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Semicontinuous integrands as jointly measurable
maps∗

Oriol Carbonell-Nicolau†

October 2013

Abstract
Suppose that (X ,A ) is a measurable space and Y is a metrizable, Souslin space. Let
A u denote the universal completion of A . Given f : X ×Y → R and x ∈ X , let f (x, ·) be
the lower semicontinuous hull of f (x, ·). If f is (A u ⊗B(Y ),B(R))-measurable, then f is
(A u ⊗B(Y ),B(R))-measurable.

Keywords: lower semicontinuous hull, jointly measurable function, measurable pro-
jection theorem, normal integrand.

Classification: 54C30, 28A20.

Let (X ,A ) be a measurable space. For every bounded measure µ on (X ,A ), let A µ denote
the completion of A with respect to µ. Let

A u :=⋂{
A µ :µ is a bounded measure on (X ,A )

}
.

The σ-algebra A u is called the universal completion of A .
Given f : X ×Y →R, define the map f : X ×Y →R by

f (x, y) := sup
Vy

inf
z∈Vy

f (x, z),

where Vy ranges over all neighborhoods of y. For each x ∈ X , f (x, ·) is the lower semicontinuous
hull of f (x, ·).

Let Y be a topological space, and let B(Y ) represent the σ-algebra of Borel subsets of Y .
The space Y is said to be Souslin if it is Hausdorff and there exist a Polish space P and a
continuous surjection from P to Y .

Given f : X ×Y →R, define the map f : X ×Y →R by

f (x, y) := sup
Vy

inf
z∈Vy

f (x, z),

where Vy ranges over all neighborhoods of y. For each x ∈ X , f (x, ·) is the lower semicontinuous
hull of f (x, ·). If Y is metrizable, f can be expressed as

f (x, y)= sup
n∈N

inf
z∈N 1

n
(y)

f (x, z),

where N 1
n
(y) represents the open 1

n -neighborhood of y.
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Theorem. Suppose that (X ,A ) is a measurable space and Y is a metrizable, Souslin space.
Suppose further that the map f : X ×Y → R is (A u ⊗B(Y ),B(R))-measurable. Then f is
(A u ⊗B(Y ),B(R))-measurable.

Proof. Define gn : X ×Y →R by

gn(x, y) := inf
z∈N 1

n
(y)

f (x, z).

We first show that gn is (A u ⊗B(Y ),B(R))-measurable for each n.
Let

Dn :=
{
(x, y, z) ∈ X ×Y ×Y : z ∈ N 1

n
(y)

}
.

The map gn is (A u ⊗B(Y ),B(R))-measurable if for a ∈R,{
(x, y) ∈ X ×Y : gn(x, y)< a

} ∈A u ⊗B(Y ). (1)

Given a ∈R we have {
(x, y) ∈ X ×Y : gn(x, y)< a

}=ProjX×Y (En), (2)

where
En := {

(x, y, z) ∈ Dn : f (x, z)< a
}

and ProjX×Y (En) represents the projection of En onto X ×Y . Thus, to establish (1) it suffices
to show that ProjX×Y (En) belongs to A u ⊗B(Y ).

Because Y is a Souslin space, Y is a Lindelöf space, and since Y is in addition metrizable,
Y is separable. Because Y is separable, there is a countable, dense subset Q of Y . Let
{y1, y2, ...} be an enumeration of this set. For α> 0 and y ∈Y , define

A(α,y) := {(x, z) ∈ X ×Nα(y) : f (x, z)< a} .

Let ProjX (A(α,y)) be the projection of A(α,y) onto X . Let Q denote the set of rational numbers
in (0, 1

n ). Define
Sn := {

(α,β) ∈Q×Q :α+β≤ 1
n
}
.

We have
ProjX×Y (En)= ⋃

(m,(α,β))∈N×Sn

[
ProjX (A(α,ym))×Nβ(ym)

]
. (3)

To see this, observe that given (x, y) ∈ProjX×Y (En), there exists z such that (x, y, z) ∈ Dn (i.e.,
(x, y, z) ∈ X ×Y ×Y and z ∈ N 1

n
(y)) and f (x, z)< a. Let d be a compatible metric on Y , and fix

ε ∈ (
0, 1

3

( 1
n −d(y, z)

))
.

