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Abstract

Although the properties of the ARCH(1) model are well investigated, the existence

of long memory FIGARCH and IARCH solution was not established in the literature.

These two popular ARCH type models which are widely used in applied literature,

were causing theoretical controversy because of the suspicion that other solutions be-

sides the trivial zero one, do not exist. Since ARCH models with non-zero intercept

have a unique stationary solution and exclude long memory, the existence of �nite

variance FIGARCH and IARCH models and, thus, the possibility of long memory in

the ARCH setting was doubtful. The present paper solves this controversy by showing

that FIGARCH and IARCH equations have a non-trivial covariance stationary solu-

tion, and that such a solution exhibits long memory. The existence and uniqueness

of stationary Integrated AR(1) processes is also discussed, and long memory, as an

inherited feature, is established. Summarizing, we show that covariance stationary

IARCH, FIEGARCH and IAR(1) processes exist, their class is wide, and they always

have long memory.

Keywords: AR, FIGARCH, IARCH, long memory.

JEL classi�cation: C15; C22

1 Introduction

A non-negative random process f�kg = f�k; k 2 Zg is said to satisfy an ARCH(1) equation

if there exists a sequence of nonnegative i.i.d. random variables f"kg with unit mean E"0 = 1;

�The second author's research was supported by Research Council of Lithuania grant MIP-063/2013.
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a nonnegative number ! � 0 and a deterministic sequence bj � 0, j = 1; 2; � � � , such that

(1.1) �k = "k
�
! +

1X
j=1

bj�k�j
�
; k 2 Z:

In this paper we assume that the process f�kg described by equations (1.1) is causal, i.e., for

any k; �k can be represented as a measurable function f("k; "k�1; ::::) of the present and past

values "s; s � k. The last property implies that a stationary f�kg process is ergodic, and "k
is independent of �s; s < k. Therefore,

E[�kj�s; s < k] = hk; hk := ! +
1X
j=1

bj�k�j:

The usual interpretation of �k and "k in �nancial econometrics is that of squared returns

and squared innovations, viz., �k = r2k; "k = �2k , where the return process frkg satis�es the

ARCH equations

rk = �kh
1=2
k ; hk = ! +

1X
j=1

bjr
2
k�j; k 2 Z;

f�kg is a standardized i.i.d. (0; 1)-noise and hk is volatility. Moreover, since typically random

variables in (1.1) are almost surely positive (�k > 0), they may represent random durations

between transactions. The class of ARCH(1) processes (1.1) includes the parametric sta-

tionary ARCH and GARCH models of Engle (1982) and Bollerslev (1986), and the ACD

(Autoregressive Conditional Duration) model of Engle and Russel (1998).

The ARCH(1) process was introduced by Robinson (1991) and later studied in Kokoszka

and Leipus (2000), Giraitis et al. (2000a) (see also the review papers by Giraitis et al. (2007,

2011), Berkes et al. (2004)). In contrast to a standard stationary GARCH(p; q) process

whose autocorrelations decay exponentially, the ARCH(1) process may have autocovari-

ances cov(�k; �0) decaying to zero at a rate k�
 with 
 > 1 arbitrarily close to 1.

In several papers (e.g. Giraitis et al. (2000a), Giraitis and Surgailis (2002), Kazakevi�cius

and Leipus (2002)) it is claimed that a �nite variance stationary solution to the ARCH equa-

tions in (1.1), if exists, has short memory or absolutely summable autocovariance function,

while the existence of such a solution necessarily implies
P1

j=1 bj < 1. Because of the well

known phenomenon of long memory in the squares of �nancial returns in �nancial economet-

rics, the latter �nding may be considered as a limitation of ARCH modeling. Subsequently,

it initiated and justi�ed the study of other ARCH-type models for which the long memory

property can be rigorously established (see Giraitis et al. (2007, 2011)).

The above claims are correct if ! > 0. More precisely, Theorem 3.1 and Corollary 3.2

of Giraitis and Surgailis (2002) (below referred to as GS(2002)) say that if a covariance

stationary solution f�kg of ARCH equation (1.1) with ! > 0 exists, then it is unique and

its autocovariance function is nonnegative, and
P1

k=0 cov(�k; �0) < 1: Clearly, this impliesP1
j=1 bj < 1 since E�k = ! + (

P1
j=1 bj)E�k > (

P1
j=1 bj)E�k.

2



For ! = 0, however, the situation is di�erent. In this case the existence of a covariance

stationary solution of (1.1) implies
P1

j=1 bj = 1, leading to the integrated ARCH(1), or

IARCH(1), equation

(1.2) �k = "k
� 1X
j=1

bj�k�j
�
; k 2 Z; with � :=

1X
j=1

bj = 1:

Obviously, (1.2) has a trivial solution f�k � 0g. There is not much known in the literature

about the existence of a nontrivial covariance stationary solution of (1.2). On the other

hand, the existence of a stationary IARCH process of (1.1) with ! > 0; � = 1 and in�nite

mean E�j =1 was established in Kazakevi�cius and Leipus (2003) and Douc et al. (2006).

A particular case of the IARCH model in (1.2) is the well-known FIGARCH equation

with zero intercept ! = 0:

(1.3) �k = "k
�
1� (1� L)d

�
�k = "k

� 1X
j=1

bj�k�j
�
; k 2 Z;

where 0 < d < 1=2 is the fractional di�erencing parameter, L is the backshift operator and

the coe�cients bj are determined by the generating function B(z) =
P1

j=1 bjz
j = 1�(1�z)d.

Note bj > 0;
P1

j=1 bj = 1 and bj = O(j�1�d) decay hyperbolically with j ! 1. The

FIGARCH equation was introduced by Baillie et al. (1996) to capture the long memory e�ect

in volatility. They argued that a stationary FIGARCH process, if exist, has long memory.

However, the existence of a non-trivial FIGARCH process with �nite mean was never shown.

See Giraitis et al. (2000a), Kazakevi�cius and Leipus (2003), Mikosch and St�aric�a (2000,

2003), Davidson (2004) for a discussion of controversies surrounding the FIGARCH. Several

papers (Giraitis et al. (2000a, 2002), Kazakevi�cius and Leipus (2003)) claim that the

FIGARCH equation has no stationary solution with �nite mean E�k <1 besides the trivial

solution �k � 0.

The present paper corrects the above claim. We show that for each � > 0, the FIGARCH

equation in (1.3) has a stationary ergodic solution f�kg with mean E�k = �, �nite variance

(and possibly higher moments), and a nonsummable hyperbolically decaying autocovariance

function cov(�k; �0) � c k�
, 
 = 1�2d 2 (0; 1), see Theorem 4.1. Hence, there exist in�nitely

many stationary solutions of the FIGARCH equation (1.3) with ! = 0 parametrized by the

mean value E�k = � � 0. The trivial solution f�k � 0g corresponds to � = 0 and coincides

with the stationary solution of (1.1) in the case ! > 0 (Giraitis et al. (2000a))

�k = !"k

�
1 +

1X
m=1

X
sm<���<s1<k

bk�s1 � � � bsm�1�sm"s1 � � � "sm

�
(1.4)

termed also the minimal solution in Kazakevi�cius and Leipus (2003), as the r.h.s. of (1.4)

vanishes if ! = 0. For � = 1 the series on the r.h.s. of (1.4) does not converges in L1
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and therefore the expansion in (1.4) is not useful for studying the existence of L1� or

L2�solutions of the FIGARCH and IARCH(1) equations (1.3) and (1.2). For ! > 0,

Douc et al. (2006) and Robinson and Za�aroni (2006) showed the existence of a stationary

FIGARCH process f�kg in (1.4) with in�nite mean E�k = 1, which excludes the desired

property of long memory.

A possible explanation of these seemingly confusing statements about stationary solutions

of the ARCH(1) model (1.1) is that many papers on ARCH models explicitly or implicitly

assume ! > 0. This assumption, together with covariance stationarity of f�kg implies

E�k = ! + E�k(b1 + b2 + :::), or

(1.5) E�k =
!

