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Abstract

We build a time varying DSGE model with financial frictions in order to evaluate changes

in the responses of the macroeconomy to financial friction shocks. Using US data, we find that

the transmission of the financial friction shock to economic variables, such as output growth,

has not changed in the last 30 years. The volatility of the financial friction shock, however,

has changed, so that output responses to a one-standard deviation shock increase twofold in

the 2007-2011 period in comparison with the 1985-2006 period. The time varying DSGE model

with financial frictions improves the accuracy of forecasts of output growth and inflation during

the tranquil period of 2000-2006, while delivering similar performance to the fixed coeffi cient

DSGE model for the 2007-2012 period.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are popular tools used for policy analysis

and macroeconomic forecasting. Their success is a result of their capacity to combine economic

microfoundations derived from the optimisation decisions of rational agents with business cycle

fluctuations. Traditionally, the consensus in the macroeconomic literature has been an apparent

trade-off between theoretical coherence, relating to model outcomes being explained by reference

to some well-established theory, and empirical coherence, relating to the ability of a model to fit

and explain macro data well. Models that exhibit both theoretical and empirical coherence were

deemed infeasible. DSGE models were traditionally at the theoretical end of this trade-off curve.

At the empirical end, we find non-structural reduced-form models, such as VARs, which exploit

correlations in time series with little reliance on macroeconomic theory. It was the work of Smets

and Wouters (2003, 2005, 2007), based on earlier work of Rotemberg and Woodford (1997) and

Christiano, Eichenbaum and Evans (2005), that changed such perception and demonstrated that

medium-sized DSGE models are not too abstract to be taken to the data and successfully employed

in forecasting. Following Smets and Wouters (2007), many authors evaluated the DSGE models’s

forecasting performance, providing evidence that they can produce accurate forecasts of output

growth and inflation in real time (Edge and Guerkaynak (2010), Woulters (2012) and Del Negro

and Schorfheide (2013)).

However, the recent financial crisis has posed a serious challenge to macroeconomic modelling.

Perhaps the most important aspect of this challenge is the inability of standard DSGE models to

accommodate the impact of developments in the financial sector on the rest of the economy. Based

on the seminal work of Bernanke, Gertler and Gilchrist (1999), various authors have exploited

financial channels in a DSGE structure as a way of improving the fit of the DSGE model to the

2008-2009 global financial crisis, including Christiano, Motto and Rostagno (2014), Del Negro and

Schorfheide (2013) and Del Negro, Hasegawa and Schorfheide (2014). Interestingly, Del Negro et al.

(2014) find that the Smets and Wouters (2007) model with financial frictions, while delivering

relatively better forecasts during the crisis, performs worse in tranquil periods than the model

without financial frictions. This is consistent with evidence of the changing predictive power of

various economic and financial indicators on U.S. output and inflation (Stock and Watson (2003)).

Even if asset prices are, on average, poor indicators of economic activity, their predictive power

should have increased during the recent financial crisis. For example, Gilchrist and Zakrajsek
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(2011) and Philippon (2009) argue that the predictive power of corporate bond credit spread for

the business cycle and economic activity reveal the potential of bond markets to signal (even more

accurately than stock markets) a decline in fundamentals prior to a business cycle downturn.

Incorporating a financial channel in a DSGE model may not be enough to address the effect

that structural changes in the underlying economy might have on preference parameters and on

exogenous shock processes. A standard assumption in the literature is that the DSGE parameters

are structural in the Lucas sense, that is, they are invariant to both policy and structural shocks.

However, this does not imply that they are constant at all time scales. Long term cultural or tech-

nological shifts might result in slow parameter variation. While DSGE analysis focuses primarily

on business cycle frequency, parameter drift is potentially of great importance when considering

sample periods of over 40 years, which are routinely used for estimation and calibration of DSGE

models. A related issue is the extent to which all parameters of medium-sized DSGE models are

equally immune to the Lucas critique. While parameters such as households’discount factor with

distinct microfoundations may be unaffected to long run change, other parameters associated with

rigidity dynamics have a reduced-form flavour and may be more vulnerable to technological or

social change, or other factors. Even if one believes in the structural nature of DSGE parameters,

it is important that one recognises at least the possibility of time variation in the parameters when

estimated over long time periods.

Time variation in the preference parameters or in the volatility of structural shocks of a DSGE

model have been modelled by specifying a stochastic process for a small subset of the parameters

(Justiniano and Primiceri (2008), Fernandez-Villaverde and Rubio-Ramirez (2008)). For instance,

Fernandez-Villaverde and Rubio-Ramirez (2008) assume that agents in the model take into account

future parameter variation when forming their expectations. Similar assumptions are made by

Schorfheide (2005), Bianchi (2013), Foerster, Rubio-Ramirez, Waggoner and Zha (2014), but the

parameters are modelled as Markov-switching processes.

In contrast, Canova (2006), Canova and Sala (2009) and Castelnuovo (2012), allow for parameter

variation by estimating DSGE models over rolling samples. In recent work, Galvão, Giraitis,

Kapetanios and Petrova (2015a) and (2015b) have provided a new approach that allows time

varying estimation of Bayesian models, used for the time varying estimation of the Smets and

Wouters (2007) DSGE model in Galvão, Giraitis, Kapetanios and Petrova (2015b). Their approach

is an extension and formalisation of rolling window estimation, generalised by combining kernel-

generated local likelihoods with appropriately chosen priors to generate a sequence of posterior
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distributions for the objects of interest over time, following the methodology developed in Giraitis,

Kapetanios and Yates (2014) and Giraitis, Kapetanios, Wetherilt and Zikes (2015). Both the

kernel and the rolling window approaches, when applied to structural models, assume that, instead

of being endowed with perfect knowledge about the economy’s data generating process, agents

take parameter variation as exogenous when forming their expectations about the future. This

assumption facilitates estimation and can be rationalised from the perspective of models featuring

learning problems, where agents form beliefs about the parameters based on observing past data.

