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Abstract

The bootstrap is a convenient tool for calculating standard errors of the parameters of

complicated econometric models. Unfortunately, the fact that these models are complicated

often makes the bootstrap extremely slow or even practically infeasible. This paper proposes an

alternative to the bootstrap that relies only on the estimation of one-dimensional parameters.

The paper contains no new di¢ cult math. But we believe that it can be useful.

Keywords: standard error; bootstrap; inference; structural models; parametric estimation.

JEL Code: C10, C18.

1 Introduction

The bootstrap is often used for estimating standard errors in applied work even when analytical

expression exists for a consistent estimator. The bootstrap is convenient from a programming

point of view, because it relies on the same estimation procedure that delivers the point estimates.

Moreover, it does not explicitly force the researcher to make choices regarding bandwidths or

number of nearest neighbors when the estimator is based on a non�smooth objective function or

discontinuous moment conditions.
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Unfortunately, the bootstrap can be computationally burdensome if the estimator is complex.

For example, in many structural econometric models it can take hours or days to get a single

bootstrap draw of the estimator. This paper will demonstrate that in many cases it is possible

to use the bootstrap distribution of much simpler alternative estimators to back out a bootstrap�

like estimator of the variance of the estimator of interest. The need for faster alternatives to

the standard bootstrap also motivated the papers by Heagerty and Lumley (2000) and Hong and

Scaillet (2006). Unfortunately, their approach assumes that one can easily estimate the �Hessian�

in the sandwich form of the asymptotic variance of the estimator. It is the di¢ culty of doing this

that is the main motivation for this paper.

We emphasize that the contribution is the convenience of the approach, and we do not claim

that any of the superior higher order asymptotic properties of the bootstrap carries over to our

proposed approach. However, these properties are not usually the main motivation for the bootstrap

in applied economics.

We �rst introduce our approach in the context of an asymptotically normally distributed ex-

tremum estimator. We introduce a set of simple infeasible one-dimensional estimators related to

the estimator of interest, and we show how their asymptotic variances can be used to back out the

asymptotic variance of the estimator of the parameter of interest. In Appendix 4, we extend the

results in Hahn (1996) to demonstrate that the bootstrap can be used to estimate the variances of

the simple infeasible one-dimensional estimators. This suggests a computationally simple method

for estimating the variance of the estimator of the parameter-vector of interest. We also demon-

strate that this insight carries over to GMM estimators and that an alternative, and even simpler

approach can be applied to method of moments estimators. It turns out that our procedure is

not necessarily convenient for two-step estimators. In Section 2.5, we therefore propose a modi�ed

version speci�cally tailored for this scenario.

In Section 3, we discuss how the asymptotic variances of the simpler infeasible estimators can

be estimated using the bootstrap and we propose a practical procedure for mapping them into the

asymptotic variance of interest.

We illustrate our approach in Section 4. We �rst focus on the OLS estimator. The advantage of

this is that it is well understood and that its simplicity implies that the asymptotics often provide

a good approximation in small samples. This allows us to focus on the marginal contribution of

this paper rather than on issues about whether the asymptotic approximation is useful in the �rst

place.
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Of course, the linear regression model does not provide an example of a case in which one would

actually need to use our version of the bootstrap. We therefore also perform a small Monte Carlo

of the approach applied to the maximum rank correlation estimator and to an indirect inference

estimator of a structural econometric model. The former is chosen because it is an estimator

that can be time�consuming to estimate and whose variance depends on unknown densities and

conditional expectations. The latter provides an example of the kind of model where we think the

approach will be useful in current empirical research.

2 Basic Idea

2.1 M�estimators

Consider an extremum estimator of a parameter � based on a random sample fzig,

b� = argmin
b
Qn (b) = argmin

b

nX
i=1

q (zi; b) :

Subject to the usual regularity conditions, this will have asymptotic variance of the form

avar
�b�� = H�1V H�1

where V and H are both symmetric and positive de�nite. When q is a smooth function of b, V

is the variance of the derivative of q with respect to b and H is the expected value of the second

derivative of q, but the setup also applies to many non-smooth objective functions such as in Powell

(1984).

While it is in principle possible to estimate V and H directly, many empirical researchers

estimate avar
�b�� by the bootstrap. That is especially true if the model is complicated, but

unfortunately, that is also the situation in which the bootstrap can be time�consuming or even

infeasible. The point of this paper is to demonstrate that one can use the bootstrap variance of

much simpler estimators to estimate avar
�b��.

It will be useful to explicitly write

H =

0BBBBBB@
h11 h12 � � � h1k

h12 h22 � � � h2k
...

...
. . .

...

h1k h2k � � � hkk

1CCCCCCA and V =

0BBBBBB@
v11 v12 � � � v1k

v12 v22 � � � v2k
...

...
. . .

...

v1k v2k � � � vkk

1CCCCCCA
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The basic idea pursued here is to back out the elements of H and V from the covariance matrix

of a number of infeasible one�dimensional estimators of the type

ba (�) = argmin
a
Qn (� + �a) (1)

where � is a �xed vector. The bootstrap equivalent of this is

argmin
a

nX
i=1

q
�
zbi ;
b� + �a� (2)

where
�
zbi
	
is the bootstrap sample. This is a one-dimensional minimization problem, so for

complicated objective functions, it will be much easier to solve than the minimization problem that

de�nes b� and its bootstrap equivalent. The validity of the bootstrap distribution of ba (�) follows
from Appendix 4.

It is easiest to illustrate why this works by considering a case where � is two�dimensional. For

this case, consider two vectors �1 and �2 and the associated estimators ba (�1) and ba (�2). Under
the conditions that yield asymptotic normality of the original estimator b�, the infeasible estimatorsba (�1) and ba (�2) will be jointly asymptotically normal with variance


�1;�2 = avar

0@0@ ba (�1)ba (�2)
1A1A (3)

=

0@ �
�01H�1

��1
�01V �1

�
�01H�1

��1 �
�01H�1

��1
�01V �2

�
�02H�2

��1�
�01H�1

��1
�01V �2

�
�02H�2

��1 �
�02H�2

��1
�02V �2

�
�02H�2

��1
1A :

With �1 = (1; 0) and �2 = (0; 1) we have


(1;0);(0;1) =

0@ h�211 v11 h�111 v12h
�1
22

h�111 v12h
�1
22 h�222 v2

1A
So the correlation in 
(1;0);(0;1) gives the correlation in V . We also note that the estimation problem

remains unchanged if q is scaled by a positive constant c, but in that case H would be scaled by c

and V by c2. There is therefore no loss of generality in assuming v11 = 1. This gives

V =

0@ 1 �v

�v v2

1A ; v > 0

where we have already noted that � is identi�ed from the correlation between ba (�1) and ba (�2). We
now argue that one can also identify v, h11, h12 and h22.
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In the following kj will be used to denote objects that are identi�ed from 
�1;�2 for various

choices of �1 and �2. We use ej to denote a vector that has 1 in its j�th element and zeros

elsewhere.

We �rst consider �1 = e1 and �2 = e2 and we then have


(1;0);(0;1) =

0@ h�211 �vh�122 h
�1
11

�vh�122 h
�1
11 h�222 v

2

1A
so we know k1 = v

h22
. We also know h11.

Now also consider a third estimator based on �3 = e1 + e2. We have


(1;0);(1;1) =

0@ h�211 h�111 (1 + �v) (h11 + 2h12 + h22)
�1

h�111 (1 + �v) (h11 + 2h12 + h22)
�1 �

1 + 2�v + v2
�
(h11 + 2h12 + h22)

�2

1A
The upper right-hand corner of this is

k2 = h
�1
11 (1 + �v) (h11 + 2h12 + h22)

�1 :

Using v = k1h22 yields a linear equation in the unknowns, h12 and h22,

k2h11 (h11 + 2h12 + h22) = (1 + �k1h22) (4)

Now consider the covariance between the estimators based on e1 and a fourth estimator based

on e1 � e2; in other words, consider the upper right-hand corner of 
(1;0);(1;�1):

k3 = h
�1
11 (1� �v) (h11 � 2h12 + h22)

�1 :

We rewrite this as a linear equation in h12 and h22,

k3h11 (h11 � 2h12 + h22) = (1� �k1h22) (5)

Rewriting (4) and (5) in matrix form, we get

0@ 2k2h11 k2h11 � �k1
�2k3h11 k3h11 + �k1

1A0@ h12

h22

1A =

0@ 1� k2h211
1� k3h211

1A (6)

Appendix 1 shows that the determinant of the matrix on the left is positive de�nite. As a

result, the two equations, (4) and (5), always have a unique solution for h12 and h22. Once we have

h22, we then get the remaining unknown, v, from v = k1h22.

