td>24.073</td>
<td>23.172</td>
<td>24.284</td>
<td>-1.113</td>
<td>0.370</td>
<td>24.167</td>
<td>22.826</td>
<td>1.341</td>
<td>0.184</td>
</tr>
<tr>
<td>Foreclosures</td>
<td>0.049</td>
<td>0.048</td>
<td>0.055</td>
<td>-0.007</td>
<td>0.692</td>
<td>0.068</td>
<td>0.030</td>
<td>0.038</td>
<td>0.018</td>
</tr>
<tr>
<td>Loan charge-offs</td>
<td>0.200</td>
<td>0.194</td>
<td>0.209</td>
<td>-0.015</td>
<td>0.732</td>
<td>0.634</td>
<td>0.184</td>
<td>0.450</td>
<td>0.098</td>
</tr>
<tr>
<td>Funding mix</td>
<td>1.636</td>
<td>1.354</td>
<td>1.302</td>
<td>0.052</td>
<td>0.479</td>
<td>1.098</td>
<td>0.964</td>
<td>0.135</td>
<td>0.180</td>
</tr>
<tr>
<td>Low-risk securities</td>
<td>4.007</td>
<td>3.498</td>
<td>3.376</td>
<td>0.122</td>
<td>0.719</td>
<td>1.343</td>
<td>1.949</td>
<td>-0.606</td>
<td>0.283</td>
</tr>
<tr>
<td>High-risk securities</td>
<td>0.517</td>
<td>1.008</td>
<td>0.836</td>
<td>0.171</td>
<td>0.509</td>
<td>0.624</td>
<td>0.673</td>
<td>-0.050</td>
<td>0.868</td>
</tr>
<tr>
<td>Long-term securities</td>
<td>6.435</td>
<td>6.067</td>
<td>6.063</td>
<td>0.004</td>
<td>0.994</td>
<td>4.779</td>
<td>3.982</td>
<td>0.797</td>
<td>0.386</td>
</tr>
<tr>
<td>Std. deviation of ROA</td>
<td>0.304</td>
<td>0.246</td>
<td>0.248</td>
<td>-0.002</td>
<td>0.970</td>
<td>0.150</td>
<td>0.119</td>
<td>0.031</td>
<td>0.195</td>
</tr>
<tr>
<td>z-score</td>
<td>236.600</td>
<td>225.217</td>
<td>214.412</td>
<td>10.805</td>
<td>0.629</td>
<td>252.573</td>
<td>319.907</td>
<td>-67.334</td>
<td>0.461</td>
</tr>
<tr>
<td>Bank age</td>
<td>66.605</td>
<td>60.234</td>
<td>59.563</td>
<td>0.671</td>
<td>0.842</td>
<td>74.022</td>
<td>64.674</td>
<td>9.348</td>
<td>0.426</td>
</tr>
<tr>
<td>Enforcement last 2 years</td>
<td>0.090</td>
<td>0.182</td>
<td>0.218</td>
<td>-0.037</td>
<td>0.166</td>
<td>0.370</td>
<td>0.261</td>
<td>0.109</td>
<td>0.280</td>
</tr>
<tr>
<td>Macro growth index</td>
<td>1.622</td>
<td>1.469</td>
<td>1.510</td>
<td>-0.042</td>
<td>0.651</td>
<td>1.142</td>
<td>1.488</td>
<td>-0.346</td>
<td>0.254</td>
</tr>
</tbody>
</table>
This table shows the results of fixed-effects regression of funding cost by type of funding source for matched samples. We show results for total interest expense ("eintexp", as a % of total liabilities) in (1); interest expense for domestic deposits (as a % of value of domestic deposits) in (2); interest expense for transaction accounts (as a % of value of transaction accounts) in (3); interest expense for saving accounts (as a % of value of saving accounts) in (4); interest expense for time deposits of less than 100,000 USD (as a % of value of time deposits of less than 100,000 USD) in (5); interest expense for time deposits of more than 100,000 USD (as a % of value of time deposits of more than 100,000 USD) in (6); interest expense for foreign deposits (as a % of value of foreign deposits) in (7); interest expense for interbank borrowing (as a % of value of interbank borrowing) in (8); interest expense for subordinated debt (as a % of value of subordinated debt) in (9); and interest expense for other borrowing (as a % of value of other borrowing) in (10). All regressions use quarterly data for banks in 2010 (post-Lehman period) and 2007 (pre-Lehman period). DW= Dummy equal to 1 if bank was DW mainly in the pre-Lehman period. TAF= Dummy equal to 1 if bank was TAF mainly in the pre-Lehman period. Post= Dummy equal to 1 for the post-Lehman period (2010), and equal to zero for 2007. TARP= Dummy equal to 1 if bank was part of the TARP program.

