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Abstract

We propose a new algorithm which allows easy estimation of Vector Autoregressions

(VARs) featuring asymmetric priors and time varying volatilities, even when the cross

sectional dimension of the system N is particularly large. The algorithm is based on a

simple triangularisation which allows to simulate the conditional mean coeffi cients of the

VAR by drawing them equation by equation. This strategy reduces the computational

complexity by a factor of N2 with respect to the existing algorithms routinely used

in the literature and by practitioners. Importantly, this new algorithm can be easily

obtained by modifying just one of the steps of the existing algorithms. We illustrate the

benefits of the algorithm with numerical and empirical applications.
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1 Introduction

The recent literature has shown that two main ingredients are key for the specification

of a good Vector Autoregressive model (VAR) for forecasting and structural analysis of

macroeconomic data: a large cross section of macroeconomic variables, and modeling time

variation in their volatilities. Contributions which highlighted the importance of using a

large information set include Banbura, Giannone, and Reichlin (2010), Carriero, Clark,

and Marcellino (2015), Giannone, Lenza, and Primiceri (2015) and Koop (2013), which

all point out that large systems perform better than smaller systems in forecasting and

structural analysis. Contributions that have highlighted the importance of time variation

in the volatilities include Clark (2011), Clark and Ravazzolo (2015), Cogley and Sargent

(2005), D’Agostino, Gambetti and Giannone (2013), and Primiceri (2005).

Even though it is now clear that it would be ideal to include both of these features when

specifying a VAR model for macroeconomic variables, there are no papers which jointly

allow for time variation and large datasets. To the best of our knowledge, the only two

exceptions are Koop and Korobilis (2013) and Carriero, Clark, and Marcellino (2012). Koop

and Korobilis (2013) propose a computational (not fully Bayesian) shortcut that allows for

time-varying volatility, roughly speaking, using a form of exponential smoothing of volatility

that allows them to estimate a large VAR. However, the resulting estimates are not fully

Bayesian and do not allow, for example, to compute the uncertainty around the volatility

estimates in a coherent fashion. Our previous work in Carriero, Clark, and Marcellino (2012)

also tries to tackle this issue, by assuming a specific structure for the volatilities in the VAR.

In particular, in a common stochastic volatility specification, we imposed a factor structure

on the volatilities and further assumed that i) there is no idiosyncratic component for the

conditional volatilities, and ii) all the conditional volatilities have a factor loading of 1, which

implies that the order of magnitude of the movements in volatility is proportional across

variables. Although the evidence in Carriero, Clark, and Marcellino (2012) indicates that the

proposed model improves over an homoskedastic VAR in density forecasting, the restrictions

discussed above do not necessarily hold in a typical dataset of macroeconomic and financial

variables, especially so as the cross-sectional dimension grows. Some researchers might prefer

not to impose the restrictions, out of concern for misspecification.

The reason why stochastic volatilities in the disturbance term can not easily be estimated

in a large VAR – without restrictions such as those of Carriero, Clark, and Marcellino

(2012) – lies in the structure of the likelihood function. The introduction of drifting volatil-

ities leads to the loss of symmetry in the model, which in turn implies that estimation of

the system becomes rapidly unmanageable. Homoskedastic VAR models are SUR mod-

1



els featuring the same set of regressors in each equation. This symmetry across equations

means that homoskedastic VAR models have a Kronecker structure in the likelihood, and

can therefore be estimated via OLS equation by equation. In a Bayesian setting the sym-

metry in the likelihood transfers to the posterior, as long as the prior used also features a

Kronecker structure. Equation-specific stochastic volatility breaks this symmetry because

each equation is driven by a different volatility. This implies that the model needs to be

vectorised before estimation. The challenge with such a model is that drawing the VAR

coeffi cients from the conditional posterior involves computing a (variance) matrix with the

number of rows and columns equal to the number of variables squared times the number of

lags (plus one if a constant is included). The size of this matrix increases with the square

of the number of variables in the model, making CPU time requirements highly nonlinear

in the number of variables.

Similarly, there are cases in which even in presence of a symmetric likelihood function, the

prior distribution on the coeffi cients is not symmetric and this again implies a considerable

increase in the computational complexity of the model. For example, the VAR estimated by

Banbura, Giannone, and Reichlin (2010) is a homoskedastic VAR with 130 variables, but

in order to make this estimation possible a specific structure must be assumed for the prior

distribution of the coeffi cients. In particular, the original Litterman (1986) implementation

of the so called Minnesota prior puts additional shrinkage on the lags of all the variables

other than the dependent variable of the i-th VAR equation, in order to capture the idea

that, at least in principle, these lags should be less relevant than the lag of the dependent

variable itself. But such kind of shrinkage can not be implemented in the model of Banbura,

Giannone, and Reichlin (2010) without losing the Kronecker structure of the prior. In

this case the prior is not symmetric across equations and therefore, even in presence of

a symmetric likelihood, the resulting posterior is not symmetric across equations, which

implies that the system needs to be vectorised prior to estimation, which in turn results in

the same type of computational costs we described in the previous paragraph. Incidentally,

it is for this reason that Litterman (1986) assumed a (fixed) diagonal prior variance for the

disturbance term, since this assumption allows to estimate his model equation by equation.

To summarize, if either the prior or the likelihood induce an asymmetry in the posterior

of the VAR coeffi cients, the model needs to be vectorised and its computational complexity

rises from N3 up to N6, where N is the size of the cross section. For this reason the

only VAR which can be reasonably estimated with a large cross section of data is the one

proposed by Kadiyala and Karlsson (1997), which features symmetry in both the prior and

the likelihood, and it is indeed on this model that papers such as Banbura, Giannone, and
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Reichlin (2010) and Carriero, Clark, and Marcellino (2012) are built on.

In this paper we propose a new algorithm which allows to estimate VARs featuring asym-

metries either in the prior or in the likelihood, thereby allowing for models with asymmetric

priors and time varying volatilities. The new algorithm is based on a simple triangularisa-

tion of the VAR, which allows to simulate the VAR coeffi cients by drawing them equation

by equation. The new algorithm is very simple and, importantly, it can be easily inserted

in any pre-existing algorithm for estimation of VAR models. This algorithm reduces the

computational complexity for estimating the VAR model to the order N4, which is consid-

erably faster than the complexity N6 arising from the traditional algorithm, and therefore

it allows to estimate large models.

