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Semiparametric Instrumental Variable Estimation in an
Endogenous Treatment Model1
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Abstract

We propose instrumental variables (IV) estimators for quantile marginal e¤ects and the parame-
ters upon which they depend in the context of a semiparametric outcome model with endogenous
discrete treatment variables. We prove identi�cation, consistency and

p
N -asymptotic normality

of the estimators. We also show that they are e¢ cient under correct model speci�cation. Fur-
ther, we show that they are robust to misspeci�cation of the treatment model in that consistency
and asymptotic normality continue to hold in this case. In the Monte Carlo study, the estimators
perform well over a wide variety of designs covering both correct and incorrect treatment model
speci�cations.
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1 Introduction

In this paper, we consider a class of semiparametric models in which the outcome depends on a vector
of endogenous treatments with unknown treatment effect functions of exogenous variables. For
these models, our main objective is to develop robust, efficient, and

√
N−asymptotically normally

distributed estimators for quantile marginal effects and the parameters upon which they depend.
We refer to these effects as quantile marginal effects because they estimate the expected treatment
impact conditioned on the exogenous variables being in a quantile region of interest. We term the
estimators as robust as they retain consistency and asymptotic normality when the treatment model
is misspecified. When the treatment model is correctly specified, we provide efficient estimators for
quantile marginal effects and the parameter upon which they depend.

For the models being considered, the treatments are discrete endogenous variables that flexibly
interact with other explanatory variables. Specifically, with Y as an outcome, X a vector of exoge-
nous variables, and T a discrete treatment vector, we focus on the class for which the treatment
effects are given by M(W), where M is a vector of unknown functions and W is a vector of indices
that depend on X and a parameter vector θ0. To estimate marginal effect functions, we develop a
localized Instrumental Variable (IV) strategy that iteratively employs two sets of instruments for
estimating them and the underlying finite dimensional parameter vector. We provide closed form
expressions for the lower bound of the asymptotic covariance matrices for the estimators and the
corresponding instrument. To obtain these results, trimming out observations is required to deal
with small density denominators, and here we retain observations whose exogenous variables lie
in a set based on sample quantiles. For the parameter estimates, the quantile trimming set does
not need to be consistently estimated to obtain consistent parameter estimates. Accordingly, it is
not surprising that such trimming can be taken as known in developing the theory for the index
parameter estimator. In contrast, quantile marginal effects are obtained by averaging marginal ef-
fects over estimated quantile sets, and consistency of the former does depend on consistency of the
latter. Therefore, as one would expect from Newey and McFadden (1994), the covariance matrix
for quantile marginal effects depends on that for estimated quantiles in a manner that is formally
established in Lemma 3.

Endogeneity is a very important issue in econometric analysis, and there is a large parametric
literature on this issue (see e.g. Heckman (1978) and Hausman (1983)). To deal with this problem,
the IV estimator is widely employed in the empirical literature for parametric models (e.g. Card
(2001)). In part, IV is very appealing because it is robust against misspecification in modeling
the instruments. In nonlinear parametric models, Amemiya (1974,1977) developed an optimal
instrument which depends on an unknown conditional expectation of the derivative of a residual
function. Employing nonparametric expectations while retaining the parametric outcome model
structure, Newey (1990) provided a way to implement the optimal instrument and showed that the
estimator is consistent, asymptotically normal and efficient. The emphasis in this literature is on
estimating a finite dimensional parameter vector. With known parametric response functions and
with marginal effects being evaluated at a given value for the explanatory variables (often their
average or median), the marginal effects are easy to recover as they are known functions of the
parameters.
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The literature has continued to progress to fully nonparametric models based on either gener-
alizations of two-stage-least-squares or control approaches. For example, Newey and Powell (2003)
developed a two-stage series estimator with a detailed discussion on identification. Imbens and
Newey (2009) provided identification results and convergence rates for average structural functions.
Das (2005) and Cai et. al. (2005) developed a substitution estimator for a model that is linear
in endogenous variables with an associated multiplicative nonparametric impact or marginal effect
response functions. Newey, Powell, and Vella (1999) and Imbens and Newey (2009) developed con-
trol estimators for a nonparametric triangular system where both the treatment and the outcome
variables of interest are continuous. Our paper differs from these in two respects. First, for nonpara-
metric models, the issue of imposing incorrect parametric restrictions does not arise. In contrast,
robust estimation is an issue in a semiparametric context and is part of the focus of the present
paper. Second, while this literature estimates marginal effects or average structural functions, with
the exception of Das (2005) and Cai et. al. (2005), it has not developed distributional results for
them.

Turning to semiparametric models with endogeneity, we note that while such models are very
important in empirical studies, there is a scarce literature on distributional results for marginal
effects in such models. Further, many of the estimators are not robust to treatment misspecifica-
tion. For example, the estimator in Das (2005) and Cai et. al. (2005) for nonparametric models,
can be extended to the semiparametric case. However, because of the structure of the estimator,
its semiparametric extension is not robust to misspecification of the treatment model. Semipara-
metric extremum approaches such as Rothe (2009) could be developed for the model considered
here, but would not be robust to treatment misspecification. There is also a substantial literature
on control function approaches in semiparametric models (e.g. Blundell and Powell (2004)), but
such approaches are not applicable with discrete treatments. GMM estimators (e.g. Ai and Chen
(2003)) could be applied to the present model and would have robustness properties. However,
while this literature has recently focused on developing estimators for parameters under a large and
growing number of moment conditions, here we derive closed form expressions for optimal marginal
effect and parameter estimators and the corresponding covariance matrices. The present paper also
differs from this literature in developing

√
N− asymptotics for quantile marginal effects. We derive

an explicit form for the asymptotic covariance matrix that accounts for the presence of indicators
on estimated quantile sets. Theorem 5 shows that this matrix is minimal under correct treatment
specification.

To obtain these results, in Section 2, we describe the model and the estimators for the quantile
marginal effect functions and the parameters upon which they depend. As discussed in this section,
the estimators may be viewed as iterative versions of global and local IV approaches, where the
local formulation is motivated by the approach in Fan and Gibels (1996). Section 3 provides
assumptions and definitions needed to obtain large sample results. Section 4 provides the main
theorems for both a finite dimensional parameter vector and for quantile marginal effects. In Section
5, we provide a Monte Carlo study with designs in which we vary the form of the marginal effect
function. For each of these functions, we consider cases where the treatment model is misspecified,
taking the form of omitting relevant variables, and where it is correctly specified. We find that the
estimator developed here has good finite sample properties under correct and incorrect treatment
specification. Concluding remarks are provided in Section 6. The Appendix contains proofs of main
theorems along with required intermediate lemmas, and their proofs.
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2 The Model and the Estimator

The model we consider is one with discrete endogenous treatments and a continuous outcome. There
are many empirical applications with such a model structure. For example, in health economics,
the health outcome (e.g. survival) can be continuous and the treatment could be no treatment,
chemotherapy only, radiation therapy only, or both chemotherapy and radiation therapy. The
treatment could also be smoking choices: no smoking, smoking 1-5 cigarettes per week, smoking
6-10 cigarettes, etc. There are also many examples in labor economics such as job training program
choice with wages being the outcome.

Denote Yi as the continuous outcome and Wi is an i.i.d. vector of induces. With L+ 1 possible
treatment options, the endogenous treatment variable Ti takes on values 0, .., L with 0 as the null
option. Then, the model that we consider has the following structure:

Yi = g(Wi,Ti) + εi,

where εi is the error component with conditional expectation zero given the exogenous variables.
Write the treatment indicator as Til = 1{Ti = l}, l = 1, .., L. Then, because of the discreteness of
the treatment, we can rewrite the model as:

Yi =
L∑
l=1

g(Wi, l)Til + g(Wi, 0)

[
1−

L∑
l=1

Til

]
+ εi (1)

=
L∑
l=1

[g(Wi, l)− g(Wi, 0)]Til + g(Wi, 0) + εi

≡ Riα0 (Wi) + εi (2)

where

Ri ≡ [Ti,1] , α0(Wi) ≡


[g(Wi, 1)− g(Wi, 0)]

...
[g(Wi, L)− g(Wi, 0)]

g (Wi, 0)

 . (3)

The data set {Yi, Ti1, .., TiL,Wi}Ni=1 is identically and independently distributed (i.i.d.) taking
on values in XY × XT × XW ⊂ R1+L+KW with KW denoting the dimension of Wi. This model
structure is the same as in Das (2005) and Cai et. al. (2005) in the nonparametric case. For
this case, they proposed a substitution estimator where the endogenous treatment variables are
replaced by estimates of their conditional expectations. This estimator is very attractive for this
nonparametric case where by definition there are no incorrect parametric restrictions to consider.
However, there are applications where sample sizes are not sufficiently large to obtain reliable
estimates of nonparametric models. Semiparametric models have become important alternatives in
such cases. If the approaches discussed above are applied in a semiparametric context, the estimator
will typically be inconsistent when the semiparametric treatment model is not correctly specified.
In contrast, here we develop a semiparametric IV estimator that retains consistency and asymptotic
normality when the treatment model is misspecified. Further, we show that the IV estimator is
efficient under correct semiparametric specifications. Regardless of whether or not the treatment
model is correct, we show that the covariance matrix for our estimator does not depend on the
covariance matrix for the estimator of the treatment model.
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In the outcome model discussed above, we allow for multiple treatments and therefore we allow
for multiple indices in the treatment model. For example, consider a model with treatments T1 (e.g.
chemotherapy) and T2 (radiation). Suppose that each of these treatments is described by a single
index model:

T1 = 1{I1 > u1);T2 = 1{I2 > u2},

with thresholds u1 and u2 independent of the exogenous variables upon which the indices I1 and
I2 depend. For the model we consider, we allow for the joint treatment T3 = {I1 > u1 and I2 > u2}
to be another treatment, which results in a multiple index model. To handle these types of
cases, we allow for multiple treatment indices. For the outcome model, for expositional simplicity,
we adopt a single index specification, but note that the extension to multiple outcome indices is
straightforward.

With the parametric outcome index Vi(θ0) defined in (D1) in Section 3 and with v as a fixed
value for the index, refer to (2) and let ∆i(v) ≡ Riα0(Vi(θ0)) − Riα0(v). Then, we can write the
localized model as

Yi = Riα0(v) + [∆i(v) + εi] .

This localization is important, because it enables us to treat the α − functions evaluated at v
as estimable parameters.1 Kernel weighting is employed to enforce this localization by severely
downweighting any observations where Vi is not close to v.

If the above functions did not depend on unknown parameter values, we could then proceed to
develop a local IV estimator for the above model to recover the unknown functions at all points of
interest. With θ0 having dimension K1 and taking values in Φ1 ⊂ RK1 , assume that the outcome
index is a known function of θ0 : Vi (θ0). If we knew θ0 and hence the true index values and if we
only used observations Vi (θ0) in a neighborhood of v, then ∆i(v) would be close to zero. It would
then be natural to employ treatment probabilities as instruments and write localized IV moment
conditions as:

Q̂′DN (v, θ0) [Y −Rα0(v)] = 0

where with 1 denoting a vector of ones, Q̂ ≡ t̂{P̂ 1} includes trimming t̂ and an N ×L matrix of
probabilities P̂ as the treatment instruments. The diagonal matrix DN (v, θ0) is given by:

DN (v, θ0) ≡ diag

{
1

h
k

(
v − Vi (θ0)

h

)}
where the kernel function k(z) is a symmetric density and represents the localization that heavily
weights observations close to v. For known θ0, the above moment conditions generate the estimator
α̂ :

α̂(v, θ0) =
[
Q̂′DN (v, θ0)R

]−1

Q̂′DN (v, θ0)Y ,

provided that the inverse on the right-hand-side exists (as established in Theorem 1). In practice,
θ0 is unknown and must be estimated in conjunction with the unknown functions in α. To this end,
with functions evaluated at an arbitrary vector of parameter values θ, define:

α̂(v, θ) =
[
Q̂′DN (v, θ)R

]−1

Q̂′DN (v, θ)Y .

1Fan and Gibels (2008) analyzed a local polynomial approach in the case where endogeneity is not an issue.
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We now estimate the index using a second and different IV strategy. To motivate this strategy,
consider the Non-linear Least-Squares (NLS) estimator:

θ̂ = arg min
θ

∑
[Yi −Riα̂(Vi(θ), θ)]

2

The first-order conditions for the NLS estimator are given as:

1

N

∑
[Ri∇θα]′

[
Yi −Riα̂(Vi(θ̂), θ̂)

]
= 0.

Since this estimator will be inconsistent in general, we require an instrument for Ri∇θα. The
conditions the instrument Ẑi must satisfy are provided in (D9) and (D10) in Section 3. We also
discuss its implementation in the Monte Carlo study, with the instrument being the optimal one as
obtained in Theorem 4. Allowing for the possibility that this instrument may (and typically will)
be estimated, denote Ẑ as the instrument, which we assume converges in probability to Z. Then,
the IV estimator for θ0 is:

θ̂ = arg min
θ

[
1

N

N∑
i=1

Ẑ ′i [Yi −Riα̂(Vi (θ) , θ)]

]2

.

In proving properties for the estimator, we show that α̂(Vi (θ) , θ) converges uniformly in θ to a fixed
function α(Vi (θ) , θ). Further, we show that when evaluated at θ0, this function is equal to the true
marginal effect function.

The constructions of α̂ and θ̂ above provide the insight as to why the estimator is consistent
even when the treatment model is misspecified. Informally and abstracting away from trimming
issues, we use the term misspecified to mean that the treatment instruments are not the expected
value of the treatment vector conditioned on the model’s exogenous variables. For example, in the
Monte Carlo study, we consider a misspecified case where the treatment model is subject to omitted
variable bias. To intuitively see why the estimator is robust to such misspecification, it is useful
to consider the moment conditions that define the estimators. For the θ −moment conditions, we
employ the uniform convergence property of α̂(Vi (θ) , θ) to show that:

1

N

N∑
i=1

Ẑ ′i [Yi −Riα̂(Vi (θ) , θ)]

is uniformly close to:

E

[
1

N

N∑
i=1

Z ′i [Yi −Riα(Vj (θ) , θ)]

]
.

Similarly, for the α−moment conditions, it can be shown that they are uniformly close to:

E

[
1

N

N∑
i=1

Q′i [Yi −Riα(Vj (θ) , θ)]
1

h
k(
Vi (θ)− Vj (θ)

h
)

]
, j = 1, .., N .

Subject to identification conditions, the estimator will be robust if θ0 solves the moment condi-
tions when the treatment model is not correct. This is the case, because [Yi −Riα(Vi (θ0) , θ0)] = εi
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is uncorrelated with Qi regardless of whether Qi = E (Ri|XiF ) where XiF denotes the full set of
exogenous variables in the model. Similarly, with Zi as an appropriately selected vector of exoge-
nous variables, the θ−moment conditions will also be solved at θ0 when the treatment model is
misspecified. In contrast, if we use a substitution estimator with Qi replacing Ri, then (Ri−Qi)α0i

becomes an error component. When the treatment model is misspecified, it is highly likely that
this error component will be related to other included variables in a semiparametric context. We
explore this issue further in Monte Carlo experiments below.

It is interesting to note that for θ 6= θ0, the α(Vj (θ) , θ) functions will depend on the instrument
Q that is employed. However, at θ0, α(Vj (θ0) , θ0) = α0(Vj (θ0)) does not depend on Q. In other
words, at θ0, we are recovering a treatment effect that depends on X, but does not depend on the
instrument.

Having described the estimators for index parameters and α−functions, we turn to the estima-
tor for marginal effects. While marginal effects at specific points are implied by the α− functions,
these functions converge at a rate below the parametric rate of

√
N . Further, as the model is non-

linear, the marginal effects are not constant throughout the index distribution. In this paper, we
propose a marginal effect estimator over quantiles that converges at the

√
N rate as researchers

are often interested in marginal effects over different quantiles of the distribution of the exogenous
variables.

Let Vj(θ̂) be the estimated index for observation j and t̂qj as an indicator for a particular
variable of interest Xik being in an estimated quantile set. We then define a quantile marginal
effect as:

M̂qj ≡
N∑
j=1

t̂qjα̂
(
Vj

(
θ̂
)
, θ̂
)
/

N∑
j=1

t̂qj. (4)

We will show that this estimator is consistent and asymptotically normally distributed whether or
not the treatment model is correctly specified. When this model is correctly specified and the index
parameter is based on the efficient instrument given below, we show that the quantile marginal
effects estimator will also be efficient. In a parametric problem, this result would directly follow
when estimating the marginal effect at a point. In the present context, the marginal effect is
random even if evaluated at θ0. Here, we establish efficiency under correct specification by showing
that the distribution of the marginal effect depends on several uncorrelated components, one of
which accounts for parameter uncertainty. The efficient estimator for the marginal effect will then
be based on an efficient estimator for the parameters.

