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Abstract

The bootstrap is a popular and useful tool for estimating the asymptotic variance

of complicated estimators. Ironically, the fact that the estimators are complicated can

make the standard bootstrap computationally burdensome because it requires repeated

re-calculation of the estimator. In Honoré and Hu (2015) we propose a computationally

simpler bootstrap procedure based on repeated re-calculation of one-dimensional esti-

mators. The applicability of that approach is quite general. In this paper, we propose

an alternative method which is specific to extremum estimators based on U -statistics.

The contribution here is that rather than repeated re-calculating the U -statistic-based

estimator, we can recalculate a related estimator based on single-sums. A simulation

study suggests that the approach leads to a good approximation to the standard boot-

strap, and that if this is the goal, then our approach is superior to numerical derivative

methods.

Keywords: U-statistics; bootstrap; inference; numerical derivatives.

JEL Code: C10, C18.
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1 Introduction

Applied researchers often use the bootstrap when estimating standard errors. There are a

number of advantages of using the bootstrap for estimating standard errors. One is that it

is computationally convenient because it requires little additional programming above and

beyond what is required for calculating the estimator. A second is that direct estimation

of the asymptotic variance of estimators might require choosing tuning parameters such

as bandwidths for nonparametric estimation or step-lengths for numerical derivatives. See

Hong, Mahajan, and Nekipelov (2015) for a discussion of this. On the other hand, the

bootstrap can be computationally demanding because it requires one to recalculate the same

estimator many times. This is especially true for estimators that are based on double-sums

such as those in Honoré and Powell (1994) and Alan, Honoré, Hu, and Leth-Petersen (2014).

The contribution of this paper is to point out that for extremum estimators based on

U -statistics, one can sometimes estimate the Hessian term of the asymptotic variance by a

simpler bootstrap procedure which involves repeated re-estimation of an extremum estimator

based on simple averages. This will lower the computational burden of the bootstrap without

giving up the aforementioned advantages of the bootstrap.

The proposed approach applies directly to classical rank-estimators of regression models

such as those in Adichie (1967) and Sievers (1978) and to estimators of truncated and cen-

sored regression models like those in Bhattacharya, Chernoff, and Yang (1983), Honoré and

Powell (1994) and Alan, Honoré, Hu, and Leth-Petersen (2014). The approach can also be

used to estimate the Hessian-term in the asymptotic variance of rank correlation estimators

like those in Han (1987), Cavanagh and Sherman (1998), Abrevaya (1999), Abrevaya (2000),

3



Khan and Tamer (2007) and Bhattacharya (2008).

Our approach relies heavily on the asymptotic variance of the estimator having the

“sandwich”-structure, H−1V H−1, where both H and V are symmetric and positive defi-

nite. Interestingly, the approach does not apply to general U -statistic method-of-moments

estimators because their asymptotic distribution will have a “sandwich”-structure without

the restriction that H is symmetric and positive definite.

A small Monte Carlo study suggests that inference based on the proposed method will

be more reliable than inference based on simple numerical derivatives, and that it performs

as well as inference based on an infeasible second-order numerical derivative that uses the

(unknown) optimal stepsize.

2 Background and Insight

Honoré and Powell (1994) derive the asymptotic properties for estimators θ̂ which minimize

an mth–order U-statistic of the form

Un(θ) =

(
n

m

)−1∑
c

p (zi1 , zi2 , . . . , zim , θ) (1)

where zi is the data for observation i and the sum is taken over the
(
n
m

)
combinations

of m distinct elements {i1, . . . , im} from the set {1, . . . , n}. The “kernel” function p (·) is

symmetric in its first m arguments and left- and right-differentiable in each component of θ

in some open neighborhood of the true parameter θ0.

The estimator θ̂ satisfies an approximate first–order condition of the form

Qn

(
θ̂
)
≡
√
n

(
n

m

)−1∑
c

q
(
zi1 , . . . , zim , θ̂

)
= op(1),
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where each component of the vector q(·) is a convex combination of the left and right par-

tial derivatives of p with respect to the corresponding component of θ. Assuming random

sampling, the resulting asymptotic distribution of θ has a limiting normal distribution:

√
n(θ̂ − θ0)

d−→ N
(
0, H−10 V0H

−1
0

)
, (2)

with

V0 ≡ m2E
[
r (zi, θ0) r (zi, θ0)

′] and H0 ≡ ∂E [r (zi, θ0)] /∂θ
′

where r(zi, θ) ≡ E[q(zi, zi2 , . . . , zim , θ)|zi].

