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Abstract 

Strategic Schools under the Boston Mechanism Revisited 

by Inácio Bó and C.-Philipp Heller* 

We show that Ergin & Sönmez’s (2006) results which show that for schools it is a dominant 
strategy to truthfully rank the students under the Boston mechanism, and that the Nash 
equilibrium outcomes in undominated strategies of the induced game are stable, rely 
crucially on two assumptions. First, (a) that schools need to be restricted to find all 
students acceptable, and (b) that students cannot observe the priorities set by the schools 
before submitting their preferences. We show that relaxing either assumption eliminates 
the strategy dominance, and that Nash equilibrium outcomes in undominated strategies 
for the simultaneous induced game in case (a) and subgame perfect Nash equilibria in case 
(b) may contain unstable matchings. We also show that when able to manipulate capacities, 
schools may only have an incentive to do so if students submit their preferences after 
observing the reported capacities. 

Keywords: Mechanism Design, Two-Sided Matching, Boston Mechanism, School Choice 

JEL classification: C78, D63, D78, D82 
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1 Introduction
Having their children attend a good school is an important concern for many parents. Until
recently, in many countries parents did not have much choice when it came to choosing
the public school they would attend, as most children were administratively assigned to a
school nearby. In their seminal contribution Abdulkadiroğlu and Sönmez (2003) analyzed
school assignment procedures in Boston and other cities in the U.S., and also suggested the
student-proposing deferred acceptance mechanism (DA, Gale and Shapley, 1962) and the
top trading cycles mechanism (TTC, Roth and Postlewaite, 1977) as two alternatives to
the methods being used in those cities. One argument in favor of the DA and TTC over
the mechanism used in Boston at that time (denoted Boston mechanism) is that reporting
preferences truthfully under these mechanisms is a dominant strategy. Under the Boston
mechanism, on the other hand, students may obtain better assignments by strategically
manipulating the preferences over the schools they report.

The Boston mechanism lets each student apply to schools in the order of their reported
preferences. Schools in each round consider all applications received in that round, accept
the applications from the highest-ranked students according to the schools’ preferences or
some exogenous priority ordering of the students, until their capacity is filled, and reject the
remaining applicants. In subsequent rounds rejected students apply to their next highest-
ranked schools. The schools which still have seats available again accept the applications
from the highest-ranked students until their capacity is filled.

This paper revisits the question of the possibility of manipulations by schools under the
Boston mechanism. Results of Ergin and Sönmez (2006) showed that for schools it is a
dominant strategy to truthfully rank the students. This paper shows that for these results to
hold, schools need to be restricted to find all students acceptable, and that students cannot
observe the priorities set by the schools before submitting their preferences. If schools are
allowed to deem students unacceptable, we show that doing so may yield a better allocation
from the schools’ point of view. In addition, Ergin and Sönmez (2006) showed that, taking
schools’ priorities as given, the set of Nash equilibrium outcomes under the Boston mechanism
equals the set of stable matchings. Since the (student-proposing) DA algorithm always
yields the student-optimal stable matching, this implies that the Boston mechanism is Pareto
dominated by DA if all students behave strategically. We show that if schools are strategic
and can deem students as unacceptable then there may be Nash equilibrium outcomes in
undominated strategies that are not stable with respect to the true preferences of students
and schools. Moreover, we show that if students are allowed to observe the priorities set by
the schools prior to submitting their preferences, it is also the case that schools may have an
incentive to manipulate the priorities over students or their capacities, even if they cannot
deem any of them as unacceptable, and that the set of subgame perfect Nash equilibria of
the induced game may contain unstable matchings. The result we mentioned from Ergin
and Sönmez (2006), therefore, are sensitive to assumptions about the game induced by the
Boston mechanism.

The Boston mechanism and its properties have been analyzed by many papers in the liter-
ature, starting from Roth (1991), which studies a variety of matching procedures for regional
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medical labor markets in the UK. While some regions used stable mechanisms (Edinburgh
and Cardiff) others use priority mechanisms (Newcastle, Birmingham and Edinburgh), of
which the Boston mechanism is a special case.

While the use of the Boston mechanism has been criticized beginning with Abdulkadiroğlu
and Sönmez (2003) due to the possibility of gains from manipulation by students, a number
of authors show that it has some desirable properties. Abdulkadiroğlu, Che and Yasuda
(2011) and Miralles (2009) both argue in favor of the Boston mechanism on the grounds of
ex ante cardinal efficiency. In particular, when schools’ priorities are random and uniform
and students rank schools similarly but prefer them with different intensities, the equilibrium
outcome under the Boston mechanism yields higher expected welfare than the deferred accep-
tance algorithm. The reason is that students who put a particularly high cardinal value on a
school are more likely to rank this school highly and thereby obtain a seat there. Hence, the
equilibrium under the Boston mechanism makes use of information on preference intensities,
while the deferred acceptance mechanism does not.

Pathak and Sönmez (2008) analyze the Boston mechanism when there are two types of
students with different levels of strategic sophistication, while schools’ priorities are taken as
fixed. They show that sophisticated students are better off under the Boston mechanism than
naïve students. This is taken by these authors as justifying the move toward non-manipulable
mechanisms. Kojima and Ünver (2014) give two characterizations of the Boston mechanism
while allowing for schools to deem some students unacceptable.

Mennle and Seuken (2014) distinguish between the ‘naïve’ Boston mechanism and the
‘adaptive’ Boston mechanism. The latter differs from the former in that students in later
rounds never apply to schools that have already been filled up. The mechanism designer
thereby improves the behavior on behalf of the students. Since the authors consider a house
allocation problem, their adaptive Boston mechanism additionally involves randomly drawing
priorities over the students. As such, there is no scope for strategic behavior on the part of
the schools in their paper. Dur (2015) considers the modified Boston mechanism which also
involves students never applying to schools that were filled in a previous round. Unlike
Mennle and Seuken (2014) he allows for schools’ priorities to be exogenously given, rather
than randomly generated. The author also does not consider a strategic role for the schools.
Dur (2015) shows that the modified Boston mechanism is less manipulable than the Boston
mechanism in the sense of Pathak and Sönmez (2013) and that the set of Nash equilibria
induced by the (complete information) preference revelation game equals the set of stable
matchings under the true preferences.

