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Semi-parametric Measures of Scale Characteristics of German

Natural Gas-fired Electricity Generation

Stefan Seifert∗

April 13, 2016

Abstract

Scale characteristics are key properties of production functions that determine

optimal firm sizes, and have considerable policy implications for sectors undergo-

ing restructuring. However, estimates of scale characteristics typically vary with

the assumptions of the underlying empirical model. This paper derives estima-

tors of scale efficiency and scale elasticity for semi-parametric stochastic non-

smooth envelopment of data (StoNED) that are based on few assumptions and

rely neither on a functional form nor on distributional assumptions, but satisfy

basic microeconomic properties. The estimators are applied to a unique sam-

ple covering 124 natural gas-fired power plants operating in Germany in 2011.

Results indicate that on average plants operate under constant to slightly de-

creasing returns-to-scale, and scale inefficiency is found to be overall rather low.

However, considerable improvement potential exists due to technical inefficiency.

The results allow the strong fragmentation of gas-fired electricity generation in

Germany, but emphasize the importance of using best practices on plant level.

JEL-Codes: D24,C14,O13,L94

Keywords: Stochastic Non-Smooth Envelopment of Data (StoNED), Returns-

to-scale, Scale Elasticities, Scale Efficiency, Gas-fired Electricity Generation, Ger-

many

∗DIW Berlin – German Institute for Economic Research, Mohrenstrasse 58, D-10117 Berlin, Ger-
many. Tel.: +49-30-89789-512, fax: +49-30-89789-200, mail: sseifert@diw.de



 



1 Introduction

The scale characteristics of a production function determine the optimal firm size and

the market structure that uses the least resources, and, thus, can have considerable

policy implications for sectors undergoing restructuring (Førsund and Hjalmarsson,

2004b). The production function and frontier estimation literature developed a va-

riety of approaches to analyze production functions and their scale characteristics.

The most prominent approaches are the non-parametric Data Envelopment Analysis

(DEA) and the parametric Stochastic Frontier Analysis (SFA). For DEA, approaches

have been developed to estimate scale efficiency and elasticity (see e.g. Førsund and

Hjalmarsson, 2004a; Førsund et al., 2007; Podinovski and Førsund, 2010), although

the results are prone to noise and depend on the assumptions regarding the underlying

returns-to-scale (RTS). For parametric SFA, scale elasticity and efficiency are functions

of the parameters of the assumed relationship of inputs and outputs (Ray, 1998), such

as Cobb-Douglas or Translog. The parameter estimates, however, can vary with the

functional relationship and with the distributional assumptions regarding the residuals

(Kumbhakar et al., 2015). Thus, estimates of scale characteristics derived with DEA

and SFA may depend on the assumptions by the researcher, which ultimately may in-

fluence policy implications (Bogetoft and Wang, 2005; Triebs et al., 2016). To overcome

the limitations of DEA and SFA, a third approach known as Stochastic Non-Smooth

Envelopment of Data (StoNED, Kuosmanen and Kortelainen, 2012) allows flexible es-

timation of production functions without an underlying functional form (similar to

DEA) and stochastic treatment of inefficiency and noise (similar to SFA).1

Academic studies of the scale characteristics of the cost and production functions of

fossil-fueled electricity generation discuss a range of approaches to measure scale effects,

including reduced form regression with and without constraints for firm behavior, and

parametric, non-, and semi-parametric frontier approaches.2 Considerable empirical

evidence exists for the US and has driven a long debate about the optimal firm and

plant sizes, as well as whether minimum scales allow competitive markets (Førsund

and Hjalmarsson, 2004b). For instance, Cowing and Smith (1978), who review early

1Several semi- and non-parametric models try to relax the assumptions of DEA and SFA, e.g., by
estimating stochastic models without functional form assumptions as proposed by Fan et al. (1996).
Parmeter et al. (2014) and Olesen and Petersen (2015) summarize the literature on non-parametric
stochastic frontiers and stochastic DEA. Henderson and Parmeter (2009) survey the literature on
constrained non-parametric regression to impose theory-driven, microeconomic conditions, such as
concavity of a production function estimate.

2Kamerschen and Thompson Jr (1993) find that the cost characteristics of nuclear and fossil fuel
steam generation differ substantially. Therefore, a separate parallel strand of the literature focuses on
scale characteristics in nuclear generation. Results by Krautmann and Solow (1988) for the United
States and Nemoto et al. (1993) for Japan indicate diseconomies of scale in the long run. Contrary,
Arocena et al. (2012) find that larger market size benefit nuclear generation.
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econometric studies of electricity generation, note that small power plants typically

show increasing returns-to-scale (IRS), which, however, diminish with plant size (see

e.g. Dhrymes and Kurz, 1964; Nerlove, 1963; Petersen, 1975; Christensen and Greene,

1976). Confirming this finding, Betancourt and Edwards (1987) and Maloney (2001)

compare different model specifications in standard regression settings, Kopp and Smith

(1980) and Goto and Tsutsui (2008) account for potential inefficiency using SFA, and

Hisnanick and Kymn (1999) analyze the interplay of technical change and RTS in pro-

ductivity growth. Huettner and Landon (1978) and Schmalensee and Joskow (1986)

instead argue that increasing unit size reduces reliability, leading in reverse to a smaller

optimal unit size with fewer outages. In support Färe et al. (1985) find IRS and de-

creasing returns-to-scale (DRS), depending on firm ownership. Similarly, Atkinson and

Halvorsen (1984) and Huettner and Landon (1978) obtain both IRS and DRS, whereas

Sueyoshi and Goto (2013) and Kumbhakar and Tsionas (2016) only find DRS. Outside

the United States, there is limited empirical evidence of the scale characteristics of elec-

tricity generation. Ghosh and Kathuria (2016) indicate strong positive scale effects for

India’s coal-fired generation, and Akkemik (2009) finds considerable scale economies in

the Turkish electricity generating sector. Based on estimates using DEA and StoNED

Seifert et al. (2016) and Seifert (2015) indicate that losses due to suboptimal scale size

in Germany’s electricity generation depend on fuel sources. Overall, the early litera-

ture indicates IRS in electricity generation, while more recent studies suggest constant

returns-to-scale (CRS) or DRS, supporting the argument that perceived RTS may have

been exploited.

Unlike the other fossil fuels used for electricity generation, natural gas-fired power

plants have lower capital costs and CO2 emissions, shorter construction times, and

higher operational efficiency. Their flexibility, or “rapid response” to changes in load,

makes natural gas-fired plants superior for backup generation provision for intermit-

tent wind and solar. However, to use these advantages, a minimum load of around 40

to 50% is necessary making an optimized plant size necessary (Brauner et al., 2012).

