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Abstract

Time series models are often fitted to the data without preliminary checks for stability of
the mean and variance, conditions that may not hold in much economic and financial data,
particularly over long periods. Ignoring such shifts may result in fitting models with spuri-
ous dynamics that lead to unsupported and controversial conclusions about time dependence,
causality, and the effects of unanticipated shocks. In spite of what may seem as obvious dif-
ferences between a time series of independent variates with changing variance and a stationary
conditionally heteroskedastic (GARCH) process, such processes may be hard to distinguish in
applied work using basic time series diagnostic tools. We develop and study some practical and
easily implemented statistical procedures to test the mean and variance stability of uncorrelated
and serially dependent time series. Application of the new methods to analyze the volatility
properties of stock market returns leads to some unexpected surprising findings concerning the
advantages of modeling time varying changes in unconditional variance.
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Keywords: Heteroskedasticity, KPSS test, Mean stability, Variance stability, VS test.

1 Introduction

Diagnostic checks relating to the properties of data to be used in time series modeling are now

routinely implemented in empirical research. Nonetheless, in various applications with time series

data, stationarity is often presumed with no preliminary checks concerning such fundamental prop-

erties as stability of the mean, the unconditional variance, or the higher moments. Time constancy

of the mean and variance is unlikely to hold for much economic and financial data over long periods,

even without concerns over other forms of nonstationarity such as random wandering behavior and

the presence of unit roots. The issue of general structural instabilities in macroeconomic time series

∗Phillips acknowledges support from the NSF under Grant No. SES 12-58258.
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has been frequently raised in modern empirical research (e.g. Stock and Watson, 1996) and affects

estimation, inference, forecasting, and policy analysis.

Time series dynamics are particularly vulnerable to shifts that occur in the mean and vari-

ance of the series. Neglecting such shifts therefore has many potential implications because model

dynamics adjust to compensate for the omission of structural changes, leading to the fitting of

spurious models and drawing controversial conclusions on the time forms of dependence and policy

assessments concerning the impact of unanticipated shocks. Variance changes in the data may still

allow investigators to extract time series dynamics but these changes typically invalidate standard

errors, confidence intervals, inference and forecast intervals. More seriously disruptive is the pres-

ence of time varying means, which makes stationary time series modeling implausible, at least until

the source of the time variation is extracted from the data.

Stability checks on the moments are equally important in analyzing uncorrelated data. For

example, although series of financial returns rt may reasonably be assumed to have constant mean

and be serially uncorrelated, constancy of the unconditional variance of returns may well be un-

realistic, particularly over long historical periods. As a result, a strategy like fitting absolute or

squared returns using a stationary form of GARCH model may be questionable when the data

may be better modeled as independent random variables with a time-varying mean. In spite of the

apparently obvious differences between a time series of heteroskadastic independent variables, and

a time series generated by a stationary GARCH process with a constant mean that can reproduce

persistent dynamic patterns, such processes may be hard to distinguish in practical work using

basic time series diagnostic tools.

A key starting point in the analysis of time series that is ‘more honored in the breach than

the observance’ is to check for moment stability in the mean and variance. Even for independent

data with constant variance, detecting unspecified forms of changes in the mean is far from a

straightforward task. The difficulty is amplified by allowing for changes in variance in the data.

The present paper seeks to address these issues.

The remainder of the paper is organized as follows. In Section 2 we study some practical and

easy to implement statistical procedures for testing for stability of the mean μt = E (xt) of a time

series

xt = μt + ut

where ut is a heteroskedastic uncorrelated process of martingale differences. In Section 3 we discuss

the equally important but harder task of testing for changes in the mean of a weakly dependent

time series xt = μt+yt where yt is a dependent zero mean process. Finally, if the time series xt has

constant mean, tests for the stability of the variance of xt reduces to a test for mean stability in the

transformed data, such as absolute or squared centered values. Section 4 contains applications of

our methods to tests of stability of the variance of daily S&P and IBM stock market returns. Our

findings provide evidence against both stationarity and conditional heteroskedastic ARCH effects in

returns, thereby corroborating the somewhat surprising claims in Stărică and Granger (2005) that

most of the dynamics of such time series are “concentrated in shifts of the unconditional variance”.

2



Some concluding discussion is given in Section 5. Proofs of our main results and subsidiary lemmas

are contained in Section 6.

2 Testing for stability of the mean of uncorrelated time series

In this section we focus on testing the null hypothesis that a sample {x1, ..., xn} is a sequence of

uncorrelated random variables with a constant mean μ, against the alternative of changing mean,

H0 : xt = μ+ ut, t = 1, · · · , n, against(2.1)

H1 : xt = μt + ut, t = 1, · · · , n; μt �= μs (for some s �= t).

In both H0 and H1 we assume that (ut) is uncorrelated heteroskedastic noise of the form

(2.2) ut = htεt, ht = g(t/n), t = 1, ..., n

where (εt) is a standartized stationary ergodic martingale difference sequence with respect to some

natural filtration Ft, Eεt = 0, Eε2t = 1 and g ≥ 0 is an a.e. positive and piecewise differentiable

function with a bounded derivative. The framework for modeling heterogeneity in (2.2) follows

Phillips and Xu (2005). Under the null (xt) is a heteroskedastic series with constant mean Ext = μ,

while under the alternative the mean Ext = μt is time varying. Both under H0 and H1 the

unconditional variance var(xt) = h2t may change over time.

We base our testing procedure on the variance stability VS statistic, introduced in Giraitis,

Kokoszka, Leipus and Teyssiére (2003, GKLT),

(2.3) V S∗
n =

1

γ̂(0)n2

n∑
k=1

(
S′
k − S

′)2
, S′

k :=

k∑
t=1

(xt − x) ,

where x = n−1
∑n

j=1 xj and γ̂(0) = n−1
∑n

j=1(xj−x)2 are the sample mean and sample variance of

the data. In addition, we compare our testing results with the corresponding version of the KPSS

statistic, KPSS∗
n := 1

γ̂(0)n2

n∑
k=1

S′
k
2, introduced by Kwiatkowski, Phillips, Schmidt and Shin (1992,

KPSS) to test for stationary versus unit root time series. A summary of the properties of these

statistical procedures can be found in Giraitis, Koul and Surgailis (2012, Chapter 9, GKS).

GKLT(2003) and KPSS(1992) showed that in the homoskedastic case of independent identically

distributed (i.i.d.) variables (xt), the limiting distribution of the variables V S∗
n and KPSS∗

n has

the parameter-free series representation

(2.4) UV S(1) =
∞∑
k=1

z2k + z̃2k
4π2k2

, UKPSS(1) =
∞∑
k=1

z2k
π2k2

,

where {zk}, {z̃k} are jointly independent sequences of independent standard normal random vari-
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ables. From here we readily find that

(2.5) EUV S(1) = 1/12, var
(
UV S(1)

)
= 1/360; EUKPSS(1) = 1/6, var

(
UKPSS(1)

)
= 1/45.

H0 is rejected at the α% level if the test statistic exceeds the critical value cα%. The corresponding

upper percentiles of UV S(1) are c10% = 0.152, c5% = 0.187, c1% = 0.268, and for UKPSS(1),

c10% = 0.347, c5% = 0.463 and c1% = 0.739. The above representation for the limit UKPSS(1) was

obtained by Rosenblatt (1952). The distribution function of the random variable UV S(1) is given

by the formula

FV S(x) := 1 + 2
∑∞

k=1(−1)ke−2k2π2x, x ≥ 0,

readily yielding the formula p = 1− FV S(V S∗
n) for the p-values of the statistic V S∗

n.

The tests V S∗
n and KPSS∗

n, when var(xt) = const, have asymptotic distribution UV S(1),

UKPSS(1) and perform well in simulations – see Tables 1 and 4. It is natural to expect, that

changes of the variance of xt may affect the limiting distributions (2.4) and consequently the size

of the test based on critical values of the limit distribution UV S(1).

Damage to the size performance of the KPSS test by variation of var(xt) (or g in (2.2)) was

theoretically and empirically documented in Cavaliere and Taylor (2005) who discussed the KPSS

test for weakly dependent time series with changing variance. Our empirical study finds that

variation of var(xt) has little impact on the size (and power) of the V S∗
n test, when critical values

of the UV S(1) distribution are used, mainly because the upper tail of the limiting distribution of

V S∗
n is well approximated by that of UV S(1) for a variety of g functions, while for the KPSS∗

n test

this distributional stability may not hold, as is apparent in Figure 2.

To validate using critical values of UV S(1) for noise processes ut with changing variance, satis-

factory empirical performance of the test requires theoretical justification. Accordingly, we show

in Theorem 2.3, that for heteroskedastic white noise xt with ht as in (2.2) under the null the limit

of the V S∗
n statistic has the (similar) form

(2.6) UV S(g) =

∞∑
k=1

ζ2k + η2k
4π2k2

,

where {ζk}, {ηk} are sequences of (dependent) normal random variables with zero mean, defined as

ζk = (2/ḡ)1/2
∫ 1
0 cos(2πku)|g(u)|W (du), ηk = (2/ḡ)1/2

∫ 1
0 sin(2πku)|g(u)|W (du), k = 1, 2, ..., where

ḡ := ||g||2 = ∫ 1
0 g2(u)du and W (du) is the real random Gaussian measure.1

1W (u) has properties EW (du) = 0, EW 2(du) = du, EW (du)W (dv) = 0 if u �= v, see e.g. Taqqu (2003).
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Variances, covariances and cross-covariances of ζk’s and ηk’s may change with k (and with g):

Eζ2k = 2
ḡ

∫ 1
0 cos2(2πku)g2(u)du = 1 + rk, rk := 1

ḡ

∫ 1
0 cos(4πku)g2(u)du,

Eη2k = 2
ḡ

∫ 1
0 sin2(2πku)g2(u)du = 1− rk,

cov(ζk, ζs) = 2
ḡ

∫ 1
0 cos(2πku) cos(2πsu)g2(u)du,

cov(ηk, ηs) = 2
ḡ

∫ 1
0 sin(2πku) sin(2πsu)g2(u)du,

cov(ζk, ηs) = 2
ḡ

∫ 1
0 cos(2πku) sin(2πsu)g2(u)du.

Observe that for g = 1, the limit UV S(g) in (2.6) becomes (2.4). Moreover, this yields the remarkable

property that EUV S(g) =
∑∞

k=1 2/(4π
2k2) = 1/12 showing that the mean EUV S(g) is invariant

with respect to g. In general, the covariances cov(ζk, ζs), cov(ηk, ηs), cov(ζk, ηs) for k �= s and

rk for k ≥ 1 are rather small for a variety of functions g, and vanish when g = 1, see Table 3.

Therefore, the dependent Gaussian sequences ({ζk}, {ηk}) are well approximated in distribution by

the i.i.d. normal sequences ({zk}, {z̃k}) appearing in (2.4), thereby explaining why the distribution

of UV S(g), (2.6), is well approximated by the distribution UV S(1), (2.4), and why the sizes of the

test V S∗
n in Table 1 are hardly affected by heteroskedasticity (i.e. the presence of g �= 1).

Besides (2.6), under H0, the limits UV S(g), UKPSS(g) of the test statistics V S∗
n, KPSS∗

n have

two other useful representations.

(a) They can be written as the following integrals of the Brownian bridge B0
g(t) = Bg(t)−tBg(1),

0 ≤ t ≤ 1,

(2.7) UV S(g) = ḡ−1

∫ 1

0

(
B0

g(u)−
∫ 1

0
B0

g(v)dv
)2
du, UKPSS(g) = ḡ−1

∫ 1

0
(B0

g(u))
2du,

whereBg(u), 0 ≤ u ≤ 1 is a Gaussian process with zero mean and covariance function EBg(u)Bg(v) =∫ min(u,v)
0 g2(x)dx, 0 ≤ u, v ≤ 1. The process can be represented as a stochastic integral Bg(u) =∫ u
0 g(x)W (dx) involving a weighted sum of the increments of Brownian motion.