For example, Cogley and Sargent (2009) utilise Kreps (1998)’s anticipated utility approach, where

at each period agents employ their current beliefs as the true (time invariant) parameters. They

show that in the presence of parameter uncertainty, the anticipated utility approach outperforms

the rational expectation approximation. A recent application of the anticipated utility approach is

Johannes, Lochstoer and Mou (2015), where assets are priced at each point in time, using current

posterior means for the parameters and assuming that current values will last indefinitely in the

future. At each period, agents learn the new parameter values and adjust their expectations1.

In this paper, we employ the Galvão et al. (2015b) approach to investigate the changing nature

of the effect of financial frictions to the rest of the economy. The model we investigate is a Smets and

Wouters (2007) model with an added financial sector as in Bernanke et al. (1999), and Del Negro

and Schorfheide (2013). The advantage of the specification discussed in this paper is that the

importance of the financial frictions for macroeconomic variables depends on a preference parameter

and on the stochastic properties of the new financial friction shock. By looking at the possibility

of time variation in these parameters, while also allowing all other DSGE parameters to change

over time, we can measure whether the significance of financial frictions change over time. We

find that the parameter that triggers the transmission of financial frictions to the economy remains

relatively constant during the entire sample period we analyse. However, the volatility of the

financial friction shock rises dramatically during the 2007-2011 period. This new finding contributes

to the debate between ‘Good Luck’versus ‘Good Policy’when explaining the Great Moderation

(Gali and Gambetti (2009), Benati and Surico (2009), Sims and Zha (2006)). We provide evidence

that the financial frictions shock was muted during the 1985-2007 period. Note that our model

presents arguments in favour of changes in the volatility of the shocks while also allowing for

1A similar outcome can be achieved in a linearised DSGE model with random walk processes for the drifting

parameters (a frequently made assumption in the time varying parameter VAR literature), where rational expectations

on the side of agents would imply that the future values of the parameters are equal to the current posterior means.
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changes in the parameters of the policy rule. As a consequence, this paper produces a new source of

evidence of ‘Good Luck’during the Great Moderation period while also allowing for a ‘Good Policy’

channel. Related investigation of changes in the volatility of financial shocks over time is presented

in Fuentes-Albero (2014), where a Smets and Wouters (2007) DSGE model with financial frictions

is estimated with constant parameters over different subsamples and the breaks in the volatility

of the residuals of the model are dated. The author finds that the size of the financial shocks

has increased over time, while their importance in explaining non-financial variables has remained

relatively unchanged. Cardani, Paccagnini and Villa (2015) estimate a Smets and Wouters (2007)

model with banking intermediation and report the posterior means of the parameters over time

implied by their recursive forecasting scheme, providing further evidence of the changing importance

of the financial shock in their model.

In addition, this paper exploits the forecasting performance of the time-varying DSGE model

with financial frictions, extending the results of Del Negro and Schorfheide (2013) and Kolasa and

Rubaszek (2015), who use only fixed parameters specifications.

The paper is organised as follows. Section 2 contains a compact account of the Bayesian Local

Likelihood (BLL) approach for DSGE models proposed by Galvão et al. (2015b). Section 3 describes

the DSGE model. Empirical results are presented in Section 4. Finally, Section 5 concludes.

2 Modelling time variation in DSGE parameters

This section outlines the estimation strategy used in our local Bayesian Local Likelihood (BLL)

method. The linearized rational expectation model can be written in the form

A(θt)xt+1 = B(θt)xt + C(θt)vt +D(θt)ηt+1, vt ∼ N(0, Q(θt))

where xt is a n × 1 the vector containing the model’s endogenous and exogenous variables, vt is

a k × 1 vector of structural shocks, ηt+1 is an l × 1 vector of expectation errors, θt is a vector

of parameters, including parameters governing preferences and the shocks’ stochastic processes,

A,B,C and D are matrix functions of θt, and Q(θt) is a diagonal covariance matrix. Observe that

we have one such equation for each point in time t.

A numerical solution of the rational expectations model can be obtained by one of the available

methods (for instance, Blanchard and Kahn (1980) or Sims (2002)). The resulting state equation

is given by

xt = F (θt)xt−1 +G(θt)vt (1)
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where the n×nmatrix F and the n×k matrix G can be computed numerically for a given parameter

vector θt. The system is augmented with a measurement equation:

Yt = K(θt) + Z(θt)xt (2)

where Yt is a m × 1 vector of observables, normally of a smaller dimension than xt (i.e. m < n)

and Z is a m× n matrix that links those observables to the latent variables in the model xt.

Equations (1) and (2) define the state space representation of the model, which is linear and

Gaussian. Therefore, the Kalman filter can be employed to recursively build the likelihood of the

sample of observables {Yj}Tj=1. The likelihood of the sample - the product of the likelihood functions

of each observation - is given by

Lt(Y |θt) =
T∏
j=1

L(Yj |Y j−1, θt)
wtj for t = 1, ..., T

where wtj is an element of the T ×T weighting matrixW = [wtj ], computed using a kernel function

w̃tj = K ((t− j)/H) for j, t = 1, ..., T (3)

with a bandwidth parameter H. The weights are then normalised to sum to 2H + 1 for each t, i.e,

wtj = (2H + 1)

(
w̃tj/

∑T

j=1
w̃tj

)
for j, t = 1, ..., T.

In the fixed parameter case, the weights on each likelihood sum up to T . The difference comes

from the rolling window methodology and reflects its use of downweighting/subsampling. The

normalisation employed to maintain the relative balance between the likelihood and the prior does

not matter for maximising the objective function but it would enter the Hessian and hence the

standard errors. In this paper, the normal kernel function

K (x) =
1√
2π

exp

{
−1

2
x2

}
is used to generate the weights wtj . We set H =

√
T , in line with the optimal bandwidth parameter

choice used for inference of time-varying random coeffi cient models in Giraitis et al. (2014).

The local likelihood of the DSGE model at time t, denoted by Lt(Y |θt), is augmented with the

prior distribution of the structural parameters, p(θt), to get the posterior at time t, p(θt|Y ):

p(θt|Y ) =
Lt(Y |θt)p(θt)

p(Y )
∝

T∏
j=1

L(Yj |Y j−1, θt)
wtjp(θt).
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It should be noted that for our DSGE investigation, we assume the prior p(θt) to be fixed over

time, i.e., p(θt) = p(θ) for all t.