3 Definitions and Assumptions

In this section, we provide the definitions for our proposed estimators, the corresponding assump-
tions and also a brief discussion about them.

D1. Outcome Model. Referring to the general model in (1), with θ0 having dimension K1

and taking values in Φ1 ⊂ RK1 , let Wi ≡ Vi(θ0) = X1i + XIIiθ0 be the outcome index which
depends onXi ≡ [X1i, XIIi] . a vector of exogenous variables2 in the outcome equation. With

2For expositional purposes, we consider the single index case, but extensions to the multiple index case are
straightforward under bias corrections or higher order kernels.
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Ri ≡ [Ti 1] and α0(Vi(θ0)) the vectors in (2), the outcome model is defined as:

Yi = Riα0 (Vi(θ0)) + εi.

Letting ∆i(v) ≡ Riα0 (Vi(θ0))−Riα0(v), the localized model at v can be written as:

Yi = Riα0(v) + [∆i(v) + εi] . (5)

D2. Treatment Probability and Instrument. Denote P c
i ≡ E(Ti|XiF ) as the correct treat-

ment probability, where XiF contains all exogenous variables as specified in (A5). Let VT (γ)
be a vector of semiparametric indices for estimating the treatment probability, where γ is a
vector of K2 parameters taking on values in Φ2 ⊂ RK2 . Denote γ̂ as the parameter estimator
with limiting value γ∗. Then, define the treatment instrument as Pi ≡ E(Ti|VT i (γ∗)), which
may not be the same as P c

i due to misspecification in the treatment model.3

D3. Trimming. Let λ be a quantile fraction and W a vector of random variables with λth popu-
lation quantile vector q (λ).4 Let Wi be an i.i.d. sample from the density for W , and q̂ (λ) be
the λth sample quantile vector. Then, with all inequalities holding element by element, define
population and sample trimming functions that constrain the random variable of interest to
a quantile set:

ti (q) ≡ t (q(λ1), q(λ2) ,Wi) ≡ 1{q (λ1) < Wi < q (λ2)}
ti(q̂) ≡ t (q̂(λ1), q̂(λ2) ,Wi) ≡ 1{q̂ (λ1) < Wi < q̂ (λ2)}.

D4. Kernel. Referring to (D1), define DN(v, θ) ≡ diag
(

1
h
k
(v−Vi(θ)

h

))
, where k(·) is a symmetric

density,
∫
z2k(z)dz is bounded, and h = O(N−r) with r = 1

7.99
.

D5. Treatment Probabilities. Denote the ith observation on the L treatment probabilities and
the corresponding estimator as:

Pi ≡
{
Pi1 Pi2 ... PiL

}
1×L ; P̂i ≡

{
P̂i1 P̂i2 ... P̂iL

}
1×L .

With ti as any indicator restricting VT to a fixed compact set :

sup
i
ti

∣∣∣P̂i − Pi∣∣∣ = op
(
N−1/4

)
.

D6. Instruments for estimating α − functions. Refer to (D2)-(D3) and let XCV be the
continuous variables in the outcome index V . Define percentiles: 0 < λ∗1 < λ1 < λ2 < λ∗2,
with λ1 − λ∗1 and λ∗2 − λ2 each op(h

c), 0 < c < 1. Then, define the following trimming
functions:

t̂∗1i ≡ t (q̂(λ∗1), q̂(λ∗2) , XCV ) and t1i ≡ t (q(λ1), q(λ2) , XCV ),

t̂2i ≡ t (q(λ1), q(λ2) , ViT (γ̂)) and t2i ≡ t(q(λ1), q(λ2), ViT (γ∗)),

3The treatment model is estimated under index restrictions that may or may not hold. If the treatment model
is correctly specified, then γ∗ = γ0, the true parameter vector. However, we allow for misspecification in which case
γ∗ 6= γ0 and E(Ti|VTi (γ∗)) 6= E(Ti|XiF ).

4For example, if λ = .5 then q (λ) will contain a vector of medians for elements of W .
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In establishing convergence rates, the following trimming function will be useful:

t∗1i ≡ t (q (λ∗1) , q (λ∗2) , XCV ) .

The instruments for estimating the α− functions can now be defined as:

Q̂i ≡ t̂2i

[
P̂i 1

]
Q̂∗i ≡ t̂∗1it̂2i

[
P̂i 1

] Qi ≡ t2i [Pi 1]
Q̄∗i ≡ t1it2i [Pi 1] , Q∗i ≡ t∗1it2i [Pi 1] .

D7. Local Projection. Define the local linear projection of Ti on an arbitrary variable Fi as

Ti = Fi × (π(v)′, c(v)′) + ei,

where:
(π(v)′, c(v))

′ ≡ E [F ′iFi|Vi = v]
−1
E[F ′iTi|Vi = v].

D8. α−functions. Referring to (D1), (D4)-(D6), define α̂(v, θ) and its population counterpart
α(v, θ) as the solutions for the following:

Q̂′DN(v, θ)R

N
α̂(v, θ) ≡

∑
i

Q̂′iDN(v, θ)Yi
N

,

Ωjα(v, θ) ≡ E
(
Q′jYj|v

)
gV (v) , Ωj ≡ E

(
Q′jRj|v

)
gV (v).

With ∆̂i(v, θ) ≡ Ri[α̂(Vi(θ), θ)−α̂(v, θ)] as a bias adjustment, define a bias corrected estimator
α̂∗(v, θ) and its limiting value ᾱ(v, θ) as:

Q̂∗′DN(v, θ)R

N
α̂∗(v, θ) ≡

∑
i

Q̂∗′i DN(v, θ)[Yi − ∆̂i(v, θ)]

N − 1

Ω̄∗j ᾱ(v, θ) ≡ E
(
Q̄∗′j Yj|v

)
gV (v) , Ω̄∗j ≡ E

(
Q̄∗′j Rj|v

)
gV (v).

where Q̂∗j and Q̄∗j are defined in (D6). When v = Vj , all averages above are taken over
the N−1 terms with i 6= j. In establishing convergence results, it will also be useful to define:
Ω∗j ≡ E(Q∗′j Rj|v)gV (v), with Q∗j given in (D6).

D9. Instruments for estimating the outcome index. Recalling that K1 is the dimension of
θ, let Ẑo

i :1×K1 be the ith observation on the vector of estimated instruments for estimating
the outcome parameters and denote its population counterpart as Zo

i , which is a function
of XF . With ti as any indicator restricting the treatment index VT i and the outcome variables
Xi to a fixed compact set, Ẑo

ik , k = 1, ..., K1 satisfies

1√
N

N∑
i=1

ti

[
Ẑo
ik − Zo

ik

]2

= op(1), (6)

1√
N

N∑
i=1

ti

[
Ẑo
ik − Zo

ik

]
εi = op(1). (7)
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D10. Index Parameter Estimator. With Ẑo
i defined in (D9), let Ẑi ≡ t̂1it̂2iẐ

o
i and Zi ≡ t1it2iZ

o
i .

Then:

θ̂
∗
≡ arg min

θ
Ĝ∗ (θ)′ Ĝ∗ (θ) ,

Ĝ∗ (θ) ≡ 1

N

N∑
j=1

Ẑ ′j [Yj −Rjα̂
∗ (Vj(θ), θ)] .

D11. Marginal Effect Trimming. Letting XC be the model’s KC distinct continuous variables
in treatment and outcome equations, define [λ1C , λ2C ] as a region without small denominator
issues (e.g. quantile region [.01, .99] for all the variables in XC ). Further, to estimate quantile
marginal effects with respect to the variable Xk ⊂ XC , define [λ1k, λ2k] as a quantile region
of interest (e.g. the second quartile with [λ1k, λ2k] = [.25, .50]). With [q′(λ1), q′(λ2)] : 2× KC

as the vector of quantiles defined by the intersection of the quantile sets, the marginal effect
trimming is defined as:

tqj(q(λ1), q(λ2), XjC) ≡ t(q(λ1C), q(λ2C), XjC)× t(q(λ1k), q(λ2k), Xjk),

t̂qj(q(λ1), q(λ2), XjC) ≡ t(q̂(λ1C), q̂(λ2C), XjC)× t(q̂(λ1k), q̂(λ2k), Xjk).

D12. Quantile Marginal Effects. The population quantile marginal effect and its estimator
are given respectively as:

Mq ≡
E [tqjα(Vj(θ0), θ0)]

E [tqj]
,

M̂q ≡
∑N

j=1 t̂qjα̂
∗(Vj(θ̂

∗
), θ̂
∗
)∑N

j=1 t̂qj
.

D13. Bahadur Representation. Referring to (D3) and (D11), let λ1 and λ2 be KC×1 vectors
of lower and upper percentiles, denote q (λ1 ) and q(λ2) as the corresponding population
quantile vectors for the model’s KC continuous variables, XC . Let gXkC (•) be the marginal
density for the kthcontinuous variable, XkC . For s : KC×1 with kth component sk, denote
gC(s) as the KC×1 vector having kth element gXkC (sk). With ∅ denoting division by element,
let

Bj ≡
[

[(1 {XjC ≤ q (λ1)} − λ1)∅gC(q (λ1))]′

[(1 {XjC ≥ q (λ2)} − λ2)∅gC(q (λ2))]′

]′
2KC×1

.

The Bahadur representaion (see Bahadur (1966) and David (1981)) can now be defined as:

√
N [q̂(λ)− q (λ)] =

√
NB̄ + op(1), B̄ ≡ 1

N

N∑
j=1

Bj,

where q̂(λ) is a vector of λ−sample quantiles.
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There are several observations that we would like to make about the above definitions. First,
in (D5) and (D9), we provide required convergence conditions on P̂i and Ẑo

ik under known trim-
ming. In the Appendix we verify that these conditions hold for the particular instruments that we
employ. Further, as estimated trimming is employed in practice, we prove that it can be taken as
known. Second, the estimation of marginal effect functions and quantile marginal effects are both
based on regular kernels with a bias correction. Referring to the local model in (D1), at the true
parameter values, the bias corrected model has the form:

Yi − ∆̂i (v) = Riα(v, θ0) +
[
∆i(v)− ∆̂i(v)

]
+ εi,

∆i(v) ≡ Ri [α(Vi (θ0) , θ0)− α(v, θ0)] .

While the kernel weighting is intended to reduce the bias from the localization error ∆i(v), the
resulting bias in the estimator is not sufficiently small to establish asymptotic normality. For this
purpose, we require that the gradient bias in the limiting value of

√
NĜ∗ (θ0) in (D10) vanishes. By

removing an estimate of this localization bias from the outcome variable Y , we are able to ensure
that this is the case. Third, note that in (D12) we have defined a quantile marginal effect estimator.
In applied work, we would like to know how these marginal effects vary at different places in the
distribution of the X-variables. For example, with age as one of the explanatory variables, we
would want to know how the treatment effect varies over different quantiles of the age distribution.
The definition above captures this feature by averaging the marginal effect function over quantiles
of each explanatory variable of interest.5 It should be noted that an additional benefit of such
averaging is the rate of convergence is increased to the parametric rate.

Finally, the quantile marginal effect estimator in (D12) depends on an indicator for being in an
estimated quantile set. The covariance matrix for this estimator will contain components that reflect
the estimation uncertainty in having to estimate these quantiles. The Bahadur representation, in
conjunction with Lemma 3, play an important role in characterizing this uncertainty.

The following assumptions are needed to obtain the theoretical results for the estimators defined
above.

A1. Referring to the outcome and treatment models in (D1)-(D2), observations {Yi, Ti1, .., TiL,XiF}Ni=1

are i.i.d. and take on values in XY × XT × XF ⊂ R1+L+KF , and E(εi|XiF ) = 0. For expo-
sitional simplicity, we also assume E (εε′|XF ) = σ2

εI.6 The vector of exogenous variables in
the outcome model Xi is a subset of XiF , which is the full set of exogenous variables in the
treatment model.

A2. The parameters of the outcome model, θ0 and those of the treatment model, γ∗ take values
in the interior of a compact set Φ ⊂ RK1+K2 .

A3. Referring to (D1), the outcome index V (θ0) = X1 + XIIθ0 contains at least one absolutely
continuous exogenous variable.

5As discussed following Theorem 5 on quantile marginal effects, we can define quantiles to be support points when
the variable of interest is discrete.

6For the current estimator, if E (εε′|XF ) = Σ 6= σ2
εI, consistency and normality results hold with a modified

covariance matrix that is estimable. If the model is appropriately transformed based on an estimate for Σ, then all
results apply for the current estimator of the transformed model.
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A4. Recalling (D2), there exists a value for the treatment parameter vector γ∗, such that its
estimator satisfies:

[γ̂ − γ∗] = op
(
N−1/4

)
.

A5. With XF as the full set of exogenous variables in treatment and outcome models (D1)-(D2)
and with R as the treatment vector in (D1), assume that the treatment model is correct in
that the treatment instrument satisfies: [P 1] = E(R|XF ).

A6. Referring to (A2), let V (θ) ≡ X1 + XIIθ , v (θ) ≡ x1 + xIIθ, and let gV |Y (v (θ)|y) be the
density for V (θ) conditioned on Y = y. Denote ∇p

kgV |Y as the derivative of g with respect
to the kth component of θ up to order p, with ∇0

kgV |Y = gV |Y . Assume gV |Y > 0 on all fixed
compact subsets of the support for the index V (θ) and that

∣∣∇p
kgV |Y

∣∣ is uniformly bounded
for p = 0, 1, 2, 3, 4.

A7. With Xik as any one of the exogenous variables in the outcome equation, assume thatthere
exists m > 4 such that E [(XikYi)

m] = O(1). For the treatment index VT i, the outcome
variables Xi, and θ in any bounded set, Zo

i , ∇θα(Vi (θ) , θ), ∇2
θα(Vi (θ) , θ), and∇θE [Yi|Vi (θ)]

are bounded.

A8. Referring to (D6) and (D7), with Fi as either Qi or Q̄∗i let π (v) be the parameters of the
local projection of Ti on Fi. Then, assume that π (v) has full rank, Σ ≡ var(F ′i |Vi (θ) = v) is
positive definite.

A9. With Z and ᾱ defined in (D8)-(D10) there is a unique solution at θ0 to the popula-
tion moment condition: E

{
Z ′j [Yj −Rjᾱ (Vj (θ) , θ)]

}
= 0. Further, the matrix H0 ≡

−E(Z ′jRj∇θᾱ (Vj (θ) , θ)θ=θ0) is non-singular.

Assumptions (A1)-(A3) and (A6)-(A7) are somewhat standard for estimating semiparametric
models. Assumption (A4) provides the conditions for the treatment parameter estimator, whose
limiting value need not be the true parameter value, γo; while Assumption (A5) defines the correctly
specified case for the treatment model estimation. In estimating marginal effect functions and
index parameters of the outcome equation, (A5) is needed for efficiency, but not for consistency or
asymptotic normality. The conditions in (A8) are needed to identify the α− function at the point
v. The assumptions in (A9) are standard for estimating parameters based on moment conditions.

4 Large Sample Results:

We begin with Theorem 1 which provides identification results for the marginal effect functions
and the index parameter vector.

Theorem 1 Identification. Under (D1) -(D10) and assumptions (A1)-(A3) and (A8)-(A9), ᾱ(v, θ),
α (v, θ), and θ0 are identified.

12



For estimating the marginal effect functions, there are two special cases of interest in which we can
simplify the identification conditions. Referring to (D7) , when the treatment model is correct,

Ri = Qi + ui, E (ui|XF ) = 0 (8)

and π effectively becomes the identity matrix, satisfying the rank condition. Second, when the
treatment model is incorrect and there is a single treatment, π is the local coefficient on the instru-
ment. Similar to the parametric linear case with one endogenous variable, we require this coefficient
to be non-zero so that the instrument locally explains R in the presence of the other exogenous
variables. Having established identification, Theorems 2 and 3 provide consistency and normality
results for the estimator of the outcome equation parameters.

Theorem 2 Consistency. Under (D1)-(D10) and assumptions (A1)-(A4) and (A6)-(A9):

θ̂
∗ p→ θ0.