Pais and Pintér (2008) experimentally compare the performance of the Boston, DA, and
TTC mechanisms in terms of efficiency and manipulability. As expected from the theory, the
frequency of manipulation under the Boston mechanism is greater than under the other two
strategy-proof mechanisms, especially when participants (taking the role of the students) are
given more information.

Schools’ ability to independently determine priorities over students is present in many
school choice procedures currently being used. Procedures for matching students to elemen-
tary schools in Ireland (Chen, 2016) and for secondary education in Amsterdam (De Haan,
Gautier, Oosterbeek and Van der Klaauw, 2015) and Berlin (Basteck, Huesmann and Nax,
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2016), for example, explicitly allow for schools to determine, sometimes subject to approval
by the district school board, the criteria to be used to select students when demand exceeds
the number of seats. Other than Ergin and Sönmez (2006), however, to our knowledge only
two other papers consider the question of manipulation by schools of the Boston mechanism.
Kojima (2008) generalized the earlier results of Ergin and Sönmez (2006) to a model in which
restrictions on the possible preferences of the schools are relaxed. Treating schools’ prefer-
ences as given, he shows that if schools’ preferences satisfy a substitutability condition then
the Nash equilibrium outcomes under the Boston mechanism are stable. He also shows that
stable matchings can be supported by Nash equilibria under more general priority structures.
He further provides an example in which a school may profitably manipulate the Boston mech-
anism when its preferences satisfy substitutability, but not responsiveness. Since we show
that schools with responsive preferences may profitably manipulate the Boston mechanism by
declaring some student unacceptable, this result is implied by our paper. More specifically,
our result shows that it is not necessary to extend schools’ preferences beyond responsiveness
to obtain those incentives. Ehlers (2008) considers manipulations of priority mechanisms
(manipulations by schools under the Boston mechanism being a special case of them) under
incomplete information. The author shows that when agents have symmetric (incomplete)
information, any non-truncation strategy is stochastically dominated by a truncation1 of the
true preferences of that agent. That does not imply our results, however, since it relies on
his specific assumptions over beliefs. This strategic behavior under symmetric information
is explored experimentally by Featherstone and Mayefsky (2011). Finally, the game induced
by schools’ ability to manipulate their capacities is analyzed in a series of papers for the case
of stable mechanisms (Ehlers, 2010; Konishi and Ünver, 2006; Romero-Medina and Triossi,
2013). None of these results, however, imply our results on capacity manipulation.

We introduce our model and the variants of the Boston mechanism that we consider
in section 2. Results concerning manipulability by schools and the stability of the Nash
equilibria under the simultaneous Boston mechanism are obtained in section 3. The sequential
Boston mechanism is analyzed in section 4. We conclude with a discussion in section 5.

2 Model
A two-sided matching market consists of:

1. A finite set of students I “ ti1, . . . , inu,

2. A finite set of schools S “ ts1, . . . , smu,

3. A capacity vector q “ pqs1 , . . . , qsmq,

4. A list of strict student preferences PI “ pPi1 , . . . , Pinq and

5. A list of strict school preferences PS “ pPs1 , . . . , Psmq .
1A truncation strategy leaves the true ranking over students unchanged, but might drop some acceptable

students.
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Preference relations Pi for students are over the set of schools and the option of remaining
unassigned, that is, SYtHu. Preference relations of the schools Ps are over sets of students.
For each school s P S and any positive integer qs the preference relation Ps is responsive
with capacity qs if for any set of students J Ă S and students i, i1 R J , tiuPs ti

1u implies
J Y tiuPsJ Y ti

1u, and any set of students exceeding the capacity qs is unacceptable. Let
PI be the set of all possible strict preferences over schools and PS be the set of all possible
responsive preferences over sets of students. Moreover, for a student i, let P´i be the set of
all possible strict preference profiles over schools for students Iz tiu, and P´s and q´s defined
accordingly for school s. We will from here on abuse notation by denoting singleton sets by i
or s and letting PS and PS denote the ranking over students associated with the underlying
preferences over sets of students. Furthermore, we say that student i is unacceptable for
school s if HPsi. Unacceptable schools are defined analogously for students.

A matching µ is a function from I Y S to subsets of I Y S such that:

• µ piq P S Y tHu and |µ piq| “ 1 for every student i2,

• µ psq Ď I for every school s,

• µ piq “ s if and only if i P µ psq.

A matching µ is feasible if for all s P S, |µ psq| ď qs. The set of feasible matchings is denoted
byM. A matching is individually rational if for every student i, µ piq ąi H and for every
school s and every student i1 P µ psq, i1 ąs H. A matching µ is blocked by a student i and
school s if sPiµpiq and there is a set I 1 Ď µpsqYtiu such that i P I 1 and I 1Psµpsq. A matching
µ is stable if it is individually rational and is not blocked. A school choice mechanism
Ψ is a mapping from the set of students’ preferences, schools’ capacities, and ranking over
students to the set of matchings, i.e., Ψ : PI ˆ PS ˆ Nm ÑM. A mechanism is stable if it
yields a stable matching for every profile of agents’ preferences and schools’ capacities.

A mechanism Ψ is manipulable by schools if there is a school s and school rankings
Ps, P

1
s, capacities qs, q1s such that q1s ď qs, PI P PI and P´s P P´s such that:

Ψ pPI , pP
1
s, P´sq , pq

1
s, q´sqqPsΨ pPI , PS, qq

Notice that by responsiveness no manipulation yielding a matching that is not feasible
would make a mechanism manipulable. Manipulability by students is defined analogously
except that students do not report capacities. In the case of mechanisms that are not ma-
nipulable, each agent has a weakly dominant strategy of submitting their true preferences.
We distinguish between three types of manipulations by schools. First, a mechanism Ψ is
manipulable by declaring students unacceptable if it is manipulable by a pair pP 1s, q1sq
such that q1s “ qs and there exists some i P I such that iPsH and HP 1si. Second, a mecha-
nism Ψ is manipulable by a ranking change if it is manipulable by a pair pP 1s, q1sq such
that q1s “ qs and for all i P I, iPsH implies iP 1sH. Third, a mechanism Ψ is manipulable
via capacities if it is manipulable by a pair pP 1s, q1sq such that P 1s “ Ps and q1s ă qs. If a

2We abuse notation and consider µ piq as an element of S, instead of a set with an element of S.
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mechanism is not manipulable by schools we say that for that mechanism truth-telling is a
dominant strategy for the schools.

