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policy rule in The Netherlands creates large discontinuities in medical treatments at 
gestational week 37. Using a regression discontinuity design, we find no health benefits from 
additional treatments for average newborns. However, there is substantial heterogeneity in 
returns to treatments with significant health benefits for newborns in the lowest income 
quartile and no benefits in higher income quartiles. This seems due to increased maternal 
stress from referral to an obstetrician among higher-income mothers, heterogeneous effects 
of home births, and potential difficulties in risk screening among low-income women. 
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1 Introduction

It is a stylized fact that health care expenditures vary considerably throughout
the developed world, both across and within countries (Skinner, 2011). These
geographic variations in health care spending, however, are generally not as-
sociated with corresponding differences in health outcomes (e.g., Baicker and
Chandra, 2004; Fuchs, 2004; Stukel et al., 2005) This pattern is in stark con-
trast to the well-documented health benefits of a range of medical technologies,
broadly defined as pharmaceutical treatments, medical devices and procedures
(e.g., McClellan and Newhouse, 1997; Almond et al., 2010; Garthwaite and
Duggan, 2012; Daysal et al., 2015). Economists have recently emphasized the
role of treatment heterogeneity in reconciling these seemingly contradictory
findings. As the argument goes, cross-sectional studies identify the effects of
incremental spending, which may be very different than the impact of treat-
ments on the marginal patient. In this paper, we investigate the heterogeneity
in the impact of early-life medical interventions on the short-term health of
low-risk newborns using a unique confidential dataset from the Netherlands.

Focusing on early-life medical interventions is important for several reasons.
First, spending for the very young increased substantially faster than spending
for the average individual. For example, during the period 1960–1990, per
capita spending in the US on infants under 1 year old increased by 9.8 percent
per year whereas annual spending on individuals aged 1 to 64 increased by
only 4.7 percent (Cutler and Meara, 1998). Second, it is widely accepted that
changes in medical technologies are the main driver of medical cost growth,
both in general and in the specific case of childbirth (Newhouse, 1992; Cutler
and Meara, 1998). Third, any gains from survival are much larger in the case of
newborns than for adults. Finally, understanding the heterogeneity in returns
to medical interventions for low-risk births is especially important given the
current policy debates on shifting these births from more costly to less costly
childbirth technologies such as midwifery care and home births.

Empirical estimation of the returns to medical interventions is complicated
by selection issues. Even among observably low-risk women, those with worse
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expected birth outcomes usually receive more (intensive) treatments, leading
to biased estimates in simple regressions. In order to eliminate this bias, we
exploit a policy rule in the Netherlands that provides exogenous variation in
the medical treatments administered to low-risk births. The Dutch system
is unique in its division between the primary care provided by midwives and
the secondary care provided by obstetricians (OB/GYN). Low-risk women,
i.e., women without known medical risk factors, start their pregnancy under
the supervision of a midwife and stay under the supervision of a midwife as
long as no risk factors appear. Their delivery is supervised by a midwife,
who is prohibited by law from performing any medical intervention. The
birth can take place either at home or in a hospital, and in both cases no
OB/GYN is present. However, if labor is premature (i.e., before 37 completed
gestational weeks), the woman should be referred to an obstetrician. In this
case, the OB/GYN supervises the delivery, which always takes place in a
hospital. Thus, the “week-37 rule” generates a discontinuity at 37 completed
gestational weeks in three important medical inputs: the medical professional
supervising the delivery (OB/GYN instead of midwife), the location of delivery
(hospital versus home), and all the medical interventions that physicians are
allowed to perform during and immediately after birth (e.g., use of forceps and
vacuum, administration of antibiotics). This motivates the use of a regression
discontinuity (RD) design.1

We start by investigating effects on the average low-risk newborn. We show
that the week-37 rule generates substantial variation in all our measures of
medical technologies/inputs. For example, the probability that a spontaneous
low-risk birth is supervised by an obstetrician increases by 40 percentage points
below the 37-week threshold. Similarly, newborns slightly below the week-37
cutoff are 26 percentage points more likely be delivered in a hospital and 12.5

1It is worth noting that the rate of planned C-sections is generally very low in the
Netherlands and that planned C-sections do not occur among low-risk women. Only around
7 percent of all births are primary C-sections (i.e., planned before the start of delivery).
Most of these are for medical reasons and among women not classified as low-risk. Elective
C-sections for non-medical reasons are very rare and virtually non-existent around the 37-
week cutoff. As detailed later in the paper, all planned C-sections are excluded from our
analysis sample.
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percentage points more likely to be admitted to a neonatal intensive care unit
(NICU). These estimates are economically large and correspond to increases of
30–110% when compared to the mean above the cutoff. Despite the substantial
variation in medical interventions, we do not find any significant differences in
newborn health outcomes (7-day and 28-day mortality and likelihood of a low
Apgar score) across the week-37 cutoff.

Average effects can mask significant variation in benefits across the popu-
lation (Bitler et al., 2006). Therefore, we next turn to heterogeneity in returns
to medical treatments. Given that previous literature documents large differ-
ences in infant mortality across different socio-economic groups (Case et al.,
2002; Currie et al., 2007), we examine whether returns to medical treatments
vary by socio-economic status as proxied by the average income in the postal
code of residence of the mother.2 We find that the discontinuities in medical
treatments across the week-37 cutoff are similar across the income distribution.
However, there are significant differences in the effects of these treatments on
newborn health. Our results consistently indicate economically large health
gains to preterm newborns in the lowest income quartile. In contrast, we find
no significant health differences between preterm and at-term newborns in the
other three income quartiles.

There are several channels that may explain the heterogeneity in the re-
turns to childbirth technologies. First, Daysal et al. (2015) investigate the
returns to one of the three medical inputs investigated in the present study:
home versus hospital births. Using Dutch data, they show that home births
increase newborn mortality rates and that these results seem driven by the
poorest half of the population. We calculate that heterogeneity in health
benefits of a hospital birth across the income distribution can only partly ex-
plain the heterogeneity in the returns to early-life medical treatments found
in the present study. Second, the current risk selection system may be bet-
ter suited to screening high-risk mothers among higher income women. We

2Postal codes in the Netherlands are much smaller than zip codes in the United States.
We use 4-digit postal codes, which on average have 4,075 inhabitants and a land surface of
8.5 square kilometers (3.28 square miles). We do not have information on individual income
or education.
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provide anecdotal evidence that this may indeed be the case. Third, it is
possible that low-income newborns are exposed to additional treatments in
a timelier manner because their mothers tend to reside closer to a hospital.
We rule out this explanation because we find no evidence of residential sort-
ing by distance and income. Fourth, higher-income mothers may suffer from
differentially higher maternal distress when referred to an obstetrician due to
their preference for a midwife-supervised home birth (de Jonge et al., 2009).
We find evidence in support of this explanation. Using meconium staining as
a proxy, we find increased maternal distress among mothers of preterm new-
borns in higher-income quartiles, which may counteract any potential benefits
from additional medical treatments. In lower-income quartiles, in contrast, we
find no increased maternal distress as a result of referrals to an obstetrician.