Theorem 3 Normality. Under (D1)-(D10) and assumptions (A1)-(A4) and (A6)-(A9):
√
N
[
θ̂
∗
− θ0

]
d→ W ∼ N (0,Υ) , with Υ ≡ σ2

εH
−1
0 E

[
R̄z(Vj (θ0))′R̄z(Vj (θ0))

]
H−1

0 ,

where

R̄′z(Vj (θ0)) ≡ Z ′j − [E(ZjRj|Vj(θ0))]
[
E[Q̄∗jRj|Vj(θ0)]

]−1
Q̄∗′j

H0 ≡ −E(Z ′jRj∇θᾱ(Vj (θ) , θ)θ=θ0)

The results in Theorems 2-3 are important for conducting inferences in applications. In obtaining
them, we have taken into account several important features for implementing these estimators in
practice. First, for technical reasons, it is important to trim observations and in practice the set
over which we trim will not be known. Here, we base trimming on estimated sample quantiles and
employ results from Pakes and Pollard (1989) to address this issue. Second, we have found that the
estimator performs much better under regular than higher order kernels. For the consistency result,
regular kernels would suffice without any bias corrections, and the range of permissible windows
would be much wider than required in Theorem 3. For the normality result, we employ a bias
correction mechanism for which regular kernels are theoretically valid. We note that in stating the
normality result above, we have written the gradient component of the covariance matrix in terms
of the residual R̄′z(Vj (θ0)). This form facilitates the derivation of the optimality result in Theorem
4.

Theorem 4 Optimality. Under (D1)-(D10) and assumptions (A1)-(A9), the lower bound on the
covariance matrix is given as:

σ2
ε

[
E
(
R̄′ϕ(Vj (θ0))R̄ϕ(Vj (θ0))

)]−1
,

where with ϕj ≡ Q̄∗j∇θα(Vj(θ), θ0)θ=θ0 :

R̄ϕ (Vj (θ)) = ϕj − Q̄j
∗′
E
[
Q̄j
∗′
Q̄∗
′

j |Vj (θ0)
]−1

E
[
Q̄j
∗′
ϕj|Vj(θ0)

]
(9)

= Q̄∗j∇θα(Vj(θ), θ)θ=θ0 (10)

The efficiency bound is attained by an instrument with jth observation: R̄ϕ(Vj).
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To interpret this result, we note that when the α−functions are known parametric functions, the ef-
ficiency bound is given in Newey as E [ϕϕ′] with instrument ϕ. Notice that ϕ is the expectation of the
treatment conditioned on XF multiplied by the parametric derivative of the α−functions. For the
semiparametric model considered here, the functional form of the α−functions are unknown. We
write these functions as α(Vj(θ), θ) to indicate a dual dependence on θ. Namely, changes in θ will
directly change α through the index (the parametric derivative), holding the function fixed. In-
directly, as α(Vj(θ), θ) is defined in (D8) as an expectation conditioned on Vj(θ), changes in θ
will change the form of the α − functions. The semiparametric derivative, R̄ϕ, reflects this dual
dependence of the α functions on θ, which accounts for the difference between it and the parametric
derivative.

Employing the results above in Theorems 2-4, Theorem 5 below provides large sample results for
quantile marginal effects. Namely, it provides conditions under which the estimator is consistent,
asymptotically distributed as normal, and efficient.

Theorem 5. Consistency, Normality and Optimality for Marginal Effects. Under
(D1)-(D12) and assumptions (A1)-(A4) and (A6)-(A9):

M̂q
p→Mq

and √
N
[
M̂q −Mq

]
d→ Z ∼ N(0, E

[
ψjψ

′
j

]
)

where ψj ≡ ψ1j + ψ2j + ψ3j. To define ψkj, recall the Bahadur representation in (D13), and let
tqj ≡ tqj (q,XjC ). Then, with R̄z(Vj) defined as in Theorem 3 and αoj ≡ α(Vj(θ0), θ0) :

ψ1j ≡ {5qE [tqjαoj] −5q E (tqj)Mq}
Bj

E (tqj)
− tqj − E [tqj]

E [tqj]
Mq +

tqjαoj
E [tqj]

−Mq

ψ2j ≡ −
1

E [tqj]
E{tqj 5θ [ᾱ (Vj (θ), θ))]θ0}H

−1
0 R̄z(Vj)

′εj

ψ3j ≡
E (tqj|Vj)
E [tqj]

Ω̄∗ (Vj)
−1 gV (Vj) Q̄

∗′
j εj =

E (tqj|Vj)
E [tqj]

E
[
Q̄∗
′

j Rj

]−1

Q̄∗
′

j εj.

Under (A5), the covariance matrix E
[
ψjψ

′
j

]
is minimal.

With marginal effects being important in applications with nonlinear models, Theorem 5 makes
it possible to construct confidence intervals for those quantile marginal effects of interest. For
expositional purposes, the theorem covers the case in which marginal effects are calculated over
quantiles for a continuous variable of interest. This theorem also readily applies to the case in
which the variable of interest is discrete. In this case, it would be natural to calculate the marginal
effect by averaging over observations for which the discrete variable takes on a given support point.
Accordingly, in the discrete case, replace the quantile indicator for this variable with an indicator
for each support point. With the support points known, this indicator poses no difficulties as it can
be taken as known. Because of the additively separable form of the covariance matrix, an efficient
instrument for the parameter estimated ensures an efficient estimator for quantile marginal effects.
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The form of the covariance matrix also reveals that it depends on the estimation uncertainty in
estimating quantile regions. Intuitively, from Newey and McFadden (1994), such uncertainty should
enter the covariance matrix because the consistency of quantile marginal effects will in part depend
on consistently estimating quantile regions. Lemma 3 provides results needed to incorporate such
uncertainty.

5 Monte Carlo

In the Monte Carlo study, we investigate six different designs. They differ in two dimensions:
whether the treatment model is misspecified and the form of the marginal effect function. For the
odd-numbered designs, the treatment model is correctly specified. The model structure is given as:

T = 1 {V2 ≥ u} where V2 = X2 + Z; (11)

Y = V1 +M(V1)× T + ε where V1 = X1 +X2. (12)

The error terms u and ε are homoskedastic, correlated, and follow normal distributions, each with
expectation 0 and standard deviation 2. The variables X1 and X2 follow normal distributions and
are correlated with expectation 0 and standard deviation of 2 and 1 respectively. The marginal
effect function M(·) is set to be linear for the first and second designs, quadratic for the third and
fourth, and exponential for the fifth and sixth. The even-numbered designs differ from the odd-
numbered ones in that a variable X3 is incorrectly omitted from the true treatment model given
as:

T = 1 {V2 +X3 ≥ u} where V2 = X2 + Z. (13)

We generate X3 so that it is normally distributed and correlated with X1 and X2. The sample size
in the Monte Carlo is 2000, and we ran 100 replications.

The optimal semiparametric instrument depends on the derivative of the unknown α−functions
and the vector of true parameters. To obtain these quantities, we require an initial instrument
that does not depend on them. For this purpose, notice in the parametric case that the optimal
instrument vector is : [E(Tj|VTj), 1]′[∇vα]X2j. To obtain the initial instrument vector, we set∇vα

at the constant vector [1, 1]′ so that the preliminary instruments becomes:
[
P̂j + 1

]
X2j. Using

this instrument to estimate the α−functions and θ0, we then construct the optimal instrument given
in Theorem 4 and re-estimate the model. While the estimators based on this two-step IV strategy
have desirable large-sample properties, we have found it beneficial in finite samples to perform an
additional iteration where we recalculate the optimal instrument based on this new estimator. The
IV estimator for θ0 reported below is based on this final iteration.

The substitution estimator minimizes:

1

N

∑
j

[
Yj − Q̂jα̂ (Vj (θ) , θ)

]2

where the α̂ (Vj (θ) , θ) function is defined as:

α̂ (Vj (θ) , θ) =
[
Q̂′DN (Vj (θ) , θ) Q̂

]−1

Q̂′DN (Vj (θ) , θ)Y
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with Q̂j ≡
[
P̂j 1

]
.

In reporting results, recall that the treatment model (11) is correctly specified over odd-numbered
designs, and the misspecified model (13) is used in even-numbered designs. The tables below provide
the estimation results for the index parameters in both treatment and outcome equations and also
estimated marginal effects. We supply not only the median marginal effect estimates but also the
quartile marginal effect estimates. The true parameter value and marginal effects are provided in
the first column; while mean, median, standard deviation (STDEV), median absolute deviation
(MAD), root mean squared error (RMSE) and median absolute error (MAE) are provided in the
other columns.

Beginning with the treatment index parameter, it is quite well estimated with a very small
RMSE when the treatment model is correct. As expected, under misspecification, the RMSE is
much larger, primarily due to the increased bias but also to the higher standard deviation.

Turning to the estimation results for the outcome equation, the outcome index parameter is
well estimated by the IV estimator in all designs. In comparison, the substitution estimator gen-
erally performs well in correctly specified design except the exponential design where its RMSE is
significantly higher than that of the IV estimator ( .16 vs. .08). In the misspecified designs, where
the substitution estimator is not theoretically consistent, it indeed has a very large RMSE due
mainly to a substantial bias.

The results for the quantile marginal effects are more pronounced than those for the outcome
index parameter. The IV estimator performs significantly better than the substitution estimator
even in the correctly specified designs. The RMSE is around half of the substitution estimator
for median marginal effects. In the misspecified designs, the advantage of the IV estimator is
even more striking. The RMSE’s of the IV estimator for median marginal effects stay low at
.33, .55 and .57 for linear, quadratic and exponential designs, while the corresponding RMSE’s
for the substitution estimator are very high at 2.65, 1.39 and 2.69 respectively. As marginal ef-
fect estimation is arguably the main object of interest in empirical studies and treatment mod-
els are likely to be misspecified, the robustness of the marginal effect IV estimator is important.
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TRUTH MEAN MEDIAN STDEV MAD RMSE MAE
Design 1

Treatment Model Parameter Estimator
1.00 1.00 1.00 0.08 0.06 0.08 0.06

Outcome Model Parameter IV Estimator
1.00 1.04 1.03 0.07 0.05 0.08 0.04

Outcome Model Parameter Substitution Estimator
1.00 1.01 1.00 0.07 0.05 0.07 0.05

Marginal E¤ect IV Estimator
Median 5.00 5.04 5.01 0.24 0.15 0.25 0.15

1st Quartile 3.20 3.32 3.28 0.32 0.18 0.34 0.20
2nd Quartile 4.49 4.54 4.52 0.30 0.21 0.30 0.21
3rd Quartile 5.51 5.50 5.50 0.30 0.22 0.30 0.21
4th Quartile 6.81 6.79 6.75 0.36 0.21 0.36 0.18
Marginal E¤ect Substitution Estimator

Median 5.00 5.42 5.42 0.27 0.17 0.50 0.42
1st Quartile 3.20 3.65 3.61 0.32 0.22 0.56 0.41
2nd Quartile 4.49 4.99 4.89 0.32 0.21 0.52 0.40
3rd Quartile 5.51 5.91 5.89 0.30 0.23 0.49 0.39
4th Quartile 6.81 7.21 7.24 0.37 0.28 0.54 0.44

Design 2
Treatment Model Parameter Estimator

1.00 1.49 1.49 0.21 0.14 0.54 0.49
Outcome Model Parameter IV Estimator

1.00 1.06 1.06 0.08 0.05 0.10 0.06
Outcome Model Parameter Substitution Estimator

1.00 0.39 0.39 0.07 0.05 0.61 0.61
Marginal E¤ect IV Estimator

Median 5.00 4.98 4.96 0.33 0.21 0.33 0.22
1st Quartile 3.20 3.34 3.29 0.59 0.29 0.60 0.31
2nd Quartile 4.49 4.49 4.47 0.48 0.33 0.48 0.33
3rd Quartile 5.51 5.39 5.40 0.44 0.29 0.45 0.30
4th Quartile 6.81 6.70 6.65 0.53 0.39 0.54 0.41
Two-stage Marginal E¤ect Estimator

Median 5.00 7.54 7.43 0.77 0.52 2.65 2.43
1st Quartile 3.20 5.67 5.70 0.80 0.57 2.60 2.50
2nd Quartile 4.49 7.04 6.93 0.94 0.63 2.72 2.44
3rd Quartile 5.51 8.07 8.15 0.91 0.59 2.72 2.64
4th Quartile 6.81 9.36 9.37 1.03 0.74 2.75 2.57
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TRUTH MEAN MEDIAN STDEV MAD RMSE MAE
Design 3

Treatment Model Parameter Estimator
1.00 1.00 1.00 0.08 0.06 0.08 0.06

Outcome Model Parameter IV Estimator
1.00 1.06 1.06 0.06 0.04 0.08 0.06

Outcome Model Parameter Substitution Estimator
1.00 1.01 1.02 0.09 0.06 0.09 0.06

Marginal E¤ect IV Estimator
Median 7.36 7.31 7.29 0.22 0.13 0.23 0.14

1st Quartile 8.93 8.64 8.64 0.34 0.21 0.45 0.35
2nd Quartile 5.77 5.83 5.81 0.25 0.18 0.25 0.16
3rd Quartile 5.78 5.87 5.86 0.29 0.20 0.30 0.21
4th Quartile 8.94 8.89 8.89 0.47 0.24 0.47 0.26
Marginal E¤ect Substitution Estimator

Median 7.36 7.75 7.73 0.25 0.18 0.47 0.37
1st Quartile 8.93 9.00 8.97 0.43 0.32 0.44 0.32
2nd Quartile 5.77 6.19 6.15 0.27 0.20 0.50 0.38
3rd Quartile 5.78 6.32 6.28 0.29 0.22 0.62 0.51
4th Quartile 8.94 9.49 9.47 0.60 0.38 0.81 0.59

Design 4
Treatment Model Parameter Estimator

1.00 1.49 1.49 0.21 0.14 0.54 0.49
Outcome Model Parameter IV Estimator

1.00 1.06 1.08 0.13 0.06 0.14 0.10
Outcome Model Parameter Substitution Estimator

1.00 0.54 0.54 0.11 0.07 0.47 0.46
Marginal E¤ect IV Estimator

Median 7.36 7.32 7.25 0.55 0.22 0.55 0.28
1st Quartile 8.93 8.58 8.58 0.86 0.45 0.93 0.55
2nd Quartile 5.77 5.82 5.83 0.52 0.37 0.52 0.37
3rd Quartile 5.78 5.86 5.79 0.62 0.34 0.63 0.34
4th Quartile 8.94 9.04 8.77 1.22 0.36 1.22 0.38
Marginal E¤ect Substitution Estimator

Median 7.36 8.59 8.51 0.63 0.43 1.39 1.15
1st Quartile 8.93 7.72 7.81 1.11 0.82 1.64 1.12
2nd Quartile 5.77 6.21 6.16 0.64 0.38 0.77 0.53
3rd Quartile 5.78 7.64 7.57 0.89 0.61 2.07 1.79
4th Quartile 8.94 12.79 12.77 1.64 1.15 4.18 3.83
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TRUTH MEAN MEDIAN STDEV MAD RMSE MAE
Design 5

Treatment Model Parameter Estimator
1.00 1.00 1.00 0.08 0.06 0.08 0.06

Outcome Model Parameter IV Estimator
1.00 1.07 1.07 0.04 0.03 0.08 0.07

Outcome Model Parameter Substitution Estimator
1.00 1.06 1.07 0.15 0.10 0.16 0.10

Marginal E¤ect IV Estimator
Median 7.90 7.87 7.86 0.30 0.18 0.30 0.18

1st Quartile 5.23 5.18 5.15 0.29 0.20 0.29 0.19
2nd Quartile 5.77 5.67 5.60 0.27 0.16 0.29 0.21
3rd Quartile 7.14 7.06 7.06 0.33 0.24 0.33 0.23
4th Quartile 13.48 13.55 13.49 0.77 0.46 0.77 0.46
Marginal E¤ect Substitution Estimator

Median 7.90 8.41 8.38 0.59 0.35 0.77 0.50
1st Quartile 5.23 5.57 5.57 0.36 0.24 0.49 0.36
2nd Quartile 5.77 6.20 6.16 0.38 0.23 0.57 0.41
3rd Quartile 7.14 7.70 7.67 0.48 0.30 0.73 0.54
4th Quartile 13.48 14.17 14.14 1.43 0.91 1.59 1.02

Design 6
Treatment Model Parameter Estimator

1.00 1.49 1.49 0.21 0.14 0.54 0.49
Outcome Model Parameter IV Estimator

1.00 1.10 1.09 0.06 0.03 0.12 0.09
Outcome Model Parameter Substitution Estimator

1.00 0.67 0.66 0.18 0.11 0.38 0.35
Marginal E¤ect IV Estimator

Median 7.90 7.69 7.66 0.53 0.27 0.57 0.40
1st Quartile 5.23 5.18 5.05 0.74 0.31 0.74 0.34
2nd Quartile 5.77 5.50 5.45 0.54 0.36 0.60 0.43
3rd Quartile 7.14 6.76 6.76 0.53 0.36 0.65 0.45
4th Quartile 13.48 13.31 13.14 1.04 0.56 1.04 0.63
Marginal E¤ect Substitution Estimator

Median 7.90 10.19 10.03 1.42 0.76 2.69 2.13
1st Quartile 5.23 6.09 5.99 0.87 0.60 1.23 0.85
2nd Quartile 5.77 6.93 6.78 0.95 0.60 1.49 1.01
3rd Quartile 7.14 8.98 8.98 1.26 0.82 2.23 1.84
4th Quartile 13.48 18.75 18.43 3.38 1.91 6.26 4.99
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6 Conclusions

In conclusion, we have proposed IV estimators for the index parameters and quantile marginal
effects in an outcome model with endogenous treatments. Since marginal effects are of primary
interest in applied work, we have developed the theory for quantile marginal effects as well as the
index parameters that enter the marginal effect functions. We have shown that the proposed IV
estimators are consistent and asymptotically normally distributed irrespective of whether or not
the treatment model is correctly specified. As the model for treatments can be difficult to specify
in practice, this robustness property is important in applications. When the treatment model is
correct, we establish efficiency for the proposed IV estimators for quantile marginal effects and for
the finite dimensional vector of index parameters upon which they depend.