The identi�cation result for the two�dimensional case carries over to the general case in a

straightforward manner. For each pair of elements of �, �i and �j , the corresponding elements of
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H and V can be identi�ed as above, subject to the normalization that one of the diagonal elements

of V is 1. This yields vjj
vii
, vijvii , and all the elements scaled by

q
vjj
vii
. These can then be linked

together by the fact that v11 is normalized to 1.

One can characterize the information about V and H contained in the covariance matrix of the

estimators (ba (�1) ; � � � ;ba (�m)) as a solution to a set of nonlinear equations.
Speci�cally, de�ne

D =
�
�1 �2 � � � �m

�
and C =

0BBBBBB@
�1 0 � � � 0

0 �2 � � � 0
...

...
. . .

...

0 0 � � � �m

1CCCCCCA : (7)

The covariance matrix for the m estimators is then


 =
�
C 0 (I 
H)C

��1 �
D0V D

� �
C 0 (I 
H)C

��1
which implies that �

C 0 (I 
H)C
�


�
C 0 (I 
H)C

�
=
�
D0V D

�
(8)

These need to be solved for the symmetric and positive de�nite matrices V and H. The calculation

above shows that this has a unique solution1 as long as D contains all vectors of the from ej , ej+ek

and ej � ek.

2.2 GMM

We now consider variance estimation for GMM estimators. The starting point is a set of moment

conditions

E [f (xi; �0)] = 0

where xi is �data for observation i�and it is assumed that this de�nes a unique �0. The GMM

estimator for �0 is

b� = argmin
�

 
1

n

nX
i=1

f (xi; �)

!0
Wn

 
1

n

nX
i=1

f (xi; �)

!
where Wn is a symmetric, positive de�nite matrix. Subject to weak regularity conditions (see

Hansen (1982) or Newey and McFadden (1994)) the asymptotic variance of the GMM estimator

1Except for scale.
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has the form

� =
�
�0W0�

��1
�0W0SW0�

�
�0W0�

��1
where W0 is the probability limit of Wn, S = V [f (xi; �0)] and � = @

@�0
E [f (xi; �0)]. Hahn (1996)

showed that the limiting distribution of the GMM estimator can be estimated by the bootstrap.

Now let � be some �xed vector and consider the problem of estimating a scalar parameter, �,

from

E [f (xi; �0 + ��)] = 0

by

ba (�) = argmin
a

 
1

n

nX
i=1

f (xi; �0 + a�)

!0
Wn

 
1

n

nX
i=1

f (xi; �0 + a�)

!
The asymptotic variance of two such estimators corresponding to di¤erent � would be


�1;�2 = avar

0@0@ ba (�1)ba (�2)
1A1A (9)

=

0@ �
�01�

0W0��1
��1

�01�
0W0SW0��1

�
�01�

0W0��1
��1 �

�01�
0W0��1

��1
�01�

0W0SW0��2
�
�02�

0W0��2
��1�

�01�
0W0��1

��1
�01�

0W0SW0��2
�
�02�

0W0��2
��1 �

�02�
0W0��2

��1
�02�

0W0SW0��2
�
�02�

0W0��2
��1

1A
Of course (9) has exactly the same structure as (3) and we can therefore back out the matrices

�0W0� and �0W0SW0� (up to scale) in exactly the same way that we backed out H and V above.

The validity of the bootstrap as a way to approximate the distribution of ba (�) in this GMM
setting is proved in Appendix 4.

2.3 Method of Moments

We next consider the just identi�ed case where the number of parameters equals the number of

moments. In this case, the weighting matrix plays no role for the asymptotic distribution of the

estimator. Speci�cally, the asymptotic variance is

� =
�
��1

�
S
�
��1

�0
This is very similar to the expression for the asymptotic variance of the extremum estimator. The

di¤erence is that the � matrix is typically only symmetric if the moment condition corresponds to

the �rst-order condition for an optimization problem.
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We �rst note that there is no loss of generality in normalizing the diagonal elements of S to 1.

Now consider the b�k` that solves the k�th moment with respect to the `�th element of the parameter,
1

n

nX
i=1

fk (xi; �0 + b�k`e`) � 0
It is straightforward to show that the asymptotic covariance between two such estimators is

Acov (b�k`; b�jm) = Skj

k`
jm

where Skj and 
jk denote the elements in S and �. In particular

Avar (b�kk) = Skk

2kk

=
1


2kk

Since the moment conditions are invariant to sign�changes, there is no loss in generality in assuming


kk > 0. Hence 
kk is identi�ed. Since

Acov (b�kk; b�jj) = Skj

kk
jj

;

Skj is identi�ed as well.

Finally

Acov (b�kk; b�jm) = Skj

kk
jm

so 
jm is also identi�ed.

2.4 Indirect Inference

Simulation-based inference has become increasingly popular as a way to estimate complicated struc-

tural econometric models. See Smith (2008) for an introduction and Gourieroux and Monfort (2007)

for a textbook treatment. These models often result in simulation moments that are discontinuous

functions of the parameters. In this case, a given bootstrap replication should use the same draws

of the unobservables for the calculation of all �.

2.5 Two-Step Estimators

Finite dimensional two�step estimators can be thought of as GMM or method of moments estima-

tors. As such, their asymptotic variances have a sandwich structure and the poor (wo)man�s boot-

strap approach discussed above can therefore in principle be applied. However, the one-dimensional

estimation used in the bootstrap does not preserve the simplicity of the two-step structure. In this

8



section we therefore propose a version of the poor (wo)man�s bootstrap that is suitable for two-step

estimators.

To simplify the exposition, we consider a two-step estimation procedure where the estimator in

each step is de�ned by minimization problems

b�1 = argmin
t1

1

n

X
Q (zi; t1)

b�2 = argmin
t2

1

n

X
R
�
zi;b�1; t2�

with moment conditions (or limiting �rst-order conditions),

E [q (zi; �1)] = 0

E [r (zi; �1; �2)] = 0

where �1 and �2 are k1 and k2-dimensional parameters of interest and q and r are smooth functions.

Although our exposition requires this, the results also apply when one or both steps involve GMM

estimation with possibly non-smooth functions.

The estimator b� = �b�01;b�02�0 will have a limiting normal distribution with asymptotic variance
0@ E [q1 (zi; �1)] 0

E [r1 (zi; �1; �2)] E [r2 (zi; �1; �2)]

1A�1 V
24 q (zi; �1)

r (zi; �1; �2)

35
0B@
0@ E [q1 (zi; �1)] 0

E [r1 (zi; �1; �2)] E [r2 (zi; �1; �2)]

1A�1
1CA
0

:

This has the usual sandwich structure and the poor (wo)man�s bootstrap can therefore be used

to back out all the elements of the two matrices involved. Unfortunately, this is not necessarily

convenient because the poor (wo)man�s bootstrap would use the bootstrap sample to estimate

scalar a where � =
�
�01; �

0
2

�0 has been parameterized as b� + a�. When � places weight on elements
from both �1 and �2, the estimation of a no longer bene�ts from the simplicity of the two-step

setup.

Example 1 Consider the standard sample selection model

di = 1
�
z0i�+ �i � 0

	
yi = di �

�
x0i� + "i

�

9



where (�i; "i) has a bivariate normal distribution. � can be estimated by the probit maximum

likelihood estimator, b�MLE, in a model with di as the outcome and zi as the explanatory variables.

In a second step � is then estimated by the coe¢ cients on xi in the regression of yi on xi and

�i =
�(z0ib�MLE)
1��(z0ib�MLE)

using only the sample for which di = 1. See Heckman (1979).

We now demonstrate that it is possible to modify the poor (wo)man�s bootstrap so it can be

applied to two-step estimators using only one-dimensional estimators that are de�ned by only one

of the two original objective functions.

