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Abstract 

Designing contests between heterogeneous contestants: An experimental 
study of tie-breaks and bid-caps in all-pay auctions* 
 
 
 
A well-known theoretical result in the contest literature is that greater heteroge-
neity decreases performance of contestants because of the “discouragement ef-
fect.” Leveling the playing field by favoring weaker contestants through bid-caps 
and favorable tie-breaking rules can reduce the discouragement effect and in-
crease the designer’s revenue. We test these predictions in an experiment. Our 
data show that indeed, strengthening weaker contestants through tie-breaks and 
bid-caps significantly diminishes the discouragement effect. Bid-caps can also 
improve revenue. Most deviations from Nash equilibrium can be explained by the 
level-k model of reasoning. 
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1. Introduction 

Contests are well-established mechanisms for encouraging innovation (Terwiesch and 

Xu, 2008, Boudreau et al., 2011), incentivizing workers (Lazear and Rosen, 1981), and 

advancing R&D (Harris and Vickers, 1985, 1987; Tullock, 1988). A long-standing question 

within the literature and practice is how to design contests in a way that results in the highest 

level of performance by contestants (Moldovanu and Sela, 2001; Che and Gale, 2003; for a 

survey, see Konrad, 2009). 

One of the main challenges in contest design is that most contests are held between 

heterogeneous contestants (Baye et al., 1993; Che and Gale, 1998). A well-known theoretical 

result in the contest literature is that greater heterogeneity decreases performance of contestants 

(Konrad, 2009). The reason for this is the so-called “discouragement effect”: weaker contestants, 

either with higher marginal costs or a lower value of winning, cut back expenditures when facing 

a stronger contestant. Such a discouragement effect has been shown to hold in the field (Brown, 

2011), and it is supported by a large body of experimental research (Dechenaux et al., 2015).1  

One solution suggested by theoretical analysis is to level the playing field by imposing 

rigid caps on expenditures (Che and Gale, 1998; Gavious et al., 2002, Hart, 2016). Via such bid-

caps, weaker contestants are encouraged to compete more intensively, which also increases 

overall competition. Szech (2015) extends this analysis by showing that a combination of tie-

breaking rules favoring the disadvantaged contestant together with appropriately chosen, less 

rigid bid-caps can foster competition even more.2 Both of these policies aim to reduce 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Experimental studies found support for the discouragement effect in all-pay auctions (Davis and Reilly, 1998; 
Deck and Sheremeta, 2012; Fehr and Schmidt, 2015), lottery contests (Fonseca, 2009; Kimbrough et al., 2014), 
rank-order tournaments (Weigelt et al., 1989; Schotter and Weigelt, 1992), and real-effort tournaments (Cason et al., 
2010; Gill and Prowse, 2012). 
2 Kaplan and Wettstein (2006) argue that if caps are not rigid, the existence of a cap will not result in increased 
spending. Cotton (2009) shows that under certain circumstances, a tax on spending is strictly preferred to a spending 
limit. Fang (2002) demonstrates that the cap paradox of Che and Gale (1998) does not apply to lottery contests. 
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heterogeneity among contestants, encourage weaker contestants, and strengthen overall 

competition. This also translates into higher revenue for the designer of the contest. 

Despite a well-established theoretical literature, little empirical research has been done to 

evaluate how bid-caps and tie-breaking rules impact individual behavior and revenue in contests 

between heterogeneous contestants. To address this gap, we conduct an experiment in which 

heterogeneous contestants compete in an all-pay auction. Our data confirm that when there is no 

bid-cap and the tie-breaking rule is symmetric, there is a significant discouragement effect that 

causes the weaker contestant to bid less than the stronger contestant. Also in line with theory, 

strengthening the weaker contestant using bid-caps or favorable tie-breaking rules diminishes 

this discouragement effect and increases the average bid of the weaker contestant. Compared to 

the unrestricted baseline auction, our data show that the average bid of the weaker contestant is 

more than 70% higher when the cap suggested by Che and Gale (1998) is in place. The 

theoretical analysis in Szech (2015) suggests that a less rigid cap combined with a favorable tie-

breaking rule can motivate the weaker contestant even more. Indeed, our data reveal that under 

such policy, the average bid of the weaker contestant increases by more than 170% as compared 

to the unrestricted auction. Furthermore, imposing a sufficiently rigid bid-cap or sufficiently 

unfavorable tie-breaking rule may decrease the average bid of the stronger contestant. Thus, we 

find that by setting an appropriate combination of bid-cap and tie-breaking rule, the 

discouragement effect can be greatly diminished. 

Theory predicts that enforcing a rigid bid-cap, as in Che and Gale (1998), should raise the 

designer’s revenue compared to his revenue in an unrestricted all-pay auction. This increase can 

be even higher if a less rigid cap is combined with a favorable tie-breaking rule, as in Szech 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Finally, Szech (2015) shows that the cap paradox vanishes when ties are always broken in favor of the stronger 
contestant. 
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(2015). Our data show that in contrast to the theoretical predictions, the rigid bid-cap does not 

increase the designer’s revenue; yet the less rigid bid-cap increases the designer’s revenue. This 

result holds even when the tie-breaking rule is symmetric. Therefore, while our data cannot 

confirm the exact theoretical predictions, the basic idea of strengthening competition via 

appropriately chosen bid-caps is well supported in our experimental findings. By imposing  a 

moderate bid-cap, the contest designer can increase revenue by almost 30% compared to the 

unrestricted all-pay auction. Our data also show that, while tie-breaking rules have the power to 

encourage the weaker contestant, they seem to have no significant overall impact on the 

designer’s revenue in our treatments: A more favorable tie-breaking rule can increase the 

average bid of the weaker contestant, yet it decreases the average bid of the stronger contestant 

as well, causing the total revenue to remain unchanged. Most deviations from the Nash 

equilibrium predictions can be explained by the level-k model of reasoning. 

