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Poor (Wo)man’s Bootstrap*

Bo E. Honoré' Luojia Hu?

March 4, 2015

Abstract

The bootstrap is a convenient tool for calculating standard errors of the parameters of
complicated econometric models. Unfortunately, the fact that these models are complicated
often makes the bootstrap extremely slow or even practically infeasible. This paper proposes an
alternative to the bootstrap that relies only on the estimation of one-dimensional parameters.

The paper contains no new difficult math. But we believe that it can be useful.

KEYWORDS: standard error; bootstrap; inference; structural models; parametric estimation.

JEL Cobe: C10, C18.

1 Introduction

The bootstrap is often used for estimating standard errors in applied work even when analytical
expression exists for a consistent estimator. The bootstrap is convenient from a programming
point of view, because it relies on the same estimation procedure that delivers the point estimates.
Moreover, it does not explicitly force the researcher to make choices regarding bandwidths or
number of nearest neighbors when the estimator is based on a non—-smooth objective function or

discontinuous moment conditions.
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Unfortunately, the bootstrap can be computationally burdensome if the estimator is complex.
For example, in many structural econometric models it can take hours or days to get a single
bootstrap draw of the estimator. This paper will demonstrate that in many cases it is possible
to use the bootstrap distribution of much simpler alternative estimators to back out a bootstrap—
like estimator of the variance of the estimator of interest. The need for faster alternatives to
the standard bootstrap also motivated the papers by Heagerty and Lumley (2000) and Hong and
Scaillet (2006). Unfortunately, their approach assumes that one can easily estimate the “Hessian”
in the sandwich form of the asymptotic variance of the estimator. It is the difficulty of doing this
that is the main motivation for this paper.

We emphasize that the contribution is the convenience of the approach, and we do not claim
that any of the superior higher order asymptotic properties of the bootstrap carries over to our
proposed approach. However, these properties are not usually the main motivation for the bootstrap
in applied economics.

We first introduce our approach in the context of an asymptotically normally distributed ex-
tremum estimator. We introduce a set of simple infeasible one-dimensional estimators related to
the estimator of interest, and we show how their asymptotic variances can be used to back out the
asymptotic variance of the estimator of the parameter of interest. In Appendix 4, we extend the
results in Hahn (1996) to demonstrate that the bootstrap can be used to estimate the variances of
the simple infeasible one-dimensional estimators. This suggests a computationally simple method
for estimating the variance of the estimator of the parameter-vector of interest. We also demon-
strate that this insight carries over to GMM estimators and that an alternative, and even simpler
approach can be applied to method of moments estimators. It turns out that our procedure is
not necessarily convenient for two-step estimators. In Section 2.5, we therefore propose a modified
version specifically tailored for this scenario.

In Section 3, we discuss how the asymptotic variances of the simpler infeasible estimators can
be estimated using the bootstrap and we propose a practical procedure for mapping them into the
asymptotic variance of interest.

We illustrate our approach in Section 4. We first focus on the OLS estimator. The advantage of
this is that it is well understood and that its simplicity implies that the asymptotics often provide
a good approximation in small samples. This allows us to focus on the marginal contribution of
this paper rather than on issues about whether the asymptotic approximation is useful in the first

place.



Of course, the linear regression model does not provide an example of a case in which one would
actually need to use our version of the bootstrap. We therefore also perform a small Monte Carlo
of the approach applied to the maximum rank correlation estimator and to an indirect inference
estimator of a structural econometric model. The former is chosen because it is an estimator
that can be time—consuming to estimate and whose variance depends on unknown densities and
conditional expectations. The latter provides an example of the kind of model where we think the

approach will be useful in current empirical research.

2 Basic Idea

2.1 M-—estimators

Consider an extremum estimator of a parameter 3 based on a random sample {z;},
n
3 = arg mbin Qn (b) = arg mbin Z q(zi,b).
i=1
Subject to the usual regularity conditions, this will have asymptotic variance of the form
avar (B) =H 'WH!

where V' and H are both symmetric and positive definite. When ¢ is a smooth function of b, V'
is the variance of the derivative of ¢ with respect to b and H is the expected value of the second
derivative of ¢, but the setup also applies to many non-smooth objective functions such as in Powell
(1984).

While it is in principle possible to estimate V' and H directly, many empirical researchers
estimate avar (B) by the bootstrap. That is especially true if the model is complicated, but
unfortunately, that is also the situation in which the bootstrap can be time—consuming or even
infeasible. The point of this paper is to demonstrate that one can use the bootstrap variance of
much simpler estimators to estimate avar (B)

It will be useful to explicitly write

hii hi2 -+ hig Vi1 V12 - Uik

hia haa -+ hy V12 V22 - U2k
H = and V =

hie hor -+ hik Vi U2k vt Ukk



The basic idea pursued here is to back out the elements of H and V from the covariance matrix

of a number of infeasible one—dimensional estimators of the type

a(d) = argmainQn (B +da) (1)

where ¢ is a fixed vector. The bootstrap equivalent of this is
n
. b D
arg min Z q (Zi B+ 5a> (2)
i=1

where {zf} is the bootstrap sample. This is a one-dimensional minimization problem, so for
complicated objective functions, it will be much easier to solve than the minimization problem that
defines B and its bootstrap equivalent. The validity of the bootstrap distribution of @ (§) follows
from Appendix 4.

It is easiest to illustrate why this works by considering a case where 5 is two—dimensional. For
this case, consider two vectors d; and 02 and the associated estimators @ (d1) and @ (d2). Under
the conditions that yield asymptotic normality of the original estimator B, the infeasible estimators

a(d1) and @ (d2) will be jointly asymptotically normal with variance

Qs5,5, = avar ( (3)
(

(61 H8:) "6y ver (01 HS) ™ (81HS) 6,V 6y (84HS)
(6 HS1) ™ 61V 6y (65HOs) " (65Hbs) " 65V 6y (65 HOs) ™

With §; = (1,0) and d2 = (0, 1) we have

Q _ hiton  hijvizhyy
(170)7(071) - hil hil h72
11 V129 22 V2
So the correlation in €21 ¢ (0,1) gives the correlation in V. We also note that the estimation problem

remains unchanged if ¢ is scaled by a positive constant ¢, but in that case H would be scaled by ¢

and V by ¢2. There is therefore no loss of generality in assuming v1; = 1. This gives

1 v
V= p , v >0

pv v

where we have already noted that p is identified from the correlation between @ (1) and a (d2). We

now argue that one can also identify v, hi1, hi2 and hes.



In the following k; will be used to denote objects that are identified from ()5, 5, for various
choices of §; and d2. We use e; to denote a vector that has 1 in its j'th element and zeros
elsewhere.

We first consider 41 = e; and 03 = e5 and we then have

Q1.0).(0.1) = h1112 1 thzzlhul
pvhagg hiy ha v?
so we know k1 = thg We also know hqj.

