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On the Evolutionary Edge of Migration as an Assortative Mating Device 

Abstract 
 

In a haystack-type representation of a heterogeneous population that is evolving 

according to a payoff structure of a prisoner’s dilemma game, migration is modeled as 

a process of “swapping” individuals between heterogeneous groups of constant size 

after a random allocation fills the haystacks, but prior to mating. Migration is 

characterized by two parameters: an exogenous participation-in-migration cost (of 

search, coordination, movement, and arrangement-making) which measures the 

migration effort, and an exogenous technology - of coordinating and facilitating 

movement between populated haystacks and the colonization of currently unpopulated 

haystacks - which measures the migration intensity. Starting from an initially 

heterogeneous population that consists of both cooperators and defectors a scenario is 

postulated under which “programmed” migration can act as a mechanism that brings 

about a long-run survival of cooperation. 

 

O przewadze ewolucyjnej migracji jako mechanizmu selektywnego kojarzenia w 
pary 
 
Abstrakt 
 

Artykuł modeluje migracje jako proces wymiany jednostek między heterogenicznymi 

społecznościami stałej wielkości. Migracje następują po losowym przydziale 

jednostek do grup, a przed łączeniem w pary; ewolucja społeczności następuje zaś 

zgodnie ze strukturą wypłat gry dylematu więźnia. Migracje charakteryzowane są 

przez dwa parametry: egzogeniczny koszt uczestniczenia w migracji (koszt 

poszukiwania, koordynacji, przenosin, zawierania porozumień), który mierzy wysiłek, 

jaki musi być włożony w migrację; oraz egzogeniczną technologię (koordynowania i 

ułatwiania przemieszczania się między już istniejącymi grupami, oraz zakładaniem 

nowych -- kolonizacją), która mierzy intensywność migracji. W artykule podany jest 

scenariusz, zgodnie z którym w wyjściowej heterogenicznej populacji zawierającej 

zarówno jednostki kooperujące, jak i zdrajców, przy pomocy mechanizmu 

programowanej migracji strategia kooperacji może na dłuższą metę przetrwać.
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1.  Introduction 

In human societies, individuals often benefit from altruism, especially when it is 

others who act altruistically. In a sea of altruists, being the only one who behaves 

selfishly appears to be blissfully attractive. The gain conferred by deviating from 

behaving altruistically arises from a unilateral exploitation of the altruistic trait of 

others. These features of human interaction can be embedded in the (iterated) 

prisoner’s dilemma game, where altruism is modeled as executing a cooperative 

strategy in a single-shot prisoner’s dilemma game (cf. Bergstrom and Stark 1993), and 

where selfishness, labeled as “defection,” is modeled as executing a non-cooperative 

strategy in a single-shot prisoner’s dilemma game. Ever since RAND scientists 

Melvin Dresher and Merrill Flood formulated (what later became known as) the 

prisoner’s dilemma (Flood 1958), the game has been thoroughly investigated by 

myriads of scientists. The core problems and the focus of research have been, and 

continue to be, the existence of a unique Nash-equilibrium that fails to be Pareto-

optimal, and the survival of a cooperative strategy when the game is played 

repeatedly. 

 

A fascinating branch of literature, largely developed outside the field of economics, 

seeks to explain the evolution or extinction of cooperation (altruism) in a population 

by resorting to an environment of haystacks (Maynard Smith 1964; Cohen and Eshel 

1976; Wilson 1987).1 Key assumptions of the haystack-type models are that (1) 

individuals in a large population who either behave altruistically (and are thus labeled 

“cooperators”) or who behave selfishly (and are thus labeled “defectors”) are 

randomly pooled together into small groups (the haystacks); (2) the individuals 

reproduce within their groups (their haystacks); (3) the individuals’ descendents are 

dispersed to form a new large population; (4) the individuals who constitute the new 

large population are again randomly pooled into small groups (the haystacks); and so 

on. The reproductive outcome of a group (a haystack) depends on the traits of the 

individuals who constitute the group. The long-term composition of the population by 

the cooperator-defector trait emanates from the interplay between the reproductive 

outcomes of the groups and the dispersal-cum-pooling process. 

