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Abstract

This paper studies the volatility implications of anticipated cost-push shocks (i.e. news

shocks) in a New Keynesian model with hybrid price setting both under optimal unre-

stricted and discretionary monetary policy with flexible inflation targeting. If the degree

of backward-looking price setting behavior is sufficiently small (large), anticipated cost-

push shocks lead in both policy regimes to a higher (lower) volatility in the output gap

and in the central bank’s loss than an unanticipated shock of the same size. This inversion

of the volatility effects of news shocks follows from the inverse relation between the price-

setting behavior and the optimal monetary policy. Under a fully microfounded hybrid

New Keynesian Phillips curve with price indexation, this inversion of volatility results is

not possible since the Phillips curve remains hybrid even in the limit case of full price

indexation.
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1 Introduction

Several empirical studies emphasize the importance of news shocks for business cycle fluctua-

tions. These shocks materialize in the future, but their size and maturity time is anticipated in

advance by the agents. Most prominently, Schmitt-Grohé and Uribe (2012) find in an estimated

real business cycle model that about 50 percent of economic fluctuations can be attributed to

anticipated disturbances.1

A theoretical branch of the literature indicates that news shocks destabilize the economy,

i.e. lead to a higher volatility than unanticipated shocks of the same form. Fève et al. (2009)

demonstrate in a purely forward-looking rational expectations model that news shocks increase

the volatility with increasing length of anticipation. With both backward- and forward-looking

expectations, the volatility results are ambiguous as it is shown by Winkler and Wohltmann

(2012) in an univariate model. However, they find that the anticipation of cost shocks – as

considered here – greatly amplifies the volatility of all key macroeconomic variables in the

estimated model of Smets and Wouters (2003).2

These (empirical and theoretical) findings rely on the assumption of forward-looking ratio-

nal expectations. By contrast, under purely backward-looking expectations, the volatility is

independent of the anticipation horizon.3 Backward-looking expectations can be introduced

via price indexation, rule-of-thumb behavior or bounded rationality.4

So far, optimal monetary policy has been studied almost exclusively in the presence of

unanticipated disturbances.5 One exception is the study of Winkler and Wohltmann (2011),

who analyze optimal simple interest rules. They find that the inclusion of forward-looking

1Note that we limit our discussion to cost-push shocks for which the central bank faces a trade off between output
and inflation stabilization even without instrument target as considered here. This type of shock is also found
to be highly relevant for business cycle fluctuations, see e.g. Schmitt-Grohé and Uribe (2012).

2Further related to this branch of literature is the paper by Offick and Wohltmann (2013), who study the
properties of the lag polynomial associated with news shocks.

3To see this, consider the model yt = ρyt−1+εt−q, where εt−q ∼ N(0, σ2) is an i.i.d. news shock that is anticipated
q periods in advance. Assuming stationarity, the variance of this model is given by V ar(yt) = σ2/(1− ρ2), i.e.
independent of q.

4Bounded rationality assumes that agents have cognitive limitations and use simple heuristics (rule of thumbs)
to guide their behavior and are recently under growing investigation, see e.g. De Grauwe (2012) and Lengnick
and Wohltmann (2016).

5This includes Leitemo (2008), who finds an inverse relation between the private pricing behavior and the optimal
monetary strategy. If the private sector is backward-looking, monetary policy should be forward-looking, and
vice versa. This general result also holds for news shocks.
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elements in an instrument rule is welfare enhancing in the case of anticipated shocks.6 However,

they focus on purely forward-looking private expectations and the resulting welfare effects. By

contrast, we study the relation between news shocks, volatility, optimal monetary policy, and

hybrid price setting.

In light of these findings, our paper contributes to the existing literature in three ways: First,

we combine the theory of news shocks and optimal monetary policy in a New Keynesian frame-

work. Second, we study the (de)stabilizing effects of anticipated cost shocks in a multivariate

environment. Third, we analyze how the relative volatility results of news shocks change with

increasing degree of backward-looking price setting behavior. We provide analytical results for

the limit case of purely forward- and purely backward-looking price setting behavior.7

2 News shocks and optimal monetary policy

We assume that the inflation rate is governed by a standard hybrid New Keynesian Phillips

curve of the form

πt = β(1− φπ)Etπt+1 + βφππt−1 + κxt + εt−q (1)

where πt and xt are the inflation rate and the output gap measured as percentage deviations

from the steady state, respectively. φπ measures the degree to which the price setting behavior

is backward-looking. For φπ = 0 (φπ = 1), the price-setting behavior is purely forward-

looking (backward-looking).8 εt−q is a white noise cost-push shock with unit variance which is

anticipated q periods in advance. The shock is unanticipated for q = 0.