(b) The limits (2.7) can be written as stochastic Wiener-Ito integrals (with excluded diagonal

u = v) with respect to the measure W (du),

UV S(g)− EUV S(g) = ḡ−1
∫ 1
0

∫ 1
0 h(u− v)g(u)g(v)W (du)W (dv),(2.8)

UKPSS(g)− EUKPSS(g) = ḡ−1
∫ 1
0

∫ 1 ′
0 h′(u, v)g(u)g(v)W (du)W (dv),

of functions h(u) = 1/12− |u|/2 + u2/2, h′(u, v) = 1/3−max(u, v) + (u2 + v2)/2. Note that from

(2.6) and (2.7) it follows

(2.9) EUV S(g) = 1/12, EUKPSS(g) = ḡ−1

∫ 1

0
(u2 − u+ 1/3)g2(u)du,

indicating that, contrary to EUV S(g), the mean EUKPSS(g) depends on g.

Equivalence of the representations (2.4), (2.7) and (2.8) of the limit distributions of UV S(g) and
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UKPSS(g) is established in Theorem 2.3 below. The following theorem summarizes some theoretical

properties of the V S∗
n andKPSS∗

n tests. We discuss the following two types of changes in the mean2

μt, t = 1, · · · , n:

(2.10) (1) μt = m(t/n), m �≡ const.; (2) μt = tθm(t/n), for some θ > 0

where m(u), u ∈ [0, 1] is a piecewise continuous function, and in (1) m is not a constant.

Type (1) covers breaks in the mean, e.g. μt = a + bI(t/n > 0.5), and variety of smooth

changes, see Table 4. Type (2) covers unbounded trends and breaking trends, e.g. μt = 0.01t and

μt = 0.01tI(t/n > 0.5).

Theorem 2.1. (i) Under H0, with UV S(g) and UKPSS(g) given by (2.7),

(2.11) V S∗
n →d UV S(g), KPSS∗

n →d UKPSS(g).

(ii) Under H1 and (2.10), V S∗
n →p ∞, KPSS∗

n →p ∞.

The key advantage of this test for constancy of the mean of a heteroscadastic white noise

xt = μ + ut with finite variance var(xt) < ∞ compared to the existing literature is the weak

maintained structural assumption on the noise ut = htεt. Here εt is assumed to be a sequence of

stationary ergodic martingale differences, in contrast to the i.i.d. property of ut’s used in Giraitis,

Leipus and Philippe (2006, GLP) or the assumption of mixing white noise for εt used in Cavaliere

and Taylor (2005) to derive the asymptotics (2.11) for the KPSS test. The main novelty of the

above result is the theoretical justification of a satisfactory approximation of the upper quantiles

of the limit UV S(g) (for heteroskedastic ut’s) by those of UV S(1) (corresponding to homoskedastic

ut’s), which explains why the size of the V S∗
n test based on critical values of UV S(1) is barely

distorted by the changes in the unconditional variance of the noise ut. The latter does not apply

to the KPSS∗
n test. Under the alternative, the V S∗

n diverges at the fast O (n) rate – see Theorem

2.2 below.

It is of interest to evaluate the impact on the size of V S∗
n test when it is applied to a constant

mean heteroskedastic process xt = μ+yt, where the yt’s are correlated, e.g. the squares or absolute

values of financial returns xt = r2t , xt = |rt|, that are commonly believed to be temporally dependent

but with a constant mean Ert = μ. To achieve the correct size, the test requires modification, see

Section 3. If the V S∗
n test is applied to dependent data, then due to dependence, the test will be

oversized and the null hypothesis will be rejected asymptotically with a probability p < 1, tending

to 1 when dependence of the series xt increases. More precisely, by Theorem 3.1,

V S∗
n →d sx

2 UV S(g), n → ∞, sx
2 :=

∑
k∈Z

cov(xk, x0).

2Results of this paper remain valid for the mean functions μt (2.10) where m is replaced by a sequence of bounded
functions mn, such that |mn(u)| ≤ C for u ∈ [0, 1] and n ≥ 1, and mn(u) → m(u) a.e. in [0, 1] for some bounded
function m.
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Hence, as s2x increases,

(2.12) P (V S∗
n > cα%) → P

(
UV S(g) >

cα
s2x

) → 1.

Property (2.12) is confirmed by the Monte Carlo results on the size of V S∗
n test given in Table 2,

where the xt’s are dependent ARMA and squared/absolute GARCH processes.

Measuring mean variation. Under the alternative, the change of the mean is measured and

extracted from the data x1, ..., xn by statistic V S∗
n as follows. Assume that

Ext = μt = m(t/n), t = 1, ..., n,

where m(u), u ∈ [0, 1] is a piecewise continuous bounded function. The analysis below shows that

the V S∗
n test compares m with its average values m̄ =

∫ 1
0 m(x)dx, and asymptotically will detect

changes such that

Δ(m) :=

∫ 1

0
(m(x)− m̄)2dx > 0, i.e. m �≡ m̄.

The change will be evaluated by means of the norm

||m||R :=
(
2

∞∑
k=1

|c(m, k)|2
4π2k2

)1/2
, c(m, k) :=

∫ 1

0
ei 2πku(m(u)− m̄)du

which is a weighted sum of the squared Fourier coefficients |c(m, k)|2 of the functionm(·)−m̄. Notice

that c(m, 0) = 0. Observe the limit UV S(1) in (2.4) takes the same form as ||m||2R, since it can

be written as UV S(1) =
∑∞

k=1
|ĉ(1,k)|2
4π2k2

with random “Fourier coefficients” |ĉ1,k|2 = z2k + z̃2k, ĉ1,k :=∫ 1
0 ei 2πkuW (du) of a constant function 1 with respect to the Gaussian random measure W (du).

Because of this analogy, we shall refer to ||m||R as a Rosentblatt measure of variability of a square

integrable function m ∈ L2[0, 1] = {m(·), ∫ 1
0 m2(u)du < ∞}. The latter has all the properties of

an L2 norm. In particular, ||m||R = 0 holds if and only if m(u)− m̄ ≡ 0 in L2, which follows from

Parseval’s equality,
∑

k∈Z |c(m, k)|2 = ∫ 1
0 (m(u)− m̄)2du. In addition, for any functions m and m′,

||m+m′||R ≤ ||m||R + ||m′||R.
The following theorem shows that under changing mean Ext, the V S∗

n statistic is proportional

to n||m||2R.

Theorem 2.2. Under H1,

V S∗
n =

n ||m||2R
Δ(m) + ||g||2 (1 + op(1)) →p ∞, if μt = m(t/n) as in (2.10)(1),(2.13)

=
n ||m̃||2R
Δ(m̃)

(1 + op(1)) →p ∞, if μt = tθm(t/n) as in (2.10)(2),

where m̃(u) = uθm(u), ||g||2 = ∫ 1
0 g2(u)du.

7



This result shows that for series with a trending mean as in (2.10) detection of the change may

be speeded up by small values of Δ(m̃), e.g., for μt = t, Δ(m̃) = 1/12.

Local variation. It may happen that the mean of the time series, Ext = μt = m(t/n), t = 1, ..., n

changes abruptly at a finite number of time periods and remains relatively stable in between these

values. The V S∗
n statistic provides aggregated information about the presence of changes in the

whole sample by estimating variation in the mean function m over the interval [0, 1]. To investigate

the stability of m in subintervals [Δ, Δ + h] ⊂ [0, 1], we introduce a window width (locality

parameter) H and define the local variation statistic V S∗
H .

A study of the power of the VS∗ test given in Table 4 shows that changes in the mean are

harder to detect in the beginning or end of a sample. To maximize the power of detection of the

instability regions/points, we introduce the local variation statistic V S∗
t,H .

Definition 2.1. Given a sample, x1, · · · , xn, and even H satisfying 2 ≤ H < n, the local V S∗

statistic at time t ∈ [H/2, n−H/2] is defined as

(2.14) V S∗
t,H = V S∗

H computed over subsample xt−H/2+1, ..., xt+H/2.

The statistic V S∗
t,H is not calculated for t /∈ [H/2, n−H/2].

Overall, since the variance var(V S∗
n) is extremely small (∼ 1/360), the local V S∗

t,H statistic

will tend to lie below the critical level c5% or c1% in regions of constant mean, and will start rising

sharply as soon as changes enter the window. Letting the window roll over potential instability

(break) points, will maximize the chance of detecting the change. Detection power will be amplified

by selection of a larger H, since then V S∗
t,H will measure aggregated instability from all breaks that

occur over period H. Choosing smaller windows will reduce the power of the test but may facilitate

location of the areas of instability, with V S∗
t,H (local variation) peaking around a breakpoint, as

will be evident in part from the simulations.

To determine the break point marking the end of the stability period of the mean, one can search

for the turning points t+ where the local statistic V S∗
t,H stops evolving below the critical level c5%

and starts gradually rising. The approximate location tb of the break point can be found by the rule

tb = t+ +H/2. In presence of a break at tb, shifted to the right statistic V S∗,+
t,H := V S∗

t+H/2,H will

start rising simultaneously at the period tb for all sufficiently large H’s, the larger H the stronger

rise. Hence, plotting shifted V S∗,+
t,H statistics for a few different values of H allows an investigator

to find the approximate location of the break, tb, as illustrated in Figure 16

Similarly, at the time period tb where instability ends and the mean is constant again, the left

statistics V S∗,−
t,H := V S∗

t−H/2,H typically stop falling sharply after reaching below the c5% level and

become flat, allowing practical location of tb, see Figure 17.

It is worth paying attention also to those values of t that maximize V S∗
t,H for small H, since

the statistics tend to peak in the vicinity of the breakpoints when the distance between them is

larger than H – see Figures 3 and 4.
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Simultaneous testing for stability of the mean and variance. If observations xt are inde-

pendent, the above statistics V S∗
n or KPSS∗

n allow for simultaneous testing for stability of Ext and

var(xt) in the data

xt = μt + ut, t = 1, ..., n; ut = htεt, εt ∼ i.i.d.(0, 1).(2.15)

The null hypothesis of i.i.d. observations, H0: Ext = const and var(xt) = const can be tested

vs the alternative H1: Ext �≡ const or var(xt) �≡ const, by applying the V S∗
n or KPSS∗

n tests to

the transformed series x̃t = |xt|, x2t . Under the null, such tests will be well sized, while power is

boosted both by instabilities in the mean and variance. However, such testing requires the data

to be independent, while testing for stability of the mean alone is applicable for uncorrelated or

martingale difference data.

Testing the null hypothesis of i.i.d. against the specific alternative Ext = const, var(xt) �≡ const

comprises two steps: first testing for Ext = const, and then, if not rejected, testing for constancy

Ex̃t = const of the transformed series x̃t (i.e. for var(xt) = const). Alternatively, one can first test

the hypothesis Ex̃t = const (which combines Ext = const and var(xt) = const), and, if rejected,

test subsequently for Ext = const. Notice that our procedure does not allow for direct testing of

the alternative hypothesis Ext �≡ const, var(xt) = const.

2.1 Properties of limit distributions UV S(g) and UKPSS(g)

The next theorem establishes equivalence of the various representations of the limit distributions

of UV S(g) and UKPSS(g). The latter distributions also appear as the limits under the null in the

tests for the mean stability of a dependent heteroskedastic time series, discussed in Section 3.

Theorem 2.3. Let g ≥ 0 be an a.e. positive piecewise differentiable function with a bounded

derivative. Then,

(i) UV S(g) and UKPSS(g) of (2.7) satisfy representation (2.8).

(ii) UV S(g) in (2.8) satisfies representation (2.6).