There is a growing experimental literature examining behavior in all-pay auctions; for an 

overview, see Dechenaux et al. (2015). The studies most closely related to ours are performed by 

Rapoport and Amaldoss (2000, 2004), Amaldoss and Jain (2002), and Otsubo (2013).3 All of 

these studies examine behavior in all-pay auctions with “coarse” strategy space and a budget 

constraint (a form of a bid-cap). However, none of the studies treat a bid-cap as a design tool for 

eliminating the discouragement effect and increasing the revenue. Moreover, with a coarse 

strategy, pronounced probabilities for ties at various bid levels may arise, making it difficult to 

examine the interaction between bid-caps and tie-breaks. Finally, all-pay auctions with a discrete 

strategy space have asymmetric equilibria (Dechenaux et al., 2006; Otsubo, 2015), complicating 

the interpretation of the actual behavior of participants. Our paper attenuates this issue by having 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Two other studies by Cohen et al. (2012) and Gelder et al. (2015) investigate the impact of a tie-breaking rule on 
behavior of symmetric contestants. In both studies, a tie represents a “status quo” and unless one contest 
outperforms the other by some critical threshold, the status quo does not change. 
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a fine grid rather than a coarse bidding space. There are other details of our study that make it 

different from the existing studies, but most importantly, our study is the first to examine how 

bid-caps and tie-breaks impact individual behavior and revenue in contests between 

heterogeneous contestants. 

We review the theoretical findings on all-pay auctions with bid-caps and tie-breaks in 

Section 2. The experimental design and procedures are described in Section 3. Our main results 

are presented in Section 4, along with sub-sections focusing on different parts of the data. We 

discuss implications of our results in Section 5. 

 

2. Theory 

Consider an all-pay auction with two risk-neutral contestants. Contestant H values the 

prize at vH and contestant L at vL, where vH > vL. Contestants simultaneously submit their bids bH 

and bL, which are capped at m. The prize is awarded to the highest bidder, but both contestants 

need to pay their bids. In the case of a tie, the tie-breaking rule α, where 0 ≤ α ≤ 1, assigns the 

prize to contestant H with probability α and to contestant L with probability 1 - α. The revenue of 

the designer is R = bH + bL. If m > vL, equilibrium behavior is as in a standard all-pay auction 

without a cap (Baye et al., 1996). In the mixed strategy Nash equilibrium, the two contestants 

submit bids according to cumulative distribution functions FH(b) = b/vL and FL(b) = 1 - vL/vH + 

b/vH on an interval [0,vL]. Therefore, the stronger contestant H, who has higher valuation for 

winning, randomly chooses a bid from the interval [0,vL]. The weaker contestant L, who has 

lower valuation for winning, chooses to bid 0 with probability 1 - vL/vH (because of the 

discouragement effect), and with the remaining probability randomly chooses a bid from the 

interval [0,vL]. The expected equilibrium bids of contestants H and L are E(bH) = vL/2 and E(bL) 
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= vL
2/2vH. This results in an expected total revenue of R = (vH + vL)vL/2vH for the designer. The 

weaker contestant L earns an expected profit of 0, while the stronger contestant H earns the 

difference between the valuations vH - vL (in expected terms). 

Che and Gale (1998) show in their game-theoretic analysis that competition can be 

enhanced by using a rather rigid bid-cap. They focus on the case of symmetric tie-breaking (i.e., 

the probability that the stronger contestant wins the tie is α = 1/2). Through the use of rigid bid-

caps, the weaker contestant can be encouraged to bid at the cap in equilibrium. Che and Gale 

(1998) show that if m < vL/2, the equilibrium bid of both contestants is the bid cap m, and thus 

the total revenue for the designer is 2m. Within this class, the revenue is maximized for m* = 

vL/2.4 This leads to a total revenue of R* = 2m* = vL for the designer, which is an improvement 

over the revenue R = (vH + vL)vL/2vH from the unrestricted auction of Baye et al. (1996).5 

The basic idea of strengthening competition by leveling the playing field is further 

elaborated in Szech (2015), who shows that combining a moderate bid-cap with an asymmetric 

tie-breaking rule in favor of the weaker contestant can further increase competition and revenue. 

The revenue-maximizing combination is the bid-cap m** = (1 - α**)vL and the tie-breaking rule 

α** = vL/(vH + vL). In equilibrium, both contestants bid m**, and both earn zero in expectation. 

The total revenue for the designer is R** = 2m** = 2vHvL/(vH + vL), which is a further 

improvement over the revenue R* = 2m* = vL from the capped auction of Che and Gale (1998). 

There are several behavioral reasons why these theoretical results may not hold in 

practice. For example, most all-pay auction experiments find significant overbidding relative to 

the theoretical predictions (Dechenaux et al., 2015), which could be driven by non-monetary 

incentives to win the auction (Sheremeta, 2010, 2015) or spite (Hehenkamp et al., 2004; Mago et 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 At m* = vL/2 there is a multiplicity of equilibria, which can be eliminated by reducing the cap by a small ɛ. 
5 The cap suggested by Che and Gale (1998) reduces the probability of winning for the high-valuation contestant. 
Therefore, although m* increases the organizer’s revenue, it reduces the efficiency of the all-pay auction. 
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al., 2016). Additionally, it is well documented that subjects make mistakes (Camerer, 2003). This 

could prevent them from using correct best-responses. There is substential evidence that subjects 

use level-k reasoning when choosing their strategies in auctions (Crawford and Iriberri, 2007; 

Crawford et al., 2013). Finally, the theoretical predictions of Che and Gale (1998) and Szech 

(2015) are derived under the assumption of risk neutrality. However, it is well documented that 

the majority of individuals are risk averse (Holt and Laury, 2002) and that risk preferences can 

impact behavior in contests (Sheremeta and Zhang, 2010; Mago et al., 2013; Shupp et al., 2013).  

 

3. Experimental Design and Procedures 

3.1. Experimental Design 

To study the effects of bid-caps and tie-breaks on behavior in all-pay auctions, we 

employ five treatments as shown in Table 1. In all treatments, two contestants compete against 

each other. The stronger contestant’s valuation for winning, vH, is 180 Talers, and the weaker 

contestant’s valuation for winning, vL, is 60 Talers. The treatments differ along two dimensions: 

the cap m and the tie-breaking rule α. We denote treatments using the notation m_ α. 

Treatment 200_1/2 is our baseline treatment. Given the valuations of the contestants, the 

cap of 200 should not be binding, as in the Nash equilibrium contestants should bid up to 60, 

following mixed strategies. Theoretically, tie breaking should be of low importance in this 

treatment, as ties should practically never occur. For this treatment, we chose the symmetric tie-

breaking rule of α = 1/2. According to the theoretical predictions, the revenue in treatment 

200_1/2 should be 40, with the stronger contestant bidding 30 and the weaker contestant bidding 

10 in expectation. 
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Treatment 29_1/2 approximates the policy suggested by Che and Gale (1998). 

Contestants are restricted to bid up to m* = 29 (ɛ = 1 is chosen to avoid a multiplicity of 

equilibria), and tie-breaking is symmetric, i.e., α = 1/2. According to the Nash equilibrium 

prediction, the designer’s revenue in this treatment should increase to 58, with both contestants 

bidding the cap of 29. 

