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Analyzing the Employment Status 
with Panel Data from the GSOEP

A Comparison of the MECOSA and the GEE1 Approach 
for Marginal Models*

by Andreas Z i e g l e r * *  and Gerhard A r m i n g e r ***

1. Introduction

Two different approaches for the analysis of dichotomous 
panel data have been well developed in the last years, that 
is the GEE approach of Liang and Zeger (1986) and the ap­
proach of estimating the models of Heckman (1981a).

First, a special case of the model Heckman proposed in 
1981 is embedded into the Mean and Covariance Structure 
Model for non-metric dependent variables which has been 
introduced by Muthen (1984) and extended by Kusters 
(1987) and Schepers and Arminger (1992). The model 
parameters can be estimated with the assumption of 
multivariate normality of the error terms. Special problems 
of non-metric panel data such as time dependent 
variances, unobserved heterogeneity and serial correlation 
can be directly solved by models using the polychoric 
covariance matrix (Arminger 1992).

Second, the approach of the generalized estimating 
equations (GEE) proposed in a series of papers by Liang 
and Zeger (Liang and Zeger, 1986; Zeger and Liang, 1986; 
Zeger, 1988) is discussed. Here, the original model of Liang 
and Zeger (1986) is considered and termed as GEE1. Like in 
the Mean and Covariance Structure Analysis approach, the 
mean structure for the dependent dichotomous variable is 
formulated with a distributional assumption such as in the 
probit or the logit model. If the mean structure is correctly 
specified and first order identifiable Pseudo Maximum 
Likelihood (PML) estimation developed byGourierouxet al. 
(1984) is used a consistent estimate of the parameter vector 
may be obtained.

Third, both estimation strategies are illustrated in an em­
pirical example: The employment status of 1246 men of the 
GSOEP from 1985 to 1988 dependent on explanatory 
variables such as age, professional education, family 
status and history of unemployment at the first wave is con­
sidered. The microeconomic specification of models for the 
employment status is found in Flaig et al. (1993). However, 
these authors concentrate on models for state 
dependence, while we consider models w ithout state 
dependence.

2. The Heckman Model for Dichotomous Variables

Heckman1 has proposed a general model for the 
analysis of dichotomous panel data. He considers the 
unobserved variable y*t, i = 1 K, i=1 ,...,r, where i

denotes the individual and t denotes a sequence of (fixed) 
equispaced time points:

ytt = ft/ + =  (<h-- *? ~ m  v  (1)
The latent metric variable y*t may be considered as a 

propensity or utility. In the context of models for unemploy­
ment it denotes the propensity for individual i to be 
unemployed in period t. It is decomposed into a systematic 
part ft, and an error term e,*. Observable is a dependent 
dummy variable yit which is connected to y* through a 
dichotomous threshold model:

11 if y'it >  0
(2)

o ¡f yft =£ o

Note, that the thresholds are 0 for every single wave. This 
restriction is only necessary to avoid identification pro­
blems, if the waves are considered separately. But the 
thresholds should be set equal across panel waves, other­
wise the meaning of the categories varies over time.

The systematic part ¡iit follows a linear model:

Hi, = x?tp . (3)

represents the effect of possibly time varying ex­
planatory variables xit. In this model the parameter vector 
/3 is time constant. The random variables (y¡, xt) are 
assumed to be independent and identically distributed 
which corresponds to simple random sampling from a 
population. In addition, it is assumed that strong ex­
ogeneity of the error terms e„ holds, i.e. the e„ are uncor­
related with past, present and future explanatory variables. 
No assumption about stationarity of the disturbances is 
imposed.

Equation (3) can be extended by including duration 
dependence (inclusion of state dependence (in­
clusion o f 5 >  1) and habit persistance (inclusion o fy*t 
in the regression)2. However, these models are not con­
sidered here, but see Flaig et al. (1993).

* This paper was prepared for The 1993 Conference of German 
Socio-Economic Panel Study Users: Using Panel Data to Answer 
Policy Questions, June 7 and 8, 1993 in Berlin. The authors are 
greatful to Michael Lechner for comments on an earlier draft of this 
paper.