One could potentially allow the prior to be time-varying, exploring further the idea that the

posterior yesterday can be used for a prior today. However, since we focus only on the possibility

of parameter change driven by the data, we assume that the prior is constant over time.

To obtain the joint posterior distribution of the parameters, we use numerical methods since the

matrices F and G are non-linear functions of θ and hence the posterior does not fall into families

of known distributions and we cannot derive moments of that posterior analytically. The most

commonly used procedure to generate draws from the posterior distribution of θ is the Metropolis,

Rosenbluth, Rosenbluth, Teller and Teller (1953) algorithm, and its generalisation by Hastings

(1970). The algorithm described here is the Schorfheide (2000)’s Random Walk Metropolis (RWM)

modified to include the kernel weights. For each point in time t = 1, .., T, the algorithm implements

the following steps.

Step 1 The posterior is log-linearised and passed to a numerical optimisation routine. Opti-

misation with respect to θt is performed to obtain the posterior mode,

θ̂t = arg min
θ

(
−
∑T

j=1
wtj logL(Yj |Y j−1, θt)− log p(θt)

)

Step 2 Numerically compute Σ̂t, the inverse of the (negative) Hessian, evaluated at the pos-

terior mode, θ̂t.

Step 3 Draw an initial value θ0
t from N(θ̂t, c

2
0Σ̂t).

Step 4 For k = 1, ..., nsim, draw ζt from the proposal distribution N(θ
(k−1)
t , c2Σ̂t).

Compute

r(θk−1
t , ζt|Y1:T ) = p(ζt|Y )/p(θk−1

t |Y ) =
∏T

j=1
L(Yj |Y j−1, ζt)

wtjp(ζt)/
∏T

j=1
L(Yj |Y j−1, θk−1

t )wtjp(θk−1
t ),

which is the ratio between the weighted posterior at the proposal draw ζt and the previous draw

θk−1
t .

The draw ζt is accepted (setting θkt = ζt) with probability τ = min{1, r(θ(k−1)
t , ζt|Y1:T )} and

rejected (θk−1
t = θkt ) with probability 1− τ .

Once the posterior distribution of the parameters is obtained, out-of-sample forecasts can be

generated. For each forecast, we only need the posterior distribution at the end of the correspond-

ing in-sample period. Therefore, for generating DSGE-based forecasts, our method is no more
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computationally intensive than a standard fixed parameter DSGE forecasting: it requires the com-

putation of the posterior only once. The predictive distribution of the sample p(YT+1:T+h|Y1:T ),

1 to h horizons ahead, is given by the conditional probability of the forecasts, averaged over all

possible values of the parameters, the variables in the state vector at the end of the sample xT , and

all possible future paths of the variables in the state vector xT+1:T+h: p(YT+1:T+h|Y1:T ) =∫
(xT ,θT )

[∫
s=xT+1:T+h

p(YT+1:T+h|s)p(s|xT , θT , Y1:T )ds

]
p(xT |θT , Y1:T )p(θT |Y1:T )d(xT , θT )

where p(θT |Y1:T ) is the posterior of the parameters at the end point T of the sample used. We

employ a slightly modified version of the algorithm for generating draws from the predictive distri-

bution outlined in Del Negro and Schorfheide (2013). The algorithm is as follows.

Step 1 Using the saved draws from the posterior at the end of the sample p(θT |Y1:T ), for every

draw k = 1, .., nsim (or for every ith draw), use the Kalman filter to compute the moments of the

unobserved variables at T : p(xT |θkT , Y1:T ).

Step 2 Draw a sequence of shocks vkT+1:T+h from a N(0, Q(θkT )), where Q(θkT ) is a draw from

the estimated posterior distribution of the diagonal variance-covariance matrix of the shocks at T .

For each draw k from p(θT |Y1:T ) and from p(xT |θkT , Y1:T ), use the state equation to obtain forecasts

for the state variables

x̂kT+1:T+h = F (θkT )xkT :T+h−1 +G(θkT )vkT+1:T+h.

Step 3 Use the forecast simulations for x̂kT+1:T+h in the measurement equation

Ŷ k
T+1:T+h = K(θkT ) + Z(θkT )x̂kT+1:T+h.

Using the above algorithm, we obtain a predictive density of nsim draws of Ŷ k
T+1:T+H , which can be

used to obtain numerical approximations of moments, quantiles and densities of the out-of-sample

forecasts. Finally, point forecasts can be computed as the mean of the predictive density for each

forecasting horizon.

3 The DSGE model with financial frictions

The DSGE model with financial frictions combines the Smets and Wouters (2007) model (SW),

which extends a small-scale monetary RBC model with sticky prices (such as Goodfriend and King

(1997), Rotemberg and Woodford (1997), Woodford (2003), Ireland (2004) and Christiano et al.
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(2005)), with financial frictions as in Bernanke et al. (1999). In addition to the sticky prices, the

SW model also includes additional shocks and frictions, featuring sticky nominal price and wage

settings with backward inflation indexation, investment adjustment costs, fixed costs in production,

habit formation in consumption and capital utilization. Our complete log-linearised specification of

the model is described in Appendix 6.1. It differs from the financial friction specification in Kolasa

and Rubaszek (2015) and Del Negro and Schorfheide (2013) in that we are using a deterministic

rather than stochastic trend in productivity.

In comparison with the SW model, the main difference of the model discussed in this paper is the

inclusion of a financial sector from where entrepreneurs borrow funds to finance their projects. To

prevent entrepreneurs to accumulate enough for self-financing, the model assumes that a constant

proportion of them dies each period. The success of the entrepreneurs’projects depend on both

aggregate and idiosyncratic shocks. While entrepreneurs observe the impact of both types of

shocks, the banks do not observe idiosyncratic shocks. The financial intermediary faces a standard

agency problem in writing the optimal contract to lend to the entrepreneurs. The bank charges a

finance premium in order to cover its monitoring costs. The first order condition from the expected

return maximisation of the entrepreneurs, subject to the bank contract, gives rise to one of the

three key equations in the financial frictions block together with the evolution of the net worth of

entrepreneurs and the arbitrage equation for capital. The most important impact of the financial

friction is that it ‘accelatares’the impact of negative shocks, since the default risk increases during

recessions, which has a negative impact on net worth and investment, that further rises the default

risk as a consequence of the corporate bond spread.