The paper is structured as follows. In Section 2 we present the model and the estimation

algorithm. Section 3 presents a numerical comparison to illustrate the gains in terms of

computing time (and convergence and mixing properties). Section 4 discusses an empirical

application where we compute responses to a monetary policy shock in a large VAR with

time varying volatilities. Section 5 concludes.

2 An estimation algorithm for large BVARs

2.1 The model

Consider the following VAR model with stochastic volatility:

yt = Π0 + Π(L)yt−1 + vt, (1)

vt = A−1Λ0.5
t εt, εt ∼ iid N(0, IT ), (2)

where t = 1, ..., T , the dimension of the vectors yt, vt and εt is N , Λt is a diagonal matrix

with generic j-th element hj,t and A−1 is a lower triangular matrix with ones on its main

diagonal. The specification above implies a time varying variance for the disturbances vt:

Σt ≡ V ar(vt) = A−1ΛtA
−1′. (3)

The diagonality of the matrix Λt implies that the generic j-th element of the rescaled V AR

disturbances ṽt = Avt is given by ṽj,t = h0.5
j,t εjt. Taking logs of squares of ṽj,t yields the

following set of observation equations:

ln ṽ2
j,t = lnhj,t + ln ε2j,t, j = 1, . . . , N. (4)

The model is completed by specifying laws of motion for the unobserved states:

lnhj,t = lnhj,t−1 + ej,t, j = 1, . . . , N, (5)
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where the vector of innovations to volatilities et is N(0,Φ) (and independent across time),

with a variance matrix Φ that is full matrix as in Primiceri (2005) and not diagonal as in

Cogley and Sargent (2005).

In equation (2) we do not allow the elements in A−1 to vary over time, which would

yield the variance specification of Primiceri (2005). We do so because Primiceri (2005) found

little variation in such coeffi cients, and specifying variation in these coeffi cients would imply

additional N(N − 1)/2 state equations such as (5). Note however that even if one were to

specify also A−1 as time varying, this would not impact the main computational advantage

arising from the algorithm we will propose below, as the main bottleneck in estimating large

VARs is the inversion of the variance matrix of the Π(L) coeffi cients, not the simulation of

the drifting covariances and volatilities. Similarly, one can modify equation (5) so that the

states lnhj,t follow an autoregressive process rather than a random walk, but again this is

not essential to the point we make in this paper.

In a Bayesian setting, to estimate the model the likelihood needs to be combined with a

prior distribution for the model coeffi cients

Θ = {Π, A,Φ} (6)

and the unobserved states Λt. Under the conventional systems approach, the priors for the

coeffi cients blocks of the model are as follows:

vec(Π) ∼ N(vec(µ
Π

),ΩΠ); (7)

A ∼ N(µ
A
,ΩA); (8)

Φ ∼ IW (dΦ · Φ, dΦ). (9)

The model is completed by eliciting a prior for the initial value of the state variables Λt

which we set as diffuse.

2.2 Model estimation

The model presented above is typically estimated as follows. First, the conditional posterior

distributions of all the coeffi cients blocks are derived:

vec(Π)|A,ΛT , yT ∼ N(vec(µ̄Π),ΩΠ); (10)

A|Π,ΛT , yT ∼ N(µ̄A,ΩA); (11)

Φ|ΛT , yT ∼ IW ((dΦ + T ) · Φ̄, dΦ + T ), (12)

where ΛT and yT denote the history of the states and data up to time T , and where the

posterior moments µ̄Π, ΩΠ, µ̄A, ΩA and Φ̄ can be derived by combining prior moments and
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likelihood moments.1

A step of a Gibbs sampler cycling through (10)-(12) provides a draw from the joint

posterior distribution p(Θ|ΛT , yT ). Conditional on this draw, a draw from the distribution

of the states p(ΛT |Θ, yT ) is obtained using the observation and transition equations (4) and

(5), by using either the independent Metropolis algorithm proposed by Jacquier, Polson and

Rossi (1994) or the mixture of normals approximation algorithm proposed by Kim, Shepard

and Chib (1998).2 Cycling through p(Θ|ΛT , yT ) and p(ΛT |Θ, yT ) provides the joint posterior

of the model coeffi cients and unobserved states p(Θ,ΛT |yT ). This estimation strategy is used

in all of the implementations of this model.

In this paper we are interested in one specific step of the algorithm described above, the

draw from Π|A,ΛT , yT described in equation (10). The main problem in this step is that –

as is clear from the fact that equation (10) is specified in terms of the vectorised vector of

coeffi cients vec(Π) – it involves the manipulation of the variance matrix of the coeffi cients

Π, which is a square matrix of dimension N(Np+ 1).

Consider drawing m = 1, ...,M draws from the posterior of Π. To perform a draw Πm

from (10), one needs to draw a N(Np + 1)−dimensional random vector (distributed as a

standard Gaussian), rand, and to compute:

vec(Πm) = Ω̄Π

{
vec

(
T∑
t=1

Xty
′
tΣ
−1
t

)
+ Ω−1

Π vec(µ
Π

)

}
+ chol(Ω̄Π)× rand (13)

The calculation above involves computations of the order of 4O(N6). Indeed, it is necessary

to compute: i) the matrix Ω̄Π by inverting

Ω̄−1
Π = Ω−1

Π +

T∑
t=1

(Σ−1
t ⊗XtX ′t); (14)

ii) its Cholesky factor chol(Ω̄Π); iii) multiply the matrices obtained in i) and ii) by the vector

in the curly brackets of (13) and the vector rand respectively. Since each of these operations

requires O(N6) elementary operations, the total computational complexity to compute a

draw Πm is 4 × O(N6). Also computation of Ω−1
Π vec(µ

Π
) requires O(N6) operations but

this is fixed across repetitions so it needs to be computed just once.3

1Note that knowledge on the full history of the states ΛT renders redundant conditioning on the hyper-

parameters Φ regulating the law of motions of such states when drawing Π and A, as well as conditioning

on Π and A when drawing Φ.
2 In such case one needs to introduce another set of state variables sT used to approximate the error term

appearing in (4). For more details see Section (2.5.1) below.
3Some speed improvements can be obtained as follows. Define Ω̄−1