Internationally, the IEA forecasts a steady increase in natural gas-fired power plant

construction exceeding capacity investments in other fossil fuels (IEA, 2015, 2014).

Strong fragmentation and large differences in plant size characterize Germany’s present

gas-fired electricity generation sector. Hence, analysis of scale characteristics and opti-

mal plant sizes can provide insights into the sector’s transformation processes, describe

the production technology more thoroughly, and help to design an optimal market

structure. Motivated by the need to improve the analysis of Germany’s natural gas

sector, this paper proposes estimators of scale efficiency and scale elasticity based

on StoNED. To incorporate the properties of the StoNED estimator, the proposed
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measures account for stochasticity and the piece-wise linear shape of the estimated

production function in order to satisfy the microeconomic assumptions on production

technology and scale measures. The proposed estimators do not depend on any distri-

butional or functional form assumptions, but are available with rather mild restrictions

on the shape of a production function. A unique dataset of 124 natural gas-fired power

plants operating in Germany in 2011 is used to test the validity of the proposed esti-

mators for analyzing the sector’s scale characteristics.

The empirical results are consistent with the recent literature. They identify signifi-

cant improvement potential mainly due to technical inefficiency rather than scale in-

efficiency. Scale elasticity estimates indicate that most of the plants operate under

constant or slightly decreasing RTS. The results infer that efficiency gains are avail-

able, but need to be realized at a plant level, and that the sector’s fragmentation seems

to be of minor importance from a technical perspective.

The remainder of this paper is organized as follows. Section 2 introduces StoNED and

proposes new estimators of scale efficiency and scale elasticity for it. Section 3 describes

the empirical set-up and Germany’s gas-fired electricity generating sector. Section 4

presents the results, and section 5 concludes.

2 Methodology

Scale characteristics describe the properties of a production technology (for an overview

of microeconomic characteristics of production technology see e.g. Mas-Colell et al.,

1995; Färe et al., 1994). To define the technology, assume that I(i = 1, ..., I) decision

making units (DMUs) are observed with input-output combinations (xi, yi). An M-

dimensional input vector xi (x = xi1, ..., xiM ;x ∈ RM
+ ) is used to produce scalar output

yi (y ∈ R+). A production possibility set T containing all feasible input output com-

binations can be written as T = {(x, y)|x can produce y}, with T ⊂ RM+1
+ . The upper

boundary of T is the transformation frontier F , such that T = {(x, y)|F (x, y) ≤ 0}. F
represents efficient input-output combinations, i.e., the points that deliver maximum

output for a given level of input. Conversely, T contains all combinations, including

inefficient and dominated production plans.

Next, it is assumed that T is non-empty and closed (F ⊂ T ), there is no free lunch

(x = 0 ⇒ y = 0), and inaction is possible ((x = 0, y = 0) ∈ T ). Further, free dispos-

ability of inputs and outputs is given (for x′ ≥ x, y′ ≤ y, if (x, y) ∈ T ⇒ (x′, y′) ∈ T ),

and additivity holds (if (x, y) ∈ T, (x′, y′) ∈ T ⇒ (x + x′, y + y′) ∈ T ). Different

scaling assumptions are used to characterize the shape of the technology: constant

returns-to-scale (CRS) allows arbitrary up- and downscaling of any feasible produc-

3



tion plan (∀γ : (x, y) ∈ T ⇒ (γx, γy) ∈ T ); non-decreasing returns-to-scale (NDRS,

also called increasing returns-to-scale, IRS) allows arbitrary upscaling of any feasible

production plan (γ ≥ 1 : (x, y) ∈ T ⇒ (γx, γy) ∈ T ); and non-increasing returns-

to-scale (NDRS, also called decreasing returns-to-scale, DRS) allows only downscaling

(γ ∈ [0, 1] : (x, y) ∈ T ⇒ (γx, γy) ∈ T ).3 Finally it is assumed that T is convex (for

(x, y) ∈ T, (x′, y′) ∈ T, γ ∈ [0, 1]⇒ (γx+ (1− γ)x′, γy+ (1− γ)y′) ∈ T ), and, thus, the

upper boundary of T is a concave function.4

2.1 Frontier and efficiency estimation with stochastic non-

smooth envelopment of data (StoNED)

Scale characteristics describe the properties of a production technology that is unknown

to the researcher and needs to be estimated. Since the accuracy of scale measures de-

pends on the accuracy of the frontier estimator, several methodologies have been pro-

posed to estimate transformation frontiers. Stochastic non-smooth envelopment of data

(StoNED) as proposed by Kuosmanen (2008) and Kuosmanen and Kortelainen (2012)

is a semi-parametric and stochastic approach combining characteristics of parametric

SFA (Aigner et al., 1977; Meeusen and van den Broeck, 1977), and non-parametric

DEA (Charnes et al., 1978; Banker et al., 1984). Similar to SFA, the approach differ-

entiates noise and inefficiency to explain deviations from the estimated frontier based

on distributional assumptions, and similar to DEA, the estimated transformation func-

tion has a piece-wise linear shape without any assumptions on an underlying functional

form.

Kuosmanen and Kortelainen (2012) suggest a two stage approach to estimate a trans-

formation frontier y = f(x)exp(v − u), where f(x) is the function to estimate, v is

a random two-sided disturbance, and u is positive inefficiency. In the first stage, an

average function g(x) is estimated based on a quadratic programming problem (QP)

to solve a convex non-parametric least squares problem (CNLS, Hildreth, 1954). In

the second stage, an estimate of the frontier f(x) is obtained by shifting g(x) upwards

by the expected value of inefficiency µ = E[u], which is estimated based on the distri-

butional assumptions on v and u.

For the first stage, Kuosmanen (2008) derives a representation of the infinitely many

monotonically increasing, concave, and continuous (not necessarily differentiable) func-

tions that solve the corresponding least squares problem. Kuosmanen and Korte-

3In the empirical literature, variable returns-to-scale (VRS) is widely used, see e.g., Banker et al.
(1984). Under VRS, the upper boundary of T combines NDRS, NIRS, and CRS characteristics.