For convenience, we assume first that the central bank aims to minimize the weighted sum

6Further noteworthy is the paper by Winkler andWohltmann (2009), who show how to solve rational expectations
models with news shock under optimal unrestricted monetary policy.

7Details on the derivation of our results can be found in the Appendix.
8This general form is taken from Leitemo (2008). In Section 3, we consider a microfounded hybrid Phillips curve
with partial price indexation, which does however not nest a purely backward-looking Phillips curve as special
case.
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of variance of the inflation rate and the output gap:9

Lossq = V arq(πt) + λV arq(xt) (2)

We compute the optimal unrestricted monetary policy response under (timeless) commit-

ment and the discretionary policy.10 The optimal targeting rule under commitment, in which

the central bank is able to commit to future policies, includes forward- and backward-looking

elements:

πt = −λ
κ
(xt − xt−1)−

λ

κ
φπxt−1 +

λ

κ
β2φπEtxt+1 (3)

Note that in both limit cases (φπ = 0 and φπ = 1) the system remains hybrid. This is due to

the inverse relation between the price-setting behavior and the optimal monetary strategy.

Contrarily, the optimal discretionary policy is independent of backward-looking elements:

πt = −λ
κ
xt +

λ

κ
β2[(1− φπ)ρ

2
π + φπ]Etxt+1 (4)

The undetermined coefficient ρπ follows from the reduced form of inflation. ρπ is independent

from the anticipation horizon q and solves the following polynomial equation of order five:

0 = β3(1− φπ)
2ρ5π − β2(1− φπ)ρ

4
π + 2φπβ

3(1− φπ)ρ
3
π − [β(1− φπ) + β2φπ]ρ

2
π

+

(

1 +
κ2

λ
+ β3φ2

π

)

ρπ − βφπ (5)

Note that under purely forward-looking price setting (φπ = 0), we obtain ρπ = 0 and the dis-

cretionary policy is not forward-looking, but given by πt = −(λ/κ)xt. Under purely backward-

looking price setting (φπ = 1), the discretionary policy is equivalent to the commitment policy.

Both targeting rules (3) and (4) are independent of the lead time q and, therefore, equivalent

to the optimizations in Leitemo (2008). Equations (1) and (3) fully describe the dynamics of

9In Section 3, we also consider a micro-founded loss function which is a second order Taylor approximation of
the household’s welfare function.

10For simplicity, we refer in the following to the optimal unrestricted monetary policy as the policy under com-
mitment.
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Figure 1: Loss and variances in the case of purely forward-looking price setting
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Note: Parameters are set to β = 0.99, κ = 0.34, λ = 0.5. Under commitment, the inflation variance peaks at
q∗ = 0.74 (assuming continuity of q).

the output gap and the inflation rate under commitment. Equations (1) and (4) fully describe

the dynamics under discretionary policy.

Before we turn to the general case of hybrid private price-setting behavior, we discuss the

limit case of purely forward-looking price setting.

2.1 Purely forward-looking price setters

We first discuss the volatility results in the regime commitment. For φπ = 0, the system can

be reduced to an univariate hybrid equation of the form

xt = aEtxt+1 + bxt−1 + cεt−q (6)

with a = βb, b = λ/(λ(1 + β) + κ2), and c = −κ/(λ(1 + β) + κ2). Since 1 > β > 0,

sgn(a) = sgn(b). This implies that the variance of xt is unambiguously increasing in q as it is

shown by Winkler and Wohltmann (2012).