Summary statistics of UV S(g). Next we compute the variance v(g) := var(UV S(g)), standard

deviation sd(g) := (v(g))1/2, and skewness and kurtosis

S(g) := E(UV S(g)− EUV S(g))
3 sd(g)−3, K(g) := E(UV S(g)− EUV S(g))

4 sd(g)−4

of the limiting distribution UV S(g). Formula (2.8) implies the following relations:

v(g) = 2ḡ−2
∫ 1
0

∫ 1
0 h2(u− v)g2(u)g2(v)dudv,(2.16)

S(g) = 8
ḡ3sd(g)3

∫ 1
0

∫ 1
0

∫ 1
0 h(t− s)h(s− v)h(t− v)g2(v)g2(s)g2(t)dvdsdt,

K(g) = 3 + 48
ḡ4sd(g)4

∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 h(t− s)h(s− v)h(v − x)h(t− x)

×g2(x)g2(v)g2(s)g2(t)dxdvdsdt.
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In Figure 1 we compute the relative mean EUV S(g)/EUV S(1), standard deviation sd(g)/sd(1),

skewness and kurtosis S(g)/S(1), K(g)/K(1) for various g’s, estimating corresponding moments by

Monte-Carlo replications. The relative characteristics do not deviate much from unity, explaining in

part why the distribution of UV S(g) is well approximated by UV S(1). Figure 1 confirms constancy

of the mean EUV S(g) = 1/12, and closeness of sd(g) and sd(1) for different values of g. The latter

can be explained also theoretically, noting that v(1) = 1/360, and sd(1) = 0.0527, and that (2.16)

implies the bound

(2.17) v(g)
v(1) ≤ (1/180)D

1/360 = 2D, sd(g)
sd(1) ≤

√
2D, D := ḡ−2

∫ 1
0 g4(v)dv.

This is in line with the observed small deviations of sd(g) from sd(1) in our finite sample simulation

exercise in Figure 1 since in our examples the factor D1/2 takes values between 1 and 2. To obtain

(2.17), we use the inequality
∫∞
−∞ f1(u−v)f2(u)f3(v)dudv ≤ ∫∞

−∞ f1(u)du(
∫∞
−∞ f2

2 (v)dv)
1/2(

∫∞
−∞ f2

3 (v)dv)
1/2

which is valid for nonnegative functions f1, f2, f3, and implies

v(g) ≤ 2
∫ 1
0 h2(u)du(ḡ−2

∫ 1
0 g4(v)dv) = 1

180(ḡ
−2

∫ 1
0 g4(v)dv).

Examples. Expressions (2.16) and (2.8) allow us to compute theoretical moments of the limit

UV S(g), in particular, its standard deviation, skewness and kurtosis: sd(g), S(g) and K(g).

1) Let g = 1. From (2.4) using moment formulas for centered squared forms z2k, z̃
2
k of Gaussian

variates zk, z̃k, where : z̃ := z − Ez, see Theorem 14.1.1 in GKS(2012), we obtain

sd(1) = (1/360)1/2 = 0.0527; S(1) = 16
∑∞

k=1(4π
2k2)−3 (360)3/2 = (4/7)

√
10 � 1.807;

K(1) = 3 + 96
∑∞

k=1(4π
2k2)−4 (360)2 = 57/7 � 8.1429.

The same values are obtained using formulae (2.16) which also yields

2) For g(x) = x, sd(g) = 0.0584, S(g) = 1.9879, K(g) = 9.3382.

3) For g(x) = 1 + 3I(x > 0.5), sd(g) = 0.0576, S(g) = 1.8637, K(g) = 8.4188.

4) For g(x) = 1 + 3I(x > 0.9), sd(g) = 0.0717, S(g) = 2.5547, K(g) = 13.293.

We have compared the asymptotic values sd(g), S(g) and K(g) of distribution UV S(g) of examples

1-4 with Monte-Carlo finite sample counterparts of the distribution of the statistic V S∗
n for n = 512

and found them to be close which confirms satisfactory approximation of the distribution of V S∗
n

by that of UV S(g).

The variance, skewness and kurtosis of the UKPSS(g) distribution can be obtained from (2.16) by

replacing the function h(u − v) by h′(u, v) of (2.8). Recall that EUV S(g) = 1/12 is not affected

by heteroskedasticity, while EUKPSS(g) = ḡ−1
∫ 1
0 h′2(u)du = ḡ−1

∫ 1
0 (1/3− u+ u2)g2(u)du depends

on g, see (2.9). In particular, EUKPSS(1) = 1/6. In addition, for g = 1, using (2.4) and moment
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formulae, we obtain

sd(1) = (1/45)1/2 = 0.149; S(1) = 8
∑∞

k=1(π
2k2)−3(45)3/2 = (8/7)

√
5 = 2.555;

K(1) = 3 + 48
∑∞

k=1(π
2k2)−4(45)2 = 93/7 = 13.286.

Monte Carlo Findings

Our experiments analyzed the size and power of the V S∗
n and KPSS∗

n tests for a variety of ho-

moskedastic and heteroskedastic uncorrelated noises xt. We used 5% critical values of the UV S(1)

and UKPPS(1) distributions, sample sizes n = 32, 64, 128, 256, 512, and 10,000 replications.

Simulations reveal that both V S∗
n and KPSS∗

n tests are well sized for n = 32, 64, 128, 256, 512

when xt has constant variance – see Table 1. The size of the V S∗
n test is relatively robust to changes

in the variance of xt (with 2-3% distortions), while the KPSS∗
n test can be significant oversized

(9 − 10%) in such cases. Power increases with the sample size n, and tends to be higher when

a change in Ext occurs in the middle of a sample. The V S∗
n test always preserves power under

changes in variance var(xt), while in some experiments we observe a complete power loss in the

KPSS∗
n test – see Table 4. Simulations cover a variety of uncorrelated noises xt = μt + htεt with

i.i.d. standard normal and GARCH(1,1) noises εt, and a range of μt’s and ht’s, including constant,

break, sinusoidal and gradual changes, and ht’s based on those used in Cavaliere and Taylor (2005).

Overall, the V S∗
n test produces satisfactory results and outperforms KPSS∗

n.

In applications we approximate the distribution of statistic V S∗
n based on white noise with

changing variances for n as low as 32 by the limit distribution UV S(1). To justify such approximation

in applications, the corresponding distributions should be close at the upper 90% percentiles.

In Figure 2 we compare the cumulative distribution function (CDF) FV S of UV S(1) with the em-

pirical distribution function Fn,V S of the statistic V S∗
n for sample sample sizes n = 32, 64, 128, 256, 512,

and six models of heteroskedastic time series xt = htεt based on 100, 000 replications. The left panel

reports CDFs for all percentiles, while the right panel reports the upper 90% percentiles. Figure

2 shows that for i.i.d. noise xt, Fn,V S is extremely well approximated by FV S for all sample sizes

n = 32, 64, 128, 256, 512. The upper 90% percentiles of distribution always remain close. The effect

of changing variance var(xt) = h2t leads to some minor distortions, with a maximum 2 − 3% dis-

tortion at the 95% level, justifying the use of the critical values of the FV S distribution in practice

for heteroskedastic data and sample sizes as low as 32. Of course, even though the test is correctly

sized test for small n, its power is strongly affected by n – see Table 4.

3 Testing for change of the mean of dependent time series

Testing for the stability of the mean Ext = const of a serially dependent time series is an important

but harder problem. This section develops testing procedures for the hypotheses

H0 : xt = μ+ yt, t = 1, · · · , n, against(3.1)

H1 : xt = μt + yt, t = 1, · · · , n; μt �= μs (∃s �= t)
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where yt is heteroskedastic and generated by

yt = htzt, ht = g(t/n), t = 1, ..., n,

where zt is a stationary time series with Ezt = 0, Ez2t = 1, and g is a piecewise differentiable

function with a bounded derivative. In addition we assume that zt is a moving average process

(3.2) zt =

∞∑
k=0

akεt−k,

∞∑
k=−∞

|cov(zk, z0)| < ∞,

with real weights ak, and εk is a stationary ergodic martingale difference sequence with respect to

some natural filtration Ft and Eε2t < ∞. Then, under the null xt is a heteroskedastic time series

with constant mean Ext = μ and unconditional variance var(xt) = h2t which may vary in time. We

assume that the long run variance s2z =
∑∞

k=−∞ cov(zk, z0) > 0 of zt is positive.

To test the null hypothesis we use the original VS statistics, introduced in GKTS (2003) and

used for various hypothesis testing in GLP(2006) and GKS(2012), as well as the KPSS statistic

defined as follows

(3.3) V Sn =
1

ŝ2n n
2

n∑
k=1

(
S′
k − S

′)2
, KPSSn =

1

ŝ2n n
2

n∑
k=1

S′
k
2
,

where S′
k is as in (2.3), and ŝ2n is a consistent estimate of the long run variance of (yt) such that

(3.4) ŝ2n →p ||g||2s2z, ||g||2 =
∫ 1

0
g2(u)du.

The limit (3.4) takes into account the dependence of time series (yt), to ensure the existence of

the asymptotic distribution under the null, which happens to be the same as in Theorem 2.1. It is

clear, under the alternative the both dependence in yt and variation of μt may reduce the power

of detecting changes in the mean μt by inflating ŝ2n, and removing the O (n) consistency rejection

rate observed for uncorrelated data in Theorem 2.2. Under the null, see Theorem 3.1, the V Sn and

KPSSn statistics have the same limit distributions as V S∗
n and KPSS∗

n in Theorem 2.1, so that

the V Sn test is relatively robust to the changes of the variance var(xt) = h2t .

The main difficulty of testing for changes in the mean of dependent data consists in finding

an estimate of the long run variance that performs well in finite samples. To obtain theoretical

results, we use two estimates of the long-run variance based on data x1, ...., xn. The HAC estimate

is defined as

(3.5) ŝ2m,HAC = m−1
m∑

i,j=1

γ̂|i−j| = m−1
(
γ̂0 + 2

m∑
j=1

(1− j/m)γ̂j
)
,

where γj = n−1
∑n−j

t=1 (xt− x̄)(xt+j− x̄), 0 ≤ j < n are the sample covariances and x̄ := n−1
∑n

t=1 xt
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is the sample mean. The MAC estimate introduced by Robinson (2005) is defined as

(3.6) ŝ2m,MAC = m−1
m∑
j=1

I(uj), I(uj) := (2πn)−1
∣∣∣ n∑
t=1

eitujxj

∣∣∣2

where uj = 2πj/n, 0 ≤ j ≤ n are discrete Fourier frequencies. The bandwidth parameterm = m(n)

in (3.5) and (3.6) satisfies m → ∞ and m = o(n) as n increases, but its optimal choice differs for

HAC and MAC estimates.

Consistency ŝ2m,HAC →p ||g||2s2z of the HAC estimator for heteroskedastic series xt = μ + htzt

where zt is a mixing process was shown by Hansen (1992) (in a more general version). Under similar

assumptions, Cavaliere and Taylor (2005) used this estimate to derive the limit distribution (3.7)

of the KPSSn test. For a linear process zt driven by martingale difference noise, (3.2), the result

was shown in (9) and (35) in Dalla, Giraitis and Koul (2014, DGK).

Consistency ŝ2m,MAC →p ||g||2s2z of the MAC estimator for a stationary process yt = zt based

on i.i.d. noise εt was derived in Theorem 3.1 of Abadir, Distaso and Giraitis (2009, ADG), while

for zt driven by martingale difference noise, (3.2), it is shown in Lemma 6.1 below.

We obtain the following results. Different from uncorrelated data, testing (more precisely,

estimation of the long run variance) now requires finite fourth moment Eε4t < ∞.

Theorem 3.1. Under H0 and H1 as in (3.1), the test statistics V Sn and KPSSn given by (3.3),

computed with ŝ2n = ŝ2m,HAC or ŝ2m,MAC , have the following properties.

(i) Under H0, as n → ∞,

(3.7) V Sn →d UV S(g), KPSSn →d UKPSS(g).

(ii) Under H1 and (2.10), V Sn →p ∞, KPSSn →p ∞.