                                                 
1 Bergstrom (2002, 2003a) has eloquently drawn the attention of economists to this strand of literature. 
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Since in the classical haystack-type model individuals are drawn into haystacks 

only once in their lifetime, there must be at least one non-vanishing group solely 

consisting of cooperators to guarantee the survival of altruism.2 In such a setting, 

mutation or migration is rather perilous to the survival of cooperation because 

“genetic or virtual movement” could bring into the group of cooperators a defector 

whose “non-cooperation” trait could eventually spread over the entire group.3 Thus, 

the classical haystack-type model implies that a homogeneous population consisting 

entirely of cooperators will, in all likelihood, not be immune to an invasion by 

defectors. This perspective is also addressed, for example, by Cooper and Wallace 

(2004) who follow the haystack-type model approach described by Sober and Wilson 

(1998), and who provide conditions under which cooperation and altruism can survive 

in the haystacks - prisoner’s dilemma game. One of these conditions is that groups 

have to be isolated one from the other for many generations (cutting off inter-group 

interaction for a long period of time) so as to let cooperation persist within a 

population. Cooper and Wallace (as others) also find that group size matters. 

Moreover, positive assortativity (a higher likelihood that cooperators are matched 

with each other) nourishes the survival of altruism.4 Bergstrom (2003b) explores an 

index of positive assortativity in a model of population dynamics under different 

assumptions about an individual’s ability to camouflage his true nature, and studies 

the resulting long-run composition of the population. In the current paper we develop 

a framework in which observability of the true nature of individuals is assumed to be 

perfect while, under some conditions, the initial assortment of individuals into pairs 

(for playing a pre-programmed, specific two-person game) is assumed to be unstable. 

Our analysis of a setting in which the “life” of a match is conditioned on how the 

“programs” of the matched individuals correlate and on the technology and cost of re-

matching, and our exploration of the repercussions of the realignment into pairs for 

the evolution of the composition of the population thus complement recent research. 

                                                 
2 This is a well discussed topic, since “the problem is to explain how a group comes to exist wholly of 
altruistic individuals in the first place, since in a mixed group altruism will be eliminated by selection” 
(Maynard Smith 1993, p. 199). 
3 See, for example, Bergstrom and Stark (1993), Stark (1999). Note that it is the intra-group process 
that drives the results, not the act of an individual. 
4 Note that the absence of (sufficient) assortativity does not only cause the extinction of cooperation in 
symmetric games such as the prisoner’s dilemma game, but also in asymmetric games such as the trust 
game (Arce 2006). 



3 

 

From the preceding discussion it is apparent that in classical haystack-type models 

of a heterogeneous population, migration is commonly perceived to be detrimental to 

the survival of cooperation, because migration is assumed to be “mutation-like.” In 

this paper we look at migration from a different angle. We analyze an evolutionary 

process that can select for cooperation and altruism in a setting that incorporates a 

form of migration between haystacks that does not negatively affect homogenous 

cooperator groups by importing an unwanted pattern of behavior, but rather is 

responsible for “redeployment” of individuals between heterogeneous groups (without 

changing though the size of the groups), for forming new homogenous groups, and for 

eradicating existing heterogeneous haystacks. Given conditions to be specified, we 

track the consequences of individuals being programmed with a migration trait that, as 

a mechanism of re-allocating a (sub-) population to haystacks, serves as a structured 

device for assortative mating. While the idea that positive assortativity can nourish 

cooperation is not all that new (Wilson and Dugatkin 1997; Bergstrom 2003b; Cooper 

and Wallace 2004), a systematic analysis of the long-run effect of a “non-mutation-

like” migration as the underlying mechanism for the survival of altruism in an initially 

heterogeneous population is still missing. In particular, the repercussions of the 

possibility that already-matched individuals migrate in order to change partners, rather 

than of unmatched individuals migrating in order to find mates, has not been studied 

closely. Herewith we fill this research gap. 

2.  Random and systematic allocations in an evolutionary “altruism 
dilemma5” 

Let there be an environment that consists of a continuum of haystacks. Initially, a 

measure n of these haystacks are populated, each by two adult individuals who are 

drawn at random from a continuum of adult population of measure 2n. A haystack 

cannot accommodate more than two adult individuals. Each individual is either 

programmed to behave cooperatively (associated with executing a strategy “C”) or to 

behave defectively (associated with executing a non-cooperative strategy “D”); no 

other type of individual exists. The term “strategy” here stands for a predetermined 

                                                 
5 Henrich (2004), p. 4. 
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inherited pattern; an individual does not make a choice but follows a program. 