Our study fits broadly in the previous economics research on returns to
medical technologies. A large part of this literature investigates treatments
for adults, such as heart attack (Cutler et al., 1998; Skinner et al., 2006) or
HIV/AIDS patients (Duggan and Evans, 2008). More recently, a growing
number of papers examine returns to early-life medical interventions, with
a special focus on treatments for very low birth weight children. Increased
treatments for this group are generally shown to reduce mortality (Cutler and
Meara, 2000; Almond et al., 2010; Bharadwaj et al., 2013; Breining et al.,
2015). Research on the returns to medical interventions for low-risk infants is
limited with mixed results. Using state-level variation in mandated insurance
coverage of midwifery services, Miller (2006) finds that midwifery-promoting
public policies had no significant effect on maternal mortality or Apgar scores,
but were associated with lower neonatal mortality. Almond and Doyle (2011)
show that longer hospital stays do not affect infant health outcomes after
uncomplicated deliveries. Our paper is most closely related to Daysal et al.
(2015), who use an instrumental variables strategy to find that giving birth
in a hospital (as opposed to home) leads to reductions in the mortality of
low-risk newborns. Although both papers find health benefits from early-
life medical interventions for low-income low-risk newborns, they are different
along several important dimensions. First, our study examines a much wider
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range of medical technologies, extending the relevance of our findings to other
countries where home births are not as common as in the Netherlands. Second,
we rely on a regression discontinuity design generated by the week-37 rule.
Thus, the marginal infant in the two studies is likely drawn from different
parts of the distribution of low-risk newborns. Finally, the main focus of this
paper is on the heterogeneity in the returns to early-life medical treatments,
which was only briefly discussed in Daysal et al. (2015).

Our paper also contributes to the growing interest, both within economics
and among medical researchers, in understanding the heterogeneity in returns
to medical treatments (Kravitz et al., 2004; Chandra and Skinner, 2012). To
the best of our knowledge, the only paper to explicitly examine heterogeneity
in returns to early-life medical interventions is Evans and Garthwaite (2012).
The authors use changes in minimum postpartum stay laws in California to
investigate the impact of postpartum length of stay on newborn health. Their
results point to modest reductions in the probability of readmission for the
average newborn, but also to substantial heterogeneity in the effects across
the distribution of medical need. In particular, the health gains are found
to be largest for infants with high a priori likelihood of longer stay. To the
extent that low-income newborns in the Netherlands also have higher medical
need, our results are consistent with those of Evans and Garthwaite (2012).
In addition, we document heterogeneity in the returns to early-life medical
interventions along a richer set of treatments.

Our results are relevant to the ongoing policy debates on effective health
policy. The fact that medical treatments improve newborn outcomes even
among low-risk women living in a developed country cautions against designing
“one-size-fits-all” policies. In addition, the heterogeneity in the returns to
medical interventions suggests that a good understanding of the causes of this
heterogeneity should go hand in hand with crafting policies about child birth
technologies. This is especially important in light of the growing emphasis
on cost reduction through increased use of physician extenders (Institute of
Medicine, 2011).
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2 The Dutch Obstetric System

Obstetric care in the Netherlands is guided by the principle that pregnancy
and delivery are natural processes that do not require attendance by a (spe-
cialized) physician as long as there are no deviations from the perfectly normal
course. The ability of midwives to fully provide care for uncomplicated preg-
nancies and deliveries was established as early as 1865 through the “Law of
Medical Practice” and upheld in subsequent legislation. These laws also pro-
hibit the use of any “obstetrical instruments” by midwives (Amelink-Verburg
and Buitendijk, 2010). However, a clear separation between the roles of mid-
wives and obstetricians was introduced only a century later. In 1958, with
the clear goal of reducing medical expenditures, the Dutch National Health
Insurance Board compiled a list of conditions that require a hospital admission
in the area of maternity care. This list introduced the division between the
primary care provided by midwives (or general practitioners in areas with no
midwife practices) and the secondary care provided by specialized physicians
such as obstetricians. It also set the foundation for risk selection, the princi-
ple that uncomplicated births should stay in primary care and that hospital
admissions are necessary only in case of deviations from the normal course
of pregnancy or labor. The list was updated over time and its use became
explicit in 1973, when it was published as the “List of Obstetric Indications”
(LOI) in the Dutch Textbook of Obstetrics and Gynecology (Amelink-Verburg
and Buitendijk, 2010). Since then, the LOI is used to determine when referrals
are made from primary to secondary care.

Currently, the Dutch maternity care system functions as follows. Preg-
nancies start under supervision of a midwife as long as none of the conditions
described in the LOI are present. As long as no complications arise, mid-
wives supervise the entire pregnancy, perform all checks, and attend the birth
(Bais and Pel, 2006). If at least one condition in the LOI is found, then a
referral to secondary care needs to be made at that point and the rest of
the pregnancy and the birth is supervised by an OB/GYN. The LOI contains
four types of criteria that lead to a referral: non-gynecological pre-existing
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conditions (e.g., diabetes, alcoholism or psychiatric disorders), gynecological
pre-existing conditions, obstetric anamnesis (C-section, very premature births
or severe complications during previous deliveries), and conditions arising or
first diagnosed during pregnancy such as hyperemesis gravidarum, infections,
plurality, gestational hypertension, or blood loss (CVZ, 2003). Referrals for
reasons not listed in the LOI are not allowed and physician fees are not covered
by insurance plans in such cases (CVZ, 2003). Finally, women are not allowed
to directly contact an obstetrician.

This risk selection system divides delivering women into two groups. High-
risk women are those referred to an OB/GYN at any point during pregnancy
(before the onset of labor). Their prenatal care is provided by obstetricians
from the moment of the referral and they are required to give birth in a hospital
under the supervision of an OB/GYN. Low-risk women are those who do not
have any LOI-listed conditions until the onset of labor. These women receive
their prenatal care entirely from midwives and they can choose between a
home and a hospital birth. In both cases, their deliveries are supervised by a
midwife with no obstetrician present unless a complication arises during labor
or during the delivery.

Among both high- and low-risk women, special medical guidelines exist in
the case of prematurity, which is defined as the onset of labor before 37 com-
pleted gestational weeks from the last menstrual period. For example, many
hospitals in the Netherlands regularly admit preterm infants for observation,
and some hospitals administer antibiotics to women whose water breaks before
week 37 in order to reduce the risk of infection (Schakel and Bekhof, 2010). In
addition, in the case of low-risk women the LOI includes a rule (hereafter the
“week-37 rule”) requiring midwives to refer women whose labor starts or threat-
ens to start prematurely to an obstetrician. These births then have to take
place in a hospital under the supervision of the obstetrician, and both these
women and their newborns have access to all the treatments that obstetricians
can provide during and shortly after the birth.

To summarize, the week-37 policy rule generates plausibly exogenous vari-
ation in the medical professional attending the birth of low-risk women. This
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rule divides low-risk women into two groups, both of whom received their pre-
natal care from midwives: those delivering under the supervision of a midwife
with no obstetrician present, and those who deliver under the supervision of
an obstetrician. Given that obstetricians only deliver in hospitals, the rule also
induces variation in the location of delivery. Finally, because midwives cannot
perform any medical interventions, the week-37 rule also produces variation in
the medical treatments available during and immediately after birth.