The volatility of the inflation rate, on the other hand, may also be decreasing in q. Its
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variance is given by

V ar(πt) =
2β2

0

(1 + α)(1 + δ)(1− αδ)

(

λ

κ

)2 [

1− 1− αδ

α− δ
δ2(q+1) +

(1− α)(1 + δ)δα

α− δ
(αδ)q

]

(7)

where |α| < 1 is the stable root of α1,2 =
(

1±
√
1− 4ab

)

/(2a), β0 = c/(1 − aα), and δ =

a/(1 − aα).11 An unanticipated shock may generate a higher inflation volatility than a cost-

push shock that is anticipated in the infinite past:

V arq=0(πt) > V arq→∞(πt) if
κ2

λ
>
√

1 + 4β − (1 + β) (λ > 0) (8)

The reason for the ambiguity in the inflation volatility are two opposing effects: On the one

hand, the longer the length of anticipation, the higher is the variance of the output gap, which

– in isolation – also leads to a higher variance in inflation. On the other hand, the response

of the output gap becomes smoother, i.e. xt is more autocorrelated, with increasing q. Since

the inflation rate depends via the targeting rule on the change in the output gap, this reduces

– in isolation – the variance of inflation.12 Condition (8) does not imply that an anticipated

cost shock gives a lower inflation volatility for all anticipation horizons. That is, the inflation

variance may not be monotonic in q. For small values of q, V ar(πt) may be increasing and the

maximum is reached in q = max(q∗, 0) where

q∗ =
1

logα− log δ

{

log
2δ(1− αδ)

(1− α)α(1 + δ)
+ log

log δ

logαδ

}

(9)

Despite the fact that the variance of inflation may be decreasing in q, the total loss (2)

is always increasing in q. Only under strict inflation targeting (λ = 0) does the central bank

perfectly stabilize the inflation rate and the loss is zero, independently of q.

Note that under purely forward-looking price setting behavior, the welfare theoretic loss

is of the same form as the assumed loss (2) with λ = κ/χ, where χ denotes the elasticity of

substitution between differentiated goods. The inequality (8) then reads κχ >
√
1 + 4β−(1+β).

11Note that the output gap can be written as an ARMA(1,q) process of the form xt = αxt−1 +
∑q

k=0
δkβ0εt+k−q.

A stable solution requires |α| < 1.
12The two opposing effects can be directly seen by taking the variance of the targeting rule: V ar(πt) =
2λ2/κ2[V ar(xt)− E(xtxt−1)], where both V ar(xt) and E(xtxt−1) are increasing in q.
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Figure 2: Loss and variances for different degrees of hybridity under commitment
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Parameter calibration: β = 0.99, κ = 0.34, λ = 0.5.

For χ = 8 (implying a steady state mark-up of approximately 14 percent) and κ = 0.34, λ ≈ 0.05

so that inequality (8) is satisfied as illustrated in figure 3.

In the regime discretion, the volatility of the output gap and the inflation rate is unambigu-

ously increasing in q under purely forward-looking price setting. For φπ = 0, the model under

discretion is purely forward-looking. This implies that the volatility of inflation and output gap

is increasing in q as it is shown by Fève et al. (2009). These results are illustrated in figure 1.

2.2 Hybrid price-setting behavior

If we allow for backward-looking price-setting behavior (i.e. φπ > 0), the results under purely

forward-looking price setting of the previous subsection may be reversed. We start with the

regime commitment. For this regime, figure 2 shows the differences in the volatilities and

the central bank’s loss between an anticipated and an unanticipated cost shock for different

degrees of hybridity and anticipation horizons. If φπ – the degree of backward-lookingness – is

sufficiently large, an anticipated cost shock leads simultaneously to a lower volatility in output

and inflation and to a lower loss than an unanticipated shock of the same size. The reason

for this inversion of volatility results (compared to φπ = 0) is the inverse relation between the
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Figure 3: Parameter sensitivity
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private pricing behavior and the optimal unrestricted monetary policy strategy.

Does this result also hold for lower weights λ the central bank puts on output stabilization?

Figure 3 compares the volatilities and the loss of an unanticipated (q = 0) and an anticipated

(q = 20) shock for different degrees of hybridity φπ and for different weights λ. The left plot

considers the regime commitment. For all values of λ > 0 (flexible inflation targeting), it holds:

If the degree of backward-looking price setting behavior is sufficiently large (small), anticipated

cost-push shocks lead to a lower (higher) volatility in the output gap and in the central bank’s

loss than a unanticipated shocks of the same size.