 

Given that at the outset the proportion of cooperators in the heterogeneous 

population is known to be equal to x∈(0, 1), we infer that initially a measure of 2nx of 

the individuals are cooperators (or of the C-type), and 2n(1– x) are defectors (or of the 

D-type). Then, these individuals of measure 2n are pair-wise grouped into a 

continuum of haystacks of measure n. Drawing on the assumption of a random 

allocation to the haystacks we know, given a population size of measure 2n, that the 

sizes (in measures) of the resulting pairs of type (C,C), type (D,D), and mixed type 

(C,D) or (D,C), are 
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Individuals procreate pair-wise within their haystacks where the size of populated 

haystacks by type is given by (1), and where procreation is asexual. An individual 

cannot procreate if he is by himself. The number of descendents of each of the initial 

inhabitants depends on whom they are paired with (that is, on the type of haystack 

they live in), and is given by the payoff of the following one-shot prisoner’s dilemma 

game (where 0 < S < P < R < T ): 

 
 

  Column player 

   C D 

C R,R  S,T  Row 
player D T, S  P,P  

 
 

The numbers of descendents, S, P, R, T, are assumed to satisfy the requirement that the 
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overall population never becomes extinct.6 

 

The individuals constituting the initial population and their descendents live in 

their haystacks for a fixed period of time. At the end of that period, the adult 

individuals die, and their descendents, all of whom reach adulthood, are dispersed into 

a single population. Then, again, half as many haystacks as there are individuals are 

populated, each by two individuals drawn at random from the population at large. 

 

In the wake of a perfectly random mating process in an iterated prisoner’s dilemma 

game (0 < S < P < R < T ), where defectors have a higher payoff (in terms of 

descendents) than cooperators, it is well-known that defectors will eventually spread 

over the entire population (consult, for example, Weibull 1995; Henrich 2004). Thus, 

cooperation (altruism) is doomed. However, if cooperators preferentially (have the 

possibility to) pair with other cooperators instead of with defectors, then the 

cooperator trait may survive within a heterogeneous population (Bergstrom 2003b). 

 

Let us consider next the other extreme possibility, namely that the initial allocation 

of individuals to the haystacks of measure n is perfectly systematic (rather than 

perfectly random). In such a setting, the haystacks populated by two cooperators have 

a measure of nx, the haystacks populated by two defectors have a measure of n(1–x), 

and there are no mixed haystacks at all; the entire population consists of two types of 

homogenous haystacks.7 The size of cooperators in the initial population is 2nx, and 

the size of defectors is 2n(1–x). Each haystack initially populated by two cooperators 

yields 2R cooperators, and each haystack initially populated by two defectors yields 

2P defectors. The ratio of the size of defectors to the size of cooperators at dispersal 

time, D’/C’, can be obtained as a function of the ratio of the size of defectors to the 

size of cooperators at the initial time, D/C, 

 
R
P

C
D

R
P

nx
xn

Rnx
Pxn

C
D

⋅=⋅
−

=
⋅
⋅−

=
′
′

2
)1(2

2
2)1(

 . (2) 

                                                 
6 Alternatively, it can be assumed that only a proportion of a bundle, S, P, R, T, matters, and that the 
overall population is held constant, in which case our inquiry seeks to unravel only the change in the 
composition of the population. 
7 Note that this scenario corresponds to the haystack model of Maynard Smith (1964), where it is 
assumed that mixed haystacks are eliminated immediately. 
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From the ranking of the payoffs (0 < S < P < R < T ) we know that (P/R)<1. Hence we 

can draw the conclusion that in the wake of each cycle of perfectly systematic 

matching, cohabiting, procreation, generational replacement, and dispersal, the ratio 

of defectors to cooperators in the overall population will decline. This is in line with, 

for example, Bergstrom (2003b), and Cooper and Wallace (2004). In contrast to the 

long-run composition of a repeatedly randomly allocated population, in a repeatedly 

systematically allocated population cooperators will prevail and defectors will 

eventually become extinct (having a measure of zero), and this will be so 

independently of the ratio of defectors to cooperators in the initial population. Thus, 

as time goes by, a small fraction of cooperators will be sufficient to transform - via a 

systematic allocation - a population consisting largely of defectors into a 

homogeneous population of cooperators. 