1�
P1

j=1 bj
;

yielding E�k <1 if � =
P1

j=1 bj < 1, and E�k =1 if � = 1. However, for ! = 0 and � = 1,

which correspond to IARCH model (1.2), the r.h.s. of (1.5) is unde�ned, and therefore it

does not contradict E�k <1.

The main idea of constructing a stationary L2-solution of the IARCH equation (1.2) with

mean � = E�k > 0 is the reduction of (1.2) to the linear Integrated AR (IAR) equation for

the centered process Yk := �k � �:

(1.6) Yk =
1X
j=1

bjYt�j + zk; k 2 Z

with a conditionally heteroscedastic martingale di�erence noise fzkg given by

(1.7) zk := �k
�
�� + �

1X
j=1

bjYk�j
�
;

where �k := ("k � 1)=�; �2 := var("1) < 1: In turn, from (1.6) the process fzkg can be

de�ned as a stationary solution of the LARCH (Linear ARCH) equation (Giraitis et al.

2000b, 2004)

(1.8) zk = �k
�
�� +H(L)zk

�
; H(L) := �B(L)(1�B(L))�1 =

1X
j=1

hjL
j;

with standardized zero mean i.i.d. innovations f�kg, E�k = 0; E�2k = 1. Equation (1.6)-

(1.7) is a particular case of the bilinear models studied in Giraitis and Surgailis (2002).

The last paper provides a necessary and su�cient condition for the existence of a stationary

causal L2�solution fYk; zkg given by convergent orthogonal Volterra series in (3.13). It turns

out (see Theorem 4.1 below) that in the case of the FIGARCH equation (1.3), the above

necessary and su�cient condition for the existence of fYkg in (3.13) reduces to the following

condition involving E"20 and the parameter d (see Figure 1):

(1.9) E"20 <
�(1� 2d)

�(1� 2d)� �2(1� d)
:

4



                                                        

                   

  

                                                                

d V(d) 

0.05 225.794 

0.1 52.296 

0.15 21.478 

0.2 11.133 

0.25 6.545 

0.3 4.160 

0.35 2.786 

0.4 1.934 

0.45 1.378 

Figure 1: Graph and values of the function V (d) = �(1�2d)
�(1�2d)��2(1�d)

:

We also establish su�cient and necessary conditions for existence of a stationary solution

of linear Integrated AR(1) equation

xk �
1X
j=1

bjxk�j = �k; k 2 Z;(1.10)

where bj's are non-negative,
P1

j=1 bj = 1, and f�kg is stationary short memory process, in

particular, a white noise. In Theorems 2.1 and 2.2 we show that stationary solutions of such

equations always have long memory, which originates from integration property with in�nite

number of non-negative bj's.

For a general non-parametric IAR and IARCH stationary processes we de�ne long mem-

ory property of fxkg as the non-sumability of auto-covariances
P1

k=0 jcov(xk; x0)j =1, and

in spectral domain, by the property that f(x)!1, x! 0 of spectral density of fxkg.

The paper is structured as follows. Section 2 discusses solvability and second-order

properties of IAR(1) equation (1.10) driven by a general short memory \noise" f�kg, in
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particular a general uncorrelated sequence, not necessary having the form in (1.7). This

section may have independent interest since we show that long memory is an inherited

feature of stationary IAR models whose origins lie in integration rather than in fractional

di�erentiation or �ltering. Section 3 discusses stationary L2�solutions of the ARCH(1)

(1.1) and bilinear (1.6)-(1.7) equations and their mutual relationship. In section 4, the

results of the previous sections are used to obtain the existence and uniqueness of stationary

L2�solutions of the FIGARCH, IARCH and ARCH models. We also establish the long/short

memory properties of these solutions, including the convergence of normalized partial sumsP[nt]
k=1 �k to a fractional/standard Brownian motion. Section 5 contains auxiliary lemmas.

In the sequel, we set � := [��; �], and write an � bn if an=bn ! 1. Moreover, !p and

!D denote the convergence in probability and distribution, respectively. All (in)equalities

involving random variables in this paper are supposed to hold almost surely.

2 Stationary Integrated AR(1) process

In the time series literature, long memory processes are often de�ned via (or identi�ed with)

fractional �ltering/di�erencing operators and ARFIMA(p; d; q) models introduced by Hosk-

ing (1981) and Porter-Hudak (1990). Generalizations of fractional �lters were discussed

in Leipus and Viano (2000). Being a technical tool for generating parametric long mem-

ory time series, fractional �ltering/di�erencing cannot fully explain the phenomenon and

how long memory is induced, which was often leading to controversies justifying the use of

long memory processes and explaining their generating mechanism, see e.g. Lieberman and

Phillips (2008) for an illustrative analysis of how long memory may arise in realized volatility.

In this section we consider the Integrated AR(1) time series model

(2.1) xk �
1X
j=1

bjxk�j = �k; k 2 Z;

where the bj's are non-negative,
P1

j=1 bj = 1, and f�kg is a stationary sequence of uncorre-

lated noise with E�k = 0, E�2k = �2
� .

De�nition 2.1 We say that a random process fxkg is a L2-solution of (2.1) if Ex2k < 1

for each k 2 Z, the series
P1

j=1 bjxk�j converges in mean square and (2.1) holds.

Similarly, in the IARCH case, it is of interest to �nd su�cient and necessary conditions

for the existence of a stationary �nite variance solution to equation (2.1) and investigate

its uniqueness and the property of long memory. Contrary to the IARCH model (1.6), the

noise f�kg does not depend on fxkg, so conditions are expected to be less restrictive. As in

IARCH case, a stationary solution fxkg of (2.1), if exist, is not unique, since then fxk + �g

is also a solution of (2.1).
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Clearly, bj's cannot cut o� or decay to 0 too fast, viz. a unit root model xk � xk�1 = �k
does not have a stationary solution. There are two ways to construct a stationary solution.

Firstly, that can be done using power expansion coe�cients gj of the analytic function

G(z) = (1�B(z))�1 =
P1

j=0 gjz
j;(2.2)

where B(z) =
P1

j=0 bjz
j is de�ned on the complex disk fjzj < 1g. Such gj's are uniquely

determined, and if kgk = (
P1

j=0 g
2
j )

1=2 < 1, they de�ne a stationary zero mean and �nite

variance process,

~xk =
1X
j=0

gj�k�j; k 2 Z:(2.3)

Alternatively, if the transfer function A(x) = (1�B(eix))�1, x 2 � of the �lter (2.1) is L2-

integrable, kAk = (
R
�
jA(x)j2dx)1=2 <1, then its Fourier coe�cients g0j = (2�)�1

R
�
A(x)e�ixjdx,

j � 0 have property kg0k = (
P1

j=0 g
0 2
j )

1=2 <1 and de�ne a stationary zero mean and �nite

variance process,

(2.4) ~x0k =
1X
j=0

g0j�k�j; k 2 Z:

Observe that the gj's in (2.3) are nonnegative and given by

gj =

jX
m=1

X
0<sm�1<���<s1<j

bj�s1bs1�s2 :::bsm�2�sm�1
bsm�1

; j � 1; g0 = 1;(2.5)

which follows from the equality (1�B(z))�1 =
P1

m=0B
m(z).

The next theorem establishes the equivalence of conditions kgk < 1 and kAk < 1, the

equality of the weights gj = g0j, and the L2 equality of the functions G(eix) = A(x), x 2 �.

It obtains conditions for the existence and uniqueness of a stationary L2-solution of the

IAR(1) equation and establishes its long memory property.

A stationary solution fxkg of (2.1) is said to be causal if for each k, xk can be represented

as a measurable function f(�k; �k�1; : : : ) of the present and past values �s; s � k. In addition,

we assume that the noise f�kg in (2.1) is causal with respect to some i.i.d. noise f�jg which

implies that f�jg is a regular process. The last property is used to prove uniqueness of a

stationary IAR solution fxjg that is causal with respect to f�jg.

Theorem 2.1 Integrated AR equation (2.1) has the following properties.