Consistent estimators of the matrices H0 and V0 are needed to carry out large–sample

inference on θ0. Estimation of V0 is unproblematic. Define an estimator of r(zi, θ) by

r̂(zi, θ) ≡
(
n− 1

m− 1

)−1∑
c′

q(zi, zi2 , . . . , zim , θ),

where the sum is now taken over the
(
n−1
m−1

)
combinations ofm−1 distinct elements {i2, . . . , im}

from the set {1, . . . , n} \ {i}. An estimator of V0 which uses r̂(zi, θ̂) is

V̂n ≡
m2

n

n∑
i=1

r̂(zi, θ̂)r̂(zi, θ̂)
′.

Estimation of H0 is more problematic because the function q(·, θ) is discontinuous in

many interesting examples. When this is the case, the explicit expression for H0 will involve

densities. One possibility is to estimate these nonparametrically. Alternatively, as noted by

Pakes and Pollard (1989), one can use a “numerical derivative” estimator of H0 even when

q(·, θ) is not differentiable. Specifically, an estimator of the `th column of H0 is given by

Ĥn` ≡
(

2ĥ
)−1 (

Qn

(
θ̂ + ĥe`

)
−Qn

(
θ̂ − ĥe`

))
, (3)
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where e` is the `th standard basis vector and ĥ is a (possibly stochastic) sequence of band-

widths satisfying ĥ = op(1) and
(√

nĥ
)−1

= Op(1). See also Hong, Mahajan, and Nekipelov

(2015).

Although these estimators of H0 will be consistent, they are somewhat unattractive

because of their dependence on tuning parameters such as bandwidths for nonparametric

regression and step-lengths for numerical derivatives. In cases like this, many researchers

prefer estimating the variance via a bootstrap. Unfortunately, when m is greater than 1,

this is often computationally infeasible because of the large number of terms in (1)1. We

therefore introduce an alternative approach to estimating H0.

The new insight exploited in this paper is that one can bootstrap the variance of an alter-

native estimator with the same H-matrix and then use that variance estimator to back out

an estimator of the variance of the estimator of interest. Specifically, consider an alternative

“split-sample” estimator, where the minimand involves an average of only n? = int (n/m)

terms using the same kernel evaluated at “non-overlapping” m-tuples of observations; i.e.,

the minimand is of the form

U?
n (θ) ≡ 1

n?

n?∑
i=1

p
(
zi, zi+n∗ , . . . , zi+(m−1)n∗ , θ

)
. (4)

Since the terms in this minimand are i.i.d. for each θ, the usual consistency and asymp-

totic normality arguments for M -estimators apply and we have

√
n
(
θ̃ − θ0

)
d−→ N

(
0, H−11 ΩH−11

)
, (5)

1Subsampling is also unlikely to be feasible in practice unless the subsamples are very small, in which

case one would worry about whether the asymptotics provide good finite sample approximations.
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with Ω ≡ mV
[
q
(
zi, zi+n∗ , . . . , zi+(m−1)n∗ , θ0

)]
and, importantly, H1 = H0 under random

sampling. Note that it is again easy to estimate Ω.

Since minimization of (4) only involves n? terms, it is typically quite simple to estimate

the variance of θ̃ via the bootstrap. Letting Avar
(
θ̃
)

= H−10 ΩH−10 , this suggests estimating

H−10 by solving the equation

Âvar
(
θ̃
)

= XΩ̂nX (6)

for a symmetric and positive definite X.

Equations like (6) are special cases of what is known as the continuous time algebraic Ric-

cati equation. See Lancaster and Rodman (1995). Ricatti equations play an important role

in control theory, and results exist that guarantee uniqueness of positive definite solutions.

It is also well understood how to solve Riccati equations numerically. See, for example, Ni

(2008) and Arnold and Laub (1984).

The approach pursued here could also be used to estimate the “Hessian” for maximum

rank correlation-like estimators like those in Han (1987), Cavanagh and Sherman (1998),

Abrevaya (1999), Abrevaya (2000), Khan and Tamer (2007) and Bhattacharya (2008). For

these U-statistics estimators, the naive split-sample estimators would be an estimator similar

to the maximum score estimator of Manski (1975). However, this would not be directly

fruitful because this estimator is not asymptotically normally distributed (Cavanagh (1987)

and Kim and Pollard (1990)). On the other hand, smoothed versions of the maximum

score estimator like the one in Horowitz (1992) will be asymptotically normal with the same

Hessian as the maximum rank correlation estimator, although the rate of convergence will

be different. The reason why we do not pursue this approach here, is that the matrices in
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the middle of the variance expressions in (2) and (5) (V and Ω ) depend on densities. So

estimating them would require tuning parameters such as bandwidths or number of nearest

neighbors.