 

We next present the idea that migration can constitute a “medium” between a 

perfectly random allocation and a perfectly systematic allocation and thus, that it can 

support the survival of cooperation. 

3.  Random allocations with an inclination to migrate 

We start with a heterogeneous population of an arbitrary size, such as the population 

that is described in section 2, consisting of a continuum of individuals of measure 2n. 

The proportion of cooperators is known to be equal to x∈(0, 1), and the allocation of 

individuals to the n initially populated haystacks is perfectly random. We also assume 

that upon realization of the draw, individuals will either migrate to form new 

haystacks or stay put in their current haystacks, as delineated later. But who initiates 

migration, who is “dragged” into migration, where do migrants go to, and under what 

conditions does it all happen? 

 

Consider the three types of haystacks, the sizes of which are given in (1), resulting 

from the initial random allocation. A cooperator in a (C,C)-type haystack is not 

programmed to move in order to be paired with another C-type individual (because 

then the number of (the pre-migration cost) offspring will remain unchanged at R) or 

in order to be paired with any of the D-type individuals (because then the number of 
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(the pre-migration cost) offspring will decline by (R – S)). 

 

Suppose, in addition, that the “migration gain” of a C-type individual who comes 

from a mixed haystack (a heterogeneous group) to team up with a cooperator is 

greater than the migration gain of a D-type individual who comes from a (D,D) 

haystack (a homogenous group) to team up with a cooperator.8 In terms of the 

prisoner’s dilemma payoffs (S < P < R < T ) this additional requirement translates into 

 R S T P− > − . (3) 

In the presence of a payoff structure as given by condition (3), C-type individuals who 

are not matched with C-type individuals will seek to be matched with C-type 

individuals (they are programmed to seek to escape from the “relationship” they are 

“trapped” in after the random allocation process and prior to the mating process). D-

type individuals also seek matches with C-type individuals so as to exploit the 

cooperative trait of their partners. In spite of their inclination to migrate in order to be 

paired with cooperators, defectors who, in the wake of a random allocation, end up in 

(D,D)-type haystacks do not migrate.9 

 

Imagine now that a cooperator from a mixed haystack migrates to another mixed 

haystack. Then, the arriving cooperator has a competitive edge over the incumbent 

defector in pairing with the cooperator there because, given the payoff structure (R>S 

and condition (3)), the cooperator in the destination haystack is programmed to play 

the one-shot game with the arriving cooperator as “tailored” by biological proclivity: 

the defector’s “power” to resist being crowded out is weaker than the cooperator’s 

“power” to crowd in. On the other hand, since a cooperator in a mixed haystack will 

                                                 
8 We can reinterpret the differences in the parameters as follows: (P–T) is the loss to a defector from 
cohabiting with a defector instead of with a cooperator, whereas (S–R) is the loss to a cooperator from 
cohabiting with a defector instead of with a cooperator. Since (P–T) and (S–R) are losses, what we have 
assumed is that  
– (S–R) > – (P–T); the loss to a cooperator from cohabiting with a defector is higher than the loss to a 
defector from cohabiting with a defector. 
9 Because the inability to initiate successful pairing with cooperators, whether or not any of the 
defectors has an inclination to migrate is immaterial in the migration cum matching process. Hence, we 
will focus only on the ramifications of an inclination to migrate, or of the absence of an inclination to 
migrate, among cooperators. Note that although defectors cannot initiate migration, they may be forced 
into migration between mixed haystacks that are either cohabited with migration-inclined cooperators 
or are absorbing migrant cooperators. 
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either migrate to another mixed haystack or pair up with a cooperator who migrates in 

from another mixed haystack, a defector in a mixed haystack affected by the 

migration behavior of its initial cooperator co-inhabitant is programmed to seek 

pairing with a defector from another mixed haystack because, if left on his own, he 

will have no partner at his original haystack with whom to play the one-shot 

prisoner’s dilemma game and hence, he will end up with no descendents at all. 