For manipulable mechanisms one cannot rely on the truthful revelation of preferences by
all agents. Instead, we will examine the induced complete information preference revelation
game and consider its Nash equilibria. For any agent x P I Y S and her preference Px, we
can derive the corresponding weak preference relation Rx, where cRxc

1 ðñ cPxc
1 or c “ c1.

Definition 1. A strategy profile
´

P̃I , P̃S, q̃
¯

is a Nash equilibrium of the game induced
by the mechanism Ψ under preferences pPI , PS, qq if the following conditions hold:

(i) for all s P S, q̂s P N and P̂s P Ps, it holds that:

Ψ
´

P̃I , P̃S, q̃
¯

RsΨ
´

P̃I ,
´

P̂s, P̃´s

¯

, pq̂s, q̃´sq
¯

(ii) for all i P I and P̂i P Pi, it holds that:

Ψ
´

P̃I , P̃S, q̃
¯

RiΨ
´´

P̂i, P̃´i

¯

, P̃S, q̃
¯

We say that Ψ
´

P̃I , P̃S, q̃
¯

is a Nash equilibrium outcome for preferences pPI , PSq and

capacity q if
´

P̃I , P̃S, q̃
¯

is a Nash equilibrium of the game induced by the mechanism Ψ

under pPI , PS, qq.
In some of our results, we consider allowing students to observe reports by the schools

before submitting their own preferences. In that case the strategy of a student is no longer
simply the choice of a preference ordering but it is a preference ordering for each possible
pair ranking/capacities reported by the schools. We denote by fi : PS ˆNm

` Ñ Pi a strategy
for a student in a preference revelation game in which schools move first. We let FI be
the set of strategy profiles for all students. We say that a mechanism Ψ is a sequential
(school choice) mechanism if students can observe the schools’ reported preferences before
themselves submitting preferences.3 To analyze schools’ incentives in a sequential mechanism
we restrict the strategies that students play to those that are optimal against the other
students’ strategies given the submitted preferences and capacities of the schools. In other
words, given the schools’ reports the students are assumed to play Nash equilibrium strategies.

Definition 2. A strategy profile of students fI P FI is sequentially rational (with respect
to a sequential mechanism Ψ) if for all pPS, qq P PS ˆ Nm

` and for all i P I and Pi P Pi it
holds that:

3There is an alternative concept of sequential mechanisms in the school choice literature due to Dur and
Kesten (2014). In their analysis schools are not strategic agents. There are two sets of schools that are
assigned sequentially. In the first round students are assigned to one of the schools in the first set, based
solely on their preferences over those schools. In the second round, students who were left unassigned in the
first round are assigned to the second set of schools. In their case “sequential” thus refers to sequentially
making an allocation decision. This allows us to use different allocation rules, such as the Boston mechanism,
top trading cycles or deferred acceptance for different rounds. In contrast, “sequential” in our paper refers to
schools submitting their preferences before the students with a fixed allocation rule.
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Ψ
´

fI

´

P̃S, q̃
¯

, P̃S, q̃
¯

RiΨ
´

Pi, f´i

´

P̃S, q̃
¯

, P̃S, q̃
¯

Definition 3. A sequential mechanism Ψ is sequentially manipulable by schools if there
is a school s and school rankings Ps, P

1
s, capacities qs, q1s such that q1s ď qs and P´s P P´s

such that for all sequentially rational fI P FI :

Ψ pfI ppP
1
s, P´sq , pq

1
s, q´sqq , pP

1
s, P´sq , pq

1
s, q´sqqPsΨ pfI pPS, qq , PS, qq

The above definition of manipulability of a sequential mechanism restricts the set of
strategies that students can play to those that are optimal for all possible reports made by
the school and strategies chosen by the other schools.4 More importantly, if a mechanism
is sequentially manipulable by schools, it is not a dominant strategy for schools to submit
their true rankings and/or capacities. While this definition is not standard, it captures
the notion that schools can manipulate the sequential Boston mechanism even if students
react optimally to their manipulations.5 The definitions of sequentially manipulable by
declaring students unacceptable, sequentially manipulable by a ranking change
and sequentially manipulable via capacities are straightforwardly derived from the ones
for the simultaneous game.

Definition 4. A profile
´

fI , P̃S, q̃
¯

is a subgame perfect Nash equilibrium of a mecha-
nism Ψ under preferences pPI , PSq if the following conditions hold:

(i) for all s P S, P̂s P Ps and q̂s P N we have:

Ψ
´

fI

´

P̃S, q̃
¯

, P̃S, q̃
¯

RsΨ
´

fI

´´

P̂s, P̃´s

¯

, pq̂s, q̃´sq
¯

,
´

P̂s, P̃´s

¯

, pq̂s, q̃´sq
¯

(ii) for all i P I and f̂i P Fi we have

Ψ
´

fI

´

P̃S, q̃
¯

, P̃S, q̃
¯

RiΨ
´´

f̂i

´

P̃S, q̃
¯

, f´i

´

P̃S, q̃
¯¯

, P̃S, q̃
¯

We focus here on one particular mechanism, which was used in the Boston Public School
Match before it was changed to the student-proposing deferred acceptance mechanism of
Gale and Shapley (1962) in 2005 (Abdulkadiroğlu, Pathak, Roth and Sönmez, 2005a). Many
other cities have used similar mechanisms to allocate school seats to students.

The Boston mechanism: Each student and school reports a preference order over
each other and the option of being unmatched. Schools additionally report their capacities.
Students and schools are matched in rounds.

4If one allowed students to play arbitrary strategies in a sequential mechanism then the requirement of
non-manipulability would be too strong. For example, one could specify strategies that call for all students
to rank a particular school first if that school is not truthful but to rank it last if the school reports truthfully.
Under most matching algorithms this would yield an incentive not to tell the truth.