We �rst note that the elements of E [q1 (zi; �1)] and V [q (zi; �1)] can be estimated by applying

the poor (wo)man�s bootstrap to the �rst step in the estimation procedure alone. E [r2 (zi; �1; �2)]

and V [r (zi; �1; �2)] can be estimated by applying the poor (wo)man�s bootstrap to the second step

of the estimation procedure holding b�1 �xed.
To estimate the elements of E [r1 (zi; �1; �2)] and cov [q (zi; �1) ; r (zi; �1; �2)], consider the three

infeasible scalar estimators

ba1 = argmin
a1

1

n

X
Q (zi; �1 + a1�1)

ba2 = argmin
a2

1

n

X
R (zi; �1 + ba1�1; �2 + a2�2)

ba3 = argmin
a3

1

n

X
R (zi; �1; �2 + a3�3)

for �xed �1, �2 and �3.

The asymptotic variance of (ba1;ba2;ba3) is0BBB@
�01E [q1 (zi; �1)] �1 0 0

�01E [r1 (zi; �1; �2)] �2 �02E [r2 (zi; �1; �2)] �2 0

0 0 �03E [r2 (zi; �1; �2)] �3

1CCCA
�1

0BBB@
�01V [q (zi; �1)] �1 �01cov [q (zi; �1) ; r (zi; �1; �2)] �2 �01cov [q (zi; �1) ; r (zi; �1; �2)] �3

�01cov [q (zi; �1) ; r (zi; �1; �2)] �2 �02V [r (zi; �1; �2)] �2 �02V [r (zi; �1; �2)] �3

�01cov [q (zi; �1) ; r (zi; �1; �2)] �3 �02V [r (zi; �1; �2)] �3 �03V [r (zi; �1; �2)] �3

1CCCA
0BBB@

�01E [q1 (zi; �1)] �1 0 0

�01E [r1 (zi; �1; �2)] �2 �02E [r2 (zi; �1; �2)] �2 0

0 0 �03E [r2 (zi; �1; �2)] �3

1CCCA
�1

:

When �2 = �3, this has the form
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0BBB@
q1 0 0

r1 r2 0

0 0 r2

1CCCA
�10BBB@

Vq Vqr Vqr

Vqr Vr Vr

Vqr Vr Vr

1CCCA
0BBB@
q1 r1 0

0 r2 0

0 0 r2

1CCCA
�1

which can be written as

0BBBBB@
Vq
q21

1
q1r2Vqr �

Vq
q21

r1
r2

1
q1r2Vqr

1
q1

�
1
r2Vqr �

Vq
q1
r1
r2

�
1
r2

�
Vr
r2 �

1
q1
r1
r2Vqr

�
� 1
q1
r1
r2

�
1
r2Vqr �

Vq
q1
r1
r2

�
1
r2

�
Vr
r2 �

1
q1
r1
r2Vqr

�
1
q1r2Vqr

Vr
r22
� 1
q1
r1
r22
Vqr

Vr
r22

1CCCCCA
Normalize so Vq = 1, and parameterize Vr = v2 and Vqr = �

p
VqVr = �v gives the matrix0BBBBB@

1
q21

1
q1r2 �v �

1
q21

r1
r2

1
q1r2 �v

1
q1

�
1
r2 �v �

1
q1
r1
r2

�
1
r2

�
v2
r2 �

1
q1
r1
r2 �v

�
� 1
q1
r1
r2

�
1
r2 �v �

1
q1
r1
r2

�
1
r2

�
v2
r2 �

1
q1
r1
r2 �v

�
1
q1r2 �v

v2

r22
� 1
q1
r1
r22
�v v2

r22

1CCCCCA
Denoting the elements of this matrix by !`k we have

!33 � !32 =
1

q1

r1
r22
�v =

r1
r2
!31

!33 � !32
!31

=
r1
r2

� =
!31p
!11!33

There is no loss in generality in normalizing

r2 = 1

so now we know r1 and �. We also know v from !33.

This implies that the asymptotic variance of (ba1;ba2;ba3) identi�es �01V [q (zi; �1) ; r (zi; �1; �2)] �2
and �01E [r1 (zi; �1; �2)] �2. Choosing �1 = e` and �2 = ek recovers all the elements of cov [q (zi; �1) ; r (zi; �1; �2)]

and E [r1 (zi; �1; �2)].

2.6 Alternative Approach

In this subsection we present an alternative insight for estimating a variance matrix by bootstrap-

ping one-dimensional components of the parameter vector.
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For simplicity, consider the extremum estimator discussed in Section 2.1. Standard asymptotic

theory implies that in each boostrap replication, b, the estimator of the full parameter vector has

the linear representation b�b � b� �
= H�1sb (10)

whereH is �xed and sb is approximately normal and i.i.d. across bootstrap samples. The directional

estimator de�ned in (2) has the corresponding representation

bab (�) �
=
�
�0H�

��1
�0sb: (11)

We write (11) as �
�0H�

� bab (�) �
= �0sb

or equivalently bab (�) ��0H��� �0sb �
= 0

or X
k;`

(bab (�) � (k) � (`))hk` �X
k

� (k) sb (k)
�
= 0 (12)

where sb (k) is the k�th element of sb, � (k) is the k�th element of � and hk` = h`k.

It is useful to think of (12) as a linear regression model where the dependent variable is always

0 and (asymptotically) there is no error. In each bootstrap replication, each �-vector gives an

observation from (12). The s-vector di¤ers across bootstrap replications, but the elements of H

are the same. In other words, if we focus on H, we can think of the s�s as bootstrap-speci�c

�xed e¤ects, which could be eliminated by a transformation similar to the �textbook�panel data

deviations-from-means transformation. This gives one an easy way to estimate the elements of H

(up to scale).

Once H has been estimated, one could back out the s for each bootstrap replication and use

the sample variance for s as an estimate of V . Alternatively, we can use the estimate of H obtained

from (12) and then exploit

�
C 0 (I 
H)C

�


�
C 0 (I 
H)C

�
=
�
D0V D

�
(13)

to back out V .

This approach relies on the linear representations in (10) and (11). As such, it applies to the

GMM setting and the two-step estimators as well as to the extremum estimators.2

2For extremum estimators, V is essentially the variance of q0. There are many examples in which it is easy to
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One potential advantage of exploiting (12) to recover H and sb is that it is straightforward to

allow the directions � to di¤er across replications. We plan to explore this in future work.

3 Implementation

There are many ways to turn the identi�cation strategy above into estimation of3 H and V . One is

to pick a set of ��vectors and estimate the covariance matrix of the associated estimators. Denote

this estimator by b
. The matrices V and H can then be estimated by solving the nonlinear least

squares problem

min
V;H

X
ij

�n�
C 0 (I 
H)C

� b
 �C 0 (I 
H)C�� �D0V D�o
ij

�2
(14)

where D and C are de�ned in (7), V11 = 1, and V and H are positive de�nite matrices.

From a computational point of view, it can be time�consuming to recover the estimates of V

and H by a nonlinear minimization problem. We therefore illustrate the usefulness of our approach

by estimating V and H along the lines of the identi�cation proof.

For all i; j, we estimate yij = Vjj=Vii exactly as prescribed by the identi�cation. Taking logs,

this gives a set of equations of the form

log (yij) =
X
k

�k1 (k = j)� �k1 (k = i)

where �1 = 0 (because V11 = 1) and �k = log (Vkk). We can estimate the vector of ��s by

regression log (yij) on a set of dummy variables. This gives estimates of the diagonal elements

of V . The correlation structure in V is the same as the correlation structure in the variance of

(ba (e1) ; � � � ;ba (ek)).
To estimate H we �rst use that Avar (ba (ej)) = Vjj

h2jj
. Since H is positive de�nite, we therefore

estimate hjj by

r bVjj.Avar (ba (ej)).
To estimate the o¤-diagonal elements, hij , we use the estimated covariances between ba (ei) andba (ei + ej), between ba (ei) and ba (ei � ej), between ba (ej) and ba (ei + ej), and between ba (ej) andba (ei � ej).

estimate V directly, but di¢ cult to estimate H. The least absolute deviations estimator is a classic example of this.

In those cases, (12) can be used to estimate H.