(i) Assumption kgk < 1 is necessary for existence of a stationary L2-solution of (2.1). It

implies kAk < 1 and equality G(eix) = A(x) a.e. in �. Conversely, kAk < 1 implies

kgk <1.
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(ii) If kgk <1, then with ~xk as in (2.3) for each real �,

xk = �+ ~xk; k 2 Z;(2.6)

is a unique stationary causal L2-solution of (2.1) with Exk = �.

(iii) Solution (2.6), xk, has non-negative and non-summable covariance function

cov(x0;�; xk;�) = �2
�

1X
j=0

gjgk+j � 0;
X
k2Z

cov(x0;�; xk;�) =1;(2.7)

and unbounded spectral density f(x) = (�2
�=2�)j1�B(eix)j�2, x 2 � such that f(x)!1 as

x! 0.

Proof of Theorem 2.1. (i) the necessity of condition kgk < 1 for the existence of a

stationary L2- solution follows from Lemma 5.2(b) while Lemma 5.3 (a) and (b) imply

remaining claims of (i).

(ii) It su�ces to consider the case � = 0. In view of (i), ~xk = ~x0k, k 2 Z. We will show

that f~x0kg is zero mean solution of (2.1). Indeed, denote by �k =
R
�
eikvZ�(dv) the spectral

representation of f�kg with the random spectral measure Z�(dx). Since kAk < 1 impliesP1
j=0 g

0 2
j <1, then, by general properties of spectral representation of stationary processes

(see, Brockwell and Davis (1989, Thm.4.10.1), see also Giraitis et al. (2012, Thm.2.2.1)),

the series x0k =
P1

j=0 g
0
j�k�j converges in mean square and

~x0k =

Z
�

eikxA(x)Z�(dx); k 2 Z:(2.8)

Hence x0k is a well-de�ned stationary process with zero mean, �nite variance

E~x0 2k = (�2
�=2�)

R
�
jA(x)j2dx < 1, spectral density f~x(x) = (�2

�=2�)jA(x)j
2 and spectral

measure F~x(dx) = f~x(x)dx. To show that f~x0kg is a L2�solution of (2.1), observe that the

function 1�B(eix) is bounded on � and therefore L2( ~F ) integrable. Then, as above, by the

general properties of spectral representation of stationary processes the series
P1

j=1 bj~x
0
k�j

converges in mean square and ~x0k �
P1

j=1 bj~x
0
k�j =

R
�
eikx(1 �

P1
j=1 bje

ijx)A(x)Z�(dx) =R
�
eikxZ�(dx) = �k, proving the above claim.

It remains to show the uniqueness of solution (2.4), f~x0kg, with the stated properties. Let

fx0kg; fx
00
kg be two causal L2�solutions of (2.1) with Ex0k = Ex00k and yk := x0k � x00k. Then

fykg is a causal stationary L2�solution of the homogeneous equation

yk �
X1

j=1
bjyk�j = 0:

Hence using boundedness of 1�B(eix) similarly as in the proof of (i) we obtain that

(2.9)

Z
�

j1�B(eix)j2Fy(dx) = 0;
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where Fy is the spectral measure of fykg. The causality of fykg implies that fykg is a regular

process since f�kg is regular and therefore Fy is absolutely continuous with spectral density

fy, see Ibragimov and Linnik (1971), Thm.17.1.2. Together with Lemma 5.1(i) (2.9) implies

that fy(x) = 0 a.e. on � and hence Fy = 0 and yk = 0, proving part (ii).

(iii) The spectral representation (2.8) of the solution implies that it has spectral density

f(x) = (�2
�=2�)j1 � B(eix)j�2. The fact that f(x) in unbounded, viz., limx!0 f(x) = 1,

follows from continuity of B(e�ix), B(1) = 1, and the fact jB(x)j < 1 for 0 < x < x0 for some

x0 > 0 which holds by Lemma 5.1. The divergence
P

k2Z jcov(x0; xk)j = 1 is immediate

from the previous fact since the convergence implies boundedness of f(x). Finally, the �rst

claim in (2.7) is a consequence of the moving average representation (2.4) and positivity of

gj's. Theorem 2.1 is proved. 2

The requirement of Theorem 2.1 that in the Integrated AR equation (2.1), f�kg is an

uncorrelated noise is restrictive and can be relaxed. Theorem 2.2 establishes existence and

long memory property of stationary Integrated AR process when f�kg itself is causal process

(with respect to some i.i.d. sequence f�jg) with short memory, as precised below.

Theorem 2.2 Let f�kg in IAR(1) equation (2.1) be a stationary causal process with mean

0, �nite variance and the spectral density f� which is bounded away from 0 and 1,

c1 � f�(x) � c2; x 2 �; 9 0 < c1 < c2 <1:(2.10)

Then statements of Theorem 2.1(i), (ii) about stationary solution of IAR equation (2.1)

remain valid while (iii) has to be modi�ed as follows:

(iii) Solution (2.6), fxkg, has unbounded spectral density f(x) = j1� B(eix)j�2f�(x), x 2 �

that satis�es f(x)!1 as x!1, and non-summable autocovariance function
X
k2Z

jcov(x0; xk)j =1:(2.11)

Proof of Theorem 2.2. The proof follows using the same arguments as in the proof of

Theorem 2.1. 2

Remark 2.1 The IAR(1) model (2.1) does not have a stationary �nite variance solution,

if the weights bj decay to zero too fast, i.e. bj = O(j�
) for some 
 > 3=2, e.g. in the unit

root model xk � xk�1 = �k, which follows from Lemma 5.2(a) and Lemma 5.3(c). However,

the IAR(1) equation has a stationary process, if a singular "unit root" is distributed over

in�nite number of bj's that decay not too fast, so that j1�B(e�ix)j�2 is integrable.

There exists a large variety of stationary Integrated AR(1) processes. They always have

long memory, their covariances are non-summable and their spectral density is not bounded

at zero frequency. However, their covariances may not decay at hyperbolic rate k�1+2d, and

spectral densities may not explode at zero frequency at the rate jxj�2d. The latter properties

are key features of fractionally integrated parametric ARFIMA(p; d; q) models.
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2.1 Parametric and semiparametric IAR(1) long memory models

An ARFIMA(0; d; 0) model is de�ned as a stationary solution of the di�erence equation

(1� L)dxk = �k; 0 < d < 1=2;

where f�kg is a stationary sequence of uncorrelated noise with E�k = 0, E�2k = �2
� . It can be

written as an IAR equation

xk �
1X
j=1

bjxk�j = �k;(2.12)

with bj's generated by operator B(L) = 1 � (1 � L)d =
P1

j=1 bjL
j. Here, bj's are non-

negative, and
P1

j=1 bj = 1. The function A(x) = (1 � B(e�ix))�1 has the property that

jA(x)j2 = j1� e�ixj�2d � jxj�2d as x! 0 and is integrable for d 2 (0; 1=2). By Theorem 2.1,

the IAR equation (2.12) has a stationary zero mean solution fxkg given by (2.3).

The bj's and the coe�cients of the generating function G(z) = (1�B(z))�1 = (1� z)�d

are given by

(2.13) bj = �
�(j � d)

�(j + 1)�(�d)
; gj =

�(j + d)

�(j + 1)�(d)
; j � 1; g0 = 1:

They have properties bj > 0, gj > 0 and � =
P1

j=1 bj = 1, and satisfy

(2.14) bj � �j�d�1=�(�d); gj � jd�1=�(�d); j !1;

so kgk < 1. This implies that the covariance 
k = cov(x0; xk) = �2
�

P1
j=0 gjgk+j of the

solution fxkg decays hyperbolically:

(2.15) 
k = �2
�

�(k + d)

�(k � d+ 1)

�(1� 2d)

�(d)�(1� d)
� c
k

�1+2d; c
 :=
�2
��(1� 2d)

�(d)�(1� d)
;

see, e.g., Chapter 7 of GKS(2012), and the spectral density is unbounded at the origin:

(2.16) f(x) = (�2
�=2�)j1� eixj�2d � cf jxj

�2d; cf := �2
�=2�:

Semiparametric IARmodel. A wider class of IAR processes generalizing ARFIMA(0; d; 0)

is de�ned by equation (2.12 ) with uncorrelated noise f�kg and bj's generated by operator

B(L) :=
�
1� (1� L)d

�
P (L) =

1X
j=1

bjL
j; 0 < d < 1=2(2.17)

where P (z) =
P1

j=0 pjz
j is a generating function with coe�cients satisfying

(2.18) pj � 0; p1 > 0;
P1

j=0 pj = 1 and
P1

j=1 jpj <1:

10



Then bj =
Pj�1

k=0 pkb
0
j�k where b

0
j are coe�cients of ARFIMA generating function 1�(1�z)d =P1

j=1 b
0
jz

j, de�ned in (2.13), and therefore the bj's in B(L) =
P1

j=1 bjL
j are non-negative

and sum up to 1.