Π = C′C where C is an upper triangular

matrix and C′ is therefore the Cholesky factor of Ω̄−1
Π . It follows that Ω̄Π = C−1C′−1 with C−1 upper
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For a system of 20 variables, which is the "medium" size considered in studies such as

Banbura, Giannone, and Reichlin (2010), Carriero, Clark, and Marcellino (2012), Giannone,

Lenza, and Primiceri (2015) and Koop (2013) this amounts to 4 × 206 = 256 millions

elementary operations (per single draw), and this is the main bottleneck that prevented the

existing literature to estimate these models with more than a handful of variables, typically

3 to 5.

2.3 Asymmetric priors

It is important to note that the computational problem arises from the fact that in a

stochastic volatility model, if we rescale each of the equations by the error volatility, in a

weighted least squares fashion, then each equation ends up having different regressors, and

this is the root of the asymmetry in the likelihood. However, the computational problem of

the dimension of the variance matrix of the coeffi cients is not limited to stochastic volatility

VARs, but can happen also in a homoskedastic setting. In particular, consider making the

model (1)-(2) homoskedastic:

yt = Π0 + Π(L)yt−1 + vt, (17)

vt = A−1Λ0.5εt =, εt ∼ iid N(0, I), (18)

triangular. Clearly, draws from C−1 × rand will have variance Ω̄Π so we can use C−1 × rand rather than

chol(Ω̄Π) × rand. Moreover we can substitute Ω̄Π = C−1C′−1 in (13) and take C−1 as common factor to

obtain:

vec(Πm) = C−1

[
C−1′

{
vec

(
T∑
t=1

Xty
′
tΣ
−1
t

)
+ Ω−1

Π vec(µ
Π

)

}
+ rand

]
. (15)

In the expression above, the computation of Πm requires i) computing C′, the Cholesky factor of Ω̄−1
Π ; ii)

obtaining C−1′ by inverting C′; iii) performing the two multiplications of the terms in the curly and square

brackets by C−1′ and C−1 respectively. However, in the above expression C is triangular so its inversion is

less expensive, in particular one can simply use the command for backward solution of a linear system as

suggested by Chan (2015) instead of inverting the matrices:

vec(Πm) = C\
[
C′\

{
vec

(
T∑
t=1

Xty
′
tΣ
−1
t

)
+ Ω−1

Π vec(µ
Π

)

}
+ rand

]
, (16)

where X = C\B is the matrix division of C into B, which is roughly the same as C−1B , except it is

computed as the solution of the equation CX = B. A draw in this case still requires the computation of the

Cholesky factor of Ω̄−1
Π and its inversion, but the multiplications are avoided. Moreover in general computing

inverse matrixes using the \ operator is faster and more precise than matrix inversion in softwares such as
Matlab. Therefore, using (16) to perform a draw requires only 2O(N6). While this is twice as fast as using

(13), it is just a linear improvement and it is not suffi cient to solve the bottleneck in estimation of large

systems, as the overall computational complexity for calculating a draw is still of the order O(N6). In the

remainder of the paper we use the strategy outlined in this footnote for all the models we consider.
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where the subscript t has been eliminated from the matrix Λ, so that we have

V ar(vt) = Σ = A−1ΛA−1′. (19)

For this model, the prior distribution typically used is

vec(Π) ∼ N(vec(µ
Π

),ΩΠ); (20)

Σ ∼ IW (dΣ · Σ, dΣ), (21)

and the implied posteriors are

vec(Π)|Σ, y ∼ N(vec(µ̄Π),ΩΠ); (22)

Σ|Π, y ∼ IW ((dΣ + T ) · Σ̄, dΣ + T ); (23)

with

Ω̄−1
Π = Ω−1

Π +

T∑
t=1

(Σ−1 ⊗XtX ′t). (24)

The matrix in (24) still has the same dimension of the one in (14), notwithstanding the fact

that the matrix Σ does not vary with time.

The papers that have estimated homoskedastic VARs with a large cross section all use

a different prior for Π:

vec(Π)|Σ ∼ N(vec(µ
Π

),Σ⊗ Ω0), (25)

that is, the prior is conditional on knowledge of Σ, and the matrix Σ is used to elicit the

prior variance ΩΠ = Σ⊗ Ω0. Under these assumptions equation (24) simplifies to:

Ω̄−1
Π = Σ⊗

{
Ω0 +

T∑
t=1

XtX
′
t)

}
, (26)

which has a Kronecker structure that permits manipulating the two terms in the Kronecker

product separately (for details see Carriero, Clark and Marcellino 2015), which provides

huge computational gains and reduces the complexity to N3. This specification allowed

researchers, starting with Banbura, Giannone and Reichlin (2010), to estimate BVARs with

more than a hundred variables.

However, a specification such as (25) is restrictive, as highlighted by Zellner (1973),

Kadiyala and Karlsson (1997), because it prevents permitting any asymmetry in the prior

across equations, and it requires specifying the prior on the mean coeffi cients conditionally

on the prior on the variance coeffi cients. For example, the traditional Minnesota prior in

the original Litterman (1986) implementation can not be cast in such a convenient form,

because it imposes extra shrinkage on lags of variables that are not the lagged dependent
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variable in each equation. Moreover, as noted by Sims and Zha (1998), the restriction

ΩΠ = Σ ⊗ Ω0, which is necessary to preserve a convenient system structure, implies the

unappealing consequence that prior beliefs are correlated across equations of the reduced

form representation of the VAR, with a correlation structure proportional to that of the

disturbances.4

As we shall see, our proposed algorithm also solves the prior asymmetry problem and

allows the estimation – for example – of a large VAR with the traditional Minnesota prior

and random error variance.