3Here we use the notation for extremum estimators. The same discussion applies to GMM estimators.
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Speci�cally, the asymptotic covariance between ba (ei) and ba (ei + ej) is
k2 = h

�1
ii (vii + vij) (hii + 2hij + hjj)

�1

(see equation (3). We write this as

k2hii (hii + 2hij + hjj) = (vii + vij)

or

vii + vij � k2h2ii � k2hiihjj = 2k2hiihij (15)

Now consider the asymptotic covariance between ba (ei) and ba (ei � ej):
k3 = h

�1
ii (vii � vij) (hii � 2hij + hjj)

�1

or

vii � vij � k3h2ii � k3hiihjj = �2k3hiihij (16)

Next consider the asymptotic covariance between ba (ej) and ba (ei + ej):
k4 = h

�1
jj (vjj + vij) (hii + 2hij + hjj)

�1

or

vjj + vij � k4h2jj � k4hiihjj = 2k4hjjhij (17)

Finally consider the asymptotic covariance between ba (ej) and ba (ei � ej):
k5 = h

�1
jj (�vjj + vij) (hii � 2hij + hjj)

�1

or

�vjj + vij � k5h2jj � k5hiihjj = �2k5hjjhij (18)

Writing (15)�(18) in vector notation0BBBBBB@
vii + vij � k2h2ii � k2hiihjj
vii � vij � k3h2ii � k3hiihjj
vjj + vij � k4h2jj � k4hiihjj
�vjj + vij � k5h2jj � k5hiihjj

1CCCCCCA =

0BBBBBB@
2k2hii

�2k3hii
2k4hjj

�2k5hjj

1CCCCCCAhij (19)
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The o¤-diagonal element hij could then be estimated by regressing the vector on the left-hand

side (y) on the vector on the right-hand side (x). To lessen the in�uence of any one of the four

equations, we use weighted regression where the weight is 1p
jx`j
.

It is worth noting that (19) does not contain all the �linear�information about the o¤-diagonal

elements, hij . Consider, for example, any two vectors �p and �q and their associated ba (�p) andba (�q), !pq:
!pq = acov (ba (�p) ;ba (�q)) = ��0pH�p��1 �0pV �q ��0qH�q��1

or

�0pV �q =

0@X
ij

�pi�pjhij

1A!pq  X
k`

�qk�q`hk`

!

=
X
ijk`

�pi�pj�qk�q`!pqhijhk`

This gives a quadratic system. However, by restricting attention to �q = ek, we get

�0pV �q �
X
i

�pi�pi�qk�q`!pqhiihkk =
X
i6=j

�pi�pj�qk�q`!pqhijhkk

This is linear in the hij�s.

4 Illustrations

4.1 Linear Regression

There are few reasons why one would want to apply our approach to the estimation of standard

errors in a linear regression model. However, its familiarity makes it natural to use this model to

illustrate the numerical properties of the approach.

We consider a linear regression model,

yi = x
0
i� + "i

with 10 explanatory variables generated as follows. For each observation, we �rst generate a 9�

dimensional normal, exi with means equal to 0, variances equal to 1 and all covariances equal to
1
2 . xi1 to xi9 are then xij = 1 fexij � 0g for j = 1 � � � 3, xij = exij + 1 for j = 4 to 6, xi7 = exi7,
xi8 = exi8=2 and xi9 = 10exi9. Finally xi10 = 1. "i is normally distributed conditional on xi and with
variance (1 + xi1)

2. We pick � =
�
1
5 ;
2
5 ;
3
5 ;
4
5 ; 1; 0; 0; 0; 0; 0

�
. This yields an R2 of approximately 0.58.

The scaling of xi8 and xi9 is meant to make the design a little more challenging for our approach.
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We perform 400 Monte Carlo replications, and in each replication, we calculate the OLS esti-

mator, the Eicker-Huber-White variance estimator (E), the bootstrap variance estimator (B) and

the variance estimator based on estimating V and H from (14) by nonlinear least squares (N), and

the variance estimator based on estimating V and H from (19) by OLS (L). All the bootstraps are

based on 400 bootstrap replications. Based on these, we calculate t-statistics for testing whether

the coe¢ cients are equal to the true values for each of the parameters. Tables 1 and 2 report the

mean absolute di¤erences in these test statistics for sample sizes of 200 and 2,000, respectively.

To explore the sensitivity of the approach to the dimensionality of the parameter, we also

consider a design with 10 additional regressors, all generated like exi and with true coe¢ cients equal
to 0. For this design, we do not yet calculate the variance estimators based on (14) by nonlinear

least squares (N). The results are in Table 3.

Tables 1-3 suggest that our approach works very well when the distribution of the estimator of

interest is well approximated by its limiting distribution. Speci�cally, the di¤erence between the

t-statistics (testing the true parameter values) based on our approach and on the regular bootstrap

is smaller than the di¤erence between the t-statistics based on the bootstrap and the Eicker-Huber-

White variance estimator.

4.2 Maximum Rank Correlation Estimator

Han (1987) and Cavanagh and Sherman (1998) de�ned maximum rank correlation estimators for

� in the model

yi = g
�
f
�
x0i�; "i

��
where � is a k�dimensional parameter of interest, f is strictly increasing in each of its arguments

and g is increasing. This model includes many single-equation econometric models as special cases.

The estimator proposed by Han (1987) maximizes Kendall�s rank correlation between yi and

x0ib: b� = argmax
b

X
i<j

(1 fyi > yjg � 1 fyi < yjg)
�
1
�
x0ib > x

0
jb
	
� 1

�
x0ib < x

0
jb
	�

The asymptotic distribution of this estimator was derived in Sherman (1993). Speci�cally, he

showed that with4 �0 =
�
�0; 1

�0, b� will have a limiting normal distribution of the form considered

in Section 2.1:
p
n
�b� � �� d�! N

�
0;H�1V H�1�

4Since f is unspeci�ed, it is clear that some kind of scale normalization is necessary.
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where

H =
1

2
E
heS2 �y; x0�� g0 �x0�� (x0 � x0) (x0 � x0)0i ;

V = E
heS �y; x0��2 g0 �x0��2 (x0 � x0) (x0 � x0)0i

with5 eS(y0; t) = E [1 fy0 > yg � 1 fy0 < yg jx0� = t], eS2(y0; t) = @ eS(y0;t)
@t , and x0 = E [x0jx0�], where

x0 is the �rst k�1 elements of x (i.e., the elements associated with �) and g0 is the marginal density

of x0�:

As mentioned above, Han�s (1987) estimator maximizes Kendall�s rank correlation between yi

and x0ib. Cavanagh and Sherman (1998) proposed an alternative estimator of � based on maximizing

nX
i=1

M (yi)Rn
�
x0ib
�

where M (�) is an increasing function and Rn (x0ib) =
Pn
j=1 1

n
x0ib > x

0
jb
o
is the rank of x0ib in

the set
n
x0jb : j = 1; :::; n

o
. When M (�) = Rn (�), the objective function is a linear function of

Spearman�s rank correlation. In that case the objective function is

nX
i=1

 
nX
k=1

1 fyi > ykg
!0@ nX

j=1

1
�
x0ib > x

0
jb
	1A =

nX
i=1

nX
j=1

nX
k=1

1 fyi > ykg 1
�
x0ib > x

0
jb
	

(20)

The estimator proposed by Cavanagh and Sherman (1998) is also asymptotically normal,

p
n
�b� � �� d�! N

�
0;H�1

1 V1H
�1
1

�
where �0 =

�
�0; 1

�0 and H1 and V1 have a structure similar to H and V . See Appendix 2.

Direct estimation of H and V (or H1 and V1) requires nonparametric estimation. It is therefore

tempting to instead estimate Avar
�b�� (or Avar �e��) by the bootstrap. On the other hand, the

maximum rank correlation estimators are cumbersome to calculate in higher dimensions, which

can make this approach problematic in practice. The approach suggested in this paper is therefore

potentially useful.

To investigate this, we consider a relatively simple data-generating process with

yi = x
0
i� + "i

and only four explanatory variables generated along the lines of the explanatory variables in section

4.1: For each observation, i, we �rst generate exij with means equal to 0, variances equal to 1 and all
5With the exception of V and H the notation here is chosen to make it as close as possible to that in Sherman

(1993).
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covariances equal to 1
2 . We then de�ne xij = exij for j = 1 � � � 2, xi3 = 1 fexi3 � 0g, and xi4 = exi4+1.

The error, "i, is normal with mean 0 and variance 1:52. A normalization is needed since the

maximum rank correlation estimator only estimates � up to scale. Two natural normalizations are

k�k = 1 and �1 = 1. One might fear that the quality of the normal approximation suggested by the

asymptotic distribution will depend on which normalization one applies. Since this issue is unrelated

to the contribution of this paper, we use � = (1; 0; 0; 0)0 and estimate with the normalization that

�1 = 1. The low dimension of � makes it possible to estimate the variance of b� by the usual
bootstrap and compare the results to the ones obtained by the approach proposed here. For now,

we only consider the estimator de�ned by minimizing (20).