 

As elaborated above, the cooperator’s programmed inclination to migrate is 

motivated by the fact that if a revised matching can be expected to yield a higher 

payoff (and, thus, more descendents) than the original random matching, the revised 

matching will be “preferred,” and hence “sought.” For a revised matching to occur 

(and to hold), the two individuals in a newly-formed (“revised”) haystack are 

programmed to duly respond to the mutual gains conferred by a revised matching. 

The inclination to migrate is thus manifested in a “willingness” to resort to migration 

to other haystacks, and to admit migrant cooperators from other haystacks by 

cooperators who were initially allocated to mixed haystacks. To reiterate, the 

inclination to migrate is not modeled as the result of an individual’s choice; rather it is 

a programmed trait complementing the programmed cooperator/defector trait.10 

 

Thus, within the framework of the model presented in section 2, migration is 

defined as a structured process of forming new groups and of liquidating existing 

groups, based on the mutual fit of individual programs, and it depends on two 

parameters: 

• A cost of migration, which is assumed to be exogenously given. The participation-

in-migration cost - the search, coordination, movement, and arranging (that is, 

waiting and “preparing a haystack”) cost - is represented by a parameter ε ≥ 0 that 

measures the migration effort. Specifically, a cooperator who is initially paired 

with a defector and who acts upon his programmed inclination to separate from 

the defector and to pair with another cooperator from a mixed haystack has to 

incur a participation-in-migration cost of ε, measured in terms of descendents. Put 

                                                 
10 The programmed migration trait of cooperators - seeking out and/or admitting other cooperators upon 
finding themselves in mixed haystacks - is consistent, however, with behavior patterns premised on 
rational economic considerations. As such, the migration trait can be thought of as being acquired over 
a typical Darwinian evolutionary process of “survival of the fittest.” 
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differently, all the participating-in-migration C-type individuals are confronted by 

the same search and coordination cost, and are programmed to behave 

indifferently with respect to moving to another haystack or waiting and preparing 

(arranging) their haystack for the arrival of the cooperator with whom they are 

about to pair; migration is costly not only for the C-type individuals who initiate 

the migration process. Moreover, migration is equally costly for the “leftover” D-

type individuals who are “dragged” into follow-up migration because (say after 

the C-type partner walks away) they are programmed to search for a defector to 

pair with (as they cannot find another C-type individual to pair with for obvious 

reasons), recalling that they cannot procreate merely by themselves. 

• A technology - available to coordinate and facilitate migration between haystacks 

- which is assumed to be given exogenously. This technology is represented by a 

parameter m∈ [0,1], which can be interpreted to imply that the technology allows a 

fraction of the cooperators from mixed haystacks to initiate the aforementioned 

migration and succeed in finding another mixed haystack with the ensuing 

formation of a cooperator-cooperator pair (and, consequently, of a defector-

defector pair). The non-availability of a migration technology corresponds to a 

parameter value m = 0, and the best possible migration technology available is 

represented by a parameter value m = 1. Thus, as long as the participation-in-

migration cost is smaller than the “migration gain,” m = 1 will yield a perfectly 

systematic allocation. 

 

Consequently, migration can be defined by a cost-technology pair, (ε, m), such that 

an m fraction of C-type individuals who are being allocated to mixed haystacks is 

programmed either to migrate to another mixed haystack to team up with the 

cooperator there, or to accept a migrant cooperator from another mixed haystack as a 

new cohabitant, after incurring a participation-in-migration cost of ε by each C-type 

migrant. For the remainder of the discussion, we assume the following “migration 

conditions:” 

 SR−<ε . (4) 

Condition (4) ensures that the gain from migration (given by the number of added 
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offspring) outweighs the cost (in terms of the number of lost offspring) of undertaking 

migration. The condition gives credence to the programmed migration by C-type 

individuals who initially were allocated to mixed haystacks. 

 

As already intimated, migration is costly not only for those who are programmed to 

initiate it, but also for those who are programmed to be “dragged” into it. The D-type 

individuals who are left in the formerly mixed haystacks are programmed to team up 

with each other, if the number of expected offspring from this matching exceeds the 

participation-in-migration cost, that is, if for each of these individuals, 

 ε>P .11 (5) 

We can generalize and state that, given that condition (4) is satisfied, the size of the 

added (C, C)-type haystacks due to the programmed migration is equal to mx(1–x)n. 