** Philipps-Universität Marburg.
*** Bergische Universität — GH Wuppertal.
1 Heckman (1981a), ch. 3.3.
2 Heckman (1981a).
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Two problems that arise are connected to the inclusion of 
state dependence or duration dependence. First, the initial 
states have to be known. Either they have to be fixed out­
side the model or they can be taken into account as 
discussed in Heckman (1981b)or Arminger (1992). Second, 
the assumption of strong exogeneity is usually violated if 
lagged dependent variables are included into equation (3). 
Models w ithout state dependence are called marginal 
models.

(4)

The values are collected in the following vectors:

y ! = ( y h , - j > h f >  i 7' * 1).

X; = (x l  xfT)T, ( T - p *  1)

The model mentioned above is extended by allowing 
time varying parameters 13,.

Four waves are considered in the data from the GSOEP. 
Equations (1) and (3) can be written as:

y ' t  =  * t  +  x l $ 7 + e,*, t  = 1, 2, 3, 4 (5)

Using matrix notation equation (5) can be collected to

y f  =  X  +  V X ; + e* (6)

with vectors

y n x n
*  \

C/1

y h
’ x i  =

x-,2
, —

x 2
a n d  e,* =

e/*2

y h X i3 * 3 ei*3

\ y U \ l x ' 4 )

y !=

and a parameter matrix

(7)

0 i
0
0
0

02
0
0

0
0

03
0

0
0
0
04

(8)

Maximum Likelihood Estimation5. For the data of the 
GSOEP a covariance matrix with no specific structure is 
assumed, but for the comparison with the GEE1 all 
variances are set to 1, so that

V(t*) = 1, and Cov(e*, <=,*•) = 4 -, W  = 1,2, 3,4 i  ±t'. (17)

3. Embedding Heckman’s Model into the Mean 
and Covariance Structure Approach

For general mean and covariance structures it is 
assumed that a r x 1 vector of y* latent dependent 
variables follows a multivariate normal distribution with 
conditional mean and covariance:

E(yf\Xi) = y(B)+ n(6)Xi
(11)

After the formulation of the simultaneous equation 
model, a model for the error term is specified. Usually e,* is 
separated into two terms

= “ / + ei f  (9)

where a, denotes the subject specific error term3 which 
does not vary over time and may be interpreted as 
unobserved heterogeneity. The values of a, are considered 
as random effects such that a, ~ N(0,o2a). If the a ,s are 
treated as fixed effects it is possible to eliminate the effect 
in linear models by taking the first differences. In logit 
models the a ;s may be eliminated by conditioning on a suf­
ficient statistic as shown in Hamerle and Ronning (1995). In 
probit models it is not possible to eliminate them, hence 
they are not treated as fixed.

Note that restrictions about the variances must be set up 
in dichotomous panel analysis to avoid identification 
problems4.

More generally, eit has a serial structure — as in the 
AR{V) — or the structure of a factor model. Heckman 
(1981a) discusses the interpretation of general one factor 
schemes. The most general form is to assume that there is 
no specific structure of V(eJ). Under the assumption of nor­
mal distributed e,*these models can be estimated by using

V (y f \Xi)  = Z (8 )

Here, panel data are analysed, so r equals T. y(d) is a 
rx  1 vector of regression constants and 11(6) is a r x p  
matrix of reduced form regression coefficients. is a p  x 1 
vector of explanatory variables. T,(6) is the r x r covariance 
matrix of the errors of the reduced form. 0 is the <7 x 1 vector 
of structural parmeters to be estimated. The reduced form 
parameters y(6), 11(6), H(6) are continuously differentiable 
functions of a common vector ft This model can be ex­
tended so that E(d) is a function of the explanatory 
variables as well.

One typical example is the simultaneous equation 
system described in equation (6) with the reduced form 
parameters

y(8) = x, n  (8) = V and L(0) = 0.

The estimation of the structural parameter vector from 
the observed data vector yt proceeds in three stages. 
Algorithmic details are found in Schepers (1991). Computa­
tion of the estimates with the MECOSA program is 
described in Schepers and Arminger (1992).