The log-linearised equation, assuming a deterministic trend in productivity, that links the fi-

nancial friction shock εωt and the expected spread is written as

Et
[
R̃kt+1 − rt

]
=

(1− λ/γ)

(1 + λ/γ)σc
εbt + ςsp,b(qt + kt − nt) + εωt ,

where εbt is the risk premium shock, λ describes the habit formation on consumption, γ is the

long-run growth rate, σc is the elasticity of intertemporal substitution. The transmission of the

financial shock to aggregate investment via Tobin’s qt depends crucially of the parameter ςsp,b. If

this parameter collapses to zero (in the absence of the financial friction shock εωt ), the model is

equivalent to one with no financial frictions. The financial friction shock follows an AR(1) process

εωt = ρωε
ω
t−1 + σωη

ω
t ,

with variance σ2
ω. This implies that the DSGE model with financial frictions has eight stochastic
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shocks. We are particularly interested in how the parameters ςsp,b, ρω and σω evolve over time since

they have an impact on how the ‘accelerator’mechanism, created by allowing financial frictions,

changes over time.

Our full set of measurement equations is described in Appendix 6.2. In addition to the seven

observables employed by Smets and Wouters (2007), we add a time series of the corporate bond

spread, Spreadt, measured as the difference between the BAA Corporate Bond Yield over the 10

Year Treasury Note Yield. This time series is linked to the financial friction block above by equation

Spreadt = SP ∗ + 100× Et[R̃kt+1 − rt],

where rt is the policy rate.

4 Empirical results

In this section, we apply the Bayesian local likelihood (BLL) method outlined in Section 2 to the

DSGE model with financial frictions described in Section 3. We compare our results with the model

estimated assuming fixed parameters. The BLL method is applied with the weights wtj generated

by the normal kernel function and a bandwidth
√
T . The parameter prior distributions can be

found in Appendix 6.2. These priors are the same as in Smets and Wouters (2007), and for the

financial friction block parameters we tried different prior specifications (see Appendix 6.2). The

number of draws of the MH algorithm is 150, 000, from which we drop the first 15, 000. The scaling

parameter for the MH has been adjusted in order to obtain rejection rates of 20%-30%2. We use

U.S. data on eight observables described in Appendix 6.2 from 1970Q1 up to 2014Q2.

Figures 1 and 2 present the estimates of selected parameters. The remaining parameters can be

found in Appendix 6.3, and they are qualitatively similar to Galvão et al. (2015b). In Figures 1 and

2, the blue solid line is the posterior mean obtained by BLL, with the black dotted lines displaying

5% and 95% posterior confidence intervals, and the pink line is the posterior mode obtained by

BLL. Finally, the dashed blue line is the posterior mean obtained by standard Bayesian methods

with fixed coeffi cients, and the green dashed lines are the 5% and 95% posterior quantiles. We

would judge informally whether a parameter’s variation is substantial by checking whether our

estimates are outside the 5% and 95% quantiles of the posterior distribution of the fixed parameter

2Roberts, Gelman and Gilks (1997) show that the optimal acceptance rate is 0.234; their results serve as a rough

benchmark in the literature; however, they are asymptotic and rest on the assumption that the elements of each

chain are independent.
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model. We expect that the time-varying parameters, estimated by BLL, will move slowly over

time, in agreement with their variation representing stable and gradually changing relationships

between the variables of the model, caused by smooth structural change. Parameters that vary in a

erratic way would suggest that there exists no stable relationship between variables over time which

might indicate model misspecification of a different nature to that arising out of smooth structural

change.

Figure 1: Estimates of DSGE model with FF parameters. The posterior mean obtained by BLL (blue solid line),

the 5% and 95% posterior quantile values (black dotted lines), the posterior mode obtained by BLL (pink solid

line), the posterior mean obtained by fixed parameter Bayesian estimation (dashed blue line), and the 5% and 95%

posterior quantiles (green dashed lines).

Figure 1 displays the parameters of the Taylor rule, that is, interest rate smoothing and the relative

impacts of inflation, output gap, and output growth on the policy rate. Estimated values are

broadly in agreement with previous studies (Clarida, Gali and Gertler (2000), Cogley and Sargent
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(2002), Fernandez-Villaverde and Rubio-Ramirez (2008)) and suggest that the Federal Reserve has

shifted the priority of its policy from output towards inflation in the mid-1980s. In particular, the

Taylor rule inflation parameter starts increasing considerably especially after 1983, Paul Volcker’s

second term as a Chairman of the Federal Reserve, while the output gap coeffi cient falls during

that period. Interest rate smoothing seems to have been low in the 1980s with tackling inflation

being a priority and becomes higher through the second half of the sample. More interesting, we

observe an increase in the output gap coeffi cient during the recent crisis, providing evidence that

U.S. monetary authorities shifted attention to the sharply declining output. Monetary policy shock

becomes more persistent during the crisis with interest rates near the Zero Lower Bound.

Figure 1 also includes the parameters of the financial friction block. Both the measurement

equation parameter, SP ∗, and the coeffi cient that measures the impact of financial frictions on

Tobin’s q,ςsp,b, have posterior means obtained with BLL that are larger than assuming fixed para-

meters, but their values are in general stable over time3. The parameter measuring the persistence

of the financial friction shock obtained with BLL is in line with the one obtained with the fixed

coeffi cient model since the BLL estimate has large posterior confidence bounds. In contrast, the

volatility of financial frictions shocks increases twofold in period between 2007 and 2011 in com-

parison with the previous period and also with the fixed parameter posterior estimates. One might

worry that this large increase may be caused by the inadequacy of the DSGE model to fit the data

during the financial crisis period.