Table 4 compares the t�statistics based on the bootstrap estimator of the variance of b�, the
variance estimator based on estimating V1 and H1 from (14) by nonlinear least squares (N), and

the variance estimator based on estimating V1 and H1 from (19) by OLS (L). We use sample sizes

of 200 and 500 and the results presented here are based on 400 Monte Carlo replications, each using

400 bootstrap samples to calculate the standard errors. Compared to the linear regression model,

there is a bigger di¤erence between the t�statistics based on our approach and those based on the

usual bootstrap. However, the di¤erences are small enough that they are unlikely to be of serious

consequence in empirical applications.

While an applied researcher would primarily be interested in the e¤ect of the various bootstrap

methods on the resulting t-statistics, it is also interesting to investigate how precisely they estimate

the asymptotic standard errors of the estimators. To address this, we calculate the standard

error of the estimator suggested by the asymptotics using the expression provided in Cavanagh

and Sherman (1998). See Appendix 2. We then compare this to the standard deviation of the

estimator as well as to the average standard errors based on the three bootstrap methods. The

results are presented in Table 5. Interestingly, it seems that our approach does a better job of

approximating the asymptotic variance than does the usual bootstrap. We suspect that the reason

is that our approach implicitly assumes that the asymptotics provide a good approximation for

one�dimensional estimation problems.

4.3 Structural Model

The method proposed here should be especially useful when estimating nonlinear structural models

such as Lee and Wolpin (2006), Altonji, Smith, and Vidangos (2013) and Dix-Carneiro (2014). To

illustrate its usefulness in such a situation, we consider a very simple two-period Roy model like
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the one studied in Honoré and de Paula (2014).

There are two sectors, labeled one and two. A worker is endowed with a vector of sector-speci�c

human capital, xsi, and sector-speci�c income in period one is

log (wsi1) = x
0
si�s + "si1

and sector-speci�c income in period two is

log (wsi2) = x
0
si�s + 1 fdi1 = sg 
s + "si2

where di1 is the sector chosen in period one. We parameterize ("1it; "2it) to be bivariate normally

distributed and i.i.d. over time.

Workers maximize discounted income. First consider time period 2. Here di2 = 1 and wi2 = w1i2

if w1i2 > w2i2, i.e., if

x01i�1 + 1 fdi1 = 1g 
1 + "1i2 > x02i�2 + 1 fdi2 = 1g 
2 + "2i2

and di2 = 2 and wi2 = w2i2 otherwise. In time period 1, workers choose sector 1 (di1 = 1) if

w1i1 + �E [max fw1i2; w2i2gjx1i; x2i; di1 = 1] > w2i1 + �E [max fw1i2; w2i2gjx1i; x2i; di2 = 1]

and sector 2 otherwise.

In Appendix 3, we demonstrate that the expected value of the maximum of two dependent

lognormally distributed random variables with means (�1; �2)
0 and variance

0@ �21 ��1�2

��1�2 �22

1A is

exp
�
�1 + �

2
1

�
2
� 
1� �

 
�2 � �1 �

�
�21 � ��1�2

�p
�22 � 2��1�2 + �21

!!

+ exp
�
�2 + �

2
2

�
2
� 
1� �

 
�1 � �2 �

�
�22 � ��1�2

�p
�22 � 2��1�2 + �21

!!

This gives closed-form solutions for w1i1 + �E [max fw1i2; w2i2gjx1i; x2i; di1 = 1] and w2i1 +

�E [max fw1i2; w2i2gjx1i; x2i; di2 = 1].

We will now imagine a setting in which the econometrician has a data set with n observations

from this model. xis is composed of a constant and a normally distributed component that is

independent across sectors and across individuals. In the data-generating process these are �1 =

(1; 1)0, �2 =
�
1
2 ; 1
�0
, 
1 = 0 and 
2 = 1. Finally, �21 = 2, �22 = 3, � = 0 and � = 0:95. In

the estimation, we treat � and � as known, and we estimate the remaining parameters. Fixing
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the discount rate parameter is standard and we assume independent errors for computational

convenience. The sample size is n = 2000 and the results presented here are based on 400 Monte

Carlo replications, each using 400 bootstrap samples to calculate the poor (wo)man�s bootstrap

standard errors.

The model is estimated by indirect inference matching the following parameters in the regres-

sions (all estimated by OLS, with the additional notation that di0 = 0)

� The regression coe¢ cients and residual variance in a regression of wit on xi1, xi2, and

1 fdit�1 = 1g using the subsample of observations in sector 1.

� The regression coe¢ cients and residual variance in a regression of wit on xi1, xi2, and

1 fdit�1 = 1g using the subsample of observations in sector 2.

� The regression coe¢ cients in a regression1 fdit = 1g on xi1 and xi2 and 1 fdit�1 = 1g.

Let ba be the vector of those parameters based on the data and let bV [b�] be the associated
estimated variance. For a candidate vector of structural parameters, �, the researcher simulates

the model R times (holding the draws of the errors constant across di¤erent values of �), calculates

the associated e� (�) and estimates the model parameters by minimizing
(ba� e� (�))0 bV [b�]�1 (ba� e� (�))

over �.

This example is deliberately chosen in such a way that we can calculate the asymptotic standard

errors. See Gourieroux and Monfort (2007). We use these as a benchmark when evaluating our

approach. Since the results for maximum rank correlation suggest that the nonlinear version

outperforms the linear version, we do not consider the latter here. Table 6 presents the results.

With the possible exception of the intercept in sector 1, both the standard errors suggested by

the asymptotic distribution and the standard errors suggested by the poor woman�s bootstrap

approximate the standard deviation of the estimator well. The computation time makes it infeasible

to perform a Monte Carlo study that includes the usual bootstrap method.

5 Conclusion

This paper has demonstrated that it is possible to estimate the asymptotic variance for broad

classes of estimators using a version of the bootstrap that only relies on the estimation of one-
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dimensional parameters. We believe that this method can be useful for applied researchers who

are estimating complicated models in which it is di¢ cult to derive or estimate the asymptotic

variance of the estimator of the parameters of interest, and in which the regular bootstrap mothod

is computationally infeasible.
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Appendix 1: Non-Singularity of the Matrix in Equation (6)

The determinant of the matrix on the left of (6) is

2k2h11 (k3h11 + �k1) + 2k3h11 (k2h11 � �k1)

= 2h11

�
h�211

(1 + �v) (1� �v)
(h11 + 2h12 + h22) ((h11 � 2h12 + h22))

h11

�
+2h11

�
�
v

h22
h�111

(1 + �v) (h11 � 2h12 + h22)� (1� �v) (h11 + 2h12 + h22)
(h11 + 2h12 + h22) (h11 � 2h12 + h22)

�

=
2
�
1� �2v2

�
(h11 + 2h12 + h22) (h11 � 2h12 + h22)

+ 2�
v

h22

2v�h11 � 4h12 + 2v�h22
(h11 + 2h12 + h22) (h11 � 2h12 + h22)

=
4
�
1� �2v2

�
+ 2� v

h22
(2v�h11 � 4h12 + 2v�h22)

(h11 + 2h12 + h22) (h11 � 2h12 + h22)

=
�8v�h12h22 + 4v

2�2 h11h22 + 4

(h11 + 2h12 + h22) (h11 � 2h12 + h22)

=

4

�
��V
1

�0
H

�
��V
1

�
�
0
1

�0
H

�
0
1

��
1
1

�0
H

�
1
1

��
�1
1

�0
H

�
�1
1

� > 0
since H is positive de�nite.

Appendix 2: Calculating the Asymptotic Variance of the MRC Es-

timator

Following Cavanagh and Sherman (1998), let

f ((y1; x1) ; (y2; x2) ; (y3; x3) ; b) = 1 fy1 > y3g 1
�
x01b > x

0
2b
	

and let

� ((y; x) ; b) = E
�
1 fy > Y3g 1

�
x0b > X 0

2b
	�
+E

�
1 fY1 > Y3g 1

�
X 0
1b > x

0b
	�
+E

�
1 fY1 > yg 1

�
X 0
1b > X

0
2b
	�

The asymptotic variance of the estimator is

9V �1�V �1
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where

� = V

�
@

@b
� ((Y;X) ; �)

�
and

V = E

�
@2

@b@b0
� ((Y;X) ; �)

�
To calculate the analytical standard errors in Table 5, we draw a sample of size 100,000. For

each observation we estimate � ((y; x) ; b) by

b� ((y; x) ; b) =
1

n2

X
j;k

1 fy > yjg 1
�
x0b > x0kb

	
+
1

n2

X
j;k

1 fyk > yjg 1
�
x0kb > x

0b
	

+
1

n2

X
j;k

1 fyk > yg 1
�
x0kb > x

0
jb
	

�
=
1

n2
Rn (y)Rn

�
x0b
�
+
1

n2

X
k

Rn (yk) 1
�
x0kb > x

0b
	

+
1

n2

X
k

1 fyk > ygRn
�
x0kb
�
:

We then numerically di¤erentiate b� ((y; x) ; b) twice (using a step-size6 of 0.01). This yields estimates
of � and V .