Szech (2015) suggests combining a tie-breaking rule in favor of the weaker contestant 

with a less rigid bid-cap in order to further encourage the weaker contestant and also increase the 

designer’s revenue. To approximate the globally optimal combination of a bid-cap m** and tie-

breaking rule α**, we implement treatment 53_1/6. In the case of a tie, the stronger contestant 

wins with a probability of α** = 1/6 while the weaker contestant wins with a probability of 5/6.6 

Theoretically, treatment 53_1/6 should lead to the expected revenue of 80, with an expected bid 

of 47 by the weaker contestant and 33.3 by the stronger contestant. 

It may be difficult for participants to understand a tie-breaking rule that works differently 

from simple winning probabilities such as 0, 1/2 (i.e., the toss of a fair coin), or 1. A way to 

eliminate this problem is to loosely approximate the theoretically optimal solution with a tie-

breaking rule that is easy to understand. As a simplification of treatment 53_1/6, we also run 

treatment 53_0, in which the tie-breaking rule α = 0 is always in favor of the weaker contestant. 

Theoretically, treatment 53_0 should lead to the revenue of 68, an expected bid of 45.2 by the 

weaker contestant and 23.4 by the stronger contestant. 

To complete our understanding of the impact of tie-breaks, we also run treatment 53_1/2 

with a symmetric tie-breaking rule of α = 1/2. This treatment facilitates comparisons with 

treatments 53_1/6 and 53_0 as well as with treatment 29_1/2. Theoretically, treatment 53_1/2 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 Using the winning probability of 1/6 has the advantage that participants may recall this probability from playing 
cardboard games involving dice throws. 
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should generate a revenue of 40. The stronger contestant is expected to bid 30, and the weaker 

contestant is expected to bid 10. 

 

3.2. Experimental Procedures 

We conducted the experiment at the University of Bonn. 240 participants were recruited 

via ORSEE (Greiner, 2015) from the participant pool consisting mainly of undergraduate 

students. There was a total of 10 experimental sessions (2 per treatment) with 24 participants in 

each session (between-subject design). Participants interacted via visually isolated computer 

terminals, and the experiment was programmed and conducted with the experiment software z-

Tree (Fischbacher, 2007). At the beginning of the experiment, each participant received a copy 

of the instructions (available in the Appendix), which an experimenter read out loud. Participants 

were informed about their initial endowment of 15 Euros (which we describe as a participation 

fee). They were also introduced to the in-game currency “Talers” and informed about the 

conversion rate of 60 Talers to 1 Euro. 

Each session consisted of 40 periods of an all-pay auction. The design of the auction was 

kept identical across all 40 periods. In the first period, participants were assigned to the specific 

role of either contestant H (framed as player 1) or contestant L (framed as player 2). Participants 

remained in their roles for the first 20 periods of the experiment. For the last 20 periods, 

participants switched their roles, so all contestants H became contestants L and vice versa.7 Each 

period, participants were randomly rematched with participants of the opposite type.	   In each 

session, random matching occurred within three different subgroups. Hence, we obtained three 

independent observations per session. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 The process of role switching after period 20 was used to mitigate any concerns about fairness and inequality 
among participants in the experiment. 
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 In the baseline treatment, participants could bid any amount between 0 and 200 Talers, 

up to one decimal point. In the other treatments, participants could bid any amount between 0 

and the bid-cap, up to one decimal point. At the end of each period, the computer displayed 

individual bids as well as individual payoffs. To reinforce the one-shot incentives of the game, 4 

of the 40 periods were selected for payment. Participants’ total earnings from these 4 periods 

were added to their initial endowment of 15 Euros.8 At the end of the experiment, participants 

answered a series of demographic and socioeconomic questions. The experimental sessions 

lasted about 90 minutes each. 

 

4. Results 

In the following analysis, we focus on the data from all 40 periods. Furthermore, in order 

to account for differential dynamics across treatments, we indicate whether the results are robust 

to considering only the second half of each part (periods 11-20 and 31-40). When performing the 

non-parametric tests, we use the average within a single rematching group of eight participants 

over all periods of the experiment as one independent observation (six independent observations 

per treatment). When performing regression analysis, we control for individual participant 

effects and correlation within a matching group. 

 

4.1. Bids by Type 

4.1.1. Behavior of the Weaker Contestant 

Table 2 displays average bids, payoffs, and revenue by treatment. The top part of the 

table presents the data for all 40 periods. The bottom part presents the data from periods 11-20 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 If the total payoff of the 4 selected periods was negative, the absolute value of this amount was subtracted from the 
initial endowment. 
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and 31-40 as a robustness check. We begin by focusing on the discouragement effect. According 

to theory, the weaker contestant L should experience a discouragement effect in treatment 

200_1/2 compared to the stronger contestant. Indeed, we see that the weaker contestant bids 

three times less than the stronger contestant (11.7 versus 35.2; Wilcoxon rank-sum test, p-value 

< 0.01).9  

Theory predicts that strengthening the weaker contestant L should enhance competition 

and increase L’s average bid. One way of strengthening the weaker contestant is by placing a 

bid-cap on both contestants while keeping the tie-breaking rule symmetric. Such leveling of the 

playing field should encourage the weaker contestant to increase his average bid (Che and Gale, 

1998). In line with this prediction, treatment 29_1/2 significantly increases the average bid by the 

weaker contestant compared to the baseline treatment 200_1/2 (20.2 versus 11.7; Wilcoxon rank-

sum test, p-value < 0.01), indicating that the cap of m = 29 significantly diminishes the 

discouragement effect.10  

Theory predicts that less rigid bid-caps combined with tie-breaking rules in favor of the 

weaker contestant have the potential to reduce the discouragement effect even more. This is what 

we find. Tie-breaking completely in favor of the weaker contestant encourages him: In treatment 

53_0, the weaker contestant competes more than in treatment 53_1/2 (32.3 versus 20.5; 

Wilcoxon rank-sum test, p-value = 0.01). Theory also predicts a comparable effect via a tie-

breaking that is often but not always in favor of the weaker contestant, as in treatment 53_1/6. 