Now also consider a third estimator based on d3 = e1 + e3. We have

hiy hit (14 pv) (hay + 2hio + hag) ™

Q =
(170)7(171) —1 —1 2 -2
hiy (14 pv) (hir + 2hia + ha2) ™ (14 2pv + v?) (h11 + 2h1a + haa)

The upper right-hand corner of this is
ky = hii (14 pv) (hi1 + 2h1g + haa) 7'
Using v = kjhoo yields a linear equation in the unknowns, hi2 and hag,
kahi1 (ha1 + 2hi12 + ha2) = (1 + pkihaz) (4)

Now consider the covariance between the estimators based on e; and a fourth estimator based

on e — ez; in other words, consider the upper right-hand corner of ;o) (1,-1):
ks = hi (1 — pv) (h11 — 2Rz + haa) t.
We rewrite this as a linear equation in hio and hos,
kshi1 (h11 — 2h12 + ho2) = (1 — pkihag) (5)

Rewriting (4) and (5) in matrix form, we get

2kah11 kohiy — pky hi2 _ 1 — koh?, (©)
—2k3h11  kshi1 + pk1 hao 1 — ksh?,
Appendix 1 shows that the determinant of the matrix on the left is positive definite. As a
result, the two equations, (4) and (5), always have a unique solution for his and hgy. Once we have
hoo, we then get the remaining unknown, v, from v = kqhos.

The identification result for the two—dimensional case carries over to the general case in a

straightforward manner. For each pair of elements of 3, 3, and 3;, the corresponding elements of



H and V can be identified as above, subject to the normalization that one of the diagonal elements

of V is 1. This yields 2, Zi, and all the elements scaled by Zﬂ These can then be linked

Vi

together by the fact that v1; is normalized to 1.
One can characterize the information about V' and H contained in the covariance matrix of the

estimators (a (d1),---,a(d,,)) as a solution to a set of nonlinear equations.

Specifically, define

5 0 -~ 0
0 6o 0

D= ( 51 6 Om ) and = (7)
0 O Om

The covariance matrix for the m estimators is then

Q= (C'TeH)C)" (D'VD) (C' I H)C)

which implies that
(C'(I@H)C)Q(C’(I@H)C):(D'VD) (8)

These need to be solved for the symmetric and positive definite matrices V and H. The calculation
above shows that this has a unique solution' as long as D contains all vectors of the from €j, ej+ep

and e; — ey.

2.2 GMM

We now consider variance estimation for GMM estimators. The starting point is a set of moment

conditions
E[f(z4,00)] =0

where z; is “data for observation ¢” and it is assumed that this defines a unique 6g. The GMM

estimator for 6y is

/
-~ 1 o 1o
f = argmin | — ; - ;
gmin (n > 1 (%9)) W, (n > 1 <wz,e>>
=1 =1
where W,, is a symmetric, positive definite matrix. Subject to weak regularity conditions (see

Hansen (1982) or Newey and McFadden (1994)) the asymptotic variance of the GMM estimator

! Except for scale.



has the form

2 = (I'Wol) ' I'WoSWoT (D'W,l) !

where W) is the probability limit of W,,, S = V [f (z,00)] and T" = %E [f (zi,00)]. Hahn (1996)
showed that the limiting distribution of the GMM estimator can be estimated by the bootstrap.
Now let § be some fixed vector and consider the problem of estimating a scalar parameter, «,

from

E[f (x;,0p+ ad)] =0
by ,
a(d) = argmain (71z Zf (24,00 + a6)> W, (i Zf (24,00 + a6)>
=1 =1

The asymptotic variance of two such estimators corresponding to different § would be

Q)

(1)

Qs, 6, = avar (9)

(62)

Q)

(8, T'WoT's1) ™t 6 T WoSWoTl6y (6T Wol1) ™ (
(0\T'Wols1) ™ 81T WoSWol'sy (85T Wol'd2) ™ (
Of course (9) has exactly the same structure as (3) and we can therefore back out the matrices
I"WoI and T"WoSWoT (up to scale) in exactly the same way that we backed out H and V above.
The validity of the bootstrap as a way to approximate the distribution of @ (J) in this GMM

setting is proved in Appendix 4.

2.3 Method of Moments

We next consider the just identified case where the number of parameters equals the number of
moments. In this case, the weighting matrix plays no role for the asymptotic distribution of the

estimator. Specifically, the asymptotic variance is
2= sy

This is very similar to the expression for the asymptotic variance of the extremum estimator. The
difference is that the I' matrix is typically only symmetric if the moment condition corresponds to

the first-order condition for an optimization problem.

ST Wols,) ™! & T WoSWoT'6y (85T WoT'd2) ™
LT'WoT8s) ! 65T WoSWol'sy (85T WoTl'ds) ™

1

1



We first note that there is no loss of generality in normalizing the diagonal elements of S to 1.
Now consider the ay, that solves the k’th moment with respect to the £’th element of the parameter,
1 n
- > fr (@i, 00 + Areer) = 0
i=1
It is straightforward to show that the asymptotic covariance between two such estimators is

Skj

Acov (Qge, Qjm) = ———
T YkeYim

where Sj; and 7, denote the elements in .S and T'. In particular

~ Sk 1
A’UG/T' (Oék;k) = 5 = 5
Ve Vkk

Since the moment conditions are invariant to sign—changes, there is no loss in generality in assuming

Y > 0. Hence 7, is identified. Since

. Skj
Acov (Qpg, ) = ki
Yk jj
Sk; is identified as well.
Finally
o Sk
Acov (O, Qjm) =
Yek" jm

SO 7V, 1s also identified.

2.4 Indirect Inference

Simulation-based inference has become increasingly popular as a way to estimate complicated struc-
tural econometric models. See Smith (2008) for an introduction and Gourieroux and Monfort (2007)
for a textbook treatment. These models often result in simulation moments that are discontinuous
functions of the parameters. In this case, a given bootstrap replication should use the same draws

of the unobservables for the calculation of all §.

2.5 Two-Step Estimators

Finite dimensional two—step estimators can be thought of as GMM or method of moments estima-
tors. As such, their asymptotic variances have a sandwich structure and the poor (wo)man’s boot-
strap approach discussed above can therefore in principle be applied. However, the one-dimensional

estimation used in the bootstrap does not preserve the simplicity of the two-step structure. In this



section we therefore propose a version of the poor (wo)man’s bootstrap that is suitable for two-step
estimators.
To simplify the exposition, we consider a two-step estimation procedure where the estimator in

each step is defined by minimization problems

1
0, = argngn%ZQ(zi,tl)
~ 1 ~
0y = argngnﬁ ZR (zi,el,t2>
with moment conditions (or limiting first-order conditions),

Elq(z,01)] = 0

E[r(zi,el,ﬁg)] =0

where 67 and 65 are k1 and ks-dimensional parameters of interest and ¢ and r are smooth functions.
Although our exposition requires this, the results also apply when one or both steps involve GMM
estimation with possibly non-smooth functions.

~ ~ ~\/
The estimator 6 = (91, 92) will have a limiting normal distribution with asymptotic variance

-1

Eq1 (2,01)] 0 v q(zi,01)
FE [7‘1 (Zi, 91, 92)] E [7’2 (Z’Z', 91, 92)] r (ZZ', 91, 92)
Eq1 (2, 01)] 0 -

Ery (zi,01,02)] Elra(zi,01,02)]

This has the usual sandwich structure and the poor (wo)man’s bootstrap can therefore be used
to back out all the elements of the two matrices involved. Unfortunately, this is not necessarily
convenient because the poor (wo)man’s bootstrap would use the bootstrap sample to estimate
scalar a where 6 = ( i’ 9'2)/ has been parameterized as 0+ as. When § places weight on elements
from both 6, and 02, the estimation of a no longer benefits from the simplicity of the two-step

setup.