More general just-identified method-of-moments estimators also have “sandwich” asymp-

totic variance of the form H−1V H ′−1. The main difference is that in this case, H will

typically not be symmetric and positive definite. We therefore can not rely on the results

about uniqueness of solutions to Riccati equations. Indeed, it is not difficult to see that

equations of the form Âvar
(
θ̃
)

= XΩ̂nX
′ do not have unique solutions. For example, both √

1+
√

3/4 1
2

(√
1+
√

3/4

)−1

1
2

(√
1+
√

3/4

)−1 √
1+
√

3/4

 and
( √

2 0√
1/2
√

3/2

)
will be solutions when Âvar

(
θ̃
)

= ( 2 1
1 2 )

and V̂1 = ( 1 0
0 1 ). In other words, for method-of-moments estimators, it is not possible to iden-

tify the “Hessian”-term, H−1, from the equation Σ = H−1V H ′−1.

3 Monte Carlo Illustration

We illustrate the usefulness of the approach by conducting a small Monte Carlo study of one

of the pairwise comparison estimators in Honoré and Powell (1994). In this section we will

implicitly assume that the researcher considers the bootstraps the “gold standard” and that

the goal is to compare it with more easily computable alternatives. Of course, in practice,

the behavior of test-statistics also depends on how well the finite sample distribution of

the estimator is approximated by its limiting normal distribution. It is possible that the

estimation error of a poor variance estimator can offset this approximation error and lead

to better finite sample performance of the resulting test-statistics. For this reason, we will

think of the bootstrap as the benchmark in the discussion below.
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Honoré and Powell (1994) propose estimators of censored and truncated regression mod-

els. Here we focus on the censored regression model defined by yi = max(0, x′iβ+εi) where εi

is independent of xi. Honoré and Powell (1994) showed that subject to regularity conditions,

β is the unique minimizer of E[s(yi, yj, (xi − xj)′b)] where

s(y1, y2, δ) =


Ξ (y1)− (y2 + δ) ξ (y1) for δ < −y2

Ξ (y1 − y2 − δ) for −y2 ≤ δ ≤ y1

Ξ (−y2)− (δ − y1) ξ (−y2) for y1 < δ

and Ξ′ (d) = ξ (d) (for almost all d) for some convex function Ξ. Natural choices for Ξ are

Ξ (d) = d2 and Ξ (d) = |d|.

They therefore define an estimator of the censored regression model by minimization of

Sn(b) =

(
n

2

)−1∑
i<j

s(yi, yj, (xi − xj)′b). (7)

Note that Sn(b) is a convex function of b. Sn(b) is differentiable provided that Ξ is.

If Ξ is not differentiable at 0, then the points of non–differentiability of Sn(b) occur when

yi − yj − (xi − xj)′b = 0 and either yi 6= 0 or yj 6= 0 or both.

This section presents the results from a Monte Carlo experiment designed to investigate

the performance of the variance estimator proposed here. We consider the estimator proposed

in Honoré and Powell (1994) with Ξ (d) = d2 and Ξ (d) = |d|. When Ξ (d) = d2 it is easy

to estimate the asymptotic variance of the estimator without having to choose a bandwidth.

We include it to illustrate the performance of our approach in a setting where we expect it

to perform relatively poorly compared to other methods.

There are four explanatory variables. There are all dependent and have the following
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marginal distributions. x1 is binary, x2 is chi-square, x3 is normal with probability 1/2

and 0 otherwise, and x4 is normal. All the variables are normalized to have mean 0 and

variance 1 and the correlation structure for the four variables is constructed as follows. First

we generate x∗ from a four-dimensional normal distribution with means 0, variances 1 and

correlations 0.5. We then define x1 = 2 · 1 (x∗1 > 0) − 1; x2 = (x∗22 − 1)/
√

2, x3 =
√

2x∗3D

where D is independent of x∗ and Bernoulli with p = 1
2
. Finally x4 = x∗4.

The error, εi, is independent of the other variables and t-distributed with three degrees of

freedom and β is a vector of ones. This gives an R2 in an uncensored version of the model of

approximately 0.48. There is no additional constant in the generating process. This results

in a censoring probability of approximately 51%.

