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Abstract

DSGE models have recently received considerable attention in macroeconomic analysis and

forecasting. They are usually estimated using Bayesian methods, which require the computation

of the likelihood function under the assumption that the parameters of the model remain �xed

throughout the sample. This paper presents a Local Bayesian Likelihood method suitable for

estimation of DSGE models that can accommodate time variation in all parameters of the model.

There are two advantages in allowing the parameters to vary over time. The �rst is that it enables

us to assess the possibilities of regime changes, caused by shifts in the policy preferences or the

volatility of shocks, as well as the possibility of misspeci�cation in the design of DSGE models. The

second advantage is that we can compute predictive densities based on the most recent parameters�

values that could provide us with more accurate forecasts. The novel Bayesian Local Likelihood

method applied to the Smets and Wouters (2007) model provides evidence of time variation in the

policy parameters of the model as well as the volatility of the shocks. We also show that allowing for

time variation improves considerably density forecasts in comparison to the �xed parameter model

and we interpret this result as evidence for the presence of stochastic volatility in the structural

shocks.

JEL codes: C11, C53, E27, E52

Keywords: DSGE models, local likelihood, Bayesian methods, time varying parameters

�Galvão, Kapetanios and Petrova acknowledge �nancial support from the ESRC grant No ES/K010611/1.
yWarwick Business School, University of Warwick
zSchool of Economics and Finance, Queen Mary University London.
xCorresponding author, Tel: +442078828698, Email: G.Kapetanios@qmul.ac.uk

1



1 Introduction

DSGE models are extensively used in both academic work and macroeconomic policy

making. Their success is a result of their capacity to combine economic microfoundations

derived from optimisation decisions of agents with rational expectations and business cycle

�uctuations. Traditionally, the consensus in the macroeconomic literature has been that

there exists an apparent trade-o¤between theoretical coherence, whereby a model�s outcomes

can be explained by well-established theory, and empirical coherence, whereby a model can

�t and explain macroeconomic data well, but its outcomes are often di¢ cult to interpret or

justify from a theoretical standpoint. Models that exhibit theoretical and empirical coherence

simultaneously were deemed infeasible. DSGE models were alleged to be at the theoretical

end of this trade-o¤ curve. On the other hand, reduced-form models, such as VAR models,

exploiting correlations in time series with little reliance on macroeconomic theory, were put

at the empirical end. It was the work of Smets and Wouters (2003, 2005, 2007), based

on earlier work of Rotemberg and Woodford (1997) and Christiano, Eichenbaum and Evans

(2005), that changed this perception and demonstrated that medium-sized DSGEmodels can

be successfully taken to the data and produce superior forecasts to standard BVAR models.

Following Smets and Wouters, the literature on DSGE model estimation and forecasting

has become a vibrant area of research with considerable progress in the development of the

underlying economic theory and the design of numerical solution and estimation algorithms.

At the heart of DSGE models are so called deep parameters that de�ne the preferences

and technological environment of the economy. These are kept constant and are structural

in the sense that they are not subject to the Lucas critique - they are invariant to both policy

and structural shocks. There are two issues related to these parameters that this paper will

address. First, it is important to recognise the possibility of parameter drift in order to

re-evaluate the usefulness and relevance of DSGE models. If substantial evidence is found

that some of these structural parameters are in fact not constant, this could be interpreted

as a need to revise existing models in order to account for such variation. It is possible

that slow time variation is the outcome of long term cultural or technological shifts in the

economy that DSGE models are ill-equipped to model, since they focus primarily on business

cycle �uctuations. Nevertheless, taking into account such slow variation is paramount for

the e¤ective use of DSGE models. Furthermore, time variation in these parameters can be a
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signal for misspeci�cation in existing models and hence a guide to amend and improve them.

Second, these models are widely used in forecasting both by academics and o¢ cial institu-

tions. Hence, allowing the structural parameters to change and using only their most recent

values for generating predictions seems like a useful modi�cation that would be expected

to improve forecasting performance, possibly at the cost of making the separation between

structural and reduced-form models less clear.

To accommodate such time variation in DSGE model parameters, this paper applies a

Bayesian Local Likelihood (BLL) method, developed in a general reduced-form setting in

Galvão, Giraitis, Kapetanios and Petrova (2015). BLL estimates parameters at each point

in time, appropriately weighting the sum of log likelihoods of the sample, with weights

generated by a kernel function. The method is general and can be applied to any DSGE

model. Furthermore, for generating forecasts, it is no more computationally intensive than

estimating a DSGE model with �xed parameters.

This paper contributes to a small but expanding literature on estimating DSGE models

with time variation in the parameters which has two strands. Fernandez-Villaverde and

Rubio-Ramirez (2008) and Justiniano and Primiceri (2008) model time variation by assum-

ing stochastic processes for a subset of the parameters and include these to the set of state

equations. Fernandez-Villaverde and Rubio-Ramirez (2008) assume that the agents, in the

model, take into account current and future parameter variation, utilising the parameters�

representation as stochastic processes when computing their expectations. A similar as-

sumption is made by Schorfheide (2005), but there it is assumed that the parameters follow

Markov-Switching processes. In contrast, Canova (2006), Canova and Sala (2009) and Gia-

comini and Rossi (2009) assess parameter time variation by estimating DSGE models over

rolling samples. A similar strategy was followed by Castelnuovo (2012), Cantore, Levine

and Melina (2012) and Canova and Ferroni (2012). It is useful to contrast our work with

both these strands. This �rst strand makes parametric assumptions about the variation in

the parameters. These assumptions are not microfounded but have a reduced form �avour.

Instead, our method is agnostic about the source of the variation apart from assuming that

it is slow, although given some time it can track more abrupt forms of change. Given the

considerable likelihood that any changes are the result of long term cultural and technologi-

cal shifts that no mainstream business cycle model is well equipped to explain, this agnostic

approach has merit. A further issue is that computational complexity restricts the ability of

3



allowing for time variation to only a small subset of the model parameters whereas our ap-

proach is scaleable to the full set of parameters. Concerning the second strand, our proposed

method employs a nonparametric kernel-based procedure that encompasses rolling window

estimation as a special case. Evidence provided in Giraitis, Kapetanios and Yates (2014),

where our approach originates, suggests that other kernel functions may have more desir-

able propeties than the �at kernel underlying the rolling window. Our approach is related

to the one in Giraitis, Kapetanios, Theodoridis and Yates (2013), but they apply the local

kernel estimator developed by Giraitis et al. (2014) to the minimum distance estimator that

matches DSGE and VAR impulse responses, to provide a frequentist estimation approach.

One aim of this paper is to improve the accuracy of DSGE models in forecasting. Smets

and Wouters (2007) show that their medium-sized DSGE model can generate forecasts for

seven US macro variables that are superior to those obtained from a BVAR model. The

gains of the structural model over the reduced-form model are substantial especially at

longer horizons. Additional evidence that DSGE models may deliver competitive forecasts

in comparison with statistical models and survey of professional forecasters is provided by

Rubaszek and Skrzypczynski (2008), Steinbach, Mathuloe and Smith (2009), Edge, Kiley and

Laforte (2009), Edge and Guerkaynak (2010), Wieland and Wolters (2011) and Del Negro

and Schorfheide (2013b). To the best of our knowledge, there is no documented evidence of

the forecasting performance of a DSGE model with time variation in the parameters. The

closest to ours is the working paper by Edge, Guerkaynak and Kisacikoglu (2013) who use

rolling window scheme to assess the forecasting record of a DSGE model.

The paper is organised as follows. Section 2 introduces the Bayesian Local Likelihood

approach, Section 3 presents an empirical application based on the Smets andWouters (2007)

model, Section 4 provides a forecasting comparison and Section 5 concludes.