Example 1 Consider the standard sample selection model

di = 1{zja+v; >0}

yi = di-(2if+e)



where (v;,g;) has a bivariate normal distribution. « can be estimated by the probit mazimum
likelihood estimator, QyrE, in a model with d; as the outcome and z; as the explanatory variables.

In a second step B is then estimated by the coefficients on x; in the regression of y; on x; and

A = ¢(ZlanLe)

1=0(ane) using only the sample for which d; = 1. See Heckman (1979).

We now demonstrate that it is possible to modify the poor (wo)man’s bootstrap so it can be
applied to two-step estimators using only one-dimensional estimators that are defined by only one
of the two original objective functions.

We first note that the elements of F [q1 (z;,61)] and V [q(z;,01)] can be estimated by applying
the poor (wo)man’s bootstrap to the first step in the estimation procedure alone. E [ry (2;,01,02)]
and V' [r (z;, 61, 02)] can be estimated by applying the poor (wo)man’s bootstrap to the second step
of the estimation procedure holding 0, fixed.

To estimate the elements of F [r; (z;,01,02)] and cov [q (2, 01) , 7 (2i,01,02)], consider the three

infeasible scalar estimators
a; = argmianQ(zi,Gl + a101)
a mn
ay = argngin%ZR(zi,Gl + 101,02 + az02)
a3 = arg H{g}n % Z R (z,01,02 + azds)

for fixed (51, (52 and (53.

The asymptotic variance of (a1, as,as) is

01E [q1 (2i,601)] 61 0 0
(5/1E [7“1 (Zi, 01, 92)] (52 (5/2E [7"2 (ZZ', 01, 92)] (52 0
O O (SgE [T‘Q (zi,01,92)] 53
61V [q (2,01)] 01 d1cov [q (2i,01) 7 (2i,01,02)] 62 dycov g (2i,01) 7 (2,01,02)] 03
(5’100’0 [q (Zi,el) ,T(Zi,al,eg)] (52 (5’2‘/ [7‘ (Zi,el,eg)] 52 (5’2V [7’ (Zi,el,eg)] (53
5,160’0 [q (zi,Ol) ,T(Zi,91,02)] 53 5/2V[T (21,91,02)] (53 (ng [7“ (zi,91,02)] 53
—1
01E [q1 (2,61)] 61 0 0
01E [r1(2i,01,02)] 62 05E [ra (2i,01,02)] d2 0
0 0 (5gE [ro (2i,01,02)] 03

When 0o = d3, this has the form

10



g 0 O Vo Vg Vi g m 0
r T2 0 V;]T Vr Vr 0 T9 0
0 0 T9 Vqr V,« V,« 0 0 T2
which can be written as
Vq 1 v Vi 1 Vi
q% qQre " 4" 2 T2 qiT2
1(1y _Var i«&_in >_;n4L VYo i(&_Lﬁv>
qr \r2"1"  q172 To \ T2 qip T2 " I" qire \ T2 7I" g1 T2 ro \T2  q17T2 9"
1 Ve _1m V Ve
qire " 4" 7’% qi1 qr 7'%

Normalize so V, = 1, and parameterize V. = v? and V;]r = p/V4Vr =

pv gives the matrix

1 _ L L
@ 2 qr2P? ar Q2P
;«¢ _Lﬁ) 1 7_Lﬂ AL;l, Lﬁ) 1 (®_1m
q1 \2” a1 72 T2 \ T3 T qrraf 172 7‘ q1 72 Te \ T2~ qiral
1 vl L; v
qr2PY ry @ 2'0 v 3
Denoting the elements of this matrix by wy, we have
1 1 T1
W33 —W32 = —5pPUv= W3l
qi1 7y 2
Wiz —ws2 T
w31 )
p oo m
VW11w3s
There is no loss in generality in normalizing
ro =1

so now we know 71 and p. We also know v from wss.
This implies that the asymptotic variance of (a1, a2, as) identifies 6,V [q (2, 601) ,7 (zi,01,02)] 52

and 6} E [ry (2, 01, 02)] 62. Choosing 61 = e, and 3 = ey, recovers all the elements of cov [q (2;,01) ,7 (2, 01,02)]

and F [rq (2,01, 02)].

2.6 Alternative Approach

In this subsection we present an alternative insight for estimating a variance matrix by bootstrap-

ping one-dimensional components of the parameter vector.

11



For simplicity, consider the extremum estimator discussed in Section 2.1. Standard asymptotic
theory implies that in each boostrap replication, b, the estimator of the full parameter vector has
the linear representation

51) —/éi H_lsb (10)

where H is fixed and s; is approximately normal and i.i.d. across bootstrap samples. The directional

estimator defined in (2) has the corresponding representation
@ (6) = (F'H8) ' &'s. (11)

We write (11) as
(6'Hb) ay (0) = d'sy,

or equivalently

6b (5) (5/H5) — (5’81) = 0

or

> (@ (8) 0 (k)8 (0) hue — Y 8 (k) sy (k) =0 (12)
k

k.t
where sp, (k) is the k’th element of sy, d (k) is the k’th element of § and hyy = hy.

It is useful to think of (12) as a linear regression model where the dependent variable is always
0 and (asymptotically) there is no error. In each bootstrap replication, each J-vector gives an
observation from (12). The s-vector differs across bootstrap replications, but the elements of H
are the same. In other words, if we focus on H, we can think of the s’s as bootstrap-specific
fixed effects, which could be eliminated by a transformation similar to the “textbook” panel data
deviations-from-means transformation. This gives one an easy way to estimate the elements of H
(up to scale).

Once H has been estimated, one could back out the s for each bootstrap replication and use
the sample variance for s as an estimate of V. Alternatively, we can use the estimate of H obtained

from (12) and then exploit
(' (19 H)C)Q(C' (18 H) C) = (D'VD) (13)

to back out V.

This approach relies on the linear representations in (10) and (11). As such, it applies to the

GMM setting and the two-step estimators as well as to the extremum estimators.?

2For extremum estimators, V is essentially the variance of ¢. There are many examples in which it is easy to

12



One potential advantage of exploiting (12) to recover H and s is that it is straightforward to

allow the directions § to differ across replications. We plan to explore this in future work.

3 Implementation

There are many ways to turn the identification strategy above into estimation of?> H and V. One is
to pick a set of d—vectors and estimate the covariance matrix of the associated estimators. Denote
this estimator by Q. The matrices V and H can then be estimated by solving the nonlinear least
squares problem
R 2
min ) <{(c’ (I@H)C)Q(C'(I® H)C) - (D’VD)}M> (14)
ij

where D and C' are defined in (7), Vi1 =1, and V and H are positive definite matrices.

From a computational point of view, it can be time—consuming to recover the estimates of V'
and H by a nonlinear minimization problem. We therefore illustrate the usefulness of our approach
by estimating V' and H along the lines of the identification proof.

For all 4, j, we estimate y;; = V};/Vi; exactly as prescribed by the identification. Taking logs,

this gives a set of equations of the form
log (yi;) = oyl (k = j) — el (k = i)
k

where a3 = 0 (because Vi3 = 1) and aj = log (Vir). We can estimate the vector of a’s by
regression log (y;;) on a set of dummy variables. This gives estimates of the diagonal elements
of V. The correlation structure in V' is the same as the correlation structure in the variance of
(@(er),- -, a(ex)).