Figure 2 compares the time variation of the financial friction volatility with the volatilities of

the other seven shocks. The results are broadly consistent with findings of low volatility during the

Great Moderation (e.g. Primiceri (2005) and Sims and Zha (2006)). In particular, the volatilities

of all shocks (except the wage mark up shock) fall in the late 1980s and remain low throughout

the 1990s. The standard deviation of the monetary policy shock, for instance, is twice as large in

the 1980s than in the 1990s. The volatilities of productivity and spending shocks are also small

during the 1985-2005 period. These results suggest that the BLL approach applied to the DSGE

3 In the presence of time variation, fixed parameter estimation is inconsistent and hence results can be very different

under both schemes especially in a non-linear setup. To address the question of why the confidence intervals of SP ∗

and ζsp,b obtained by BLL do not overlap with the fixed parameter ones, we offer a different explanation. Since

the BLL approach uses a smaller sample (taking into account the down-weighting), it gives larger relative weight to

the prior. For most parameters, this makes little difference, as the priors are not very tight. However, for SP ∗ and

ζsp,b, the BLL approach delivers estimates much more narrowly concentrated around the prior means than the fixed

parameter model which uses a larger sample.
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with Financial Frictions is able to reproduce previously documented changes in the variance of the

shocks. Our new finding, however, is the clear increase in the financial friction shock variance from

0.2 to 0.4 during the 2007-2011 period. Similar relative size increases are not found for the other

shocks since the total factor productivity shock only slightly exceeds the fixed parameter estimate

during the most recent period.

Figure 2: Posterior Estimates of the Volatility of DSGE shocks. The posterior mean obtained by BLL

(blue solid line), 5% and 95% posterior quantile values (black dotted lines), the posterior mode obtained

by BLL (pink solid line), the posterior mean obtained by fixed Bayesian estimation (dashed blue line),

and the 5% and 95% posterior quantiles (green dashed lines).

In summary, the application of the BLL approach to the DSGE model with financial frictions

suggests that the volatility of the financial shock increased in the 2007-2011 but was small in the

previous period. This adds a ‘Good Luck’component to the interpretation of the Great Moderation

period (1985-2006) since previous papers (Gali and Gambetti (2009), Benati and Surico (2009), Sims

and Zha (2006)) looked at DSGE models that did not include a financial sector, and as consequence
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had no financial shocks. Moreover, we find that the volatility of the financial friction shock starts

falling in 2012 and returns to pre-crisis levels in the end of 2014, suggesting a recovery of the

economy from the financial crisis. An alternative explanation for the uncovered variation in the

financial volatility is that the DSGE model we consider is too stylised and cannot capture fully

the linkages between the financial sector and the rest of the economy and consequently, the impact

of the events of the financial crisis appear in the variance of the financial friction shock in our

empirical investigation.

4.1 Robustness Checks

In this section, we report a number of robustness checks we performed in order to test the validity

of the results presented in the previous section. First, we checked the robustness of our findings

by trying different prior specifications (see Appendix 6.2 for details) and by changing the trend as-

sumption on productivity from deterministic to stochastic4. In all these specifications, we confirmed

the results presented in Figure 1 and 2.

In addition, in Figure 3, we provide a comparison of the BLL estimates of selected parameters5

with ones generated with a simple rolling window scheme6. It is clear that while the general pattern

of the parameters does not change, the estimates obtained using the rolling window are considerably

noisier. This is the case as at each point, a new observation is added and another one is thrown away.

On the other hand, the BLL, due to its capacity to reweight past observations without completely

discarding any information, delivers smoother time-variation. Noisy time variation in the DSGE

parameters is not desirable for at least two reasons. First, if moving one observation forward causes

large shifts in the values of some parameters, this might distort forecasting performance. Second,

as argued in the previous section, we believe that the variation in the DSGE parameters should

be gradual, because it implies stable and gradually changing relationships between the variables of

the model. The normal kernel has been found in the Monte Carlo study of Giraitis et al. (2014) to

provide estimators with lower MSE compared to the flat kernel.

Furthermore, in order to assess the robustness of our results with respect to different spread

variables, we estimated the model using the difference between the BAA corporate bond yield and

4These additional results are available upon request.
5The remaining parameters can be found in Appendix 6.5.
6For computational considerations, we only present the posterior mode estimates. To make the results comparable

with the BLL results from the previous section, we use window size of 2H + 1, where H is the bandwidth used for

the normal kernel.
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the Fed Funds rate. Figure 4 displays the posterior modes of selected parameter estimates7. We

discover that the results with this alternative spread specification do not alter our main conclusions.

Figure 3: Robustness Check. The posterior mode obtained by BLL (solid pink line), the 5% and 95%

posterior quantile values (black dotted lines), the posterior mode obtained by rolling window (solid green

line).

In addition, we also ran a small simulation exercise8 in order to check if the BLL approach

works even in the absence of parameter time variation. We generated data from a fixed parameter

DSGE model with financial frictions, using as a parameter vector the prior means9. Then, we

applied our approach to these artificial data, at each point in time. Figure 5 displays the resulting

estimates from a representative replication for selected parameters10 and demonstrates how the

BLL approach recovers the true parameters with virtually no time variation. This suggests that

7The remaining parameters can be found in Appendix 6.6.
8Due to computational time considerations, we only ran 10 replications, each with a sample size of 1000.
9We set the standard deviations to 0.1, as the prior mean for these is infinite.
10The remaining parameters can be found in Appendix 6.7.
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the uncovered time variation in the model’s parameters in our empirical application is not spurious

but is instead a feature of the US data used for estimation.

Figure 4: Robustness Check. The posterior mode obtained by BLL with spread BAA corporate bond yield

over 10 year Treasury note (solid pink line), the 5% and 95% posterior quantile values (black dotted lines),

the posterior mode obtained by BLL with spread BAA corporate bond yield minus Fed Funds Rate (solid

blue line).

Finally, our choice of bandwidth in the empirical application in the previous section is motivated

by the optimal bandwidth choice used for inference in time varying random coeffi cient models in

Giraitis et al. (2014). In addition, Galvão et al. (2015a) and (2015b) perform a number of robustness

checks with respect to different values of H. Here, we report some of their main findings. Galvão

et al. (2015a) show that H =
√
T in fact delivers the best mean squared errors in Monte Carlo

evidence. Moreover, in an application to the Smets and Wouters (2007) model without financial

frictions, Galvão et al. (2015b) show that H =
√
T delivers the best forecast performance for most

variables.
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Figure 5: Simulation Exercise. The posterior mode obtained by BLL when the DGP is a model with fixed

parameters (solid blue line) and the true parameter values at which the data are generated (dotted green line).