2 The Bayesian Local Likelihood Method

In the context of DSGE model estimation, there are advantages of adopting a Bayesian

approach. Bayesian methods provide a natural way of combining econometric estimation

with information provided by calibration methods widely used in the previous generation

of models (see Kydland and Prescott (1996)). For example, by construction, we know that

the discount factor, �, that consumers use to discount expected future utility cannot take
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negative values, is bounded between zero and one and a typical value based on the assumption

of a 4% annual discount rate is 0.99. Adding a probability mass in the form of a prior is

a natural way to incorporate such additional information which is not contained in the

data and serves as augmenting the likelihood with arti�cial observations. In addition, the

likelihood of DSGE models may often be ill-identi�ed or not globally concave. Adding

a prior can resolve such issues and make the problem well-de�ned (see, Lindley (1971)).

Finally, a Bayesian approach can deal in a natural way with model misspeci�cation. Instead

of assuming that there is a unique parameter vector that contains the "true" values of all

parameters, the Bayesian approach considers the parameters as random variables and the

estimation procedure as a learning process with respect to the characteristics of these random

variables, after incorporating information on the available data. An and Schorfheide (2007)

and Del Negro and Schorfheide (2013a) o¤er a detailed review of Bayesian inference in the

context of DSGE models.

We begin by showing how a vector of time varying parameters can be estimated by a local

likelihood estimation in Section 2.1. Then we discuss the main reasoning behind the Bayesian

Local Likelihood (BLL) method, including its advantages and disadvantages in Section 2.2.

Finally, Section 2.3 outlines how to apply the BLLmethod to DSGE estimation, including the

description of the algorithms to obtain the posterior distributions and predictive densities.

2.1 The Frequentist Local Likelihood Estimator

Let yt, t = 1; ::; T , be an observed time series with an assumed log-likelihood, given by l�;t;T ;

that is a function of a time varying �nite dimensional vector of parameters, �t. �t can be

either a deterministic function of time given by

�t = �

�
t

T

�
, �(:) 2 C1[0; 1] (1)

where �(:) is piecewise di¤erentiable, or a stochastic function of time, satisfying

sup
j:jj�tj�h

jj�t � �jjj2 = Op (h=t) : (2)

Both (1) and (2) imply that the parameters drift slowly and this is necessary for consistent

estimation of �t. We wish to provide an extremum estimator for �t of the form

�̂t = argmin
�
l�;t;T ; l�;t;T :=

TX
j=1

wtjlj
�
yjjyj�1; �t

�
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where lj (yjjyj�1; �t) is the conditional log-likelihood for observation j and parameter vector
�t: The weights are given by wtj = ~wtj=

�PT
j=1 ~wtj

�
with ~wtj = K

�
(t� j)=H

�
where K(x) �

0, x 2 R, K is a continuous bounded function and H is a bandwidth parameter such that

H ! 1, H = o(T= log T ). Then, as discussed in Giraitis, Kapetanios, Wetherilt and Zikes

(2015), under certain regularity conditions, �̂t is an H1=2 + (T=H)1=2- consistent estimator

of �t for all t = [�T ], 0 < � < 1. Furthermore, de�ning

b�t := WtT

 
�
@2l�̂t;t;T
@�@�0

!�1
; WtT :=

TX
j=1

w2tj;

where �(@2=@�@�0)l�̂;t;T is positive de�nite, leads to the asymptotic normality result

b��1=2t (�̂t � �t)!D N (0; I);

when H = o(T 1=2), where N(0; I) denotes the k-variate standard normal distribution.

2.2 The Bayesian Local Likelihood (BLL) Estimator

Recently, there has been increased interest in providing a Bayesian treatment to the prob-

lem of estimating time varing parameters in likelihood-based methods such as in Cogley

and Sargent (2002) and Primiceri (2005). However, the prevailing solution is to provide a

linear parametric model for �t whose law of motion is fully speci�ed up to a unknown �nite

dimensional vector and recasts the model into a state space form. In fact, the usual practice

is for yt itself to be an a¢ ne, up to �t, function of other observed and unobserved variables.

Consider a simple model:

yt = �tft + v1t

ft = aft�1 + v2t

�t = �t�1 + v3t

where �t and ft are unobserved and vkt, k = 1; 2; 3 are martingale di¤erence sequences. Such

a model becomes di¢ cult to estimate for large dimensions of �t and ft and is restrictive in

a number of ways such as the choice of the law of motion for �t (for recent examples in

empirical macroeconomics, see Cogley and Sbordone (2008), Benati and Surico (2009), Gali

and Gambetti (2009), Canova and Gambetti (2009) and Mumtaz and Surico (2009)).
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We suggest an alternative that is related to the frequentist work of Giraitis et al. (2015)

and is both easier to estimate and shares the level of generality of treatment implied in

their paper, while providing outputs that are useful from a Bayesian point of view such as

posterior distribution for �t at each point in time t, which standard methods cannot deliver

due to their treatment of the time varying parameters as latent state variables rather than

a parameter with a fully speci�ed prior and posterior distribution.

Let pt(�t) denote a prior distribution for �t at time t. Then, the posterior pt(�tjY ) is
given by:

pt(�tjY ) =
pt(�t)Lt(Y j�t)R

�
pt(�t)Lt(Y j�t)d�

/ pt(�t)Lt(Y j�t)

where Lt(Y j�t) =
TY
j=1

L(yjjyj�1; �t)wtj for t = 1; ::; T , where Y = (y1; ::; yT )0; and L(yjjyj�1; �t)

denotes the likelihood for observation j, conditional on the history yj�1. This provides a

generic Bayesian principle for estimating general time varying coe¢ cient models that re-

quire little more than standard Bayesian numerical techniques applicable to �xed coe¢ cient

models. More details, standard conjugacy results, Monte Carlo evidence and illustrative

empirical applications for this general method are provided in Galvão et al. (2015).

Empirical macroeconomic studies typically impose priors that conveniently deliver con-

ditionally conjugate posterior distributions. The resulting posteriors are easy to draw from

using well-known Gibbs sampling methods. In this context, our method requires running

T independent Markov chains for the k � 1 vector �t, which is still considerably easier and
computationally cheaper1 than the single chain drawing a k� T -dimensional matrix of time
varying parameters, e.g., as in Cogley and Sargent (2002) or Primiceri (2005)2. Another

advantage of our method is that it is applicable without conjugacy: if the posterior did not

belong to a known distributional family, other MCMC methods can be used to generate

draws from that posterior. Finally, our method includes the rolling window weights em-

ployed by Canova (2006), Canova and Sala (2009), Giacomini and Rossi (2009), Castelnuovo

(2012), Cantore et al. (2012), Canova and Ferroni (2012) as a special case. The �at weights

wtj implied by rolling windows might not be optimal since we expect the change in the DSGE

1Note that since the T chains are independent, computation time can be further reduced by exploiting

parallel pool tools.
2This dimensionality issue is the reason why time varying VAR models estimated with the latter technique

are only limited to at most three or four variables.
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parameters to be gradual and the weights based on normal density tend to accommodate

such change well. For further discussion of the advantages of exponential kernels over the �at

kernel for introducing time variation, refer to Giraitis et al. (2014) and Giraitis, Kapetanios

and Price (2013).

The previous discussion related chie�y to time variation in reduced form models. The

literature on time varying DSGE models is less developed. The alternative approach of

specifying processes for the drifting parameters in a DSGE context was applied for instance

by Fernandez-Villaverde and Rubio-Ramirez (2008). The main advantage of their approach

is that agents populating the model take into account the parameters�stochastic processes

when forming their expectations about the future. Our econometric approach, on the other

hand, does not incorporate a law of motion for the parameters when solving the agents�ra-

tional expectation problem. However, if the parameters of the model are driven by either a

time varying deterministic or slowly moving stochastic process, as the popular random walk

assumption in the literature, then our econometric approach does not violate the rational

expectation assumption in a linearised model because future changes in the parameters are

unpredictable by both agents and the econometrician. This implies that current parameter

values are the best prediction for future values anyway. A disadvantage of modelling parame-

ters�variation by explicitly specifying a stochastic process is that it is subject to the curse of

dimensionality. The state vector needs to be augmented for each parameter allowed to vary

and an additional shock is introduced. Because of this dimensionality problem, all parame-

ters cannot be modelled simultaneously in this way. For instance, Fernandez-Villaverde and

Rubio-Ramirez (2008) do not allow both Taylor rule and price rigidity parameters to vary

simultaneously when estimating their DSGE model. Our alternative econometric approach

does not su¤er from such dimensionality issues.