Although the asymptotic results given in Theorem 3.1 hold under minimal restrictions on the

bandwidth m, the size of the test with a priori preselected m as a rule is distorted by the unknown

dependence structure of xt. Unless a data-based rule for selection of m is available, this complicates

practical application of the V Sn test. We therefore provide a simple data based rule for selection of

m for the MAC estimate ŝ2m,MAC , that assures correct size of the V Sn test in finite samples. (For

the HAC estimator, such a rule was suggested in Andrews, 1991).

Selection of the optimal bandwidth mopt for the MAC estimator ŝ2m,MAC is based on Lobato

and Robinson (1998) (see also p 244 in GKS(2012)) approach to selecting the optimal bandwidth in

estimation of the long memory parameter of a stationary time series xt. The rule aims to minimize

the asymptotic MSE of the estimate and involves the values of the spectral density f of xt and its

second derivative
..
f at the zero frequency. In the case of the MAC estimator ŝ2m,MAC the MSE is

minimized by

(3.8) m∗ = n4/5

(
3

4π

)4/5
∣∣∣∣∣4f(0)..
3f(0)

∣∣∣∣∣
2/5

.
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We set mopt = min([m∗], n/2), if m∗ ≥ mlow and mopt = mlow if m∗ < mlow. Here mlow is the lower

bound for m. Based on our simulation findings we select mlow = 10.

To find the quantity f(0)/
..
f(0), we fit to the data the ARMA(1,1) model xt = ω+ ρxt−1 + ηt +

θηt−1, which yields

(3.9)
f(0)
..
f(0)

= − (1 + θ)2(1− ρ)2

2 (ρ+ θ) (1 + ρθ)
.

We use this quantity in (3.8) to find m∗.
To estimate parameters ρ and θ, the residuals η̂t = x̃t−ρx̃t−1− θη̂t−1 are recursively evaluated,

setting η̂0 = 0, where x̃t = xt − x. We compute the sum of squared residuals SSR =
∑n

t=T+1 η̂
2
t

where T is the trimming parameter, and minimize it over a grid of parameter values for ρ, θ =

−0.9,−0.8, ...., 0.9, excluding the case ρ+ θ = 0 when ρ �= 0. We considered cases with T = 0 (no

trimming) and T = 10 (trimming) which seems to reduce spikes in the V St,H statistic.

Monte Carlo Findings

We analyzed size and power of the V Sn test, for a variety of homoskedastic and heteroskedastic

time series yt using 5% critical values of the UV S(1) and UKPPS(1) distributions, sample sizes

n = 32, 64, 128, 256, 512 and 10,000 replications. The simulations reveal that the V Sn test has

satisfactory size and power properties – see Tables 5-6.

4 Financial returns: non-stationary independence vs ARCH

In this section we examine the constancy of the mean and unconditional variance of daily log-

returns rt for the S&P500 index and the IBM stock. We use daily data for the period 03/01/1962-

05/09/2014 amounting to n = 13, 260 observations, and a shorter series for the period 03/01/2000-

05/09/2014 yielding n = 3, 692 observations. The source for the data is Yahoo Finance.

Currently popular approaches to characterize the dynamics of financial returns are based on

modeling the conditional variance of rt by stationary conditionally heteroskedastic ARCH or

stochastic volatility models. There is also a growing body of evidence concerning structural in-

stabilities in rt, which can be handled by using ARCH models with time varying parameters and

unconditional variance – see Stărică and Granger (2005), and Amado and Teräsvirta (2014). Non-

stationary, unconditional approaches used to explain dynamics and stylized features of such series

(e.g. the slow decay of the autocorrelations of absolute returns) are based on observation that such

features may be an indication of instabilities in the unconditional variance of returns – see Diebold

(1986), Lobato and Savin (1998), Mikosch and Stărică (2002, 2004) – and for informative discussion

of the topic and further references, see Herzel, Stărică and Tütüncü (2006). The authors of that

paper use a time-varying unconditional variance paradigm in place of ARCH methodology to inter-

pret the slow decay of the ACF of squared returns as “a sign of the presence on non-stationarities

in the second moment structure”. Using non-parametric-curve estimation they evaluate the uncon-

ditional variance of daily log-returns of several series including the Euro/Dollar exchange rate, the
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FTSE 100 index, and 10 year US T-bonds. Their testing procedures “do not reject the hypothesis

that the estimated standardized innovations is a stationary sequence of i.i.d. vectors.”

The earlier study by Stărică and Granger (2005) finds that after standardizing the absolute

returns |rt| of the S&P500 series with estimates of the local mean and standard deviation, the

sample correlation shows almost no linear dependence suggesting that “independent sequences

indeed provide good local approximations to the dynamics of the data”, and that “most of the

dynamics of this time series to be concentrated in shifts of the unconditional variance”. These

findings indicate the need for testing procedures that can distinguish nonstationary independent

series from a stationary dependent process (conditional heteroskedasticity), for which our own

methodologies are useful.

We find below that our testing procedures provide evidence against both stationarity and con-

ditional heteroskedasticity (ARCH effects) in returns rt. They suggest that returns rt indeed

may behave like independent variables, with unconditional variance being piecewise constant, and

changing sharply rather than gradually between stable states over time.

To analyze changes of the mean and unconditional variance of rt we use two measures of local

variability: V S∗
t,H and V St,H . The first one allows us to detect changes in Ert, Er2t when the

r2t ’s are uncorrelated (e.g. for independent rt). We use V St,H to test the same hypotheses when

the r2t ’s are correlated (e.g. for dependent rt), in particular, to accommodate the possibility of a

stationary conditional heteroskedastic process (ARCH) r2t under the null. Testing results show that

the samples of S&P and IBM returns can be divided into periods of stability where the returns tend

to behave as i.i.d. variables, alternating with transition periods where the variance var(rt) changes

abruptly, and that, in general, returns rt can be seen as independent variables with a constant

mean Ert and a changing unconditional variance var(rt) that resembles a step function.

First we suppose that the rt’s and their transforms |rt|, r2t are uncorrelated (i.e for independent

rt’s) and test the hypothesis Ert ≡ const, var(rt) ≡ const. Then, the V S∗
t,H local test can be

used. Testing for Ert ≡ const, we apply the V S∗
t,H test with H = 512, 256, 128 to xt = rt, and

do not detect changes in the mean Ert. (In general, this supports the assumption that the rt’s

are uncorrelated variables with a constant mean.) To test for var(rt) ≡ const, we apply the V S∗
t,H

test to the powers xt = r2t and xt = |rt| of returns. If the rt’s are independent, then the xt’s are

uncorrelated and such a test will detect changes in Ext, thereby capturing changes in var(rt).

We also apply the V St,H test which allows dependence in the data xt (i.e. rt, |rt|, r2t ) to test

for Ert ≡ const, var(rt) ≡ const. (This test has lower power than V S∗
t,H).

Neither test detects change in the mean Ert at the 5% significance level, but both reveal piece-

wise constant behavior of unconditional variance var(rt) with alternating periods of stability and

change – see Figures 12-14. Similar areas of stability of var(rt) are determined by both tests,

V S∗
t,H and V St,H – see the comparison of these variations in Figure 20. Graphs of V S∗

t,H and

V St,H suggest that major economic events and news initiate changes of variance, e.g. ‘bad news’

starts a period of instability (with an increase of variance of rt), and ‘good news’ results in a fast

stabilization of var(rt).
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For large H, e.g. H = 512, the statistic V S∗
t,H enjoys high power in detecting changes in Ext but

fails to differentiate between shocks (news) in the same time-window. These can be disentangled

by using shorter windows H, which reduce the power, but can detect a wider area of stability of

variance, and the peaks of V S∗
t,H function become sharper, indicating the possible location of the

change point. The graphs of V S∗
t,H , however, do not report the actual value of the variance nor

the form of its change over time.

Testing for mean and variance stability of S&P and IBM returns seems to contradict the common

modelling assumption that returns evolve as stationary GARCH type processes. Often empirical

applications find that rt follows a GARCH(1,1) model with parameters that sum close to unity

(producing an IGARCH effect – see Mikosch and Stărică (2004)). If r2t is indeed a stationary

GARCH process with a constant mean Er2t , the dependence robust V St,H test should not detect

changes in the mean, and the local variation function V St,H should follow a trajectory below the

critical level c5%. The latter is not observed in Figures 18-19. On the other hand, the V S∗
t,H test

applied to strongly dependent GARCH(1,1) data r2t (|rt|) would reject the null at the high 50%

rate, see Table 2, and therefore V S∗
t,H would evolve largely above the critical level c5%, as in Figure

4. So the step-like rise and drop of the statistic V S∗
t,H below the critical value c5% that is observed

in Figures 13 and 14 would be less likely.

We now report the results of some further tests on the stylized properties of returns.

1. Distributional properties of rt. We conducted additional checks for independence and asymp-

totic normality/heavy tails in the S&P and IBM returns in four time periods where they have

constant mean and variance. The findings are as follows.

(a) Figures 13 and 14 of the local variability V S∗
t,H point to the identification of four such

periods:

S&P: (P1) 03/12/2001-01/05/2002, n = 103, (P2) 01/08/2003-01/05/2006, n = 692.

IBM: (P3) 01/11/2005-01/06/2007, n = 397, (P4) 01/06/2012-05/09/2014, n = 569,

where n is the number of observations.

(b) Correlograms of rt, |rt| and r2t in Figure 21 show that all these series are uncorrelated at

the 5% significance level confirming the conjecture that the returns behave as i.i.d. variables.

(c) Q−Q plots in Figure 21 show that S&P returns are normally distributed in stability periods

(P1) and (P2), which is confirmed by high p-values of the Jarque-Bera (JB) normality test, while

IBM returns in periods (P3)-(P4) have a heavy tailed non-Gaussian distribution. The summary

statistics of returns rt are:

(P1): SD 0.0104, skewness -0.0964, kurtosis 3.0058, JB p-value 0.9234.

(P2): SD 0.0068, skewness -0.0690, kurtosis 3.0571, JB p-value 0.7253.

(P3): SD 0.0094, skewness 0.0441, kurtosis 4.4967, JB p-value 0.0000.

(P4): SD 0.0110, skewness -1.1741. kurtosis 12.6893, JB p-value 0.0000.

(d) The Jarque-Bera test p-value shows no evidence of skewness and excess kurtosis in S&P

returns data (P1) and (P2), while IBM returns data (P3) and (P4) are heavy tailed.
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2. Finding Breakpoints. Maximum points and turning (rising/falling) points of the statistic

V S∗
t,H computed for |rt| and r2t of the S&P returns (2000-2014) carry information about the timing

of breaks of the unconditional variance (and possible arrival of major economic events). The findings

are summarized as follows.

(a) Maximum points of V S∗
t,H for |rt| and r2t for S&P returns (2000-2014) for small H = 128

are aligned with the dates of major economic events (shocks) – see Figure 13. For example, (1) the

peak of V S∗
t,H computed for |rt| around 10/03/2000 detects the Dot-Com bubble; (2) the peak at

12/09/2008 is aligned with collapse of Lehman Brothers at 5/09/2008 and the subprime mortgage

crisis, (3) the peak at 07/05/2010 marks the beginning (27/04/2010) of the European sovereign

debt crisis, and (4) the peak at 17/06/2011 is close to late July-early August 2011 stock market

fall (circa 1/08/2011).

(b) Turning point tL where V S∗
t,H starts rising suggests a simple rule for finding a breakpoint

tb = tL + H/2 for all H’s. It is based on observation that V S∗
t,H shows a tendency to rise as

soon as the break point enters the window [t −H/2 + 1, t +H/2] – see Figures 3-4. Because the

variance of the statistic V S∗
t,H is very small, it reacts to the break rapidly, which allows us to

find graphically and numerically the turning point tL where V S∗
t,H stops evolving below the c5%

critical value and begins to trend upwards. Analyzing V S∗
t,H based on |rt| in the S&P data, we

find, among others, the following rising points tL – see Figure 13: (a) in the graph with window

H = 256, we find the turning point tL = 06/03/08 detecting a break at tL + H/2 = 08/09/08,

while the window H = 128 has turning point tL = 27/05/08 detecting a break in the variance at

tL +H/2 = 25/08/08, detecting Lehman Brothers collapse (15/09/08).