2.4 The triangular algorithm

In this section we propose a very simple algorithm which solves the problems we discussed in

the previous subsections. The algorithm does so simply by blocking the conditional posterior

distribution in (10) in N different blocks. Recall that in the step of the Gibbs sampler that

involves drawing Π, all of the remaining model coeffi cients are given, and consider again the

decomposition vt = A−1Λ0.5
t εt:

v1,t

v2,t

...

vN,t

 =


1 0 ... 0

a∗2,1 1 ...

... 1 0

a∗N,1 ... a∗N,N−1 1




h0.5

1,t 0 ... 0

0 h0.5
2,t ...

... ... 0

0 ... 0 h0.5
N,t




ε1,t

ε2,t

...

εN,t

 , (27)

where a∗j,i denotes the generic element of the matrix A
−1 which is available under knowledge

of A. The VAR can be written as:

y1,t = π1,1y1,t−1 + ...+ π1,NyN,t−1 + h0.5
1,t ε1,t

y2,t = π2,1y1,t−1 + ...+ π2,NyN,t−1 + a∗2,1h
0.5
1,t ε1,t + h0.5

2,t ε2,t

...

yN,t = πN,1y1,t−1 + ...+ πN,NyN,t−1 + a∗N,1h
0.5
1,t ε1,t + ...+ a∗N,N−1h

0.5
N−1,tεN−1,t + h0.5

N,tεN,t,

with generic equation:

yj,t − (a∗j,1h
0.5
1,t ε1,t + ...+ a∗j,,j−1h

0.5
j−1,tεj−1,t) = πj1y1t−1 + ...+ πjNyNt−1 + hj,tεj,t. (28)

4Sims and Zha (1998) propose an approach which allows for a more general structure of the coeffi cient

prior variance, and which attains computational gains also of order O(N2). However, their approach is

restricted to homoskedastic VARs and is based on the structural equations of the system. In particular, their

prior achieves computational gains by assuming independence across the coeffi cients belonging to different

structural equations, but the implied correlations across reduced form coeffi cients are still proportional to

the correlations of the disturbances. For this reason their approach can not achieve computational gains for

an asymmetric prior on the reduced form equations coeffi cients, as explained in section 5.2 of their paper.
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Consider estimating these equations in order from j = 1 to j = N . When estimating

the generic equation j the term of the left hand side in (28) is known, since it is given by

the difference between the dependent variable of that equation and the estimated residuals

of all the previous j − 1 equations. Therefore we can define:

y∗j,t = yj,t − (a∗j,1h
0.5
1,t ε1,t + ...+ a∗j,,j−1h

0.5
j−1,tεj−1,t), (29)

and equation (28) becomes a standard generalized linear regression model for the variable

in equation (29) with i.i.d. Gaussian disturbances with mean 0 and variance hj,t. The

distribution (10) can be factorized as:

p(Π|A,Φ,ΛT , y) = p(πN,1, ...., πN,N |πN−1,1, ...., πN−1,N , ..., π1,1, ...., π1,N , A,ΛT , y)

×p(πN−1,1, ...., πN−1,N |πN−2,1, ...., πN−2,N , ..., π1,1, ...., π1,N , A,ΛT , y)

×...× p(π1,1, ...., π1,N |A,Φ,ΛT , y). (30)

Using the factorization in (30) together with the model in (28) allows to draw the co-

effi cients of the matrix Π in separate blocks. Define the j-th row of the matrix Π as

Π{j} = {πj1, ..., πjN} and all the previous rows as Π{1:j−1}. Then draws of Π{j} can be

obtained from:

Π{j}|Π{1:j−1}, A,ΛT , y ∼ N(µ̄Π{j} ,ΩΠ{j}) (31)

with

µ̄Π{j} = ΩΠ{j}

{
T∑
t=1

Xj,th
−1
j,t y

∗′
j,t + Ω−1

Π{j}
(µ

Π{j}
)

}
(32)

Ω
−1
Π{j} = Ω−1

Π{j}
+

T∑
t=1

Xj,th
−1
j,tX

′
j,t (33)

where y∗j,t is defined in (29) and where Ω−1
Π{j}

and µ
Π{j}

denote the prior moments on the

j-th equation, given by the j-th column of µ
Π
and the j-th block on the diagonal of Ω

−1
Π .

Note we have implicitly assumed here that the matrix Ω−1
Π is block diagonal, which means

that we are ruling out any prior correlation among the coeffi cients belonging to different

equations. This is a restriction with respect to the more general model, however we note

that the typical priors elicited in the literature for the matrix Ω typically do not involve

cross-equation correlations.5

5A notable exception is the conjugate prior for a homoskedastic VAR in (25), which restricts the structure

of the correlations to be proportional to the error variance. Some priors involve prior correlations among

coeffi cients of the same equations, notably the sum of coeffi cients and unit root prior proposed by Sims (1993)

and Sims and Zha (1998). This case is still consistent with our block-diagonal specification for the matrix

Ω−1
Π .
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The dimension of the matrix Ω
−1
Π{j} is (Np + 1), which means that its manipulation

only involves operations of order O(N3). However, since in order to obtain a draw for

the full matrix Π one needs to draw separately all of its N rows, the total computational

complexity of this algorithm is O(N4). This is considerably smaller than the complexity

of O(N6) implied by the standard algorithm, with a gain of N2. For a model with 20

variables this difference amounts to a 400-fold improvement in estimation time. Where is

the computational gain coming from? In the traditional algorithm the sparsity implied by

the possibility of triangularising the system is not exploited, and all computations are carried

out using the whole vectorized system. In this algorithm instead the triangularization allows

to estimate equations which are at most containing Np + 1 regressors, and the correlation

among the different equations typical of SUR models is implicitly accounted for by the

triangularisation scheme.

Finally, note that in a homoskedastic model the same reasoning for drawing the coeffi -

cients Π applies, so that the relevant posterior distributions for the Gibbs sampler would

again be given by equation (31), with prior mean and variance given by formulas (32) and

(33), with the only difference being that the subscript t would be omitted from the volatility

terms hj,t. For this reason, the equation-by-equation step can be also used to estimate large

VARs with asymmetric priors, such as, e.g., the Minnesota prior.