Theoretically, competition should be high here, as the stronger contestant has now a (slim) 

chance of winning in the event of a tie. Indeed, in our data, encouragement of the weaker 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 This result also holds when examining the data from the second half of each part of the experiment (12.4 versus 
33.3; Wilcoxon rank-sum test, p-value < 0.01). 
10 This result is robust when examining the data from the second half of each part of the experiment (12.4 versus 
20.2; Wilcoxon rank-sum test, p-value = 0.01). 
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contestant remains high despite high competition from the stronger contestant (27.9 versus 32.3; 

Wilcoxon rank-sum test, p-value = 0.20). Treatment 53_1/6 also remains a significant 

improvement over treatment 53_1/2 with the symmetric tie-breaking rule (27.9 versus 20.5; 

Wilcoxon rank-sum test, p-value = 0.03). These results hold when examining the second half of 

bidding rounds, indicating that tie-breaking rules play an important role in further reducing the 

discouragement effect. 

Even the symmetric treatment 53_1/2 outperforms the unrestricted treatment 200_1/2 

(20.5 versus 11.7; Wilcoxon rank-sum test, p-value = 0.01).11 This result is in contrast to theory. 

In our data, encouragement in treatment 53_1/2 and treatment 29_1/2 is very similar when 

examining all periods of the experiment (20.5 versus 20.2; Wilcoxon rank-sum test, p-value = 

0.87) and when examining only the second half (20.2 versus 17.5; Wilcoxon rank-sum test, p-

value = 0.33). This suggests that even with a symmetric tie-breaking rule, the less rigid bid-cap is 

a good method of encouraging the weaker contestant. 

To further check the robustness of our non-parametric tests, we estimate a random effects 

GLS regression of the bid on dummies indicating the interaction between a treatment and a 

bidder type (with bids of low types in the 200_1/2 treatment as the reference group) and a 

constant.12 The estimation results are reported in Table 3. Based on these estimation results, we 

provide pairwise comparisons of the weaker contestant’s bids across treatments, reported in 

Table 4. Consistent with the non-parametric tests, the introduction of a rigid bid-cap motivates 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 This difference becomes not significant if we restrict the analysis to the second half of each part (Wilcoxon rank-
sum test, p-value = 0.15). 
12 We ran this regression to ease the interpretation of the coefficients. Adding controls for the number of periods and 
the number of the part played, did not change any of the results presented. In order to account for differential 
learning across treatments, we indicate robustness of the results when considering only the later bidding rounds in 
the respective roles, i.e., rounds 11 to 20 and 31 to 40. 
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the weaker contestant, and a less rigid bid-cap combined with a favorable tie-breaking rule leads 

to the strongest encouragement. 

It is important to emphasize that the effects of bid-caps and tie-breaks are not only 

statistically significant but also economically meaningful. Compared to the unrestricted baseline 

auction, the average bid of the weaker contestant is more than 70% higher when the cap 

suggested by Che and Gale (1998) is in place together with a symmetric tie-breaking. A less 

rigid cap combined with a favorable tie-breaking rule can increase the average bid of the weaker 

contestant by more than 170% as compared to the unrestricted auction. Thus, by setting an 

appropriate bid-cap and a favorable tie-breaking rule, the discouragement effect can be greatly 

diminished. 

Result 1. Strengthening the weaker contestant by placing a rigid or a less rigid bid-cap 

both significantly reduces the discouragement effect. A less rigid bid-cap combined with a 

favorable tie-breaking rule further increases the average bid of the weaker contestant. 

 

4.1.2. Behavior of the Stronger Contestant 

We now turn to the bidding behavior of the stronger contestant. In line with the Nash 

equilibrium prediction, we find no significant difference in average bidding behavior between 

treatments 53_1/2 and 200_1/2 (38.6 versus 35.2; Wilcoxon rank-sum test, p-value = 0.14). Yet 

in both treatments, bids tend to be a bit higher than the theoretically predicted 30.0 (see Table 1). 

Theoretical analysis further predicts a slight decrease when the cap is m = 29: The contestant 

should bid at the cap. Our data reveal a more substantial and significant decrease (to an average 

bid of 25.3). The average bid of the stronger contestant in treatment 29_1/2 is significantly lower 

than in treatments 53_1/2 and 200_1/2 (both p-values < 0.01). These results are robust to 
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focusing on the respective second half of bidding rounds, indicating that a sufficiently rigid bid-

cap decreases the average bid of the stronger contestant. 

The data further reveal that the stronger contestant responds systematically to changes in 

the tie-breaking rule. Specifically, holding the bid-cap at m = 53, the average bid of the stronger 

contestant is highest when the tie-breaking rule is α = 1/2. When the tie-breaking rule is in favor 

of the weaker contestant (i.e., α = 1/6 and α = 0), the average bid of the stronger contestant 

decreases. Both treatments 53_1/6 and 53_0 are significantly different from treatment 53_1/2 at 

the 0.01 significance level. Theoretically, this discouragement should only be observed for the 

53_0 treatment. In the data, there is no significant difference in bidding behavior between 

treatment 53_1/6 and treatment 53_0 (29.3 versus 27.0; Wilcoxon rank-sum test, p-value = 0.26). 

These results are robust to only considering the data from the second half of bidding rounds. 

To further check the robustness of our non-parametric tests, we provide pairwise 

comparisons of the stronger contestant’s bids across treatments in Table 5. These comparisons 

are based on the estimation results presented in Table 3. Consistent with the non-parametric tests, 

the stronger contestant bids less when there is a rigid bid-cap, and reacts to an unfavorable tie-

breaking rule compared to a symmetric one. 

Result 2. Imposing a rigid bid-cap, or a less rigid bid-cap combined with an unfavorable 

tie-breaking rule, decreases the average bid of the stronger contestant. 

 

4.2. Revenue 

This section presents a ranking of the treatments with regard to revenue generated. In 

other words, we want to know how different combinations of the bid-cap and tie-breaking rule 

affect total revenue. Revenue equals the sum of bids exerted by the stronger and weaker 
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contestants. According to Results 1 and 2, a sufficiently rigid bid-cap increases the bid of the 

weaker contestant and decreases the bid of the stronger contestant. Therefore, the total effect of a 

bid-cap on the revenue is ambiguous. The theoretical prediction of Che and Gale (1998) is that 

placing a bid-cap of m = 29 under symmetric tie-breaking should raise the revenue relatively to 

an unrestricted all-pay auction. Our data show that, in contrast to this prediction, revenue in 

treatment 29_1/2 is not signficantly different than revenue in the baseline treatment 200_1/2 

(45.5 versus 46.9; Wilcoxon rank-sum test, p-value = 0.87). The reason for this departure is 

twofold. On the one hand, revenue in treatment 200_1/2 is significantly higher than predicted 

(46.9 versus 40.0; Wilcoxon signed-rank test, p-value = 0.02). Such overbidding is common in 

all-pay auction experiments (Davis and Reilly, 1998; Gneezy and Smorodinsky, 2006; 

Lugovskyy et al., 2010; Chen et al., 2015).13 On the other hand, revenue in treatment 29_1/2 is 

significantly lower than predicted (45.5 versus 58.0; Wilcoxon signed-rank test, p-value = 0.02). 