To estimate H we first use that Avar (a(e;)) = ]‘lf# Since H is positive definite, we therefore
77

estimate h;; by \/X/}jj/Avar (@(ej)).
To estimate the off-diagonal elements, h;j, we use the estimated covariances between @ (e;) and
a(ej +ej), between a(e;) and a(e; — €;), between a(ej) and @ (e; + €;), and between a (e;) and

a(e; —ej).

estimate V' directly, but difficult to estimate H. The least absolute deviations estimator is a classic example of this.
In those cases, (12) can be used to estimate H.

3Here we use the notation for extremum estimators. The same discussion applies to GMM estimators.

13



Specifically, the asymptotic covariance between a (e;) and @ (e; + €;) is
kz = hy* (vii +vig) (i + 2hij + ;)™
(see equation (3). We write this as

kahii (hii + 2hij + hjj) = (vii + vij)

or
Vi + Vij — kgh?i — kgh“‘h]’j = 2k2hiihij
Now consider the asymptotic covariance between @ (e;) and a (e; — e;):
ks = hi;' (v = vig) (hii = 2hyg + hyg) ™
or
vii — vij — ksh?; — kshiihj; = —2kshiihi;
Next consider the asymptotic covariance between @ (e;) and @ (e; + €;):
ka = b3} (g5 + vig) (his + 2haj + hjj) ™
or

’Ujj + ’Uij — k‘4h]2-j — k4hiihjj = 2k24hjjhij
Finally consider the asymptotic covariance between a (e;) and @ (e; — €;):
ks = ' (=vjj + i) (hii = 2hij + hyg) ™"

or

—Uyj + Vij — k5hj2j — k5hiihjj = —2k5hjjhij

Writing (15)—(18) in vector notation

vii + vij — koh? — kahiihj; 2kohi;

Vi — Vij — kgh%i — k3hiihj; B —2ksh;;

vij vy — kah? — kahahy || 2kahy |
vy + viy — ksh, — kshh; ~2kshy;

14

(16)

(18)

(19)



The off-diagonal element h;; could then be estimated by regressing the vector on the left-hand

side (y) on the vector on the right-hand side (z). To lessen the influence of any one of the four

equations, we use weighted regression where the weight is \/Ilil
xg

It is worth noting that (19) does not contain all the “linear” information about the off-diagonal

elements, h;j. Consider, for example, any two vectors ¢, and d, and their associated a(d,) and

@ (0q), Wpqg:

wpg = acov (@ (8,) @ (6,)) = (6,HS,) 6,V 8, (6, HS,) ™

or

DATEH

Z Opidpjhij | Wpq (Z 5qk5qﬁhk€>
kl

ij

= Z Opi0pjOqkdqewpghijhie
ijke

This gives a quadratic system. However, by restricting attention to 6, = ey, we get
(5;,V5q - Z 5pi5pi5qk5qéwpqhiihkk == Z 5pi5pj5qk5qﬁwpqhijhkk
i i#j

This is linear in the h;;’s.

4 Tllustrations

4.1 Linear Regression

There are few reasons why one would want to apply our approach to the estimation of standard
errors in a linear regression model. However, its familiarity makes it natural to use this model to
illustrate the numerical properties of the approach.

We consider a linear regression model,
/
Yi = ;0 + €

with 10 explanatory variables generated as follows. For each observation, we first generate a 9-
dimensional normal, z; with means equal to 0, variances equal to 1 and all covariances equal to
%. xi1 to wig are then x;; = 1{x;; >0} for j =1---3, x5 = ;5 + 1 for j = 4 to 6, xir = Tyr,
xi8 = Tig/2 and 9 = 10T;9. Finally 210 = 1. &; is normally distributed conditional on z; and with
variance (1 + :I:¢1)2. We pick g = (%, %, %, %, 1,0,0,0,0, 0). This yields an R? of approximately 0.58.

The scaling of z;3 and x;9 is meant to make the design a little more challenging for our approach.
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We perform 400 Monte Carlo replications, and in each replication, we calculate the OLS esti-
mator, the Eicker-Huber-White variance estimator (E), the bootstrap variance estimator (B) and
the variance estimator based on estimating V' and H from (14) by nonlinear least squares (N), and
the variance estimator based on estimating V' and H from (19) by OLS (L). All the bootstraps are
based on 400 bootstrap replications. Based on these, we calculate t-statistics for testing whether
the coefficients are equal to the true values for each of the parameters. Tables 1 and 2 report the
mean absolute differences in these test statistics for sample sizes of 200 and 2,000, respectively.

To explore the sensitivity of the approach to the dimensionality of the parameter, we also
consider a design with 10 additional regressors, all generated like z; and with true coefficients equal
to 0. For this design, we do not yet calculate the variance estimators based on (14) by nonlinear
least squares (N). The results are in Table 3.

Tables 1-3 suggest that our approach works very well when the distribution of the estimator of
interest is well approximated by its limiting distribution. Specifically, the difference between the
t-statistics (testing the true parameter values) based on our approach and on the regular bootstrap
is smaller than the difference between the t-statistics based on the bootstrap and the Eicker-Huber-

White variance estimator.

4.2 Maximum Rank Correlation Estimator

Han (1987) and Cavanagh and Sherman (1998) defined maximum rank correlation estimators for

B in the model
vi = g (f (23B,e:))

where [ is a k—dimensional parameter of interest, f is strictly increasing in each of its arguments
and g is increasing. This model includes many single-equation econometric models as special cases.
The estimator proposed by Han (1987) maximizes Kendall’s rank correlation between y; and

.
x;b:

g = argm?xz (T{yi >y} — Wy < y;}) (1{zib > 2fb} — 1 {a}b < 2b})
1<j
The asymptotic distribution of this estimator was derived in Sherman (1993). Specifically, he

showed that with? g’ = (9', 1),, 9 will have a limiting normal distribution of the form considered

in Section 2.1:

Vi (6-0) -5 N (0, HVET)

*Since f is unspecified, it is clear that some kind of scale normalization is necessary.
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where

H= %E {52 (y, flﬁ) 90 (:C’ﬁ) (xo — To) (o — EO)'} ,

V=FE {5’ (ya 51/‘/5)2 90 (56'5)2 (w0 — Zo) (z0 — fo)l}

with? S(yo,t) = E[1{yo >y} — 1 {yo < y}|2'8 = t], Sa(yo, t) = 22901 "and 7y = E [wo|2'3], where

xo is the first £k —1 elements of = (i.e., the elements associated with ) and go is the marginal density
of 2/8.
As mentioned above, Han’s (1987) estimator maximizes Kendall’s rank correlation between y;

and z;b. Cavanagh and Sherman (1998) proposed an alternative estimator of 5 based on maximizing
n
ZM (yi) R (27b)
=1

where M () is an increasing function and Ry (z;b) = >°7_; 1 {x;b > x;b} is the rank of /b in
the set {x;b tj=1, ,n} When M () = R, (-), the objective function is a linear function of
Spearman’s rank correlation. In that case the objective function is

n

Z (Z Hyi > yk}) Z 1{zib> a'b} | = ZZ Z Uy >y} 1 {ajb > 2} (20)

i=1 \k=1 j=1 i=1 j=1 k=1

The estimator proposed by Cavanagh and Sherman (1998) is also asymptotically normal,
Vi (6-0) <5 N (0, Hy"HT)

where ' = (9’ , 1), and Hy and Vj have a structure similar to H and V. See Appendix 2.