In addition, the modelling approach of Fernandez-Villaverde and Rubio-Ramirez (2008)

imposes an additional structure by relying on the assumption that the law of motion for the

parameters�time variation is correctly speci�ed. Our nonparametric approach performs well

for many di¤erent parameters�laws of motion. Galvão et al. (2015) show in a Monte Carlo

exercise that if the law of motion is misspeci�ed, inconsistent estimates of the parameters�

time variation are obtained if they are treated as unobserved state variables as in Fernandez-

Villaverde and Rubio-Ramirez (2008). In contrast, Galvão et al. (2015) suggest that our

non-parametric alternative is consistent even when the prior for the drifting parameters is
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poor. Schorfheide (2007) argues that by treating time varying parameters as unobserved

state variables as in Fernandez-Villaverde and Rubio-Ramirez (2008), identi�cation issues

which are attenuated by the use of priors, as argued earlier in this section, may arise3. Our

approach has the advantage of being able to incorporate prior information about the time

varying parameters to solve possible identi�cation issues.

2.3 The BLL Method for DSGE Models

In this subsection, we show how to apply the BLL approach described previously to a DSGE

model with linear state-space representation. Note, however, that the BLL method could also

be applied to models that have a non-linear state space representation such as in Fernandez-

Villaverde and Rubio-Ramirez (2007).

The linearized rational expectation model with time varying parameters can be written

in the form:

A(�t)Etxt+1 = B(�t)xt + C(�t)vt; vt s N(0; Q(�t))

where xt is a n� 1 the vector of model�s variables, vt is a k � 1 vector of structural shocks,
�t is a vector of parameters, including parameters governing preferences and the shocks�

stochastic processes, A;B and C are matrices, which are functions of �t; Q(�t) is a diagonal

covariance matrix, and Et is the expectation operator conditional on information available

at time t: Observe that we have one such equation at each point in time t = 1; :::; T .

A numerical solution of the rational expectation model can be obtained by one of the

available methods (for instance, Blanchard and Kahn (1980) or Sims (2002)). The resulting

state equation is given by:

xt = F (�t)xt�1 +G(�t)vt (3)

where the n � n matrix F and n � k matrix G can be computed numerically for a given

parameter vector �t. The system is augmented with a measurement equation:

yt = D(�t) + Z(�t)xt (4)

where yt is an m � 1 vector of observables, typically of a smaller dimension than xt (i.e.
m < n) and Z is a m � n matrix that links those observables to the latent variables in the

model xt.
3For instance, Fernandez-Villaverde and Rubio-Ramirez (2008) obtain values of their Taylor rule para-

meters for which the Taylor principle is not satis�ed.
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Equations 3 and 4 provide the state-space representation of the model, which is linear

and Gaussian at each successive set of parameters �t for t = 1; :::; T . Therefore, the Kalman

�lter can be employed to recursively build the likelihood of the sample of observables fytgTt=1.
The appropriately weighted likelihood of the sample is given by:

Lt(Y j�t) =
TY
j=1

L(yjjyj�1; �t)wtj for t = 1; ::; T

where wtj is an element of the T � T weighting matrix W = [wtj]
T
t;j=1, computed using a

kernel function:

wtj = K

�
t� j

H

�
for t; j = 1; ::; T (5)

with a bandwidth H.

In the �xed parameter case, the weights on each likelihood sum up to T . In our case,

each row of W is normalised to sum up to 2H + 1, such that:

TX
j=1

wtj = 2H + 1 t = 1; :::; T:

This normalisation is employed in order to maintain the relative weights between the likeli-

hood and the prior.

For the application presented in this paper, the Normal kernel function is used to generate

the weights:

wtj = (1=
p
2�) exp((�1=2)((t� j)=H)2) for t; j = 1; ::; T: (6)

If the bandwidth H goes to in�nity, the likelihood would collapse to the �xed parameter

case, where each likelihood is weighted equally. If H is small, the weights are concentrated

around a single observation. Our choice of bandwidth is H = T 0:5, motivated by the optimal

bandwidth choice used for inference in time varying random coe¢ cient models (see Giraitis

et al. (2014)).

In the Bayesian framework, the local likelihood of the DSGE model at point t, denoted

Lt(Y j�t), is augmented with the prior distributions for the parameters, pt(�t), to get the
posterior at time t, pt(�tjY ):

pt(�tjY ) =
Lt(Y j�t)pt(�t)

p(Y )
/

TY
j=1

L(yjjyj�1; �t)wtjpt(�t):
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It should be noted that, for our DSGE application, we assume the prior pt(�t) to be �xed over

time, i.e., pt(�t) = p(�t) for all t. One could potentially allow the prior to be time varying,

exploring the idea that the posterior yesterday can be used for a prior today. However, since

we would like to explore only the possibility of parameter drift, we choose to be agnostic

about time variation in the parameters before the estimation and keep the prior values �xed

over time.

2.3.1 Characterising the Posterior Distributions

To obtain the joint posterior distribution of the parameters, we need numerical methods

because the matrices F and G are non-linear functions of �; and hence the posterior does

not fall in known families of distributions with moments that could be derived analytically.

The most commonly used procedure to generate draws from the posterior distribution of

� is the Metropolis-Hastings (MH) algorithm, proposed by Metropolis et al. (1953) and

generalised by Hastings (1970). Although the posterior distribution could be obtained by

other methods, such as the Importance Sampling (IS) algorithm, the MH algorithm delivers

good convergence under fairly general regularity condition (see Geweke (1999, 2005)) and

asymptotically normal posterior distribution (see Walker (1969), Crowder (1988) and Kim

(1998)).

The algorithm described here is version of Schorfheide (2000)�s RandomWalk Metropolis

(RWM) algorithm, modi�ed to include the kernel weighting scheme. Our aim is to obtain a

sequence of posterior distributions pt(�tjY ) for each point in time t = 1; ::; T: At each t the
algorithm implements the following steps.

Step 1: The posterior is log-linearised and passed to a numerical optimisation routine.

Optimisation with respect to � is performed to obtain the posterior mode:

b�t = argmin
�

 
�

TX
j=1

wtj logL(yjjyj�1; �t)� log p(�t)
!
:

Step 2: Numerically compute b�t, the inverse of the (negative) Hessian, evaluated at the
posterior mode, b�t.
Step 3: Draw an initial value �0t from N(b�t; c20b�t).
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Step 4: For i = 1; :::; nsim, draw �t from proposal distribution N(�(i�1)t ; c2b�t). Compute
r(�i�1t ; �tjY1:T ) =

TY
j=1

L(yjjyj�1; �t)wtjp(�t)

TY
j=1

L(yjjyj�1; �i�1t )wtjp(�i�1t )

;

which is the ratio between the weighted posterior at the proposal �j and �
i�1
t .

The draw �(i�1)t is accepted (setting �it = �t) with probability �
i
t = minf1; r(�(i�1)t ; �tjy1:T )g

and rejected (�i�1t = �it) with probability 1 � � it. c
2
0 and c

2 are scaling parameters adjust-

ing the step size of the MH algorithm in order to get desirable rejection rates such that

we achieve convergence. The literature supports setting the scaling parameters such that

acceptance rates of between 20% and 40% are achieved4.