The Monte Carlo experiment has 400 replications. All bootstraps are performed using

1000 bootstrap samples. In each replication, we calculate the estimators defined by minimiz-

ing (7) with Ξ (d) = d2 and with Ξ (d) = |d|. When Ξ (d) = d2, Sn(b) is almost everywhere

twice differentiable so there is no particular reason to use the approach proposed here be-

cause one can use analytical derivatives. We estimate the variance of β̂ by the bootstrap,

the Riccati bootstrap proposed here and by estimating H by (two-sided) numerical deriva-

tives of the analytical derivative of s(yi, yj, (xi − xj)
′b) using stepsizes h` = 0.05/ std (x`),

h` = 0.25/ std (x`) and h` = 0.5/ std (x`). The bootstrap draws for the Riccati bootstrap

are independent of the draws for the regular bootstrap. The numerical derivative estimator

of H is 1
2

(
Ĥ + Ĥ ′

)
where Ĥ is given in (3).2 When Ξ (d) = d2, we also estimate H by its

2We make the estimator of H symmetric to ensure that Ĥ−1V̂ Ĥ−1 is positive definite (provided that Ĥ

is invertible). Alternatively we could have constructed Ĥ−1V̂
(
Ĥ−1

)′
or
(
Ĥ−1

)′
V̂ Ĥ−1.
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sample analog. Since variance estimation is typically used for inference, we first calculate

the “t-test” statistic, T , for whether each coefficient equals its true value using each of the

variance estimators. We then construct Φ (T ) where Φ is the normal cumulative distribu-

tion function. This corresponds to the p-value for a one-sided test. Since the aim of this

paper is to construct a more convenient alternative to the bootstrap variance, we compare

the p-values using the different variance estimators with those obtained using the bootstrap

variance.

It is well understood that asymptotic normality does not imply that moments are finite.

We therefore use a robust estimator for the bootstrap variances. Specifically, with a sample

of B bootstrap estimators, β̃1, ..., β̃B, we estimate the variance of the `’th coordinate, β̃ (`) ,

by the square of 1.34 times the interquartile range of β̃1 (`) , ..., β̃B (`). To estimate the

correlation matrix, we transform the `’th coordinate of β̃b (`) into Φ−1
(
RB(β̃b(`))

B+1

)
where

RB

(
β̃b (`)

)
is the rank of β̃b (`). We then use the sample correlation of Φ−1

(
RB(β̃b(`))

B+1

)
to

estimate the correlation matrix of β̃. If the empirical distribution of β̃ is closely approximated

by a normal distribution, then this correlation matrix will be very similar to the empirical

correlation of β̃. The advantage is that the former is much less sensitive to outliers.

Tables 1 and 2 report the Monte Carlo average of the absolute difference in percentage

points between the p-values based on any pair of the variance estimates averaged over all

four parameters when n = 100. Table 1 corresponds to Ξ (d) = d2 while Table 2 shows the

results when Ξ (d) = |d|. In addition, they also include estimators of the variance based on

non-robust bootstrap and Riccati bootstrap variance estimation.

The results in Table 1 are all expected. The objective function that defines the estimator
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is almost everywhere twice differentiable, so there is almost no difference between calculat-

ing the Hessian and approximating it numerically. This is especially true when the stepsize

is small. Both the bootstrap and Riccati bootstrap yield p-values that are within 2 to 3

percentage points of each other and of those from the analytical and numerical derivative

estimators. The only outlier is the Riccati bootstrap estimator based on non-robust estima-

tion of the variance. This is not surprising since the estimator based on Ξ (d) = d2 is related

to the OLS estimator in a linear regression model with fairly fat tails.3 Table 2 is more

interesting because Ξ (d) = |d| gives an estimator for which we cannot estimate the Hessian

term in the variance by analytical differentiation. In this case, the Ricatti bootstrap does a

much better job approximating the bootstrap than the numerical derivative estimators do.

The role of the stepsize in numerical differentiation is akin to the role of the bandwidth

in nonparametric kernel estimation. This raises two considerations. One is that the results

can be sensitive to the choice of stepsize, and the other is that it is possible to reduce bias

by using higher order numerical derivatives. See for example Hong, Mahajan, and Nekipelov

(2015). To investigate these, we calculate the numerical derivative estimator of the Hessian

as above using stepsizes h` = h/ std (x`) for a range of h. In addition, using the notation from

section 2, we consider the second order numerical derivative of Qn defined by 1
2

(
H̃n + H̃n

′)
3Without censoring, the U -statistic estimator equals the slope of the OLS estimator of y on x and a

constant, while the split-sample estimator would be the OLS estimator of the difference in the y on the

difference in the x (without a constant). Since the errors are distributed according to a t-distribution with

3 degrees of freedom, these OLS estimators will have poorly-behaved sample moments.
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where the `′th columns of H̃n is

H̃n` ≡ ĥ−1
(
− 1

12
Qn

(
θ̂ + 2ĥe`

)
+

2

3
Qn

(
θ̂ + ĥe`

)
− 2

3
Qn

(
θ̂ − ĥe`

)
+

1

12
Qn

(
θ̂ − 2ĥe`

))
.