3 Empirical Strategy

We are interested in the heterogenous impact of early-life medical interventions
on the health of low-risk newborns. To identify the effects, we exploit plausibly
exogenous variation in early-life medical treatments due to the “week-37 rule”
in a regression discontinuity (RD) design.

An RD design relies on the idea that if a policy requires a sharp and arbi-
trary cutoff for implementation and is based on a measure that is not perfectly
controlled by the targeted individuals, then random variation around the cut-
off will partly determine when the policy is implemented (Hahn et al., 2001;
Imbens and Lemieux, 2008; Lee and Lemieux, 2010). The week-37 cutoff pro-
vides an ideal case for an RD design. It is based on an arbitrary threshold in
the sense that there are no specific developmental changes that occur in the
fetus or in the mother between day 258 and day 259. Kramer et al. (2012,
p.111) note that “[i]nfants born before 20 weeks or at 37 or 38 weeks share
many features with births at 20–36 weeks, including etiological and prognostic
features,” and thus conclude that the choice for the upper (37 weeks) and lower
(20 or 22 weeks) bounds for defining a preterm birth are arbitrary. In addition,
there is no evidence that any intervention (including hydration, antibiotics, or
tocolytic therapy) can consistently delay delivery by more than 24–48 hours
after the onset of labor (Norwitz and Caughey, 2011). This suggests that, in
a sample of spontaneous births, expectant mothers cannot precisely manip-
ulate the timing of their birth so as to control their assignment to different
medical providers and treatments. As such, the variation in early-life medical
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interventions around the week-37 cutoff should be as good as random.
Our empirical strategy is described by the following local-linear regression:

Yiat = f(a− 258) + βW37a + uiat, (1)

where the unit of observation is infant i born in year t at gestational age a, Yiat
is a measure of infant health or of medical treatments,W37a is an indicator for
prematurity (gestational age strictly below 37 completed weeks, or 259 days),
and f(·) is a first-degree polynomial in normalized gestational age that is
allowed to vary on both sides of the discontinuity. We normalize the running
variable to zero at 258 gestational days because the treatments are applied
to the left of the cutoff. With this definition of the running variable, the
coefficient of interest β captures the change in low-risk newborns’ outcomes
and receipt of medical treatments as gestational age moves from 259 days
(exactly 37 completed weeks) to 258 days.

Our baseline regressions use a rectangular kernel which places the same
weight on all observations. This is equivalent to estimating OLS regressions
within the chosen bandwidth (Imbens and Lemieux, 2008; Lee and Lemieux,
2010). Since the running variable is discrete, we cluster the standard errors in
all regressions at the gestational day level (Lee and Card, 2008).

Estimation in an RD framework is conducted within a small interval around
the discontinuity. Larger bandwidths increase the degree of precision of the
estimates, but also increase the risk of bias. We use a rule-of-thumb approach
to select our bandwidth (Lee and Lemieux, 2010). For each health outcome
and treatment measure, the optimal rule-of-thumb bandwidth is given by:

hROT = k

[
Rσ̂2∑n

i=1(m̂
′′
i )

2

]1/5
,

where k is a parameter that depends on the kernel choice (2.702 for the rect-
angular kernel), R is the range of the running variable, n is the sample size,
and m̂′′(·) and σ̂ are the curvature and standard error of the regression of the
health outcome on a fourth-degree polynomial in normalized gestational age,
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respectively. Appendix Table A1 lists the optimal bandwidths for our selected
outcomes. Our baseline regressions use a bandwidth of 14 days to the left and
right of gestational day 258.

4 Data

We use data from the Perinatal Registry of the Netherlands (Perinatale Reg-
istratie Nederland, Perined) for the years 2000–2008. Perined is an annual
dataset covering approximately 99 percent of the primary care and 100 percent
of the secondary care provided during pregnancy and delivery in the Nether-
lands (de Jonge et al., 2009). It is constructed by linking individual birth
records submitted by midwifes (LVR-1), obstetricians/gynecologists (LVR-2)
and paediatricians (LNR).3

The data include detailed information on the birth process. For each deliv-
ery, we observe the date and time of birth, type of birth attendant (midwife or
OB/GYN), delivery location (home or hospital), method of delivery (vaginal,
planned C-section, emergency C-section), use of interventions during vaginal
delivery (labor augmentation, induction, use of forceps or vacuum), as well
as the presence of complications during pregnancy or delivery. In the case of
complications, we can observe the date and the reason for referral from mid-
wife to an obstetrician. The data also provide rich background information
on newborns (gender, gestational age in days, birth weight, parity, plurality)
and basic demographic characteristics of mothers (age, ethnicity, 4-digit resi-
dential postal code). We complement the individual-level Perined data with a
secondary postal code-level data set from Statistics Netherlands (Kerncijfers
postcodegebieden 2004). These data provide a snapshot of average character-
istics in the postal code of residence of the mother as of January 1, 2004, such
as average monthly household income, average area density, and the share of
residents 0-15 years old.4

3Perined data does not include information on births supervised by general practitioners,
a very small share of all primary care deliveries (Amelink-Verburg and Buitendijk, 2010).

4Average area density is the average number of addresses per square kilometer in a circle
with a radius of 1 km around each address in the postal code.
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Our outcomes include a number of variables pertaining to medical treat-
ments administered during or soon after birth as well as measures of short-term
infant health. We start by examining the effect of the week-37 rule on medi-
cal interventions during and after delivery: obstetrician supervision of birth,
delivery in a hospital, use of forceps or vacuum, and admission to a neonatal
intensive care unit (NICU) within the first 7 days of life. We then examine ef-
fects on newborn short-term health outcomes as measured by 7-day mortality,
28-day mortality, and low Apgar score.5

A variable crucial to our identification strategy is gestational age. The
week-37 rule states that women should be referred to secondary care if the
onset of labor occurs before 37 completed gestational weeks. In our data, we
do not observe the date and time of the onset of labor. Hence, we define
the cutoff based on gestational age at birth, measured as the number of days
between the date of the last menstrual period and the date of birth.6

Some of our robustness checks include additional covariates, which can
be classified into four groups. The first group (time effects) includes fixed
effects for the year, month and day of the week of the birth. The second
group (maternal characteristics) includes mother’s age and ethnicity.7 The
third group (infant characteristics) includes birth weight and indicators for
gender, congenital anomalies and birth position.8 The final group (postal
code characteristics) includes the average characteristics of the postal code

5We do not have information on longer term mortality rates. Apgar is measured 5 minutes
after birth and summarizes the health of newborns based on five criteria: appearance (skin
color), pulse (heart rate), grimace response (“reflex irritability”), activity (muscle tone), and
respiration (breathing rate and effort). The score ranges from 0 to 10 with higher scores
indicating better health. Low Apgar score refers to an Apgar score below 7.

6Alternatively, we can define gestational age at the onset of labor as gestational age at
birth shifted by an “average duration of labor” in hours, because we can observe the exact
time of birth. Analyses using these alternative definitions (available upon request) yield
results almost identical to our baseline results.

7We include indicators for six maternal age categories (less than 20, 20–24, 25–29, 30–
34, 35–39, 40 and above) and three maternal ethnicity categories: Dutch, Mediterranean
and others (Moroccans and Turks, commonly identified as “Mediterraneans,” represent the
majority of the immigrant population in the Netherlands).