Direct estimation of H and V' (or Hj and V7) requires nonparametric estimation. It is therefore
tempting to instead estimate Avar (@) (or Avar (5)) by the bootstrap. On the other hand, the
maximum rank correlation estimators are cumbersome to calculate in higher dimensions, which
can make this approach problematic in practice. The approach suggested in this paper is therefore
potentially useful.

To investigate this, we consider a relatively simple data-generating process with
yi = 38 + €

and only four explanatory variables generated along the lines of the explanatory variables in section

4.1: For each observation, 7, we first generate x;; with means equal to 0, variances equal to 1 and all

®With the exception of V and H the notation here is chosen to make it as close as possible to that in Sherman

(1993).
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covariances equal to % We then define z;; = z;; for j = 1---2, 253 = 1{Z;3 > 0}, and xj4 = Tiu + 1.
The error, &;, is normal with mean 0 and variance 1.52. A normalization is needed since the
maximum rank correlation estimator only estimates 5 up to scale. Two natural normalizations are
IB]] =1 and 8; = 1. One might fear that the quality of the normal approximation suggested by the
asymptotic distribution will depend on which normalization one applies. Since this issue is unrelated
to the contribution of this paper, we use 8 = (1,0,0,0)" and estimate with the normalization that
B; = 1. The low dimension of 8 makes it possible to estimate the variance of B by the usual
bootstrap and compare the results to the ones obtained by the approach proposed here. For now,
we only consider the estimator defined by minimizing (20).

Table 4 compares the t—statistics based on the bootstrap estimator of the variance of 5, the
variance estimator based on estimating V; and Hp from (14) by nonlinear least squares (N), and
the variance estimator based on estimating V; and H; from (19) by OLS (L). We use sample sizes
of 200 and 500 and the results presented here are based on 400 Monte Carlo replications, each using
400 bootstrap samples to calculate the standard errors. Compared to the linear regression model,
there is a bigger difference between the t—statistics based on our approach and those based on the
usual bootstrap. However, the differences are small enough that they are unlikely to be of serious
consequence in empirical applications.

While an applied researcher would primarily be interested in the effect of the various bootstrap
methods on the resulting t-statistics, it is also interesting to investigate how precisely they estimate
the asymptotic standard errors of the estimators. To address this, we calculate the standard
error of the estimator suggested by the asymptotics using the expression provided in Cavanagh
and Sherman (1998). See Appendix 2. We then compare this to the standard deviation of the
estimator as well as to the average standard errors based on the three bootstrap methods. The
results are presented in Table 5. Interestingly, it seems that our approach does a better job of
approximating the asymptotic variance than does the usual bootstrap. We suspect that the reason
is that our approach implicitly assumes that the asymptotics provide a good approximation for

one—dimensional estimation problems.

4.3 Structural Model

The method proposed here should be especially useful when estimating nonlinear structural models
such as Lee and Wolpin (2006), Altonji, Smith, and Vidangos (2013) and Dix-Carneiro (2014). To

illustrate its usefulness in such a situation, we consider a very simple two-period Roy model like
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the one studied in Honoré¢ and de Paula (2014).
There are two sectors, labeled one and two. A worker is endowed with a vector of sector-specific

human capital, x4, and sector-specific income in period one is
log (wsi1) = ;B4 + €si1
and sector-specific income in period two is
log (wsin) = 7,8 + 1{di1 = 5} v, + €si2

where d;; is the sector chosen in period one. We parameterize (£14¢,2i+) to be bivariate normally
distributed and i.i.d. over time.
Workers maximize discounted income. First consider time period 2. Here d;o = 1 and w;o = w142

if w0 > wose, ie., if
2181 + L{din = 1} y1 + e1ia > 28 + 1 {diz = 1} 75 + €202
and d;s = 2 and w2 = wa;z otherwise. In time period 1, workers choose sector 1 (d;; = 1) if
w11 + pE [max {wiiz, waiz }| T1i, T2i, din = 1] > wai1 + pE [max {wie, wai }| v14, T2;, diz = 1]

and sector 2 otherwise.

In Appendix 3, we demonstrate that the expected value of the maximum of two dependent

a% TO102

lognormally distributed random variables with means (1, st5) and variance is

TO109 0’%
_ _ 2 _
eXp(Ml—FO'%/Q) (1_(I)<:U’2 M1 (0'1 7'0'10'2)>>

\/ag — 210109 + 0%

+exp (z + 03/2) (1—@ (Hl — g — (a%—mlm)»

\/a% — 210109 + 0'%

This gives closed-form solutions for w1 + pE [max {wii, wai}| x1i, T2, din = 1] and waei +
pE [max {wii2, waia }| 14, T2i, dio = 1].

We will now imagine a setting in which the econometrician has a data set with n observations
from this model. z;s is composed of a constant and a normally distributed component that is
independent across sectors and across individuals. In the data-generating process these are §; =
(1,1), By = (%,1)’, 7, = 0and v, = 1. Finally, 0? = 2, 03 =3, 7 = 0 and p = 0.95. In

the estimation, we treat p and 7 as known, and we estimate the remaining parameters. Fixing
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the discount rate parameter is standard and we assume independent errors for computational
convenience. The sample size is n = 2000 and the results presented here are based on 400 Monte
Carlo replications, each using 400 bootstrap samples to calculate the poor (wo)man’s bootstrap
standard errors.

The model is estimated by indirect inference matching the following parameters in the regres-

sions (all estimated by OLS, with the additional notation that d;o = 0)

e The regression coefficients and residual variance in a regression of w; on z;1, x;2, and

1{dit—1 = 1} using the subsample of observations in sector 1.

e The regression coefficients and residual variance in a regression of w; on z;1, x;2, and

1{d;jt—1 = 1} using the subsample of observations in sector 2.
e The regression coefficients in a regressionl {d; = 1} on x;1 and z;3 and 1{d;;—1 = 1}.

Let @ be the vector of those parameters based on the data and let V [@] be the associated
estimated variance. For a candidate vector of structural parameters, @, the researcher simulates
the model R times (holding the draws of the errors constant across different values of 6), calculates

the associated & () and estimates the model parameters by minimizing
(@-a@)via@-aw)

over 6.

This example is deliberately chosen in such a way that we can calculate the asymptotic standard
errors. See Gourieroux and Monfort (2007). We use these as a benchmark when evaluating our
approach. Since the results for maximum rank correlation suggest that the nonlinear version
outperforms the linear version, we do not consider the latter here. Table 6 presents the results.
With the possible exception of the intercept in sector 1, both the standard errors suggested by
the asymptotic distribution and the standard errors suggested by the poor woman’s bootstrap
approximate the standard deviation of the estimator well. The computation time makes it infeasible

to perform a Monte Carlo study that includes the usual bootstrap method.