3. Bad News and Good News. Graphing the shifted to the right statistic V St+H/2,H for H =

512, 256, 128, 64 allows us to detect the starting point tb of instability (high volatility) (for all range

of H) – see Figure 16. For example, we find breakpoints at 29/07/2011 (the Lehman Brothers

collapse at 15/09/2008), and at 28/07/2011 (the August, 1 2011 stock market fall).

Similarly, graphing the shifted to the left statistic V S∗
t−H/2,H allows us to detect (good news)

events triggering a stability period of low volatility – see Figure 17.

4. Synchronicity of Change. Graphing together the V S∗
t,H statistics for the S&P and IBM

absolute returns |rt| allows us to detect common shocks, showing also that not all of the shocks are

reciprocal – see Figure 15.

In summary, changes in the volatility of S&P and IBM returns seems to be initiated by (ex

post known) economic events and news, rather than a form of stationary conditional heteroskedas-

ticity. Although short transition periods still might hide GARCH type effects, modeling returns

as independent variables with piecewise constant unconditional variance seems to be an attractive

alternative.
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5 Conclusion

Diagnostic checks on both data and regression residuals now form part of the standard toolkit of

the empirical researcher. Such checks are commonly used to determine the stylized features of

economic and financial time series. In spite of extensive research, there remain many difficulties in

the detection of certain key features. This paper has focused on one of the most basic questions -

stability of the mean and variance of a given time series. In spite of what may appear to be obvi-

ous differences between independent variables with changing variance and stationary conditionally

heteroskedastic time series, such processes are often hard to distinguish in applied work.

The methods in the present paper provide some practical and easily implemented tests of

mean and variance stability that apply to both uncorrelated and serially dependent time series.

Simulations show that these methods perform well in terms of both size and power and outperform

existing procedures. Empirical application of the methods to stock returns indicate that volatility

tends to be initiated and driven in a nonstationary manner by decisive economic events and news,

rather than by a particular form of stationary conditional heteroskedasticity. GARCH type effects

may still be present in the data but there appears also to be substantial evidence in favor of changes

and transitions in the unconditional variance as a further stylized feature of financial returns.

6 Proofs

We start with the following auxiliary lemma. Denote Tn,1 := n−2
n∑

k=1

(
S′
k−S

′)2
, Tn,2 := n−2

n∑
t=1

S′ 2
k .

Set L1(g) =:
∫ 1
0

(
B0

g(u) −
∫ 1
0 B0

g(v)dv
)2
du, L2(g) =:

∫ 1
0 (B

0
g(u))

2du where B0
g(u) is as in (2.7). Set

L̃1(m) =:
∫ 1
0

(
G0

m(u)−∫ 1
0 G0

m(v)dv
)2
du, L̃2(m) =:

∫ 1
0 (G

0
m(u))2du where G0

m(u) = Gm(u)−uGm(1)

and Gm(u) =
∫ u
0 m(x)dx.

Below m̃(.) is defined as in Theorem 2.2.

Lemma 6.1. (i) Under H0, H1 in (2.1) the following holds.

(1) γ̂(0) →p ‖g‖2 under H0,(6.1)

(2) γ̂(0) →p Δ(m) + ‖g‖2 under H1 and (2.10)(1),

(3) n−2θγ̂(0) →p Δ(m̃) under H1 and (2.10)(2).

(ii) Let xt = μ+ yt where (yt) is defined as in (3.1). Then,

(a) Tn,1 →d s2zL1(g), (b) Tn,1 →d s2zL2(g),(6.2)

ŝ2m,MAC →p ‖g‖2s2z if in addition Eε4t < ∞.(6.3)
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(iii) Let xt = μt + yt, where μt is as in (2.10) and (yt) is defined as in (3.1). Then,

n−1Tn,1 →d L̃1(m), n−1Tn,1 →d L̃2(m) for μt, m as in (2.10)(1);(6.4)

n−1−2θTn,1 →d L̃1(m̃), n−1−2θTn,1 →d L̃2(m̃) for μt, m as in (2.10)(2).

Proof. (i) (1) Under H0, xj = μ + uj where uj = hjεj . Then γ̂(0) = n−1
∑n

j=1(xj − x̄)2 =

n−1
∑n

j=1(uj − ū)2 = n−1
∑n

j=1 u
2
j − ū2. Since u2j = h2jε

2
t where ε2t is a stationary ergodic sequence,

Eε2t = 1, and h2j have property h21 +
∑n

j=2 |h2j − h2j−1| = O(1) then by Lemma 10 in DGK(2014),

n−1
∑n

j=1 u
2
j →p ‖g‖2. On the other hand, Eū2 = n−2

∑n
j=1 h

2
j → 0, which implies ū2 = op(1) and

proves (6.1)(1): γ̂(0) →p ‖g‖2.
(2) Under H1 and (2.10)(1), xj = μj + uj . So, γ̂(0) = n−1

∑n
j=1(μj − μ̄ + {uj − ū})2 =

n−1
∑n

j=1(μj − μ̄)2 + n−1
∑n

j=1(uj − ū)2 + 2n−1
∑n

j=1(μj − μ̄)uj =: qn,1 + qn,2 + qn,3. Notice that

n−1
∑n

j=1(μj − μ̄)2 = n−1
∑n

j=1

(
m(j/n) − n−1

∑n
k=1m(k/n)

)2 → ∫ 1
0 (m(x) − ∫ 1

0 m(y)dy)2dx =

Δ(m), qn,2 →p ‖g‖2 by (1) above, while Eq2n,3 = 4n−2
∑n

j=1

(
μj − μ̄

)2
h2j → 0 implying qn,3 = op(1)

which proves (6.1)(2): γ̂(0) →p Δ(m) + ‖g‖2.
(3) Under H1 and (2.10)(2), xj = μt + uj = jθμ(t/n)+ uj , and n−θxj = μ̃t +n−θuj where μ̃j ≡

m̃((j/n) = (j/n)θm(j/n). So the same argument as in (2) implies (6.1)(3): n−2θγ̂(0) →p Δ(m̃).

(ii) Proof of (6.2). Let H0 holds, i.e. xj = μ+ yj , where yj = hjzj , Eyj = 0. Denote by Xn(ν) =

n−1/2
∑[νn]

j=1 yj , ν ∈ [0, 1] the normalized partial sum process of yj , and let Bg(ν) =
∫ ν
0 g(x)W (dx),

0 ≤ ν ≤ 1 be the Gaussian process appearing in (2.7).

By Theorem 6.1 and Corollary 6.1 in GLP(2006) to prove (6.2)(a,b) it suffices to verify (a1)

convergence of finite dimensional distributions Xn(.) →fdd szBg(.); (a2) sup0≤ν≤1 EX
2
n(ν) ≤ C <

∞ and (a3) EX2
n(ν) → B2

g(ν) = s2z
∫ ν
0 g2(x)dx for any ν.

Observe that the weights hj have properties

(6.5) n−1

[νn]∑
j=1

h2j →
∫ ν

0
g2(x)dx > 0, |h1|+

[νn]∑
j=2

|hj − hj−1| = O(1) = o
(
(

[νn]∑
j=1

h2j )
1/2

)
.

Hence, by Proposition 2.2 in Abadir, Distaso, Giraitis and Koul (2014, ADGK),

(6.6) EX2
n(ν) ∼ s2zn

−1

[νn]∑
j=1

h2j → s2z

∫ ν

0
g2(x)dx = s2zEB

2
g(ν)

which proves (a3).

To verify finite dimensional distribution (f.d.d.) convergence (a1) for the partial sum process

Xn(ν) of yj = hjzj ’s, notice that assumption
∑∞

k=−∞ |cov(zk, z0)| < ∞ in (3.2), together with (6.6)

implies cov(Xn(ν), Xn(α)) ∼ EX2
n(min(ν, α)) → cov(Bg(ν), Bg(α)) for 0 ≤ ν, α ≤ 1. Moreover, by

(6.5) and (6.6 ), the weights hj satisfy |h1|+
∑[νn]

j=2 |hj −hj−1| = o((EB2
g(ν))

1/2) which by Theorem

2.3(a) of ADGK(2014) implies (a1).

To verify (a2) notice that EX2
n(ν) = n−1

∑[νn]
j,k=1 hjhkcov(zj , zk) ≤ n−1maxj h

2
j

∑n
j,k=1 |cov(zj , zk)| ≤
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sup0≤x≤1 g
2(x)

∑∞
k=−∞ |cov(z0, zk)| < ∞. This completes the proof of (a1)-(a3).

Proof of (6.3). Write ŝ2m,MAC = m−1
∑m

j=1 I(uj) = m−1
∑m

j=1 EI(uj) + m−1
∑m

j=1(I(uj) −
EI(uj)) := rn,1 + rn,2. To prove (6.3) it suffices to show

(i) rn,1 → ḡs2z, (ii) rn,2 →p 0.

Bearing in mind that uj ≤ um → 0, claim (i) can be show using the same argument as in the

proof of (2.21) of Proposition 2.2 in ADGK(2014). (ii) follows from E|rn,2| → 0 using Lemma 8 of

DGK(2014) and assumption (3.2).

(iii) The proof of (6.4) is standard noting that for μj = m(j/n) as in (2.10), n−1
∑[νn]

j=1 xj =

n−1
∑[νn]

j=1m(j/n) + n−1
∑[νn]

j=1 yj =: sn,1(ν) + sn,2(ν), 0 ≤ ν ≤ 1, where sn,1(ν) → ∫ ν
0 m(x)dx =

Gm(ν) and sup0≤ν≤1 Es
2
n,2(ν) ≤ Cn−1 → 0. �

Proof of Theorem 2.3. (i) To show that UV S(g) of (2.7) can be written as (2.8), write UV S(g) =∫ 1
0 Y 2

u du where Yu := B0
g(u)−

∫ 1
0 B0

g(v)dv. Then,

Yu = Bg(u)− uBg(1)−
∫ 1
0 (Bg(v)− vBg(1))dv = Bg(u)− (u− 1/2)Bg(1)−

∫ 1
0 Bg(v)dv.

Notice that Bg(u) can be written as Bg(u) =
∫ u
0 W̃ (dx), where W̃ (dx) = g(x)W (dx) and W (dx) is

as in (2.8). Thus,

Yu =
∫ 1
0

(
I(x ≤ u)− (u− 1/2)− ∫ 1

x dv
)
W̃ (dx) =

∫ 1
0 hu(x)W̃ (dx)

where hu(x) = I(x ≤ u)− 1/2− u+ x.

The Gaussian variate Yu :=
∫ 1
0 hu(x)W̃ (dx) has the property Y 2

u−EY 2
u =

∫ 1
0

∫ 1 ′
0 hu(x)hu(y)W̃ (dx)W̃ (dx),

see Corollary 14.3.1 in GKS(2012). Hence,

UV S(g)− UV S(g) = ḡ−1
∫ 1
0 (Y

2
u − EY 2

u )du = ḡ−1
∫ 1
0 [
∫ 1
0

∫ 1 ′
0 hu(x)hu(y)W̃ (dx)W̃ (dx)]du

=
∫ 1
0

∫ 1 ′
0 [

∫ 1
0 hu(x)hu(y)du]W̃ (dx)W̃ (dy).(6.7)

Since
∫ 1
0 hu(x)hu(y)du = (x− y)2/2− |x− y|/2 + 1/12 = h(x− y), this proves (2.8).

To show that UKPSS(g) of (2.7) satisfies (2.8), write as above B0
g(u) = Bg(u) − uBg(1) =∫ 1

0 (I(x ≤ u) − u)W̃ (dx) =:
∫ 1
0 h̃g(u)W̃ (dx). Then, UKPSS(g) − EUKPSS(g) =

∫ 1
0 {(B0

g(u))
2 −

E(B0
g(u))

2}du=
∫ 1
0 [
∫ 1
0

∫ 1 ′
0 h̃u(x)h̃u(y)W̃ (dx)W̃ (dx)]du=

∫ 1
0

∫ 1 ′
0 [

∫ 1
0 h̃u(x)h̃u(y)du]W̃ (dx)W̃ (dx). Since∫ 1

0 h̃u(x)h̃u(y)du = (x2 + y2)/2 + 1/3−min(x, y), this verifies (2.8).