4.2 Time-varying impulse response functions

The main objective of this subsection is to evaluate how the financial frictions shock propagates to

the rest of the economy over time. Our previous results suggest that the size of the financial shock is

larger in the 2007-2011 period. However, the parameter that governs the transmission of the shock

to macro variables, ζsp,b, does not vary over time. Figure 6 displays the impulse response functions

of output and investment. The top panel of Figure 6 describes the responses to one-standard

deviation of the shock, so it captures the effect of the shock on the desired variables over time while

also taking into account its changing size. The bottom panel of Figure 6 describes the responses

to 25-basis-points shock, which are useful for investigating the changes in the transmission while

keeping the size of the shock constant over time.

We can see that the negative responses of output 10 quarters after the shock are 0.1% during

2008-2011 period instead of 0.05% prior to 2008. Similarly, investment, which is the main channel
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through which the financial shock affects output, responds much more sharply during the 2007-

2011 period, with an accumulated response of minus 6.5% in the five years after the shock hits,

as supposed to minus 1.5% in the pre-crisis period. If we consider the impact of a fixed-sized

shock instead, the resulting responses of both output and investment are virtually the same across

periods. This confirms our conjecture that what has changed over time is the size of the financial

shocks rather than the way in which financial markets operate in the model.

Figure 6: Responses to 1 st. dev. and 25 basis points of financial friction shock

4.3 Forecasting

Our previous results indicate that the BLL approach applied to the DSGE model with financial

frictions is able to capture important variations for the parameters over time. In particular, Figure

2 provides exhaustive evidence of changes in the volatility of the shocks. The literature on fore-

casting with time-varying volatilities (e.g., Carriero, Clark and Marcellino (2014)) suggests that we

should expect improvements in forecasting accuracy in particularly when evaluating the predictive

densities. In this subsection, we use the algorithm outlined in Section 2 to generate density fore-

casts for the observables, using the posterior distribution of the parameters at the last period T of

the in-sample to generate the out-of-sample predictions. Our forecast origins are 2000Q1-2012Q2
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and we generate projections 1 to 8 quarters ahead. In addition to our time-varying DSGE model

with financial frictions (TV FF), we compute forecasts for the DSGE model with (fixed FF) and

without financial frictions assuming fixed parameters. The standard Smets and Wouters (2007)

(SW) model has been evaluated by Edge and Guerkaynak (2010), Woulters (2012) and Del Negro

and Schorfheide (2013), and it is able to perform well at long forecast horizons for output growth

and inflation, so we use it as a benchmark in Table 1.

Table 1: RMSFEs. The table reports ratios of RMSFEs relative to the SW model RMSFEs. ‘*’, ‘**’

and ‘***’indicate rejection of the null of equal performance against the one-sided alternative at 10%,

5% and 1% respectively, using a Diebold and Mariano test.

Table 1 evaluates the performance of point forecasts using root mean squared forecast errors

(RMSFEs) for output growth, inflation and the Fed Funds rate, since these variables are of prime

interest. In addition, we also report the forecasts for investment growth11 as it is the channel

through which the financial markets enter the model12. Entries are ratios with respect to the SW

model benchmark. Values smaller than one imply that the model (either the TV FF or fixed FF)

is more accurate than the benchmark. Table 2 presents the relative forecasting performance in

terms of log predictive scores. The log score is computed as the value of the predictive density

evaluated at the realised target variable and is therefore a measure of the precision of the density

forecasts. We test whether a model is statistically more accurate than the SW benchmark with

11The forecasts for the remaining variables can be found in Appendix 6.4. They lead to qualitatively similar

conclusions.
12A forecasting comparison with an AR(1) and a TVP AR(1) models can be found in Appendix 6.4. The au-

toregressive models are included because it is important to verify that the DSGE model is at least as accurate as

univariate statistical models.
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the Diebold and Mariano (1995) statistic computed with Newey-West estimator to obtain standard

errors. One, two and three stars indicate rejection of the null of equal performance against the one-

sided alternative of better performance over the SW benchmark at 10%, 5% and 1% respectively.

Both tables present results for two sub-periods: 2000Q1-2006Q4 and 2007Q1-2012Q2. The first

period is relatively tranquil in comparison with the second one.

Table 2: Log Scores. The table reports differences of log predictive scores from to the SW model log scores.

‘*’, ‘**’and ‘***’indicate rejection of the null of equal performance against the one-sided alternative at

10%, 5% and 1% respectively, using a Diebold and Mariano test.

Del Negro et al. (2014) and Kolasa and Rubaszek (2015) documented that the DSGE model with

financial frictions does not improve forecasts in comparison with the Smets and Wouters (2007)

model in the period before 2007. The results in Table 1 confirm this since the inclusion of financial

frictions worsens the forecasts of inflation, output and investment growth in the period 2000-2006,

while improving forecasts of the interest rate. The TV FF model brings the forecasting performance

at similar levels to the SW model during this tranquil period. In addition, during the volatile

period of 2007-2012, the TV FF model confirms previous findings of relatively good performance

of financial friction models in comparison to the standard SW model. For the Fed Funds Rate, the

TV FF model delivers statistically significant improvements over the SW model for both point and

density forecasts. An explanation is that by allowing for time-variation in the coeffi cients of the

Taylor rule, we obtain a value for the smoothing parameter that is close to one; that is, the forecasts

from the Taylor rule resemble random walk forecasts, which is an adequate model for forecasting

the Fed Funds Rate in the vicinity of the Zero Lower Bound. Table 2 presents equivalent results
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for density forecast performance for selected variables13 using log scores. Qualitatively, the results

are similar to the ones using RMSFEs.

5 Conclusion

This paper employs the Bayesian Local Likelihood approach developed previously by Galvão et al.

(2015a) and Galvão et al. (2015b) to a DSGE model that combines the Smets and Wouters (2007)

model with financial frictions as in Bernanke et al. (1999). As a consequence, this paper proposes a

time varying DSGE model with financial frictions. Our results suggest that the parameter governing

how financial friction shocks affect investment decisions is stable over time, but the volatility of

the financial shock jumps in the period 2007-2012 and returns to the pre-crisis values after 2012.