4The empirical literature also considers non-convex production technologies based on the free dis-
posability assumption, see e.g., Deprins et al. (1984) and Cazals et al. (2002).
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lainen (2012) extend the approach to a production function with a multiplicative error

term εi = vi − ui with noise vi and inefficiency ui such that yi = f(xi) ∗ exp(εi) =

f(xi) ∗ exp(vi − ui).5 To estimate the average production function g(x), Kuosmanen

and Kortelainen (2012) derive the following non-linear QP to obtain the intercept and

slope estimates based on the log-transformed multiplicative model

min
α,β,ŷ

n∑
i=1

(ln yi − ln ŷi)
2 (1)

ŷi = αi + β′
ixi

αi + β′
ixi ≤ αh + β′

hxi ∀i, h = 1, ..., I

βi ≥ 0 ∀i = 1, ..., I

where xi and yi represent all observed input-output combinations. The QP tries to

find the α and β coefficients minimizing the sum of the squared residuals ηi with

ηi = ln yi− ln ŷi. α and β are the firm-specific estimates for the intercept and slope, re-

spectively, of a hyperplane tangent to the average production function g(x). Microeco-

nomic requirements on this hyperplanes are imposed as the following three constraints:

The first constraint establishes a linear form for the estimated hyperplanes, the second

constraint imposes concavity of the estimated function using Afriat’s theorem (Afriat,

1967), and the third constraint imposes monotonicity. As no further restrictions are

imposed on the sign of α, the estimated frontier is allowed to have VRS and may there-

fore have sections with increasing, constant and decreasing returns-to-scale. Note that

a CRS model can be imposed by setting αi = 0.

The QP delivers fitted values ŷi on the hyperplanes defined by the αs and βs. These

ŷi are typically unique, whereas the αs and βs are typically non-unique (Groeneboom

et al., 2001). This non-uniqueness can lead to an overestimation of the technology

violating the minimum extrapolation principle (Banker et al., 1984). To avoid such a

violation a linear programming problem (LP) is used to derive the lower envelope gmin

of the fitted values:

ĝmin(x) = min
a∈R,b∈RM

{a+ b′x | a+ b′xi ≥ ŷi ∀i = 1, ..., I} (2)

The solution of (2), i.e., new intercept and slope estimates a and b, describes the

average production function that is the closest envelopment of the fitted values with-

out extrapolation with the exception of convex combinations. Contrary to the initial

αs and βs, the solution to the LP (2) is unique. As Kuosmanen (2008, Theorem 4.1)

5Additional assumptions: ui and vi are assumed to be independent. vi has a symmetric distribution
with finite variance σ2

v , ui takes only positive values and has a finite variance σ2
u.
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Figure 1: Illustration of Lower Envelope (Own Illustration)

shows, ĝmin(x) is identical to the DEA estimate assuming VRS for observations (xi, ŷi).

Thus, ĝmin(x) has a piece-wise linear shape similar to DEA, that will be carried over

later to a piece-wise linear shape of the frontier. Figure 1 illustrates this issue using

an example with two observations and their fitted values i and j. The two separate

hyperplanes with different intercept and slope coefficients (solid black lines), deliver the

solution with minimized residuals. Recall, however, the initial estimate extrapolates

the technology by more than only convex combinations of the two observed points.

Solving equation (2) cures this problem by constructing the lower envelope, which is

the direct connection of the fitted values (dotted black line). Figure 1 also shows that

the intercept and the slope coefficients can change, which will have a direct impact on

the estimated scale characteristics of the technology (see sections 2.2 and 2.3).

For the second stage, the residuals ηi are used to recover the estimates of the parame-

ters of the distributions of inefficiency and noise, and subsequently the expected value

of inefficiency.6 Based on the estimates, ĝmin(x) is shifted to obtain a frontier estimate,

but more detailed distributional assumptions are needed to derive the parameters of the

distributions. Following Kuosmanen and Kortelainen (2012), a normal distribution is

imposed for the noise term, v ∼ N(0, σ2
v). The inefficiency term is assumed to take only

positive values and to follow a half-normal distribution, u ∼ |N(0, σ2
u)|. Thus, the com-

posed error term εi = vi−ui is assumed to follow a normal-half-normal distribution. To

recover the variance parameters σu and σv, Kuosmanen and Kortelainen (2012) suggest

decomposing the residuals ηi using the pseudolikelihood estimator (PSL) proposed by

6Note that the fitted values from (1) are typically unique. Therefore, the residuals do not need to
be recalculated against ĝmin(x).
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(Fan et al., 1996, FLW).7 For the normal-half-normal model a log-likelihood function

can be expressed as a function of a single parameter λ ≡ σu/σv, with Φ denoting the

cumulative distribution function of a standard normal, such that

lnL(λ) = −n ln σ̂ +
n∑
i=1

ln Φ

[
−ε̂iλ
σ̂

]
− 1

2σ̂2

n∑
i=1

ε̂i
2 (3)

with ε̂i = η̂i − (
√

2λσ̂)/[π(1 + λ2)]1/2 (4)

and σ̂ =

([
1

n

n∑
i=1

η̂i

]
/

[
1− 2λ2

π(1 + λ2)

])1/2

(5)

Maximization of the likelihood function delivers estimates of λ, σ̂, and ε̂i. Further,

σ̂u = σ̂λ̂/(1 + λ̂) and σv = σ̂/(1 + λ̂) provide the estimates of σ̂u and σ̂v. Given this

estimate of the variance of the inefficiency, the expected value of inefficiency, µ̂, is

then calculated as E(ui) = µ̂ = σ̂u ×
√

2/π. To obtain an estimate of the production

function f(x), the average function is shifted upwards by the corresponding expected

value of inefficiency such that f̂(x) = ĝmin(x) ∗ exp(µ̂). Similarly, the corresponding

frontier reference points are the fitted values ŷi on the average function shifted by the

expected value of inefficiency, such that ŷfrontieri = ŷi ∗ exp(µ̂).

This production function estimate has several notable characteristics. f̂(x) has a piece-

wise linear shape and can consist of up to I hyperplanes. Kuosmanen and Johnson

(2010) argue, though, that the actual number of hyperplanes obtained by solving (1)

and (2) typically is much lower. In other words, several observations can ’share’ one

hyperplane. Further, the frontier does not necessarily envelope all observations, and

single observations can be outside of the estimated technology set due to the stochastic

setting of the error term ε. The microeconomic assumptions on production functions

outlined above are partly fulfilled. Non-emptiness of the technology is trivial as soon

as data is supplied. Closedness of the technology is given and f̂(x) is the boundary.

Free disposability and convexity of the technology is induced by the constraints in (1).

Since a scaling assumption is not imposed in (1), f̂(x) can have VRS and may violate

the additivity, the possibility of inaction, and the no free lunch assumptions.