5 Conclusion

This paper has demonstrated that it is possible to estimate the asymptotic variance for broad

classes of estimators using a version of the bootstrap that only relies on the estimation of one-
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dimensional parameters. We believe that this method can be useful for applied researchers who
are estimating complicated models in which it is difficult to derive or estimate the asymptotic
variance of the estimator of the parameters of interest, and in which the regular bootstrap mothod

is computationally infeasible.
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Appendix 1: Non-Singularity of the Matrix in Equation (6)
The determinant of the matrix on the left of (6) is

2kahi1 (kshii + pk1) + 2kshiy (kehi1 — pk1)

o [ (14 pv) (1= pv) .
(h11 4 2h12 + ha2) ((h11 — 2h12 + ha2))
(1 + pv) (hn — 2h19 + hgz) — (1 — pv) (h11 + 2h19 + hgg)
(h11 + 2h12 + haa) (h11 — 2hi2 + hao)

v

hao

+2h11 [P hit

2 (1 — p2v2) v 2vph11 — 4hio + 2vphoo

+ 2
(h11 + 2h1a + ho2) (h11 — 2h12 + hag) ph22 (h11 + 2hia + hag) (hi1 — 2hia + ha2)

4(1-p*?) + 2p52; (2vphar — 4hag + 2vphas)
(h11 + 2h12 + h22) (h11 — 2h12 + ho2)

—81),0@ + 41)2,022—;; +4

22

(h11 + 2h1a + ho2) (h11 — 2h12 + hao)

ey
() () GG ) ()

since H is positive definite.

Appendix 2: Calculating the Asymptotic Variance of the MRC Es-

timator
Following Cavanagh and Sherman (1998), let
Sy, 1), (g2, 2) 5 (y3,23) ,b) = 1{y1 > y3} 1 {z|b > 25b}
and let
7((y,2),b) = E [1{y > Y3} 1{a'b> X5b} |+ E [1{Y1 > Y3} 1 {X{b>2'b}|+E [1{V1 >y} 1 {X]b> X5b}]
The asymptotic variance of the estimator is
gy tAayt
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where

A=V |G 9)

and
82
V=F [%WT((Y’X) ,3)]

To calculate the analytical standard errors in Table 5, we draw a sample of size 100,000. For
each observation we estimate 7 ((y,z),b) by
~ 1 1
7((y,x),b) = ;Zl{y >y b1 {a'b > )b} + EZL{% > y;} 1 {a}b > 2'b}
Jik gk
]' / /
+ﬁ Z Hye >y} 1 {a}b > 2b}
Jk
. 1 / 1 / /
= 3B (y) Ru (2'b) + — ;Rn (yx) 1 {ajb > 2'b}
1
s Z 1{yr >y} Ry (z},0) .
k

We then numerically differentiate 7 ((y, z) , b) twice (using a step-size® of 0.01). This yields estimates

of A and V.

Appendix 3: Maximum of Two Lognormals

The following is taken from Kotz, Balakrishnan, and Johnson (2000).

O'% TO109 )

Let (X1, X2)" have a bivariate normal distribution with mean (y;, tt5)" and variance ( oo 2
102 2

and let (Y1,Y2)" = (exp (X1),exp (X2))'. We are interested in E [max {Y7, Y2}].
Kotz, Balakrishnan, and Johnson (2000) present the moment-generating function for min { X1, X2}

is

Ho — M —t(a%—70102)>

M (t) = El[exp(min{Xy, X2} 1t)] =exp (tp; + tza%/ 2) ®
\/0'% — 210109 + 0’%

By — g —t (O’% — 70102)>

+ tiy + t202/2) ®
eXp(,U2 02/) ( \/03_270102_’_0%

®Changing the step-size to 0.05 changes the asymptotic standard errors by approximately 2%.
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Therefore

E[max{V1,Y3}] = E[Yi]+ E[Y2] — E [min{¥3,Y3}]
= Elexp (X1)] + E [exp (X2)] — E [min {exp (X1) , exp (X2)}]
= exp (i + 01/2) +exp (g + 03/ 2) — E [exp (min { X7, Xo})]
= exp (u; + 01/2) +exp (uy + 03/ 2)

Ha — p — (01 — 79102)
_ +01/2)®
exp(/h 01/) ( \/05—27'01024-0% )

_ _ (52 _
ol 4o (el

\/a% — 270109 + 0'%

— exp (i + 02/2) (1—@ (Nzul - (o%mpz)))

\/0'% — 270109 + O'%

texp (p + 03/2) (1—@ (Hl — g — (a%—mlm)))

\/0'% — 210109 + a%

Appendix 4: Validity of Bootstrap

Hahn (1996) established that under random sampling, the bootstrap distribution of the standard
GMM estimator converges weakly to the limiting distribution of the estimator in probability. In
this appendix, we establish the same result under the same regularity conditions for estimators that
treat part of the parameter vector as known. Whenever possible, we use the same notation and
the same wording as Hahn (1996). A number of papers have proved the validity of the bootstrap
in different situations. We choose to tailor our derivation after Hahn (1996) because it so closely
mimics the classic proof of asymptotic normality of GMM estimators presented in Pakes and Pollard
(1989).

We first review Hahn’s (1996) results. The parameter of interest 6y is the unique solution to
G (t) = 0 where G (t) = FE g (Z;,t)], Z; is the vector of data for observation ¢ and g is a known
function. The paran;eter space is ©.

Let G, (t) =1 Zg (Z;,t). The GMM estimator is defined by
i=1

Tp = arg mtin | A, Gy, (1))

where A,, is a sequence of random matrices (constructed from {Z;}) that converges to a nonrandom

and nonsingular matrix A.
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The bootstrap estimator is the GMM estimator defined in the same way as 7, but from a
bootstrap sample {an, cees Zm} Specifically

~

3,6 1)

Tp = arg min
¢

n

where G = %Z g ( i ) n 1s constructed from {Em} in the same way that A, was

=1

constructed from {Z ey

Hahn (1996) proved the following results.
Proposition 1 (Hahn Proposition 1) Assume that
(1) 0o is the unique solution to G (t) = 0;
(ii) {Z;} is an i.i.d. sequence of random vectors;
(iii) inf_gy>5 |G (£)] > 0 for all 6 >0
(iv) sup; |Gy (t) — G (t)] — 0 as n — o0 a.s.;
(v) E[sup,;|g(Z1)] < oo;
(vi) A, =A+0,(1) and A, = A+ op (1) for some nonsingular and nonrandom matriz A; and

(vid) |4nGa ()] < 0p (1) + inf; | AnGo (0] and | A,Gin (72)

< op (1) +inf, ‘A\n@n (t)‘
Then T, = 0g+ 0, (1) and T, = 0y + 0B (1) .

Theorem 1 (Hahn Theorem 1) Assume that

(1) Conditions (i)-(vi) in Proposition 1 are satisfied;

(i) [AnGn (0)| < 0p (R7Y/2) + infy |A,Gh (8)] and ‘ﬁn@n (Fn)

< opg (n_l/Q) + inf, ‘En@n (t)|;

7

1/2
(iif) limy_, € (£,00) = 0 where e (t,t') = E [(g (Zist) — g (Zi,t'))ﬂ /

(iv) for alle >0,

=0  n—oo e(tt)<§

lim lim sup P < sup ‘Gn (t) — G (t) — Gy, (t’) +G (t’)‘ > n1/2€) = 0;

(v) G (t) is differentiable at 6y, an interior point of the parameter space, ©, with derivative I' with

full rank; and
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(vi) {g(,t):t €O} C Ly (P) and O is totally bounded under e (-,-).