5The idea behind this definition is not that it is a property that is necessarily of independent interest.
Rather it is a definition that allows us to precisely discuss how the Boston mechanism may give schools an
incentive to misrepresent their preferences if students observe the schools’ reports before submitting theirs.
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• Round 1: Each student applies to the highest-ranked school according to the reported
preference order. Each school accepts the students who applied to it in order of their
priority according to the preference order reported by the school until there are either
no more students who applied to the school or the school reaches its capacity. Students
whose applications are unsuccessful are rejected.

• Round k ě 2: Each student who was rejected in round k´ 1 applies to her k highest-
ranked school if it is acceptable to the student. Otherwise the student is assigned to
the outside option. Each school with remaining spots accepts students who applied to
it in round k in order of their priority according to the preference order reported by the
school until there are either no more students who applied or the school has reached
its capacity. Students whose applications are unsuccessful are rejected.

The procedure ends when all students are either assigned a seat at a school or the outside
option.

The Boston mechanism as described above will be referred to as the two-sided simul-
taneous Boston mechanism. The reason is that both sides of the market, students and
schools, are taken as strategic agents who report preferences simultaneously. A commonly
analyzed variant is the one-sided Boston mechanism in which only the students are seen
as strategic agents and the schools’ preferences and capacities are seen as administrative
priorities which are simply observed or directly chosen by the market designer. We further
consider the two-sided sequential Boston mechanism, which only differs from the two-
sided simultaneous Boston mechanism in that students observe the rankings and capacities
reported by the schools before reporting their own preferences. It is often more realistic to
suppose that schools move first in school choice mechanisms since schools’ priorities are often
set in advance and communicated to prospective applicants. For example, a school could
indicate that it accepts students according to their residence location or a specified weighted
average of the students’ grades in an exam. Since we are mainly concerned with the strate-
gic behavior of schools under the Boston mechanism, we focus on the two-sided variants of
the Boston mechanism, although we will make use of some existing results of the one-sided
Boston mechanism.

In a setting in which schools are restricted to reporting rankings where every student is
acceptable,6 Ergin and Sönmez (2006) prove the following results:

Theorem. (Theorem 2 in Ergin and Sönmez, 2006) In the two-sided (simultaneous)
version of the Boston mechanism, it is a dominant strategy for any school s to rank students
based on its true preferences Ps. Moreover, any other dominant strategy of school s is outcome
equivalent to truthfully ranking students based on Ps.

Theorem. (Theorem 1 in Ergin and Sönmez, 2006) Let PI be the list of true student
preferences, and consider the preference revelation game induced by the (one-sided) Boston
mechanism. The set of Nash equilibrium outcomes of this game is equal to the set of stable
matchings under the true preferences PI .

6This rules out manipulating by declaring students unacceptable.
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In the next section we show that the conclusions of the two theorems no longer hold if
schools are allowed to declare some students unacceptable.

3 The Simultaneous Boston Mechanism
First, we show that schools may improve the set of students who are matched to them by
declaring some students unacceptable:

Proposition 1. The simultaneous two-sided Boston mechanism is manipulable by declaring
students unacceptable.

Proof. Consider the following two-sided matching market:

I “ ti1, i2, i3u S “ ts1, s2u , q1 “ q2 “ 1
Pi1 : s2 s1 Ps1 : i1 i2 i3
Pi2 : s1 s2 Ps2 : i3 i1 i2
Pi3 : s2 s1

The outcome of the Boston mechanism when students and schools submit their rankings
truthfully is µ:

µ “

ˆ

s1 s2 H

i2 i3 i1

˙

If school s1 submits, instead, the ranking P 1s1 : i1 i3 and the same capacity, the outcome
of the Boston mechanism is µ1 as follows:

µ1 “

ˆ

s1 s2 H

i1 i3 i2

˙

Since s1 prefers student i1 to i2, school s1 is better off after that manipulation.

The rationale behind the manipulation of school s1 is as follows. In the first round of
the Boston mechanism only student i2 applies to it. However, in the next round there will
be an application by student i1 which school s1 prefers to i2. By declaring i2 unacceptable
school s1 can prevent student i2 from taking its one seat and can then accept student i1 in
the second round.

Manipulating by declaring some students unacceptable appears to have been featured
in some real-life markets. Consider, for example, the school assignment procedure used in
New York City before the change to the Student-Proposing Deferred Acceptance Algorithm
of Gale and Shapley (1962) in 2003. Before the change, there was no central authority
coordinating the assignment. Strictly speaking, there was no use of the Boston mechanism
in New York. However, the procedure used is roughly comparable to the Boston mechanism.
Students could send a letter to up to five schools in the first round. Schools, upon receiving an
application could decide whether to accept the student, put her on a waiting list or reject the
student (Abdulkadiroğlu, Pathak and Roth, 2005b). After the change to a new mechanism it
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was reported that: “Before you might have a situation where a school was going to take 100
new children for ninth grade, they might have declared only 40 seats, and then placed the
other 60 outside of the process” (New York Times, November 19, 2004). While it may appear
as though schools may have manipulated capacities, this is not the case.7 By declaring only
40 seats and then filling another 60 seats at a later stage, the schools effectively declared
some students as unacceptable. Furthermore, the type of manipulation that has occurred
suggests that the incentives to manipulate that we identified in Proposition 1 are of empirical
relevance and importance. This suggests that the incentive to strategically withhold seats in
order to accept more preferred applicants at a later stage, which we have identified under the
Boston mechanism, is practically relevant. Another method by which schools could declare
students as unacceptable is by setting grade thresholds below which students are not accepted
or by setting other admissions requirements. Both of these manipulations may be argued to
be due to an objective necessity of students satisfying such requirements.

Theorem 1. If schools are allowed to deem students as unacceptable, the set of Nash Equilib-
rium outcomes in undominated strategies of the game induced by the two-sided simultaneous
Boston mechanism may contain unstable matchings. Moreover, the resulting equilibrium out-
come may Pareto dominate all stable matchings for the schools.