In the first stage, the reduced form coefficients 7 ,, n , 
and the reduced form error variance o f  of the tth equation 
are estimated using marginal maximum likelihood. This 
first stage is the estimation of the parameters of the mean 
structure without restrictions of y*t, given x„.

In the second stage, the covariances of the error terms in 
the reduced form equations are estimated. In this stage, the 
covariances are estimated without parametric restrictions.

All estimates of the first two stages are collected in a vec­
tor §K which depends on the number of individuals (sample 
size). The asymptotic covariance of %K is denoted by A. For 
the third stage the vector ¡¡K(d) is written as a function of the 
structural parameters of interest, collected in a parameter 
vector ft Kiisters (1987) shows that

ye) ~ N ( m  A), (13)

3 Liang et al. (1988).
4 Arminger (1992), Heckman (1981a).
5 Heckman (1981a).
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where ~  denotes „asymptotically distributed as”. The 
various elements of the asymptotic covariance matrix can 
be found there. It is difficult to derive 6 because the 
estimates of the second stage depend on the estimates of 
the first stage.

The parameter vector d is estimated by using minimum 
distance estimation (MDE) with weight kK after computing 
a strongly consistent estimate kK of A:

QkW = (ye) -  ue)FKl(ye) -  m )  (14)
If the model is correctly specified

QnfO) ~ r̂-q ' (15)
since kK is strongly consistent for A.

To analyse the data from the GSOEP the program 
MECOSA is used which follows these three estimation 
steps. MECOSA is implemented in GAUSS6 and many 
matrix features of this programming language are used to 
estimate the parameters.

The MECOSA approach is not restricted to dichotomous 
dependent variables. Within MECOSA, the models 
discussed in this section may be extended to deal with 
metric, censored metric a n d /o r ordered categorical depen­
dent variables.

4. The GEE1 Approach

The general model of Heckman is specified in terms of a 
latent variable vector j>*with a linear model E(y*\xJ = y (6) 
+ H(6)x, for the expected value of yt‘ given x,- and the con­
ditional covariance V(y* \ x j  + 1.(0) of y- given x* An 
essential assumption is the multivariate normality of y* 
given x-t with correctly specified mean and covariance.

A different approach to estimate the parameters of a 
general mean structure has been proposed by Liang and 
Zeger (Zeger and Liang, 1986; Liang and Zeger, 1986; 
Zeger, 1988). This approach has primarily been used in 
biometrics. There are two important differences to the 
Heckman model. First, the notion of multivariate normality 
of y*, given xt, is given up. It is replaced by the weaker con­
dition that y*it given xu, follows a univariate normal or 
logistic distribution. Second, only the parameters of the 
mean structure are of interest. The assumptions about the 
covariance matrix of y *t , given xt are replaced by assump­
tions about the covariance matrix of the observed vector 
y,-, given x{. Parameters that correspond to the assumption 
about the covariance matrix of y { , given x , , are collected in 
the so called „working” covariance matrix.

Here, the original model of Zeger and Liang (1986) is con­
sidered:

ylt = nuW + eu, t = / = 1.....K (16)

E<yu\xit) = NtW’ and ftiW = ftA -p Q)’ (17)

y(yu \xit) = g(nit) • <t> (18)

E(eit\xit) = 0, t=  1 Tt: (strong exogeneity) (19)

In this model, only the first two moments of the marginal 
density are specified. For our application it is assumed that

is dichotomous with values 1 and 0.

Equation (19) implies that the mean structure is correctly 
specified. The function g from equation (18) is known as the 
variance function in Generalized Linear Models. It is also 
assumed that the variances of the model are correctly 
specified. However, the correlations of y it and y it- are not 
yet specified.

Typical examples for mean structures in dichotomous 
models are the logit model

n(xit, 6) = exp ^  (20)
1 + exp (xffi)

and the probit model

61) = 4>(xf,0), (21)

where <t> denotes the standard normal distribution function. 
In these cases the variance function is given by

sM XitM  = p(xitJ) ■ [1 - t f x it,6)\ (22)

and the dispersion parameter </> = 1. For the following con­
siderations it is assumed that the mean structure is first 
order identifiable, that is n(d̂ ) = <â  6̂  = d2.