2.2 Estimating scale efficiency

The estimated functions ĝmin(x) and f̂(x) have no fixed RTS assumption since the

intercept ai is unrestricted. Thus, the functions can have increasing, constant, and

7Kuosmanen and Kortelainen (2012) also consider a Method of Moments (MoM) estimator similar
to modified ordinary least squares (MOLS). The MoM estimator is less efficient and therefore not
used in this paper.
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decreasing RTS along the frontier. This also means that the average product, i.e., the

amount of output per input unit, can first increase, then remain constant, and finally

decreases. The most productive scale size (MPSS, Banker et al., 1984) is at the input

level with maximum average output and CRS. Thus, operation at this level would be

beneficial for all firms.8

Scale efficiency can be used to quantify a firm’s loss of having non-optimal size. Fol-

lowing Førsund and Hjalmarsson (1979), scale efficiency SE is defined as

SE(xi, yi) =
θcrsi (xi, yi)

θi(xi, yi)
(6)

where θi(.) is the efficiency score against a VRS frontier, and θcrsi (.) is the efficiency

score measured against a CRS frontier. Rewriting (6) into θcrsi (xi, yi) = SE(xi, yi) ∗
θi(xi, yi) underlines the relationship: inefficiency measured against a CRS frontier can

be decomposed into the inability to use best practice defined by the VRS frontier

(θi(.)), and into the inability to use the optimal average output per input bundle

(SE(.)). Further, it should be noted that SE(xi, yi) measures the difference of the

productivity of the MPSS and the potential productivity with current firm size as the

distance between the VRS and CRS frontiers. Thus, SE is independent of a firm’s

managerial inefficiency since it is contained in both θi(.) and θcrsi (.) and cancels out.

In the microeconomic literature, it is assumed that the CRS frontier is tangent to the

VRS frontier, and subsequently T ⊆ T crs.9 Using Shephard output distance functions

(Shephard, 1970) as efficiency measures with θcrsi (.) ≤ 1 and θi(.) ≤ 1 it follows θcrsi (.) ≤
θi(.) for all i, and subsequently SE ≤ 1. Using this definition, a scale efficiency score of

one indicates optimal scale size, whereas values below one indicate productivity losses

due to non-optimal size. These standard assumptions, however, my not be fulfilled in

an empirical analysis based on StoNED. If a CRS frontier is additionally estimated

assuming αi = 0 in the StoNED QP, the envelopment of the VRS by the CRS frontier

is not guaranteed, but the estimated average functions or the estimated frontiers may

intersect, or may not overlap. Therefore, θcrsStoNED < θvrsStoNED is not automatically given,

and the scale efficiency estimate can be meaningless. Using the StoNED VRS estimate

as a reference to fit the CRS can overcome this problem, i.e., by using an additional

LP that fits the smallest enveloping cone around the frontier reference points on the

8In a single input model, this production plan is also the point with minimized average costs. This
is not necessarily the case in a model with multiple inputs.

9Ray (2004) calls the CRS production function a pseudo production function if the true underlying
RTS are VRS, since production on the CRS production function is feasible in only a few or even in
only one point.
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VRS estimate. This LP is constructed similar to the lower envelope in equation (2):

f crs(x) = min
bcrs∈RM

{b′,crsx | b′,crsxi ≥ ŷfrontieri ∀i = 1, ..., I} (7)

and delivers the slope coefficients of the CRS frontier, which can consist of multiple

facets. Each facet is tangent to the VRS frontier and replicates the linear up- and

downscaling of the MPSS determined by the optimal output per input for different

input mixes. Plugging in the observation-specific input vectors xi delivers the fitted

values on the CRS estimate, ŷcrs,frontieri , i.e., the available output for the given input

if the productivity of the MPSS was reached.10 However, note that this fitted CRS

frontier relies on strictly positive inputs if outputs are produced, i.e., the data needs

to satisfy the no free lunch assumption.

To measure scale efficiency in this setting, the distance between VRS and CRS frontier

can be treated deterministically as the VRS frontier is consistently estimated (Kuos-

manen and Kortelainen, 2012), and the CRS frontier is derived from this consistent

estimate. Therefore, instead of using equation (6), a measure of scale efficiency is based

on the frontier reference points and defined as

SEfrontier
i =

ŷfrontieri

ŷcrs,frontieri

(8)

SEfrontier
i evaluates the distance between the StoNED VRS production frontier and

the fitted CRS production frontier obtained by (7). Note that this measure has the

same properties as SE and allows a deterministic treatment of scale efficiency similar to

DEA. Alternatively, θcrsi and θi in (6) can be replaced with their stochastic empirical

counterparts measured against the StoNED frontier. However, stochastic estimates,

such as E[ui|εi] proposed by Jondrow et al. (1982), are typically inconsistent in the

cross-sectional setting (see e.g. Greene, 2007).

The major advantage of the proposed approach to estimate scale efficiency, i.e., its inde-

pendence of any distributional assumptions, can be shown by considering an LP that fits

the CRS average function gcrs(x) around the fitted values ŷi on the average function to

obtain the fitted values ŷcrsi : gcrs(x) = min
Bcrs∈RM

{B′,crsx | B′,crsxi ≥ ŷi ∀i = 1, ..., I}.
Compared to the LP to construct the CRS frontier, equation (7), the right-hand side

is scaled up only by the expected value of inefficiency, µ̂. Hence, the solution vector

10Alternatively, one could first fit a CRS estimate around the average production function gmin by
solving gcrs(x) = min

bcrs∈RM
{b′,crsx | b′,crsxi ≥ ŷi) ∀i = 1, ..., I}. This estimate can then be shifted

by the expected value of inefficiency µ̂ calculated with the VRS residuals. In most cases, shifting with
an estimated inefficiency derived with the residuals against the CRS frontier will lead again to the
inconsistency of VRS and CRS frontiers since they are not automatically tangent.

9



b is scaled up by this scalar, i.e., b = B ∗ exp(µ̂). Thus, a scale efficiency measure

SEi = ŷi/ŷ
crs
i for the average function is identical to the scale efficiency measure of

the frontier, i.e., SEi = SEfrontier
i . Therefore, it is irrelevant whether scale efficiency

is measured against an average production function and its fitted CRS estimate, or

against the frontier and its fitted CRS estimate. As a result, the scale efficiency es-

timate is independent of any distributional assumptions, and depends only on the

assumptions imposed in equation (1), namely the concavity, monotonicity and conti-

nuity of the production function. Therefore, it could be argued that the scale efficiency

measure is non-parametric, because it relies only on the non-parametric first stage of

the StoNED estimate.