For y′ ∈ Nε(y) we have

d(y′, z)≤ d(y′, y)+d(y, z)< ε+d(y, z)< 1
3

( 1
n −d(y, z)

)+d(y, z),

so there is a rational number

β ∈ (1
3

( 1
n −d(y, z)

)
, 1

2

( 1
n −d(y, z)

))
such that d(y′, z)<β+d(y, z) for all y′ ∈ Nε(y), and hence there is a rational number

α ∈ (
β+d(y, z), 1

2

( 1
n −d(y, z)

)+d(y, z)
)
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such that d(y′, z)<α for all y′ ∈ Nε(y). Consequently, since by denseness of Q in Y one may
choose m such that ym ∈ Nε(y), we have z ∈ Nα(ym). It follows that (x, z) ∈ X ×Nα(ym) and
f (x, z)< a (so that x ∈ProjX (A(α,ym))) and, since

d(y, ym)< ε< 1
3

( 1
n −d(y, z)

)<β,

y ∈ Nβ(ym). We conclude that (x, y) ∈ProjX (A(α,ym))×Nβ(ym) with (α,β) ∈Q×Q and

α+β≤ 1
2

( 1
n −d(y, z)

)+d(y, z)+ 1
2

( 1
n −d(y, z)

)≤ 1
n .

Conversely, if (x, y) ∈ProjX (A(α,ym))×Nβ(ym) for some (m, (α,β)) ∈N×Sn, then there exists
z such that (x, z) ∈ X ×Nα(ym) and f (x, z)< a. In addition,

d(y, z)≤ d(y, ym)+d(ym, z)<β+α≤ 1
n .

Consequently, (x, y, z) ∈ X ×Y ×Y and z ∈ N 1
n
(y) (so that (x, y, z) ∈ Dn) and f (x, z)< a, which

implies that (x, y) ∈ProjX×Y (En).
Because f is (A u ⊗B(Y ),B(R))-measurable, we have A(α,y) ∈A u ⊗B(Y ) for every α> 0

and y ∈Y . Therefore, because Y is a Souslin space, the measurable projection theorem (e.g.,
Sainte-Beuve [6], Theorem 4) gives ProjX (A(α,y)) ∈ A u for α> 0 and y ∈ Y .1 In light of (3),
therefore, we conclude that ProjX×Y (En) ∈A u ⊗B(Y ).

Because ProjX×Y (En) ∈ A u ⊗B(Y ), gn is (A u ⊗B(Y ),B(R))-measurable (recall (2) and
(1)). It only remains to observe that

f (x, y)= sup
n∈N

inf
z∈N 1

n
(y)

f (x, z)= sup
n∈N

gn(x, y),

so f is (A u ⊗B(Y ),B(R))-measurable.

In the remainder of the paper we present an application of the above result. Let (X ,A ,µ)
be a finite measure space with A =A u. Let Y be a metrizable Lusin space (i.e., a metrizable
topological space which is homeomorphic to a Borel subset of a compact metrizable space). A
transition probability with respect to (X ,A ) and (Y ,B(Y )) is a function σ : B(Y )× X → [0,1]
satisfying the following:

• σ(·|x) is a probability measure on (Y ,B(Y )) for every x ∈ X .

• σ(B|·) is (A ,B([0,1]))-measurable for every B ∈B(Y ).

The set of transition probabilities with respect to (X ,A ) and (Y ,B(Y )) is denoted by S .
A normal integrand on X ×Y is a map f : X ×Y →R satisfying the following:

• f (x, ·) is lower semicontinuous on Y for every x ∈ X .

• f is (A ⊗B(Y ),B(R))-measurable.

Let L1(X ,A ,µ) represent the set of (A ,B(R))-measurable functions ξ : X →R such that∫
X
|ξ(x)|µ(dx)<∞.

The set of all normal integrands f on X ×Y for which there exists ξ ∈ L1(X ,A ,µ) such that
ξ(x)≤ f (x, y) for all (x, y) ∈ X ×Y is denoted by F .

1For the case when Y is Polish, the measurable projection theorem can also be found in Cohn ([5], Proposition
8.4.4).
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For f ∈F , the functional I f : S →R is defined by

I f (σ) :=
∫

X

∫
Y

f (x, y)σ(d y|x)µ(dx).

The narrow topology on S is the coarsest topology that makes the functionals in {I f : f ∈
F } lower semicontinuous. This topology has been studied by Balder [1, 2, 3] and applied to
the theory of games with incomplete information (e.g., Balder [2] and Carbonell-Nicolau and
McLean [4]).

Suppose that the map f : X ×Y → R is (A ⊗B(Y ),B(R))-measurable. Suppose further
that there exists ξ ∈ L1(X ,A ,µ) such that ξ(x)≤ f (x, y) for all (x, y) ∈ X ×Y . Then f satisfies
ϕ(x) ≤ f (x, y) for all (x, y) ∈ X ×Y and for some ϕ ∈ L1(X ,A ,µ). In addition, f (x, ·) is lower
semicontinuous on Y for every x ∈ X , and, by virtue of the Theorem, f is (A ⊗B(Y ),B(R))-
measurable. Consequently, f ∈F . It follows that if S is endowed with the narrow topology,
for each ε> 0 and every σ ∈S there exists an open set V in S containing σ such that

I f (ν)≥ I f (σ)−ε, for all ν ∈V .
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