The same addition applies to the (D, D)-type haystacks, given that condition (5) is 

satisfied. Consequently, the size of the mixed haystacks declines by 2mx(1–x)n due to 

migration. Thus, it follows from (1) that the population composition that emerges 

from the joint application of random allocation and programmed migration is 

nxmxnx )1(2 −+      haystacks of type (C,C), 

 nxmxnx )1()1( 2 −+−      haystacks of type (D,D), (1’) 

nxxm )1()1(2 −−      haystacks of type (C,D) or type (D,C). 

If the intensity m is very high (measured absolutely, as well as in comparison to ε), 

almost all the cooperators will pursue migration and the outcome will be a nearly 

systematic allocation, which in turn will result in a long-run prevalence of cooperators 

and thereby of altruism (as already noted in section 2). 

 

Let us therefore analyze the long-run composition of the population. Recall that the 

initial share of cooperators is represented by x∈ [0,1], and let (1–x)∈ [0,1] denote the 

initial share of defectors. According to condition (4) we know that m percent of the C-

type individuals from mixed haystacks follow their migration program at a cost of 2ε 
                                                 
11 Clearly, if SRP −<< ε , D-type individuals in mixed haystacks are doomed; left on their own and 
not programmed to migrate, they end up with no descendents at all. 
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(lost descendents) per successful pairing. Moreover, we know that whether an 

individual initiates migration or is “dragged” into migration, a participation-in-

migration cost of 2ε is associated with migration cum pairing. But since our interest is 

in the long-run prevalence of cooperation (which, to recall, becomes extinct in the 

absence of migration), we can abstract from the participation-in-migration cost 

incurred by defectors and assume that only C-type individuals have to bear the burden 

of participation-in-migration cost. Noting that in this extreme scenario cooperation 

can survive in the long run, we can maintain that the result also holds in general 

because assuming a zero-migration cost for the defectors is, of course, superior to 

them than any scenario in which a positive migration cost is assumed. 

 

We then have from (1’) that 

 ]2)1()1()1(22))1(([ 2 εxmxSxxmRxmxxn −−−−+−+  (6) 

new cooperators emerge and, similarly, that 

 ])1()1(22))1()1(([ 2 TxxmPxmxxn −−+−+−  (7) 

new defectors emerge.12  

 

Recalling that the old individuals die before dispersal time, we can calculate the 

ratio of the share of defectors to the share of cooperators in the next round (denoted 

by x/x ′′− )1( ) as a function of the ratio of the share of defectors to the share of 

cooperators in the preceding round (denoted by x/x)1( − ): 

 
]2)1()1()1(22))1(([

])1()1(22))1()1(([)1(
2

2

εxmxSxxmRxmxxn
TxxmPxmxxn

x
x

−−−−+−+
−−+−+−

=
′
′−   

 .
)1()1)(1())1((

)1())1((1
εxmSxmRxmx

xTmPmxx
x

x
−−−−+−+

−++−
⋅

−
=  (8) 

We will expect this ratio to decline iff 

                                                 
12 If 1=m  and 0=ε , the numbers of cooperators and defectors at dispersal time are as in Eq. (2). 
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 ⇔−−−−+−+<−++− ε)1()1)(1())1(()1())1(( xmSxmRxmxxTmPmxx  

 ⇔−−+−⋅−<−+−⋅ ])()1([)1(])1([ PmRSmxRmPTmx ε  

 ),()1()( εmBxmAx ⋅−<⋅ , (9) 

 

where A(m) = (T – R) – (T – P)m  and B(m,ε) = – (P – S) + (R – S–ε)m  are both linear in 

m. However, A(m) is decreasing in m, whereas B(m,ε) is increasing in m, but 

decreasing in ε. Both A(m) and B(m,ε) cross zero and, in particular, A(m) = 0 for m 

= (T – R)/(T – P), and B( m ,ε) = 0  for ))/(( ε−−−= SRSPm . 

 

From the assumption regarding the payoffs of the prisoner’s dilemma game and the 

“migration condition” ε>− SR  (cf. Eq. (4)), it follows that m is positive. 