8Specifically, we include birth weight in grams and indicators for very low birth weight
(less than 1,500 grams), low birth weight (between 1,500 and 2,500 grams), gender, congen-
ital anomalies (mild and severe) and birth position (breech birth and other).
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of residence of the mother: monthly household income, area density and the
fraction of residents 0–15 years old.9

Our analysis sample includes live deliveries by low-risk women with ges-
tational age between 245 and 272 days, a 14-day interval on each side of day
259 (exactly 37 completed gestational weeks). We focus on low-risk women
because the week-37 rule does not apply to high-risk women.10 This has the
added benefit that women in this category are homogenous in terms of their
prenatal care. As a result, we are able to identify the effects of early-life
medical interventions abstracting from the effects of prenatal care.

Low-risk women are defined as those under the care of a midwife at the
onset of labor, that is when contractions start spontaneously or when mem-
branes rupture spontaneously (Evers et al., 2010; van der Kooy et al., 2011).
Referrals under the week-37 rule can be made because of premature onset of
labor, but also because of the “threat of prematurity,” which midwives can
potentially assess before the actual onset of labor (e.g., due to cramping, in-
creased pressure in pelvis or vagina, or vaginal bleeding). If midwives have
a tendency to refer women in poorer health in these cases, then referral pat-
terns on each side of the threshold may be different and a comparison of births
right above and right below the threshold would be misleading. In order to
eliminate this potential bias, we define low-risk women as women who were
not referred to an obstetrician by gestational age of 238 days,11 7 days before
the lower bound of our target interval.12 We also restrict our sample to first

9Some of the control variables (newborn gender, birth weight, mother’s age, and postal
code characteristics) are missing for a very small number of observations (less than 0.03 per-
cent for individual characteristics and less than 0.8 percent for postal code characteristics).
We replace these missing values with sample averages and we include indicators for missing
values for each variable as additional controls.

10The week-37 rule affects three important medical inputs: the medical professional su-
pervising the birth, the location of delivery, and the medical treatments during and soon
after birth. Among high-risk women, there is no change in the first two inputs across the
prematurity cutoff and only a limited change in the third input.

11The date of referral is missing for about 4 percent of our analysis sample. We exclude
these observations from the main analyses and we check the sensitivity of our results to
their inclusion in section 5.4.

12We thank Gordon Dahl for this suggestion. Results from a sample including only women
under the supervision of a midwife at the onset of labor (available upon request) are quali-
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births because future fertility may be endogenous to experiences in previous
deliveries (which we do not observe in the data). In addition, midwives and
women may use information from previous pregnancies to determine if and po-
tentially when referral to an obstetrician should be made. Finally, we exclude
multiple births, which are automatically referred to obstetricians, and cases in
which gestational age may be manipulated (planned C-sections, induced and
stimulated births). This results in an analysis sample of 85,797 women who
are under the care of a midwife until at least gestational day 238, and who give
birth to their first child between gestational days 245 and 272. When inves-
tigating the heterogeneity in returns to medical interventions, we divide the
sample into quartiles of the average monthly household income in the postal
code of residence of the mother.13

5 Results

5.1 Validity of the Regression Discontinuity Design

The validity of an RD design rests on the assumption that individuals do
not have precise control over the assignment variable. Since there are no
medical tests which can accurately predict prematurity and our analysis sample
consists of spontaneous births, the variation in receipt of medical treatments
near the week-37 cutoff should be as good as random. However, the key
identification assumption of the RD design could be violated if women (or
midwives) strategically misreport gestational age at birth.

In order to test this, we examine in Figure 1 the frequency of births by
gestational age within a 4-week interval around the cutoff. A discontinuity in
the density of births around the week-37 cutoff would suggest manipulation
of the running variable and thus invalidate our RD design (McCrary, 2008).
Not surprisingly, the number of births is increasing in gestational age, with
the vast majority of births occurring after 39–40 completed gestational weeks.

tatively similar.
13Income quartiles are defined using the entire population of births.

13



However, visually, there is no significant jump in the number of births between
day 258, when the week-37 rule applies, and day 259, when it does not. More
formally, we estimate a local-linear regression similar to equation (1), using
the logarithm of the number of births at each gestational age as the depen-
dent variable. We indeed do not find evidence of a statistically significant
discontinuity in the number of births.14

Next, we check whether there are differences in observable characteristics
across the week-37 cutoff. If the RD design is valid, then the observable char-
acteristics should be locally balanced on both sides of the week-37 cutoff. Fig-
ure 2 presents the means of selected covariates by gestational age in a 4-week
interval before and after the cutoff.15 The Figure shows that the distribution
of the covariates is smooth around the discontinuity. In order to examine this
issue more formally, we also provide in Table 1 the means of covariates on ei-
ther side of the discontinuity within our 14-day bandwidth after controlling for
gestational age. The last column of the table provides the p-values for the test
of equality of the means, clustered at the gestational day level.16 The results
reported in Table 1 confirm the visual evidence in Figure 2: observations just
below the week-37 cutoff are similar to those just above the week-37 cutoff in
terms of the majority of maternal characteristics, newborn characteristics (low
birth weight, congenital anomalies, breech birth), and average characteristics
in the postal code of the residence of the mother (density, share of 0-15 year
olds, distance to the nearest hospital). It is worth noting that even in the
few cases where we find statistically significant differences, the difference in

14The estimated discontinuity at the cutoff is −0.033 (s.e. 0.023). Appendix Figure A1
plots the frequency of births by gestational age for each income quartile. The corresponding
results for the regression-based McCrary test for quartiles 1–4 are: −0.093 (s.e. 0.039),
−0.054 (s.e. 0.042), 0.024 (s.e. 0.038), −0.01 (s.e. 0.044).

15For visual clarity, here and in the rest of the paper, we group the data in 4-day bins
starting from the cutoff. Appendix Figures A2–A5 plot the corresponding distributions by
income quartile.

16This analysis is equivalent to estimating a local-linear regression similar to equation
(1) using the covariates as the dependent variable, with the difference in means below and
above the cutoff (i.e., columns 1 and 2) representing the coefficient estimate for W37a and
the corresponding p-value indicated in column 3. Appendix Table A2 provides a similar
analysis by income quartile.
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the magnitudes is very small with no clear pattern. For example, infants born
before day 259 are on average only 32 grams lighter than those born after the
cutoff.17 On the other hand, mothers of preterm infants reside in postal codes
where the average monthly household income is higher by e12.18

Overall, we find no evidence of manipulation of the running variable around
the week-37 cutoff. In addition, we find no systematic evidence of disconti-
nuities in the observable characteristics of newborns and their mothers. This
lends support to the claim that the variation in medical treatments near the
week-37 cutoff is as good as random.

5.2 The Discontinuity in Medical Interventions

If the Dutch institutional rule governing the supervision of premature births
is binding, then we should observe a discontinuity in receipt of medical treat-
ments at 37 completed gestational weeks. To examine this, in Figure 3 we
plot several medical treatments for gestational ages within a 4-week interval
around the cutoff. Visually, there is a substantial jump up at the week-37 cut-
off for each of these medical treatments, with newborns below the cutoff having
higher rates of obstetrician supervision, hospital births, NICU admissions and
medical interventions during delivery (use of forceps and vacuum).19

17The small statistically significant jump in birth weight is not surprising because birth
weight and gestational age are particularly related to each other. Almond et al. (2010)
exploit the variation in medical inputs across the very low birth weight threshold to esti-
mate the marginal returns to medical care and also find a statistically significant jump in
gestational age at the very low birth weight cutoff.