2.3 Estimating scale elasticities

In the context of a transformation function as outlined above, scale elasticity is a

measure of the increase in output relative to a proportional increase of all inputs,

evaluated as the marginal change at a point in the input-output space (Førsund et al.,

2007). Assuming that a proportional increase of inputs by a factor τ leads to an

increase of outputs by the factor ζ, the transformation function can be rewritten as

F (τX, ζ(τ,X, Y )Y ) = 0 (9)

The corresponding scale elasticity ε can be derived as the marginal change of the output

expansion ζ caused by a marginal change in the input expansion τ over the average

ratio for a differentiable function such that

ε(X, Y ) =
∂ζ(τ,X, Y )

∂τ

τ

ζ
(10)

Using this definition, a scale elasticity greater than 1 indicates increasing returns-to-

scale, a value below 1 indicates decreasing returns-to-scale, and a value equal to one

indicates constant returns-to-scale. Assuming a multi-output case with N outputs

(y = yi1, ..., yiN ; y ∈ RN
+ ), the derivative of (9) with respect to the input-scaling factor

delivers the following rule for calculating scale elasticities (Førsund et al., 2007):

∂F (τX, ζY )

∂τ
=
∑

M

∂F (τX, ζY )

∂(τxm)
xm +

∑
N

∂F (τX, ζY )

∂(ζyn)
yn
∂ζ

∂τ
= 0 (11)

10



Rearranging (11) delivers the measure for scale elasticity evaluated at τ = ζ = 1

ε(X, Y |τ = ζ = 1) ≡ ∂ζ(τ,X, Y )

∂τ

= −
∑

M

∂F (τX, ζY )

∂(τxm)
xm/

∑
N

∂F (τX, ζY )

∂(ζyn)
yn (12)

To derive scale elasticities, the transformation functions are replaced with the estimates

obtained from the StoNED estimator. In the production context11, scale elasticities are

evaluated using the estimated production function f̂(x), which is the lower envelopment

of the fitted values ŷi shifted by the estimated expected inefficiency µ̂. Ignoring the

observation specific subscripts, the function to evaluate is given by

f̂(τX) = (â+ τ b̂x) ∗ exp(σ̂u
√

2/π) = (â+ τ b̂x) ∗ exp(µ̂) (13)

The right-hand side in (12) for the case of multiple inputs and one output12 y1 and

assuming τ = ζ = 1 is given by

∂F (X, Y )

∂(xm)
xm =− b̂mxm ∗ exp(µ̂) ∀m = 1...M (14)

∂F (X, Y )

∂(y1)
y1 =(â+ b̂x) ∗ exp(µ̂) (15)

Plugging these derivatives into (12) yields the scale elasticity measure

ε(X, Y |τ = ζ = 1) =
b̂x ∗ exp(µ̂)

(â+ b̂x) ∗ exp(µ̂)
(16)

that evaluates scale elasticity for a given input vector x. From (16), note that the

scale elasticity depends on the estimates of a. a > 0 leads to ε < 1 and indicates

decreasing returns-to-scale, a < 0 indicates increasing returns-to-scale, and a = 0 indi-

cates constant returns-to-scale. However, the a coefficient only gives the nature of the

underlying RTS, whereas ε describes the marginal change of output given a marginal

change in inputs, and delivers a more precise description of the RTS. Further, it should

be noted that ε is independent of the estimated expected value of inefficiency µ̂ as it

cancels out. Thus, measuring the scale elasticities on the average production function

g and on the frontier f delivers identical results. This allows the estimation of the

scale elasticities without any distributional assumptions since ĝmin depends only on

11Compare Cheng et al. (2015) for the elasticity estimation in a cost function setting
12For scale elasticities in production with multiple inputs and multiple outputs see Panzar and

Willig (1977).
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the microeconomic shape restrictions imposed in the first stage of the StoNED estima-

tor. Similarly to the scale efficiency estimate, it can be argued that the scale elasticity

measure is non-parametric, as it relies only on the non-parametric first stage of the

StoNED estimate.

Recall that the two estimated functions ĝmin and f̂ include firm-specific estimates of

the intercept and slope coefficients, ai and bi, i.e., ε varies across observations due to

variation in their inputs xi and due to variation in these coefficient. Further, ĝmin and

f̂ can be non-smooth functions with a piece-wise linear shape. This may lead to non-

unique solutions to equation (16) if the fitted value of observation i is a corner point.

To cure this problem Banker and Thrall (1992) suggest using the right-hand side and

the left-hand side partial derivatives to construct an interval of scale elasticities for

the point under analysis. However, their approach must be adapted to the StoNED

estimator since the fitted values for all observations can be corner points (or convex

combinations of corner points).13

To account for the potential multiplicity of scale elasticities for an observation, scale

elasticities are calculated for a set of candidate hyperplanes relevant for this observa-

tion. For observation i, the set of candidate hyperplanes C consists of the combinations

of intercept and slope coefficients a and b delivering the fitted value ŷi such that

Ci = {(ah, bh)|ŷi = âh + b̂hxi, h = 1, ..., I} (17)

The candidates can be used to construct an interval of scale elasticity measures for

observation i with the boundaries εmini and εmaxi , defined as

εmini (Xi, yi|(â, b̂) ∈ Ci) = min
b̂x ∗ exp(µ̂)

(â+ b̂x) ∗ exp(µ̂)
(18)

εmaxi (Xi, yi|(â, b̂) ∈ Ci) = max
b̂x ∗ exp(µ̂)

(â+ b̂x) ∗ exp(µ̂)
(19)

This interval εi = [εmini , εmaxi ] quantifies the returns-to-scale for observation i. The

initial definition remains valid, and values above 1 indicate increasing returns-to-scale,

values below 1 indicate decreasing returns-to-scale, and values equal to one indicate

constant returns-to-scale. However, contrary to equation (16), the interval now can

cover different realizations of εi, and may indicate for example IRS and DRS simul-

13In DEA, the problem of corner points typically occurs only for efficient units, and scale elasticities
can be calculated separately for efficient and inefficient units. See Førsund et al. (2007) for a direct
and an indirect approach to analyze scale elasticities in DEA.
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taneously. Again, the measure is independent of the expected value of inefficiency,

and therefore, of the distributional assumptions. Further, it should be noted that

εmini = εmaxi if Ci has only one element.

Taking the lower envelopment of the fitted values, enforced by (2), has a direct impact

on the estimates obtained by (18) and (19). Again, Figure 1 underlines the effects:

the lower envelope can influence the slope and intercept coefficients in both directions.