Proof. Consider the following two-sided matching market:

I “ ti1, i2, i3, i4u S “ ts1, s2, s3u , q1 “ 2, q2 “ q3 “ 1

Pi1 : s2 s1 s3 Ps1 : i1 i2 i3 i4

Pi2 : s1 s2 Ps2 : i2 i1 i3

Pi3 : s2 s3 s1 Ps3 : i4 i1 i3

Pi4 : s1 s3

The following strategy profile P̃ is a Nash equilibrium:

P̃i1 : s2 s1 s3 P̃s1 : i1 i3

P̃i2 : s2 s1 P̃s2 : i2 i1 i3

P̃i3 : s2 s3 s1 P̃s3 : i4 i1 i3

P̃i4 : s3 s1

The outcome in that equilibrium in the Boston mechanism is the matching µ as follows:

µ “

ˆ

s1 s2 s3
i1,i3 i2 i4

˙

7When manipulating capacities, a mechanism cannot assign more students to a school than its stated
capacities. In New York schools clearly received more students than was possible in their initially declared
capacity quota.
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To see that this is an equilibrium, consider the deviations that schools and students could
have:

• Student i1 cannot be accepted by s2 at the first step, since i2 is also applying there
at that step and has higher priority. Since there are no other seats at s2, i1 cannot
profitably deviate.

• Student i2 is not acceptable to school s1, and therefore cannot profitably deviate.

• Student i3 cannot be accepted at school s3, since i4 is applying there at the first step
and has higher priority. She also cannot be accepted at s2, since she has a lower priority
than i1 and i2, who apply there at the first step. Therefore, i3 also cannot profitably
deviate.

• Student i4 is not acceptable at school s1, and therefore cannot profitably deviate.

• School s1 would only be able to be better off if it got students i1 and i2. Since i2 ranks
school s2 first and is accepted in the first step, the report s1 makes does not affect
where i2 is allocated.

• Schools s2 and s3 already have their most preferred students, and so have no incentive
to deviate.

The matching µ is not stable, however, since school s1 and student i2 form a blocking
pair. To show that µ Pareto dominates for the schools all stable matchings, it suffices to show
that µ Pareto dominates for the schools the school-optimal stable matching µS as follows:

µS
“

ˆ

s1 s2 s3
i2,i3 i1 i4

˙

Given the schools’ preferences, µ ps1qPs1µ
S ps1q, µ ps2qPs2µ

S ps2q and µ ps3qRs3µ
S ps3q.

Therefore, µ Pareto dominates µS for the schools.
It remains to show that the strategy profile P̃ is undominated for the schools and the

students. First, a strategy that differs from an initial strategy only by declaring some unac-
ceptable student/school to be acceptable cannot dominate the initial strategy. Second, for
a school no strategy is dominated by another strategy that declares fewer students than the
school’s capacity as acceptable.

Third, truth-telling is not a dominated strategy for the students. To see this, consider
for some student i a strategy profile for the schools so that only student i acceptable. Then
any strategy of student i that does not truthfully reveal i’s most preferred school does worse
than truth-telling. Next consider for student i a strategy profile for the schools such that
i’s most preferred school finds i unacceptable, while all other schools find only i acceptable.
Then no strategy that doesn’t rank student i’s second-most preferred school second or better
can dominate truth-telling. This argument can be continued down to i’s least preferred
acceptable school.
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Fourth, truth-telling is not a dominated strategy for the schools with capacity 1. To see
this, consider a strategy profile for the students such that all students rank school s first.
If school s does not truthfully reveal its most preferred student it does not get it, while it
would under truth-telling. Hence truth-telling does better in that case than not revealing
the most preferred student. Next, consider a strategy profile where all students, except the
most preferred student of school s rank school s first. Then any strategy that ranks the
second-best student for school s worse than under truth-telling does worse than truth-telling.
This argument can be continued down to school s’s least preferred acceptable student.

From the above it follows that the strategies under P̃ for schools s2 and s3 as well as for
students i1 and i3 are undominated. For student i2, the only strategy that could dominate
P̃i2 is truth-telling as there are only two ways to rank the two schools acceptable to student
i2. Given P̃´i2 truth-telling would result in i2 being unassigned, implying that P̃i2 is undom-
inated. Similarly, for student i4 the only strategy that could dominate P̃i4 is truth-telling.
To see that it does not, consider a profile where student i1 ranks s3 first, s1 declares i4 to be
unacceptable and i4 and s3 are truthful. Then i4 is left unassigned, but would be allocated
to s3 if instead she played P̃i4 .

Finally it remains to show that P̃s1 is not dominated. For school s1, given its capacity of
two seats, any preference profile that considers only i1 and i3 acceptable is outcome equivalent
to P̃s1 and therefore does not dominate it. Given P̃´s1 , any other strategy for s1 that also
declares two students acceptable makes s1 strictly worse off and therefore cannot dominate
P̃s1 . Hence we only need to consider strategies that make more students acceptable. For any
such strategy, consider a profile of preferences such that all students except i1 apply to s1 in
the first round, while i1 ranks another school, that considers i1 acceptable, first and school
s1 second. Then the best possible outcome for s1 is to obtain students i2 and i3. However,
playing P̃s1 would yield i1 and i3 for school s1, which it strictly prefers. Hence no strategy
that finds more students acceptable than i1 and i3 dominates P̃s1 . Therefore the equilibrium
strategy profile P̃ consists only of undominated strategies.

It’s still the case that for any stable matching there exist preference reports such that
the Nash equilibrium outcome of the two-sided simultaneous Boston mechanism equals the
stable matching. This can be supported by simply letting each student state that only the
school to which it is allocated under a stable matching is acceptable. Schools likewise rank
only those students which are matched to them under the stable matching. If all agents play
such strategies then no agent can gain by deviating.

While schools may have an incentive to manipulate their priorities by declaring some
students unacceptable, there are no incentives to understate capacities.

Proposition 2. The two-sided simultaneous Boston mechanism is not manipulable via ca-
pacities.