<table>
<thead>
<tr>
<th>Regressors</th>
<th>Total funding cost</th>
<th>Domestic deposits</th>
<th>Foreign deposits</th>
<th>Interbank borrowing</th>
<th>Subordin. debt</th>
<th>Other borrowing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2) (3) (4) (5) (6)</td>
<td>(7) (8) (9) (10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DW_{pre} × Post</td>
<td>-0.0207*** (0.00801)</td>
<td>-0.0130 (0.0143)</td>
<td>0.0229 (0.0158)</td>
<td>-0.0595 (0.0232)</td>
<td>0.0072 (0.0925)</td>
<td>0.00241 (0.0376)</td>
</tr>
<tr>
<td>TAF_{pre} × Post</td>
<td>-0.0637*** (0.0241)</td>
<td>-0.0135 (0.0141)</td>
<td>0.0100 (0.0158)</td>
<td>-0.0575 (0.0223)</td>
<td>0.0279 (0.0740)</td>
<td>-0.0148 (0.164)</td>
</tr>
<tr>
<td>Bank-level controls</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Bank fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Quarterly fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>20,621</td>
<td>20,621</td>
<td>20,621</td>
<td>20,621</td>
<td>20,621</td>
<td>20,621</td>
</tr>
<tr>
<td>Number of banks</td>
<td>2,804</td>
<td>2,804</td>
<td>2,804</td>
<td>2,804</td>
<td>2,804</td>
<td>2,804</td>
</tr>
<tr>
<td>R squared</td>
<td>0.889</td>
<td>0.888</td>
<td>0.888</td>
<td>0.888</td>
<td>0.888</td>
<td>0.888</td>
</tr>
</tbody>
</table>

H₁: Funding cost for DW banks in post-Lehman period (DW_{pre} × Post) ≤ Funding cost for TAF banks in post-Lehman period (TAF_{pre} × Post)

15% significance REJECT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT
10% significance REJECT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT
5% significance REJECT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Table C.4: Endogenous treatment effects (first stage): Access to DW and TAF

This table shows results of the first stage of the endogenous treatment regressions for banks that mainly used the DW and banks that mainly used the TAF. "Member of the Board of the Fed" is an indicator variable equal to one if the bank was part of the Board of the Federal Reserve System in the last 3 years.