Usually, the values are collected in vectors and matrices: 
y, = 0,1 ,- -y ,TJr. x,- = (xn ,...,xiT)t , and so forth. The data 
(yit x j  are assumed to be independent and identically 
distributed. The Tt x T, covariance matrix of e, is denoted 
by Qj. No assumptions about the structure of co, need to be 
established.

Now it is assumed that the vectors, is multivariate nor­
mal distributed with identity covariance matrix: y-t ~ N(nh 
/ r  x T).  This assumption is certainly wrong for dichoto­
mous variables, but it is only used to derive the estimating 
equations Liang and Zeger introduced. One may use the 
theory of Pseudo Maximum Likelihood (PML) estimation 
developed by Gourieroux et al. (1984) to show, that the max­
imization of the normal distribution pseudo log-likelihood

K

L m = H  In <p(yj \ni(6), I Txy.T,) (23)
i = l

yields a consistent estimator of 6 which is denoted by 8. 
<p(y |n, L) is the density of a normal distribution with E(y) = 
n and V(y) = £. Here, the maximization of L(8) is equiva­
lent to the minimization of a quadratic form

K

Q(0) = E  (y i-  H(6))TIT jjy -^ fe)). (24)
1 =  1

This is a minimum distance estimation for ¡¿¡(6) with weight 
ITxT because the euclidian distance between y t and ¡̂(B) 
has to be minimized. The asymptotic covariance matrix 
V(6) of the PML estimator 0 depends on the first and se­
cond order derivatives of In ^>f>, luJO), I) with respect to 8 and 
the true unknown covariance matrix fi, , which has not been 
specified.

6 Gauss (1982).
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A strongly consistent estimator of V (§) has the typical 
sandwich form7:

V(§ = C(6)-lÊ(d)C(6)-1 
with elements

K

c m  = E  Dj(B)Di(d)
i —1

and

B(ê) = E D j ( ê ) ( y , - , i(é ) )  ( y i - n ( ê ) ) TD,\(ê)

(25)

(26)

(27)

where D /6) dHi(O)
d6T

. The advantage of this estimator

Note that the „working”  covariance matrix is treated as 
fixed in eq. (31) because the values have been estimated by 
using and à and 0.

A consistent estimator of the asymptotic covariance 
matrix of the GEE1 estimator d is given by:

V(B) = cm-1 B(S)C(6)-‘ (32)

If Ê, denotes Et(â, 6), then the matrices C(d) and B(ff) are 
defined by:

cm  = E  Dj(S)t-‘ d /6)i=l
(33)

and

is that it does not depend on the correct assumption of 
multivariate normality and on the assumption of correct 
specification of the covariance structure 12,-. Only the cor­
rect specification of the mean structure and the i.i.d. 
distribution of the observations ¿y,-, x) is necessary.

To overcome the inefficiency of the estimator d, Zeger and 
Liang (1986) introduced (a „working”  correlation matrix Rt 
of e, which may be thought of as an approximation of the 
true correlation matrix. In the dichotomous case, one may 
assume, that the variance function has the form of equation 
(22 ), so that

v(iit\xit) n M '- H i . m .  (28)

If Ai is diagfKi<yit \ x j ) t=1 T , then the „working” 
covariance matrix of £,• of  e, is given by

E, = A f 2R A f2- (29)

The „working”  correlation matrix R, may depend on an 
additional parameter vector a that is treated as nuisance. 
The number of nuisance parameters and the estimator of a 
depend on the choice of . Therefore: i?, =  Rt(a) and 
£, = T,t(d, a ). In most applications the „working correla­
tion”  is set to be the same for all individuals /, that is Rj(a) 
= R(aJ. The parameter vector a may be computed using 
simple least squares methods on the empirical correlation 
matrix which may be computed from and the PML 
estimator ft Note that the „working” covariance need not to 
be equal to the true covariance matrix Q,-. But if E /a , d) is 
equal or very close to fi, the estimator 0 is more efficient 
than 6. This has been demonstrated by Zeger and Liang 
(1986) in Monte Carlo simulations and has been proven by 
Gourieroux et al. (1984) in the context of PML estimation. 
The estimator 6 is found by using the PML estimation with 
the possibly wrong density function tpfc, £, (a, §)) with 
fixed Li(a, 6) or — equivalently — minimizing the sum of 
Mahalanobis distances:

B(9)

(30)

If the first two moments are correctly specified, then 
asymptotically C(0) = B(6) and equation (32), called „ro ­
bust variance estimation” , reduces to

V(S) = C(S)-> (35)

which is termed „m odel based variance estimation” .