Proof. Fix students’ and schools’ reported preference profile. Consider a school s with true
capacity qs that reports q̂s ă qs, while keeping all other schools’ reports constant. In the first
round of the Boston mechanism students apply to their favorite school. If school s receives
less than q̂s applications from students then the reported capacities does not affect which
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students get accepted by any school. The mechanism then moves to the next round. Let
ak be the number of students school s has accepted just before round k. As long as ak plus
the number of new acceptable applicants in round k is below q̂s, the reported capacities do
not affect which student gets accepted by any school and the mechanism moves to the next
round. However, if ak plus the number of new acceptable applicants in round k exceeds q̂s
then s will simply reject up to qs ´ q̂s students who would be matched to it if it reported
capacities truthfully. In any subsequent round school s cannot accept any more students if
it reported q̂s. Therefore, by reporting q̂s, school s is being assigned a subset of the students
who would be matched to it if it had reported its capacity truthfully. Since all students
matched to s under the true capacity are acceptable to s, responsiveness of preferences imply
that school s cannot prefer its assignment when reporting a smaller capacity.

The intuition behind this result is similar to that behind Theorem 1 in Ergin and Sönmez
(2006). By reporting a capacity below the true capacity, a school will still receive the same
sequence of applications but it can accept only a subset of the applicants. Therefore, there
is no opportunity to gain from pretending to have a smaller capacity.

4 The Sequential Boston Mechanism
In many school choice applications students who apply to schools are aware of how schools’
priorities over students are formed. For example, in Boston it was well-known that stu-
dents with a sibling attending a school would be given higher priority. The analysis so far
has assumed that both students and schools report their preferences simultaneously. We
now consider the case in which schools first submit their ranking over students, and sec-
ond, students submit their ranking over schools after having observed how the schools rank
students. This allows students to report different preferences depending on the observed
priorities reported by the schools. The following proposition shows that this allows schools
to manipulate the sequential Boston mechanism without having to declare a student unac-
ceptable. This implies that the non-manipulability of the Boston mechanism requires both
that schools cannot declare students unacceptable and that preferences and capacities are
submitted simultaneously.

Proposition 3. The two-sided sequential Boston mechanism is sequentially manipulable by
ranking changes.

Proof. We assume that students’ strategy profiles are sequentially rational. Therefore, each
student’s strategy is chosen to be optimal against other students’ strategies for all possible
profile of schools’ reported preferences. By Theorem 1 in Ergin and Sönmez (2006), this
implies that every equilibrium outcome is stable with respect to schools’ reported rankings
and students’ true preferences. Moreover, notice that sequential rationality fully (though not
necessarily uniquely) specifies students’ strategies at each subgame.

Consider the following two-sided matching market:
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I “ ti1, i2, i3, i4, i5u S “ ts1, s2, s3u , q1 “ 3, q2 “ q3 “ 1
Pi1 : s2 s1 s3 Ps1 : i1 i2 i3 i4 i5

Pi2 ´ Pi5 : s1 s2 s3 Ps2 : i3 i2 i1 i4 i5
Ps3 : i1 i2 i3 i4 i5

Consider the matching µ:

µ “

ˆ

s1 s2 s3
i2,i3, i4 i1 i5

˙

We first show that µ is the unique stable matching with respect to schools’ and students’
true preferences. Since students i1, i2, i3 and i4 are all allocated to their first choice they
cannot be part of a blocking pair. Student i5 is the least preferred student of all schools and
therefore not part of a blocking pair. To see that there is no other stable matching, note
that since total capacity equals the number of students and since all students and schools
are acceptable, every student has to be matched to a school at any stable matching. Student
i5 has to be matched to school s3 at every stable matching. If i5 were matched to another
school s ‰ s3 then that school s and the student matched to school s3 would form a blocking
pair since student i5 is the least preferred student of any school and school s3 is the least
preferred school of any student. It remains to be considered whether a student other than
i1 could be matched to school s2 at some other stable matching. If i2 were matched to s2
and i1, i3, i4 were matched to s1 then pi2, s1q would form a blocking pair since s1Pi2s2 and
i2Ps1i4. If i3 were matched to s2 then pi3, s2q would form a blocking pair since s1Pi3s2 and
i3Ps1i4. Finally, if i4 were matched to s2 then pi1, s2q would form a blocking pair since s2Pi1s1
and i1Ps2i4. Hence, there is no other stable matching. Thus, the matching µ is the unique
equilibrium outcome when schools report their rankings and capacities truthfully.

Consider the following deviation by school s1: it reports the same capacity and P 1s1 :
i1 i2 i4 i5 i3 in the first stage of the sequential Boston mechanism while the other schools
report their preferences truthfully. Then the unique stable allocation with respect to schools’
reported rankings and students’ true preferences (and therefore the unique equilibrium out-
come of that subgame) is µ1:

µ1 “

ˆ

s1 s2 s3
i1,i2, i4 i3 i5

˙

To see this, note that schools s1 and s2 get their most preferred students according to
their reported preferences and thus cannot be part of a blocking pair. School s3 is the least
preferred school by any student and therefore also cannot be part of a blocking pair. To see
that there is no other stable matching, note that again no student can be unassigned at a
stable matching. Also, i5 must be matched to s3. If i5 were assigned to a some other school
s ‰ s3 then s and the student assigned to s3 would block the matching. It remains to be
considered whether a student other than i3 could be matched to school s2 at some other
stable matching. If i P ti1, i2, i4u were matched to s2 (and thus i3 is matched to s1) then
pi5, s1q would form a blocking pair as i5P 1s1i3 and s1Pi5s3.
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School s1, therefore, receives students µ1ps1q “ ti1, i2, i4u with the deviation, which is a set
of students strictly preferred to µps1q “ ti2, i3, i4u for any responsive preferences consistent
with school s1’s true ranking over students.

Ergin and Sönmez (2006) have shown that if schools rank all students truthfully then
the set of equilibrium outcomes under the Boston mechanism is equal to the set of stable
matchings when schools have no unacceptable students. This leaves open the possibility of
unstable equilibrium outcomes which are supported by schools not reporting their preferences
truthfully. In such equilibria the schools would be indifferent between their equilibrium
strategies and truthfully reporting their preferences. Furthermore, such equilibria require
schools to play weakly dominated strategies. The result in Proposition 3 shows that when
submitting their rankings before the students, manipulations may be profitable for schools.
The reason is that by changing their reports, schools can also affect the students’ reported
preferences. In the example used to prove Proposition 3 school s1, by shifting student i3’s
ranking to the bottom, induces students to instead first apply to school s2. This then leads
student i1 to apply first to school s1.