In closing this Subsection it is worth to stress that expression (27) and the following

triangular system are based on a Cholesky-type decomposition of the variance Σt, but such

decomposition here is simply used as an estimation device, not as a way to identify structural

shocks. The ordering of the variables in the system does not change the joint posterior of

the reduced form coeffi cients, so changing the order of the variables is inconsequential to

the results, even though it is of course convenient to order the variables in a way that is

already consistent with the preferred strategy for identification of structural shocks.

2.5 MCMC samplers

To conclude, we summarize the steps involved in the MCMC samplers for the BVAR with

stochastic volatility and for a BVAR with asymmetric priors, highlighting how all the existing

algorithms can be easily modified to include our equation-by-equation step in place of the

standard system-wide step for drawing the VAR conditional mean coeffi cients.

2.5.1 Gibbs sampler for large VAR with stochastic volatility

We estimate the BVAR model with stochastic volatility (BVAR-SV) with a Gibbs sampler.

Let sT denote the states of the mixture of normals distribution used in the Kim, Shephard,
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and Chib (1998) algorithm, and recall that Θ denotes all the model coeffi cients, while yT

and ΛT denote the full time series of the data and states.

The Gibbs sampler draws in turn from the conditionals p(ΛT |Θ, sT , yT ) and p(Θ, sT |ΛT ,yT ).

Step 1: Draw from p(ΛT |Θ, sT , yT ) relying on the state space representation described

above and the Kalman filter and simulation smoother of Durbin and Koopman (2001).

Step 2: Draw from p(Θ, sT |ΛT ,yT ) relying on the factorization p(Θ, sT |ΛT ,y) ∝ p(sT |Θ,ΛT ,y)·
p(Θ|ΛT ,y), that is by (i) drawing from the marginal posterior of the model parameters

p(Θ|ΛT ,yT ) and (ii) drawing from the conditional posterior of the mixture states p(sT |Θ,ΛT ,yT ).

The marginal posterior p(Θ|ΛT ,yT ) is sampled by further breaking the parameter block

into pieces and drawing from the distributions of each parameter piece conditional on the

other parameter pieces (steps 2a-2c below), while draws from p(sT |Θ,ΛT ,yT ) (step 2d) are

obtained using steps similar to those described in Primiceri (2005). In more detail, the

sub-steps used to produce draws from p(Θ, sT |ΛT ,yT ) are as follows.

Step 2a: Draw Φ conditional on the data and ΛT , using the conditional (IW) distribution

for the posterior given in (12).

Step 2b: Draw the matrix of VAR coeffi cients Π equation by equation, conditional on

the data, A and ΛT , using the conditional (normal) distribution for the posteriors given in

equation (31) and the factorization (30).

Step 2c: Draw the elements of the matrix A conditional on the data, Π and ΛT , using

the conditional distribution for the posterior given in (11).

Step 2d: Draw the states of the mixture of normals distribution sT conditional on the

data, ΛT , and the parameter block Θ.

Alternatively, if the innovations to volatility are assumed to be uncorrelated, one can

use the Cogley and Sargent (2005) approach to draw the volatility states ΛT . In such case

there is no need to introduce the mixture states sT and therefore step 2d is not necessary

while step 1 uses an independence Metropolis step such as the one described in Cogley and

Sargent (2005).

Note that the only difference between this algorithm and the standard algorithm used

in most implementations of VARs with stochastic volatility is in step 2b, which here is

performed equation by equation. This means that if a researcher already has a standard

algorithm, its computational effi ciency can be easily improved by simply replacing the tra-

ditional system wide step to draw Π with step 2b.
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2.5.2 Gibbs sampler for large VAR with asymmetric prior

In the case of a homoskedastic model with an asymmetric prior the Gibbs sampler works as

follows.

Step 1: Draw the matrix of VAR coeffi cients Π equation by equation, conditional on the

data, A, and Λ using the conditional (normal) distribution given in equation (31) and the

factorization (30).

Step 2: Draw the matrix Σ conditional on the data and Π, using the conditional (IW)

distribution for the posterior given in (23), and derive the matrices A−1 and Λ using the

decomposition in equation (19).

Note that the only difference between this algorithm and the standard algorithm used

e.g. in Kadiyala and Karlsson (1997) for the independent Normal-Wishart prior is in step 1,

which here is performed equation by equation. This means that if a researcher already has a

standard algorithm, its computational effi ciency can be easily improved by simply replacing

the traditional system-wide step to draw Π with step 1 above.

3 A numerical comparison of the estimation methods

In this section we compare the proposed triangular algorithm with the traditional system-

wide algorithm for estimation of the VAR in (1)-(2).

3.1 Computational complexity and speed of simulation

First, we compare the results obtained by using either algorithm as the dimension of the

cross section N increases. We use data taken from the dataset of McCracken and Ng (2015)

(MN dataset), at monthly frequency, from January 1960 to December 2014. The data are

transformed as in McCracken and Ng (2015) to achieve stationarity and their short acronyms

are listed in Table 1.

We start by simply comparing the posterior estimates obtained using the two alternative

algorithms, focussing on a medium-sized system of 20 variables and 13 lags. The 20 variables

we select for this exercise are identified by a star in Table 1, and they include a selection

of the most relevant time series in the MN dataset. Figure 1 presents the impulse response

functions to a monetary policy shock defined as a shock to the federal funds rate obtained

using the two alternative algorithms, based on 5000 draws from the posterior distribution

after 500 draws of burn-in. Of course, the two algorithms produce the same results, and any

residual difference is due to sample variation and is bound to disappear as the number of
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replication increases.6 A similar picture comparing the (time series of) the distributions of

the time-varying volatilities shows completely indistinguishable results, and for this reason

we omit it.