There is a second — more intuitive — way to derive the 
generalized estimation equations: Consider the normal 
equations for 6 of a generalized linear model:

DTV(y)-i(y-p) = 0 (36)

Usually, in the iterative estimating procedure V(y) is 
substituted by diagfaj,) where of, is calculated using the 
variance function. To increase efficiency a „working” 
variance matrix of block diagonal form should be used in­
stead of a diagonal variance matrix in the case of panel 
data. But it is d ifficult to derive the asymptotic properties of 
this estimate.

There are several specific choices of the „working”  cor­
relation matrix R(a). Each leads to a different analysis. Ex­
amples are described in detail in Liang and Zeger (1986).

A genera lizationoftheG EE l, referred toGEE2, has been 
developed by Zhao and Prentice (1990). There the PML ap­
proach is used to estimate the parameter vector and the 
parameters of the correlation matrix simultaneously. The 
estimation is based on quadratic exponential families 
rather than linear exponential families. This approach has 
only been used for dichotomous data because the com­
putational effort is high. An overview of generalizations 
concerning the generalized estimating equations ap­
proach is given in Davis (1991) and Ziegler (1994a).

The algorithm to solve the GEE1 (eq. 31) is an iterated two 
step procedure: In the first step a modified FISHER-SCOR­
ING procedure is used for the estimation of 6. In the second 
step moment estimation is used for the estimation of a. 
Given the current estimates R(j), and afj), the following 
iterative procedure is used for estimating d:

Derivatives of U(d) with respect to 6 yields the Generalized 
Estimating Equations:

H  = E  er'fyi-mW) = o
36 ‘ ~ l

(31)
7 White (1992).
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( z  Dt(s(j)> t D0a>) + 5^ M J (37)

where t i(j) = 'Li(6a , &(J)), S $ a) = ■

A general difference in the choice of the structure of R 
must be pointed out concerning the computational effort: 
Either a fixed „working” covariance matrix, say R0 is used 
or a correlation matrix that is updated while iterating. The 
theorems of Gourieroux and Monfort (1993) only show the 
asymptotic consistence and normality of 0 given a consis­
tent estimate for/?,. But it is more efficient to use the above 
two step procedure for a stable variance estimation as 
shown for linear models by Carroll et al. (1988). Problems 
arise in estimating R, if the number of observations varies 
across individuals. In this case, may R occur to be not 
positive definite8. This problem can be avoided by using 
the EM-Algorithmus9 or the approach described in Ziegler 
(1994a).

McDonald (1993) criticizes the approach of Liang and 
Zeger (1986) because of the small sample properties of the 
GEE1 estimator, the high computational effort and the 
boundary constraints on the additional parameter a: For ex­
ample, a 2x2 table is considered with entries t u, ir12, it2I 
and tt22- Therefore, nA = 7r2; + tt22, iiR = 7ri2 + r2 2- The cor­
relation between fa c to rs^  and B is:

'Iv-aO-Pa) '

A resulting constraint is: max(0, p.A + ¡iB-l) <  t 22 <  
min(nA, ng). For instance, if nA = nB = 0.3, then the correla­
tion q is bounded through the inequality: -0.43< q < 1 .

5. A Marginal Model for Employment Status

The employment status of a cohort of 1246 men of the 
GSOEP from 1985 to 1988 is considered as dependent 
variable over four waves. The codification is: 0=employed, 
1=unemployed. A simple model for the disposition to 
become unemployed is used. The model does not include 
interactions. Flaig et al. (1993) specify different models for 
the employment status and discuss the relevant variables 
in the GSOEP data set.