Let us show that jA(x)j2 = j1�B(eix)j�2 is integrable for d 2 (0; 1=2). Then, by Theorem

2.1, the IAR equation (2.12) has a stationary zero mean solution fxkg given by (2.3).

Since b1 = p0b
0
1 > 0, by Lemma 5.1(ii) jA(x)j is bounded on [�; �] for any � > 0.

Therefore, it su�ces to show that jA(x)j2 is integrable at x = 0. To this end, rewrite

1�B(eix) = 1�
�
1� (1� eix)d

�
P (eix) = (1� eix)dh(x), where

(2.19) h(x) := P (eix)�
�
P (eix)� 1

�
(1� eix)�d:

From (2.18) we have jP (eix)� 1j =
P1

j=1 je
ijx � 1jpj � jxj

P1
j=1 jpj = O(jxj) = o(j1� eixjd)

and therefore h(x) ! h(1) = P (1) = 1 as x ! 0. Hence, jA(x)j2 � jxj�2d, x ! 0; proving

the integrability of jA(x)j2 for d 2 (0; 1=2). The corresponding stationary solution fxkg of

(2.12) with uncorrelated noise f�kg has spectral density

(2.20) f(x) = (�2
�=2�)j1�B(e�ix)j�2 = (�2

�=2�)j1� e�ixj�2djh(x)j�2; x 2 �

with h de�ned at (2.19), that satis�es f(x) � (�2
�=2�)jxj

�2d; x ! 0, and is a continuous

bounded function on intervals [�; �]; � > 0. Moreover, using (2.20), (2.19), (2.18) and Lemma

2.3.1 in Giraitis et al. (2012), one can show that

cov(x0; xk) � c
k
�1+2d;(2.21)

with c
 as in (2.15) for ARFIMA(0; d; 0) model. Hence, the pj's are essentially parameters

of short run dynamics and do not have an impact on the long-run behavior of cov(x0; xk)

and asymptotic of f(x) as x! 0.

IAR(q; d) model. Finally, let us remark that the IAR(1) model given by equations (2.12),

(2.17) with polynomial P (L) de�nes a parametric class of long memory processes that are

di�erent from ARFIMA(p; d; q) models. For example, B(z) = (1� (1� z)d)(1 + rz)=(1 + r)

generates a di�erent covariance structure than ARFIMA(1; d; 0) model (1�L)d(1+ rL)xk =

�k.

It is convenient to parameterize P (L) as

(2.22) P (L) =
1 + r1L+ :::+ rqL

q

1 + r1 + :::rq
; r1 � 0; ::: ; rq � 0:

Then coe�cients pi := ri=(1 + r1 + ::: + rq); i = 1; :::; q and p0 := 1=(1 + r1 + :::rq) are

nonnegative and have property p0 + p1 + :::: + pq = 1, so this model is a separate case of

(2.17). For d 2 (0; 1=2) it has a stationary long memory solution with the spectral density

(2.20) satisfying f(x) � (�2
�=2�)jxj

�2d, x! 0 and cov(x0; xk) satisfying (2.21).

Observe that an IAR(0; d) process is an ARFIMA(0; d; 0) process.
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Remark 2.2 The well-known ARFIMA(p; d; q) model is obtained from the IAR ARFIMA(0; d; 0)

equation (2.12) by replacing f�kg by a stationary ARMA(p; q) process �j = A(L)�1B(L)�j.

Here, f�jg is an uncorrelated stationary noise, E�k = 0, E�2k = �2
� and the polynomials A(z),

B(z) do not have zeroes on the complex disk fjzj � 1g.

In the IAR(p; d) model, parameterizing weights bj by P (L) changes the correlations

corr(xk; x0) at �nite lags but the asymptotics of corr(xk; x0) remain the same as for ARFIMA(0; d; 0).

In ARFIMA(p; d; q), instead of bj's we are modelling the persistence of the noise f�jg. The

latter has strong impact on corr(xk; x0) for large lags, distorting the long memory behaviour

generated by bj and controlled by d.

Example 2.1 Figures 2-5 contain realisations, sample and theoretical ACF's and the spec-

tral densities of

{ IAR(1; d) process xk = B(L)xk + �k, B(L) = (1� (1� z)d)(1 + rz)=(1 + r),

{ ARFIMA(0; d; 0) process (1� L)dxk = �k,

{ ARFIMA(1; d; 0) process (1� L)d(1� rL)xk = �k
where d = 0:3, r = 0:5 and f�kg is standard normal i.i.d. noise. They con�rm theoretical

�ndings on long memory properties of IAR(1; d) processes.

It can be seen from Figure 2 that, although realizations of IAR(1; d), ARFIMA(0; d; 0) and

ARFIMA(1,d,0) processes are rather similar, persistence slightly increases for ARFIMA(1; d; 0)

processes. Di�erent values of parameter r in the IAR(1; d) model lead to di�erent shapes of

ACF at very low lags, for example, increasing r would form a peak in ACF at lag 2. Due

to the impact of the parameter r on short-range dependence, the ACF is notably lower at

lag 1 for IAR(1; d) model compared with ARFIMA(0; d; 0), see Figure 4. This illustrates the

important inherent feature of IAR(q; d) models - coe�cient r or, more generally, coe�cients

of polynomial P (L)) - are mostly associated with the short-range dependence structure of

IAR process, while having a minor impact on long-run behaviour of ACF, in contrast to

ARFIMA models where parameters r and d tend to duplicate each other, and therefore it

might be hard to separate them in �nite samples.

3 ARCH(1) model and bilinear equation

In this section, we derive important auxiliary results. Our objective is to rewrite the

ARCH(1) process f�kg of (1.1) as a bilinear process driven by an i.i.d. zero mean noise

and analyse the existence of its stationary solution. In Section 4 we use solutions of bilinear

model to �nd stationary solutions for ARCH(1) model

(3.1) �k = "k
�
! +

1X
j=1

bj�k�j
�
; k 2 Z:
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Figure 2: Realizations of ARFIMA(1; 0:3), ARFIMA(0; 0:3; 0), ARFIMA(1; 0:3; 0) with r =

0:5
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Figure 3: Sample ACF of ARFIMA(1; 0:3), ARFIMA(0; 0:3; 0), ARFIMA(1; 0:3; 0) with r =

0:5, sample size n = 1000

Speci�cally, for a stationary ARCH(1) process in (3.1) with mean E�k = �, we set

�k = (�k � �) + � = Yk + �; Yk := �k � �:

Recall � =
Pn

j=1 bj. We focuss on two cases, a) ! > 0 and 0 < � < 1, and b) ! = 0 and

� = 1. In case a), equation (1.5) implies � = E�k = !=(1� �), while in case b), it does not

contradict a free choice of � > 0. Motivated by these facts, put

� :=

8<
:
!=(1� �) if � < 1; and ! > 0;

any positive number � > 0 if � = 1 and ! = 0:
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Figure 4: True ACF of ARFIMA(1; 0:3), ARFIMA(0; 0:3; 0), ARFIMA(1; 0:3; 0) with r = 0:5
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Figure 5: Spectral density of ARFIMA(1; 0:3), ARFIMA(0; 0:3; 0), ARFIMA(1; 0:3; 0) with

r = 0:5 computed averaging the periodogram at Fourier frequencies uj, j = 1; :::; n = 250.