2.3.2 Computing Forecasts

We can compute forecasts for the observables y employing time varying the posterior

distributions of the parameters. For this task, we only need the posterior distribution at the

end of the sample, p(�t=T jY ), which contains the most recent values of the model�s parameters
and hence the most relevant information for predicting the future. Therefore, for generating

DSGE-based predictions, our method is as computationally intensive as forecasting with

standard �xed parameter DSGE models: it requires the computation of the posterior only

once.

The predictive distribution of the sample p(yT+hjy1:T ), h horizons ahead, is given by
the conditional probability of the forecasts, averaged over all possible values of the para-

meters, the unobservables at the end of the sample xT , and all possible future paths of the

unobservables xT+1:T+h: p(yT+hjy1:T ) =Z
(xT ;�T )

0@ Z
xT+h

p(yT+hjxT+h)p(xT+hjxT ; �T ; y1:T )dxT+h

1A p(xT j�T ; y1:T )p(�T jy1:T )d(xT ; �T )

where p(�T jy1:T ) is the posterior of the parameters at the end point of the in-sample period, T .
We use a slightly modi�ed version of the algorithm for generating draws from the predictive

distribution outlined in Del Negro and Schorfheide (2013b). It follows the steps:

4In particular, Roberts, Gelman and Gilks (1997) show that, under some conditions, the optimal asymp-

totic acceptance rate is 23.4%.
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Step 1: Using the saved draws from the posterior at the end of the sample p(�T jy1:T );
for every draw i = 1; ::; nsim (or for every n-th draw if thinning is required), apply the

Kalman �lter to compute the moments of the unobserved variables at T using the density

p(xT j�iT ; y1:T ):
Step 2: Draw a sequence of shocks viT+1:T+h from a N(0; Q(�iT )), where Q(�

i
T ) is a draw

from the estimated posterior distribution of the diagonal variance-covariance matrix of the

shocks at T . For each draw i from p(�T jy1:T ) and from p(xT j�iT ; y1:T ), use the state equation
to obtain forecasts for the unobserved variables:

bxiT+1:T+h = F (�iT )x
i
T :T+h�1 +G(�iT )v

i
T+1:T+h:

Step 3: Use the forecast simulations for the latent variables in the measurement equation:

byiT+1:T+h = D(�iT ) + Z(�iT )bxiT+1:T+h:
Once the simulated forecasts byiT+1:T+h are obtained, they can be used to obtain numerical
approximations of moments, quantiles and densities of the forecasts.

Point forecasts are obtained by computing the mean of the distribution of byiT+1:T+h for
each forecasting horizon.

3 A time varying DSGE Model

3.1 Model and Data

The DSGE model to which we apply our Bayesian Local Likelihood approach is the model

from Smets and Wouters (2007), which is an extension of a small-scale monetary RBC

model with sticky prices (such as Goodfriend and King (1997), Rotemberg and Woodford

(1997), Woodford (2003), Ireland (2004) and Christiano et al. (2005)). In addition to the

sticky prices, the model also contains some additional shocks and frictions, including sticky

nominal price and wage settings with backward in�ation indexation, investment adjustment

costs, �xed costs in production, habit formation in consumption and capital utilization.

It also features seven exogenous shocks that drive the stochastic dynamics of the model.

The foundations of the model are derived from the intertemporal optimisation problems of

di¤erent agents. In particular, there are seven types of agents in the model: consumers

that supply labour, choose consumption level, hold bonds and make investment decisions;
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intermediate goods producers which are in a monopolistically competitive market and cannot

adjust prices at each period and �nal goods producers, who buy intermediate goods, package

them and resell them to consumers in a perfectly competitive market. In addition, there is

a labour market with a similar structure: there are labour unions with market power that

buy the homogenous labour from households, di¤erentiate it, set wages and sell it to the

labour packers, who package it and resell it to intermediate goods producers in a perfectly

competitive environment. Finally, there is a central bank that follows a nominal interest

rate rule, adjusting the policy instrument in response to deviations of in�ation or output

from their target levels and a government that collects lump-sum taxes which appear in the

consumer�s budget constraint and whose spending is exogenously driven.

The model is log-linearised around its steady state and trended variables are detrended

with a deterministic trend5. The model is estimated using seven macroeconomic quarterly

time series for the United States for the period of 1964Q3 to 2012Q4 as observables. The

variables are the ones used in Smets and Wouters (2007), namely, output, consumption,

investment and wages per capita growth; in�ation, hours and the interest rate (see Appendix

for more details).

In this section we present results for the �xed parameter model and also for the version

with time varying parameters estimated with BLL method described in the previous section.

In both cases, we employ the priors from Smets and Wouters (2007), with a number of MH

draws of 220; 000, from which we drop the �rst 20; 000. We set the scaling parameters such

that acceptance rates are around 25%. We apply the BLL method using the Normal kernel

function in equation (6) with a bandwidth size of T 0:5:

3.2 Results

In this section, we discuss the parameter estimates (Figures 1-3). We employ Figures 1-3

to judge informally whether a parameter�s variation is substantial by checking whether the

BLL estimates are outside the con�dence bands of the �xed-parameter estimates. We adopt

Fernandez-Villaverde and Rubio-Ramirez (2008)�s de�nition of �structural�parameters: these

are preference and technology parameters which are invariant to both policy and shocks. If

5The linearised model is presented in the Appendix. For full derivations from the non-linear �rst

order conditons, please refer to the Technical Appendix in Smets and Wouters (2007) available at:

http://www.aeaweb.org/aer/data/june07/20041254_app.pdf
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a parameter is found to be within the �xed-parameter 68% bands, we conclude that it is in

fact �structural�. If a parameter varies smoothly over time, following a clear pattern, we infer

that it has been a subject to structural change. On the other hand, if a parameter exhibits

an erratic time variation, we would point to a possible misspeci�cation of that parameter.

The solid blue line are the time varying estimates obtained with the BLL method and 68%

con�dence bands are represented by the dotted blue lines. The green line represents the full

sample �xed-parameter estimates, with the dotted lines around it - 68% con�dence bands.

The top panel of Figure 1 assesses results for the policy preference parameters. Our

results are broadly consistent with previous studies (Clarida, Gali and Gertler (2000), Cogley

and Sargent (2002), Fernandez-Villaverde and Rubio-Ramirez (2008)) that found evidence

of structural changes in Taylor rule parameters. The Federal Reserve has shifted its policy

priority from output towards in�ation since the parameter that measures the reaction to

in�ation increases between 1979 and 1996, while the reaction to the output gap decreases

over this period. The interest rate smoothing parameter is lower in the 1980s than in later

periods, while the steady state in�ation rate decreases between 1985 and 1996.

The second panel of Figure 1 provides evidence of changes in the steady-state growth

rate of per capita output (as well as consumption, investment and the real wage, which share

the same trend). During most of the period and up to 2005, the BLL posterior mean for this

parameter is around 0.4, that is, an annual growth rate of 1.6%, however, this decreases to

1% annually in period of the 2007-8 �nancial crisis. In contrast, �xed-parameter estimates

under-estimate these values over most of the sample, but over-estimate it during the recent

period. This parameter is important for generating forecasts as it appears in several of the

measurement equations and Kolasa and Rubaszek (2015) bring attention to the importance

of this parameter in reducing forecasting bias.

The �ndings on the price rigidity parameters are consistent with the evidence presented

in Fernandez-Villaverde and Rubio-Ramirez (2008). In particular, we document a negative

relation between the price indexation (last panel in Figure 1) and price stickiness (second

panel in Figure 1) parameters after the mid-1970s; hence, periods characterised by high

Calvo probability parameter are also of low indexation and vice versa. The fall in in�ation

indexation during the Great Moderation is consistent with �ndings of Gali and Gertler (1999)

and could be explained by the decreased need to adjust prices frequently due to low and
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stable in�ation leading to longer length of contracts6 and hence higher Calvo probability

parameter and lower indexation. The variation uncovered in the price rigidity parameters

suggests that there is no stable predictive relation between in�ation and output gap over

time (i.e. the Phillips curve has become �atter in the low volatility period of the Great

Moderation) which cast doubt on the ability of Calvo pricing models to adequately capture

pricing behavior of �rms and unions in the economy.