Importantly, though, the estimation of the model using the traditional system-wide

algorithm was about 261 times slower. This represents a substantial improvement in the

ease of estimating and handling these models, which is relevant especially in consideration

of the fact that models of this size have been markedly supported by the empirical evidence

in contributions such as Banbura, Giannone, and Reichlin (2010), Carriero, Clark, and

Marcellino (2015), Giannone, Lenza, and Primiceri (2015) and Koop (2013). Figure 2

illustrates the computational gains arising from the use of the triangular algorithm. The

top panel shows the computational time (on a 2014 top-range iMac) needed to perform 10

draws as a function of the size of the cross section using the triangular algorithm (green

line) and the system-wide algorithm (blue line). As is clear, the computational gains grow

nonlinearly and become already substantial with N > 5. The bottom panel compares the

gain in theoretical computational complexity (black dashed line - which is equal to N2)

with the actual computational time. As is clear, for smaller systems the computational

gains achieved are below the theoretical ones, but this is due to all the other operations

involved in the estimation rather than the core computations involving the inversion of the

coeffi cients posterior variance matrix.

In order to explore what happens for cross sections larger than N = 10, Figure 3 extends

the results of Figure 2 up to N = 40. These results are computed by including additional

variables from the MN dataset. Since the computational gains become so large that they

create scaling problems, results in this Figure are displayed using a logarithmic vertical axis.

As is clear, the computational gains from the triangular algorithm grow quadratically, and

after N = 25 they become even larger than the theoretical gains, which we attribute to the

fact that for such large systems the size of the operations is so large that it saturates the

CPU computing power.

3.2 Convergence and mixing

Clearly, as shown in Figure 1, the traditional step-wise and the proposed triangular algorithm

produce draws from the same posterior distribution. It could be argued that - as long as

we have an increasing computing power - using the triangular algorithm only achieves gains

in terms of speed. However, it is important to stress that - regardless of the power or the

6We repeated the exercise shutting down the random variation, i.e. using exactly the same random seed

for the two algorithms, and the results exactly coincide besides minimal numerical errors.
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computers used to perform the simulation - the triangular algorithm will always produce

many more draws than the traditional system-wide algorithm in the same unit of time. This

has important consequences in terms of producing draws with good mixing and convergence

properties.

To illustrate this point, we consider the quality of the draws that we can obtain from the

two algorithms within a given amount of time. Specifically, for the 20-variable model with

Minnesota prior and stochastic volatility described in the previous subsection, we first run

the system-wide algorithm and produce 5000 draws from it and record the total time needed

to produce these draws. Then, we run the triangular algorithm for the same amount of time,

and out of all the draws produced in this time interval, which are 261 times more -since this

algorithm is about 261 times faster, we perform skip-sampling by saving only each 261-th

draw. Obviously, this results in the same number of final draws (5000) but these draws have

dramatically improved convergence and mixing properties. Figure 4 plots the Ineffi ciency

Factors of 5000 draws obtained by running the two alternative algorithms for the same

amount of time. As is clear, the Ineffi ciency Factors produced by the triangular algorithm

are way lower than those obtained by the system-wide algorithm. The triangular algorithm

can produce draws many times closer to i.i.d. sampling in the same amount of time. Being

closer to i.i.d sampling, the draws from the triangular algorithm feature better convergence

properties. Instead, the system-wide algorithm is slower to converge (in a unit of time),

especially so for the coeffi cients related to volatility (the innovations to volatility and the

volatility states). Figure 5 illustrates the recursive means for some selected coeffi cients and

shows that the triangular algorithm with split sampling reaches convergence much faster

than the system-wide algorithm, and this pattern is particularly marked for the volatility

component of the model.

Since these gains are increasing nonlinearly with the system size, we conclude that, for

conventional forecasting or structural analysis with medium and large BVARs, the trian-

gular algorithm offers computational gains large enough that many researchers should find

it preferable. This should be especially true in forecasting analyses that involve model

estimation at many different points in time.

4 Example: A large VAR with drifting volatilities

In this Section we provide an example of how the triangular algorithm can be used to esti-

mate a very large BVAR with drifting volatilities. We consider a VAR with 125 variables,

which includes all of the variables considered by McCracken and Ng (2015) with the excep-
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tion of housing permits and their disaggregate components, which we exclude since these

variables produced problems of collinearity.

We use a specification with 13 lags and the prior mean and variance of the coeffi cients

set using an independent Normal-Wishart prior which reflects the prior mean and variances

of the original Minnesota prior. This means that we do impose cross-variable shrinkage.

Finally, all of the errors feature stochastic volatility. The total number of objects to estimate

is given by 203250 mean coeffi cients, 7750 covariance coeffi cients, and 125 latent states (each

of length T ). Despite the huge dimension of the system, the proposed algorithm can produce

5000 draws (after 500 of burning in) in just above 7 hours on a 2014 top-of the range iMac.

Results are summarized in Figures 6-10. Figure 6 provides convergence diagnostics

(Ineffi ciency Factors and Potential Scale Reduction Factors) on the various parameters and

latent states. As is clear from the figure, once a skip-sampling of 5 is performed (leaving

1000 clean draws) the algorithm has good convergence and mixing properties. Note that,

with a model this large, skip-sampling greatly reduces storage costs.

Figures 7 and 8 present the estimated volatilities. It turns out that there is substantial

homogeneity in the estimated volatility patterns for variables belonging to the same group,

such as IP and PPI components or interest rates at different maturities, but there is some

heterogeneity across groups of variables. Moreover, while the Great Moderation starting

around 1985 is evident in most series, the effects of the recent crisis are more heterogeneous.

In particular, while volatility of real variables, such as IP and employment, and financial

variables, such as stock price indexes, interest rates and spreads, goes back to lower levels

after the peak associated with the crisis, there seems to remain a much higher level of

volatility than before the crisis in price indicators, in particular in PPI and its components

and also in several CPI components as well as in monetary aggregates, but also in housing

starts. Overall, the first principal component of all the estimated volatilities explains about

56% of overall variance, and the first three 85%, confirming that commonality is indeed

present but idiosyncratic movements also matter (as in the GFSV specification of Carriero

et al. (2012)).