Furthermore, it is easy to show that m < m . Indeed, for ε= 0 the inequality m < m  is 

equivalent to the assumption that R–S > T–P  (cf. Eq. (3)).13 Since m  increases for a 

non-zero participation-in-migration cost, 0 < m < m  always holds. Hence, the paths of 

A(m) and ),( εmB , as a function of the migration technology m, are as depicted in Fig. 

1. Their intersections with the abscissa yield three intervals for the measure of the 

migration technology m: (i) for small values of m A(m) is non-negative and B(m,ε) is 

negative, implying that (9) does not hold; (ii) for high values of m A(m) is negative 

and B(m,ε) is non-negative, implying that (9) definitely holds; and (iii) for medium 

values of m both A(m) and B(m,ε) are negative and (9) may hold, depending on the 

initial value of (1–x)/x. 

 

                                                 
13 R – S > T – P  ⇔  R + P > T + S  ⇔  (R + P) (R – P) > (T + S) (R – P)   ⇔  R² – P² > TR + SR – TP –
SP  ⇔  TP +  PS – P² > TR + SR – R²   ⇔  TP +  PS – P² – TS > TR + SR – R² – TS   ⇔  (T – P) (P –
S) > (T – R) (R – S )   ⇔  

PT
RT

SR
SP

−
−

>
−
− . 
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Figure 1. A diagrammatic representation of A(m) and B(m,ε),  
    and of the long-run composition of the population  

 
 
We designate these three intervals as “cases.” 

 

Case 1. m∈[0, m]. Irrespective of the initial ratio of the share of defectors to the share 

of cooperators, (1–x)/x, unless it is exactly zero, will rise and ultimately approach 

exponentially quickly infinity. Thus, the available technology of migration is too poor 

(m is too low) to accomplish the long-run survival of cooperation and altruism; 

eventually the entire population will consist of defectors. 

 

Case 2. m∈[ m ,1]. Irrespective of the initial ratio of the share of defectors to the share 

of cooperators, (1–x)/x, unless it is infinity, will approach exponentially quickly zero. 

Thus, the available technology of migration is sufficient to accomplish the long-run 

survival of altruism; defectors will eventually become extinct and the entire 

population will consist of cooperators. Moreover, a higher cost of migration can only 

be outweighed by an even more advanced migration technology (an increased m) 

without affecting the long-run composition of the population. In terms of Fig. 1, this 

means that an increase in the cost (ε going up) shifts B(m,ε) downwards and thereby it 

shifts m  to the right, indicating that the “cooperators only” range, irrespective of the 

A(m) 
B(m,ε) 

0 1 m 

ε ↑ 

B(m,ε) 

Case 2 

defectors 
only 

cooperators 
only 

Case 3 Case 1 

m  m  

A(m) 
 

ε ↓ 

the type of the long-
run population 

depends on initial 
composition of the 

population 
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initial ratio (1–x)/x (as a function of the migration technology level m), shrinks. A 

poorer migration technology (a smaller m) can be compensated by a lower migration 

cost without affecting the long-run outcomes. Note that the “cooperators only” 

interval exists as long as the cost of migration is sufficiently small, that is, as long as 

ε < R–P. In particular, this condition is equivalent to R–ε > P. In this case, even net 

of the cost of migration (C, C)-type haystacks reproduce “faster” than (D, D)-type 

haystacks. 

 

Case 3. m∈(m, m ). We now have dependence on the initial ratio of the share of 

defectors to the share of cooperators (1–x)/x. We introduce 

 0
)()(

)()(
)(

)(
>

−−+−−
−−−

==
mSRSP

mPTRT
,mB
mA

εε
κ   for  ) , ( mmm∈ . (10) 

We then have the following explicit Case 3 rule: 

 

• If initially (1–x)/x < κ, then in the long run, the population will consist entirely of 

cooperators.  