Assume �2 := var("1) < 1 and let f�k := ("k � 1)=�; k 2 Zg be the centered i.i.d. noise.

With this notation, the ARCH equation of (3.1) can be written as the bilinear equation

Yk =
1X
j=1

bjYk�j + �k

�
�� + �

1X
j=1

bjYk�j

�
;(3.2)

see also Giraitis and Surgailis (2002). By introducing the generating function

(3.3) H(z) :=
�B(z)

1�B(z)
=

1X
j=1

hjz
j; jzj < 1;

and putting zk := (1�B(L))Yk, (3.2) can be further rewritten as a system of two equations:

(a) Yk =
1X
j=1

bjYk�j + zk; (b) zk = �k
�
�� +

1X
j=1

hjzk�j
�
:(3.4)
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Note that the second equation in (3.4) does not contain the Yk's and coincides with the

so-called LARCH model studied in Giraitis et al. (2000b, 2004) and elsewhere. Also note

that fzkg is a martingale di�erence sequence and can be written as

(3.5) zk = �kvk; vk = �� +
1X
j=1

hjzk�j;

where vk is interpreted as volatility while the �rst equation is an IAR equation studied in

Section 2. A stationary solution fzkg of the second equation in (3.4) is constructed in terms

of causal Volterra series in i.i.d. innovations �s; s � k, see (3.9), (3.10) below, also Giraitis

et al. (2000b). Thus, the �rst equation in (3.4) in the integrated case � =
P1

j=1 bj = 1

represents a particular case of the IAR(1) model with causal albeit dependent uncorrelated

noise fzkg discussed in Theorem 2.1 of the previous section. Accordingly, the stationary

solution of the bilinear equation (3.2) is obtained as a solution

Yk =
1X
j=0

gjzk�j(3.6)

of the IAR equation with martingale di�erence innovations zk�j's determined by the second

equation in (3.4), or (3.5), and with gj's as in (2.2) which satisfy hj = �gj, j � 1. This

seems the most simple way to construct and solve the bilinear equation (3.2) and the ARCH

equation (3.1), too.

In the rest of paper, by \causal" we mean a stationary process fykg written as a measur-

able function of the present and past values �s; s � k or, equivalently, "s; s � k. Similarly

as in De�nition 2.1, by an L2�solution of equations (3.1), (3.2), (3.4) we mean a random

process with �nite second moment such that all series in these equations converge in mean

square and the corresponding equations hold for each k 2 Z.

The following proposition establishes the relation between solutions of (1.1), (3.2) and

(3.4) with "k and �k related by "k = ��k+1; and ! = �(1� �). For Yk in (3.2), we de�ne the

\noise" as zk := �k(�� + �
P1

j=1 bjYk�j). For zk in (3.4), the volatility process vk is de�ned

in (3.5).

Proposition 3.1 Let 0 < � <1 and � 2 (0; 1].

(i) If f�kg is a causal L2�solution of (1.1) then fYk := �k � �g is a causal L2�solution

of (3.2) such that Yk � ��.

(ii) If fYkg is a causal L2�solution of (3.2) such that Yk � ��; then f�k := Yk + �g is a

causal L2�solution of equation (1.1).

(iii) fYkg is a causal L2�solution of bilinear equation (3.2) if and only if fYk; zkg is a causal

L2�solution of equation (3.4). Moreover, fYk � ��g is equivalent to fvk � 0g with vk as in

(3.5).
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Proof. The equivalence of (i) and (ii) is immediate. It remains to prove (iii). Let fYkg be a

causal L2�solution of (3.2), zk := �k(�� + �
P1

j=1 bjYk�j) and vk := �� +
P1

j=1 hjzk�j. Let

us prove that fYk; zkg is a causal L2�solution of (3.4). This follows from (3.2) and equality

(3.7) vk = �� + �
1X
j=1

bjYk�j

which is veri�ed below. From the de�nition of zk and (3.2) it follows that the Yk's satisfy

the IAR equation Yk �
P1

j=1 bjYt�j = zk where fzkg is a causal uncorrelated process with

�nite variance. Therefore by Theorem 2.1 we have Yk =
P1

j=0 gjzk�j, and �
P1

j=1 bjYk�j =

�
P1

j=1 bj
P1

i=0 gizk�j�i =
P1

j=1 hjzk�j follows from the de�nition of hj in (3.3), proving

(3.7) or the fact that fYk; zkg is a causal L2�solution of (3.4). Moreover, Yk�j � �� and

(3.7) imply vk � �� + �(
P1

j=1 bj)(��) = ��(1� �) � 0.

Conversely, assume that fYk; zkg is a causal L2�solution of (3.4). Then the fact that

fYkg is a causal L2�solution of (3.2) follows from (3.7) which in turn follows from Theorem

2.1 exactly as above. Finally, from vk � 0, (3.7), (3.2) and �k � �1=� we obtain

Yk =
1X
j=0

bjYk�j + �kvk �
1X
j=0

bjYk�j � (1=�)vk

=
1X
j=0

bjYk�j � (1=�)(�� + �
1X
j=0

bjYk�j) = ��;

proving part (iii) and the proposition. 2

Solution of bilinear equation. The solution fYkg of equation (3.2) can be obtained by

�nding a solution, fzkg, of the LARCH equation (3.4)(b), and then using it to solve AR

equation (3.4)(a) to �nd fYkg.

The existence of stationary L2�solution of LARCH equation (3.4)(b) was discussed in

Giraitis, Robinson and Surgailis (2000b). As shown in this paper, a necessary and su�cient

condition for the existence of such solution is khk2 =
P1

j=1 h
2
j < 1. Using the fact that

hj = �gj; j � 1; this condition can be written as

(3.8) khk2 = �2
1X
j=1

g2j < 1;

where the gj's are obtained using the generating function (2.2), G(z) = (1 � B(z))�1 =P1
j=0 gjz

j. Under (3.8), the solution zk of LARCH equation is written as the sum

(3.9) zk = �kvk; vk := (��)
1X

m=0

v
(m)
k ;

of Volterra series of order m

(3.10) v
(m)
k :=

X
sm<���<s1<s

hs�s1hs1�s2 � � �hsm�1�sm�s1 � � � �sm ; m � 1; v
(0)
k := 1
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which converge in mean square under (3.8), have zero mean Ev
(m)
k = 0 and variance

Ev
(m) 2
k =

X
sm<���<s1<s

h2s�s1h
2
s1�s2

� � �h2sm�1�sm
= khk2m <1:

By orthogonality of the summands in (3.9), it follows

(3.11) �2
z := Ez2k = Ev2k = (��)2

�
1 +

1X
m=1

khk2m
�
= (��)2=(1� khk2) <1:

The corresponding solution Yk of AR equation (3.4)(a) is then written as a moving-average

of martingale di�erence innovations zs; s � k

(3.12) Yk =
1X
j=0

gjzk�j;

where E[zkj�s; s < k] = 0, E[z2kj�s; s < k] = v2k: With (3.9), (3.10) in mind, Yk in (3.12) can

be rewritten as the Volterra series

(3.13) Yk = (��)
1X

m=1

� X
sm<���<s1�k

gk�s1hs1�s2 � � �hsm�1�sm�s1 � � � �sm

�
:

The solution of bilinear equation in (3.12) is causal (in particular, ergodic), has zero mean

EYk = 0, and covariance-correlation functions

(3.14) cov(Y0; Yk) = �2
z

1X
j=0

gjgk+j; corr(Y0; Yk) =

P1
j=0 gjgk+jP1

j=0 g
2
j

; k � 0:

Assumption (3.8), khk < 1, mainly guarantees that solution fYkg has �nite variance. Solu-

tion (3.12) has spectral density

f(x) =
�2
z

2�

�� 1X
j=0

gje
�ijx

��2 =
�2
z

2�
j1�

1X
j=1

bje
�ijxj2; x 2 �;

in view of equality A(x) = (1�B(e�ix))�1 =
P1

j=0 gje
�ijx proved in Lemma 5.3(a), and with

�2
z de�ned in (3.11).