There are parameters that appear to move very little over the entire sample period or

seem to remain within the con�dence bands of the �xed parameter estimates throughout

most of the sample, such as the elasticity of intertemporal substitution and the household

discount factor (last panel of Figure 1), and the elasticity of labour supply or the �xed

production costs (�rst panel of Figure 2). We draw comfort on those results, as they could

be interpreted as evidence of the structural nature of these parameters.

On the other hand, the moving average (MA) coe¢ cient, the persistence coe¢ cient (last

panel of Figure 2) and the standard deviation (last panel in Figure 3) of the wage mark-

up shock process, as well as the Calvo parameter in labour markets (top panel in Figure

2) all appear very volatile and this could be evidence that they are seriously misspeci�ed

and should not be kept �xed. Interestingly enough, all four are parameters that govern

labour market dynamics through the wage equation and all become very unstable during

the Great Moderation period. This could be interpreted as evidence that during the Great

Moderation, a Calvo model with an ARMAwage shock may not have been an adequate model

to characterise the dynamics of the labour market in the US. An alternative interpretation

is that there might be insu¢ cient information in the data in order to jointly identify all four

parameters during the Great Moderation.

The standard deviations of the structural shocks (panel 2 and 3 of Figure 3) also move in

the expected direction, consistent with �ndings of low stochastic volatility during the Great

Moderation (e.g. Primiceri (2005) and Sims and Zha (2006)). In particular, all shocks�

volatilities fall in the late 1980s and remain low throughout the 1990s. Moreover, their

posterior distributions are narrower during that period implying that there is less uncertainty

about the possible values they can take. The standard deviation of the monetary policy

shock, for instance, peaks in the 1980s, implying a larger role of the shock throughout that

period and falls considerably after the 1990s, having lesser impact on the business cycle

6The average price duration is given by 1
1��p

, where �p is the Calvo probability in the goods market.
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as a consequence of the more adequate policy. For some shocks�standard deviations (e.g.

TFP, investment-speci�c technology and price-mark up shocks) we observe an increase in

the end of the sample leading to the recent �nancial crisis. Due to the considerable time

variation we uncover in the volatilities of the shocks, using the most recent values of the

estimated volatility parameters when generating forecasts is expected to improve the density

of the forecasts compared to simply using the �xed parameter estimates that average these

over the entire in-sample period. Finally, the autoregressive coe¢ cients for the stochastic

processes (panels 1 and 2 of Figure 3) seem to move considerably, which is unsurprising

as these are designed to capture dynamics in the data. They are not truly structural, in

the sense that there is no underlying macroeconomic theory that implies that they are not

subjected to shocks or policy. Most of the shocks�persistence coe¢ cients display a U-shape

with low persistence towards the end of the Oil Crises and higher persistence during the

Great Moderation. For instance, the TFP shock becomes very persistent during the recent

crisis with AR coe¢ cient very close to one, implying almost permanent shock to productivity.

3.3 Time Varying Impulse Response Functions

In this section, we turn to the estimated impulse response functions over time. We investigate

whether there is evidence for structural change in the transmission mechanism of important

variables to macroeconomic shocks, resulting from the documented time variation in the

paramerers.

Figure 4 displays the impulse response functions of output, in�ation and the interest

rate to a monetary policy shock. Since the response is to a unit of the shock, it measures

only changes in the transmission of the monetary policy shock over time without taking into

account changes in the volatility of the shock, as documented in the previous subsection.

First, the response of the Fed rate to the monetary policy shock is roughly the same

throughout the sample period and it is around half a percentage point. The response of

output, in contrast, shows a clear trend over time, with responses increasing from around

2.5% to 4% on impact. The response of in�ation, on the other hand, displays a U-shape,

with in�ation being quite responsive to policy in the late 1960s and early 1970s, and in the

more recent period. This results are at odds with the �ndings in Boivin and Giannoni (2006),

who �nd a considerable decrease in the responses of output, in�ation and the interest rate

to a policy shock in their post-1980 sub-sample, using minimum distance estimator between
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a structural VAR and a small DSGE model. They attribute this result mainly to the higher

estimate of the in�ation targeting parameter in their policy rule over the second period.

Figure 5 presents responses to a one standard deviation of the shock and these incorporate

the decrease in the volatility of monetary policy shock over the second half of the sample.

Instead of increasing responsiveness of output, we now observe somewhat constant response

over time with an increase in the end of the sample due to the aggressive policy during

the crisis. Interestingly, once one allows for changing size of the shock over time, in�ation�s

response to policy is actually decreasing over time. Furthermore, one standard deviation

policy shock results into considerably higher response of the interest rate during Volcker�s

years than in any other period.

Figures 6 and 7 display the responses to a price mark-up shock. The picture that emerges

is that both output and investment become much more responsive to an in�ation shock during

the Great Moderation period, implying that the same shock to in�ation has a relatively more

harmful e¤ect on these variables in that period than during the Oil Crises, when in�ation was

record high. It is also evident from the policy rate response that policy makers retaliated

more to a unit of in�ation shock after Paul Volcker�s appointment as a Federal Reserve

chairman.

Figure 8 and 9 are the IRFs of selected variables to a unit and a standard deviation of

the TFP shock. The most intriguing result that emerges is that the response of all output,

consumption and investment, whether one allows for the size of the shock to vary over time

or not, is considerably larger in periods characterised by recessions such as the Oil Crisis in

early 1970s and the recent crisis, implying an asymmetrically larger e¤ects of TFP shocks

in recessions than in booms. The decreasing responsiveness of the interest rate over time

could be explained by the Federal Reserve responding less aggressively to output and more

aggressively to in�ation which is less a¤ected by productivity shocks. The response of hours

worked to productivity shock and the resulting implications for the relevance and relative

importance of this shock for the business cycle is a much debated topic (Gali (1999)). Once

we allow for time variation in the TFP responses, the response of hours remains negative

in all periods for all horizons except several periods in the early 1990s when the response

changes sign and becomes positive after less than 10 quarters. This could be attributed to

the increased persistence of the shock that we uncover during this period. Furthermore, as

argued in Smets and Wouters (2007), the habit coe¢ cient is important for explaining the
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negative e¤ect of TFP on hours and as shown in Figure 1, we obtain low habit persistence

in the 1990s which contributes to the weakened duration of the negative e¤ect.

Figures 10 and 11 display the responses to a preference shock. It appears that, after

allowing for the changing size of the shock over time, output, consumption and investment

are more responsive to the shock, both on impact and in duration, in periods characterised

by recessions, suggesting asymmetric responses to the preference shock in the model.

Finally, Figures 13 and 14 display the responses to a unit and a standard deviation of

wage mark up shock respectively. The parameters characterising the labour market during

the Great Moderation period, which we discussed in the previous Section, are the reason

for the misbehaved impulse response functions during the same period. It is clear that the

responses are not smooth over time and the resulting response per unit of the shock of output,

in�ation and hours becomes essentially zero for all horizons after the beginning of the 1990s.

Once we allow for the changing size of the shock, the picture becomes even more distorted,

since the standard deviation of the wage mark up shock is itself one of the parameters that

are misspeci�ed during the Great Moderation period7.

4 Forecasting with a time varying DSGE Model

As we discussed in the introduction, the literature has documented evidence of the fore-

casting accuracy of �xed-parameter DSGE models (Smets and Wouters (2007), Edge et al.