For observation i, a second hyperplane is introduced with ai > αi and bi < βi, whereas

for the observation j the new hyperplane is characterized by aj < αj and bj > βj. As

a result, the scale elasticity intervals of the two observations will overlap when tak-

ing the lower envelope, while estimated elasticity will be distinctively higher for the

observation i if the initial αs and βs are used.

3 Empirical set-up

3.1 Gas-fired electricity generation in Germany

Germany’s electricity (and heat) generating sector is the largest in Europe and one of

the largest in the world. It is highly diversified in terms of fuel sources, and while coal

and lignite still predominate, renewables, especially wind and solar, play an increasing

important role (BMWi, 2014). In 2014, gas-fired electricity generation accounted for

about 9% of the country’s total gross generation, although the share has been falling

considerably with the increase of guaranteed feed-in of renewable sources. Figure 2

shows that total gas-fired generation increased steadily until 2008, and then sharply

declined after 2010, while total gas-fired generation capacity still rose. Figure 3 illus-

trates the strong fragmentation the generation capacities: Accounting only for capaci-

ties above 10 MW, more than 50% of the 245 natural gas-fired power plants presently

operating have a capacity of less than 37.5 MW, and only 49 power plants exceed a

capacity of 100 MW. Figure 3 also illustrates that newly built capacities tend to be

only slightly larger than existing capacities on average leading only to a slight increase

of operating plants’ average capacity since 1990.

From a policy perspective, two major issues on gas-fired electricity generation in Ger-

many are currently under debate. First, gas-fired units are viewed as the technology

necessary for the transition towards a carbon-free electricity system. Their operational

flexibility and low CO2 content position them as, along with pump storages, as the nec-

essary key back-ups for intermittent renewable wind and solar. However, recent low

electricity prices on the European Energy Exchange, especially due to the increasing

feed-in of renewables, combined with low CO2 certificate prices stress the profitability

of gas-fired electricity generation, while the much more CO2 intensive coal and lignite-
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Figure 2: Gas-fired electricity generation capacity and actual gen-
eration in Germany
Own illustration, data: BMWi (2014)

based electricity generation is still profitable (Sensfuss et al., 2008). Several policy

measures to allow Germany achieving its ambitious climate goals, including capacity

markets and a phase-out of lignite-fired generation are under discussion (see Schrader,

2016; Reitz et al., 2014). This uncertain outlook has lead to discussion about the future

of gas-fired electricity generation in Germany, and projected installation and genera-

tion varies considerably under different scenarios (compare e.g. Schlesinger et al., 2014).

The second issue is the security of supply with natural gas. Concerns about disrup-

tions of deliveries reappeared in 2014 due to the political crisis in the Ukraine and the

tensions between Europe and the Russian Federation, a major source of natural gas

imports. In the academic literature, natural gas delivery disruption scenarios analyzed

by means of simulation models mostly indicate that a disruption would hit Eastern

European countries hardest, but the price rise in Germany would be moderate (see e.g.

Egging et al., 2008; Richter and Holz, 2015). Nonetheless, fears of such disruptions

influence public perception of security of supply with natural gas.

3.2 Data sources, key variables and descriptive statistics

The analysis of scale characteristics of German gas-fired electricity generation uses a

unique establishment level dataset for 2011 provided by the Research Data Centres of

the Federal Statistical Office and the statistical offices of the Länder. The dataset is

based on the monthly survey of power plants (EVAS 43311) matched with the monthly

survey of the water and energy sector (EVAS 43111). For data privacy, the dataset only

uses remote data processing, and detailed information, including minima and maxima

14
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Figure 3: Gas-fired electricity generation capacity by unit size and
year of construction for units exceeding 10MW
Own illustration, data: Bundesnetzagentur (2015)

of descriptive statistics and empirical results disclosing single observations, cannot be

reported. Electricity generating facilities with a bottleneck capacity of at least 1 MW

are included. Further, the dataset comprises large scale electricity and heat suppliers

and small scale power plants for industrial use (including partial autoproducers). Ob-

served power plants are of private, as well as of public, and mixed ownership. The

sample is limited to natural gas-fired units, and other gases are excluded. The final

sample consists of 124 units.

To model the production process of natural gas-fired electricity generation, a basic

production model in line with other applications in the literature (e.g. Lam and Shiu,

2004; Färe et al., 1985) is used. Capital (C), labor (L), and natural gas (F) are used as

inputs to produce energy (E) in the form of heat and electricity as sole output. Energy

is the heat and electricity supplied, which is measured as the sum of both in GWh. On

the input side, the monthly available average available capacity throughout the year

in MW is used to approximate C, since this measure controls for changes in a power

plant’s capacity. L is measured as the sum of hours worked in 1000. F is measured us-

ing the fuel input of natural gas in TJ. Since a secondary fuel typically is used only for

start-up, neglecting the secondary fuel input is expected to have minimal influence on

the results. Net values are used because own consumption reduces the actual provided

energy and must not influence a productivity measure. Although the model does not

incorporate undesirable output directly, the natural gas input indirectly accounts for

CO2 emissions, since it is a linear transformation due to the identical CO2 content of
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Unit Q5 Q25 Med Mean Q75 Q95 SD

Capital C MW 0.44 1.64 3.74 34.76 13.08 116.92 118.21
Fuel F TJ 19.20 70.39 203.44 1434.92 770.42 6094.85 4052.53
Labor L 1000h 21.94 62.09 114.86 209.82 193.41 688.48 391.54

Energy E GWh 3.93 14.99 43.34 292.87 165.31 1130.36 777.30

Table 1: Descriptive Statistics: Inputs and Outputs

natural gas in all plants.14

Table 1 lists the descriptive statistics of the input and output variables. The descriptive

statistics show a considerable dispersion in term of plant size, and the input variables

vary strongly. For C, F, and E, the 95% quantile is about 300 times higher than the

5% quantile. The dispersion is less pronounced for labor input, for which this ratio is

around 30. Thus, plants with higher generation tend to be less labor-intensive than

smaller plants. All plants generate both electricity and heat output.

To ensure that the sample is representative, the descriptive statistics of the final sam-

ple with 124 units are compared to the whole sample, which includes 406 units, but

reduces to the final 124 units due to missing values in at least one of the variables.