18One potential explanation for the observed significant jumps is that our linear polyno-
mial in gestational age may not fully explain the trends in some covariates by gestational
age. We therefore additionally run regressions with a second-degree polynomial in gesta-
tional age, as well as regressions in which we exclude the observations very close to the
cutoff (donut regressions), regressions with alternative bandwidths, and regressions with
additional covariates. Our results prove robust across all specifications (see section 5.4).

19There are two reasons why the probability of obstetrician supervision does not “jump”
from 1 to 0 when gestational age increases from just under to just over 37 weeks. First,
the week-37 rule is not perfectly enforced, meaning that not all the infants born before 37
completed gestational weeks are referred to an OB/GYN. Second, low-risk women can be
referred to an OB/GYN for reasons other than prematurity, including complications arising
during delivery, slow progression, or the need for pain relief medication. As a result, some
of the births with at least 37 completed gestational weeks are at least partially supervised
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In the first column of Table 2, we examine whether the difference in receipt
of medical treatments below and above the week-37 cutoff is statistically sig-
nificant by estimating equation (1) within our baseline bandwidth of 14 days
around the cutoff. Each cell reports the coefficient of W37 from a different re-
gression. The results suggest that preterm newborns receive significantly more
medical treatments: they are, on average, 40 percentage points more likely to
be supervised by an obstetrician; 26 percentage points more likely to be de-
livered in a hospital; 12.5 percentage points more likely to be admitted to a
NICU within the first seven days of life; and 4 percentage points more likely to
be delivered by use of forceps and vacuum. These estimates are economically
large and represent increases of 30–110% when compared to the mean of the
outcomes above the cutoff.

Appendix Figures A6–A9 and columns 2–5 of Table 2 show that the week-
37 rule leads to discontinuities in receipt of medical treatments across the in-
come distribution. The estimated discontinuities are all statistically significant
and point to an income gradient whereby higher-income mothers experience
somewhat larger relative increases in treatments at the cutoff. For example,
preterm newborns in the lowest income quartile are, on average, 11.36 percent-
age points more likely to be admitted to a NICU, which represents a 110%
increase at the mean above the cutoff. Preterm newborns in the highest in-
come quartile, on the other hand, are 12.91 percentage points more likely to
be admitted to a NICU, a 132% increase at the mean above the cutoff. Simi-
larly, the week-37 rule increases the probability of a hospital birth by 29% for
preterm newborns in the lowest quartile and by 43% for preterm newborns in
the highest income quartile. Overall, the evidence suggests that the Dutch in-
stitutional setup provides significant variation in receipt of medical treatments
among low-risk first-time mothers, regardless of income.

by OB/GYNs.
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5.3 Short-Term Newborn Health

In this section we present our estimates of the effects of early-life medical
interventions on newborn health outcomes. Figure 4 plots the evolution of our
three measures of newborn health as a function of gestational age within a
4-week window around the cutoff. The Figure indicates a smooth evolution of
all health measures across the week-37 cutoff, suggesting no significant health
differences between births slightly below and slightly above 258 completed
gestational days.

The first column of Table 3 presents the regression estimates corresponding
to the visual evidence from Figure 4. The results, although imprecise, confirm
that there are no significant health differences between preterm newborns and
those born after 37 completed gestational weeks. Since these coefficients repre-
sent an intention-to-treat effect of the week-37 rule, our estimates suggest that
this rule yields no significant health benefits for the average low-risk newborn
with gestational age close to 37 weeks.

The coefficient estimates in columns 2–5 of Table 3, however, suggest that
the average effects mask substantial heterogeneity in the returns to medical
treatments.20 In particular, we find that preterm newborns in the lowest in-
come quartile are significantly less likely to die and to have low Apgar scores
when compared to low-income newborns who are slightly above the week-37
cutoff. When thinking about the magnitudes of the effects, it is worth em-
phasizing that these estimates have relatively wide confidence intervals that
include much smaller but still economically important returns. For example,
the lower bounds of a 95-percent confidence interval indicate 0.63 fewer infant
deaths per 1,000 births for 7-day mortality and a 0.07 percentage point reduc-
tion in the probability of low Apgar score. In stark contrast to these findings,
our results in columns 3–5 indicate no significant health differences between
higher-income preterm newborns relative to higher-income at-term newborns.
In all cases, we reject the equality of the estimates between the lowest-income
quartile and the other income quartiles.

20Appendix Figures A10–A13 provide the corresponding visual evidence.
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5.4 Robustness Checks

We next investigate the robustness of our results to several scenarios that could
lead to biased estimates. If the key assumption in our RD design is satisfied
(i.e., the variation in receipt of medical treatments is as good as random around
the week-37 cutoff), then including additional covariates in our model should
not change our conclusions. In panel A of Table 4 we present estimates from
a specification that includes the full set of controls described in section 4. We
again find statistically significant health benefits for preterm babies in the
lowest income quartile, and no significant health differences between preterm
and at-term newborns in the other three quartiles. The magnitudes of the
estimated effects are very similar to the baseline results.

Next, we turn to the possibility that our results could be driven by heaping
at the cutoff. In order to address this issue, Barreca et al. (2016) suggest
estimating “donut” regressions that exclude the observations at the cutoff.
Panel B of Table 4 shows results estimated on a sample excluding newborns
with gestational ages of 258 and 259 days. This strategy does not alter the
main conclusions from our results: the week-37 rule leads to health gains
among the poorest quartile, but not among the other income quartiles.

In Panels C–E, we examine the sensitivity of our estimates to model spec-
ification. Panel C focuses on the choice of kernel and reports results based
on a triangular kernel which places less weight on observations farther away
from the cutoff. Our results again point to health gains for babies slightly be-
low the week-37 cutoff in the lowest income quartile and generally no benefits
for preterm babies in the higher income quartiles. In Panel D, we test the
robustness of our results to different bandwidths using intervals of 7 and 21
days on either side of the cutoff. The estimated effects are again very similar
to those obtained in the baseline model. Panel E tests the sensitivity of our
results to the degree of the polynomial in gestational age. Our choice of a
linear function in gestational age is motivated by the reduced form relation-
ship between infant outcomes and gestational age plotted in Figure 4, which
does not indicate nonlinearities within our bandwidth. When we reestimate
our baseline regressions using a second degree polynomial (as before, allowed
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to vary on either side of the cutoff), the coefficients again indicate positive
health returns for preterm babies in the lowest income quartile, although we
lose some precision due to overfitting the data.

Panel F of Table 4 examines the sensitivity of our results to alternative
sample selection criteria. Recall that our analysis sample includes women
under the supervision of a midwife at least until gestational day 238. Since
date of referral is missing for a small number of observations, we exclude these
from the main analyses. In the first part of the Panel, we expand our analysis
sample to include these women and show that the results are very similar to our
baseline findings. In the remaining parts of the Panel, we change the sample
to include women under the supervision of a midwife at least until gestational
day 245 and 231, respectively. In both cases, we confirm our baseline results:
preterm newborns from the lowest income families gain substantially from the
medical treatments induced by the week-37 rule, but those in higher income
quartiles do not seem to have any significant benefit from these additional
treatments.