For this treatment, the Nash equilibrium is at the upper boundary of the bidding space (i.e., both 

bidders should bid at the cap), so any deviation from equilibrium implies a lower-than-predicted 

revenue.14 As a result of these two effects, we find that contrary to the theoretical prediction of 

Che and Gale (1998), a rigid bid-cap of m = 29 does not increase the designer’s revenue.15 

Theory also predicts that among all combinations of caps and tie-breaks, using a less 

rigid bid-cap combined with a tie-breaking rule favoring the weaker contestant is the most 

effective way of increasing revenue in all-pay auctions with heterogeneous contestants (Szech, 

2015). Indeed, we find that treatment 53_0 generates significantly higher revenue than treatments 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 A number of explanations for overbidding have been offered, including bounded rationality (Sheremeta, 2011; 
Chowdhury et al., 2014; Lim et al., 2014), the utility of winning (Sheremeta, 2010; Cason et al., 2012, 2015), 
relative payoff maximization (Sheremeta, 2013, 2015; Mago et al., 2016), and limited cognitive ability (Sheremeta, 
2016). 
14 This problem of equilibrium predictions at the boundary has been well recognized in linear public good 
experiments, where the dominant strategy is to contribute nothing. For a review, see Laury and Holt (2008). 
15 This conclusion stands when one examines the data from the second half of our experiment. 
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200_1/2 and 29_1/2. This holds across the data from all periods (Wilcoxon rank-sum test, p-

values = 0.01 and 0.01) and is robust to focusing on the second half of bidding rounds (Wilcoxon 

rank-sum test, p-values = 0.01 and 0.01). Another theoretical prediction is that under the less 

rigid bid-cap of m = 53, the revenue in treatment 53_1/6 should be the highest, followed by 

53_0, and then by 53_1/2. Our data, however, does not display significant differences between 

these three treatments (Wilcoxon rank-sum test, p-values = 0.42, 0.74, and 0.63).16 The reason 

behind this is as follows: A more favorable tie-breaking rule increases the average bid of the 

weaker contestant, yet it also decreases the average bid of the stronger contestant, causing the 

total revenue to remain unchanged. Nonetheless, all three treatments – 53_1/6, 53_0, and 53_1/2 

– generate significantly higher revenues than the unrestricted baseline treatment 200_1/2 

(Wilcoxon rank-sum test, p-values = 0.03, 0.01, and 0.05) and treatment 29_1/2 (Wilcoxon rank-

sum test, p-values = 0.01, 0.01, and 0.01).17 Revenue increases substantially, amounting to 

almost 30% higher than that of the unrestricted all-pay auction. 

To further check the robustness of our non-parametric tests, we provide pairwise 

comparisons of the revenue across treatments in Table 6. These comparisons are based on the 

estimation results presented in Table 3. Consistent with the non-parametric tests, we find that a 

less rigid bid-cap increases the designer’s revenue, independent of the tie-breaking rule. 

Result 3. Imposing a less rigid bid-cap increases the designer’s revenue, regardless of the 

tie-breaking rule. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16 The comparison between 53_1/6 and 53_1/2 becomes marginally significant when we only consider the second 
half of each part (Wilcoxon rank-sum test, p-value = 0.08). 
17 When we restrict our analysis to the second half of each part, the results remain significant only when comparing 
treatment 53_0 to 200_1/2 and treatment 53_0 to 29_1/2. 
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4.3. Distribution of Bids 

Despite the fact that most theoretical predictions are supported by our data, there are 

some departures from the Nash equilibrium. In order to better understand such departures, we 

examine the distribution of bids across types and treatments. Figure 1 displays the realized and 

the predictive cumulative distributions of bids for each treatment and type. Overall, we see that 

the observed data is fairly consistent with the theoretical predictions. 

In the unrestricted treatment 200_1/2, as predicted by standard theory, most bids by both 

types are between 0 and 60.0. Only 2.5% of bids are strictly above 61.0, and only 1.1% are 

strictly above 65.0. In fact, the bidding behavior of the weaker contestant is not significantly 

different than what theory predicts (11.7 versus 10.0; Wilcoxon signed-rank test, p-value = 0.34). 

The bidding behavior of the stronger contestant, however, is more intense than predicted (35.2 

versus 30.0; Wilcoxon signed-rank test, p-value = 0.02). From Figure 1 we can see that this 

overbidding comes primarily from participants placing a significant mass point around 60 (which 

is not predicted by standard theory). 

In treatment 29_1/2, theory predicts that all bids should be concentated at the bid-cap of 

29. Indeed, we find that the stronger contestant uses this strategy 82.6% of the time. Although 

the average bid is significantly lower than predicted (25.3 versus 29.0; Wilcoxon signed-rank 

test, p-value = 0.02), the weaker contestant also concentrates his bids around the bid-cap, as 

theoretically predicted. Yet there is also a mass point around 0 that is not predicted by theory, 

and it is even more pronounced than that of the stronger contestant (the frequency of bidding 

zero is significantly higher; Wilcoxon signed-rank test, p-value =	  0.03). 

The only difference across the three treatments with a bid-cap of 53 is the tie-breaking 

rule. We see that effects of tie-breaking on bidding behavior are substantial. The weaker 
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contestant shifts mass from 0 to the cap as the tie-breaking rule becomes more favorable. At the 

same time, the stronger contestant displays the reverse bidding behavior by shifting mass from 

the cap to 0 as the tie-breaking rule becomes less favorable for him or her. Focusing on 

treatments 53_0 and 53_1/2 in which the tie-breaking rule is relatively easy to understand, the 

shifts in the mass points are in line with the Nash equilibrium prediction. This is not the case for 

treatment 53_1/6. Here, we observe again substantial mass at 0, which is not predicted by theory. 

One possible explanation is that participants are more confused when the tie-breaking rule is 

more complex (i.e., 1/6 versus 0 or 1/2). This might be the reason why this treatment does not 

outperform the other treatments, as theory would predict. 