If we assume that students play optimally in the second stage of the sequential Boston
mechanism, the outcome will be a stable allocation with respect to the reported preferences
of the schools. This, however, does not necessarily determine the outcome of the second
stage since in many examples there is more than one stable matching. If we consider the
(arbitrary) equilibrium selection rule that always picks the equilibrium yielding the student
optimal stable matching then from the results of Roth (1985) it follows that schools will
generally have an incentive to misstate their preferences. In addition, it follows from his
paper that by manipulating their preferences, schools may obtain a matching that is preferred
to the school-optimal stable matching. This is the logic that underlies our Theorem 2.

Theorem 2. Holding schools’ capacities fixed, the set of subgame perfect Nash equilibrium
outcomes of the sequential Boston mechanism may contain matchings that are not stable
with respect to agents’ true preferences. Moreover, the resulting equilibrium may be weakly
preferred by all schools to all stable matchings.

Proof. Consider the example used to prove Proposition 3 and the matching µ1 in that propo-
sition’s proof.

µ1 “

ˆ

s1 s2 s3
i1,i2, i4 i3 i5

˙

that results when s1 reports P 1s1 : i1 i2 i4 i5 i3 and the other schools report their preferences
truthfully. We will show that the schools’ reports pP 1s1 , Ps2 , Ps3q constitute a Nash equilibrium.
School s2 gets its most preferred student i3 and therefore cannot gain by any deviation. School
s3 is the least liked by all the students. Suppose that for some other reported preference profile
school s3 obtains a student i P ti1, i2, i3, i4u. If i “ i3, then i and s2 constitute a blocking
pair. If i P ti1, i2, i4u then i and school s1 constitute a blocking pair because i is among the
three most preferred students of s1 according to P 1s1 . Therefore, it cannot be a continuation
equilibrium for s3 to obtain a student other than i5 irrespective of the report submitted by
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s3. Thus, s3 has no incentive to deviate. Lastly, consider the incentives of school s1 to
deviate. To gain from a deviation s1 needs to be matched to students ti1, i2, i3u. Suppose
that there is some report P̃s1 that yields this outcome for s1 while the other schools report
truthfully. Since the outcome must be stable with respect to students’ true preferences and
pP̃s1 , Ps2 , Ps3q, in a continuation equilibrium yielding this outcome for s1 we would need i4 to
be matched to s2 and i5 to s3. Otherwise pi4, s2q would be a blocking pair. However, in this
case pi1, s2q would then be a blocking pair. The outcome is thus unstable, which consists of a
contradiction with school s1 profitably deviating from P 1s1 . It follows that s1 also cannot gain
by a deviation. Therefore µ1 is a subgame perfect Nash equilibrium outcome of the sequential
Boston mechanism.

It remains to be noted that µ1 is not stable with respect to schools’ and students’ true
preferences. The pair pi3, s1q blocks the matching, since s1Pi3µ

1pi3q “ s2 , i4 P µ1ps1q and
i3Ps1i4. Finally, since schools s1 and s2 strictly prefer µ1 over µ (which is the unique stable
matching with respect to the true preferences) and school s3 is indifferent between them, µ1
is a Pareto improvement for the schools over all stable matchings.

In our proof we relied on the fact that the set of Nash equilibrium outcomes in undomi-
nated strategies of the one-sided Boston mechanism is the set of stable matchings with respect
to students’ true preferences. This is noteworthy because even the student-proposing deferred
acceptance mechanism (Gale and Shapley, 1962) has equilibria in undominated strategies that
are not stable (Roth and Sotomayor, 1990) when schools report preferences truthfully. In
other words, while the Boston mechanism fully implements the set of stable matchings in
undominated strategies, that is not the case for the student-proposing deferred acceptance
mechanism and so the incentives that schools have under the latter doesn’t necessarily trans-
lates into incentives in the former. The equivalence of the set of outcomes of the one-sided
Boston mechanism to the set of stable matchings simplified our equilibrium analysis since
it allowed us to consider the outcomes of continuation equilibria directly without having to
explicitly specify and consider the strategies played by the students which give rise to these
outcomes.

One feature of the preference relation P 1s1 that we use in the proofs of Proposition 3
and Theorem 2 is that it does not declare any student unacceptable. For the simultaneous
Boston mechanism Ergin and Sönmez (2006) show that such manipulations cannot yield a
better outcome for the schools. What our result highlights is that the timing of preference
submission is a critical assumption in that result. The manipulability of the sequential Boston
mechanism by declaring a student unacceptable and the instability of its equilibrium outcome
can be shown by following the same steps of the proofs of Proposition 3 and Theorem 2 by
school s1 declaring student i3 to be unacceptable.

Remark 1. The two-sided sequential Boston mechanism is sequentially manipulable by declar-
ing students unacceptable. Moreover, the set of subgame perfect Nash equilibrium (SPNE)
outcomes may contain matchings that are not stable with respect to agents’ true preferences.

If we consider the case in which students submit their preferences before the schools,
Theorem 2 in Ergin and Sönmez, 2006 implies that schools will not have any incentive to
misrepresent their rankings. Therefore, students will play the preference revelation game
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induced by the one-sided version of the Boston mechanism and the corresponding results in
Ergin and Sönmez, 2006, hold.

Remark 2. If students submit their preferences first and schools submit theirs afterward
under the Boston mechanism, the set of subgame perfect Nash equilibria outcomes equals
the set of stable matchings under the true preferences, when all students are required to be
acceptable by all schools.

For the simultaneous Boston mechanism we have shown that schools do not have an
incentive to manipulate their capacities. We now show that this result also depends on the
timing of the game. Specifically, when schools report their capacities before students report
their preferences (and capacities are observable by the students) then schools may have an
incentive to manipulate their capacities.

Proposition 4. The two-sided sequential Boston mechanism is sequentially manipulable via
capacities.