(ii) To show that UV S(g) satisfies representation (2.6), we use (2.8). The function h(x) = 1/12−
x/2 + x2/2, 0 ≤ x ≤ 1 has Fourier coefficients ck :=

∫ 1
0 ei 2πkx(1/12 − x/2 + x2/2)dx = (4π2k2)−1

for k �= 0 and c0 = 0, which implies equality
∑

k∈Z e
i 2πkxck = h(x) valid in L2(0, 1). Together with
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(2.8) this yields

UV S(g)− EUV S(g) = 2ḡ−1
∫ 1
0

∫ u
0 h(u− v)W̃ (dv)W̃ (du)

= 2ḡ−1
∫ 1
0

∫ u
0 (

∑
k∈Z e

i 2πk(u−v)ck)W̃ (dv)W̃ (du)

= 2ḡ−1
∫ 1
0

∫ u
0 (

∑
k∈Z e

−i 2πk(u−v)ck)W̃ (dv)W̃ (du)

= ḡ−1
∫ 1
0

∫ 1
0 (

∑
k∈Z e

i 2πk(u−v)ck)W̃ (dv)W̃ (du)

=
∑

k∈Z ck : |Ik|2 :, Ik := (1ḡ )
1/2

∫ 1
0 ei 2πkuW̃ (du).(6.8)

Noting that c−k = ck for k ≥ 1, we obtain

UV S(g) = EUV S(g) + 2

∞∑
k=1

ck(|Ik|2 − E|Ik|2).

Since E|Ik|2 = ḡ−1
∫ 1
0 g2(u)du = 1, and 2

∑∞
k=1 ckE|Ik|2 = 2(4π2)−1

∑∞
k=1 k

−2 = 1/12 = EUV S(g),

then

UV S(g) = 2

∞∑
k=1

ck|Ik|2 =
∞∑
k=1

∣∣(2ḡ )1/2 ∫ 1
0 ei 2πku|g(u)|W (du)

∣∣2
4π2k2

=
∞∑
k=1

ζ2k + η2k
4π2k2

,

which proves (2.6). This completes the proof of the theorem. �
In the following lemma ||m||R is defined as in Theorem 2.2.

Lemma 6.2. The random variable L̃1(m) in (6.4) satisfies equality

L̃1(m) = ||m||2R.(6.9)

Proof. The same argument as in the proof of (6.7) implies

L̃1(m) =
∫ 1
0

∫ 1
0 [
∫ 1
0 hu(x)hu(y)du]m(x)m(y)dxdy =

∫ 1
0

∫ 1
0 h(x− y)m(x)m(y)dxdy,

which arguing as in (6.8), yields

L̃1(m) =
∫ 1
0

∫ 1
0 (

∑
k∈Z e

i 2πk(u−v)ck)m(u)m(v)dudv
∑

k∈Z ck |c(m, k)|2 = 2
∑∞

k=1 ck |c(m, k)|2 = ||m||2R

where c(m, k) :=
∫ 1
0 ei 2πku(m(u)− m̄)du. �

Proof of Theorem 2.1. Properties (i) and (ii) follow combining the results of Lemma 6.1(i) and

(6.2)(a,b). �

Proof of Theorem 2.2. Claim (2.14) follows from Lemma 6.1 and Lemma 6.2. �

Proof of Theorem 3.1. Claim (3.7) follows from (6.2) and (3.4). For MAC estimate the latter is

shown in (6.3). Consistency claim (ii) follows using Lemma 6.1(iii) and arguing as in the proof of

Proposition 9.5.5 in GKS(2012). �
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V S∗
n KPSS∗

n

n = 32 64 128 256 512 32 64 128 256 512

1 xt = εt εt ∼i.i.d.(0,1) 4.72 4.73 5.09 5.12 5.04 5.40 4.75 5.09 4.83 5.21
2 xt = |εt| 4.51 4.44 4.65 5.04 5.24 5.32 4.79 4.96 4.75 4.94
3 xt = ε2t 3.67 3.98 4.48 4.68 5.21 4.87 4.53 4.62 4.74 4.96
4 xt = rt rt ∼GARCH(1,1) α = 0.2, β = 0.5 5.38 5.08 5.39 5.37 5.23 5.82 5.10 5.23 4.98 5.10
5 rt ∼GARCH(1,1) α = 0.2, β = 0.7 5.48 5.48 5.57 5.67 5.36 6.01 5.29 5.53 5.25 5.29

6 xt = htεt ht = 1 + 3I(t > 0.5n) 5.02 5.93 5.95 6.09 6.13 6.02 5.67 5.60 5.41 5.60
7 εt ∼i.i.d.(0,1) ht = 1− 0.75I(t > 0.5n) 5.73 5.42 6.11 6.10 5.84 5.99 5.51 5.44 5.41 5.09
8 ht = 1 + 3I(t > 0.1n) 4.68 5.10 4.95 5.24 5.13 4.29 4.18 3.83 4.06 4.36
9 ht = 1− 0.75I(t > 0.1n) 5.77 6.74 8.11 7.90 7.92 14.25 14.41 14.40 14.00 14.53
10 ht = 1 + 3I(t > 0.9n) 6.52 7.66 7.73 7.78 8.35 15.62 15.40 15.00 14.53 14.56
11 ht = 1− 0.75I(t > 0.9n) 4.92 4.92 5.19 5.21 5.11 3.75 3.80 3.80 4.03 4.05
12 ht = 1 + 3I(0.25n < t ≤ 0.75n) 5.66 5.79 6.10 6.01 5.91 0.55 0.48 0.85 0.69 0.72
13 ht = 1− 0.75I(0.25n < t ≤ 0.75n) 5.50 5.71 5.95 6.03 6.09 12.85 12.05 11.61 11.28 11.60
14 ht = t/n 5.30 5.94 5.83 6.05 6.18 7.89 7.66 7.80 7.83 7.93
15 ht = (t/n)2 6.01 6.90 7.00 7.21 7.10 12.50 12.50 11.99 11.77 11.98
16 ht = | sin(2π(t/n))| 5.48 6.31 6.21 6.36 6.00 4.72 4.93 4.84 4.90 4.99
17 ht = | sin(4π(t/n))| 4.45 5.22 5.40 5.69 5.77 5.23 4.84 4.71 5.05 5.28
18 ht = | sin(8π(t/n))| 4.16 4.49 4.97 5.24 5.41 5.24 4.97 4.85 4.83 5.00
19 ht = | sin(8π(t/n))|+ 1 4.51 4.73 5.05 5.11 5.06 5.42 4.93 5.10 4.79 5.12
20 h2t = 1 + 15v(t/n, 0.1) 4.72 4.81 5.01 5.17 4.99 10.75 10.26 10.92 10.27 10.49
21 h2t = 1− (15/16)v(t/n, 0.1) 5.47 5.86 6.21 6.55 6.24 4.63 4.26 4.21 4.16 4.48
22 h2t = 1 + 15v(t/n, 0.5) 4.91 5.64 5.42 5.83 5.79 5.86 5.28 5.42 5.38 5.11
23 h2t = 1− (15/16)v(t/n, 0.5) 5.44 5.36 5.65 5.70 5.73 5.64 5.47 5.58 5.37 5.57
24 h2t = 1 + 15v(t/n, 0.9) 5.41 5.93 6.14 6.21 6.51 4.27 4.08 4.07 3.96 4.30
25 h2t = 1− (15/16)v(t/n, 0.9) 4.98 4.78 5.26 5.20 5.08 10.81 11.04 10.48 10.67 10.78
26 h2t = 1 + 15t/n 4.66 5.32 5.11 5.44 5.22 5.61 5.45 5.55 5.11 5.49
27 h2t = 1− (15/16)(t/n) 5.12 5.05 5.41 5.53 5.40 5.53 5.19 5.35 5.21 5.29
28 h2t = 1 + 15β(t/n, 0.5) 5.27 5.90 6.37 6.43 6.39 9.94 9.87 9.81 9.80 9.83
29 h2t = 1− (15/16)β(t/n, 0.5) 5.33 4.89 5.37 5.38 5.31 3.89 3.69 3.83 3.79 3.99
30 h2t = 1 + 15β(t/n, 0.9) 5.18 6.37 6.43 6.93 6.88 12.98 12.89 12.88 12.47 12.41
31 h2t = 1− (15/16)β(t/n, 0.9) 4.82 4.79 5.20 5.02 5.04 4.36 4.32 4.36 4.31 4.59

32 xt = htrt ht = 1 + 3I(t > 0.5n) 5.74 6.42 6.35 6.56 6.34 6.37 5.88 5.63 5.75 5.65
33 rt ∼GARCH(1,1) ht = 1− 0.75I(t > 0.5n) 6.33 5.77 6.28 6.27 5.94 6.13 5.58 5.66 5.39 5.26
34 α = 0.2, β = 0.5 ht = 1 + 3I(t > 0.1n) 5.45 5.49 5.43 5.52 5.32 4.58 4.40 4.03 4.08 4.34
35 ht = 1− 0.75I(t > 0.1n) 6.43 6.91 7.91 7.71 8.02 14.29 13.88 13.90 14.14 14.09
36 ht = 1 + 3I(t > 0.9n) 6.69 7.61 7.74 7.74 8.31 15.39 14.85 14.42 14.21 14.68
37 ht = 1− 0.75I(t > 0.9n) 5.56 5.33 5.48 5.52 5.21 4.02 3.96 3.95 4.25 3.89
38 ht = 1 + 3I(0.25n < t ≤ 0.75n) 6.31 6.24 6.29 6.25 6.10 0.69 0.63 0.89 0.78 0.79
39 ht = 1− 0.75I(0.25n < t ≤ 0.75n) 6.04 6.03 6.50 6.18 6.39 13.09 12.14 11.70 11.31 11.56

Table 1: Size of V S∗
n and KPSS∗

n. v(t/n, a) = (1 + exp(−10(t/n− a)))−1 and β(t/n, a) = t/n−a
1−a I(t > an).
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V S∗
n

n = 32 64 128 256 512

xt = yt yt ∼AR(1) ρ = 0.5 44.57 50.07 53.41 54.98 56.32
yt ∼AR(1) ρ = 0.9 89.95 97.70 99.49 99.88 100
yt ∼ARMA(1,1) ρ = 0.5, θ = 0.5 61.47 67.15 69.23 70.77 71.89

xt = |rt| rt ∼GARCH(1,1) α = 0.2, β = 0.5 19.15 25.65 30.81 34.04 35.98
rt ∼GARCH(1,1) α = 0.2, β = 0.7 23.99 43.29 59.22 69.45 78.00

xt = r2t rt ∼GARCH(1,1) α = 0.2, β = 0.5 17.39 26.01 32.19 36.66 40.64
rt ∼GARCH(1,1) α = 0.2, β = 0.7 22.08 43.33 59.87 70.46 79.79

Table 2: Size of V S∗
n under correlation.

cov(ζk, ζs) cov(ηk, ηs) cov(ζk, ηs)

s 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

k g(x) = 1 + 3I(x > 0.5)

1 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.07 0.00

2 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 -0.75 0.00 0.45 0.00 0.11

3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 -0.67 0.00 0.48 0.00

4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 -0.30 0.00 -0.64 0.00 0.50

5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 -0.27 0.00 -0.62 0.00

g(x) = 1 + 3I(x > 0.9)

1 1.45 0.86 0.59 0.30 0.05 0.55 0.26 0.31 0.30 0.23 -0.33 -0.23 -0.10 0.03 0.14

2 0.86 1.14 0.56 0.36 0.17 0.26 0.86 0.56 0.55 0.43 -0.60 -0.43 -0.20 0.04 0.24

3 0.59 0.56 0.91 0.43 0.34 0.31 0.56 1.09 0.69 0.57 -0.76 -0.56 -0.29 0.00 0.25

4 0.30 0.36 0.43 0.89 0.50 0.30 0.55 0.69 1.11 0.62 -0.80 -0.62 -0.36 -0.08 0.16

5 0.05 0.17 0.34 0.50 1.00 0.23 0.43 0.57 0.62 1.00 -0.72 -0.60 -0.41 -0.20 0.00

g(x) = x

1 1.04 0.17 0.05 0.02 0.01 0.96 0.14 0.03 0.01 0.01 -0.24 0.32 0.12 0.06 0.04

2 0.17 1.01 0.16 0.04 0.02 0.14 0.99 0.15 0.03 0.01 -0.64 -0.12 0.38 0.16 0.09

3 0.05 0.16 1.00 0.16 0.04 0.03 0.15 1.00 0.15 0.04 -0.36 -0.57 -0.08 0.41 0.18

4 0.02 0.04 0.16 1.00 0.15 0.01 0.03 0.15 1.00 0.15 -0.25 -0.32 -0.55 -0.06 0.42

5 0.01 0.02 0.04 0.15 1.00 0.01 0.01 0.04 0.15 1.00 -0.20 -0.23 -0.30 -0.53 -0.05

Table 3: Covariances cov(ζk, ζs), cov(ηk, ηs) and cov(ζk, ηs) for k, s = 1, ...5.