The following variables are used as exogenous variables 
for waves 1 to 4: ALD=duration of unemployment between 
1974 and 1984 in months, ALDSQ=AALD squared and 
divided by 100, ALH=frequency of unemployment between 
1974 and 1984, ALT=age in years, ALTSQ=ALT squared 
and divided by 100, GZ=1 if a person is severely handicap­
ped and 0 otherwise, BB1=1 if a person has finished some 
professional education and 0 otherwise, BB2=1 if a person 
has a university degree and 0 otherwise, BST2=1 if a per­
son is a white collar employee and 0 otherwise, FST (Family 
status)=1 if a person is married and 0 otherwise.

Effects like economic situation are taken into account by 
including a constant for every single wave. The variable 
ALH could be updated for the years after 1984 and other 
variables like length of unemployment 1.5 years before and 
0.5 years after the last interview could also be included, but 
in this case the assumption of strong exogeneity may be 
violated. Therefore, these variables are not included in the 
marginal model.

Note, that equation (5) allows time varying coefficients 
which can be restricted later. Therefore, separate probit 
models — for each wave — are estimated in the first two 
estimation stages. Marginal (univariate) probit models are 
as well computed using the program GEE110 for the com­
parison with the MECOSA-results. Indeed, this can be con­
sidered as a first step like in the Mean and Covariance 
Structure Analysis approach because it is possible to com­
pute a „working”  correlation matrix using the marginal — 
probably time varying — estimates for 0,11. For this, the em­
pirical correlation matrix has to be calculated using Pear­
son residuals after finishing the marginal estimation.

The estimations of the univariate probit models using 
MECOSA are given in Table 1 and theG E E l results in Table
2. Note, that the parameter estimations are the same for 
MECOSA and the GEE1. Only the z-values differ slightly 
because the variances (and standard errors) are calculated 
using different algorithms.

The variables duration of unemployment, age, age 
squared, being severely handicapped and being a white 
collar employee are significant at the 5% test level over all 
four waves. The signs of the parameter coefficients are all 
in the expected direction.

The coefficients seem to vary across the waves. Only one 
difference arises: Usually, the z-values calculated by 
MECOSA are smaller than the values calculated by GEE1. 
The MECOSA and GEE1 results were compared with 
univariate probit models calculated by GLIM 3.77 (1985). 
The estimated GEE1 standard deviations lie between the 
MECOSA and the GLIM results. The differences arise 
because of numerical inaccuracy.

However, there are great differences in the correlations 
between the Mean and Covariance Structure Model and 
the GEE1 model. All correlations calculated by GEE1 are 
smaller than the MECOSA correlations by factors that vary 
between j-g and j -? . This result is plausible: In MECOSA the 
correlations of the lagged endogenous variables are con­
sidered while GEE1 computes the correlations between the 
observed values. And it was shown (cf. eq. 38) that the cor­
relations for binary outcomes are bounded.

The results for the partially restricted probit model for 
unemployment status calculated by MECOSA are presen-

s Davis (1991).
9 Dempster et al. (1977).
10 Ziegler (1994b).
11 Stram et al. (1998).
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Marginal probit models for unemployment status 
(and z-values for MECOSA in parenthesis)

Table 1

Explanatory
variables Wave 1 Wave 2 Wave 3 Wave 4

CONST 3.088 (1.599) 3.249 (1.758) 3.499 (1.923) 2.947 (1.485)
ALD 0.108 (5.173) 0.091 (4.306) 0.065 (3.686) 0.084 (5.548)
ALDSQ -0.086 (-1.785) -0.074 (-1.409) -0.057 (-1.477) -0.057 (-1.670)
ALH -0.045 (-0.731) 0.050 (0.976) 0.071 (1.386) 0.009 (0.178)
ALT -0.246 (-2.237) -0.266 (-2.656) -0.259 (-2.701) -0.240 (-2.351)
ALTSQ 0.306 (2.125) 0.350 (2.780) 0.328 (2.755) 0.318 (2.571)
GZ 0.713 (3.493) 0.652 (3.339) 0.776 (4.264) 0.724 (3.950)
BB1 -0.208 (-1.214) -0.113 (-0.764) -0.101 (-0.691) -0.330 (-2.236)
BB2 -0.010 (-0.043) -0.299 (—1.154) -0.120 (-0.477) -0.194 (-0.850)
BST2 -0.397 (—2.048) -0.391 (-2.251) -0.396 (—2.131) -0.374 (-2.200)
FST -0.230 (-1.187) -0.115 (-0.625) -0.309 (-1.835) -0.253 (—1.475)