5.5 Potential Mechanisms

Our results consistently show that the week-37 rule generates health benefits
even among an observably low-risk population, but only among newborns in
the lowest income quartile. There are several mechanisms that may explain
this heterogeneity in the returns to early-life medical interventions. To begin
with, the current risk selection system may be better suited to screen for risks
among higher income women. For example, communications about health-
related issues between midwives and low-income (and thus lower educated)
pregnant women may be more difficult. This may make the risk assessment
among these women less precise. As a result, some high-risk low-income women
may be incorrectly classified as low-risk. These low-income women and their
infants may experience higher benefits from the additional medical treatments
provided due to the week-37 rule.

In addition, low-income mothers may engage in unhealthy behaviors that
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are not included as reasons for referral to an obstetrician in the LOI. In this
case, the pool of low-income mothers classified as low-risk may on average
have worse (unobserved) underlying health than the higher-income mothers
classified as low-risk. Medical interventions could then be more beneficial for
infants in the low-income group.

Data limitations do not allow us to investigate the extent to which the cur-
rent risk selection system may be less precise for low-income women. However,
there is some anecdotal evidence suggesting that this channel may be impor-
tant. A recent survey by the Royal Dutch Organisation of Midwives reports
that midwives needed on average 23 percent extra time when caring for low-
income women. The need for extra time was due to difficulties in collecting
relevant (medical) data, additional education on prevention, lifestyles and risk,
more frequent home visits, and consultations to exclude uncertainties. This
led to a policy change in 2009 that increased reimbursements for midwives by
23 percent in selected very low-income postal codes (NZA, 2011).

In the remainder of this section, we investigate three other potential mech-
anisms for which we have reliable data. First, if lower income mothers reside
closer to the hospital, their newborns may be exposed to additional treatments
in a timelier manner and therefore profit more from such treatments. In the
last row of Appendix Table A2, we check whether distance to the nearest hos-
pital is larger among higher income mothers. We find no consistent pattern
for such residential sorting by income. As such, this scenario is unlikely to
drive our results.

Second, the observed heterogeneity in the impact of the week-37 rule may
be driven by heterogeneity in the effect of location of birth, one of the medical
inputs that change as a result of the week-37 rule. We find that infants slightly
below the prematurity cutoff have a higher likelihood of a hospital birth (in-
stead of a home birth). Using data from the Netherlands, Daysal et al. (2015)
find that giving birth in a hospital leads to lower infant mortality among low-
risk deliveries and that this effect is entirely driven by lower income mothers.
If we assume that the causal impact of a hospital birth is the same in our
sample, a 20 percentage point increase in the fraction of hospital births would
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be associated with a reduction of 2.5 deaths in 7-day infant mortality in the
lowest-income quartile.21 This suggests that the change in location of delivery
can explain only part of the heterogeneity in returns to medical treatments.

Third, prematurity and referral to an obstetrician may increase unmet ma-
ternal expectations and distress during delivery differentially across the income
distribution. Among low-risk Dutch women, middle and higher income moth-
ers are more likely than lower income mothers to prefer midwife-supervised
home births (de Jonge et al., 2009). The unexpected change in the medical
professional supervising the birth and in location of delivery due to the week-
37-rule may hence increase maternal distress in the middle and higher income
groups. This may in turn counteract the potential gains from medical treat-
ments: “[o]nce a woman is in labor, state-anxiety, due to loss of control and
feelings of powerlessness, has been found to be positively related to ‘abnormal’
delivery, in particular prolonged labor” (Paarlberg et al., 2006). We exam-
ine effects on the presence of meconium in amniotic fluid, which is generally
considered the most direct measure of fetal distress during labor and which
can lead to severe complications if breathed in by the baby (meconium aspira-
tion). Our results point to statistically significant increases in the likelihood of
meconium staining among the preterm babies of higher-income mothers and
no effects among lower-income mothers.22 This suggests that increased mater-
nal distress may also contribute to the observed differences in the returns to
medical treatments by income.

21Daysal et al. (2015) exploit the exogenous variation between a mother’s residence and the
nearest obstetric ward to estimate the casual impact of a hospital birth. Their instrumental
variables strategy indicates that giving birth in a hospital leads to 12.65 fewer infant deaths
per 1,000 births among lower income mothers, with no significant effect on infant mortality
in higher income areas.

22The coefficient estimates for W37 are −0.487 (s.e. 0.597) in the lowest income quartile,
−0.089 (s.e. 0.427) in the second quartile, 1.444 (s.e. 0.511) in the third quartile and 1.508
(s.e. 0.748) in the highest income quartile. The results for the highest two income quartiles
are statistically significant and represent increases of 22–25% when compared to the mean
to the right of the cutoff.
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6 Conclusions

In this paper, we examine the impact of early-life medical interventions on the
health outcomes of low-risk newborns. In order to address the endogeneity in
receipt of medical treatments, we exploit the exogenous variation generated by
a policy rule in the Netherlands. The policy rule requires that low-risk women
give birth under the supervision of a midwife unless the birth occurs before 37
completed gestational weeks, generating variation in the medical professional
supervising the birth. Given that obstetricians only deliver in hospitals and
that midwives cannot perform any medical interventions, the week-37 rule also
induces variation in the location of delivery and in the medical treatments
administered during and immediately after birth.

Using data from the Netherlands for the period 2000–2008, we find that
the week-37 rule leads to statistically and economically significant increases in
all of our measures of early-life medical treatments. Despite the substantial
variation in medical inputs, our results indicate that average newborn health
outcomes are similar across the week-37 cutoff. However, the average effects
mask substantial heterogeneity in the returns to medical treatments along the
income distribution. Our results indicate that preterm newborns in the lowest
income quartile are significantly less likely to die and to have low Apgar scores
when compared to low-income newborns who are slightly above the week-37
cutoff. The heterogeneity in the returns to early-life medical interventions
may be caused by various channels. While we are not able to investigate some
interesting pathways, we provide evidence suggesting that potential difficulties
in risk screening, the change in delivery location, and maternal distress during
delivery could be important factors.

One policy implication of our work is that ensuring access to medical treat-
ments may improve newborn outcomes even among low-risk women living in
a developed country. The Netherlands is a country where maternity care is
provided using a rigorous process of risk selection based on both past medi-
cal history and the current health status and development of the mother and
the fetus. The Dutch maternity system is explicitly geared toward midwife-

22



supervised home births. Yet, even with a relatively sophisticated model of risk
selection, we find that the babies of some women classified as low-risk benefit
from the additional medical treatments provided by obstetricians in a hospital.
These are women in the lowest income quartile, suggesting perhaps that risk
selection is more difficult and less precise for women with lower socioeconomic
status. Having a good understanding of risk selection must go hand in hand
with crafting policies about childbirth technologies.