As is evidenced in the Monte Carlo study, the proposed estimators perform very well in fi-
nite samples. There is a payoff to an efficient estimator, particularly in the case for marginal
effects. Perhaps most importantly for applications where the treatment model may be difficult to
specify, the proposed IV estimator is very robust and performs well under misspecification.
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7 Appendix

7.1 Main Theorems

Proof of Theorem 1. Referring to (D8), Ω̄∗(v, θ)ᾱ(v, θ) ≡ E
[
Q̄∗′j Yj|Vj(θ) = v

]
gV (v) has

a unique solution for ᾱ(v, θ) if Ω̄∗(v, θ)−1 exists. From Lemma 6a, Ω̄∗(v, θ) is non-singular for all
v in a compact set. Therefore ᾱ (v, θ) is identified. A similar argument holds for α (v, θ). From
Newey and McFadden(1994, Lemma 2.3), identification of θ0 follows from the assumption (A9) that
E
{
Z ′j [Yj −Rjᾱ (Vj (θ) , θ)]

}
= 0 is uniquely solved at θ0.

Proof of Theorem 2. Denoting Ĝ∗k (θ) as the kth component of Ĝ∗ (θ) as in (D10), we establish
the following uniform convergence results:

sup
θ
|Ĝ∗k (θ)− E[Zjk[Yj −Rjᾱ(Vj (θ) , θ)]]| p→ 0. (14)

We prove this result by analyzing the following upper bound for the above term.

sup
θ

∣∣∣∣∣ 1

N

N∑
j=1

Zjk [Yj −Rjᾱ (Vj (θ) , θ)]− E (Zjk [Yj −Rjᾱ (Vj (θ) , θ)])

∣∣∣∣∣ (15)

+ sup
θ

∣∣∣∣∣ 1

N

N∑
j=1

[
Ẑjk − Zjk

]
[Yj −Rjᾱ (Vj (θ) , θ)]

∣∣∣∣∣ (16)

+ sup
θ

∣∣∣∣∣ 1

N

N∑
j=1

ZjkRj [α̂∗ (Vj (θ) , θ)− ᾱ (Vj (θ) , θ)]

∣∣∣∣∣ (17)

+ sup
θ

∣∣∣∣∣ 1

N

N∑
j=1

[
Ẑjk − Zjk

]
Rj [α̂∗ (Vj (θ) , θ)− ᾱ (Vj (θ) , θ)]

∣∣∣∣∣ . (18)

Turning to the term in (15), it is op(1) from a standard uniform convergence result on an i.i.d. sample
mean converging uniformly to its expectation (see e.g. Amemiya (1985)). Noting the definition of
Ẑ in (D10), and the assumption on Ẑo in (D9), from Lemma 5b with Ŵi≡ Ẑo

jk and Wi ≡ Zo
jk,

the second term converges to zero. With E |Z| bounded from (A7), the third term vanishes from
Lemma 5a and Lemma 8d. The final term is op(1) from (D9), Lemma 8d, and Lemma 5b.

Since the uniform limit of the moment condition is uniquely solved at θ0 from (A9), it now

follows that θ̂
∗ p→ θ0.

Proof of Theorem 3. Referring to (D10), from a Taylor series expansion:

√
N(θ̂

∗
− θ0) = −

[
∇θĜ

∗(θ+)
]−1√

NĜ∗(θ0) + op (1) .
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From Lemma 9
∇θĜ

∗(θ+)
p→ H0 = −E

[
Z ′jRj∇θᾱ (Vj (θ) , θ)θ=θ0

]
.

From Lemma 10 with Vj ≡ Vj(θ0),

√
NĜ∗(θ0) ≡ 1√

N

N∑
j=1

Z ′j[Yj −Rjα̂
∗
0(Vj)] =

1√
N

N∑
j=1

R̄′z (Vj) εj + op (1) ,

where

R̄′z (Vj) ≡ Z ′j − E(Z ′jRj|Vj)E
[
Q̄∗
′

j Rj|Vj
]−1

Q̄∗
′

j .

Substituting for gradient and hessian expressions, we have:

√
N(θ̂

∗
− θ0) = −H−1

0

1√
N

N∑
j=1

R̄′z (Vj) εj + op (1) . (19)

The theorem now directly follows.

Proof of Theorem 4. To prove efficiency, we require a convenient characterization for the
covariance matrix under any instrument Z. To this end, it is useful to note that under correct
treatment specification in (A5), for any function f(V ): E(f(V )′Q̄∗

′
R̄ϕ) = 0. To establish this

result, recall the definition of R̄z . Then, suppressing subscripts and function arguments, for any
instrument Z, from (A5)

R̄z ≡ Z − Q̄∗E
[
Q̄∗′R|V

]−1
E(R′Z|V ) = Z − Q̄∗E

[
Q̄∗′Q̄∗|V

]−1
E(Q̄∗′Z|V ), (20)

which follows by first taking an expectation conditioned on XF and then over XF conditioned on V
for each expectation. Employing (20) and (A5):

E(f(V )′Q̄∗
′
R̄ϕ) = E

[
f(V )′Q̄∗

′
ϕ− f(V )′Q̄∗′Q̄∗E

[
Q̄∗′Q̄∗|V

]−1
E(Q̄∗′ϕ|V )

]
(21)

= E
[
f(V )′Q̄∗′ϕ

]
− EVE

[
f(V )′Q̄∗′Q̄∗E

[
Q̄∗′Q̄∗|V

]−1
E(Q̄∗′ϕ|V )|V

]
= E

[
f(V )′Q̄∗′ϕ

]
− E

[
f(V )′E[Q̄∗′Q̄∗|V ]E[Q̄∗′Q̄∗|V ]−1E(Q̄∗′ϕ|V )

]
= E

[
f(V )′Q̄∗′ϕ

]
− E[f(V )′E(Q̄∗′ϕ|V )] = 0,

a result that also follows because R̄ϕ is a residual from the local projection of ϕ on Q̄∗. Under
(A5) and recalling that Z includes trimming t1t2,

H0 = −E
(
Z ′jQ̄

∗
j∇θᾱ (Vj (θ) , θ)θ=θ0

)
(22)

Therefore, under Theorem 3 and Lemma 4,

H0 = E
[
Z ′jR̄ϕ(Vj)

]
(23)

= E(R̄′z(Vj)R̄ϕ(Vj)) + E
{

[Zj − R̄z(Vj)]
′R̄ϕ

}
= E(R̄′z(Vj)R̄ϕ(Vj)) (24)
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where the last equality follows from (21) because
[
Zj − R̄z(Vj)

]
has the form Q̄∗jf(Vj). Under

assumption (A5), the variance of the estimator based on any instrument Z in Theorem 3 then
simplifies to:

Cov = σ2
ε

[
H−1

0

]
E[R̄z(Vj)

′R̄z(Vj)]
[
H−1

0

]′
(25)

= σ2
ε

[
E
(
R̄′z(Vj)R̄ϕ(Vj)

)]−1
E[R̄z(Vj)

′R̄z(Vj)]
[
E
(
R̄′ϕ(Vj)R̄z(Vj)

)]−1
(26)

With Zj =R̄ϕ(Vj) the general form of the hessian in (23) simplifies to:

H0 = −E
(
R̄′ϕ(Vj)R̄ϕ(Vj)

)
. (27)

Substituting the hessian in (27) into the general form of the covariance matrix Cov in (25) yields:

Cov∗ = o2
ε

[
E
(
R̄′

ϕ
(Vj)R̄ϕ(Vj)

)]−1

. (28)

To show that Cov∗ ≤ Cov, which establishes the efficiency bound, we follow an argument in Newey
and McFadden (1994, section 5) and let

U ≡ R̄′z(Vj)− E(R̄′z(Vj)R̄ϕ(Vj))
[
E(R̄′ϕ(Vj)R̄ϕ(Vj))

]−1
R̄′ϕ(Vj).

Then, Cov − Cov∗ is positive semi-definite because:

Cov − Cov∗ =
[
E
(
R̄′z(Vj)R̄ϕ(Vj)

)]−1
E(UU ′)

[
E
(
R̄′ϕ(Vj)R̄z(Vj)

)]−1

and E(UU ′) is positive semi-definite. Recalling that Cov∗ in (28) was obtained for Zj = R̄ϕ(Vj),
the bound is obtained under this instrument.

Proof of Theorem 5. To prove consistency for the quantile marginal effect estimator, refer
to (D11)-(D12) and write:[

M̂q −Mq

]
= ∆1 + ∆2, (29)

∆1 =
(
N/N̂q

) 1

N

N∑
j=1

[tqj (q̂, XjC)− tqj (q,XjC)] α̂∗(Vj(θ̂
∗
), θ̂
∗
)

∆2 =
(
N/N̂q

) 1

N

N∑
i=1

tqj (q,XjC) α̂∗(Vj(θ̂
∗
), θ̂
∗
)−Mq,

where N̂q ≡
∑N

i=1 tqj (q̂, XjC). From Lemma 3,

N̂q −Nq

N
≡ 1

N

N∑
j=1

[tqj(q̂, XjC)− tqj (q,XjC)] = Op(N
−1/2).

Therefore, N̂q/N
p→ E [tqj (q,XjC)] > 0. It follows from Lemma 5 and Lemma 8d that ∆1 = op(1).
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For ∆2, from the convergence of
(
N̂q/N

)
to E[tqj (q,XjC)] > 0, it suffices to show

(
N̂q/N

)
∆2 =

op(1). We have:

(
N̂q/N

)
∆2 ≤

1

N

N∑
i=1

tqj (q,XjC)
∣∣∣α̂∗(Vj(θ̂∗), θ̂∗)− α(Vj(θ̂

∗
), θ̂
∗
)
∣∣∣ (30)

+
1

N

N∑
i=1

tqj (q,XjC)
∣∣∣α(Vj(θ̂

∗
), θ̂
∗
)− α(Vj(θ̂

∗
), θ0)

∣∣∣ (31)

+
1

N

N∑
i=1

tqj (q,XjC)
∣∣∣α(Vj(θ̂

∗
), θ0)− α(Vj(θ0), θ0)

∣∣∣ (32)

+

∣∣∣∣∣ 1

N

N∑
i=1

tqj (q,XjC)α(Vj(θ0), θ0)−Mq

(
N̂q/N

)∣∣∣∣∣ . (33)

From Lemma 8d, the term in (30) is op(1). For the term in (31), with θ and v in compact
sets and under the assumption that α (v, θ) is continuous in both arguments, from Berge (1963),
supv |α (v, θ)− α (v, θ0)| is continuous in θ. Therefore, this term is op(1) under the continuous func-

tion theorem because θ̂
∗ p→ θ0. For (32), the result follows from a standard Taylor series argument.

For the term in (33), the result immediately follows. Therefore, M̂q
p→Mq.

To establish asymptotic normality, from (29), we study

√
N
[
M̂q −Mq

]
=
√
N [∆1 + ∆2] .

Referring to (29) , write :
√
N∆1 =

√
N∆11 +

√
N∆12, where:

√
N∆11 =

(
N/N̂q

) 1√
N

N∑
j=1

[tqj(q̂, XjC)− tqj (q,XjC)]
[
α̂∗(Vj(θ̂

∗
), θ̂
∗
)− α(Vj(θ0), θ0)

]
(34)

√
N∆12 =

(
N/N̂q

) 1√
N

N∑
j=1

[tqj(q̂, XjC)− tqj (q,XjC)]α(Vj(θ0), θ0)). (35)

With
(
N/N̂q

)
converging to a positive number,

√
N∆11 in (34) is op(1) from a Taylor series expan-

sion in θ̂
∗
, Theorem 3, Lemma 5, and Lemma 3. Therefore, recalling (D13), from Lemma 3 and

the convergence of
(
N/N̂q

)
to 1/E [tqj (q,XjC)]:

√
N∆1 =

1

E [tqj (q,XjC)]
∇qE [tqj(q,XjC)α(Vj(θ0), θ0)]

√
NB̄ + op(1). (36)

It now remains to characterize
√
N∆2, the second component in (29). With tqj ≡tqj(q,XjC),
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write it as the sum of:

√
N∆21 :

(
N/N̂q

) 1√
N

N∑
j=1

tqj

[
α̂∗(Vj(θ̂

∗
), θ̂
∗
)− α̂∗(Vj(θ0), θ0)

]
(37)

√
N∆22 :

(
N/N̂q

) 1√
N

N∑
j=1

t qj[α̂
∗(Vj(θ0), θ0)− α(Vj(θ0), θ0)] (38)

√
N∆23 :


1√
N

∑N
j=1

tqjα(Vj(θ0),θ0)

E[tqj ]
−Mq+

1√
N

[ 1

N̂q/N
− 1

E[tqj ]
]
∑N

j=1 tqj α(Vj(θ0), θ0)
}. (39)

From the convergence of N/N̂q to 1/E[tqj] , a Taylor series expansion in θ̂
∗
, Theorem 3, and Lemma

8d it can be shown that:

√
N∆21 =

1
N

∑N
i=1 tqj [∇θᾱ (Vj (θ) , θ)]θo

E [tqj]

√
N(θ̂

∗
− θ0) + op(1) (40)

=
E[tqj [∇θᾱ (Vj (θ) , θ)]θo ]

E [tqj]

√
N
(
θ̂
∗
− θ0

)
+ op(1). (41)

For
√
N∆22, from Lemma 11 and the convergence of N/N̂q to 1/E[tqj],

√
N∆22 =

1

E [tqj]

1√
N

N∑
j=1

E (tqj|Vj) Ω̄∗ (Vj)
−1 g (Vj) Q̄

∗′
j εj + op(1) (42)

Turning to the term in (39), it can be written up to op(1) as

√
N∆23 =

1√
N

N∑
i=1

tqj (q,XjC)α (Vj (θ0) , θ0)

E [tqj (q,XjC)]
−Mq −∆q (43)

∆q ≡
√
N

[
N̂q/N − E [tqj (q,XjC)]

E [tqj (q,XjC)]

]
Mq. (44)

From the convergence of
(
N/N̂q

)
to 1/E[tqj(q,XjC)] and Lemma 3, up to op(1), we have

∆q = (
√
N

N∑
j=1

[tqj(q̂, XjC)− tqj(q,XjC)] +
N∑
j=1

[tqj(q,XjC)− Etqj(q,XjC)])
Mq

E [tqj (q,XjC)]

= (∇qEtqj(q,XjC)
√
NB̄ +

N∑
j=1

[tqj(q,XjC)− Etqj(q,XjC)])
Mq

E [tqj (q,XjC)]

Substituting the above into the expression for
√
N∆23, we have up to op (1):

√
N∆23 =


1√
N

∑N
j=1

tqj(q,XjC)α(Vj(θ0),θ0)

E[tqj(q,XjC)]
−Mq

−∇qE {tqj(q,XjC)}
√
NB̄ Mq

E[tqj(q,XjC)]
− 1√

N

∑N
j=1[tqj (q,XjC)− E(tqj(q,XjC))] Mq

E[tqj(q,XjC)]
.