Moreover, when looking at the impulse response functions, we find that the responses of output

and investment to 25 basis points of the financial shock do not change over time. In contrast, when

we consider the responses to a standard deviation of the shock, taking into account the changing

volatility over time, we observe a substantial change in the way these variables respond to financial

shocks during the period of the recent crisis. This evidence leads us to provide an interpretation of

the recent financial crisis as a ‘Bad Luck’event , that is, it is caused by changes in the volatility of

financial shocks while taking into account policy changes. An alternative explanation of the results

presented in this paper is that the DSGE model we consider is perhaps too stylised to fully account

for the connection between the financial sector and the macroeconomy and, as a consequence, the

events of the 2008 crisis appear in the variance of the financial friction shock instead.

Finally, our forecasting exercise demonstrates that the time-varying model with financial frictions

improves the forecasting performance of the financial friction model especially in the 2000-2006

period.

13The density forecast for the remaining variables, as well as density forecast comparison with an AR(1) and a

TVP AR(1) models can be found in Appendix 6.4.
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6 Appendix

6.1 The Smets and Wouters (2007) model with financial frictions

The model we use is a Smets and Wouters (2007) model with a deterministic trend, modified to

include a Financial Friction Block, as in Bernanke et al. (1999). We refer the reader to the original

paper, Smets and Wouters (2007), for discussion and derivation of the model’s equation and for

completeness, we list here the linearised equations. See also the Technical Appendix in Smets and

Wouters (2007) available at: http://www.aeaweb.org/aer/data/june07/20041254_app.pdf. For

expressions of the FF block parameters and steady states, see:

http://sites.sas.upenn.edu/schorf/files/hb_forecasting_appendix.pdf, pp 37-39.

• The resource constraint in the model is given by equation,

yt = (1− gy − iy)ct + ((γ − 1− δ)ky)it + (Rk∗ky)zt + εgt ,

• the consumption Euler equation,

ct =
(λ/γ)

(1 + λ/γ)
ct−1+

1

(1 + λ/γ)
Etct+1+

(σc − 1)W h
∗ L∗/C∗

σc(1 + λ/γ)
Et(lt−lt+1)− (1− λ/γ)

(1 + λ/γ)σc
(rt−Etπt+1+εbt),

• the investment Euler equation,

it =
1

1 + βγ1−σc it−1 + (1− 1

1 + βγ1−σc )Etit+1 +
1

(1 + βγ1−σc)γ2ϕ
qt + εit,

• the aggregate production function, yt = φ(αkst + (1− α)lt + εat ),

• the relation between effectively rented capital and capital, kst = kt−1 + zt,

• the degree of capital utilization, zt = 1−ψ
ψ rkt ,

• the capital accumulation equation, kt = 1−δ
γ kt−1 +(1− 1−δ

γ )it+(1− 1−δ
γ )((1+βγ1−σc)γ2ϕ)εit,

• the price mark-up, µpt = α(kst − lt) + εat − wt,

• the new Keynesian Phillips curve,

πt =
ιp

1 + βγ(1−σc)ιp
πt−1+

βγ(1−σc)

1 + βγ(1−σc)ιp
Etπt+1−

1

1 + βγ(1−σc)ιp

{
(1− βγ(1−σc)ξp)(1− ξp)

ξp((φ− 1)εp + 1)

}
µpt+ε

p
t ,

• the rental rate of capital, rkt = −(kt − lt) + wt,
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• the wage mark-up, µwt = wt − (σllt + 1
1−λ/γ (ct − λ/γct−1)),

• the wage equation,

wt =
1

1 + βγ(1−σc)
wt−1 + (1− 1

1 + βγ(1−σc)
)(Etwt+1 + Etπt+1)− 1 + βγ(1−σc)ιw

1 + βγ(1−σc)
πt

+
ιw

1 + βγ(1−σc)
πt−1 −

1

1 + βγ(1−σc)

{
(1− βγ(1−σc)ξw)(1− ξw)

ξw((φw − 1)εw + 1)

}
µwt + εwt ,

• the Taylor Rule,

rt = ρrt−1 + (1− ρ) {rππt + ry(yt − ypt )}+ r∆y

(
(yt − ypt )− (yt−1 − ypt−1)

)
+ εrt .

6.1.1 The financial friction block

• The corporate spread is defined as

Et
[
R̃kt+1 − rt

]
=

(1− λ/γ)

(1 + λ/γ)σc
εbt + ςsp,b(qt + kt − nt) + εωt .

• The arbitrage condition between the return to capital and the riskless rate in Smets and

Wouters (2007) is now replaced by

R̃kt − πt =
rk∗

rk∗ + (1− δ)r
k
t +

(1− δ)
rk∗ + (1− δ)qt − qt−1.

• Finally, the entrepreneurs’net worth evolution is defined as

nt = ςn,RK (R̃kt − πt)− ςn,R(rt−1 − πt) + ςn,q(qt−1 + kt−1) + ςn,nnt−1 −
ςn,ω
ςsp,ω

εωt−1.

6.1.2 Stochastic processes of exogenous shocks

• Exogenous government spending spending is defined as εgt = ρgε
g
t−1 + σgη

g
t + ρgaσzη

z
t ,

• TFP shock, εat = ρaε
a
t−1 + σaη

a
t ,

• risk premium shock, εbt = ρbε
b
t−1 + σbη

b
t ,

• investment-specific technology shock, εit = ρiε
i
t−1 + σiη

i
t,

• monetary policy shock, εrt = ρrε
r
t−1 + σrη

r
t ,

• price mark-up shock, εpt = ρpε
p
t−1 + σpη

p
t + µpσpη

p
t−1,

• wage mark-up shock, εwt = ρwε
w
t−1 + σwη

w
t + µwσwη

w
t−1,

• financial friction shock, εωt = ρωε
ω
t−1 + σωη

ω
t .