Like the higher-order kernel estimators, this construction of H̃n removes the first order term

in the bias of Ĥn.

We calculate the average absolute difference between the p-values calculated from the

bootstrap and the numerical derivative estimators using Ĥn and H̃n with stepsizes h` =

h/ std (x`) for a range of h. These are presented in Figures 1-4 for sample sizes 50, 100, 200

and 400. The horizontal (fatter) line represents the Monte Carlo average of the absolute dif-

ference between the p-values calculated from the bootstrap and the Riccati bootstrap, while

the thinner solid and the dashed lines represent the Monte Carlo average of the absolute

difference between the p-values calculated from the bootstrap and those using H̃n and Ĥn,

respectively. The figures suggest that the Riccati bootstrap provides a better approxima-

tion to the bootstrap than approaches based on numerical derivative approximations to the

Hessian regardless of the choices of stepsize.

4 Conclusion

The bootstrap is a popular and useful tool for estimating the asymptotic variance of compli-

cated estimators. Unfortunately the standard bootstrap can be computationally burdensome

because it requires repeated re-calculation of the estimator. In Honoré and Hu (2015) we

proposed a modification to the standard bootstrap that replaces re-estimation of the orig-

inal parameter vector with re-estimation of one-dimensional estimators. In this paper, we
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focus on estimators based on minimization of U -statistics. Our contribution here is to re-

place re-estimation of the original parameter vector with re-estimation of estimators based

on minimization of simple averages. We perform a small Monte Carlo experiment for an

estimator whose asymptotic variance involves unknown functions. In this case, the common

alternative to the standard bootstrap is to estimate the Hessian in the asymptotic variance

by numerical derivatives. We find that our approach performs better than this alternative

regardless of the choice of tuning parameter of the numerical derivative.
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Table 1: Difference in p-values in Percentage Points Using Different Variance Estimators.

Ξ (d) = d2, n = 100.

Analyt. Boots. Riccati h = 0.05 h = 0.25 h = 0.50 Boot(NR) Ricc.(NR)

Analy. 0.00 1.25 2.77 0.07 0.17 0.36 2.17 6.28

Boots. 1.25 0.00 2.05 1.25 1.23 1.20 1.39 5.37

Riccati 2.77 2.05 0.00 2.77 2.76 2.73 1.79 3.83

h = 0.05 0.07 1.25 2.77 0.00 0.15 0.35 2.17 6.27

h = 0.25 0.17 1.23 2.76 0.15 0.00 0.23 2.15 6.26

h = 0.50 0.36 1.20 2.73 0.35 0.23 0.00 2.10 6.24

Boot(NR) 2.17 1.39 1.79 2.17 2.15 2.10 0.00 4.36

Ricc.(NR) 6.28 5.37 3.83 6.27 6.26 6.24 4.36 0.00

17



Table 2: Difference in p-values in Percentage Points Using Different Variance Estimators.

Ξ (d) = |d|, n = 100.

Analyt. Boots. Riccati h = 0.05 h = 0.25 h = 0.50 Boot(NR) Ricc.(NR)

Analyt. NA NA NA NA NA NA NA NA

Boots. NA 0.00 1.67 4.66 4.28 4.34 1.10 2.24

Riccati NA 1.67 0.00 4.05 3.60 3.82 1.64 1.26

h = 0.05 NA 4.66 4.05 0.00 2.03 2.25 4.23 3.41

h = 0.25 NA 4.28 3.60 2.03 0.00 0.89 3.78 2.78

h = 0.50 NA 4.34 3.82 2.25 0.89 0.00 3.72 2.81

Boot(NR) NA 1.10 1.64 4.23 3.78 3.72 0.00 1.63

Ricc.(NR) NA 2.24 1.26 3.41 2.78 2.81 1.63 0.00
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Figure 1: Relative Performance of Numerical Derivatives vs. Riccati Bootstrap. n = 50

Figure 2: Relative Performance of Numerical Derivatives vs. Riccati Bootstrap. n = 100

Figure 3: Relative Performance of Numerical Derivatives vs. Riccati Bootstrap. n = 200

Figure 4: Relative Performance of Numerical Derivatives vs. Riccati Bootstrap. n = 400
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