Corresponding comparative density plots are shown in the Figures 6 to 9 in the ap-

pendix, descriptive statistics are listed in the appendix Table 6.15 A comparison of

the two datasets indicates that the final sample represents the whole distribution of

natural-gas fired power plants in Germany quite well. Although small power plants

are slightly underrepresented in the matched sample, the overall distribution of power

plants is well represented. The underrepresentation of very small plants should be less

problematic due to the remaining number of observations in the restricted sample to

define the production function in this area. Therefore, the sample is representative and

allows to fully analyze scale characteristics of German gas-fired electricity generation.

4 Results

Table 2 summarizes the estimated coefficients of the lower envelope of the fitted values

of the StoNED estimate, i.e., the estimated production function. Density plots of the

14Other emissions, as SOx and NOx, vary between the plants due to technological differences, e.g.,
flue gas desulphurization. Unfortunately, the technical variables are not in the dataset.

15A comparison of the labor input variable is not possible due to data privacy limitations of the
data supplying agency.
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αi βC βF βL

Min. -6.646 0 0 0
Q25 -0.0389 0 0.1845 0
Median 0.0340 0.0547 0.2121 0.0005
Mean 36.9800 0.7714 0.1964 0.118
Q75 1.9330 0.1792 0.2146 0.0229
Max. 4256.0 23.6400 0.2417 5.078

Table 2: Summary statistics: Coefficients of ĝmin

estimated coefficients are shown in Figures 10 to 13 in the appendix.16 The explanatory

power of the estimated model is high and delivers a coefficient of determination of

R2 = 0.976. The intercept takes positive and negative values, indicating that the

estimated function consists of sections with increasing, constant and decreasing returns-

to-scale. The estimated coefficients of the capital and labor input for more than 25%

of the observations are zero, i.e., the marginal product of the inputs is estimated

to be equal to zero, indicating that energy output is explained mainly by the fuel

input. The estimated coefficient for fuel input shows little variation for the non-zero

values; however, also for the fuel input variable estimated coefficients are zero for some

observations.

The pseudo-likelihood estimation of the parameters of the inefficiency term delivers

a variance estimate of ˆσu = 0.1584, which translates into an expected inefficiency of

around 12.6%. Thus, the plants could produce 12.6% additional output by using

best practice with the same input endowment. This expected inefficiency deviates

considerably from the results in Seifert (2015) and Seifert et al. (2016), which are both

based on similar samples. However, the observation period of both studies end one

in 2010, one year before the data in our sample, and one year before the considerable

down-turn in gas-fired electricity generation in Germany (see Figure 2).

4.1 Scale efficiency and scale elasticity

The core of this empirical analysis is the scale characteristics of Germany’s gas-fired

electricity generation. The estimated scale efficiency scores are summarized in Table

3, and the corresponding density plot is shown in Figure 14 in the appendix. The

overall estimated scale efficiency is rather high with an average of 98.5%, meaning that

16All calculations use R 3.2 (R Core Team, 2015) with the packages quadprog, alabama, bbmle and
lpSolveAPI.
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the losses of suboptimal plant size are on average very small. Although the minimum

indicates a scale inefficiency of more than 13%, the first quantile of the distribution

of scale efficiency scores indicates that only few productivity gains are available from

size adjustment. The density plot reveals that scale inefficiency does not exceed 10%,

except for one observation. Therefore, the expected inefficiency, indicating losses from

not using best practice, clearly outweigh the scale inefficiency, indicating losses of

suboptimal plant size. Therefore, firms should focus on operation efficiency, rather

than the size adjustment of its power plant fleet.

Min Q25 Median Mean Q75 Max Var

SEfrontier
i 0.8671 0.9887 0.9983 0.9854 0.9995 1 0.0007

Table 3: Summary statistics: Scale Efficiency SEfrontier
i

Summary statistics of the estimated scale elasticity intervals are listed in Table 4 and

the distributions are graphically illustrated in Figure 4.17 A considerable share of the

observations’ intercept estimate is close to 0, indicating close to constant returns-to-

scale, yet the positive median already shows that the majority of observations in the

sample operate under decreasing returns. The overall range of scale elasticity estimates

is large, ranging from 0.0899 to 1.5570, and indicates a mixture of strongly increasing,

constant and, strongly decreasing returns-to-scale. However, observations operate on

average with a scale elasticity interval ranging from 0.9664 to 0.9944. Thus, the average

gas-fired power station has slightly decreasing to constant returns-to-scale. About 25%

of the observations obtain scale elasticities above 1, meaning that they operate under

increasing returns-to-scale. Further, the upwards deviation from constant returns-to-

scale are much lower than the downwards deviation, i.e., some plants operate with

considerable DRS, while IRS are rather limited in magnitude. Figure 4 also shows that

the range of the intervals decreases with the elasticities. Thus, the results indicate that

corner points are especially observed for observations with lower average elasticities.

Additionally, the plot indicates that the interval includes both decreasing and increas-

ing RTS for only few observations.

From a technical perspective, the strong fragmentation of the sector with a large num-

17εmean
i and εmed

i denote mean and median of the intervals. They are derived as mean and median
of the scale elasticities calculated with the relevant candidates.
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Figure 4: Mean scale elasticities and elasticity intervals

ber of small units does not pose an obstacle for highly productive gas-fired electricity

generation. Indeed, if constant returns-to-scale are prevalent, the usage of smaller

units allows greater flexibility due to the lower minimum load of smaller plants. Both

a higher number of load hours and an higher load on average reduce wearout and in-

creases operating life span.

The estimates of scale elasticity obtained are in line with more recent studies’ findings

on scale elasticities in fossil fuel electricity generation, as e.g., Kumbhakar and Tsionas

(2016). Compared to Seifert et al. (2016) and Seifert (2015) also analyzing German

electricity generation, results differ in a few points. Seifert et al. (2016) finds consid-

erable scale economies that can be exploited. However, Seifert et al. (2016) analyze a

panel ranging from 2003 and 2010. Their results also indicate that the best practice

is determined mainly by observations from the early years of the observation period.

The fact that increasing feed-in of renewables and the introduction of the European

Union Emissions Trading System (EU ETS) have changed the operating environment

suggests that the shape of the production functions, and, thus, the MPSS, may have
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εmini εmeani εmedi εmaxi

Min. 0.0899 0.1278 0.1278 0.1278
Q25 0.9785 0.9865 0.9915 0.9955
Median 0.9978 0.9988 0.9991 0.9997
Mean 0.9664 0.9829 0.9868 0.9944
Q75 1 1.0010 1.0010 1.0020
Max. 1.1140 1.1140 1.1140 1.5570

Table 4: Summary statistics: Scale elasticity intervals

changed over time.