A second policy implication of our work is that programs aimed at reducing
maternal distress due to changes in medical professionals or location of delivery
may improve the health outcomes of some newborns. In our context, higher-
income mothers exhibit signs of maternal distress as a result of the week-37
rule, suggesting that income is not protective in this regard.
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Figure 1: Frequency of births around the week-37 cutoff
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Figure 2: Distribution of selected covariates around the week-37 cutoff

30



(a) Obstetrician supervision

6
0

7
0

8
0

9
0

1
0

0

231 235 239 243 247 251 255 259 263 267 271 275 279 283 287

Gestational age (days)

(b) Hospital birth

1
0

2
0

3
0

4
0

5
0

231 235 239 243 247 251 255 259 263 267 271 275 279 283 287

Gestational age (days)

(c) NICU admission

0
5

1
0

1
5

2
0

231 235 239 243 247 251 255 259 263 267 271 275 279 283 287

Gestational age (days)

(d) Use of forceps/vacuum

Figure 3: Medical treatments around the week-37 cutoff
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Table 1: Comparison of selected characteristics around the discontinuity

Gestational age Clustered

Less than 37 More than 37 p-value for
completed weeks completed weeks differences

(1) (2) (3)

A. Maternal characteristics
Age 28.610 28.474 0.033
20–24 0.141 0.156 0.000
25–29 0.384 0.381 0.554
30–34 0.349 0.334 0.010
35–39 0.084 0.087 0.478
40 and above 0.007 0.007 0.780

Ethnicity
Dutch 0.849 0.838 0.032
Mediterranean 0.055 0.054 0.901

B. Newborn characteristics
Male 0.548 0.559 0.112
Birth weight 2,871 2,903 0.000
Low birth weight (leq2, 500g) 0.124 0.118 0.501
Congenital anomaly
Mild 0.008 0.007 0.547
Severe 0.013 0.012 0.503

Breech birth 0.071 0.069 0.678

C. Residential characteristics
Average household income 1,973 1,961 0.000
Average density 1,821 1,835 0.543
Percent 0–15 year-old 18.843 18.858 0.833
Distance to nearest hospital (km) 4.911 4.849 0.264

Number of observations 15,302 70,495
Notes: Each cell represents the mean of the corresponding variable in the row after controlling
for gestational age. The last column presents the p-value for differences in means clustered at the
gestational day level.
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Table 2: Medical treatments around the week-37 cutoff

All Quartile of average household income
in postal code

First Second Third Fourth
(1) (2) (3) (4) (5)

Obstetrician supervision 0.403∗∗∗ 0.379∗∗∗ 0.398∗∗∗ 0.428∗∗∗ 0.408∗∗∗

Mean outcome 0.451 0.458 0.449 0.446 0.449
Observations 85,797 21,384 22,206 21,265 20,942

Hospital birth 0.261∗∗∗ 0.208∗∗∗ 0.268∗∗∗ 0.293∗∗∗ 0.280∗∗∗

(0.018) (0.014) (0.023) (0.027) (0.019)
Mean outcome 0.660 0.714 0.647 0.628 0.649
Observations 85,797 21,384 22,206 21,265 20,942

NICU admission 0.125∗∗∗ 0.114∗∗∗ 0.123∗∗∗ 0.132∗∗∗ 0.129∗∗∗

(0.009) (0.018) (0.017) (0.009) (0.015)
Mean outcome 0.114 0.112 0.125 0.119 0.098
Observations 85,797 21,384 22,206 21,265 20,942

Use of forceps or vacuum 0.040∗∗∗ 0.031∗∗ 0.033∗∗∗ 0.042∗∗ 0.051∗∗∗

(0.009) (0.013) (0.009) (0.018) (0.015)
Mean outcome 0.131 0.122 0.127 0.134 0.142
Observations 85,682 21,355 22,178 21,232 20,917

Notes: Each cell reports the estimated discontinuity at the week-37 cutoff from a different regression.
The dependent variable is listed in the row heading and the sample in the column heading. All
treatment variables represent the fraction of births receiving that treatment. All specifications
include a first-degree polynomial in normalized gestational age, allowed to vary on each side of the
cutoff, and are estimated by OLS. Samples restricted to observations with gestational age within a
14-day bandwidth around day 258. Mean outcome refers to observations to the right of the cutoff.
Robust standard errors clustered at the gestational day level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 3: Newborn health around the week-37 cutoff

All Quartile of average household income
in postal code

First Second Third Fourth
(1) (2) (3) (4) (5)

7-day mortality 0.373 −3.428∗∗ 3.069 0.737 0.920
(0.480) (1.424) (2.270) (1.160) (1.320)

Mean outcome 1.518 1.696 1.315 1.328 1.740
Observations 85,797 21,384 22,206 21,265 20,942

28-day mortality 0.508 −3.548∗ 3.155 0.934 1.300
(0.750) (1.898) (2.712) (1.116) (0.914)

Mean outcome 1.702 1.866 1.425 1.501 2.030
Observations 85,797 21,384 22,206 21,265 20,942

Low apgar score −0.149 −0.684∗∗ 0.061 0.352 −0.331
(0.136) (0.311) (0.350) (0.305) (0.318)

Mean outcome 0.919 1.161 0.824 0.827 0.866
Observations 85,652 21,348 22,164 21,229 20,911

Notes: Each cell reports the estimated discontinuity at the week-37 cutoff from a different regression.
The dependent variable is listed in the row heading and the sample in the column heading. 7-day and
28-day mortality are measured per 1,000 births, while Low apgar score is the percentage of births
with a score below 7. All specifications include a first-degree polynomial in normalized gestational
age, allowed to vary on each side of the cutoff, and are estimated by OLS. Samples restricted to
observations with gestational age within a 14-day bandwidth around day 258. Mean outcome refers
to observations to the right of the cutoff. Robust standard errors clustered at the gestational day
level. ∗p < 0.10,∗∗p < 0.05,∗∗∗p < 0.01
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Table 4: Robustness checks, by quartile of average household income

First quartile Second quartile Third quartile Fourth quartile
(1) (2) (3) (4)

A. Including controls
7-day mortality −3.511∗∗ 2.950 0.640 0.423

(1.465) (2.107) (1.196) (1.322)
Mean outcome 1.696 1.315 1.328 1.740

28-day mortality −3.616∗ 3.067 0.813 0.774
(1.964) (2.560) (1.140) (0.883)

Mean outcome 1.866 1.425 1.501 2.030

Low apgar score −0.697∗∗ 0.065 0.322 −0.409
(0.312) (0.368) (0.307) (0.336)

Mean outcome 1.161 0.824 0.827 0.866
Observations 21,384 22,206 21,265 20,942

B. Donut regressions
7-day mortality −4.188∗ 4.911∗∗ −0.729 0.420

(2.106) (2.157) (1.205) (1.907)
Mean outcome 1.696 1.245 1.373 1.680

28-day mortality −5.384∗∗ 5.085∗ −0.457 1.200
(2.477) (2.878) (1.145) (1.177)

Mean outcome 1.871 1.358 1.552 1.980

Low apgar score −1.019∗∗ 0.416 0.367 −0.126
(0.370) (0.413) (0.414) (0.405)

Mean outcome 1.159 0.805 0.831 0.817
Observations 20,358 21,130 20,246 19,895

C. Triangular kernel
7-day mortality −2.971∗∗∗ 3.613 0.866 0.430

(0.758) (2.592) (1.240) (1.339)
Mean outcome 1.696 1.315 1.328 1.740

28-day mortality −2.598∗∗ 4.136 0.858 0.863
(1.254) (3.138) (1.214) (0.684)