 

4.4. Behavioral Explanations Based on Level-k Reasoning 

Our data reveal substantial mass points at some bid levels that are not in line with the 

standard game-theoretic predictions. A potential explanation for these mass points comes from a 

level-k model of reasoning (Stahl and Wilson, 1994, 1995; Nagel, 1995).18 This model assumes 

that the population is partitioned into types that differ in their depth of reasoning. A level-0 type 

is nonstrategic and follows a simple decision rule. The level-1 type behaves as if best-responding 

to the belief that the other is a level-0 type. Similar logic applies to other types. People typically 

exhibit level-0, level-1, or level-2 reasoning; it is very uncommon to observe level-4 reasoning or 

higher (Arad and Rubinstein, 2012; Crawford et al., 2013).19 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
18 Other prominent models of bounded rationality include quantal response equilibrium (McKelvey and Palfrey, 
1995) and cursed equilibrium (Eyster and Rabin, 2005). Goeree et al. (2002) show that quantal response equilibrium 
can indeed account for some of the departures observed in private value first price auctions. In our setup, however, 
quantal response equilibrium cannot account for the pronounced peaks observed at zero and the cap. Also, since our 
game is a game of complete information, cursed equilibrium coincides with the Nash prediction. 
19 Level-k reasoning has been used to explain the behavior in auctions (Crawford and Iriberri, 2007), beauty contests 
(Nagel, 1995), guessing games (Stahl and Wilson, 1994, 1995), coordination games (Crawford et al., 2008), and 
centipede games (Kawagoe and Takizawa, 2012). 
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Table 7 displays bidding behaviors according to level-k for the stronger contestant H and 

the weaker contestant L. We assume that a level-0 type randomly chooses a bid between 0 and 

the bid-cap (60 in the baseline treatment). Recall that the main deviation from the theory in the 

baseline treatment 200_1/2 comes from the stronger contestant placing a mass point around 60. 

The prediction from the level-k model is that the stronger contestant behaving as a level-1 type 

should best respond to the weaker contestant behaving as level-0 type by bidding 60. Therefore, 

the mass point around 60, which is not predicted by standard theory, is perfectly consistent with 

the level-k reasoning. 

In treatment 29_1/2, level-k analysis predicts that level-1 reasoning or higher implies 

bidding at the cap of 29. The level-0 types should bid randomly between 0 and 29. Therefore, 

assuming that there are some level-0 types as well as other types explains our data. Although the 

small mass point around 0 by the weaker contestants cannot be explained by the level-k 

reasoning, it can be explained by risk aversion.20 

In treatments with a cap of 53, the level-k model also seems to provide a good 

approximation for the behavior of participants. First, the mass points at 0 and 53 observed in the 

data are well captured by level-1 and level-2 types. Second, the level-k model also captures well 

the comparative statics with respect to the tie-breaking rule. The bid distribution for the stronger 

contestant displays mass points of comparable sizes when the tie-breaking rule is α = 0 and α = 

1/6, and a much more pronounced mass point at the cap when the rule is α = 1/2. The bid 

distributions for the weaker contestant, on the other hand, show a reverse pattern: The frequency 

of bidding zero increases when the tie-breaking rule becomes less favorable. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
20 Looking at our data on self-reported willingness to take risks (where 0 denotes “completely unwilling to take 
risks” and 10 denotes “completely prepared to take risks”), we find that participants who indicate that they are 
unwilling to take risks avoid bidding at the cap of 29. A random effects GLS regression of the probability of bidding 
zero on our risk measure shows a significant relationship (p-value < 0.01). 
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Result 4. Most deviations from the standard game-theoretic predictions can be explained 

by the level-k model of reasoning. 

 

5. Conclusions 

We study how bid-caps and tie-breaks impact individual behavior and revenue in all-pay 

auctions between heterogeneous contestants. Theory predicts that greater heterogeneity decreases 

the performance of contestants because of the “discouragement effect.” Leveling the playing 

field by favoring weaker contestants through bid-caps and favorable tie-breaking rules can 

reduce the discouragement effect and increase the designer’s revenue. Our experimental data 

confirm that placing bid-caps and using favorable tie-breaking rules significantly diminishes the 

discouragement effect. The impact on the revenue, however, is not as clear. Although an 

appropriately chosen bid-cap can increase the revenue, the cap should be less rigid than 

predicted. Our data also show that tie-breaking rules seem to have little impact on the designer’s 

revenue. Most deviations from Nash equilibrium can be explained by the level-k model of 

reasoning. 

It has been well recognized that the discouragement effect can decrease the performance 

of contestants in the field (Brown, 2011) and in the lab (Dechenaux et al., 2015). One theoretical 

solution that has been proposed is to impose a rather rigid cap on expenditures (Che and Gale, 

1998). Theoretically, even better effects are attainable when implementing a less rigid cap 

combined with a tie-breaking rule favoring the weaker contestant (Szech, 2015). We provide 

empirical evidence that these policies are indeed powerful. Compared to the unrestricted baseline 

auction, our data show that the average bid of the weaker contestant is more than 70% higher 

when the rigid cap suggested by Che and Gale (1998) is in place. An appropriate combination of 
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a less rigid bid-cap and a favorable tie-breaking rule can further increase the average bid of the 

weaker contestant, such that he bids more than 170% higher as compared to the unrestricted 

contest. 

Our study also contributes to a growing literature on innovation contests (Terwiesch and 

Xu, 2008, Boudreau et al., 2011). It is estimated that the “contest industry” might have a value of 

up to two billion dollars (McKinsey and Company, 2009). An important objective of a contest 

designer is usually to increase both the performance of contestants and total revenue. 

Theoretically, this could be done by using a rather rigid bid-cap as in Che and Gale (1998), and 

even more so by implementing a less rigid bid-cap combined with an appropriate tie-breaking 

rule (Szech, 2015). We find that a less rigid cap can indeed be more effective at increasing 

revenue. Yet tie-breaking, while important for the respective bids by stronger and weaker 

contestants, seems to play no significant role in affecting the designer’s revenue. These empirical 

findings may explain why in practice, the designers of innovation contests place relatively small 

restrictions on contestants and often stick to symmetric tie-breaking when focusing on overall 

revenues (Jeppesen and Lakhani, 2010; Boudreau et al., 2011). In other cases, objectives may 

include encouraging weaker contestants, as for example in sports competitions (to level the 

playing field and create more of a thrill for viewers) or labor markets (to increase diversity); 

here, tie-breaking rules in favor of the weaker contestants may prove very useful. Anti-

discrimination policies that solve ties in favor of specific subgroups of a population may benefit 

from these effects. In sports, asymmetric tie-breaking exists, for instance, in the Champions 

League soccer playoffs: In the case of a tie, “away goals” become the decisive factor in 

determining the winning team. 
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Finally, our study contributes to a large literature on rent-seeking. Since the seminal 

papers of Tullock (1967) and Krueger (1974), rent-seeking has inspired a vast literature. The idea 

of rent-seeking is simple – different economic and political groups are trying to increase their 

profits and influence through a competitive and sometimes illegal process. Pressure groups, for 

example, can use lobbying to influence a politician’s decision and thus obtain a prize or favor. 