The following theorem establishes su�cient and necessary conditions for the existence

of a causal L2�solution of the ARCH(1) equation (3.1) and bilinear equations (3.2), (3.4).

Recall that � =
P1

k=1 bk, �
2 = var("1), kgk

2 =
P1

j=0 g
2
j and kAk

2 =
R
�
jA(x)j2dx.

Theorem 3.1 (a) Bilinear equation (3.1) has a nontrivial causal L2-solution if and only if

(3.15) kgk2 < (1 + �2)=�2:

Condition (3.15) is equivalent to kAk2 < 2�(1 + �2)=�2:

(b) Let (3.15) be satis�ed. Then
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(i) If ! > 0; 0 < � < 1 then ARCH equation (3.1) has a unique causal L2-solution f�kg

given by �k = �+ Yk, where fYkg are de�ned in (3.12) and � = !=(1�B).

(ii) If ! = 0; � = 1 then (3.1) has in�nite number of causal L2-solutions. Each such

solution f�kg with E�k = � > 0 is unique and has the form f�k = � + Ykg, where Yk
are de�ned in (3.12) with fzkg given in (3.9).

Proof. (a) Note �rst that (3.15) is equivalent to (3.8) while the equivalence of (3.15) and

kAk2 < 2�(1 + �2)=�2 follows from Lemma 5.3(a).

Let us prove the necessity of condition (3.8). Assume that f�kg is L2�solution of ARCH

equation (3.1). By Proposition 3.1(i), the last fact implies that fYk := �k � �; zk := �k(��+

�
P1

j=1 bjYk�j)g is an L2�solution of bilinear equation (3.4). Consequently,

�2
z = Ez2k = E

�
�� +

1X
j=1

hjzk�j
�2

= (��)2 + (
1X
j=1

h2j)�
2
z > (

1X
j=1

h2j)�
2
z

yielding (3.8).

Conversely, let us show that (3.8) implies the existence of L2�solution f�kg of (1.1) with

E�k = � given by �k = Yk + �, with Yk de�ned in (3.13). As shown above, (3.8) guarantees

that the above fYkg is an L2�solution of (3.2). Therefore, by Proposition 3.1(ii), it su�ces

to prove that

(3.16) Yk � ��:

To show (3.16), we approximate Yk in (3.13) by

Yk;p := (��)
1X

m=1

� X
p<sm<���<s1�k

gk�s1hs1�s2 � � �hsm�1�sm�s1 � � � �sm

�
;

where p � 1 is a large integer. Observe that for k > p the Yk;p's satisfy equation (3.2), viz.,

Yk;p = �k

�
�� + �

1X
j=1

bjYk�j;p

�
+

1X
j=1

bjYk�j;p; for k > p;(3.17)

while Yk;p = 0 for k � p. Moreover, by orthogonality of Volterra series,

E(Yk � Yk;p)
2 = (��)2

1X
m=1

J
(m)
k;p ; J

(m)
k;p :=

X
sm<���<s1�k; sm�p

g2k�s1h
2
s1�s2

� � �h2sm�1�sm
:

Note that J
(m)
k;p � kgk2khk2(m�1), where khk < 1; and hence

P1
m=1 J

(m)
k;p is dominated by a

converging series. Moreover, for each m � 1, J
(m)
k;p ! 0 as p! �1. Hence, limp!�1E(Yk�
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Yk;p)
2 = 0 for any k 2 Z by the dominated convergence theorem. Therefore, (3.16) follows if

we show that for any p 2 Z,

(3.18) Yk;p � ��; k 2 Z:

To prove (3.18), we use induction on k. Clearly, (3.18) holds for k � p because by de�nition

Yk;p = 0 > �� for k � p. Also, (3.18) holds for k = p + 1 since Yp+1;p = (��)�p+1 � ��

because (��)�j = (��)("j � 1)=� � ��, for j 2 Z. Let k > p+1. Assume by induction that

(3.18) holds for all k = k � j; j � 1: Then, by (3.17) and the inductive assumption,

Yk;p = �k(��) + (�k� + 1)
� 1X
j=1

bjYk�j;p
�
� �k(��) + (�k� + 1)(

1X
j=1

bj)(��)

� �k(��) + (�k� + 1)(��) � ��:

This proves the induction step k � 1! k and (3.18), (3.16), too, thereby proving part (a).

(b) Claim (i) follows from Giraitis and Surgailis (2002), Thm.3.1. Let us prove (ii). By

Proposition 3.1, it su�ces to show the uniqueness of solution fYkg in (3.4) with fzkg as in

(3.9)-(3.10). Since the above fzkg is regular and fYkg is causal, the uniqueness follows from

Theorem 2.1. Theorem 3.1 is proved. 2

4 Stationary solutions of IARCH, FIGARCH and ARCH

equations

We now are ready to establish the existence of stationary IARCH and FIGARCH processes

with �nite variance. Theorem 4.1 and Corollary 4.1 below show that covariance stationary

IARCH and FIGARCH processes exist, and that long memory is their inherited feature. The

proofs are based on results obtained for a bilinear model (3.2) in Section 3.

The results of the previous section lead to the following conclusions about stationary

solutions of the IARCH, FIGARCH and ARCH(1) equations. The stationary solution f�kg

with mean E�k = � in Theorem 3.1 can be represented as

�k = �+ Yk; k 2 Z;(4.1)

where fYkg has mean EYk = 0 and is given by

Yk :=
1X
s=0

gszk�s; zs := �svs;(4.2)

vs := ��m+1
P1

m=1

�P
sm<���<s1<s gs�s1gs1�s2 � � � gsm�1�sm�s1 � � � �sm

�
:

The sequence fzs = �svsg in (4.2) is a stationary ergodic martingale di�erence sequence with

zero mean and variance �2
z = Ez2s := (��)2=

�
1 � �2(kgk2 � 1)

�
, and assumption �2

z < 1 is
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equivalent to

kgk2 � (1 + �2)=�2:(4.3)

The following theorem shows that under assumption (4.3) there exist an in�nite number of

IARCH solutions �k parameterised by the mean value � > 0. Part (iii) of the theorem shows

that IARCH process always has long memory, viz. its auto-covariance is not summable, and

spectral density is unbounded at zero frequency.

Theorem 4.1 The IARCH equation (1.2) has a non-trivial stationary causal L2�solution

if and only if �2 = var("1) and bj's satisfy condition (4.3). In the latter case,

(i) For each � > 0, the process f�kg in (4.1) is a unique causal L2�solution of (1.2) with

mean E�k = �.

(ii) The covariance function of f�kg in (4.1) is given by

cov(�0; �k) = �2
z

1X
j=0

gjgk+j:(4.4)

(iii) The covariance function in (4.4) is nonnegative: cov(�0; �k) � 0 and nonsummable:P
k2Z cov(�0; �k) = 1: Moreover, f�kg has spectral density f(x) = (�2

z=2�)j1 � B(e�ix)j�2,

x 2 � that is unbounded at the zero frequency.

Proof. All claims with the exception of (iii) follow from Theorem 3.1, and claim (iii) follows

from Theorem 2.1(iii). 2

Remark 4.1 The above corollary together with Lemma 5.2(a) and Lemma 5.3(c) imply

that that the IARCH model in (1.2) with ! = 0 does not have a stationary solution with

�nite variance if the bj's tend to zero fast enough: exponentially or vanish for j large enough,

or decay at rate bj = O(j�
) for some 
 > 3=2. In contrast, the su�cient conditions for the

existence of a stationary IARCH process with non-zero intercept ! > 0 and in�nite mean

E�k = 1 obtained in Kazakevi�cius and Leipus (2003) and Douc et al. (2006) require an

exponential decay of bj's as j !1, or the opposite property.

The next corollary details the case of the FIGARCH equation in (1.3). It establishes the

existence of stationary long memory FIGARCH processes and shows that their covariance

function cov(�k; �0) decays to zero hyperbolically slowly as in (4.6). Recall that �2 = var("1).