(2009), Edge and Guerkaynak (2010), Del Negro and Schorfheide (2013b), Del Negro, Gian-

noni and Schorfheide (2014)). In this section we evaluate the relative forecasting performance

of our time varying DSGE model. In addition to the �xed-parameter Smets and Wouters

(2007) speci�cation, we also compare the forecasting record of the time varying DSGE model

against univariate models (AR(1), a Random Walk (RW) and a time varying AR(1)) and

multivariate reduced-form models (a BVAR and a time varying stochastic volatility BVAR

(TV-SV BVAR)).

The BVAR uses a standard Normal-inverted-Wishart conjugate prior with optimal shrink-

age and optimal lag selection as in Carriero, Clark and Marcellino (2015). The TV-SV BVAR

features time varing autoregressive coe¢ cients as in Cogley and Sargent (2002) and stochas-

7The IRFs of selected variables to the remaining shocks (namely, Investment Technology and Government

Spending Shocks) can be found in the Appendix, see Figures 12-17.
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tic volatility as in Primiceri (2005)8. Since it is burdensome to estimate this model for more

than three variables and obtain stationary draws from the posterior distribution of the au-

toregressive coe¢ cients, we limit our TV-SV BVAR to only output growth, in�ation and

the Fed Funds rate. The TV-AR model is computed using the non-parametric kernel based

method, as in Giraitis et al. (2014)9.

We employ the algorithm outlined in Section 2.3.2 to generate density forecasts for the

observables of the time varying DSGE model.

Since real-time data is limited and only available after 199110, we perform the out-of-

sample forecasting on �nal revised data as we would like to be able to assess performance

across di¤erent periods. Our forecast origins range from 1974Q3 up to 2010Q1 and we

compute forecasts for one up to twelve quarters ahead.

We measure accuracy of point forecasts using the root mean squared forecast error

(RMSFE) and forecast bias. The accuracy of density forecasts are measured by log pre-

dictive scores. We compute the logscore with the help of a nonparametric estimator to

smooth the draws from the predictive density obtained for each forecast and horizon. We

test whether a model is statistically more accurate than the benchmark with the Diebold and

Mariano (1995) statistic computed with Newey-West estimator to obtain standard errors.

We provide the results of the Diebold-Mariano test for the RMSFEs and logscores. For the

bias, we simply test whether the models�bias is statistically di¤erent from zero.

4.1 Point Forecasts

Table 1 presents the absolute performance of the our TV DSGE model (in RMSFEs) and the

relative performance of our approach to alternative models over di¤erent horizons (numbers

smaller than one imply superior performance of the TV DSGE relative to the alternatives).

8The TV-SV BVAR is of lag order one and uses random walk processes for both the autoregressive

coe¢ cients and the log volatility. For more details, see for instance Cogley, Primiceri and Sargent (2010) or

Benati and Mumtaz (2007).
9The model is estimated in each point in time t : b�t = (X 0DtX)

�1X 0DtY where X contains the lagged

dependant variable Y and Dt is a diagonal matrix with the kernel weights of the tth row of the weighting

matrix in equation (5) in its main diagonal. The variance of the residuals is also time varying and computed

in point t as b�2t = "0Dt"=tr(Dt): Density forecasts are then generated, using wild bootstrap and the last

period values b�T and b�2T :
10Real-time data on compensation is not available prior to 1991.
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One, two and three stars indicate that we reject the null of equal accuracy in favour of the

better performing model at signi�cance levels of 10%, 5% and 1% respectively.

There are some gains from using the time varying model over the standard �xed parameter

DSGE for most variables but the di¤erences are small and rarely signi�cant. One exception

is in�ation: the time varying model performs signi�cantly worse than the �xed-parameter

speci�cation. The model also outperforms the standard BVAR, which con�rms previous

�ndings (e.g. Smets and Wouters (2007), Adolfson, Andersson, Linde, Villani and Vredin

(2007), Christo¤el, Coenen and Warne (2010)). Moreover, we �nd superior performance for

output growth over the TV-SV BVAR. Finally, the TV DSGE model strongly outperforms

the univariate models.

In order to better understand the strengths and weaknesses of our approach, we further

investigate the point forecast accuracy by splitting our sample of forecasts into subsamples

corresponding roughly to three distinct periods in U.S. recent economic history: namely,

the Oil Crisis or Great In�ation period (at least the end of it, ranging 1974Q2:1982Q4),

the Great Moderation (1983Q1:2005Q4) and the recent �nancial crisis (2006Q1:2011Q3).

Table 2 presents the relative RMSFE performance of our approach and Table 3 displays

the forecast bias for per capita GDP growth, in�ation and the interest rate during the

three periods. For the Oil Crisis period, our method is superior to the two BVARs and

comparative to the standard DSGE approach for output. When it comes to forecast bias

in the Great In�ation Period, both DSGE models strongly and signi�cantly underestimate

in�ation, but in relative terms our model does poorly, resulting in signi�cantly worse RMSFE

performance. The reason for this result is the relatively small sample size at this point and

hence, little advantage in down-weighting past data. Interestingly, the two BVARs deliver

unbiased in�ation forecasts, but systematically underestimate output growth.

Although, as argued earlier, our method does on average worse for in�ation over the

full forecast sample, during the Great Moderation, we obtain better performance. The

Great Moderation was characterised by low and stable in�ation and very low business cycle

volatility. It is clear from the forecast bias, that both BVAR models and the standard

DSGE model signi�cantly overestimate in�ation during this period. This is the case, since

the standard DSGE and the �xed coe¢ cient BVAR, in order to generate projections, use

samples which contain the entire Oil Crisis period, characterised by very high in�ation.

Our method, on the other hand, obtains better performance and remains virtually unbiased
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because of its way of down-weighting distant data. The TV-SV BVAR features time variation

in the autoregressive coe¢ cients of the VAR, so it is surprising that is fails to capture the

structural change in in�ation dynamics during the Great Moderation and also systematically

overestimates in�ation. This could be due to the way time variation enters the model; our

approach models time variation non-parametrically, and it is more robust to misspeci�cations

in the stochastic processes for the time varying parameters that the TV-SV BVAR utilises

(for further discussion andMonte Carlo evidence, see Galvão et al. (2015)). All models deliver

similar, in terms of RMSFEs, output forecasts during the Great Moderation; however, both

DSGE models underestimate output.

The period of the recent �nancial crisis (2007-2009) has been a subject to many dis-

cussions. This crisis generated serious critiques for the forecasting literature, for instance,

Wieland andWolters (2011), Del Negro and Schorfheide (2013b) provide evidence that DSGE

models not only failed to predict it, but even once the crisis had started, failed to forecast

the trough and quickly returned the economy to positive growth rates. During the 2006-

2011 period, which overlaps with the recent crisis period and subsequent recovery, our model

outperforms the standard DSGE model and both BVARs for all horizons and even with a

small sample size of 23 observations, manages to deliver some statistically signi�cant im-

provements. This could also be seen from the forecast bias where all alternative models

considerably overestimate output, but our approach impressively delivers unbiased output

forecasts at one step ahead, compared to a bias of around 0.31% quarterly GDP growth for

the �xed parameter DSGE model, 0.33% for the BVAR and 0.40% for the TV-SV BVAR.

Our interpretation of this result is similar to before; both the BVAR model and the standard

DSGE model use as in-sample period data from Oil Crisis and the Great Moderation in

order to generate forecasts for the recent crisis, while our method also makes use of these

data but discounts it progressively fast. The resulting trend coe¢ cient, ; as seen in Section

4, falls considerably after 2007. This parameter is important and can have substantial e¤ect

on the model�s forecasts, as it enters as an intercept in the measurement equation for out-

put, consumption, investment and wage growth. For in�ation, while RMSFE performance

during the same period is relatively similar to the standard DSGE model (worse in the short

run and better at longer horizons), the forecast bias is negative for the TV DSGE model

while positive for the standard DSGE. Another interesting result is that, our method, while

delivering similar interest rates forecasts during the previous subsamples, delivers very large
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and statistically signi�cant improvements over all models during the crisis. Our TV DSGE

model contains a Taylor rule with changing parameters and in particular, during the crisis

period with interest rates close to the Zero Lower Bound (ZLB), our interest rate smoothing

coe¢ cient jumps to levels near 0.9. This delivers interest rate forecasts that are close to a

random walk model while in�ation targeting and output gap values have a reduced e¤ect.