Politicians, on the other hand, may implicitly or explicitly auction off a prize to the highest-

bidding lobbyist. The process by which politicians sell favors is often modeled as an all-pay 

contest (Tullock, 1980; Hillman and Riley, 1989; Baye et al., 1993; Che and Gale, 1998). The 

amount of rents the politician can earn depends on the amount of rent-seeking expenditures by 

the lobbyists (contestants in our case). In contrast to innovation contests, however, expenditures 

are often considered to be socially wasteful. Using a theoretical model, Che and Gale (1998) 

show that a rigid bid-cap may actually increase aggregate expenditures. However, they caution 

the reader against generalizing their results without a proper empirical investigation. Our 

experimental examination shows that such caution is indeed warranted – although the unwanted 

effects on aggregate spending may emerge only if caps are less rigid.  
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Table 1: Overview of treatments and theoretical predictions 
 

Treatment Type 200_1/2 29_1/2 53_1/2 53_1/6 53_0 
Cap m  – 29 53 53 53 
Tie-breaking rule α  1/2 ½ 1/2 1/6 0 

Expected bid E(b) H 30.0 29.0 30.0 33.3 23.4 
L 10.0 29.0 10.0 47.0 45.2 

Expected revenue R  40.0 58.0 40.0 80.3 68.6 

Bidding strategy 
according to Nash 
equilibrium 

H Uniform 
mixing on 

[0,60] 

Atom of 1 
at 29 

Atom of 0.23 at 
53, uniform 

mixing on [0,46] 
with remaining 

probability 

Atom of 0.51 at 
53 and atom of 

0.03 at 0, uniform 
mixing on [0, 28] 
with remaining 

probability 

Atom of 0.11 
at 0, mixing on 

[0,53] with 
remaining 
probability 

L Atom of 0.67 
at 0, uniform 

mixing on 
[0,60] with 
remaining 
probability 

Atom of 1 
at 29 

Atom of 0.67 at 0  
and atom of 0.08 

at 53, uniform 
mixing on [0,46] 
with remaining 

probability 

Atom of 0.85 at 
53, uniform 
mixing on  

[0, 28] with 
remaining 
probability 

Atom of 0.71 
at 53, uniform 

mixing on 
[0,53] with 
remaining 
probability 

 
 
 

Table 2: Average bid, payoff and revenue by treatment 
 

Treatment Type 200_1/2 29_1/2 53_1/2 53_1/6 53_0 
 All 40 periods 

Average bid H 35.2 (26.5) 25.3 (8.7) 38.6 (21.1) 29.3 (22.8) 27.0 (22.9) 
L 11.7 (19.3) 20.2 (12.8) 20.5 (23.9) 27.9 (23.5) 32.3 (21.8) 

Average payoff H 111.0 (66.6) 88.0 (84.8) 94.3 (76.1) 56.7 (83.9) 31.7 (77.3) 
L -0.4 (20.2) 1.9 (25.5) -4.8 (24.3) 3.3 (23.7) 8.0 (21.7) 

Average revenue  46.9 (33.9) 45.5 (16.0) 59.1 (34.6) 57.2 (33.9) 59.4 (31.8) 
 Periods 11-20 and 31-40 

Average bid H 33.3 (22.7) 25.2 (9.1) 35.2 (22.4) 25.7 (23.2) 27.0 (22.5) 
L 12.4 (19.8) 20.2 (13.0) 17.5 (22.9) 26.1 (23.9) 31.2 (22.2) 

Average payoff H 106.9 (69.4) 91.0 (84.1) 99.7 (74.9) 57.0 (84.3) 32.5 (78.1) 
L 0.8 (20.6) 1.0 (25.6) -2.5 (23.5) 6.2 (24.0) 8.9 (20.3) 

Average revenue  45.7 (30.5) 45.4 (16.6) 52.8 (34.6) 51.9 (34.9) 58.2 (31.4) 
Standard deviation in parenthesis. 
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Table 3: Random effects GLS regression of the bid 
 

Variable Coef. St. Err. Z P > |z| 95% Conf. Int. 
200_1/2 × H 23.5 0.99 23.61 0.000 [21.54, 25.44] 
29_1/2 × H 13.6 1.39 9.80 0.000 [10.91, 16.37] 
53_1/2 × H 26.9 2.15 12.50 0.000 [22.66, 31.09] 
53_1/6 × H 17.6 1.83 9.57 0.000 [13.98, 21.18] 
53_0 × H 15.3 1.60 9.56 0.000 [12.20, 18.48] 
29_1/2 × L 8.5 1.89 4.47 0.000 [  4.76, 12.20] 
53_1/2 × L 8.8 2.74 3.22 0.001 [  3.44, 14.19] 
53_1/6 × L 16.2 2.69 6.01 0.000 [10.92, 21.48] 
53_0 × L 20.6 2.12 9.72 0.000 [16.46, 24.78] 
Constant 11.7 1.25 9.32 0.000 [  9.26, 14.20] 
Observations 9600     
Subjects 240     
Random effects GLS regression of the bid on dummies indicating the 
interaction between a treatment and a bidder type and a constant. 
200_1/2 × L is the reference type. 

 
 
 

Table 4: Pairwise comparisons of the weaker contestant’s bids across treatments 
 

 
29_1/2 53_0 53_1/6 53_1/2 

200_1/2 < < < < 
 p = 0.00 p = 0.00 p = 0.00 p = 0.00 
29_1/2  < < = 
  p = 0.00 p = 0.01 p = 0.91 
53_0   = > 
   p = 0.13 p = 0.00 
53_1/6    > 
    p = 0.03 
The statistics in this table are based on the estimation results 
of the random effects GLS regression presented in Table 3. 
All results are robust to considering only the second half of 
each part. 