 (45)
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Combining (36), (41), (42), and (45):

√
N
[
M̂q −Mq

]
=

1√
N

N∑
j=1

[ψ1j + ψ2j + ψ3j] + op (1) , (46)

where with tqj ≡ tqj
(
q,XjC/ ), αoj ≡ α(Vj(θ0), θ0) and with

(
θ̂
∗
− θ0

)
given from (19) in the proof

of Theorem 3:

ψ1j ≡ {5qE [tqjαoj] −5q E (tqj)Mq}
Bj

E (tqj)
− tqj − E [tqj]

E [tqj]
Mq +

tqj 5θ αoj
E [tqj]

−Mq

ψ2j ≡ −
1

E [tqj]
E{tqj 5θ [ᾱ (Vj (θ), θ))]θo}H

−1
0 R̄z(Vj)

′εj,

ψ3j ≡
E (tqj|Vj)
E [tqj]

Ω̄∗ (Vj)
−1 gV (Vj) Q̄

∗′
j εj =

E (tqj|Vj)
E [tqj]

E
[
Q̄∗
′

j Rj

]−1

Q̄∗
′

j εj.

The estimator now has a form to which a standard central limit theorem applies, and it remains
to examine the form of the covariance matrix. Under correct treatment specification and the optimal
instrument in Theorem 4, this matrix will be minimal if the ψk − components above are uncorre-
lated. As the first term is uncorrelated with the other two, we complete the argument by examining
the covariance between the last two terms. It suffices to analyze this covariance conditioned on Vj,
which is proportional to:

C = E
[
R̄z(Vj)ε

2
jQ̄
∗
j |Vj

]
= σ2

εE[R̄z(Vj)
′Q̄∗j |Vj]. (47)

From (20) in the Proof of Theorem 4, under (A5):

R̄z(Vj) = Z − Q̄∗E
[
Q̄∗′Q̄∗|V

]−1
E(Q̄∗′Z|V ). (48)

Since R̄z(Vj)is the residual from the local projection of Z on Q̄∗, C is 0, which completes the
proof.

7.2 Intermediate Lemmas

Lemma 1 provides uniform bias and variance results; while Lemma 2 provides pointwise and uniform
convergence rates for kernel weighted averages. As the proof for lemma 1 is standard (see, for
example, Klein and Shen(2010) ), it is not presented below, but is available upon request. The
uniform results in Lemma 2, which are standard for bounded random variables, are provided here
as in this context this bounded assumption will not always hold.

Lemma 1. Let Si be i.i.d. and not depending on θ. Define v (θ) ≡ x1 + xIIθ, x ≡ [x1, xII ],
Vi (θ) ≡ X1i +XIIiθ. With ∇0

θf ≡ f , let ∇d
θf be the dth partial derivative of f w.r.t. θ. Define:

ĝV (v (θ)) ≡ 1

N

N∑
i=1

1

h
k

(
v (θ)− Vi (θ)

h

)
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With gv|S(•) as the density for Vi (θ) conditioned on Si, assume that 5dgV |S, d = 0, 1, 2 are uni-
formly bounded in x, θ. Further, E (S2

i ) is bounded. Then, with the sup taken over x and θ in
compact sets:

a); supE[Si∇d
θ

1
h
K
(
v(θ)−Vi(θ)

h

)
] −∇d

θ [E(Si|Vi (θ) = v (θ))gV (v)] = O(h2)

b) : supV arSi∇d
θ

1
h
K
(
v(θ)−Vi(θ)

h

)
= O

(
h−(1+2d)

)
c) : sup∇d

θE [ĝV (v (θ))] = O(h2)

d) : supV ar{∇d
θ

[
1

h
k

(
v (θ)− Vi (θ)

h

)]
} = O

(
h−(1+2d)

)
.

Lemma 2. Employing all notation and assumptions in Lemma 1, define:

S(v (θ) ; θ) ≡ 1

N

N∑
i=1

Si
1

h
k

(
v (θ)− Vi (θ)

h

)
; S̄(v (θ) ; θ) ≡ S(v (θ) ; θ)

ĝV (v (θ))
.

For δ > 0 arbitrarily small let cp ≡ min
[
2r, 1−(1+2d)r

2

]
− δ. Then for gV (v) 6= 0:

a) :
∣∣∇d

θ [S(v (θ) ; θ)− E(Si|Vi (θ) = v (θ))gV (v (θ))]
∣∣ = op(N

−cp)

b) :
∣∣∇d

θ [ĝV (v)− gV (v)]
∣∣ = o

(
N−cp

)
c) :

∣∣∇d
θ

[
S̄(v)− E(S|V = v)

]∣∣ = op(N
−cp).

Further assume that E [|Si|m] = O(1), E
[∣∣h1+d∇d

θKi

∣∣m] = O(1), and that E
[
|Si|m

∣∣h1+d∇d
θKi

∣∣m] =

O(1) for m > 4, where Ki ≡ 1
h
k
(
v(θ)−Vi(θ)

h

)
. Define:

cu ≡

 min
[
2r, 1−2(1+d)r

2

]
if |Si| = O(1) and d = 0

min
[
2r, 1−2(1+d)r

2
− 1

m+2

]
Otherwise

Then, with the sup taken over x and θ in compact sets:

d) : sup
∣∣∇d

θ [S(v (θ) ; θ)− E(Si|Vi (θ) = v (θ))gV (v (θ))]
∣∣ = op(N

−cu)

e) : sup
∣∣∇d

θ [ĝV (v)− gV (v)]
∣∣ = op(N

−cu)

f) : sup
∣∣∇d

θ

[
S̄(v)− E(S|V = v)

]∣∣ = op(N
−cu).

Proof. The proofs of a)-c) follow from Lemma 1. To prove d), we write the expression in d)
as:

1
N

∑
iSi∇d

θKi − E
[
Si∇d

θKi

]
+

E
[
Si∇d

θKi

]
−∇d

θ [E(Si|Vi (θ) = v (θ))gV (v (θ))] .
(49)

It can be shown that the second line in (49) is O(h2) from a). For the first line in (49), consider first
the case where |Si| = O(1) and d = 0. Then, since hKi = O(1) and h = O (N−r), it follows from
standard results in the literature (see, for example, Bhattacharya(1967) and Klein(1993)) that:

sup
x,θ
| 1
N

∑
i

Si∇d
θKi − E

[
Si∇d

θKi

]
| = Op

(
N−(1−2r

2 )
)
.
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The proof for d) then follows for this case. Next, consider the case where d > 0 and/or |Si| 6= O(1).
Define:

bi =

{
1 : |Si|

∣∣h1+d∇d
θKi

∣∣ > N
1

m+2

0 : Otherwise
.

Then, write the first line in (49) as the sum of T(1−b) and Tb, where:

T(1−b) ≡
1

N

∑
i

(1− bi)Si∇d
θKi − E

[
(1− bi)Si∇d

θKi

]
(50)

Tb ≡
1

N

∑
i

biSi∇d
θKi − E

[
biSi∇d

θKi

]
. (51)

It then follows (see, for example, Bhattacharya(1967) and Klein(1993)) that uniformly

T(1−b) = Op

(
N−(1/2−(1+d)r− 1

m+2
)
)

.

Turning to Tb in (51), we separately order each of its two components. For the first, the absolute
value of its expectation is bounded above by:

E
[
bi|Si∇d

θKi|
]
≤ E[bi]

1/2E
[
S2
i

(
∇d
θKi

)2
]1/2

(52)

≤ E
[
S4
i

]1/4
E[bi]

1/2E
[(
∇d
θKi

)4
]1/4

.

By assumption, E [S4
i ] = O(1). For E[bi]:

E[bi] = Pr
[
|Si|

∣∣h1+d∇d
θKi

∣∣ > N
1

m+2

]
= Pr

[
|Si|m

∣∣h1+d∇d
θKi

∣∣m > N
m
m+2

]
(53)

≤ N−
m
m+2E

[
|Si|m

∣∣h1+d∇d
θKi

∣∣m] = O
(
N−

m
m+2

)
from Markov’s inequality and the Lemma’s assumptions. Therefore E[bi]

1/2 = O(N−
m

2(m+2) ). Since

E[
(
∇d
θKi

)4
]1/4= O

(
h−(1+d))

)
= O(N r(1+d)), it follows that:

1

N

∑
biSi∇d

θKi = Op(N
− m

2(m+2)
+(1+d)r).

Employing the same arguments, E
([
bi|Si∇d

θKi(v (θ) , θ)|
])

= O(N−
m

2(m+2)
+(1+d)r). Hence:

1

N

∑
biSi∇d

θKi − E
([
bi|Si∇d

θKi(v (θ) , θ)|
])

= Op

(
N−

m
2(m+2)

+(1+d)r
)

and the result then follows. The proofs for e) and f) are very similar to that for d) above.

The estimator for quantile marginal effects will depend on a trimming indicator over estimated
quantiles. Lemma 3 below provides the results needed to take such quantile uncertainty into account
in deriving the asymptotic distribution of the estimator.
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Lemma 3. Quantile Estimation Uncertainty. Assuming that Wj is i.i.d. or constant
and that m ≡ E [tqj (q,XjC)Wj] is bounded and continuously differentiable in q. Then

D ≡ 1√
N

N∑
j=1

[tqj (q̂, XjC)− tqj (q,XjC)]Wj = [∇qm]
√
NB̄ + op(1), (54)

where tqj is defined in (D11) and B̄ in (D13).

Proof.

D =

{
1√
N

∑N
j=1 [tqj(q̂, XjC)Wj −m(q̂)]−

1√
N

∑N
j=1 [tqj(q,XjC)Wj −m(q)]

}
(55)

+
√
N [m(q̂)−m(q)] . (56)

With q̃ an arbitrary value for q, for the term in (55) it suffices to show that:

sup
‖q̃−q‖<δn

∣∣∣∣∣∣
1√
N

∑N
j=1 [tqj(q̃, XjC)Wj −m(q̃)]−

1√
N

∑N
j=1 [tqj(q,XjC)Wj −m(q)]

∣∣∣∣∣∣ = op(1)

for each sequence δn tending to zero. From Pakes and Pollard (1989, Lemma 1.17) the above result
holds, implying that the term in (55) vanishes in probability. Turning to the term in (56), from a
Taylor series expansion: √

N [m(q̂)−m(q)] = ∇qm (q)
√
N(q̂ − q).

From the Bahadur representation in (D13) :

√
N (q̂ − q) =

√
NB̄ + op(1).

The lemma follows.

Lemma 4. α− derivative. Recalling Theorem 1) and define:

ᾱ(Vj (θ) , θ) ≡ E
[
Q̄∗′j Rj|Vj(θ)

]−1
E[Q̄∗′j Yj|Vj(θ)]

α0(Vj(θ)) ≡ ᾱ(Vj (θ) , θ0).

Then, with ∇θ as the derivative operator w.r.t. θ :

∇θᾱ(Vj(θ), θ)θ=θ0 = ∇θα0(Vj(θ))θ=θ0
−E

[
Q̄∗′j Rj|Vj(θ0)

]−1
E[Q̄∗′j Rj[∇θα0(Vj(θ))]|Vj(θ0)]θ=θ0 .

Proof. Differentiating ᾱ(Vj (θ) , θ), with respect to θk, the kth element of θ. We have:

∇θk ᾱ(Vj (θ) , θ)
θ=θ0

=
{
∇θkE

[
Q̄∗′j Rj|Vj(θ)

]−1
}
θ=θ0

E[Q̄∗′j Yj|Vj(θ0)] (57)

+E
[
Q̄∗′j Rj|Vj(θ0)

]−1∇θkE[Q̄∗′j Yj|Vj(θ)]θ=θ0 . (58)
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We first note that for any nonsingular matrix M (θ) and for θk an element of θ :

∇θkM
−1(θ) = −M−1(θ)[∇θkM(θ)]M−1(θ), (59)

a result that follows because

∇θk

[
M−1(θ)M(θ)

]
= ∇θk(I) = 0 = ∇θk

[
M−1(θ)

]
M(θ) +M−1(θ)∇θk

[
M−1(θ)

]
.

Employing (59), the first component in (57) is given as:

∇θkE
[
Q̄∗′j Rj|Vj(θ)

]−1

θ=θ0

= −E
[
Q̄∗′j Rj|Vj(θ0)

]−1 {∇θkE[Q̄∗′j Rj|Vj(θ)]
}
θ=θ0

E
[
Q̄∗′j Rj|Vj(θ0)

]−1
.

Recalling that Yj = Rjα0(Vj(θ0)) + εj, the second component in (57) is given as:

E[Q̄∗′j Yj|Vj(θ0)] = E[Q̄∗′j Rjα0(Vj(θ0))|Vj(θ0)] = E[Q̄∗′j Rj|Vj(θ0)]α0(Vj(θ0)).

Therefore, the expression in (57) has the characterization:

−E
[
Q̄∗′j Rj|Vj(θ0)

]−1 {∇θkE[Q̄∗′j Rj|Vj(θ)]
}
θ=θ0

α0 (Vj(θ0)). (60)

Turning to the gradient component in (58), let δ(θ) ≡ Vj(θ0)− Vj(θ). Then we may write :

∇θkE[Q̄∗′j Yj|Vj(θ)]θ=θ0 = ∇θkE
[
Q̄∗′j Rj[α0(Vj(θ0))]|Vj(θ))

]
θ=θ0

= ∇θkE
[
Q̄∗′j Rj[α0(δ(θ) + Vj(θ))]|Vj(θ))

]
θ=θ0

= G1 +G2,

G1 ≡ ∇θkE
[
Q̄∗′j Rj[α0(δ(θ) + Vj(θ0))]|Vj(θ0)

]
θ=θ0

G2 ≡ ∇θkE
[
Q̄∗′j Rj[α0(δ(θ0) + Vj(θ))]|Vj(θ)

]
θ=θ0

from the chain rule.7 For the G1-term, since ∇θkδ(θ0) = −∇θkVj(θ):

G1 = E
[
Q̄∗′j Rj[∇θk

α0(δ(θ) + Vj(θ0))]|Vj (θ0)
]
θ=θ0

= −E[Q̄∗′j Rj[∇θkα0(Vj(θ))]|Vj(θ0)]θ=θ0 .

For the G2-term above, since δ(θ0) = 0 :

G2 = ∇θk

{
E[Q̄∗′j Rjα0(Vj(θ))|Vj(θ)]

}
θ=θ0

= ∇θk

{
E[Q̄∗′j Rj|Vj(θ)]α0(Vj(θ))

}
θ=θ0

= E[Q̄∗′j Rj|Vj(θ0)]∇θkα0(Vj(θ))θ=θ0 +{
∇θkE[Q̄∗′j Rj|Vj(θ)]θ=θ0

}
α0(Vj(θ0)) .

7To the best of our knowledge, Whitney Newey was the first to make this type of argument for semiparametric
expectations. It underlies the efficiency result in Klein and Spady(1993) as well as the bias reduction mechanism
in Klein and Shen (2011) and Klein, Shen, and Vella (2014).
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Combining the G1 and G2 terms, the term in (58) can be characterized as:

[
E[Q̄∗′j Rj|Vj(θ0)

]−1


−E

{
Q̄∗′j Rj∇θkα0(Vj(θ))|Vj(θ0)]

}
θ=θ0

+

E[Q̄∗′j Rj|Vj(θ0)]∇θkα0(Vj(θ))θ=θ0+{
∇θkE[Q̄∗′j Rj|Vj(θ)]θ=θ0

}
α0(Vj(θ0)) .

 . (61)

Finally, adding (60) and (61) together, the form for ∇θkα(Vj(θ); θ)θ=θ0 follows.

Lemma 5. Estimated trimming. Let Wi be an i.i.d. vector with estimator Ŵi. With q̂ and
q as vectors of sample and population quantiles, let ti(q) be a trimming function of the form shown
in (D3). Let Nδ = {q̃ : ‖q̃ − q‖ < δ} where δ → 0 as N →∞. Denote ‖A‖ ≡ AA′. With cw > 0,
ca > 0, cs > 0, assume that Ai and Wi are vectors satisfying :

C1) :
1

N

N∑
i=1

ti(q)Tr
∥∥∥Ŵi −Wi

∥∥∥ = op(N
−2cw)

C2) :
1

N

N∑
i=1

ti(q)Tr ‖Ai‖ = Op(N
−2ca)

C3) : sup
i; q̃εNδ

ti (q̃)Ai = op
(
N−cs

)
.

C4) : E

[
1

N

N∑
j=1

Tr ‖WiAi‖

]
= O(1) .