Mean outcome 1.866 1.425 1.501 2.030

Low apgar score −0.572∗∗ 0.103 0.200 −0.748∗∗

(0.254) (0.364) (0.285) (0.322)
Mean outcome 1.161 0.824 0.827 0.866
Observations 21,384 22,206 21,265 20,942
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Table 4: Robustness checks, by quartile of average household income (cont’d)

First quartile Second quartile Third quartile Fourth quartile
(1) (2) (3) (4)

D. Choice of bandwidth
7-day bandwidth
7-day mortality −3.190∗∗∗ 5.315 1.796 0.215

(0.733) (3.458) (1.341) (1.971)
Mean outcome 2.194 2.149 1.319 2.688

28-day mortality −2.116∗ 6.254 1.493 1.287
(1.172) (4.087) (1.455) (0.876)

Mean outcome 2.377 2.328 1.507 3.264

Low apgar score −0.485 0.074 0.185 −1.237∗∗

(0.316) (0.451) (0.329) (0.433)
Mean outcome 1.317 0.969 0.944 1.230
Observations 7,905 8,177 7,922 7,673

21-day bandwidth
7-day mortality −2.863∗∗∗ 2.888 −0.718 −0.272

(0.918) (1.938) (1.487) (1.252)
Mean outcome 1.369 1.096 1.186 1.356

28-day mortality −3.420∗∗ 3.143 −0.618 0.443
(1.566) (2.308) (1.417) (0.983)

Mean outcome 1.534 1.165 1.281 1.522

Low apgar score −0.557∗ 0.412 0.161 0.085
(0.290) (0.326) (0.298) (0.261)

Mean outcome 1.036 0.803 0.855 0.819
Observations 46,711 48,388 46,770 46,394

E. Choice of polynomial degree: Second degree polynomial
7-day mortality −2.225∗ 4.487 0.983 −0.275

(1.141) (3.395) (1.693) (1.848)
Mean outcome 1.696 1.315 1.328 1.740

28-day mortality −1.079 5.657 0.616 0.162
(1.514) (4.207) (1.779) (0.947)

Mean outcome 1.866 1.425 1.501 2.030

Low apgar score −0.417 0.152 −0.042 −1.435∗∗∗

(0.346) (0.557) (0.340) (0.386)
Mean outcome 1.161 0.824 0.827 0.866
Observations 21,384 22,206 21,265 20,942
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Table 4: Robustness checks, by quartile of average household income (cont’d)

First quartile Second quartile Third quartile Fourth quartile
(1) (2) (3) (4)

F. Definition of analysis sample
Including births with unknown referral date
7-day mortality −3.538∗∗ 2.986 0.705 1.161

(1.360) (2.239) (1.126) (1.314)
Mean outcome 1.673 1.425 1.391 1.659

28-day mortality −3.666∗ 2.735 0.650 1.511
(1.811) (2.675) (1.186) (0.904)

Mean outcome 1.835 1.584 1.670 1.935

Low apgar score −0.813∗∗ 0.047 0.390 −0.428
(0.330) (0.348) (0.326) (0.345)

Mean outcome 1.168 0.857 0.825 0.880
Observations 22,459 23,123 22,116 22,039
Under midwife supervision at least until gestational day 245
7-day mortality −2.936∗∗∗ 3.211 0.706 1.136

(1.010) (2.309) (1.188) (1.359)
Mean outcome 1.717 1.273 1.341 1.697

28-day mortality −3.150∗∗ 3.733 0.647 1.482
(1.499) (2.792) (1.167) (0.887)

Mean outcome 1.889 1.384 1.516 1.989

Low apgar score −0.648∗∗ 0.296 0.374 −0.366
(0.265) (0.369) (0.307) (0.315)

Mean outcome 1.169 0.821 0.812 0.867
Observations 20,959 21,815 20,868 20,590

Under midwife supervision at least until gestational day 231
7-day mortality −3.366∗∗ 3.041 1.161 0.810

(1.395) (2.239) (1.194) (1.312)
Mean outcome 1.685 1.307 1.319 1.787

28-day mortality −3.480∗ 3.130 1.357 1.189
(1.857) (2.675) (1.154) (0.915)

Mean outcome 1.854 1.416 1.491 2.076

Low apgar score −0.759∗∗ 0.033 0.394 −0.262
(0.341) (0.370) (0.332) (0.318)

Mean outcome 1.165 0.835 0.822 0.866
Observations 21,587 22,418 21,451 21,114

Notes: Each cell reports the estimated discontinuity at the week-37 cutoff from a different regression.
The dependent variable is listed in the row heading and the sample in the column heading. 7-
day and 28-day mortality are measured per 1,000 births, while Low apgar score is the percentage
of births with a score below 7. All specifications include a first-degree polynomial in normalized
gestational age, allowed to vary on each side of the cutoff, and are estimated by OLS, unless otherwise
mentioned. Samples restricted to observations with gestational age within a 14-day bandwidth
around day 258, unless otherwise mentioned. Mean outcome refers to observations to the right of
the cutoff. Robust standard errors clustered at the gestational day level. * p < 0.10, ** p < 0.05,
*** p < 0.01
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Figure A1: Frequency of births around the week-37 cutoff, by income quartile
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Figure A2: Distribution of selected covariates around the week-37 cutoff, first income
quartile
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Figure A3: Distribution of selected covariates around the week-37 cutoff, second income
quartile
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Figure A4: Distribution of selected covariates around the week-37 cutoff, third income
quartile
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Figure A5: Distribution of selected covariates around the week-37 cutoff, fourth income
quartile
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Figure A6: Medical treatments around the week-37 cutoff, first income quartile
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Figure A7: Medical treatments around the week-37 cutoff, second income quartile
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Figure A8: Medical treatments around the week-37 cutoff, third income quartile
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(a) Obstetrician supervision
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Figure A9: Medical treatments around the week-37 cutoff, fourth income quartile
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Figure A10: Newborn health around the week-37 cutoff, first income quartile
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Figure A11: Newborn health around the week-37 cutoff, second income quartile
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Figure A12: Newborn health around the week-37 cutoff, third income quartile
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Figure A13: Newborn health around the week-37 cutoff, fourth income quartile
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Table A1: Optimal bandwidth, gestational age in days

All Quartile of average household
income in postal code

First Second Third Fourth

A. Health outcomes
7-day mortality 11.98 12.60 14.07 12.37 10.79
28-day mortality 11.71 14.43 14.37 10.12 11.49
Low apgar score 13.24 15.09 16.19 16.88 13.14

B. Treatments
Obstetrician supervision 6.21 7.93 8.26 8.21 8.29
Hospital birth 7.52 10.03 9.79 9.81 9.91
NICU admission 7.75 10.31 9.26 10.73 10.67
Use of forceps or vacuum 12.40 13.79 17.56 15.18 15.74
Emergency C-section 7.64 10.30 9.97 9.64 10.21
Any delivery intervention 8.33 10.51 10.85 11.29 10.98

Notes: See section 3 for details on the calculation of optimal bandwidths.
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