Then
n? (1, — 0) = —n V2 (I"A'AT) "' TV A’ 4,G,, (60) + 0, (1) = N (0,9)
and
n/2 (7 — 1n) = N (0,Q)
where
Q= (I"A'AT) ' T'A'AV A’ AT (T"A'AT) ™
and

V = E [g(Zi,00) g(Zi,00)']

Our paper is based on the same GMM setting as in Hahn (1996). The difference is that we are
primarily interested in an infeasible estimator that assumes that one part of the parameter vector
is known. We will denote the true parameter vector by 6o, which we partition as 6, = (65, 63).

The infeasible estimator of fp, which assumes that 62 is known, is

nen(()) .
v, = argmin G, << 9% >>IA%AnGn << 9% >>

Let the dimensions of 0} and 63 be ki and ko, respectively. It is convenient to define E; =

Y, = argmin
t

or

(Iiy xky 2 Oy xky) and By = (Opyxky ¢ Iryxk,)’- Post-multiplying a matrix by F; or Es will extract

the first k1 or the last ko columns of the matrix, respectively.

1 2y . A\, 1
08w (2)) ()

be the usual GMM estimator of 63. We consider the bootstrap estimator

~ o~ t
%@(y>‘ (22)

n

n
where én (t) = %Zg (zm,t). //l\n is constructed from {Zu} . in the same way that A, was
i=1

Let

v, = arg min
i

1=

constructed from { 21}?:1 Below we adapt the derivations in Hahn (1996) to show that the distrib-

ution of 7,, can be used to approximate the distribution of 7,,. We use exactly the same regularity
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conditions as Hahn (1996). The only exception is that we need an additional assumption to guar-
antee the consistency of 7,,. For this it is sufficient that the moment function, G, is continuously
differentiable and that the parameter space is compact. This additional stronger assumption would
make it possible to state the conditions in Proposition 1 more elegantly. We do not restate those
conditions because that would make it more difficult to make the connection to Hahn’s (1996)

result.

Proposition 2 (Adaption of Hahn’s (1996) Proposition 1) Suppose that the conditionsa in
Proposition 1 are satisfied. In addition suppose that G is continuously differentiable and that the

parameter space is compact. Then v, = 0§ + o, (1) and 7,, = 05 + op (1) .

Proof. As in Hahn (1996), the proof follows from standard arguments. The only difference is that

o(4)) ()]s

o (())-<((4)
- (@) -e((3)) e ((#))-<((& )]
<Je((6) e (o) le((3) - ((2))

As in Hahn (1996), the first part is oy (1) by bootstrap uniform convergence. The second part

8th12,t2) 0 - ‘93’- This is O <52 — 9%) = O, (n~/2) by the assumptions that

we need

sup
t

This follows from

oN

CD& -

_l’_

is bounded by sup

G is continuously differentiable and that the parameter space is compact. =

Theorem 2 (Adaption of Hahn’s (1996) Theorem 1) Assume that the conditions in Propo-

sition 2 and Theorem 1 are satisfied. Then
n'’? (v, —65) = N (0,9)

and
7’Ll/2 (ﬁn - Vn) :p> N (07 Q)
where

QO = (E;T'A'ATE;) " E{T'A'ASA'ATE, (BT’ A'ATE;)
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and

V = E[g(Z,00)g(Zi,00)]

~

Proof. We start by showing that ( %3 ) is y/n-consistent, and then move on to show asymptotic

normality.

Part 1. \/n—consistency. For [9\2 root-n consistency follows from Pakes and Pollard (1989).

Following Hahn (1996), we start with the observation that

n (( ZE‘ )) —AG(( Z&‘ )) — A4,G, (60) + AG (6p)

3
)

< |4 |Ga (( b )) —G(( b )) = Gu (00) + G (60)| + | An - 4] G(( i )) ~ G (6o)
< op (n_1/2> +o5(1)|G (( g’ﬁ )) — G (b) (23)
Combining this with the triangular inequality we have
?n =~ A ;Y\n ;Y\n N
AG((b\Q >>—AG(90) < nGn(( 52 >>—AG<< 52 >>_AnGn(60)+AG(60>
-~ T PN
+ | AnGr (( 52 >> — A,G, (0o)
< op (n71/2> +op (1) G (( 7\721 )) —G(eo)
0
-~ T -~
+ [AnGr (( 52 >> — AnGp (90) (24)

The nonsingularity of A implies the existence of a constant C; > 0 such that |Az| > Cy |z| for all

x. Applying this fact to the left-hand side of (24) and collecting the G (( %3 >> — G (0p) terms

Jield
(1 —on (1) |G (( } )) G (0) (25)
< o (1) + |2, (( i )) _A,Ga (00
< on (n) + za((% )) +[2Ga 00)
< on(n2) + za((g )) |2 00) 26)




Stochastic equicontinuity implies that

Py (( ’ )) i (G (( " )) G <90>) b 8,8 (00) + Ao ()

or

(1 — o5 (1) |G (( Z&l )) — G (6o)
< op () 4|4, (G (( g‘é )) —G(00)> +2]4,lla, (90)( +|An] o (n71?)
< op (n_1/2> 114, (G (( gé )) —G(90)> +214, Gn(QO)_GTL(QO)‘
2|4, 1Gn (00)] + | A0 05 (n_1/2>
— op (n_l/Q) +05(1)0, n—1/2) +05(1)0p <n_1/2)
+05 (1) 0, (n_1/2> +05(1)op (n_1/2> (27)
Note that

G << gg )) =TE (3, —6) + 05 (1) [5, — 0]
As above, the nonsingularity of I' implies nonsingularity of I'Ey, and hence, there exists a constant

Cy > 0 such that |[T'Eyz| > Cy x| for all . Applying this to the equation above and collecting

terms give
Colfa 08l <08 G- ob) = |6 (31 ) -G 00 +on -0 29)
Combining (28) with (27) yields
(C1—o0p (1)) (C2 — o3 (1)) [3,, — 65|
< @-amle((3))-c@
< op (n*1/2) +05(1)0, (n*1/2) + 05 (1)Op (mlﬂ) +05(1)0, (nfl/Q) + 05 (1) op (mlﬂ)

or



Part 2: Asymptotic Normality. Let
~ t 9(1) ~
Lo®)=AT | w2 | —( .3 + AnGh (00)
i 02

Ly, (t)‘ -

Define

on = arg mtin

arg mtin (AF (
1 o~ o~
(AP (( 52 ) - < 2% )) + AnGy (60)

Gn = 0 — By (Byx+CY)

VR
Cc{\)g ~
~—
|
N
>
OO =
N~
~—
+
§>>
)

3
0=
e
~_—

Solving for 7, gives

— 6y — (TEy) A'ATE,) ™

(B 4'ATE, (@2 —63) + (TEv) A'4,G (60))
— 0y — (TE) AATE) ' (TE) A

(AFE2 (@2 - 93) + A,Gy (90))

Mimicking the calculation on the top of page 195 of Hahn (1996),

@0 =) = —((CE)) AATE)) ™ (TEy) A (ATE, (87 - 63) + A, G (60))
+ (BT A'ATE,) " EjTY A'AG,, (0))
— —((TE)) AATE,) " (TE) 4’

(4re, (@2 —03) + A,Go (80) — AG. (60))

- A <pn + A4,Gn (60) — AG,, (90))
where A = ((TEy) A'ATE)  (TE)) A’ and p, = ATE» (6 — 62). Or
n 0
@n =Y+ Apy) = A (AuGi (60) = AGw (00))

From this it follows that o, — v, = Op (n*1/2) .
Next we want to argue that /n (6, —7,,) = op (1).
We next proceed as in Hahn (1996) (page 194). First we show that

16 ((3)) ot
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It follows from Hahn

() () Ao sm] -t
We thus have
o~ o~ ~ ~ ~ o~ ~ ~ 1 ~
AnGn<<%3>>Ln(%) - AnGn<<%§>>AF((%3><g%)>AnGn(9o)
< ﬁn@n<<g§ ))AG((Z’% ))An@n(90)+AG(00)
+AG<<Z§L ))—AG(G@—AF((ZQ)—H())
= oB(n_1/2)+o((Z\g>—90>
= 03(7171/2)

n . .
2 1s y/n-consistent.