To summarise, in periods, in which serious structural change is present, such as the recent

one, the forecast errors of the TV DSGE model are relatively smaller and the model is more

robust to forecast bias resulting from the presence of the structural change in the in-sample

period.

4.2 Density Forecasts

Table 4 accesses the quality of the density forecasts measured by logscores of the pre-

dictive density. The table displays absolute log predictive score for the TV DSGE model

and di¤erences in logscores over the alternative models, so numbers greater than zero imply

superior performance of our approach.

A few comments are in order. First, it is clear that overall our method outperforms con-

siderably and statistically signi�cantly the standard DSGE for most variables and horizons.

Interestingly, our simple univariate TV AR(1) also delivers density performance superior to

that of the standard DSGE model. These results are important as they imply that, while

allowing for parameter drift results in moderate gains for point accuracy and only for some

variables and periods, it results in signi�cantly improved density forecasts. One way to look

at this is to infer about the importance of stochastic volatility. As seen in Section 3, the

uncovered time variation in the standard deviations of the shocks in the structural model

is substantial and previous studies have con�rmed this result (Primiceri (2005), Sims and

Zha (2006), Justiniano and Primiceri (2008)). Since volatility is inherently time varying and

subjected to structural change, it is clear that conditioning on the most recent values of

the shocks when simulating the density of forecasts, as outlined in Section 2.3.2, will deliver

better forecast uncertainty. Since the TV-SV BVAR also allows for changing volatility, it is

unsurprising that it delivers very similar density forecast performance.

Table 5 further investigates the relative density performance of our approach over the

sub-sample periods. It is clear that our method delivers better forecast uncertainty than

the standard DSGE and the standard BVAR over the Great Moderation period, which
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is unsurprising. The in-sample that the two �xed coe¢ cient models contain is the high

volatility period of the Oil Crises, hence, as anticipated, density forecasts during the Great

Moderation generated with these in-samples are worse. On the other hand, our TV DSGE

model as well as the TV-SV BVAR account for this reduced uncertainty (our approach - by

kernel down-weighting of Oil Crises data and the TV-SV BVAR - by �tting random walk

state equations for the volatility paths) and hence deliver similar and superior performance

over the �xed parameter models.

4.3 Robustness Checks

In this section, we investigate the impact of some of our assumptions on the forecasting

performance of the time varying DSGE model. We exploit the impact of di¤erent bandwidth

sizes and the use of the rolling windows method. Figure 14 plots the RMSFEs11 for the �xed-

parameter DSGE model and the time varying DSGE estimated under di¤erent assumptions.

We include our baseline case with the normal kernel method and bandwidth equals to T 0:5,

and also the case the bandwidth of T 0:55. We also consider �at kernels which are equivalent

to rolling windows of 40 and 60 observations. The results in Figure 14 support our baseline

estimation method since they imply a forecasting performance that is superior to alternative

speci�cations.

5 Conclusion

This paper develops a Bayesian local likelihood method to accommodate time variation

in DSGE models� parameters, appropriately weighting the sum of log likelihoods of the

sample with weights generated by a kernel function. The method can be applied to any

DSGE model that can be cast in a state-space representation. The empirical application

presented uncovers some time variation in the Smets and Wouters (2007) model�s parameters

and points to potential misspeci�cation in the labour market of the model during to the low

volatility environment of the Great Moderation period. When it comes to forecasting, our

estimation procedure is no more computationally intensive than estimating a DSGE model

11For computational time considerations, the robustness checks have only been computed at the mode of

the parameter posterior. Furthermore, the sample size of the forecasts is smaller than in the comparison in

the previous Section due to use of larger in-sample periods by the wider rolling windows.
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with �xed parameters and, as demonstrated in the forecasting exercise, can deliver some

gains in the forecast performance both for point and density projections especially in the

presence of serious structural change such as the recent �nancial crisis.

Figure 1: The DSGE parameters over time

25



Figure 2: The DSGE parameters over time

Figure 3: The DSGE parameters over time
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Figure 4: IRFs to 1 unit monetary policy shock

Figure 5: IRFs to 1 st. dev. monetary policy shock
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Figure 6: IRFs to 1 unit price mark up shock

Figure 7: IRFs to 1 st. dev. price mark up shock
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Figure 8: IRFs to 1 unit TFP shock

Figure 9: IRFs to 1 st. dev. TFP shock
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Figure 10: IRFs to 1 unit preference shock

Figure 11: IRFs to 1 st. dev. preference shock
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Table 1: RMSFEs. The �gures under TV-DSGE model are absolute RMSFEs, the �gures under the

remaining models are ratios of RMSFEs of TV-DSGE over the alternatives. �*�, �**�and �***�indicate

rejection of the null of equal performance against the two-sided alternative at 10%, 5% and 1%

signi�cance level respectively, using a Diebold - Mariano test.
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Table 2: RMSFEs. The �gures under TV-DSGE model are absolute RMSFEs, the �gures under the

remaining models are ratios of RMSFEs of TV-DSGE model over the alternatives. �*�, �**�and �***�

indicate rejection of the null of equal performance against the two-sided alternative at 10%, 5% and 1%

signi�cance level respectively, using a Diebold - Mariano test.
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Table 3: Forecast Bias. The table reports forecast bias, computed as the mean forecast error. �*�, �**�

and �***�indicate rejection of the null of zero bias against the two-sided alternative at 10%, 5% and 1%

signi�cance level respectively, using a Diebold - Mariano test.
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Table 4: Log Predictive Score. The �gures under TV-DSGE model are absolute log predictive scores,

the �gures under the remaining models are di¤erences of RMSFEs over the TV-DSGE model. �*�, �**�

and �***�indicate rejection of the null of equal performance against the two-sided alternative at 10%,

5% and 1% signi�cance level respectively, using a Diebold - Mariano test.
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Table 5: Log Predictive Score. The �gures under TV-DSGE model are absolute log predictive

scores, the �gures under the remaining models are di¤erences of RMSFEs over the TV-DSGE

model. �*�, �**�and �***�indicate rejection of the null of equal performance against the two-sided

alternative at 10%, 5% and 1% signi�cance level respectively, using a Diebold - Mariano test.
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Figure 14: Robustness check: Comparison of RMSFEs obtained with bandwidths H = T 0:5; T 0:55

and rolling windows of size 40; 60:
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6 Appendix

6.1 The Smets and Wouters (2007) Model

The resource constraint is given by:

yt = (1� gy � iy)| {z }
steady state

consumption-output ratio

ct + (( � 1� �)ky)| {z }
steady state

investement-output ratio

it + (R
k
�ky)zt + "gt :

Output, yt; is absorbed by consumption ct, investment it, capital utilization zt and gov-

ernment spending "gt : gy; iy and ky are steady state government-output, investment-output

and capital-output ratios respectively and Rk� is the steady state rental rate of capital.  is

the steady state growth rate of output, used to detrend all non-stationary variables in the

model and � is the depreciation rate of capital. Exogenous government spending follows an

AR(1) stochastic process with an autoregressive coe¢ cient �g and an iid-Normal error term

�gt with variance �
2
g :

"gt = �g"
g
t�1 + �gt + �ga�

a
t

where �at is the iid-Normal shock to TFP and is motivated by Smets and Wouters (2007)

as the model at hand is a closed economy, with "gt also including data on exports/imports,

which could depend on domestic productivity �at :

The Euler equation for consumption is:

ct =
(�=)

(1 + �=)
ct�1+

1

(1 + �=)
Etct+1+

(�c � 1)W h
� L�=C�

�c(1 + �=)
Et(lt�lt+1)�

(1� �=)