Appendix 3: Maximum of Two Lognormals

The following is taken from Kotz, Balakrishnan, and Johnson (2000).

Let (X1; X2)
0 have a bivariate normal distribution with mean (�1; �2)

0 and variance
�

�21 ��1�2
��1�2 �22

�
and let (Y1; Y2)

0 = (exp (X1) ; exp (X2))
0. We are interested in E [max fY1; Y2g].

Kotz, Balakrishnan, and Johnson (2000) present the moment-generating function formin fX1; X2g

is

M (t) = E [exp (min fX1; X2g t)] = exp
�
t�1 + t

2�21
�
2
�
�

 
�2 � �1 � t

�
�21 � ��1�2

�p
�22 � 2��1�2 + �21

!

+exp
�
t�2 + t

2�22
�
2
�
�

 
�1 � �2 � t

�
�22 � ��1�2

�p
�22 � 2��1�2 + �21

!
6Changing the step-size to 0.05 changes the asymptotic standard errors by approximately 2%.
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Therefore

E [max fY1; Y2g] = E [Y1] + E [Y2]� E [min fY1; Y2g]

= E [exp (X1)] + E [exp (X2)]� E [min fexp (X1) ; exp (X2)g]

= exp
�
�1 + �

2
1

�
2
�
+ exp

�
�2 + �

2
2

�
2
�
� E [exp (min fX1; X2g)]

= exp
�
�1 + �

2
1

�
2
�
+ exp

�
�2 + �

2
2

�
2
�

� exp
�
�1 + �

2
1

�
2
�
�

 
�2 � �1 �

�
�21 � ��1�2

�p
�22 � 2��1�2 + �21

!

� exp
�
�2 + �

2
2

�
2
�
�

 
�1 � �2 �

�
�22 � ��1�2

�p
�22 � 2��1�2 + �21

!

= exp
�
�1 + �

2
1

�
2
� 
1� �

 
�2 � �1 �

�
�21 � ��1�2

�p
�22 � 2��1�2 + �21

!!

+exp
�
�2 + �

2
2

�
2
� 
1� �

 
�1 � �2 �

�
�22 � ��1�2

�p
�22 � 2��1�2 + �21

!!

Appendix 4: Validity of Bootstrap

Hahn (1996) established that under random sampling, the bootstrap distribution of the standard

GMM estimator converges weakly to the limiting distribution of the estimator in probability. In

this appendix, we establish the same result under the same regularity conditions for estimators that

treat part of the parameter vector as known. Whenever possible, we use the same notation and

the same wording as Hahn (1996). A number of papers have proved the validity of the bootstrap

in di¤erent situations. We choose to tailor our derivation after Hahn (1996) because it so closely

mimics the classic proof of asymptotic normality of GMM estimators presented in Pakes and Pollard

(1989).

We �rst review Hahn�s (1996) results. The parameter of interest �0 is the unique solution to

G (t) = 0 where G (t) � E [g (Zi; t)], Zi is the vector of data for observation i and g is a known

function. The parameter space is �.

Let Gn (t) � 1
n

nX
i=1

g (Zi; t). The GMM estimator is de�ned by

�n � argmin
t
jAnGn (t)j

where An is a sequence of random matrices (constructed from fZig) that converges to a nonrandom

and nonsingular matrix A.
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The bootstrap estimator is the GMM estimator de�ned in the same way as �n but from a

bootstrap sample
nbZn1; : : : ; bZnno. Speci�cally

b�n � argmin
t

��� bAn bGn (t)���
where bGn (t) � 1

n

nX
i=1

g
� bZni; t�. bAn is constructed from nbZnion

i=1
in the same way that An was

constructed from fZigni=1.

Hahn (1996) proved the following results.

Proposition 1 (Hahn Proposition 1) Assume that

(i) �0 is the unique solution to G (t) = 0;

(ii) fZig is an i.i.d. sequence of random vectors;

(iii) inf jt��0j�� jG (t)j > 0 for all � > 0

(iv) supt jGn (t)�G (t)j �! 0 as n �!1 a.s.;

(v) E [supt jg (Zi; t)j] <1;

(vi) An = A+ op (1) and bAn = A+ oB (1) for some nonsingular and nonrandom matrix A; and

(vii) jAnGn (�n)j � op (1) + inft jAnGn (t)j and
��� bAn bGn (b�n)��� � oB (1) + inft ��� bAn bGn (t)���

Then �n = �0 + op (1) and b�n = �0 + oB (1) .
Theorem 1 (Hahn Theorem 1) Assume that

(i) Conditions (i)-(vi) in Proposition 1 are satis�ed;

(ii) jAnGn (�n)j � op
�
n�1=2

�
+ inft jAnGn (t)j and

��� bAn bGn (b�n)��� � oB �n�1=2�+ inft ��� bAn bGn (t)���;
(iii) limt!�0 e (t; �0) = 0 where e (t; t

0) � E
h
(g (Zi; t)� g (Zi; t0))2

i1=2
;

(iv) for all " > 0;

lim
�!0

lim sup
n!1

P

 
sup

e(t;t0)��

��Gn (t)�G (t)�Gn �t0�+G �t0��� � n�1=2"! = 0;
(v) G (t) is di¤erentiable at �0, an interior point of the parameter space, �, with derivative � with

full rank; and
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(vi) fg (�; t) : t 2 �g � L2 (P ) and � is totally bounded under e (�; �).

Then

n1=2 (�n � �0) = �n�1=2
�
�0A0A�

��1
�0A0AnGn (�0) + op (1) =) N (0;
)

and

n1=2 (b�n � �n) p
=) N (0;
)

where


 =
�
�0A0A�

��1
�0A0AV A0A�

�
�0A0A�

��1
and

V = E
�
g (Zi; �0) g (Zi; �0)

0�
Our paper is based on the same GMM setting as in Hahn (1996). The di¤erence is that we are

primarily interested in an infeasible estimator that assumes that one part of the parameter vector

is known. We will denote the true parameter vector by �0, which we partition as �00 =
�
�10; �

2
0

�
.

The infeasible estimator of �0, which assumes that �20 is known, is


n = argmin
t

����AnGn�� t
�20

������ (21)

or


n = argmin
t
Gn

��
t
�20

��0
A0nAnGn

��
t
�20

��
Let the dimensions of �10 and �

2
0 be k1 and k2, respectively. It is convenient to de�ne E1 =

(Ik1�k1 : 0k1�k2)
0 and E2 = (0k2�k1 : Ik2�k2)

0. Post-multiplying a matrix by E1 or E2 will extract

the �rst k1 or the last k2 columns of the matrix, respectively.

Let �b�1;b�2�0 = arg min
(t1;t2)

Gn

��
t1

t2

��0
A0nAnGn

��
t1

t2

��
be the usual GMM estimator of �0. We consider the bootstrap estimator

b
n = argmin
t

����� bAn bGn
 

tb�2
!����� (22)

where bGn (t) � 1
n

nX
i=1

g
� bZni; t�. bAn is constructed from nbZnion

i=1
in the same way that An was

constructed from fZigni=1. Below we adapt the derivations in Hahn (1996) to show that the distrib-

ution of b
n can be used to approximate the distribution of 
n. We use exactly the same regularity
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conditions as Hahn (1996). The only exception is that we need an additional assumption to guar-

antee the consistency of b
n. For this it is su¢ cient that the moment function, G, is continuously
di¤erentiable and that the parameter space is compact. This additional stronger assumption would

make it possible to state the conditions in Proposition 1 more elegantly. We do not restate those

conditions because that would make it more di¢ cult to make the connection to Hahn�s (1996)

result.