Loglikelihood -193.691 -247.436 -252.445 -254.662

Correlations
Wave 1 1.000
Wave 2 0.824 1.000
Wave 3 0.640 0.762 1.000
Wave 4 0.545 0.645 0.888 1.000

ted in Table 3. There a model with equal coefficients ALD to 
FST was estimated. The results for the GEE1 are shown in 
Table 3, too, classified by unspecified and user specified 
variances. The user specified „working” correlation matrix 
is presented in Table 2, the correlation matrices calculated 
by MECOSA and by GEE1 using the option „unspecified 
working” correlation matrix can be found in Table 4.

Only one difference appears between MECOSA and 
GEE1 outcomes: In MECOSA the variable family status 
turned out to be significant while in GEE1 the family status 
turned out to be significant at the 5% test level.

The X2 statistic of step 3 in MECOSA has a value of 35.83 
with 30 degrees of freedom. Therefore the null hypothesis 
of proportionality of the parameters cannot be rejected at 
the 5% test level. Note that standard errors and z-values for 
the correlations can also be computed in MECOSA, while 
this is not possible using the GEE1 approach.

For the estimations a 486-50 MHz IBM computer with 8 
MB RAM, MS-DOS 6.0 and GAUSS-386i-VM 3.0.1 (Rev 25) 
has been used. MECOSA is written for the GAUSS 2.x ver­
sion requiring an XT with minimum 640 KB RAM. The pro­
gram GEE1 requires a 386 or 486 processor and GAUSS

Table 2
Marginal probit models for unemployment status 

(and z-values for GEE1 in parenthesis)

Explanatory
variables Wave 1 Wave 2 Wave 3 Wave 4

CONST 3.088 (1.764) 3.249 (1.923) 3.499 (2.003) 2.947 (1.548)
ALD 0.108 (6.259) 0.091 (5.088) 0.065 (3.835) 0.084 (4.910)
ALDSQ -0.086 (—2.168) -0.074 (-1.797) -0.057 (-1.579) -0.057 (-1.463)
ALH -0.045 (-0.831) 0.050 (0.892) 0.071 (1.320) 0.009 (0.168)
ALT -0.246 (-2.526) -0.266 (-2.948) -0.259 (-2.850) -0.240 (-2.517)
ALTSQ 0.306 (2.384) 0.350 (3.049) 0.328 (2.901) 0.318 (2.777)
GZ 0.713 (3.408) 0.652 (3.407) 0.776 (4.193) 0.724 (3.860)
BB1 -0.208 (-1.323) -0.113 (-0.813) -0.101 (-0.733) -0.330 (-2.435)
BB2 -0.010 (-0.038) -0.299 (-1.076) -0.120 (-0.455) -0.194 (-0.761)
BST2 -0.397 (-2.026) -0.391 (-2.268) -0.396 (-2.275) -0.374 (-2.112)
FST -0.230 (-1.319) -0.115 (-0.692) -0.309 (—1.993) -0.253 (-1.522)

Correlations
Wave 1 1.000
Wave 2 0.354 1.000
Wave 3 0.215 0.230 1.000
Wave 4 0.146 0.216 0.495 1.000
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Partially restricted probit model for unemployment status 
(z-values in parenthesis)

Table 3

Explanatory
variables

MECOSA
estimations1)

GEE1
estimations2)