Proof. Consider the following example. Preferences for both schools are responsive.8

I “ ti1, i2, i3, i4u S “ ts1, s2u , q1 “ 3, q2 “ 2
Pi1 : s2 s1 Ps1 : ti1, i2, i3u ti1, i2u ti1, i3u ti1u ti2, i3u ti1u ti2u ti3u ti4u
Pi2 : s1 s2 Ps2 : i4 i3 i2 i1
Pi3 : s1 s2
Pi4 : s2 s1

For school s1 we have only shown preferences that are relevant to our analysis (that
is, we do not show how the preferences of school s1 over sets including student i4 are).
We assume that schools’ priorities are fixed. Given the school’s preferences and capacities,
by sequential rationality and Theorem 1 of Ergin and Sönmez (2006), the outcome of the
subgame played by the students after schools report their capacities is stable with respect to
their true preferences and the schools’ reported capacities. Hence, it is sufficient to consider
the resulting set of stable matchings for each possible combination of capacities reported by
the schools. When the reported capacities are p3, 2q it is easy to verify that the unique stable
allocation is given by:

µ “

ˆ

s1 s2
i2,i3 i1, i4

˙

When the reported capacities are p1, 2q the unique stable allocation is given by:

µ̂ “

ˆ

s1 s2
i1 i3, i4

˙

Since ti1uPs1ti2, i3u, school s1 gains from understating its capacity by 2.
8For this example it is not necessary to specify the preferences of school s2 beyond its ranking over

singleton sets of students.
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Unlike in the simultaneous Boston mechanism, schools may have incentives to misstate
their capacity in the sequential Boston mechanism. The intuition is similar to preference
manipulations of the sequential Boston mechanism: by misstating its capacity, a school may
change the set of stable matchings.

The next proposition considers the game induced by the sequential Boston mechanism
when schools’ only strategic variable is their reported capacity.

Theorem 3. Holding schools’ preferences fixed, the set of SPNE outcomes of the sequential
Boston mechanism may have no stable matching when schools are only able to manipulate
their capacities. Moreover all SPNE outcomes may be strictly preferred by the schools over
all stable allocations.

Proof. Consider the example in the proof of Proposition 4. The only stable allocation, under
true capacities is µ:

µ “

ˆ

s1 s2
i2,i3 i1, i4

˙

Clearly, the profile p3, 1q cannot be part of an SPNE strategy profile, since school s2 would
only obtain student s4, which is worse than the outcome under p3, 2q. If school s1 reports
p1, 2q, instead, the equilibrium outcome is unique and given by:

µ̂ “

ˆ

s1 s2
i1 i3, i4

˙

which is preferred by both schools to µ and for school s2 is its most preferred set of
students. Therefore, p3, 2q is not part of an SPNE strategy profile. Moreover, it follows
that p1, 1q is not part of an SPNE strategy profile, as s2 would prefer to state its capacity
truthfully. Consider next what happens when the reported capacities are p2, 2q. In that case
there are two stable matchings (and thus two possible continuation equilibrium outcomes,
given students’ strategies). These are µ and µ̃:

µ̃ “

ˆ

s1 s2
i1, i2, i3, i4

˙

Note that under µ̃ both schools get their most preferred set of two students, while µ is the
unique stable outcome. There are two equilibrium outcomes for the subgame after reported
capacities p2, 2q. When µ is the outcome, then p2, 2q is not part of an SPNE strategy profile,
since school s1 prefers the outcome of p1, 2q to µ, which it can reach by deviating. If instead
the outcome is µ̃, then p2, 2q is part of a SPNE strategy profile. Lastly, p2, 1q is not part of
an SPNE strategy profile, since s2 only obtains student s4, which is worse than the outcome
under p2, 2q, irrespective of the following equilibrium outcome.

Finally, note that the two possible equilibrium outcomes, µ̃ and µ̂, are strictly preferred
by both schools over the unique stable allocation µ.

The proof of Theorem 3 shows that there are situations in which no stable allocation is
supported by a subgame perfect Nash equilibrium when schools can only misrepresent their
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Manipulations Simultaneous Boston Sequential Bostonby Schools

Manipulable No Yes

Ranking Changes (Ergin and Sönmez, 2006) (Proposition 3)

Stable Yes No
(Ergin and Sönmez, 2006) (Theorem 2)

Manipulable Yes Yes

Acceptability (Proposition 1) (Remark 1)

Stable No No
(Theorem 1) (Remark 1)

Manipulable No Yes

Capacity (Proposition 2) (Proposition 4)

Stable Yes No
(Proposition 2) (Theorem 3)

Table 1: Summary of the results for manipulability and stability of equilibrium outcomes for
the simultaneous and sequential Boston mechanisms.

capacities, but not their preferences. By misstating their capacities schools can obtain an
outcome that all of them strictly prefer to the stable allocation.

5 Concluding Remarks
The contributions of our paper with respect to the previous literature are summarized in
table 5.

We point out that all the results shown in this paper also hold under the modified Boston
mechanism, proposed by Dur (2015). The first round of the modified Boston mechanism and
of the (standard) Boston mechanism are identical, but for any subsequent round we instead
have:

• Round k ě 2: Each student who was rejected in round k ´ 1 applies to her next
most preferred school that at the end of round k ´ 1 still has at least one open seat.
Otherwise the student is assigned to the outside option. Each school that has remaining
spots accepts students who applied to it in round k in order of their priority according
to the preference order reported by the school until there are either no more students
who applied or the school has reached its capacity. Students whose applications are
unsuccessful are rejected.

The difference is that under the modified Boston mechanism students are somewhat protected
from strategic errors as they never apply to a school that has reached full capacity before the
student has even applied to it. Note that when students play optimally there is no difference
in the outcomes that are obtained under the modified Boston mechanism and the standard
Boston mechanism, which implies that the set of Nash equilibria that can be obtained is

18



identical for both mechanisms. Additionally, for the examples we use in our results, the
outcome of the Boston Mechanism and the Modified Boston Mechanism are identical.

Remark. Propositions 1 and 3, and theorems 1 and 2 hold for the modified Boston mechanism
(Dur, 2015).
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