Proposition 2 (Adaption of Hahn�s (1996) Proposition 1) Suppose that the conditionsa in

Proposition 1 are satis�ed. In addition suppose that G is continuously di¤erentiable and that the

parameter space is compact. Then 
n = �
1
0 + op (1) and b
n = �10 + oB (1) .

Proof. As in Hahn (1996), the proof follows from standard arguments. The only di¤erence is that

we need

sup
t

����� bGn
  

tb�2
!!

�G
��

t
�20

������� = o!p (1)
This follows from ����� bGn

  
tb�2
!!

�G
��

t
�20

�������
=

����� bGn
  

tb�2
!!

�G
  

tb�2
!!

+G

  
tb�2
!!

�G
��

t
�20

�������
�

����� bGn
  

tb�2
!!

�G
  

tb�2
!!�����+

�����G
  

tb�2
!!

�G
��

t
�20

�������
As in Hahn (1996), the �rst part is o!p (1) by bootstrap uniform convergence. The second part

is bounded by sup
���@G(t1;t2)@t2

��� ���b�2 � �20���. This is Op �b�2 � �20� = Op �n�1=2� by the assumptions that
G is continuously di¤erentiable and that the parameter space is compact.

Theorem 2 (Adaption of Hahn�s (1996) Theorem 1) Assume that the conditions in Propo-

sition 2 and Theorem 1 are satis�ed. Then

n1=2
�

n � �10

�
=) N (0;
)

and

n1=2 (b
n � 
n) p
=) N (0;
)

where


 =
�
E01�

0A0A�E1
��1

E01�
0A0ASA0A�E1

�
E01�

0A0A�E1
��1
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and

V = E
�
g (Zi; �0) g (Zi; �0)

0�
Proof. We start by showing that

 b
nb�2
!
is
p
n-consistent, and then move on to show asymptotic

normality.

Part 1.
p
n�consistency. For b�2 root-n consistency follows from Pakes and Pollard (1989).

Following Hahn (1996), we start with the observation that����� bAn bGn
  b
nb�2

!!
�AG

  b
nb�2
!!

� bAn bGn (�0) +AG (�0)
�����

�
��� bAn���

����� bGn
  b
nb�2

!!
�G

  b
nb�2
!!

� bGn (�0) +G (�0)
�����+ ��� bAn �A���

�����G
  b
nb�2

!!
�G (�0)

�����
� oB

�
n�1=2

�
+ oB (1)

�����G
  b
nb�2

!!
�G (�0)

����� (23)

Combining this with the triangular inequality we have�����AG
  b
nb�2

!!
�AG (�0)

����� �
����� bAn bGn

  b
nb�2
!!

�AG
  b
nb�2

!!
� bAn bGn (�0) +AG (�0)

�����
+

����� bAn bGn
  b
nb�2

!!
� bAn bGn (�0)

�����
� oB

�
n�1=2

�
+ oB (1)

�����G
  b
nb�2

!!
�G (�0)

�����
+

����� bAn bGn
  b
nb�2

!!
� bAn bGn (�0)

����� (24)

The nonsingularity of A implies the existence of a constant C1 > 0 such that jAxj � C1 jxj for all

x. Applying this fact to the left-hand side of (24) and collecting the G

  b
nb�2
!!

�G (�0) terms

yield

(C1 � oB (1))
�����G
  b
nb�2

!!
�G (�0)

����� (25)

� oB

�
n�1=2

�
+

����� bAn bGn
  b
nb�2

!!
� bAn bGn (�0)

�����
� oB

�
n�1=2

�
+

����� bAn bGn
  b
nb�2

!!�����+ ��� bAn bGn (�0)���
� oB

�
n�1=2

�
+

����� bAn bGn
  

�10b�2
!!�����+ ��� bAn bGn (�0)��� (26)
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Stochastic equicontinuity implies that

bAn bGn  �10b�2
!!

= bAn G  �10b�2
!!

�G (�0)
!
+ bAn bGn (�0) + bAnoB �n�1=2�

or ����� bAn bGn
  

�10b�2
!!����� �

����� bAn
 
G

  
�10b�2
!!

�G (�0)
!�����+ ��� bAn bGn (�0)���+ ��� bAn��� oB �n�1=2�

so (26) implies

(C1 � oB (1))
�����G
  b
nb�2

!!
�G (�0)

�����
� oB

�
n�1=2

�
+

����� bAn
 
G

  
�10b�2
!!

�G (�0)
!�����+ 2 ��� bAn��� ��� bGn (�0)���+ ��� bAn��� oB �n�1=2�

� oB

�
n�1=2

�
+
��� bAn���

�����
 
G

  
�10b�2
!!

�G (�0)
!�����+ 2 ��� bAn��� ��� bGn (�0)�Gn (�0)���

+2
��� bAn��� jGn (�0)j+ ��� bAn��� oB �n�1=2�

= oB

�
n�1=2

�
+OB (1)Op

�
n�1=2

�
+OB (1)OB

�
n�1=2

�
+OB (1)Op

�
n�1=2

�
+OB (1) oB

�
n�1=2

�
(27)

Note that

G

�� b
n
�20

��
= �E1

�b
n � �10�+ oB (1) ��b
n � �10��
As above, the nonsingularity of � implies nonsingularity of �E1, and hence, there exists a constant

C2 > 0 such that j�E1xj � C2 jxj for all x. Applying this to the equation above and collecting

terms give

C2
��b
n � �10�� � ���E1 �b
n � �10��� = ����G�� b
n

�20

��
�G (�0)

����+ oB (1) ��b
n � �10�� (28)

Combining (28) with (27) yields

(C1 � oB (1)) (C2 � oB (1))
��b
n � �10��

� (C1 � oB (1))
����G�� b
n

�20

��
�G (�0)

����
� oB

�
n�1=2

�
+OB (1)Op

�
n�1=2

�
+OB (1)OB

�
n�1=2

�
+OB (1)Op

�
n�1=2

�
+OB (1) oB

�
n�1=2

�
or ��b
n � �10�� � OB (1)�Op �n�1=2�+OB �n�1=2��
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Part 2: Asymptotic Normality. Let

eLn (t) = A�  tb�2
!
�
�
�10
�20

�!
+ bAn bGn (�0)

De�ne

b�n = argmin
t

���eLn (t)��� =
argmin

t

 
A�

  
tb�2
!
�
�
�10
�20

�!
+ bAn bGn (�0)!0 

A�

  
tb�2
!
�
�
�10
�20

�!
+ bAn bGn (�0)!

Solving for b�n gives
b�n = �10 �B�111

�
B021x+ C

0
1

�
= �10 �

�
(�E1)

0A0A�E1
��1�

(�E1)
0A0A�E2

�b�2 � �20�+ (�E1)0A0 bAn bGn (�0)�
= �10 �

�
(�E1)

0A0A�E1
��1

(�E1)
0A0�

A�E2

�b�2 � �20�+ bAn bGn (�0)�
Mimicking the calculation on the top of page 195 of Hahn (1996),

(b�n � 
n) = �
�
(�E1)

0A0A�E1
��1

(�E1)
0A0

�
A�E2

�b�2 � �20�+ bAn bGn (�0)�
+
�
E01�

0A0A�E1
��1

E01�
0A0AGn (�0)

= �
�
(�E1)

0A0A�E1
��1

(�E1)
0A0�

A�E2

�b�2 � �20�+ bAn bGn (�0)�AGn (�0)�
= ��

�
�n + bAn bGn (�0)�AGn (�0)�

where � =
�
(�E1)

0A0A�E1
��1

(�E1)
0A0 and �n = A�E2

�b�2 � �20�. Or
(b�n � 
n +��n) = ��� bAn bGn (�0)�AGn (�0)�

From this it follows that b�n � 
n = OB �n�1=2� :
Next we want to argue that

p
n (b�n � b
n) = oB (1).

We next proceed as in Hahn (1996) (page 194). First we show that����� bAn bGn
  b
nb�2

!!
� eLn (b
n)

����� = oB �n�1=2� (29)
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It follows from Hahn����� bAn bGn
  b
nb�2

!!
�AG

  b
nb�2
!!

� bAn bGn (�0) +AG (�0)
����� = oB �n�1=2�

We thus have����� bAn bGn
  b
nb�2

!!
� eLn (b
n)

����� =

����� bAn bGn
  b
nb�2

!!
�A�

  b
nb�2
!
�
�
�10
�20

�!
� bAn bGn (�0)

�����
�

����� bAn bGn
  b
nb�2

!!
�AG

  b
nb�2
!!