Figures 9 and 10 present the estimated impulse response functions to a unitary shock

to the federal funds rate, replicating in our context the analysis of Bernanke, Boivin and

Eliasz (2005), based on a constant parameter FAVAR, and that of Banbura, Giannone and

Reichlin (2010) based on a large VAR with homoskedastic errors. For identification, the

federal funds rate is ordered after slow-moving and before fast-moving variables. A first,

and obvious, comment is that the size of the shock was clearly not stable over time, as from

Figure 8 the volatility of the federal funds rate changed substantially over time, so that
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the overall contribution of the monetary policy shock is also changing over time, while it is

assumed constant in models with homoskedastic errors. Next, looking at all the responses,

we see that they look reasonable, with a significant deterioration in real variables such as

IP, unemployment, employment and housing starts, only very limited evidence of a price

puzzle, with most price responses not statistically significant, a significant deterioration in

stock prices, a less than proportional increase in the entire term structure, which leads to a

decrease in the term spreads, progressively diminishing over time, and a negative impact on

the ISM indexes. Overall, the responses are in line with those reported in Banbura, Gian-

none and Reichlin (2010) since, as we have seen, the presence of heteroskedasticity does not

affect substantially the VAR coeffi cient estimates, but it matters for calculating the confi-

dence bands and understanding the evolution of the size of the shock (and therefore of the

responses) over time. Stochastic volatility would also matter for variance decompositions,

omitted here in the interest of brevity.

5 Conclusions

In this paper we have proposed a new algorithm to perform estimation of large VARs with

possibly asymmetric priors and drifting volatilities. The algorithm is based on a straight-

forward triangularization of the system, and it is very simple to implement. The algorithm

ensures computational gains of order N2 with respect to the traditional algorithm used to

estimate VARs with independent Normal-Wishart priors, and because of this it is possible

to achieve much better mixing and convergence properties compared to existing algorithms.

We have illustrated the algorithm with an empirical application on the effects of a monetary

policy shock in a large Vector Autoregression. Given its simplicity and the advantages in

terms of speed, mixing, and convergence, we argue that the proposed algorithm should be

preferred in empirical applications involving large datasets.
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Table	1:	Variables	used	in	the	125-dimensional	VAR	with	Minnesota	prior	and	stochastic	volatility	
(a	star	indicates	inclusion	in	the	20-variable	system)	

	
	
Slow	variables		 		

		 variable	 mnemonic	
1	 Real	Personal	Income*	 RPI	
2	 RPI	ex.	Transfers	 W875RX1	
3	 Real	PCE*	 DPCERA3M086SBEA	
4	 Real	M&T	Sales*	 CMRMTSPLx	
5	 Retail	and	Food	Services	Sales	 RETAILx	
6	 IP	Index*	 INDPRO	
7	 IP:	Final	Products	and	Supplies	 IPFPNSS	
8	 IP:	Final	Products	 IPFINAL	
9	 IP:	Consumer	Goods	 IPCONGD	

10	 IP:	Durable	Consumer	Goods	 IPDCONGD	
11	 IP:	Nondurable	Consumer	Goods	 IPNCONGD	
12	 IP:	Business	Equipment	 IPBUSEQ	
13	 IP:	Materials	 IPMAT	
14	 IP:	Durable	Materials	 IPDMAT	
15	 IP:	Nondurable	Materials	 IPNMAT	
16	 IP:	Manufacturing	 IPMANSICS	
17	 IP:	Residential	Utilities	 IPB51222S	
18	 IP:	Fuels	 IPFUELS	
19	 Capacity	Utilization:	Manufacturing*	 CUMFNS	
20	 Help-Wanted	Index	for	US	Help	wanted	indx	 HWI	
21	 Help	Wanted	to	Unemployed	ratio	 HWIURATIO	
22	 Civilian	Labor	Force	 CLF16OV	
23	 Civilian	Employment	 CE16OV	
24	 Civilian	Unemployment	Rate*	 UNRATE	
25	 Average	Duration	of	Unemployment	 UEMPMEAN	
26	 Civilians	Unemployed	<5	Weeks	 UEMPLT5	
27	 Civilians	Unemployed	5-14	Weeks	 UEMP5TO14	
28	 Civilians	Unemployed	>15	Weeks	 UEMP15OV	
29	 Civilians	Unemployed	15-26	Weeks	 UEMP15T26	
30	 Civilians	Unemployed	>27	Weeks	 UEMP27OV	
31	 Initial	Claims	 CLAIMSx	
32	 All	Employees:	Total	nonfarm*	 PAYEMS	
33	 All	Employees:	Goods-Producing	 USGOOD	
34	 All	Employees:	Mining	and	Logging	 CES1021000001	
35	 All	Employees:	Construction	 USCONS	
36	 All	Employees:	Manufacturing	 MANEMP	
37	 All	Employees:	Durable	goods	 DMANEMP	
38	 All	Employees:	Nondurable	goods	 NDMANEMP	
39	 All	Employees:	Service	Industries	 SRVPRD	
40	 All	Employees:	TT&U	 USTPU	
41	 All	Employees:	Wholesale	Trade	 USWTRADE	
42	 All	Employees:	Retail	Trade	 USTRADE	
43	 All	Employees:	Financial	Activities	 USFIRE	
44	 All	Employees:	Government	 USGOVT	
45	 Hours:	Goods-Producing*	 CES0600000007	