Then, for ε > 0 and arbitrarily small and for the indicators employed here, under (C1), (C3) and
(C4) :

a) :
1

N

N∑
i=1

[ti(q̂)Ŵi − ti (q)Wi]Ai =
1

N

N∑
i=1

ti (q) (Ŵi −Wi)Ai + op(N
−1/2+ε) .

Under (C1)-(C4):

b) :
1

N

N∑
i=1

[ti(q̂)Ŵi − ti (q)Wi]Ai = op(N
−(cw+ca)) .

c) :
1

N

N∑
i=1

[ti(q̂)− ti (q)] = op(N
−1/2+ε).

Proof. For a), we have:

1

N

N∑
i=1

[ti(q̂ ˆ)W i − ti (q)Wi]Ai =
1

N

N∑
i=1

ti(q)
(
Ŵi −Wi

)
Ai + ∆wa

∆wa =
1

N

N∑
i=1

[ti(q̂)− ti (q)]WiAi + (62)

1

N

N∑
i=1

[ti(q̂)− ti (q)]si(q̂)
(
Ŵi −Wi

)
Ai, (63)
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where si is an indicator that is one if ti(q̂) or ti (q) is 1 and is zero otherwise. For the component,
of ∆wa in (62), from Cauchy-Schwarz and (C4), the absolute value is bounded above by:8{

1

N

N∑
j=1

[ti(q̂)− ti (q)]2
}1/2

×Op(1).

Employing an argument in Klein and Shen(2010, Theorem 2) and a convergence rate for in-
dicators in Klein(1993),9 the above term is op(N

−1/2+ε) for ε > 0 and arbitrarily small. For the
absolute value of the second component of ∆wa in (63), from an argument similar to that above, it
is bounded by:

|∆wa| ≤

{
1

N

N∑
j=1

[ti(q̂)− ti (q)]2
}1/2

sup
q̃εRδ

{
1

N

N∑
j=1

sj(q̃)Tr
∥∥∥(Ŵi −Wi

)
Ai

∥∥∥}1/2

.

As above, the first term is op(N
−1/2+ε) for ε > 0 and arbitrarily small. The second term converges

in probability to 0 from the uniform assumption (C3) on Ai and the pointwise assumption involving
Ŵi.

The proof for b) readily follows from a), an extension of Cauchy Schwarz and the point-wise
convergence assumptions. The proof for c) employs the same argument as that in a), making similar
use of the sj indicator .

Lemma 6. Let v εC, a compact subset of the support for V and θ εΦ1 a compact set. Refer
to (D6) and (D8). Set the window parameter as in (D4) and take the sup over v and θ. Then, un-
der (A8):

a)Ω̄∗(v, θ),Ω(v, θ) are non-singular for all vεC, θεΦ1 (64)

b) sup

 |Ω̂− Ω|
ˆ|Ω
∗
− Ω̄∗|

ˆ|Ω
∗
− Ω∗|

 =

 op
(
N−1/4

)
op
(
N− δ

)
op
(
N−1/4

)
 (65)

c) sup

 |Ω̂−1 − Ω−1|
ˆ|Ω
∗−1
− Ω̄∗−1|

|Ω̂∗−1 − Ω∗−1|

 =

 op
(
N−1/4

)
op
(
N− δ

)
op
(
N−1/4

)
 (66)

Proof. To show that Ω̄∗ in a) is non-singular, from (D6)-(D8), locally project Ti on Q̄i
∗

to
obtain:

Ti = Q̄i
∗

(π′ (v) , c′ (v)) + ei, E
[
eiQ̄

∗
i |Vi = v

]
= 0.

8Letting Bi ≡WiAi have kth element Bik, from Cauchy-Schwarz

N∑
i=1

[ti(q̂)− ti (q)]Bik ≤ [
1

N

N∑
i=1

[ti(q̂)− ti (q)]2]1/2

[
1

N

N∑
i=1

B2
ik

]1/2
,

where 1
N

∑N
i=1Bik ≤ 1

N

∑N
i=1 Tr[BiB

′
i}.

9The rate is obtained by bounding [ti(q̂)− ti (q)]2 from above by a smooth function and then employing a Taylor
series expansion.
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It then follows that:

E[Q̄∗
′

i Ri|Vi = v] = E(Q̄i
∗′
Q̄i
∗|Vi = v)]

[
π 0
c′ 1

]
,

If Σ ≡ var(tiP
′
i |Vi (θ) = v) is positive definite for all v and θ in a compact sets, then E(Q̄i

∗′
Q̄i
∗|Vi =

v) will have full rank. It then follows that if π has full rank and gV (v) is non-zero,

Ω̄∗(v, θ) ≡ E(Q̄i
∗′
Ri|Vi = v)gV (v)

will have full rank, completing the proof for a). The proof for Ω(v, θ) is identical.
Next we show b): For the first and third parts, let Ω̂α(v, θ) refer to either Ω̂ (v, θ) or Ω̂∗, Ωα (v, θ)

to either Ω or Ω∗, and Qα to either Q or Q∗. Then,

∣∣∣Ω̂α(v, θ)− Ωα(v, θ)
∣∣∣ ≤ ∣∣∣∣Q′αDN(v, θ)R

N
− Ωα(v, θ)

∣∣∣∣+

∣∣∣∣
[
Q̂α −Qα

]′
DN(v, θ)R

N

∣∣∣∣.
The sup of the first component on the right-hand-side is op(N

−1/4) from Lemma 2d. From (D5),
Lemma 5, and Lemma 2d, the second component is also op(N

−1/4). The second part of b) follows
from the convergence of t∗1 to t1 in (D6) and the definition of Ω̄∗ in (D8).

For the first part of c), let

(v∗, θ∗) ≡ arg sup
v,θ

∥∥∥Ω̂ (v, θ)−1 − Ω (v, θ)−1
∥∥∥ .

Notice that from a)-b):

det
(

Ω̂ (v∗, θ∗)
)
− det (Ω (v∗, θ∗)) = op(1),

det (Ω(v∗, θ∗)) > inf
v,θ

det (Ω (v, θ)) > 0.

Therefore, it can be shown that Ω̂ (v, θ)−1 − Ω(v, θ)−1 uniformly converges to 0. To obtain the
required rate, write the expression in c) as:

Ω̂ (v∗, θ∗)−1 − Ω (v∗, θ∗)−1 = Ω̂ (v∗, θ∗)−1 [Ω (v∗, θ∗)− Ω̂ (v∗, θ∗)]Ω (v∗, θ∗)−1 . (67)

With the first and third terms being Op (1) , the result follows from the convergence rate for the
middle term established in b). The arguments for the other two parts of c) are similar with the
slower convergence rate in the second part being due to the slower convergence rate of ||Ω̄∗ − Ω̄∗|
in b).

Lemma 7. Recalling (D1) and (D8), define Vi ≡ Vi(θ0). Let α0, α̂
∗
0, and α̂0 be matrices

with ith rows given as α0i ≡ α (Vi, θ0) , α̂∗0i ≡ α̂∗0(Vi, θ0), and α̂0i ≡ α̂ (Vi, θ0) respectively. With l =
1, ..., L + 1, let ∆l(Vi) be the lth element from ∆(Vi) corresponding to L treatments and a default
option, and ∆̂l(Vi) the lth element from ∆̂(Vi, θ0) in (D8). Assume that ti is an indicator
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constraining Vi to a compact set. Then, recalling that ‖A‖ ≡ AA′ :

a)
1

N

N∑
i=1

tiTr ‖α̂0i − α0i‖ = op(N
−1/2) (68)

b)
1

N

N∑
i=1

tiTr
∥∥∥[∆(Vi)− ∆̂(Vi)

]
DN(Vi (θ0) , θ0)

∥∥∥ /(N − 1) = op
(
N−1/2

)
(69)

c)
1

N

N∑
i=1

tiTr ‖α̂∗0i − α0i‖ = op(N
−1/2). (70)

Proof. For a), let DN (Vi) ≡ DN(Vi(θ0), θ 0) and define:

α̃0i ≡
1

N
Ω (Vi)

−1Q′DN (Vi)Y = α0i +
1

N
Ω (Vi)

−1Q′DN (ε+ ∆ (Vi)) . (71)

We prove a) by showing:

a1) : ∆1 ≡
1

N

N∑
i−1

t i Tr ‖α̃0i − α0i‖ = op
(
N−1/2

)
(72)

a2) : ∆2 ≡
1

N

N∑
i=1

tiTr‖α̂0i − α0i‖ −
1

N

N∑
i=1

tiTr‖α̃0i − α0i‖| = op(N
−1/2) (73)

(74)

For a1),

E (∆1) = E[t i Tr‖α̃0i − α0i‖] = E[t i Tr ‖α̃0i − E (α̃0i) ‖] + E [t i Tr ‖E (α̃0i)− α0i‖] (75)

From Lemma 2, it can be shown that last (squared bias) component is uniformly O(h4) while
the remaining (variance) component is uniformly O

(
1
Nh

)
. With h = 1/7.99, it follows that a1)

holds. Turning to a2):

∆2 =
1

N

N∑
i=1

tiTr ‖(α̂0i − α̃0i) + (α̃0i − α0i) ‖ −
1

N

N∑
i=1

tiTr‖α̃0i − α0i‖ (76)

and hence

∆2 =
1

N

N∑
i=1

ti [α̂0i − α̃0i]
′ [α̂0i − α̃0i] + 2

1

N

N∑
i=1

ti [α̂0i − α̃0i]
′ [α̃0i − α0i]. (77)

For the first component in (77), recalling the definition of α̂ in (D8):

ti(α̂0i − α̃0i) = ti

 Ω (Vi)
−1
(
Q̂−Q

)′
+
[
Ω̂ (Vi)

−1 − Ω (Vi)
−1
]

+
(

Ω̂ (Vi)
−1 − Ω (Vi)

−1
)(

Q̂−Q
)′

AN , (78)
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where AN ≡ DN (Vi) [ε+ ∆ (Vi)] /N . From (D5) and Lemmas 5-6, tiΩ (Vi)
−1
(
Q̂−Q

)
is uni-

formly op
(
N−1/4

)
in i and from Lemma 6, ti(Ω̂ (Vi)

−1 −Ω (Vi)
−1) is also uniformly op

(
N−1/4

)
.

Accordingly, it can be shown that

sup
i
|ti(α̂0i − α̃0i)| = op

(
N−1/4

)
. (79)

It now follows that the first term of ∆2 in (77) is op
(
N−1/2

)
. From Cauchy-Schwarz, the absolute

value of the second term of ∆2 is bounded from above by:

2

√√√√ 1

N

N∑
i=1

ti [α̂0i − α̃′0i]
′
[α̂0i − α̃0i]

√√√√ 1

N

N∑
i=1

ti[α̃0i − α0i]′ [α̃0i − α0i] (80)

The first component of the above product is op
(
N−1/4

)
from (79) above. The second term in the

above product is op
(
N−1/4

)
from a1). The result in a) now follows.

To prove b), recall from (D1) and (D8) that:

∆j (Vi) = Rj [α0j − α0i] ; ∆̂j (Vi) = Rj[α̂0j − α̂0i] =⇒ (81)

∆j (Vi)− ∆̂j (Vi) = Rj {[α̂0i − α0i]− [α̂0j − α0j]} . (82)

Employing the definition of α̃0i in the proof of a), define

∆̃j (Vi) ≡ Rj [α̃0i − α0i] =⇒ ∆j (Vi)− ∆̃j (Vi) = Rj {[α̃0i − α0i)]− [α̃0j − α0j]} . (83)

Under an argument similar to that in a),

1

N

N∑
i=1

ti{Tr‖
[
∆(Vi)− ∆̂(Vi)

]
DN(Vi)‖/(N − 1)− Tr

∥∥∥[∆(Vi)− ∆̃(Vi)
]
DN(Vi)

∥∥∥ /(N − 1)} (84)

is op
(
N−1/2

)
. Therefore, to prove (b), we study:

E{ti
1

h2

[
∆(Vi)− ∆̃(Vi)

]′
D2
N(Vi)

[
∆(Vi)− ∆̃(Vi)

]
/ (N − 1)} (85)

Write this term as the sum of:

T1 ≡
1

N − 1

N∑
r 6=i

E
{
ti[∆̃r(Vi)− E

(
∆̃r (Vi) |Vi, Vr

)
]2K2

ir

}
(86)

T2 ≡
1

N − 1

N∑
r 6=i

E

{
ti

[
E(∆̃r (Vi) |Vi, Vr)−∆r (Vi)

]2

K2
ir

}
. (87)

where Kir ≡ K [(Vi − Vr) /h]. TheT1 term is op(N
−1/2) because K2 is bounded and the variance

term:
1

h2
E

{
ti

[
∆̃r(Vi)− E

(
∆̃r(Vi)|Vi

)]′ [
∆̄r(Vi)− E

(
∆̃r(Vi)|Vi

)]}
36



has order 1
h2
O(
(

1
Nh

)
) = op(N

−1/2) uniformly in r for h = O(N−1/7.99). Turning to T2, it can be
shown that

E[E(∆̃r(Vi)|Vi, Vr)−∆r(Vi)|Vi, Vr] = h2[B(Vi)−B(Vr)],

where B is a bounded function. Therefore, we need to evaluate:

h3E{tiE[B(Vi)−B(Vr)]
′
[
K2

[
Vi − Vr
h

]
/h

]
[B(Vi)−B(Vr)]|Vi]} .

The order of this term is further reduced with the kernel restricting Vr to be close to Vi . In
particular, letting Z = (Vr − Vi)/h, it can be shown that the inner expectation is uniformly O(h4).
Therefore, with h = N−1/7.99 , the above term is o(N−1/2) which establishes part b) of the lemma.

To establish c), refer to (D8), recall the definition of ∆̃ (Vi) above, and define:

α̃∗0i ≡
Ω∗−1
i Q∗′DN (Vi) [Y − ∆̃ (Vi)]

N
(88)

= α0i + Ω∗−1
i Q∗′DN (Vi) [ε+ ∆(Vi)− ∆̃ (Vi)]

Then, similar to a), the proof follows by showing

c1) : ∆∗1 ≡
1

N

N∑
i−1

t i Tr ‖α̃∗0i − α0i‖ = op
(
N−1/2

)
(89)

c2) : ∆∗2 ≡
1

N

N∑
i=1

tiTr ‖α̂∗0i − α0i‖ −
1

N

N∑
i=1

tiTr‖α̃∗0i − α0i‖| = op(N
−1/2). (90)

The proof for c1) is very similar to that for a1). Employing b), the proof for c2) is very similar to
that for a2).

Lemma 8 provides convergence rates on derivatives, which are needed to establish asymptotic
normality.

Lemma 8. Define Vi (θ) ≡ X1i + XIIiθ, where X1i, XIIi, and θ are in compact sets.10 Let
∇d
θk
f(θ) be the dth partial derivative of the function f with respect to θk, the kth element of θ where

∇0
θk
f(θ) ≡ f(θ). Let δd be a small positive number. Then, referring to (D6) and (D8):

a) : sup
i,θ

∣∣∣5θk

[
Ω̂(Vi (θ) , θ)

−1 − Ω(Vi (θ) , θ)
−1
]∣∣∣ = op(N

−δd)

b) : sup
i,θ
| 5θk

[
Ω̂∗(Vi (θ) , θ)

−1 − Ω∗(Vi (θ) , θ)
−1
]
| = op(N

−δd)

For d = 0, 1

c) : sup
i,θ

∣∣∇d
θ[α̂[Vi (θ) , θ]− α(Vi (θ), θ)]

∣∣ = op(N
−δd)

d) : sup
i,θ

∣∣∇d
θ[α̂
∗[Vi (θ) , θ]− ᾱ(Vi (θ), θ)]

∣∣ = op(N
−δd)

10In applications of this lemma, trimming ensures that the index variables are in compact sets.
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Proof. For a), employ the derivative of a matrix inverse in (59) and write the difference in
derivatives in a) as:

Ω(Vi (θ) , θ)
−1 [∇θkΩ(Vi (θ) , θ)] Ω(Vi (θ) , θ)

−1 − Ω̂(Vi (θ) , θ)
−1
[
∇θkΩ̂(Vi (θ) , θ)

]
Ω̂(Vi (θ) , θ)

−1

From Theorem 1 and Lemma 6, ∣∣∣Ω̂(Vi (θ) , θ)
−1 − Ω(Vi (θ) , θ)

−1
∣∣∣

is uniformly op(N
−δd). Therefore, it suffices to show that∣∣∣∇θkΩ̂(Vi (θ) , θ)−∇θkΩ(Vi (θ) , θ)

∣∣∣
is uniformly op(N

−δd). An upper bound on this expression is given as:

sup
i,θ
|∇θk

Q′DN(Vi (θ) , θ)R

N
−∇θkΩ(Vi (θ) , θ)| (91)

+ sup
i,θ

∣∣∣∣∣∣∣∇θk

[[Q̂−Q]′DN(Vi (θ) , θ)R

N

]∣∣∣∣∣∣∣ . (92)

From Lemma 2a with r = 1/7.99, the component in (91) is op(N
−δd). Based on Lemma 5 and (D5),

it can be shown that the component in (92) is op(N
−δd), which completes the proof of a).