 
 
 

Table 5: Pairwise comparisons of the stronger contestant’s bids across treatments 

 
29_1/2 53_0 53_1/6 53_1/2 

200_1/2 > > > = 
 p = 0.00 p = 0.00 p = 0.01 p = 0.16 
29_1/2  = < < 
  p = 0.14 p = 0.01 p = 0.00 
53_0   = < 
   p = 0.18 p = 0.00 
53_1/6    < 
    p = 0.00 
The statistics in this table are based on the estimation results 
of the random effects GLS regression presented in Table 3.  
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Table 6: Pairwise comparisons of the revenue across treatments 
 

 
29_1/2 53_0 53_1/6 53_1/2 

200_1/2 = < < < 
 p = 0.69 p = 0.00 p = 0.02 p = 0.01 
29_1/2  < < < 
  p = 0.00 p = 0.00 p = 0.00 
53_0   = = 
   p = 0.59 p = 0.95 
53_1/6    = 
    p = 0.71 
The statistics in this table are based on the estimation results 
of the random effects GLS regression presented in Table 3.  

 
 
 

Table 7: Level-k bids by contestant type and by treatment 
 

Treatment 200_1/2 29_1/2 53_1/2 53_1/6 53_0 
 H L H L H L H L H L 
Level-0 U[0,60] U[0,60] U[0,29] U[0,29] U[0,53] U[0,53] U[0,53] U[0,53] U[0,53] U[0,53] 
Level-1 60 Nash 29 29 53 53 53 53 53 53 
Level-2 U[0,60] 0 29 29 53 0 0 0 0 53 
Level-3 “0.1” Nash 29 29 “0.1” 0 “0.1” “0.1” 0 53 
U[A,B] denotes a uniform distribution with boundaries A and B. “0.1“ approximates the theoretical solution of 0+ε as 
subjects could adjust their bid to a tenth of the in-game currency.	  
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Figure 1: Cumulative distribution of bids versus Nash prediction by treatment and type 
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Appendix  (For Online Publication) – Instructions for the 53_1/6 Treatment 

GENERAL INSTRUCTIONS 
Thank you for participating in this experiment. Please read these instructions carefully. If you have any 

questions, or need assistance of any kind, raise your hand and an experimenter will come to you and answer your 
questions privately. Please do not ask anything aloud. It is very important that you remain silent and do not look at 
other people’s work. If you talk, laugh, exclaim out loud, etc., you will be asked to leave and you will not be paid. 
We expect and appreciate your cooperation. 

During this experiment you can earn a substantial amount of money. The currency used in the experiment 
is Talers. Talers will be converted to euros at a rate of _60_ Talers to _1_ euro. The earnings from all parts will be 
added to a participation fee of 15 euros. At the end of today’s experiment, you will be paid in private and in cash. 

There are 24 participants in today’s experiment. At this time we proceed to Part 1 of the experiment. 
 
INSTRUCTIONS FOR PART 1 
YOUR DECISION 

The first part of the experiment consists of 40 decision-making periods. At the beginning of the first 
period, you will be randomly assigned either as participant 1 or as participant 2. You will stay in the same role 
assignment for the first 20 periods and then change your role assignment for the last 20 periods of the experiment. 
Each period you will be randomly re-paired with another participant of opposite assignment to form a two-person 
group. So, if you are participant 1, each period you will be randomly re-paired with another participant 2. If you are 
participant 2, each period you will be randomly re-paired with another participant 1. You will not know the identity 
of the person you are matched with, and vice versa. 

Each period, you may bid for a reward. The reward is worth 180 Talers to participant 1 and 60 Talers to 
participant 2. You may bid any number between 0 and 53 Talers (including 0.1 decimal points). 
 
YOUR EARNINGS 

After both participants make their bids, the computer will assign the reward to a participant who makes 
the highest bid. So, for example, if participant 1 bids 30 Talers while participant 2 bids 30.1 Talers then the 
computer will assign the reward to participant 2. In case of tie, the computer will assign the reward either to 
participant 1 or participant 2. The chance that the computer will assign the reward to participant 1 is 1 out of 6 
(16.7% chance), while the chance that the computer will assign the reward to participant 2 is 5 out of 6 (83.3% 
chance). Therefore, in case of a tie, participant 2 is five times more likely to receive the reward than participant 1. 

Remember, the reward is worth 180 Talers to participant 1 and 60 Talers to participant 2. Regardless of 
who receives the reward, both participants will have to pay their bids. Thus, the period earnings will be calculated 
in the following way: 

If participant 1 receives the reward: 
  Participant 1’s earnings = 180 – Participant 1’s Bid 
  Participant 2’s earnings = 0 – Participant 2’s Bid 

If participant 2 receives the reward: 
  Participant 1’s earnings = 0 – Participant 1’s Bid 
  Participant 2’s earnings = 60 – Participant 2’s Bid 

Remember you have already received a 15.00 euro participation fee (equivalent to 600 Talers). Depending 
on the outcome in a given period, you may receive either positive or negative earnings. At the end of the experiment 
we will randomly select 2 out of the first 20 periods and 2 out of the last 20 periods of the experiment for actual 
payment. You will sum the total earnings for these two periods and convert them to a U.S. dollar payment. If the 
earnings are negative, we will subtract them from your participation fee. If the earnings are positive, we will add 
them to your participation fee. 

At the end of each period, your bid, the other participant’s bid, whether you received the reward or not, and 
your earnings for the period are reported on the outcome screen. Once the outcome screen is displayed you should 
record your results for the period on your Personal Record Sheet under the appropriate heading. 

 
IMPORTANT NOTES 

At the beginning of the first period, you will be randomly assigned either as participant 1 or as 
participant 2. You will stay in the same role assignment for the first 20 periods and then change your role 
assignment for the last 20 periods of the experiment. Each period you will be randomly re-paired with another 
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participant of opposite assignment to form a two-person group. So, if you are participant 1, each period you will be 
randomly re-paired with another participant 2. If you are participant 2, each period you will be randomly re-paired 
with another participant 1. 

Both participants will bid for a reward. The reward is worth 180 Talers to participant 1 and 60 Talers to 
participant 2. The computer will assign the reward to a participant who makes the highest bid. In case of tie, 
participant 2 is five times more likely to receive the reward than participant 1. Regardless of who receives the 
reward, both participants will have to pay their bids. At the end of the experiment we will randomly select 2 out of 
the first 20 periods and 2 out of the last 20 periods for actual payment using a bingo cage. You will sum the total 
earnings for these two periods and convert them to a U.S. dollar payment. 

Are there any questions? 
 
INSTRUCTIONS FOR PART 2 
YOUR DECISION 

In this part of the experiment we ask you to fill out a questionnaire. Although you will not be paid for this 
task, we ask you to pay careful attention to each question and answer each question honestly. The answers to these 
questions are completely anonymous and will be used only to analyze the data. 

Are there any questions? 
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