Corollary 4.1 For the FIGARCH model in (1.3) with d 2 (0; 1=2), condition (4.3) is equiv-

alent to

E"20 <
�(1� 2d)

�(1� 2d)� �2(1� d)
:(4.5)
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Under (4.5), the statements of Theorem 3.1 (i) and (ii)(b) hold. Moreover, as k ! 1, the

covariance and spectral density of the FIGARCH process f�kg with E�k = � satisfy

cov(�0; �k) � �2c
k
�1+2d(4.6)

where c
 = �2
z�(1� 2d)=f�(d)�(1� d)g, �2

z = �2=
�
1 + �2 � �2�(1� 2d)=�2(1� d)

�
and

f(x) = (�2
z=2�)j1� eixj�2d � (�2

z=2�)jxj
�2d; x! 0:(4.7)

Proof. From (2.15), we have kgk2 = �(1 � 2d)=�2(1 � d) yielding the equivalence of (4.3)

and (4.5). The remaining claims of the corollary follow from Theorem 4.1 and (2.15). 2

For comparison, Corollary 4.2 below recovers the results on the existence of a stationary

�nite variance solution of ARCH(1) equation with � =
P1

j=1 bj < 1, obtained in GS(2002).

As noted above, the existence of such a solution in this case necessary implies E�k = � =

!=(1� �). In sharp contrast to �nite variance stationary IARCH processes, which can have

only long memory (see Theorem 4.1(iii)), a stationary �nite variance process ARCH processes

with � < 1 always has short memory, in the sense that its covariance function is non-negative

and absolutely summable.

Corollary 4.2 An ARCH(1) equation in (1.1) with ! > 0 and � =
P1

j=1 bj < 1 has a

unique stationary causal L2�solution if and only if condition (4.3) is satis�ed. The above

solution is given by �k = �+Yk, (4.1), with � = !=(1��). It has mean E�k = � = !=(1��)

and non-negative covariance function given in (4.4). Moreover,X
k2Z

cov(�0; �k) <1;
X
k2Z

gk <1:

Proof. All statements with the exception of the last convergence follow from Theorem 3.1.

To show it, note that gj � 0 in (2.5) satisfy
P1

j=0 gj �
P1

m=0 �
m <1 since � < 1. 2

The following proposition discusses the weak convergence in the Skorohod space D[0; 1],

denoted by !D[0;1], of the partial sums process of f�kg. Below, fB(t); t 2 [0; 1]g denotes a

standard Brownian motion with variance EB2(t) = t and fBd+1=2(t); t 2 [0; 1]g a fractional

Brownian motion with variance EB2
d+1=2(t) = t2d+1; 0 < d < 1=2:

Proposition 4.1 Suppose that (4.3) holds.

(i) Let ! > 0; � < 1 and f�kg be the ARCH(1) process in Corollary 4.2. Then

(4.8) n�1=2

[nt]X
k=1

(�k � E�k) !D[0;1] s2B(t); s2 :=
X
k2Z

cov(�0; �k):

(ii) Let f�kg be the FIGARCH process in Corollary 4.1. Then

n�1=2+d

[nt]X
k=1

(�k � E�k) !D[0;1] sdBd+1=2(t); s2d := �2c
=(d(1 + 2d)):(4.9)
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Proof. (i) The convergence in (4.8) is a consequence of the summability
P

k2Z cov(�0; �k) <

1, the associativity property of f�kg and the functional CLT by Newman and Wright (1981),

see Giraitis et al. (2007) for details.

(ii) Using the fact that f�kg in (4.2) is a moving average of stationary ergodic martingale

di�erences, (4.9) follows from Theorem 3.1 in Abadir et al. (2014) or Theorem 6.2 in Giraitis

and Surgailis (2002). 2

We end the paper with two examples of integrated ARCH(1) processes.

Example 4.1 Autoregressive Conditional Duration (ACD) model of Engle and Russell

(1998) of order 1 is given by

�k = "k(! + b�k�1);(4.10)

where ! > 0, 0 < b < 1, E"1 = 1 and �2 = var("1) < 1. In this case we have that

B(z) = bz; G(z) = (1� bz)�1 =
P1

j=0 b
jzj, gj = bj, hj = �bj, j � 1 and khk2 =

P1
j=1 h

2
j =

�2
P1

j=1 b
2j = �2b2=(1 � b2). The corresponding bilinear equation (3.2) for Yk = �k � EYk

writes as

Yk = �k
�
�� + �bYk�1

�
+ bYk�1; � = !=(1� b); �k = ("k � 1)=�:

Condition khk < 1 of (3.8) becomes �2b2=(1�b2) < 1, or b2E"21 < 1: By (3.14), the covariance

of the ACD process in (4.10) is a multiple of that of AR(1):

cov(�0; �k) = �2
z

1X
j=0

gjgk+j = �2
z

1X
j=0

bjbk+j = a bk; k � 0;

where a := (!�)2=(1� b2(1 + �2)).

Example 4.2 The following extension of the FIGARCH model

�k = "kB(L)�k; B(L) := (1� (1� L)d)
1 + rL

1 + r
(4.11)

where 0 < d < 1=2 and r � 0 are parameters, is a particular case of integrated autoregressive

operators discussed in example (2.22).

Figures 6-9 contain realisations, sample and theoretical ACF's and the spectral density

of the FIGARCH process �k = FIGARCH(0:2) and the long memory ARFIMA process

xk � ARFIMA(0; 0:2; 0) + 1 with Exk = E�k = 1 which con�rm our theoretical results on

long memory properties of FIGARCH processes.
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Figure 6: Realizations of xk � ARFIMA(0; 0:2; 0) + 1, �k � FIGARCH(0:2) processes, E�k = 1
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Figure 7: Sample ACF of xk � ARFIMA(0; 0:2; 0)+1, �k � FIGARCH(0:2), sample size n = 500

5 Auxiliary lemmas

This section contains three auxiliary lemmas.

Lemma 5.1 Let � =
P1

j=1 bj = 1 where bj's are non-negative.

(i) The function 1�B(eix), x 2 � has only �nite number of zeroes on �, including x = 0.

(ii) The point x = 0 is the unique zero of 1 � B(eix) provided either b1 > 0, or bkbk+1 > 0

for some k � 2 hold.
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Figure 8: True ACF of xk � ARFIMA(0; 0:2; 0) + 1, �k � FIGARCH(0:2)
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Figure 9: Spectral densities of xk � ARFIMA(0; 0:2; 0) + 1, �k � FIGARCH(0:2) computed

averaging the periodogram at Fourier frequencies uj , j = 1; :::; n = 250.

Proof. (i) Suppose that B(eix0) = 1 and b1 = : : : = bp�1 = 0, bp > 0 for some x0 2 �; p � 1.

We will prove that

B(eix0) = eipx0 :(5.1)

Then, 1�B(eix0) = 1�eipx0 = 0 yields px0 = 0 (mod 2�). Hence, x0 2 f0; �2�=p; : : : ;�2�k=p;

0 � k � p=2g, proving the �rst statement in (i).

To show (5.1), let bp+1 = : : : = bp0�1 = 0; bp0 > 0. (If such p0 > p does not exist, then (5.1)

holds trivially.) Then B(eix0) =
P1

j=p bje
ijx0 = eipx0

P1
j=p bje

i(j�p)x0 = eipx0(bp+z+w); where

z := bp0e
i(p0�p)x0 and w :=

P1
j=p0 bje

i(j�p)x0 . Write z = bp0 cos((p
0�p)x0)+ibp0 sin((p

0�p)x0) =:

u+ iv. Then,

1 = jB(eix0)j = jbp + z + wj � jbp + zj+ jwj � bp + jzj+ jwj �
P1

j=1 bj = 1:
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This implies jbp+zj = bp+jzj, or ((bp+u)2+v2)1=2 = bp+(u2+v2)1=2. Taking squares of both

sides gives u = (u2+ v2)1=2, or u � 0; v = 0. Hence, z = bp0 and B(eix0) = eipx0(bp+ bp0 +w).