As the proof for b) is identical to that for a), we turn to c). As the argument for d = 0 is similar
to but less complicated than that for d = 1, we provide the argument for d = 1. For this case, the
difference in estimated and true derivatives is given as:

∇θk

{
Ω̂(Vi(θ), θ)

−1 Q̂
′DN(Vi(θ), θ)Y

N
− Ω(Vi(θ), θ)

−1E [Q′iYi|Vi(θ)] gV (Vi(θ))

}

= Ω(Vi(θ), θ)
−1∇θk [

Q̂′DN(Vi(θ), θ)Y

N
− E[Q′iYi|Vi(θ)]gV (Vi(θ))] (93)

+∇θkΩ(Vi(θ), θ)
−1

[
Q̂′DN(Vi(θ), θ)Y

N
− E [Q′iYi|Vi(θ)] gV (Vi(θ))

]
(94)

+
[
Ω̂(Vi(θ), θ)

−1 − Ω(Vi(θ), θ)
−1
]
∇θk

{
Q̂′DN(Vi(θ), θ)Y

N

}
(95)

+∇θk

[
Ω̂(Vi(θ), θ)

−1 − Ω(Vi(θ), θ)
−1
] Q̂′DN(Vi(θ), θ)Y

N
(96)

For the term (93), |Ω(Vi(θ), θ)
−1| ≤ supv,θ |Ω(v, θ)−1| is bounded, hence we study

∇θk

[
Q̂′DN(Vi(θ), θ)Y

N
− E [Q′iYi|Vi(θ)] gV (Vi(θ))

]

= ∇θk

[
Q′DN(Vi(θ), θ

∗)Y

N
− E[Q′iYi|Vi(θ)]gV (Vi(θ))

]
(97)

+

[[Q̂−Q]′∇θkDN(Vi(θ), θ)Y

N

]
. (98)
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The absolute value of the term in (97) is bounded above by:

sup
i,θ

∣∣∣∣∇θk

[
Q′DN(Vi (θ) , θ)Y

N
− E [Q′iYi|Vi (θ)] gV (Vi (θ))

]∣∣∣∣ ,
which is op(N

−δd) from Lemma 2d) and (A6). For the term in (98), the absolute value of a typical
term is bounded above by:

sup
i
t2i|P̂li − Pli| sup

j,θ

∣∣∣∣∣
N∑
j=1

Yj∇θkKj(Vi (θ) , θ)

N

∣∣∣∣∣
The first component is op(N

−1/4) from (D5). The second component is Op(1) under Lemma 2d and
(A6). Consequently, the term in (98) is op(N

−δd).
Turning to the term in (94) the absolute value of its second component is op(N

−δd) from an
argument virtually identical to that for (93). For the first component:∣∣∇θkΩ(Vi (θ) , θ)

−1
∣∣ =

∣∣Ω(Vi (θ) , θ)
−1 [∇θkΩ(Vi (θ) , θ)] Ω(Vi (θ) , θ)

−1
∣∣

≤


supi,θ |Ω(Vi (θ) , θ)

−1|×
supi,θ |∇θkΩ(Vi (θ) , θ)| ×

supi,θ |Ω(Vi (θ) , θ)
−1|

 = Op(1).

For the term in (95), the absolute value of its first component is op(N
−δd) from Lemma 6c). For

the second component we must analyze:

{[Q̂−Q]′∇θkDN(v∗, θ∗)Y

N

}
+

{
Q′∇θkDN(v∗, θ∗)Y

N

}
(99)

Employing arguments similar to those for (93), the absolute value of the elements in the first term
is op(N

−δd), while those in the second are Op(1) from (A6) and Lemma 2d.
For the term in (96), its first component is op(N

−δd) from a), while the second component,
which is similar to that in (99), is Op(1). The proof for d) is very similar to that for c).

To establish asymptotic normality for the estimator of the index parameter vector, the next
lemma shows that the estimated Hessian matrix converges to a fixed matrix.

Lemma 9. The Hessian. Recalling the definition of H0 in Theorem 3, for any θ+ p→ θ0 :

∇θĜ
∗(θ+)

p→ H0

Proof. To prove the result, recall the definition of α̂∗ and ᾱ in (D8) and let

∇θk1
Ĝ∗k2 (θ) ≡ − 1

N

N∑
i=1

Ẑik2Ri∇θk1
α̂∗ (Vj(θ), θ)

Hk1k2 (θ) ≡ E[− 1

N

N∑
i=1

Zik2Ri∇θk1
ᾱ (Vj(θ), θ)],
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where ∇θk1
Ĝ∗k2(θ) is the derivative of kth2 moment w.r.t. θk1 ; while Hk1k2 (θ) is the fixed matrix to

which it is converging. Then since θ+ p→ θ0, we must show:

a) sup
θ

∣∣∣∣∣∇θk1
Ĝ∗k2 (θ) + [

1

N

N∑
i=1

Zik2Ri∇θk1
ᾱ (Vj(θ), θ)]

∣∣∣∣∣ p→ 0

b) sup
θ
|
N∑
i=1

Zik2Ri∇θk1
ᾱ(Vj(θ), θ) + Hk1k2 (θ) | p→ 0.

For a):

[− 1

N

N∑
i=1

Zik2Ri∇θk1
ᾱ (Vj(θ), θ)]−∇θk1

Ĝ∗k2 (θ)

=
1

N

N∑
i=1

Zik2Ri∇θk1
[α̂∗ (Vi (θ) , θ)− ᾱ (Vi (θ) , θ)] (100)

+
1

N

N∑
i=1

[
Ẑik2 − Zik2

]
Ri∇θk1

ᾱ (Vi (θ) , θ) (101)

+
1

N

N∑
i=1

[
Ẑik2 − Zik2

]
Ri∇θk1

[α̂∗ (Vi (θ) , θ)− ᾱ (Vi (θ) , θ)] . (102)

The absolute value of the term in (100) is bounded above by:

sup
θ

∣∣∣∣∣ 1

N

N∑
i=1

Zik2Ri

∣∣∣∣∣ sup
i,θ
|∇θk1

[α̂∗ (Vi (θ) , θ)− ᾱ (v, θ)

From Lemma 8, the first component is op(1). The second component is Op(1) under (A7), which
completes the argument for (100).

Turning to the term in (101), from Lemma 5a, trimming can be taken as known. Then, since
θ only enters through ∇θk1

ᾱ (Vi (θ) , θ), the resulting term is then op (1) from Cauchy-Schwarz.
Using arguments similar to those above, the term in (102) converges to 0 faster than the

other two. For b), with ti∇θk1
ᾱ (Vi (θ) , θ) bounded from (A7), uniform convergence holds from

Amemiya(1985, Thm. 4.2.1).

Lemma 10. The Gradient. With Vj ≡ Vj(θ0) and α0(Vj) ≡ α(Vj, θ0), recall that Yj =

Rjα0(Vj) + εj and denote α̂∗0(Vj) ≡ α̂∗(Vj, θ0). With Ĝ∗(θ0) as the gradient and with

R̄′z (Vj) ≡ Z ′j − E(Z ′jRj|Vj)E
[
Q̄∗
′

j Rj|Vj
]−1

Q̄∗
′

j , (103)

it follows that:

√
NĜ∗(θ0) ≡ 1√

N

N∑
j=1

Z ′j[Yj −Rjα̂
∗
0(Vj)] =

1√
N

N∑
j=1

R̄′z (Vj) εj + op (1) . (104)
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Proof. Recalling that εj = Yj −Rjαo (Vj) , write
√
NĜ∗(θ0) in (104) as.

√
NĜ∗(θ0) =

1√
N

N∑
j=1

Ẑ ′jεj −
1√
N

N∑
j=1

Ẑ ′jRj[α̂
∗
0(Vj)− α0 (Vj)] (105)

=
1√
N

N∑
j=1

Z ′jεj −
1√
N

N∑
j=1

Z ′jRj[α̂
∗
0(Vj)− α0 (Vj)] (106)

+
1√
N

N∑
j=1

[
Ẑj − Zj

]′
εj −

1√
N

N∑
j=1

[
Ẑj − Zj

]′
Rj[α̂

∗
0(Vj)− α0 (Vj)]. (107)

The first term in (106) has the required form. For the second term in (106), from Lemma 11

1√
N

N∑
j=1

Z ′jRj[α̂
∗(Vj)− α0(Vj)] =

1√
N

N∑
j=1

E[Z ′jRj|Vj]E(Q̄∗′j Rj|Vj)−1Q̄∗′j εj + op(1). (108)

Therefore, the proof will follow if the terms in (107) vanish in probability. For the first term, the
result follows under (D9) because estimated trimming can be taken as known under Lemma 5. For
the second term in (107), it vanishes from Lemma 5, Lemma 7c and (D9).

For both the index estimator (as illustrated in the proof of Lemma 10 above) and marginal
effects, we need a result for a weighted difference between bias corrected estimator, α̂∗(Vj) and the
true function, α0(Vj). Lemma 11 provides the key result, with required intermediate results provided
in Lemmas 12-13.

Lemma 11. Letting S∗j be i.i.d. or constant and define Sj ≡ tjS
∗
j , where tj is any trimming

function of the form in (D3) that constrains Vj (θ0) to a compact set and assume Sj is finite.11

Referring to (D8), let Vj ≡ Vj (θ0) and DN(Vj) ≡ DN(Vj (θ0) , θ0). Then, with Q̄j
∗
, Ω̄∗j defined in

(D6) and (D8), let:

U ≡ 1

N

N∑
j=1

Sj[α̂
∗(Vj)− α0(Vj)]

U∗ ≡ 1

N

N∑
j=1

E
(
S̄j|Vj

)
Ω∗(Vj)

−1g(Vj)Q̄
∗
jεj ≡

1

N

N∑
j=1

E(Sj|Vj)E(Q̄∗′j R|Vj)−1Q̄∗′j εj

Then: √
N [U − U∗] = op(1).

Proof. To prove this result, with Q∗ defined in (D6), we will first show:

√
NU =

√
N [U1 + U2] + op(1), U1 ≡

1

N (N − 1)

N∑
j=1

Ω∗(Vj)
−1Q∗

′
DN (Vj) ε (109)

U2 =
1

N(N − 1)(N − 2)

N∑
j=1

∑
i 6=j

∑
k 6=i,j

ρjik, (110)

11The proof is simplified under this assumption, but only requires E(Sjk|Vj) to be finite.
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where

ρjik ≡
[
SjΩ

∗(Vj)
−1Q∗′i Ki(Vj)

]
Ri

[
Ω(Vi)

−1Q′kKk(Vi) [εk + ∆k(Vi)]−
Ω(Vj)

−1Q′kKk(Vj) [εk + ∆k(Vj)]

]
.

The proof will then follow by showing :
√
NU1 =

√
NU∗ + op(1) and

√
NU2 = op(1).

Beginning with the decomposition of
√
NU into

√
N [U1 + U2] above, note that:

α̂∗(Vj) ≡ Ω̂∗(Vj)
−1
Q̂∗′DN(Vj)

[
Y − ∆̂(Vj)

]
N − 1

= α0(Vj) + Ω̂∗(Vj)
−1
Q̂∗′DN(Vj)

[
ε+ ∆(Vj)− ∆̂(Vj)

]
N − 1

.

Therefore,

√
NU =

1√
N

N∑
j=1

SjΩ̂
∗(Vj)

−1
Q̂∗′DN(Vj)

[
ε+ ∆(Vj)− ∆̂(Vj)

]
N − 1

=
√
NU1 :

1√
N

N∑
j=1

SjΩ
∗(Vj)

−1

[
Q∗′DN(Vj)ε

N − 1

]
+

T1 :
1√
N

N∑
j=1

SjΩ
∗(Vj)

−1

[Q∗′DN(Vj)
[
∆(Vj)− ∆̂(Vj)

]
N − 1

]
+

T2 :
1√
N

N∑
j=1

Sj

[
Ω̂∗(Vj)

−1 − Ω∗(Vj)
−1
] Q∗′DN(Vj)

[
ε+ ∆(Vj)− ∆̂(Vj)

]
N − 1

+

T3 :
1√
N

N∑
j=1

Sj

[
Ω̂∗(Vj)

−1 − Ω∗(Vj)
−1
] [Q̂∗ −Q∗]′DN(Vj)

[
ε+ ∆(Vj)− ∆̂(Vj)

]
N − 1

+

T4 :
1√
N

N∑
j=1

Sj
[
Ω∗(Vj)

−1
] [Q̂∗ −Q∗]′DN(Vj)

[
ε+ ∆(Vj)− ∆̂(Vj)

]
.

N − 1

We begin by showing that terms T2, T3 and T4 vanish in probability. For T2, recall that Q∗

contains a trimming function and define:

T̃2 ≡
1√
N

N∑
j=1

Sj[Ω̂
∗(Vj)

−1 − Ω∗(Vj)
−1]

Q∗′DN(Vj)
[
ε+ ∆(Vj)− ∆̃(Vj)

]
N − 1

, (111)

where from (83) and (71) in the proof of Lemma 7a,

∆j (Vi)− ∆̃j (Vi) = Rj {[α̃0i − α0i)]− [α̃0j − α0j]} , (112)

α̃0i = α0i +
1

N
Ω (Vi)

−1Q′DN (ε+ ∆ (Vi)) . (113)
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From Lemma 6c, supj |Ω̂∗(Vj)−1 − Ω∗(Vj)
−1| = op

(
N−1/4

)
. From (79) in the proof of Lemma

7a, sup ti|α̂0i− α̃0i| is op
(
N−1/4

)
. Therefore,

∣∣∣T2 − T̃2

∣∣∣ = op
(
N−1/2

)
. It then suffices to consider

T̃2. With α̃∗0i − α0i = Ω∗−1
i Q∗′DN (Vi) [ε+ ∆

(
Vi)− ∆̃ (Vi)] in (88) of the proof of Lemma 7c:

∣∣∣T̃2

∣∣∣ =
1√
N
|
N∑
j=1j

[Ω̂∗(Vj)
−1 − Ω∗(Vj)

−1]Ω∗(Vj)[α̃
∗(Vj)− α0(Vj)]|

≤ sup
i
|[Ω̂∗(Vj)−1 − Ω∗(Vj)

−1]Ω∗(Vj)|
1

N

N∑
j=1

|α̃∗(Vj)− α0(Vj)| (114)

From Lemma 6c, the first component in (114) is op
(
N−1/4

)
. Employing arguments similar, but sim-

pler than, those in the proof of Lemma 7c, it can be shown that the second component is op
(
N−1/4

)
,

which completes the argument for T2.
For T4, as above,∣∣∣T4 − T̃4

∣∣∣ = op
(
N−1/2

)
T̃4 =

1√
N

N∑
j=1

Sj
[
Ω∗(Vj)

−1
] [
Q̂∗ −Q∗

]′
DN(Vj)

[
ε+ ∆(Vj)− ∆̃(Vj)

]
.

It can be shown that the ε − component of T̃4 converges to 0 as a degenerate U-statistic. The
analysis for the remaining components is similar to that above as Q̂i

∗
−Q∗i is uniformly op

(
N−1/4

)
in i from (D5) and Lemma 5.

Turning to T1, notice that

∆i(Vj)− ∆̂i(Vj) = Ri {[α0(Vi)− α0(Vj)]− [α̂0(Vi)− α̂0(Vj)]} , i 6= j

= Ri {[α̂0(Vj)− α0(Vj)]− [α̂0(Vi)− α0(Vi)]}

= Ri


Ω̂(Vj)

−1
∑
k 6=j

Q̂′kKk(Vj)[εk+∆k(Vj)]

N−1
−

Ω̂(Vi)
−1
∑
k 6=i

Q̂′kKk(Vi)[εk+∆k(Vi)]

N−1

 .