<table>
<thead>
<tr>
<th>Regressors</th>
<th>DW access</th>
<th>TAF access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Member of the Board of the Fed</td>
<td>-0.179***</td>
<td>-0.222**</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.091)</td>
</tr>
<tr>
<td>TARP</td>
<td>0.196***</td>
<td>0.164*</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.089)</td>
</tr>
<tr>
<td>Asset (log)</td>
<td>0.279***</td>
<td>0.415***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>ROA</td>
<td>-0.016**</td>
<td>-0.018</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>ROE</td>
<td>-0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Liquidity ratio</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Asset quality</td>
<td>0.118</td>
<td>0.188</td>
</tr>
<tr>
<td></td>
<td>(0.342)</td>
<td>(0.975)</td>
</tr>
<tr>
<td>Sensitivity to market risk</td>
<td>0.002**</td>
<td>0.007***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Foreclosures</td>
<td>0.025*</td>
<td>-0.148</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.214)</td>
</tr>
<tr>
<td>Loan charge-offs</td>
<td>-0.013</td>
<td>0.074***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Funding mix</td>
<td>-0.002</td>
<td>-0.093*</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>Low-risk securities</td>
<td>0.006***</td>
<td>-0.039***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>High-risk securities</td>
<td>0.023***</td>
<td>-0.044**</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Long-term securities</td>
<td>-0.004***</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Std. deviation of ROA</td>
<td>0.016</td>
<td>-0.283***</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>Z-score</td>
<td>-0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Bank age</td>
<td>-0.001***</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Enforcement last 2 years</td>
<td>0.125***</td>
<td>-0.131*</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.068)</td>
</tr>
<tr>
<td>Macro growth index</td>
<td>0.002</td>
<td>-0.071***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Quarterly fixed effects</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>64,627</td>
<td>64,627</td>
</tr>
<tr>
<td>Pseudo R squared</td>
<td>0.115</td>
<td>0.384</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Table C.5: Endogenous treatment effects (second stage) for funding cost for 2010 and 2007 (total and by type of funding source)

This table shows results of fixed-effects regressions of funding cost by type of funding source. We show results total interest expense (as a % of total liabilities) in (1); interest expense for domestic deposits (as % of domestic deposits) in (2); interest expense for transaction accounts (as % of transaction accounts) in (3); interest expense for savings accounts (as % of savings accounts) in (4); interest expense for time deposits of less than 100,000 USD (as %) in (5); interest expense for time deposits of more than 100,000 USD (as %) in (6); interest expense for foreign deposits (as %) in (7); interest expense for interbank borrowing (as % of interbank borrowing) in (8); interest expense for subordinated debt (as % of subordinated debt) in (9); and interest expense for other borrowing (as % of other borrowing) in (10). All regressions use quarterly data for banks in 2010 (post-Lehman period) and 2007 (pre-Lehman period). DW= Dummy equal to 1 if bank was DW mainly in the pre-Lehman period. TAF= Dummy equal to 1 if bank was TAF mainly in the pre-Lehman period. Post= Dummy equal to 1 for the post-Lehman period (2010), and equal to zero for 2007. TARP= Dummy equal to 1 if bank was part of the TARP program.

<table>
<thead>
<tr>
<th>Regressors</th>
<th>Total funding cost</th>
<th>Domestic deposits</th>
<th>Foreign deposits</th>
<th>Interbank borrowing</th>
<th>Subordin. debt</th>
<th>Other borrowing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>DW<sub>pre × Post</sub></td>
<td>-0.034***</td>
<td>-0.028***</td>
<td>-0.017</td>
<td>-0.034**</td>
<td>0.015</td>
<td>-0.087***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.015)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>TAF<sub>pre × Post</sub></td>
<td>-0.100***</td>
<td>-0.077***</td>
<td>0.023</td>
<td>-0.041**</td>
<td>-0.036</td>
<td>-0.100***</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.032)</td>
<td>(0.046)</td>
<td>(0.046)</td>
<td>(0.046)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>Bank controls</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Bank fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Quarterly fixed effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>64,490</td>
<td>64,483</td>
<td>57,903</td>
<td>57,955</td>
<td>57,936</td>
<td>57,898</td>
</tr>
<tr>
<td>Number of banks</td>
<td>8,763</td>
<td>8,762</td>
<td>7,912</td>
<td>7,899</td>
<td>7,902</td>
<td>7,917</td>
</tr>
<tr>
<td>R squared</td>
<td>0.891</td>
<td>0.890</td>
<td>0.172</td>
<td>0.704</td>
<td>0.829</td>
<td>0.776</td>
</tr>
</tbody>
</table>

H₁: Funding cost for DW banks in post-Lehman period (DW_{pre × Post}) ≤ Funding cost for TAF banks in post-Lehman period (TAF_{pre × Post})

15% significance: REJECT REJECT ACCEPT ACCEPT ACCEPT REJECT ACCEPT ACCEPT ACCEPT
10% significance: REJECT REJECT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT
5% significance: REJECT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1