25



V S∗
n KPSS∗

n

n = 32 64 128 256 512 32 64 128 256 512

xt = μt + εt μt = 0.5I(t > 0.5n) 15.91 31.10 59.33 90.15 99.65 22.86 41.58 71.30 94.74 99.88
εt ∼i.i.d.(0,1) μt = 0.5I(t > 0.25n) 9.28 18.04 35.13 67.00 95.26 13.74 24.25 45.92 77.93 97.83

μt = 0.5I(t > 0.75n) 9.75 17.79 35.02 66.30 94.69 13.82 24.38 45.90 77.55 97.62
μt = 0.5I(0.25n < t ≤ 0.75n) 15.67 31.21 59.58 90.46 99.74 5.91 8.36 16.94 46.34 89.90
μt = 0.5(1− I(0.25n < t ≤ 0.75n)) 15.78 31.24 59.96 90.16 99.72 6.17 8.28 17.03 45.38 89.28
μt = 0.5I(t ∈ (0.25n, 0.5n] ∪ (0.75n, n]) 4.74 6.03 11.00 27.32 71.93 7.62 11.21 19.57 39.71 75.83
μt = | sin(π(t/n))| 26.76 53.14 85.90 99.35 100 7.54 13.49 36.76 83.00 99.76
μt = | sin(2π(t/n))| 4.83 8.26 19.85 60.22 98.29 5.13 4.94 6.32 9.46 29.44
μt = | sin(3π(t/n))| 3.91 4.63 6.93 14.49 50.84 4.95 4.37 4.92 5.58 8.70
μt = | sin(4π(t/n))| 3.57 3.97 5.20 7.67 16.39 4.48 4.09 4.51 4.61 5.99
μt = | sin(5π(t/n))| 3.77 3.77 4.55 5.77 9.06 4.68 4.06 4.34 4.33 5.23
μt = 2| sin(4π(t/n))| 1.54 2.25 5.41 25.28 99.45 2.74 2.32 3.01 4.25 10.62
μt = 2| sin(5π(t/n))| 1.53 1.66 3.27 8.30 53.20 2.84 2.23 2.58 3.17 5.53
μt = (t/n)| sin(4π(t/n))| 8.31 15.76 31.45 62.31 93.21 13.35 25.30 48.92 80.33 98.04
μt = t/n 15.59 31.79 62.11 92.39 99.86 34.41 60.69 88.92 99.38 100
μt = (t/n)2 17.77 35.08 66.85 94.75 99.94 36.41 62.38 89.94 99.52 100
μt = (t/n− 1)2 16.43 34.10 66.13 94.47 99.91 33.16 60.58 89.45 99.57 100
μt = (t/n− 1)2 + (t/n) 5.92 7.32 10.04 15.56 27.23 5.46 5.24 5.78 6.36 8.88
μt = (t/n− 1)2 + 0.3(t/n) 10.51 19.70 38.68 71.09 96.00 18.73 34.84 61.88 89.79 99.52
μt = 1/((t/n− 1)2 + 0.3(t/n)) 95.60 99.99 100 100 100 99.73 100 100 100 100
μt = 0.01t 5.71 15.34 84.20 100 100 8.04 29.17 98.43 100 100
μt = 0.01tI(t > 0.5n) 5.28 8.33 38.49 99.98 100 5.77 11.42 56.34 100 100

xt = μt + aεt μt = 0.5I(t > 0.5n) a = 2 7.02 11.05 17.65 33.48 61.77 9.25 13.81 23.28 42.76 72.29
εt ∼i.i.d.(0,1) a = 1 15.91 31.10 59.33 90.15 99.65 22.86 41.58 71.30 94.74 99.88

a = 0.75 25.68 52.09 85.28 99.25 100 36.76 64.39 91.66 99.66 100
a = 0.5 52.07 87.53 99.60 100 100 67.24 93.85 99.88 100 100
a = 0.25 98.54 99.99 100 100 100 99.68 100 100 100 100
a = 0.1 100 100 100 100 100 100 100 100 100 100

xt = μt + htεt μt = 0.5I(t > 0.5n) ht = 1 + 3I(t > 0.5n) 6.59 8.92 11.81 18.70 32.42 7.95 9.83 14.22 23.13 41.55
εt ∼i.i.d.(0,1) ht = 1− 0.75I(t > 0.5n) 28.37 55.00 86.71 99.45 100.00 38.75 67.52 93.19 99.92 100

ht = 1 + 3I(t > 0.1n) 5.53 6.54 8.65 12.17 20.38 5.21 6.69 8.80 13.78 24.79
ht = 1− 0.75I(t > 0.1n) 81.24 99.37 100 100 100 83.06 98.56 100 100 100
ht = 1 + 3I(t > 0.9n) 10.22 15.79 27.00 53.36 89.23 21.53 27.54 39.20 58.81 86.63
ht = 1− 0.75I(t > 0.9n) 17.81 34.05 62.99 92.20 99.82 23.93 44.36 76.17 96.97 99.98

μt = 1 + 3I(t > 0.5n) ht = μt 54.97 89.17 99.74 100 100 69.26 95.03 99.94 100 100
ht = 1− 0.75I(t > 0.5n) 100 100 100 100 100 100 100 100 100 100
ht = | sin(2π(t/n))| 100 100 100 100 100 100 100 100 100 100

μt = 1− 0.75I(t > 0.5n) ht = μt 55.37 89.21 99.71 100 100 69.72 94.92 99.95 100 100
ht = 1 + 3I(t > 0.5n) 8.56 12.50 19.52 35.27 63.45 11.05 15.58 25.23 45.35 74.53
ht = | sin(2π(t/n))| 53.90 85.41 99.13 100 100 71.41 95.48 99.92 100 100
ht = | sin(2π(t/n))|+ 1 14.62 26.79 48.87 80.04 98.05 19.65 35.42 61.86 89.47 99.42

μt = | sin(4π(t/n))| ht = | sin(4π(t/n))| 2.37 3.65 5.57 11.98 48.80 3.65 3.38 3.53 4.67 7.41
ht = | sin(2π(t/n))| 3.34 4.48 6.34 11.97 47.19 3.51 3.31 3.76 4.59 6.87
ht = | cos(4π(t/n))| 2.41 3.41 5.31 12.06 48.37 3.58 3.73 4.12 4.98 7.23
ht = | cos(2π(t/n))| 3.36 4.19 6.28 11.92 47.49 3.94 4.21 4.54 5.47 8.67

μt = | sin(2π(t/n))| ht = | sin(4π(t/n))| 4.77 13.34 51.78 99.36 100 4.33 4.64 7.58 19.99 95.34
ht = | sin(2π(t/n))| 5.59 14.29 50.23 97.34 100 4.25 4.63 7.45 19.47 89.95
ht = | cos(4π(t/n))| 4.87 14.74 50.47 94.26 99.99 4.39 5.23 8.24 23.62 88.67
ht = | cos(2π(t/n))| 5.86 13.98 50.50 96.73 100 5.09 5.72 9.13 24.56 91.50

Table 4: Power of V S∗
n and KPSS∗

n.
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V Sn

mlow = 5 mlow = 8 mlow = 10

n = 128 256 512 1024 128 256 512 1024 128 256 512 1024

xt = εt εt ∼i.i.d.(0,1) 3.77 4.40 4.84 5.03 3.97 4.35 4.84 5.03 4.02 4.37 4.84 5.03
xt = |εt| 3.61 4.55 5.01 5.54 3.77 4.51 5.00 5.54 3.77 4.53 5.01 5.54
xt = ε2t 3.59 4.16 4.97 5.21 3.66 4.21 4.96 5.21 3.63 4.19 4.96 5.21
xt = h1tεt 4.16 5.31 5.70 6.17 4.40 5.26 5.63 6.17 4.49 5.33 5.66 6.17

xt = yt yt ∼AR(1) 4.38 5.28 5.75 5.85 4.99 5.28 5.75 5.85 5.74 5.28 5.75 5.85
xt = |yt| ρ = 0.5 4.18 4.93 5.54 5.51 4.57 4.94 5.54 5.51 4.87 4.97 5.54 5.51
xt = y2t 3.93 4.24 5.32 5.42 4.19 4.29 5.32 5.42 4.53 4.30 5.32 5.42
xt = h1tyt 5.06 6.33 6.55 7.06 5.94 6.33 6.55 7.06 6.90 6.42 6.55 7.06
xt = h2tyt 4.69 5.54 5.90 6.20 5.42 5.55 5.90 6.20 6.33 5.58 5.90 6.20
xt = h3tyt 4.92 6.06 6.29 6.54 5.75 6.07 6.29 6.54 6.61 6.13 6.29 6.54
xt = h4tyt 4.86 6.18 6.70 6.85 5.90 6.20 6.70 6.85 6.75 6.22 6.70 6.85

xt = yt yt ∼ARMA(1,1) 4.60 5.51 5.86 5.90 4.98 5.51 5.86 5.90 5.71 5.51 5.86 5.90
xt = |yt| α = 0.5, β = 0.5 4.83 5.28 5.65 5.41 4.87 5.28 5.65 5.41 4.97 5.28 5.65 5.41
xt = y2t 4.48 4.91 5.41 5.27 4.49 4.91 5.41 5.27 4.55 4.91 5.41 5.27
xt = h1tyt 5.33 6.57 6.76 7.18 5.84 6.57 6.76 7.18 6.76 6.59 6.76 7.18
xt = h2tyt 4.86 5.60 6.01 6.22 5.29 5.60 6.01 6.22 5.97 5.60 6.01 6.22
xt = h3tyt 4.90 6.12 6.44 6.74 5.33 6.12 6.44 6.74 6.09 6.13 6.44 6.74
xt = h4tyt 5.05 6.15 6.80 6.84 5.74 6.15 6.80 6.84 6.46 6.20 6.80 6.84

xt = rt rt ∼GARCH(1,1) 3.68 4.42 4.90 4.81 3.81 4.39 4.90 4.81 3.83 4.39 4.91 4.81
xt = |rt| α = 0.2, β = 0.5 5.38 4.78 4.87 5.76 6.99 5.15 4.92 5.76 8.26 5.57 5.02 5.76
xt = r2t 5.27 4.91 4.60 5.53 6.41 5.17 4.65 5.53 7.39 5.46 4.71 5.53
xt = h1trt 4.21 5.40 5.62 5.93 4.31 5.32 5.62 5.93 4.42 5.34 5.62 5.93

xt = yt yt ∼AR(1) 8.05 3.22 3.07 4.76 32.22 13.43 5.68 4.76 44.82 21.58 8.49 4.76
xt = |rt| ρ = 0.9 2.30 2.95 4.92 5.70 10.82 4.68 5.02 5.70 17.32 6.46 5.10 5.70
xt = r2t 1.73 2.47 4.12 4.93 8.57 3.70 4.16 4.93 14.83 5.33 4.28 4.93
xt = h1tyt 6.46 2.81 3.14 6.05 31.57 13.53 5.99 6.05 44.58 21.80 8.99 6.05

xt = rt rt ∼GARCH(1,1) 3.77 4.56 4.70 4.96 4.00 4.52 4.70 4.96 4.03 4.52 4.71 4.96
xt = |rt| α = 0.2, β = 0.7 9.15 5.78 4.41 5.39 19.20 10.00 5.33 5.39 24.91 14.41 6.76 5.39
xt = r2t 10.45 6.51 5.13 4.96 18.27 9.46 5.69 4.96 23.79 13.03 6.63 4.96
xt = h1trt 4.24 5.57 5.76 5.94 4.49 5.51 5.74 5.94 4.47 5.54 5.73 5.94