Therefore,

T1 =
1√

N (N − 1)

N∑
j=1

SjΩ
∗(Vj)

−1
∑
i 6=j

Q∗′i Ki(Vj)Ri


Ω̂(Vj)

−1
∑
k 6=j

Q̂′kKk(Vj)[εk+∆k(Vj)]

N−1

−Ω̂(Vi)
−1
∑
k 6=i

Q̂′kKk(Vi)[εk+∆k(Vi)]

N−1

 . (115)

To simplify notation and shorten expressions, let:

Aj ≡ SjΩ
∗(Vj)

−1 , Bij ≡ Q∗′i Ki(Vj)Ri , Ckj ≡ Ω(Vj)
−1Q′kKk(Vj) [εk + ∆k(Vj)] .
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Then, employing arguments similar to those for analyzing T2, we may replace Ω̂(Vr)
−1with Ω(Vr)

−1

for r = j, i, Q̂∗′k with Q∗′k , and write the expression in (115) as:

T1 =
1√

N (N − 1)

N∑
j=1

Aj
∑
i 6=j

Bij

∑
k 6=i,j

[Ckj − Cki]
N − 1

+ op(1) (116)

=
1√

N (N − 1)

N∑
j=1

Aj
∑
i 6=j

Bij

{(∑
k 6=i,j

Ckj − Cki
N − 2

)
+
Cij − Cii
N − 2

}(
N − 2

N − 1

)
+ op(1). (117)

Since Aj = O(1) and Bij = O(1/h), up to an additive term that is op(1), we have

T1 =
1√

N (N − 1)

N∑
j=1

Aj
∑
i 6=j

Bij

∑
k 6=i,j

[Ckj − Cki]
N − 2

+O

(
N−5/2

h

) N∑
j=1

N∑
i 6=j

[Cij − Cii] .

=
1√

N (N − 1)

N∑
j=1

Aj
∑
i 6=j

Bij

∑
k 6=i,j

[Ckj − Cki]
N − 2

+ op(1).

From above, as T1 = U2 + op(1), we have now established that:

√
NU =

√
NU1 +

√
NU2 + op(1), U1 ≡

1√
N(N − 1)

N∑
j=1

SjΩ
∗(Vj)

−1Q∗′DN(Vj)ε (118)

U2 ≡
1

(N − 1) (N − 2)

N∑
j=1

∑
i 6=j

∑
k 6=i,j

ρjik + op(1) (119)

From Lemma 12, up to an additive term that is op (1):

√
NU1 =

1

N

N∑
j=1

E (Sj|Vj) Ω̄∗(Vj)
−1g(Vj)Q̄

∗′
j εj ≡

1

N

N∑
j=1

E (Sj|Vj)E(Q̄∗′j R|Vj)−1Q̄∗′j εj

and from Lemma 13,
√
NU2 = op(1). Lemma 11 then follows.

Lemma 12 Referring to the proof of Lemma 11:

√
NU1 ≡

1√
N(N − 1)

N∑
j=1

SjΩ
∗(Vj)

−1Q∗′DN(Vj)ε =
√
NU∗1

U∗1 ≡ 1

N

N∑
j=1

E (Sj|Vj) Ω̄∗(Vj)
−1g(Vj)Q̄

∗′
j εj ≡

1

N

N∑
j=1

E (Sj|Vj)E(Q̄∗′j R|Vj)−1Q̄∗′j εj.
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Proof. Defining ρji ≡ SjΩ
∗(Vj)

−1Q∗′i Ki(Vj)εi, we have

√
NU1 =

1√
N(N − 1)

N∑
j=1

N∑
i 6=j

SjΩ
∗(Vj)

−1Q∗′i Ki(Vj)εi

=
√
N

(
N
2

)−1 N∑
j=1

N∑
i>j

[
ρij + ρji

]
/2.

With obs j denoting observation j, as the above expression is a centered U-statistic, we have:

√
NU1 =

2√
N

N∑
j=1

E
[
ρij + ρji|obs j

]
/2 + op(1)

=
1√
N

N∑
j=1

E
[
ρij|obs j

]
+ op(1)

=
1√
N

N∑
j=1

E
[
SiΩ

∗(Vi)
−1Kj(Vi)|obs j

]
Q∗′j εj + op(1)

=
1√
N

N∑
j=1

E
[
E (Si|Vi) Ω∗(Vi)

−1Kj(Vi)|obs j
]
Q∗′j εj + op(1)

=
1√
N

N∑
j=1

E (Sj|Vj) Ω∗(Vj)
−1g(Vj)Q

∗′
j εj + op(1)

=
1√
N

N∑
j=1

E (Sj|Vj)E[Q∗
′

j Rj|Vj]−1Q∗
′

j εj + op(1)

from a standard U-statistic projection and (D8). To complete the proof, we need to show that we
can replace Q∗ with Q̄∗ . To this end, let δj ≡ E[Q∗

′
j Rj|Vj]−1Q∗

′
j − E[Q̄∗

′
j Rj|Vj]−1Q̄∗

′
j and define

D ≡ 1√
N

N∑
j=1

E [Sj|Vj] δjεj. (120)

With E (D)= 0, the proof will follow if V ar (D) → 0 . We have:

V ar (D) = E
{
E [Sj|Vj] δjδ′jE

[
Sj|Vj

]′ }
σ2
ε. (121)

Since E [Sj|Vj] is bounded, it suffices to consider: E
(
δjδ
′
j

)
. Noting that ∆j is a difference in terms,

one depending from (D6) on t∗1 and the other on t1 converging to t∗1, from the same arguments
used to establish Lemma 5, it can be shown that E

[
δjδ
′
j

]
→ 0 , which completes the proof.

Lemma 13. A Degenerate U-Statistic Result. Referring to the proof of Lemma 11:

√
NU2 ≡ op(1).
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Proof. With

ρjik ≡
[
SjΩ

∗(Vj)
−1Q∗′i Ki(Vj))

]
∗Ri

[
Ω(Vi)

−1Q′kKk(Vi) [εk + ∆k(Vi)]−
Ω(Vj)

−1Q′kKk(Vj) [εk + ∆k(Vj)]

]
, (122)

we have:
√
NU2 ≡

1√
N (N − 1) (N − 2)

N∑
j=1

∑
i 6=j

∑
k 6=i,j

ρjik (123)

Letting

ρ∗jik =
[
ρjik + ρijk + ρikj + ρkij + ρjki + ρkji

]
/3! (124)

we can rewrite (123) as:
√
NU2 =

(
N
3

)−1 N∑
j=1

N∑
i>j

N∑
k>i>j

ρ∗jik,

To see that this result holds, notice that

N∑
j=1

N∑
i 6=j

N∑
k 6=i,j

ρjik =
∑
j

∑
i>j

∑
k>i>j

ρjik +
∑
j

∑
i>j

∑
i>k>j

ρjik

+
∑
j

∑
i>j

∑
i>j>k

ρjik +
∑
j

∑
i<j

∑
k<i<j

ρjik

+
∑
j

∑
i<j

∑
i<k<j

ρjik +
∑
j

∑
i<j

∑
i<j<k

ρjik

The first term has the required form. For the second term:∑
j

∑
k>j

∑
i>k>j

ρjik =
∑
j

∑
i>j

∑
k>i>j

ρjki,

which has the required form. The analysis for other terms is similar. Recalling the definitions of
ρjik and ρ∗jik in (122) and (124), the remainder of the proof consists of showing the following:

a) : E[ρjik|obs j] = o(N−1/2), uniformly in Vj

b) : E
(
ρ∗jik
)

= o(N−1/2)

c) : E
(
ρ∗jik|obs j

)
= o(h2), uniformly in Vj

d) :
√
NU2 = op(1).

For a), we may write E
[
ρjik|obs j

]
as: E1 − E2, where

E1 = E
SjΩ

∗(Vj)
−1E [Q∗′i Ri|Vi]Ki(Vj)Ω(Vi)

−1×
E [Q′kKk(Vi) [εk + ∆k(Vi)] |Vi] | obs j

} (125)

E2 = E

{
[SjΩ

∗(Vj)
−1Q∗′i Ri]Ki(Vj)Ω(Vj)

−1×
Q′kKk(Vj) [εk + ∆k(Vj)] | obs j

}
. (126)
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For the E1 − term in (125), we require the second interior expectation:

E [Q′kKk(Vi) [εk + ∆k(Vi)] |Vi] = E [Q′kKk(Vi)∆k(Vi) |Vi] (127)

= E [Q′kRkKk(Vi)[α0(Vk (θ0))− α0(Vi (θ0))] |Vi]
= EE [Q′kRkKk(Vi)[α0(Vk (θ0))− α0(Vi (θ0))] |Vi, Vk]
= E [E (Q′kRk|Vk)Kk(Vi)[α0(Vk (θ0))− α0(Vi(θ0))] |Vi]

=

∫
Ω(Vk)

g (Vk)

1

h
K

(
Vi − Vk
h

)
[α0(Vk (θ0))− α0(Vi (θ0))] g(Vk)dVk

=

∫
Ω(Vi + hz)K (z) [α0(Vi + hz)− α0(Vi(θ0))] dz

= h2∇2
iΩ(Vi)α0(Vi) +O(h4),

where ∇2
i denotes a second derivative taken with respect to Vi. Substituting this expression into

(125) yields:

E1 = ESjΩ
∗(Vj)

−1E [Q∗′i Ri|Vi]Ki(Vj)Ω(Vi)
−1[h2∇2

i [Ω(Vi)α0(Vi)] +O(h4)]| obs j}

= E

{
SjΩ

∗(Vj)
−1 Ω∗(Vi)

g(Vi)
Ki(Vj)Ω(Vi)

−1[h2∇2
i [Ω(Vi)α0(Vi)]] +O(h4)]| obs j

}
= SjΩ

∗(Vj)
−1E

{
Ω∗(Vi)

g(Vi)
Ki(Vj)Ω(Vi)

−1[h2∇2
i [Ω(Vi)α0(Vi)]] +O(h4)]| obs j

}
= SjΩ

∗(Vj)
−1
{

Ω∗(Vj)Ω(Vj)
−1[h2∇2

j [Ω(Vj)α0(Vj)]] +O(h4)]
}

= h2SjΩ(Vj)
−1[∇2

j [Ω(Vj)α0(Vj)]] +O(h4),

Turning to the E2 − term in (126)

E2 = E
{[
SjΩ

∗(Vj)
−1Q∗′i Ri

]
Ki(Vj)Ω(Vj)

−1Q′kKk(Vj) [εk + ∆k(Vj)] | obs j
}

= E
{[
SjΩ

∗(Vj)
−1E [Q∗′i Ri|Vi]

]
Ki(Vj)Ω(Vj)

−1Q′kKk(Vj) [εk + ∆k(Vj)] | obs j
}

= E

{
SjΩ

∗(Vj)
−1 Ω∗(Vi)

g (Vi)
Ki(Vj)Ω(Vj)

−1|obs j

}
E {Q′kKk(Vj) [εk + ∆k(Vj)] | obs j} .

In a derivation similar to that in (127).

E {Q′kKk(Vj) [εk + ∆k(Vj)] | obs j} = [h2∇2
j [Ω(Vj)α0(Vj))] +O(h4)].

Substituting this expression into E2 above:

E2 = E

{
SjΩ

∗(Vj)
−1 Ω∗(Vi)

g (Vi)
Ki(Vj)Ω(Vj)

−1|obs j

}
[h2∇2

j [Ω(Vj)α0(Vj)] +O(h4)]

= E

{
SjΩ

∗(Vj)
−1 Ω∗(Vi)

g (Vi)
Ki(Vj)Ω(Vj)

−1[h2∇2
j [Ω(Vj)α0(Vj)] +O(h4)]|obs j

}
= SjΩ

∗(Vj)
−1

[∫
Ω∗(Vi)Ki(Vj)dVi

]
Ω(Vj)

−1[h2∇2
j [Ω(Vj)α0(Vj)] +O(h4)

= SjΩ
∗(Vj)

−1
[
Ω∗(Vj) +O(h2

2)
]

Ω(Vj)
−1[h2∇2

j [Ω(Vj)α0(Vj)] +O(h4)]

= h2SjΩ(Vj)
−1[∇2

j [Ω(Vj)α0(Vj)]] +O(h4).
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The proof now follows as E1 − E2 = O(h4) = o(N−1/2) with h = O
(
N−1/7.99

)
.

For b) the proof follows immediately from (a) and the fact that all terms in ρ∗jik have the same
unconditional expectation. For (c), it suffices to analyze the components involving ∆′s. With the
analysis being very similar to that for E1 or E2, the result follows.

For d), from b), E
(√

NÛ
)

= o(1). For the variance, it can be shown that

V ar
(√

NÛ
)

= V ar(E[ρ∗jik|obs j]) = o (1) ,

from which the result now follows.

The results in Lemma 14 hold under regular kernels when the treatment depends on a single
index. In the multiple index case, we would require a bias reduction strategy (e.g. higher order
kernels) to obtain the required results. Below, for expositional purposes, we provide the argument
for the single index case.

Lemma 14. Convergence Rates for Instruments. With the treatment instrument given
as P̂j, let the preliminary instrument for estimating the index parameters in the outcome equation
be

ˆ[P j + 1]X2j (128)

and denote the resulting parameter estimate as θ̂p . Define the second stage instrument as

[P̂j 1]′[∇θα̂
∗(Vj

(
θ̂p

)
, θ̂p)] (129)

Then, denoting Zo
jk as the kth element of either (128) or (129), the instruments satisfy the conditions

in (D5) and (D9) in that

a) : sup
j

∣∣∣tj [P̂j (γ̂)− Pj (γ∗)
]∣∣∣ = op(N

−1/4),

b) :
1√
N

N∑
j=1

tj

[
Ẑo
jk − Zo

jk

]2

= op(1),

c) :
1√
N

N∑
j=1

tj

[
Ẑo
jk − Zo

jk

]
εj = op(1).

Proof. To establish a) , from a Taylor series expansion in γ̂, (A4), and the uniform convergence
of probability derivatives (Lemma 2), it suffices to consider:∣∣∣ti [P̂i (γ∗)− Pi (γ∗)]∣∣∣ .
From Lemma 2, with a window of h1 = O(N−1/5), the difference is uniformly op(N

−1/4), which
completes the argument.

For b), we first consider the preliminary instrument in (128). With trimming constraining X2j

to a compact set, the result follows from a). Turning to the second stage instrument in (129), it
suffices to show that:

∆1(θ̂p) ≡
1√
N

N∑
i=1

Tr
∥∥∥∇θα̂

∗
(
Vj

(
θ̂p

)
, θ̂p

)
−∇θα (Vj (θ0) , θ0)

∥∥∥ = op(1),
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where ‖A‖ ≡ AA′. From a Taylor series expansion,

∆1(θ̂p) = ∆1(θ0) +
∂∆1(θ0)

∂θ
(θ̂p − θ0) +

1

2
(θ̂p − θ0)′

∂2∆1(θ+)

∂θ∂θ′
(θ̂p − θ0). (130)

From the pointwise results in Lemma 2, the first term in (130) is op(1). For the second and third

terms, it can be shown that |∇2
θ(α̂
∗−α0)| = op(N

−δ1), δ1 > 0 and that |∇3
θ(α̂
∗−α0)| = Op(N

1
2
−δ2),

δ2 > 0. Therefore, since |θ̂p−θ0| = Op(N
− 1

2 ) from Theorem 3, the remaining terms of the expansion

in (130) are op(N
− 1

2 ).
For c), beginning with the preliminary instrument, it suffices to consider:

∆2 ≡
1√
N

∑
j

tj

[
P̂lj − Plj

]
X2jεj

We first reduce the problem to studying a linear combination of estimated functions. To this
end, write

P̂lj =

1
N−1

∑
i 6=j

1
h1
TliK

(VjT−ViT
h1

)
1

N−1

∑
i 6=j

1
h1

(VjT−ViT
h1

) ≡ f̂j
ĝj

Then, with ∆∗2 defined as

∆∗2 ≡
1√
N

N∑
j=1

tj

[
P̂lj − Plj

] ĝj
gj
X2jεj. (131)

Employing Cauchy-Schwarz, it readily follows that |∆2 −∆∗2| = op(1):

|∆2 −∆∗2| =
1√
N

N∑
j=1

tj

[
P̂lj − Plj

] [ĝj − gj
gj

]
X2jεj

≤
√
N

√√√√ 1

N

N∑
j=1

tj

[
P̂lj − Plj

]2

√√√√ 1

N

N∑
j=1

tj

[
ĝj − gj
gj

]2

X2
2jε

2
j

The proof will now follow if ∆∗2= op(1). With ε in ∆∗2 ensuring that the bias in ∆∗2 is o(1), it is
possible to employ a U-statistic argument to show that ∆∗2 = op(1). The argument for the second
stage instrument is not provided as it is very similar to that above with more steps required to
reduce the problem to one of studying a linear combination of estimated functions.
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