(1 + �=)�c
(rt�Et�t+1+"bt)

and implies that consumption ct is a weighted average between past consumption ct�1 and

expected future consumption Etct+1. It also depends on expected growth in the hours worked

Et(lt�lt+1) and ex-ante real interest rate rt�Et�t+1 and a risk premium shock "bt representing
a wedge between the instrument controlled by the central bank and the rate of return on

assets faced by households. It follows an AR(1) stochastic process with an autoregressive

coe¢ cient �b and an iid-Normal error term �bt with variance �
2
b :

"bt = �b"
b
t�1 + �bt :

In the absence of habit formation, � = 0, the �rst term drops out and the Euler equation

becomes entirely forward-looking. When the elasticity of intertemporal substitution, �c = 1,

the household is facing log utility in consumption and the labour supply term drops out.
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The investment Euler equation is:

it =
1

1 + �1��c
it�1 + (1�

1

1 + �1��c
)Etit+1 +

1

(1 + �1��c)2'
qt + "it

implying that current investment it is a weighted average of past investment it�1 and expected

future investment Etit+1. It also depends on the real value of capital qt and an investment-

speci�c technology disturbance term "it that captures the relative e¢ ciency of investment

expenditure and follows an AR(1) stochastic process with an autoregressive coe¢ cient �i

and an iid-Normal error term �it with variance �
2
i :

"it = �i"
i
t�1 + �it:

' is the steady state elasticity of capital adjustment cost and � is the household�s discount

factor.

The arbitrage condition between the return to capital and the riskless rate is given by:

qt =
(1� �)

Rk� + (1� �)
Etqt+1 + (1�

(1� �)

Rk� + (1� �)
)Etrkt+1 � (rt � Et�t+1 + "bt)

where the current capital value qt is a weighted average of expected future value Etqt+1 and

expected real rental rate of capital Etrkt+1 and depends also negatively on the ex-ante real

interest rate rt � Et�t+1 and the risk-premium disturbance "bt . The aggregate production

function is:

yt = �(�kst + (1� �)lt + "at )

with output being produced with standard factors of production, capital kst , labour lt and

technology "at , assumed to follow an AR(1) stochastic process with an autoregressive coe¢ -

cient �a and an iid-Normal error term �at with variance �
2
a:

"at = �a"
a
t�1 + �at :

The parameter � measures one plus the �xed costs in production and � is the capital share

after mark-ups and �xed costs. Since the capital installed today takes a period to become

e¤ective, current capital used in production kst is a sum of capital installed the previous

period kt�1 and the degree of capital utilization zt:

kst = kt�1 + zt:
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The degree of capital utilization zt itself depends positively in the rental rate of capital rkt and

 is a function of the elasticity of capital utilization adjustment cost function, normalised to

take valued between zero and one:

zt =
1�  

 
rkt :

The capital accumulation equation is given by:

kt =
1� �


kt�1 + (1�

1� �


)it + (1�

1� �


)((1 + �1��c)2')"it

where installed capital kt is a function of previously installed capital kt�1, investment �ow

it and the investment-speci�c disturbance "it.

The price mark-up �pt in the monopolistic goods market is given by the di¤erence between

marginal product of labour mplt, which depends on TFP and the capital-labour ratio, and

the real wage wt:

�pt = �(kst � lt) + "at| {z }
mplt

� wt:

The Phillips curve is given by:

�t =
�p

1 + �(1��c)�p
�t�1+

�(1��c)

1 + �(1��c)�p
Et�t+1�

1

1 + �(1��c)�p

(
(1� �(1��c)�p)(1� �p)

�p((�� 1)"p + 1)

)
�pt+"

p
t

and implies that current level of in�ation �t is a function of past in�ation �t�1 and expected

future in�ation Et�t+1, price mark-up �
p
t and a price mark-up shock "

p
t . Without degree of

indexation, �p = 0, the expression reduces to purely forward-looking Phillips curve. �p is the

Calvo price stickiness, "p is the Kimball aggregator in the goods market that measures the

degree of strategic interaction between price-setters and ��1 is the steady state price mark-
up, which depends on the �xed cost parameter �. The price mark-up error term "pt follows

an ARMA(1,1) process with an autoregressive coe¢ cient �p, a moving average coe¢ cient �p

and an iid-Normal error term �pt with variance �
2
p, motivated by the desire to capture more

of the dynamics in the data on in�ation �uctuations:

"pt = �p "
p
t�1 + �pt + �p�

p
t�1:

Rental rate of capital is a function of the capital-labour ratio (kt � lt) and the real wage wt:

rkt = �(kt � lt) + wt:

45



The labour market is characterised by similar conditions to the goods market. In partic-

ular, there is a wage mark-up equation:

�wt = wt � (�llt +
1

1� �=
(ct � �=ct�1))| {z }

mrst

where the wage mark-up �wt is the di¤erence between the real wage wt and the marginal rate

of substitution between working and consuming, mrst, that is the disutility of work, with �l

capturing the elasticity of labour supply with respect to the wage. The corresponding wage

equation is given by:

wt =
1

1 + �(1��c)
wt�1 + (1�

1

1 + �(1��c)
)(Etwt+1 + Et�t+1)�

1 + �(1��c)�w
1 + �(1��c)

�t

+
�w

1 + �(1��c)
�t�1 �

1

1 + �(1��c)

�
(1� �(1��c)�w)(1� �w)

�w((�w � 1)"w + 1)

�
�wt + "wt :

The real wage wt is a weighted average between past wage wt�1 and expected future real

wage (Etwt+1+Et�t+1), depends on wage mark-up, current in�ation �t, wage mark-up shock

"wt and partially indexed to past in�ation �t�1. Similarly to the goods market, �w captures

the degree of indexation, �w is the Calvo wage stickiness, "w is the Kimball aggregator in the

labour market and �w � 1 is the steady state wage mark-up. Finally, the wage disturbance
also follows an ARMA(1,1) process with an autoregressive coe¢ cient �w, a moving average

coe¢ cient �w and an iid-Normal error term �wt with variance �
2
w, with the MA term added

as explained by Smets and Wouters (2007) to capture more of the high frequency wage

�uctuations observed in the data:

"wt = �w "
w
t�1 + �wt + �w�

w
t�1:

The central bank in the model follows a nominal interest rate rule of the form:

rt = �rt�1 + (1� �) fr��t + ry(yt � ypt )g+ r�y
�
(yt � ypt )� (yt�1 � ypt�1)

�
+ "rt

by gradually adjusting the policy rate rt in response to �uctuations in in�ation �t, output

gap (yt�ypt ) and output gap growth (yt�ypt )� (yt�1�ypt�1). The policy parameters �, r�, ry
and r�y capture the degree of interest rate smoothing, the level of in�ation and output gap

targetting and the short-run feedback from output gap change respectively. The monetary

policy shock "rt follow an AR(1) stochastic process with an autoregressive coe¢ cient �r and

an iid-Normal error term �rt with variance �
2
r:
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"rt = �r "
r
t�1 + �rt :

The measurement equation takes the form:

Xt =

2666666666666664

100�� logGDPt
100�� logCt
100�� log It
100�� logWt

100� logHt

100�� logPt
FFRt

3777777777777775
=

2666666666666664









l

�

r

3777777777777775
+

2666666666666664

yt � yt�1

ct � ct�1

it � it�1

wt � wt�1

lt

�t

rt

3777777777777775

6.2 Time Varying IRFs
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Figure 12: IRFs to 1 unit wage mark up shock

Figure 13: IRFs to 1 st. dev. wage mark up shock
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Figure 14: IRFs to 1 unit investment technology shock

Figure 15: IRFs to 1 st. dev. investment technology shock
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Figure 16: IRFs to 1 unit government spending shock

Figure 17: IRFs to 1 st. dev. government spending shock
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