Table 5: Size of V Sn with ARMA(1,1) based method for choosing mopt (no trimming). h1t = 1 + 3I(t/n > 0.5),
h22t = 1 + 15(t/n), h23t = 1 + 15v(t/n, 0.5) and h4t = | sin(2πt/n)|.
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V Sn

mlow = 5 mlow = 8 mlow = 10

n = 128 256 512 1024 128 256 512 1024 128 256 512 1024

xt = μt + εt εt ∼i.i.d.(0,1) 32.68 60.70 94.22 99.99 43.16 76.67 96.61 99.99 46.57 80.14 98.18 99.99
xt = |h1tεt| 33.81 58.89 93.87 100 46.06 77.80 96.93 100 49.95 82.45 98.50 100
xt = (h1tεt)

2 33.49 58.93 92.97 100 45.17 78.95 96.42 100 49.19 83.70 98.31 100
xt = 0.01t+ εt 25.22 34.22 99.99 100 51.15 99.62 100 100 60.28 99.98 100 100
xt = βt + εt 20.83 42.36 99.96 100 25.96 91.85 100 100 28.06 97.03 100 100
xt = xt−1 + εt 42.76 42.99 61.07 87.86 78.18 77.90 78.23 87.86 85.49 85.19 85.47 87.86

xt = μt + yt yt ∼AR(1) 13.32 37.10 71.76 96.78 17.45 37.26 71.76 96.78 20.62 37.44 71.76 96.78
xt = |h1tyt| ρ = 0.5 25.59 59.14 93.94 99.98 32.08 64.18 94.78 99.98 35.15 66.14 95.42 99.98
xt = (h1tyt)

2 24.97 59.03 93.91 99.94 30.37 64.21 94.57 99.94 33.21 66.10 95.25 99.94
xt = 0.01t+ yt 14.85 61.86 98.54 100 22.67 88.94 100 100 28.35 94.43 100 100
xt = βt + yt 9.52 64.09 98.71 100 11.97 65.99 99.98 100 14.04 67.13 100 100
xt = xt−1 + yt 43.64 43.13 61.12 87.86 78.92 78.17 78.18 87.86 86.39 85.50 85.54 87.86

xt = μt + yt yt ∼AR(1) 10.89 5.49 8.36 24.75 37.80 21.08 15.02 24.75 50.39 30.97 21.27 24.75
xt = |h1tyt| ρ = 0.9 4.77 8.79 26.15 58.39 18.77 14.83 27.20 58.39 27.84 20.12 28.15 58.39
xt = (h1tyt)

2 3.87 7.95 23.07 54.68 14.24 11.80 23.89 54.68 23.79 16.44 25.00 54.68
xt = 0.01t+ yt 12.13 13.55 66.79 100 39.95 50.66 94.74 100 52.80 64.93 99.03 100
xt = βt + yt 9.54 7.91 45.64 100 35.71 29.74 70.05 100 47.85 41.73 82.30 100
xt = xt−1 + yt 57.32 49.58 63.54 88.58 87.61 83.30 80.20 88.58 92.74 89.87 87.44 88.58

xt = μt + rt rt ∼GARCH(1,1) 34.76 62.36 94.17 99.99 44.50 77.79 96.41 99.99 48.02 80.98 97.91 99.99
xt = |h1trt| α = 0.2, β = 0.5 15.77 30.35 69.56 97.71 27.43 42.21 73.26 97.71 33.52 48.23 76.73 97.71
xt = (h1trt)

2 16.01 29.41 65.68 95.68 25.15 38.59 68.74 95.68 30.33 43.66 71.52 95.68
xt = 0.01t+ rt 26.94 34.72 100 100 53.14 99.44 100 100 61.95 99.93 100 100
xt = βt + rt 21.97 44.62 99.95 100 26.98 92.08 100 100 29.18 96.78 100 100
xt = xt−1 + rt 42.50 43.60 61.50 88.39 78.35 78.04 78.43 88.39 85.54 85.38 85.79 88.39

xt = μt + rt, rt ∼GARCH(1,1) 35.82 62.02 93.76 99.95 47.05 77.99 95.96 99.95 50.54 81.26 97.31 99.95
xt = |h1trt| α = 0.2, β = 0.7 14.89 13.05 27.81 64.64 35.03 31.05 36.57 64.64 43.99 40.79 44.70 64.64
xt = (h1trt)

2 14.70 13.58 25.28 53.20 30.90 26.18 30.95 53.20 39.69 34.36 36.91 53.20
xt = 0.01t+ rt 26.98 35.43 99.98 100 55.31 99.10 100 100 64.14 99.77 100 100
xt = βt + rt 23.23 46.78 99.88 100 28.94 92.09 100 100 31.51 96.32 100 100
xt = xt−1 + rt 42.02 43.67 61.64 88.69 78.12 77.82 78.55 88.69 85.17 85.35 85.90 88.69

Table 6: Power of V Sn with ARMA(1,1) based method for choosing mopt (no trimming). μt = 0.5I(t > 0.5n),
ht = 1 + 0.5I(t > 0.5n) and βt = 0.01(t− 0.5n)I(t > 0.5n).
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Empirical moments of V S∗
n and KPSS∗

n
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Figure 1: Relative mean (top left), SD (top right), skewness (bottom left) and kurtosis (bottom
right) of V S∗

n and KPSS∗
n for the models in Table 1 with εt ∼i.i.d.(0,1) and n = 512. The x-axis

is the number of the model.
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Empirical distribution function of V S∗
n
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(b) xt = htεt, ht = 1 + 3I(t > 0.5n)
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(c) xt = htεt, ht = 1 + 3I(t > 0.9n)
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(d) xt = htεt, ht = t/n
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(e) xt = htεt, h2t = 1 + 15β(t/n, 0.5)
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(f) xt = htεt, h2t = 1 + 15β(t/n, 0.9)

Figure 2: Empirical CDF for sample size n = 32, .., 512 and true CDF (dotted line) of
V S∗

n statistic for all percentiles (left) and the upper 90% percentiles (right). In all models
(a)-(f), εt ∼i.i.d.(0,1).
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(a) xt = εt, εt ∼i.i.d.(0,1)
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(b) xt = μt + εt, μt = I(t/n > 0.5) εt ∼i.i.d.(0,1)

Figure 3: Average and one realization of V S∗
t,H statistic with window width H =

64, 128, 256 for sample size n = 1024. The dashed lines are the 5% and 1% critical
values. The vertical lines are at the break point tb and the points tb ±H/2.
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Figure 4: Average and one realization of V S∗
t,H statistic with window width H =

64, 128, 256 for sample size n = 1024. The dashed lines are the 5% and 1% critical
values. The vertical lines are at the break points tb.
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Figure 5: Average and one realization of V S∗
t,H statistic with window width H =

64, 128, 256 for sample size n = 1024. The dashed lines are the 5% and 1% critical
values. The vertical lines are at the break points tb.
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Figure 6: Average and one realization of V S∗
t,H statistic with window width H =

64, 128, 256 for sample size n = 1024. The dashed lines are the 5% and 1% critical
values. The vertical lines are at the break point tb and the points tb ±H/2.
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Figure 7: Average and one realization of V S∗
t,H statistic with window width H =

64, 128, 256 for sample size n = 1024. The dashed lines are the 5% and 1% critical
values.
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Figure 8: Average and one realization of V St,H statistic with window width H =
128, 256, 512 for sample size n = 1024. The dashed lines are the 5% and 1% critical
values.
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Figure 9: Average and one realization of V St,H statistic with window width H =
128, 256, 512 for sample size n = 1024. The dashed lines are the 5% and 1% critical
values.
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Figure 10: Average and one realization of V St,H statistic with window width H =
128, 256, 512 for sample size n = 1024. The dashed lines are the 5% and 1% critical
values. The vertical lines are at the break point tb and the points tb ±H/2.
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Figure 11: Average and one realization of V St,H statistic with window width H =
128, 256, 512 for sample size n = 1024. The dashed lines are the 5% and 1% critical
values. The vertical lines are at the break point tb and the points tb ±H/2.
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Local variation (V S∗
t,H) of S&P returns (1962-2014)
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Figure 12: S&P returns r for the period 1962-2014; realizations of V S∗
t,H with H =

512, 256, 128 for levels (r), squares (r2) and absolute values (|r|); 5% critical value of V S∗
t,H

(dashed line).
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Local variation (V S∗
t,H) of S&P returns (2000-2014)
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Figure 13: S&P returns r for the period 2000-2014; realizations of V S∗
t,H with H =

512, 256, 128 for levels (r), squares (r2) and absolute values (|r|); 5% critical value of V S∗
t,H

(dashed line).
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Local variation (V S∗
t,H) of IBM returns (2000-2014)
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Figure 14: IBM returns r for the period 2000-2014; realizations of V S∗
t,H with H =

512, 256, 128 for levels (r), squares (r2) and absolute values (|r|); 5% critical value of V S∗
t,H

(dashed line).
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Synchronicity of variation (V S∗
t,H) of S&P and IBM returns (2000-2014)
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Figure 15: Realizations V S∗
t,H with H = 512, 256, 128 for absolute S&P and IBM returns

(|r|); 5% critical value of V S∗
t,H (dashed line).
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Bad news arrivals for S&P returns (2000-2014)
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Figure 16: Realizations shifted to the right V S∗
t+H/2,H with H =

512, 256, 128, 64 for absolute S&P returns (|r|); 5% critical value of V S∗
t,H

(dashed line).
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Figure 17: Realizations shifted to the left V S∗
t−H/2,H with H =

512, 256, 128, 64 for absolute S&P returns (|r|); 5% critical value of V S∗
t,H

(dashed line).
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Local variation (V St,H) of S&P returns (2000-2014)
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Figure 18: S&P returns r for the period 2000-2014; realizations of V St,H with H =
512, 256, 128 for levels (r), squares (r2) and absolute values (|r|); 5% critical value of V St,H

(dashed line).
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Local variation (V St,H) of IBM returns (2000-2014)
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Figure 19: IBM returns r for the period 2000-2014; realizations of V St,H with H =
512, 256, 128 for levels (r), squares (r2) and absolute values (|r|); 5% critical value of V St,H

(dashed line).
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Comparison of variations V S∗
t,H and V St,H
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Figure 20: Realizations of V S∗
t,H and V St,H with H = 512, 256, 128 for absolute (|r|) S&P

returns for the period 2000-2014; 5% critical value of V S∗
t,H (dashed line).
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ACF and Q-Q plots for subsamples of S&P and IBM returns
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(a) S&P returns for 03/12/2001-01/05/2002
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(b) S&P returns for 01/08/2003-01/05/2006
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(c) IBM returns for 01/11/2005-01/06/2007
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(d) IBM returns for 01/06/2012-05/09/2014

Figure 21: Correlogram (left) and normality check Q-Q plot
(right) for two subsamples of S&P and IBM returns.
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