46	 Overtime	Hours:	Manufacturing	 AWOTMAN	
47	 Hours:	Manufacturing	 AWHMAN	
48	 Total	Business	Inventories	 BUSINVx	
49	 Inventories	to	Sales	Ratio	 ISRATIOx	
50	 Ave.	Hourly	Earnings:	Goods*	 CES0600000008	
51	 Ave.	Hourly	Earnings:	Construction	 CES2000000008	
52	 Ave.	Hourly	Earnings:	Manufacturing	 CES3000000008	
53	 PPI:	Finished	Goods*	 PPIFGS	
54	 PPI:	Finished	Consumer	Goods	 PPIFCG	
55	 PPI:	Intermediate	Materials	 PPIITM	
56	 PPI:	Crude	Materials	 PPICRM	
57	 Crude	Oil	Prices:	WTI	 oilpricex	
58	 PPI:	Commodities*	 PPICMM	
59	 CPI:	All	Items	 CPIAUCSL	
60	 CPI:	Apparel	 CPIAPPSL	
61	 CPI:	Transportation	 CPITRNSL	
62	 CPI:	Medical	Care	 CPIMEDSL	
63	 CPI:	Commodities	 CUSR0000SAC	
64	 CPI:	Durables	 CUUR0000SAD	
65	 CPI:	Services	 CUSR0000SAS	
66	 CPI:	All	Items	Less	Food	 CPIULFSL	
67	 CPI:	All	items	less	shelter	 CUUR0000SA0L2	
68	 CPI:	All	items	less	medical	care	 CUSR0000SA0L5	
69	 PCE:	Chain-type	Price	Index*	 PCEPI	
70	 PCE:	Durable	goods	 DDURRG3M086SBEA	
71	 PCE:	Nondurable	goods	 DNDGRG3M086SBEA	
72	 PCE:	Services	 DSERRG3M086SBEA	

	 	 	
	 	 		

Fast	variables	 		

		 variable	 mnemonic	
73	 Effective	Federal	Funds	Rate*	 FEDFUNDS	
74	 Starts:	Total*	 HOUST	
75	 Starts:	Northeast	 HOUSTNE	
76	 Starts:	Midwest	 HOUSTMW	
77	 Starts:	South	 HOUSTS	
78	 Starts:	West	 HOUSTW	
79	 Orders:	Durable	Goods	 AMDMNOx	
80	 Unfilled	Orders:	Durable	Goods	 AMDMUOx	
81	 S&P:	Composite*	 S&P	500	
82	 S&P:	Industrials	 S&P:	indust	
83	 S&P:	Dividend	Yield	 S&P	div	yield	
84	 S&P:	Price-Earnings	Ratio	 S&P	PE	ratio	
85	 Switzerland	/	U.S.	FX	Rate	 EXSZUSx	
86	 Japan	/	U.S.	FX	Rate	 EXJPUSx	
87	 U.S.	/	U.K.	FX	Rate*	 EXUSUKx	
88	 Canada	/	U.S.	FX	Rate	 EXCAUSx	
89	 Month	AA	Comm.	Paper	Rate	CPF3M	Comm	paper	 CP3Mx	
90	 3-Month	T-bill	 TB3MS	
91	 6-Month	T-bill	 TB6MS	



92	 1-year	T-bond	 GS1	
93	 5-year	T-bond	 GS5	
94	 10-year	T-bond	 GS10	
95	 Corporate	Bond	Yield	Aaa	bond	 AAA	
96	 Corporate	Bond	Yield	Baa	bond	 BAA	
97	 CP	-	FFR	spread	CP-FF	spread	 COMPAPFFx	
98	 3	Mo.	-	FFR	spread	3	mo-FF	spread	 TB3SMFFM	
99	 6	Mo.	-	FFR	spread	6	mo-FF	spread	 TB6SMFFM	

100	 1	yr.	-	FFR	spread	1	yr-FF	spread*	 T1YFFM	
101	 5	yr.	-	FFR	spread	5	yr-FF	spread	 T5YFFM	
102	 10	yr.	-	FFR	spread	10	yr-FF	spread*	 T10YFFM	
103	 Aaa	-	FFR	spread	Aaa-FF	spread	 AAAFFM	
104	 Baa	-	FFR	spread	Baa-FF	spread*	 BAAFFM	
105	 Money	Stock	 M1SL	
106	 Money	Stock	 M2SL	
107	 Real	M2	Money	Stock	 M2REAL	
108	 St.	Louis	Adjusted	Monetary	Base	 AMBSL	
109	 Total	Reserves	 TOTRESNS	
110	 Nonborrowed	Reserves	 NONBORRES	
111	 Commercial	and	Industrial	Loans	 BUSLOANS	
112	 Real	Estate	Loans	 REALLN	
113	 Total	Nonrevolving	Credit	 NONREVSL	
114	 Credit	to	PI	ratio	 CONSPI	
115	 MZM	Money	Stock	 MZMSL	
116	 Consumer	Motor	Vehicle	Loans	 DTCOLNVHFNM	
117	 Total	Consumer	Loans	and	Leases	 DTCTHFNM	
118	 Securities	in	Bank	Credit	 INVEST	
119	 ISM	Manufacturing:	Production	 NAPMPI	
120	 ISM	Manufacturing:	Employment	 NAPMEI	
121	 ISM:	PMI	Composite	Index	 NAPM	
122	 ISM:	New	Orders	Index*	 NAPMNOI	
123	 ISM:	Supplier	Deliveries	Index	 NAPMSDI	
124	 ISM:	Inventories	Index	 NAPMII	
125	 ISM	Manufacturing:	Prices	 NAPMPRI	
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Figure 1: Impulse responses to a Federal Funds Rate shock, estimated under the system-wide and

triangular algorithms. For both algorithms the red solid line represents the median response, and the

dotted blue lines represent the 16% and 84% quantiles. See Table 1 for a description of the variables.
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Figure 2: Computational time and complexity of the alternative algorithms for a cross section of less

than 10 variables. Computational times are the average time (over 10 independent chains) required

to draw 10 draws on a 2014 iMac.
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Figure 3: Computational time and complexity of the alternative algorithms for a cross section of

more than 10 variables, y-axes are in logarithmic scale. Computational times are the average time

(over 10 independent chains) required to draw 10 draws on a 2014 iMac.
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Figure 4: Comparison of Ineffi ciency Factors between the system wide and triangular algorithm.

Kernel estimates. Solid, dashed, and dotted lines refer to 4, 8, and 15 percent tapering respectively.
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Figure 7: Posterior distribution of volatilities (diagonal elements of Σt ), slow variables.
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Figure 8: Posterior distribution of volatilities (diagonal elements of Σt ), fast variables.
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Figure 9: Impulse responses to a monetary policy shock: slow variables.
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Figure 10: Impulse responses to a monetary policy shock: fast variables.
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