� bAn bGn (�0) +AG (�0)
�����

+

�����AG
  b
nb�2

!!
�AG (�0)�A�

  b
nb�2
!
� �0

!�����
= oB

�
n�1=2

�
+ o

  b
nb�2
!
� �0

!
= oB

�
n�1=2

�
This uses the fact that

 b
nb�2
!
is
p
n-consistent.

Next, we will show that����� bAn bGn
  b�nb�2

!!
� eLn (b�n)

����� = oB �n�1=2� (30)

We have����� bAn bGn
  b�nb�2

!!
� eLn (b�n)

����� =

����� bAn bGn
  b�nb�2

!!
�A�

  b�nb�2
!
� �0

!
� bAn bGn (�0)

�����
�

����� bAn bGn
  b�nb�2

!!
�AG

  b�nb�2
!!

� bAn bGn (�0) +AG (�0)
�����

+

�����AG
  b�nb�2

!!
�AG (�0)�A�

  b�1b�2
!
� �0

!�����
= oB

�
n�1=2

�
+ o

  b�1b�2
!
� �0

!
= oB

�
n�1=2

�
For the last step we use b�n � �10 = (b�n � 
n) + �
n � �10� = OB �n�1=2�+Op �n�1=2�.

Combining (29) and (30) with the de�nitions of b
n and b�n we get���eLn (b
n)��� = ���eLn (b�n)���+ oB �n�1=2� (31)
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Exactly as in Hahn (1996) and Pakes and Pollard (1989), we start with���eLn (b�n)��� �
�����A�

  b�nb�2
!
� �0

!�����+ ��� bAn bGn (�0)���
�

�����A�
  b�nb�2

!
�
 

nb�2
!!�����+ ��� bAn bGn (�0)� bAnGn (�0)���

+

�����A�
  


nb�2
!
� �0

!�����+ ��� bAnGn (�0)���
= OB

�
n�1=2

�
+OB (1)OB

�
n�1=2

�
+Op

�
n�1=2

�
+OB (1)Op

�
n�1=2

�
(32)

Squaring both sides of (31) we have���eLn (b
n)���2 = ���eLn (b�n)���2 + oB �n�1� (33)

because (32) implies that the cross-product term can be absorbed in the oB
�
n�1

�
. On the other

hand, for any t eLn (t) = A�  tb�2
!
�
�
�10
�20

�!
+ bAn bGn (�0)

has the form eLn (t) = y�Xt whereX = �A�E1 and y = �A�E1�10+A�E2
�b�2 � �20�++ bAn bGn (�0)b�n solves a least squares problem with �rst-order condition X 0eLn (b�n) = 0. Also���eLn (t)���2 = (y �Xt)0 (y �Xt)

= ((y �Xb�n)�X (t� b�n))0 ((y �Xb�n)�X (t� b�n))
= (y �Xb�n)0 (y �Xb�n) + (t� b�n)0X 0X (t� b�n)

�2 (t� b�n)0X 0 (y �Xb�n)
=

���eLn (b�n)���2 + jX (t� b�n)j2 � 2 (t� b�n)0X 0eLn (b�n)
=

���eLn (b�n)���2 + j(A�E1) (t� b�n)j2
Plugging in t = b
n we have���eLn (b
n)���2 = ���eLn (b�n)���2 + j(A�E1) (b
n � b�n)j2
Compare this to (33) to conclude that

(A�E1) (b
n � b�n) = oB �n�1=2�
A�E1 has full rank by assumption so (b
n � b�n) = oB �n�1=2� and n1=2 (b
n � 
n) = n1=2 (b�n � 
n)+
oB
�
n�1=2

�
and since n1=2 (b�n � 
n) p

=) N (0;
), we obtain n1=2 (b
n � 
n) p
=) N (0;
).
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Theorem 2 is stated for GMM estimators. This covers extremum estimators and the two-step

estimators as special cases. Theorem 2 also covers the case where one is interested in di¤erent

infeasible lower-dimensional estimators as in Section 2. To see this, consider two estimators of the

form

ba (�1) = argmin
a

 
1

n

nX
i=1

f (xi; �0 + a�1)

!0
Wn

 
1

n

nX
i=1

f (xi; �0 + a�1)

!
and

ba (�2) = argmin
a

 
1

n

nX
i=1

f (xi; �0 + a�2)

!0
Wn

 
1

n

nX
i=1

f (xi; �0 + a�2)

!
and let An denote the matrix-square root of Wn. We can then write

(ba (�1) ;ba (�2)) = argmin
�����
�
An 0
0 An

�
1

n

nX
i=1

�
f (xi; �0 + a�1)
f (xi; �0 + a�2)

������
which has the form of (21).
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Table 1: Ordinary Least Squares, n = 200.

jTE � TBj jTE � TN j jTE � TLj jTB � TN j jTB � TLj jTN � TLj

�1 0.031 0.027 0.025 0.017 0.026 0.014

�2 0.029 0.023 0.022 0.017 0.025 0.012

�3 0.031 0.027 0.025 0.018 0.023 0.011

�4 0.032 0.027 0.026 0.020 0.023 0.011

�5 0.033 0.026 0.023 0.020 0.021 0.011

�6 0.032 0.029 0.027 0.022 0.025 0.012

�7 0.031 0.025 0.024 0.020 0.024 0.010

�8 0.033 0.027 0.027 0.020 0.018 0.011

�9 0.034 0.026 0.025 0.021 0.023 0.006

�10 0.033 0.034 0.026 0.018 0.022 0.023
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Table 2: Ordinary Least Squares, n = 2000.

jTE � TBj jTE � TN j jTE � TLj jTB � TN j jTB � TLj jTN � TLj

�1 0.025 0.025 0.025 0.004 0.003 0.002

�2 0.021 0.021 0.021 0.003 0.003 0.002

�3 0.024 0.024 0.024 0.004 0.003 0.002

�4 0.023 0.022 0.022 0.004 0.004 0.003

�5 0.025 0.025 0.025 0.004 0.004 0.003

�6 0.025 0.025 0.025 0.004 0.004 0.003

�7 0.026 0.025 0.026 0.004 0.003 0.003

�8 0.024 0.023 0.023 0.004 0.004 0.003

�9 0.022 0.023 0.023 0.003 0.003 0.001

�10 0.023 0.023 0.023 0.006 0.005 0.005
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Table 3: OLS, n = 2000.

jTE � TBj jTE � TLj jTB � TLj

�1 0.024 0.024 0.005

�2 0.022 0.023 0.006

�3 0.022 0.022 0.005

�4 0.022 0.022 0.005

�5 0.024 0.024 0.006

�6 0.022 0.022 0.005

�7 0.024 0.023 0.005

�8 0.022 0.022 0.005

�9 0.024 0.025 0.005

�10 0.022 0.022 0.005

�11 0.021 0.020 0.005

�12 0.024 0.024 0.005

�13 0.021 0.021 0.005

�14 0.021 0.020 0.005

�15 0.024 0.024 0.005

�16 0.023 0.023 0.005

�17 0.023 0.023 0.005

�18 0.022 0.022 0.005

�19 0.022 0.022 0.005

�20 0.021 0.021 0.006
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Table 4: Maximum Rank Correlation

n = 200 n = 500

jTB � TN j jTB � TLj jTN � TLj jTB � TN j jTB � TLj jTN � TLj

�2 0.138 0.091 0.104 0.109 0.059 0.075

�3 0.129 0.080 0.138 0.109 0.041 0.093

�4 0.128 0.095 0.073 0.103 0.059 0.058

Table 5: Maximum Rank Correlation

n = 200 n = 500

Actual Asymp Boots BS_N BS_L Actual Asymp Boots BS_N BS_L

�2 0.167 0.145 0.189 0.161 0.228 0.099 0.092 0.108 0.094 0.103

�3 0.317 0.258 0.321 0.294 0.397 0.181 0.163 0.191 0.173 0.189

�4 0.181 0.142 0.191 0.166 0.180 0.098 0.090 0.107 0.095 0.102

Table 6: Structural Model

�11 �12 �21 �22 
1 
2 log (�1) log (�2)

Actual 0.042 0.041 0.049 0.039 0.026 0.063 0.022 0.018

Asymptotic 0.049 0.041 0.051 0.040 0.028 0.068 0.026 0.019

BS_N 0.055 0.042 0.054 0.041 0.032 0.070 0.028 0.019
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