GEE1
estimations3*

CONST (Wave 1) 3.695 (3.003) 3.726 (3.162) 3.731 (3.180)
CONST (Wave 2) 3.660 (2.937) 3.623 (3.130) 3.625 (3.143)
CONST (Wave 3) 3.838 (3.091) 3.347 (2.916) 3.354 (2.933)
CONST (Wave 4) 3.708 (2.975) 3.421 (2.907) 3.425 (2.920)
ALD 0.084 (7.224) 0.092 (7.999) 0.091 (7.942)
ALDSQ -0.066 (-2.981) -0.079 (-3.445) -0.078 (—3.441)
ALH 0.020 (0.632) 0.014 (0.375) 0.016 (0.406)
ALT -0.279 (-4.069) -0.273 (-4.642) -0.273 (-4.663)
ALTSQ 0.364 (4.057) 0.356 (4.834) 0.356 (4.860)
GZ 0.726 (4.565) 0.683 (4.080) 0.683 (4.081)
BB1 -0.220 (-1.976) -0.268 (-2.427) -0.267 (-2.414)
BB2 -0.111 (—0.610) -0.213 (-0.972) -0.210 (-0.960)
BST2 -0.367 (-1.717) -0.439 (-3.386) -0.441 (-3.390)
FST -0.289 (-2.138) -0.188 (-1.519) -0.188 (-1.525)

1) Estimations of MECOSA (third stage) using the equality restriction and unspecified correlation matrix (Table 4). — 2) Estimations 
of GEE1 using the option unspecified correlation matrix (Table 4). — 3) Estimations of GEE1 using the correlation matrix presented 
in Table 2.

3.0 or above. Large data sets need the virtual memory 
manager. The great advantage of GAUSS is the ability of 
reading and processing the data blockwise, not only row by 
row as in other program systems. Therefore, the runtime

for the GEE1 estimations was less than 3^ min.
2

Finally, the correlation matrices for the MECOSA and the 
GEE1 are presented:

Table 4
Correlation matrices estimated

In the third step be MECOSA By GEE1 using the “ unspecified” option

Correlations Correlations

Wave 1 1.000 Wave 1 1.000
Wave 2 0.812 1.000 Wave 2 0.319 1.000
Wave 3 0.626 0.772 1.000 Wave 3 0.182 0.300 1.000
Wave 4 0.568 0.637 0.903 Wave 4 0.116 0.217 0.519
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Summary Zusammenfassung

Analyzing the Employment Status with Panel Data 
from the GSOEP

Two different approaches for the analysis of dichotomous 
panel data have been well developed in the last years, that 
is the GEE approach of Liang and Zeger (1986) and the ap­
proach of estimating the models of Heckman (1981a).

First, a special case of the model Heckman proposed in 
1981 is embedded into the Mean and Covariance Structure 
Model for non-metric dependent variables (Muthen 1984; 
Küsters 1987; Schepers and Arminger 1992).

Second, the approach of the generalized estimating 
equations (GEE) proposed in a series of papers by Liang 
and Zeger is discussed. Here, the original model of Liang 
and Zeger (1986) is considered. If the mean structure is cor­
rectly specified and first order identifiable Pseudo Max­
imum Likelihood (PML) estimation developed by 
Gourieroux et al. (1984) is used to compute a consistent 
estimate of the parameter vector.

Both models and the corresponding estimation methods 
are illustrated by analyzing panel data from the GSOEP.

Analyse des Erwerbsstatus anhand von Paneldaten 
aus dem SOEP

Der Beitrag enthält zwei verschiedene Ansätze zur Ana­
lyse dichotomer Paneldaten, die in den letzten Jahren ent­
wickelt wurden.

Einmal wird ein Spezialfall des Heckman Modells in ein 
Mittelwert und Kovarianz Strukturmodell für nicht metri­
sche abhängige Variablen integriert.

Zum zweiten wird ein Generalized Estimating Equations 
(GEE) Ansatz von Liang und Zeger diskutiert. Eine korrekt 
spezifizierte Mittelwertstruktur und eine identifizierbare 
Pseudo Maximum Likelihood Schätzung erster Ordnung 
werden benutzt, um konsistente Schätzungen für den Pa­
rameter Vektor zu erhalten.

Beide Modelle und die entsprechenden Schätzmetho­
den werden schließlich durch die Verwendung von Panel 
Daten (GSOEP) illustriert.
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