Repeating the above argument, we obtain w = bp0+1+bp0+2+ : : : and consequently B(eix0) =

eipx0(bp + bp+1 + : : : ) = eipx0(b1 + b2 + : : : ) = eipx0 , proving (5.1) and part (i).

(ii) Let �rst b1 > 0. Then (5.1) implies 1� B(eix0) = 1� eix0 = 0 and hence x0 = 0. Next,

if for some k � 2, bkbk+1 > 0, then, with z0 := bk+1e
ix0 and w0 :=

P1
j=1: j 6=k;k+1 bje

i(j�k)x0 ,

1 = jB(eix0)j = jbk + z0 + w0j � jbk + z0j+ jw0j � bk + jz0j+ jw0j �
P1

j=1 bj = 1:

Hence, jbk + z0j = bk + jz
0j, and the same argument as used in the proof of (5.1) implies that

z0 = bk+1. Therefore e
ix0 = 1; or x0 = 0, proving (ii). Lemma 5.1 is proved. 2

Lemma 5.2 Let � =
P1

j=1 bj = 1, where bj's are non-negative. Assume that �k is a station-

ary zero mean process which spectral density f� is bounded away from 0 and 1.

Suppose that equation

xk �
P1

j=1 bjxk�j = �k; k 2 Z;(5.2)

has a stationary zero mean solution xk with 0 < Ex2k <1. Then,

(a) A(x) := (1�B(eix))�1 is L2 -integrable.

(b) kgk <1.

Proof. (a) Let f(x) = j1 � B(e�ix)j�2f�(x), x 2 �. Then, by the same argument as in

the proof of Theorem 2.1(ii), the corresponding spectral measures Fx and F� of stationary

processes fxkg and f�kg satisfy

j1�B(e�ix)j2Fx(dx) = F�(dx) = f�(x)dx; x 2 �:

By Lemma 5.1(i), 1�B(e�ix) = 0 has �nite number of zeros x1; :::; xm in �. Since Fx is non-

decreasing, the only di�erence between Fx and F� is a possible jump at the points x1; :::; xm,

which yields equality Fx(dx) = f(x)dx +
Pm

i=1 ci�xi where ci � 0 are some non-negative

constants. Therefore, 1 > Exk =
R
�
Fx(dx) �

R
�
f(x)dx � c

R
�
j1�B(e�ix)j�2dx; since by

assumption f�(x) � c > 0, x 2 �, for some c > 0, which proves (a).

(b) Next, we show that the existence of a stationary L2�solution fxkg with the �nite

second moment Ex2k < 1 contradicts kgk = 1. From Lemma 5.3(c), condition kAk < 1

implies that bj > 0 for in�nite number of j � 1. For a large p � 1, denote b0j := bjI(j � p)

and

B0(L) :=
P1

j=1 b
0
jL

j; G0(L) := (1�B0(L))�1 =
P1

j=0 g
0
jL

j:

Observe that g0j satisfy (2.5) with bj's replaced by b0j's. Rewrite (5.2) as

xk �
Pp

j=1 bjxk�j = �k + uk; where uk :=
P1

j=p+1 bjxk�j;
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or (1�B0(L))xk = �k + uk. Since
P1

j=1 b
0
j < 1, standard spectral argument implies that

(5.3) xk = G0(L)(�k + uk) = �0k + u0k; where �0k := G0(L)�k; u
0
k := G0(L)uk:

We claim that under kgk =1, as p!1,

(5.4) E(u0k)
2 � Ex2k = O(1) and E(�0k)

2 !1:

On the other hand, since Ex2k <1, then E(�0k)
2 = E(xk�u0k)

2 � 2Ex2k+2E(u0k)
2 = C <1

which leads to contradiction.

To prove (5.4), notice that from the de�nition of u0k as a linear �lter and Fx(dx) the

spectral measure of fxkg,

E(u0k)
2 =

Z
�

���
P1

j=p+1 bje
�ijx

1�
Pp

j=1 bje
�ijx

���2Fx(dx) �

Z
�

���
P1

j=p+1 bj

1�
Pp

j=1 bj

���2Fx(dx) =

Z
�

Fx(dx) = Ex2k

proving the �rst relation in (5.4). The second relation follows by standard spectral argument

using the lower bound f�(x) � c > 0, x 2 �,

E(�0k)
2 = (�2

�=2�)

Z
�

jG0(e�ix)j2f�(x)dx �
c �2

�

2�

Z
�

jG0(e�ix)j2dx = c�2
�

1X
j=0

g0 2j

and the fact that the sum
P1

j=0 g
0 2
j ! kgk2 = 1 tends monotonically to 1 with p ! 1.

This completes the proof of the part (b) of the lemma. 2

The following lemma shows that the analytic function G(z) =
P1

j=0 gjz
j, jzj < 1 extends

to the unit circle jzj = 1, and such extension coincides with A(x) := (1 � B(eix))�1, x 2 �

in L2-norm. Recall notation kAk = (
R
�
jA(x)j2dx)1=2.

Lemma 5.3 Let � =
P1

j=1 bj = 1, where bj's are non-negative.

(a) If kgk <1, then kAk <1 and A(x) = G(eix) a.e. in �.

(b) If kAk <1, then kgk <1.

(c) If bk = O(k�
), k !1, for some 
 � 3=2, then j1�B(eix)j�2 is not integrable on �.

Proof. (a) Let us show that kgk < 1 implies kAk < 1 and A(x) = G(eix) a.e. in

�. Let kgk < 1 and 0 < r < 1. Then
R
�
jG(reix) � G(eix)j2dx = 2�

P1
j=0 g

2
j jr

j � 1j2 ! 0

as r " 1 and therefore limr"1G(re
ix) = G(eix) a.e. in � implying 1 = limr"1G(re

ix)(1 �

B(reix)) = G(eix)(1 � B(eix)) a.e. in �. Since 1 � B(eix) 6= 0 a.e. in � (see Lemma

5.1(i)), this implies G(eix) = (1 � B(eix))�1 � A(x) a.e. in �. Then by Parseval's identity,

(2�)�1kAk2 = kgk2 <1 which completes the proof of (a).

Proof of (b). Let kAk < 1. We will show that kgk < 1. For that we will construct IAR

equation

yk �
1X
j=1

bjyk�j = �k; k 2 Z;(5.5)
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where �k's are i.i.d. random variables with zero mean and unit variance, and show that this

equation has a stationary zero mean and �nite variance solution, which by Lemma 5.2(b)

implies kgk < 1. To construct such solution, denote by �k =
R
�
eikvZ�(dv) the spectral

representation of f�kg, and let

~yk =
R
�
eikxA(x)Z�(dx); k 2 Z:(5.6)

Since kAk <1, f~ykg is a stationary process with the spectral measure F~y(dx) = jA(x)j2F�(dx) =

(2�)�1jA(x)j2dx, E~yk = 0 and variance E~y2k =
R
�
F~y(dx) < 1. To show that ~yk is a solu-

tion of (5.5), observe that the function 1 �
P1

j=1 bje
�ijx is bounded and, therefore, L2(F~y)-

integrable. Then, by properties of spectral representation of stationary times series (see,

Brockwell and Davis (1989, Thm.4.10.1) ~yk�
P1

j=1 bj~yk�j =
R
�
eikx(1�

P1
j=1 bje

�ijx)A(x)Z�(dx) =R
�
eikxZ�(dx) = �k, and therefore ~yk is a solution of (5.5). This completes the proof of (b).

Proof of (c). We will prove that j1�B(eix)j � Cjxj1=2 which implies (c):
R
�
j1�B(eix)j�2dx �

C�1
R
�
jxj�1dx = 1. Recall that

P1
j=1 bj = 1, bj � Cj�
 � Cj�3=2 and notice that by

the mean value theorem j1 � eijxj � Cjjxj. Thus, j1 � B(eix)j = j
P1

j=1 bj(1 � eijx)j �

C
P1=jxj

j=1 j�1=2jxj + C
P

j�1=jxj j
�3=2 � Cjxj1=2. This proves (c) and completes the proof of

the lemma. 2
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