27



6.2 Measurement equation, data description and transformations

6.2.1 Measurement equation

Yt =



Output Growtht

Consumption Growtht

Investment Growtht

Wage Growtht

Hours Workedt

Inflationt

Policy Ratet

Spreadt



=



γ

γ

γ

γ

l

π

r

SP ∗



+



yt − yt−1

ct − ct−1

it − it−1

wt − wt−1

lt

πt

rt

100 ∗ Et(R̃kt+1 − rt)



.

6.2.2 Data description

6.2.3 Data transformations:

Output Growtht = 100 ∗∆ ln(GDPt/POPt)

Consumption Growtht = 100 ∗∆ ln(CONt/POPt)

Investment Growtht = 100 ∗∆ ln((INVt/CPIt)/POPt)

Wage Growtht = 100 ∗∆ ln(WAGEt)

Hours Workedt = 100 ∗ ln
[
((EMPLt ∗HOURSt)/POPt)− (EMPLt ∗HOURSt)/POPt))

]
Inflationt = 100 ∗∆ ln(CPIt)

Policy Ratet = 1/4 ∗ FFRt

Spreadt = 1/4 ∗ (BAA_Y ieldt − 10Y Treasury_Y ieldt)
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6.2.4 Priors14

Table 3: Prior distributions for the structural parameters.

Table 4: Prior distributions for the parameters of the exogenous processes.

14We also have upon request time-varying estimation results with prior standard deviations 0.1 and 0.005 for SP ∗

and ζsp,b respectively and with prior standard deviations 1 and 0.1 for SP
∗ and ζsp,b respectively. Results on the FF

Block remain robust to these two specifications.
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6.3 Additional results

Figure 7: Posterior Estimates of Additonal Parameters. The posterior mean obtained by BLL (blue solid line), 5%

and 95% posterior quantile values (black dotted lines), the posterior mode obtained by BLL (pink solid line), the

posterior mean obtained by fixed Bayesian estimation (dashed blue line), and the 5% and 95% posterior quantiles

(green dashed lines).
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Figure 8: Posterior Estimates of Additional Parameters. The posterior mean obtained by BLL (blue solid line),

the 5% and 95% posterior quantile values (black dotted lines), the posterior mode obtained by BLL (pink solid

line), the posterior mean obtained by fixed Bayesian estimation (dashed blue line), and the 5% and 95% posterior

quantiles (green dashed lines).
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6.4 Additional forecasting results

Table 3: RMSFEs and Log Scores for additional variables. The table reports ratios of RMSFEs relative to

the SW model RMSFEs and differences of log predictive scores from SW model log scores. ‘*’, ‘**’and ‘***’

indicate rejection of the null of equal performance against the one-sided alternative at 10%, 5% and 1%

respectively, using Diebold and Mariano test.

32



Table 4: RMSFEs and Log Scores : comparison with AR (1). The table reports ratios of

RMSFEs relative to an AR (1) model RMSFEs and differences of log predictive scores from an

AR (1) model log scores. ‘*’, ‘**’and ‘***’indicate rejection of the null of equal performance

against the one-sided alternative at 10%, 5% and 1% respectively, using Diebold and Mariano

test.
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Table 5: RMSFEs and Log Scores for selected variables. The table reports ratios of RMSFEs

relative to a TVP AR (1) model RMSFEs and differences of log predictive scores from a TVP

AR (1) model log scores. ‘*’, ‘**’and ‘***’indicate rejection of the null of equal performance

against the one-sided alternative at 10%, 5% and 1% respectively, using Diebold and Mariano

test.

For the time varying parameter (TVP) AR (1), the model is estimated in each point in time t :

β̂t = (X ′DtX)−1X ′DtY where X contains the lagged dependent variable Y and Dt is a diagonal

matrix with the kernel weights of the tth row of the weighting matrix in equation (3) in its main

diagonal. The variance of the residuals is also time varying and computed in point t as σ̂2
t =

ε′Dtε/tr(Dt). Density forecasts are then generated, using wild bootstrap and the last period values

β̂T and σ̂
2
T .
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6.5 Robustness checks: flat kernel

Figure 9: Robustness Check. The posterior mode obtained by BLL (solid pink line), the 5% and 95%

posterior quantile values (black dotted lines), the posterior mode obtained by rolling window (solid green line).
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Figure 10: Robustness Check. The posterior mode obtained by BLL (solid pink line), the 5% and 95%

posterior quantile values (black dotted lines), the posterior mode obtained by rolling window (solid green line).
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Figure 11: Robustness Check. The posterior mode obtained by BLL (solid pink line), the 5% and 95%

posterior quantile values (black dotted lines), the posterior mode obtained by rolling window (solid green line).
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6.6 Robustness check: different spread variable

Figure 12: Robustness Check. The posterior mode obtained by BLL with spread BAA corporate bond yield

over 10 year Treasury note (solid pink line), the 5% and 95% posterior quantile values (black dotted lines),

the posterior mode obtained by BLL with spread BAA corporate bond yield minus Fed Funds Rate (solid

blue line).
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Figure 13: Robustness Check. The posterior mode obtained by BLL with spread BAA corporate bond yield

over 10 year Treasury note (solid pink line), the 5% and 95% posterior quantile values (black dotted lines),

the posterior mode obtained by BLL with spread BAA corporate bond yield minus Fed Funds Rate (solid

blue line).
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Figure 14: Robustness Check. The posterior mode obtained by BLL with spread BAA corporate bond yield

over 10 year Treasury note (solid pink line), the 5% and 95% posterior quantile values (black dotted lines),

the posterior mode obtained by BLL with spread BAA corporate bond yield minus Fed Funds Rate (solid

blue line).
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6.7 Robustness check: Simulation Exercise

Figure 15: Simulation Exercise. The posterior mode obtained by BLL when the DGP is a model with fixed

parameters (solid blue line) and the true parameter values at which the data are generated (dotted green line).

41



Figure 16: Simulation Exercise. The posterior mode obtained by BLL when the DGP is a model with fixed

parameters (solid blue line) and the true parameter values at which the data are generated (dotted green line).
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Figure 17: Simulation Exercise. The posterior mode obtained by BLL when the DGP is a model with fixed

parameters (solid blue line) and the true parameter values at which the data are generated (dotted green line).
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