) 2)

This uses the fact that <

e (( 7 )) i)

Next, we will show that

=op (n_l/ 2) (30)

IN

For the last step we use 6, — 03 = (Gn — 7,) + (70 — 05) = O (n7Y/2) + O, (n71/2).
Combining (29) and (30) with the definitions of 7,, and &, we get

Ln (V)

+op (n_1/2> (31)
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Exactly as in Hahn (1996) and Pakes and Pollard (1989), we start with

< AT (( g\g ) - ( %g >> + ‘A\n@n (‘90) _A\nGn (00)‘

+ -

((7)

= 0 () +05(1)0p (n72) + 0, (n12) + 05 (1) 0, (n/2)  (32)

A\nGn (90)‘

Squaring both sides of (31) we have

2

*op () (33)

L 3n)| = |Ln @n)

because (32) implies that the cross-product term can be absorbed in the op (n‘l). On the other

has the form Ly, (t) = y— Xt where X = —AT'E; and y = —~ATE10{+ AT E, (@2 — 0(2)) ++A4,G, (0o)

hand, for any ¢

G solves a least squares problem with first-order condition X'L,, (on) =0. Also
~ 2 ,
L) = (=Xt (- X

= ((y_Xgn)_X(t_gn)),((y_Xan)_X(t_an))
= (y—Xo,) (y—XG,)+ (t—57,) X' X (t —5n)
—2(t—0,) X' (y— X5,)

~ 2 ~
Lo (G, 41Xt =5, —2(t—06,) X'Ly, (5)

~ 2
L, (Gn)| +|(ATEY) (t —6,)]?

Plugging in ¢t = 7,, we have

2

Lo G| = |En @] +1(ACE) G, - 2P

Compare this to (33) to conclude that
(ATEY) (5, = ) = 05 (n/?)

AT'Ey has full rank by assumption so (7, — 3,) = op (n"%/2) and n'/2 (3, —7,,) = n2 (G, — 7,) +

OB (n_l/Q) and since n'/2 (G, — v,) == N (0,Q), we obtain n'/? (3,, —v,) = N (0,Q). =
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Theorem 2 is stated for GMM estimators. This covers extremum estimators and the two-step
estimators as special cases. Theorem 2 also covers the case where one is interested in different
infeasible lower-dimensional estimators as in Section 2. To see this, consider two estimators of the

form
n

a(d1) = arg main <i Zz;f (24,00 + a61)> W (:L Zz;f (24,00 + a51)>

and
n

@(32) = arg min (i Z; £ (2,60 + a52)> W, (:L Z; £ (5,60 + a62)>

and let A,, denote the matrix-square root of W,,. We can then write

Apn 0 \ 1 <&/ f(x,00+ ady)
(0 An>n;<f($i;93+a5;)>‘

(@(01),a(d2)) = argmin

which has the form of (21).
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Table 1: Ordinary Least Squares, n = 200.

Te —Tp| |Te—Tn| [Tp—Til [Tp—Tn| [Tp—Ti| [Ty —Ti|
B1 0.031 0.027 0.025 0.017 0.026 0.014
Bo 0.029 0.023 0.022 0.017 0.025 0.012
B3 0.031 0.027 0.025 0.018 0.023 0.011
B4 0.032 0.027 0.026 0.020 0.023 0.011
Bs 0.033 0.026 0.023 0.020 0.021 0.011
Be 0.032 0.029 0.027 0.022 0.025 0.012
By 0.031 0.025 0.024 0.020 0.024 0.010
Bs 0.033 0.027 0.027 0.020 0.018 0.011
Bg 0.034 0.026 0.025 0.021 0.023 0.006
B1o 0.033 0.034 0.026 0.018 0.022 0.023

35




Table 2: Ordinary Least Squares, n = 2000.

Tg —Tp| |Tg—Tn| [Te—TLl |Ts—Tn| [Ts—TLl [Tn —TL
B1 0.025 0.025 0.025 0.004 0.003 0.002
Bo 0.021 0.021 0.021 0.003 0.003 0.002
B3 0.024 0.024 0.024 0.004 0.003 0.002
B4 0.023 0.022 0.022 0.004 0.004 0.003
Bs 0.025 0.025 0.025 0.004 0.004 0.003
Be 0.025 0.025 0.025 0.004 0.004 0.003
By 0.026 0.025 0.026 0.004 0.003 0.003
Bs 0.024 0.023 0.023 0.004 0.004 0.003
Bg 0.022 0.023 0.023 0.003 0.003 0.001
B1o 0.023 0.023 0.023 0.006 0.005 0.005
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Table 3: OLS, n = 2000.

Te —Tp| |Te—TL| |Ts—Til
51 0.024 0.024 0.005
B 0.022 0.023 0.006
B3 0.022 0.022 0.005
B4 0.022 0.022 0.005
Bs 0.024 0.024 0.006
Be 0.022 0.022 0.005
B 0.024 0.023 0.005
Bs 0.022 0.022 0.005
By 0.024 0.025 0.005
B | 0.022 0.022 0.005
By | 0.021 0.020 0.005
B | 0.024 0.024 0.005
B3 0.021 0.021 0.005
Bu | 0.021 0.020 0.005
B | 0.024 0.024 0.005
B1s 0.023 0.023 0.005
8. | 0023 0.023 0.005
B1s 0.022 0.022 0.005
B | 0.022 0.022 0.005
Bao 0.021 0.021 0.006
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Table 4: Maximum Rank Correlation

n = 200 n = 500
Tp —Tn| [Tp—=TL| [In—TL| | |Tp—Tn| [Tp—TL| [Tn—TL|
B 0.138 0.091 0.104 0.109 0.059 0.075
B 0.129 0.080 0.138 0.109 0.041 0.093
By 0.128 0.095 0.073 0.103 0.059 0.058
Table 5: Maximum Rank Correlation
n = 200 n = 500
Actual Asymp Boots BS N BS L | Actual Asymp Boots BS N BS L
By | 0.167 0.145 0.189 0.161  0.228 | 0.099 0.092 0.108 0.094 0.103
Bs | 0317 0.258 0.321 0.294 0.397 | 0.181 0.163 0.191 0.173  0.189
B4 0.181 0.142 0.191 0.166  0.180 | 0.098 0.090 0.107 0.095 0.102
Table 6: Structural Model
B Bia Bai Baz 71 Y2 log (01) log(o2)
Actual 0.042 0.041 0.049 0.039 0.026 0.063 0.022 0.018
Asymptotic | 0.049 0.041 0.051 0.040 0.028 0.068 0.026 0.019
BS N 0.055 0.042 0.054 0.041 0.032 0.070 0.028 0.019
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