• If initially (1–x)/x > κ, then in the long run, the population will consist entirely of 

defectors.14 

 

Thus, an all-cooperator population is able to hold up for the intermediate range of 

the migration technology m∈(m, m ), as long as the initial defector-to-cooperator 

ratio, (1–x)/x, is below the threshold level, κ, which is given in (10) and depends 

(among other parameters) on the cost of migration, ε. When migration becomes less 

costly, the threshold ratio increases as ε falls (∂κ /∂ε < 0), rendering the survival of 

cooperators more likely. Alternatively, in an all-cooperator population, if an invasion 

by a very small fraction of defectors occurs then only a fraction m > m of cooperators 

needs to migrate to ensure that the all-cooperator population survives. In this case, 

                                                 
14 If it so happens that initially (1 – x)/x = κ, then this is an unstable equilibrium point; this exact value 
of the ratio will remain constant, but once it is perturbed by some external shock, it will approach 
exponentially quickly either zero or infinity, depending on the sign of the shock. Note, however, that 
(1 – x)/x = κ  is not a special case of (9). 
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what the cooperators who are programmed to migrate (by the presence of the invading 

defectors) will lose in terms of their descendants, will be well compensated for by 

their migration-ensuing gains of descendants so that, on the whole, cooperators will 

reproduce at a faster rate than the invading defectors and hence the overall “fitness” of 

a population that consists only of cooperators is assured. Put differently, under a 

migration technology of m > m, an all-cooperator population is stable. 

4. Concluding comments 

A mutation that, say, instills a taste or a proclivity for migration in cooperating 

individuals (or even in both types of individuals under the condition R – S > T – P) is 

likely to be sustained if, as a consequence of carrying the mutation, the carrier’s 

likelihood of dynastic survival is enhanced (Falk and Stark 2001). In the long run 

then, the (initially heterogeneous) population will consist only of cooperators who are 

hard-wired with a taste for migration. A proclivity to engage in migration that was 

critical to the cooperator’s ability to fend off extinction and that conferred an 

evolutionary advantage over the millennia that constitute the long run, is unlikely to 

dissipate swiftly. 

 

Why will a population consisting only of cooperators have a survival edge over a 

population consisting only of defectors? In a related paper (Stark 1998) it was shown 

how, in a setting in which nature is an additional player, the presence of a defector in a 

community, combined with a bad state of nature, leads to extinction, whereas an all-

cooperator community is not so doomed. In the present setting too, an all-cooperator 

population has a survival edge over an all-defector population. When nature plays a 

role, a bad state of nature can wipe out a large number of individuals. In such a 

circumstance, by the mere fact that R > P, more individuals will always survive in an 

all-cooperator population than in an all-defector population. 

 

The possibility of migration in a haystack-type model has been explicitly 

acknowledged before. In a study of the evolution of altruism in the haystack-type 

model (Wilson 1987, p. 1070) the author writes: “Groups usually are initiated by more 

than one individual, and migration between groups takes place prior to global 
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dispersal.” Equally noteworthy is the conclusion that follows: “These events decrease 

the conditions for the evolution of altruism.” Interpreting altruism as playing 

“cooperate” in a single-shot prisoner’s dilemma game (cf. Bergstrom and Stark 1993), 

the present paper predicts an outcome that is the opposite of the outcome predicted by 

Wilson. Similarly, upon reviewing several versions of the haystack-type model 

Bergstrom (2002, p. 77) concludes: “For some parameter values, a population of 

cooperators will be sustained in equilibrium. This is more likely if the migration rate 

[between haystacks] is relatively small.” We have shown that migration can be 

sensibly modeled, such that the opposite may hold. 

 

Moreover, we hint at the idea that if the evolutionary edge of programmed 

migration, as modeled in this paper, can translate into a genetic disposition, that is, 

into an inclination to migrate as a trait, then the role and prominence of economic 

variables in explaining and accounting for migration behavior could be reduced 

somewhat (as if in the presence of biology, economics may need to bow its head 

somewhat). In this case, the wellbeing of human populations can be attributed to a 

variation in the incidence of migration-induced cooperation. We conjecture that the 

variation in the proclivities of populations to engage in migration might be attributed 

to a past evolutionary process that conferred upon some populations an advantage 

emanating from engagement in migration while less so, or not at all, upon other 

populations. A study of the role of variables other than the wage differential and 

pecuniary costs - such as the historical legacy of migration - in explaining present-day 

migration is at the frontiers of research on migration and economic well-being, and an 

intriguing topic for further research. 
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