The results of this analysis also need to be interpreted with caution. While the StoNED

estimator allows a very flexible estimation, it is also subject to the curse of dimensional-

ity, i.e., estimated efficiency can only increase with an increasing number of right-hand

side variables. This issue can also transfer into scale efficiency scores, leading to an

underestimation of scale inefficiency. Further, StoNED takes into account the existence

of noise, and, as a result, the VRS and CRS estimates react less sensitively against

single observations than deterministic approaches, such as DEA. Therefore, StoNED

can treat a non-noisy, but extraordinarily productive observation as noisy, which can

lead to an underestimation of the true technical inefficiency, scale inefficiency and scale

elasticity.

4.2 Effect of the lower envelope

As outlined above, the elasticities are evaluated at the (average) production function

that is derived by the lower envelope of the fitted values on this function, denoted by ai

and bi. Alternatively, the initial estimates αi and βi that characterize the hyperplanes

of the estimated production function could be used. Figure 5 and Table 5 compare

the elasticity interval estimates for the two approaches. The results reveal that using

the lower envelope has, on average, only little effect on the estimated scale elasticities,

i.e., εmini , εmeani , εmedi , and εmaxi are on average nearly identical. However, the spread of

the scale elasticity estimates increases considerably when taking the lower envelopment.

Further, for few observations the estimated scale elasticity decreases considerably, while

the upward effect is lower in magnitude. A closer analysis of the different interval

estimates indicates that larger differences can occur within one observations, e.g., with

a strong decrease in εmini and an increase in εmaxi . As a result, the estimated interval

ranges increase considerably by taking the lower envelope; while the initial parameter
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Figure 5: Comparison of elasticity intervals with and without lower
envelopment

estimates result in an average interval range of 0.0097, the average range of 0.0280

obtained with the lower envelope is three times as large. Therefore, taking the lower

envelope leads not only to a more cautious estimate of the technology by inducing

the minimum extrapolation principle, but also to more cautious estimates of the scale

elasticities because the estimated intervals are larger. Finally, the effect of taking the

lower envelope might be more substantial if the shape of estimated function deviates

more strongly from the CRS. This, however, can not be tested with the sample used

in this paper.
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εmini εmeani εmedi εmaxi

Min. 0.7554 0.9048 0.9048 0.9048
Q25 0.9825 0.9895 0.9904 0.9961
Median 0.9981 0.9986 0.9987 0.9995
Mean 0.9864 0.9918 0.9925 0.9961
Q75 1.0010 1.0010 1.0010 1.0020
Max. 1.1150 1.1150 1.1150 1.1150

Table 5: Summary statistics: Scale elasticity intervals with intial
parameter estimates

5 Conclusion

Scale efficiency and scale elasticity are the characteristics of a production function

that determine optimal firm size and, thus, the market structure that uses the least

resources. In the literature, several approaches to measure scale characteristics have

been developed, which, however, typically rely on a number of crucial assumptions,

such as the true underlying returns-to-scale, functional form assumptions, or distribu-

tional assumptions concerning deviations from the production function. The purpose

of this paper is twofold: first, measures of scale elasticity and scale efficiency with less

strict assumptions are derived; and, second, these new measures are used to evaluate

scale characteristics of German gas-fired electricity generation for the first time.

The proposed scale efficiency and scale elasticity measures are based on stochastic non-

smooth envelopment of data (StoNED). The measures take into account the stochastic

nature of the two-stage StoNED approach as the estimation of a CRS production func-

tions is adjusted to fulfill microeconomic assumptions regarding production technology.

The usage of intervals of scale elasticity is proposed to account for the piece-wise lin-

ear shape of the estimated production function. It is shown that both measures are

independent of distributional assumptions, do not rely on a correct returns-to-scale

assumption or a functional form, allow for random noise, and are, therefore, less prone

to outliers. Thus, the derived measures rely only on the consistency of the first stage

of the StoNED estimator, the convex non-parametric least squares (Hildreth, 1954;

Kuosmanen, 2008; Kuosmanen and Kortelainen, 2012).

Empirically, the scale characteristics of German natural gas-fired electricity generation

are evaluated based on a unique dataset covering of 124 units operating in Germany

in 2011. Gas-fired electricity generation is viewed as the technology that can ease the

transition towards a low carbon electricity sector because of its flexibility in terms of

minimum load and start-up times. However, despite these promising technical charac-
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teristics, the most productive use of the inputs is only possible with optimized plant

size determined by scale characteristics of the production technology. The results of

the empirical analysis reveal that only few efficiency improvements are available from

adjusting plants towards optimal scale size. Further, scale elasticity measures indi-

cate that most plants already operate close to constant returns-to-scale. Thus, from

a technical perspective, the results allow the strong fragmentation of Germany’s natu-

ral gas-fired electricity generation. Moreover, under constant returns-to-scale, smaller

units allow greater flexibility in electricity generation, reduce wearout and extend op-

erational life. The estimates of inefficiency do, however, indicate significant technical

inefficiency, i.e., differences in the use of best practice. Thus, results suggest that be

realized on plant level, while the fragmentation of Germany’s power plant fleet seems

to be of minor importance from a technical perspective.

From a policy perspective, constant returns-to-scale of the technology are desirable as

they allow a flexible design of the power plant fleet in terms of plant size. However,

it is questionable whether constant returns-to-scale in the technology can be actually

translated into constant economies of scale of the cost function. The current mar-

ket situation, with low CO2 and low electricity prices, favors the more CO2 intensive

baseload technologies, coal and lignite, and creates few incentives to maintain or invest

in gas-fired capacities. To allow the market to support the EU’s greenhouse gas emis-

sion reduction targets, investment decisions need to be based on a less uncertain future

outlook, while market design needs to ensure that prices guide such allocation deci-

sions. Several policy measures to create such incentives are under discussion (see e.g.

OFGEM, 2010; Oei, 2015, for overviews), including emission performance standards

(EPS), CO2 floor prices, and capacity tenders. To support one such policy measure

based on an empirical analysis, future research should consider the analysis of scale

characteristics from a cost perspective.
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A Appendix

Unit Q5 Q25 Med Mean Q75 Q95 SD

Capital C MW 0.05 0.96 2.01 29.75 9.35 153.77 96.23

Fuel F TJ 4.64 47.73 120.11 1060.59 411.45 5039.02 3230.10

Energy E GWh 0.90 9.77 25.20 210.24 85.86 1056.32 617.77

Table 6: Descriptive Statistics: Inputs and Outputs for full sample
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Figure 6: Density of capital input C
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