The left plot of figure 3 also shows that the volatility in inflation may decrease in q for a

much larger range of hybridity φπ (even for φπ = 0) than the volatility of output. However, the

exact range depends on the weight λ: If λ is sufficiently small (in figure 3: λ < 0.15 suffices),

the volatility in the inflation rate is increasing in q for sufficiently strong backward-looking price

setting behavior.13

The volatility results under discretion are summarized in the right plot of figure 3. If the

13Strictly speaking, the volatility results of the inflation rate depend on the ratio λ/κ. Increasing κ has the same
effect as reducing λ.
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price setting is sufficiently backward-looking, discretion generates similar results to commit-

ment. In the limit case φπ = 1, the two regimes are equivalent. Contrarily to commitment, the

inflation volatility is only decreasing in q for sufficiently high degrees of backward-lookingness

(in figure 3: φπ ≥ 0.4).

3 Microfounded loss and Phillips curve

Until now, we have assumed a given central bank’s loss which coefficients are not a function of

structural parameters and a Phillips curve where the inflation expectations are a weighted av-

erage of forward-looking and backward-looking expectations. In this section, we check whether

our above results also hold under (i) a central bank’s loss that is a second order approximation

of the household’s welfare function and (ii) a hybrid New Keynesian Phillips curve that fol-

lows from partial price indexation. Let γ be the degree of price indexation, then the inflation

dynamics are described by

πt = ω1Etπt+1 + ω2πt−1 + ω3xt + εt−q (10)

with ω1 = β/(1 + βγ), ω2 = γ/(1 + βγ), and ω3 = κ/(1 + βγ).14 Following Woodford (2003),

the welfare theoretic loss function based on (A.21) is given by

Lossq = V arq(πt − γπt−1) + λV arq(xt) (11)

where λ = κ/((1+βγ)χ). χ denotes the elasticity of substitution between differentiated goods.

Assuming separable preferences and neglecting capital, κ = (σ + η)(1 − θ)(1 − βθ)/θ where θ

is the Calvo parameter, σ is the inverse of the intertemporal elasticity of substitution, and η is

the inverse of the Frisch elasticity of labor supply.

Contrarily to the proposed loss (2), the loss function (A.22) has πt−1 as an additional

argument if γ > 0.15 Under the Phillips curve (A.21) and loss (A.22), the optimal unrestricted

14A similar Phillips curve is used by Smets and Wouters (2003).
15This is the reason why in figure 4 the loss difference Lossq −Loss0 is decreasing in γ, whereas both V arq(xt)−
V ar0(xt) and V arq(πt)− V ar0(πt) are increasing in γ.
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Figure 4: Loss and variances under commitment with microfounded loss and Phillips curve
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Parameter calibration: β = 0.99, σ = η = 2, θ = 0.75, κ = (σ + η)(1 − θ)(1− βθ)/θ ≈ 0.34, χ = 8.

monetary policy rule under commitment is given by

βγEtπt+1 − (1 + βγ2)πt + γπt−1 = − λ

ω3
βω2Etxt+1 +

λ

ω3
xt −

λ

ω3

ω1

β
xt−1 (12)

For γ = 0, the equations (A.21) to (12) collapse to the standard purely forward-looking

case and are equivalent to our originally proposed model for φπ = 0. However, the hybrid

New Keynesian Phillips curve (A.21) does not nest a purely backward-looking Phillips curve

as special case in contrast to the originally proposed Phillips curve (1). In fact, the limit case

of full price indexation (γ = 1) leads to a hybrid Phillips curve in which expected future and

past inflation equally affect current inflation. This limit case roughly corresponds to φπ = 0.5.

As a result, anticipated cost-push shocks in the model with price indexation generate a higher

output volatility and central bank’s loss than unanticipated shocks.16 This is illustrated in

figure 4 which shows the volatility and loss difference in the regime commitment.17

16Inflation volatility, on the other hand, may again also decrease in q if the model is forward-looking.
17Similar results can be obtained under discretionary policy.
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4 Concluding remarks

This paper studies the volatility implications of anticipated cost-push shocks in a hybrid New

Keynesian model with forward- and backward-looking price setting behavior both under optimal

unrestricted monetary and discretionary policy. In both regimes, we find that an anticipated

cost-push shock lead to a larger (smaller) volatility in the output gap and to a larger (smaller)

central bank loss than an unanticipated shock of the same size if the degree of backward-looking

price setting behavior is sufficiently small (large). By contrast, if the central bank follows

an ad hoc or optimized contemporaneous Taylor-type rule and the price setters are purely

(forward-) backward-looking, the volatility of the economy is (increasing with) independent of

the anticipation horizon.
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Appendix

A Derivation of targeting rules

A.1 Ad hoc central bank loss and Phillips curve

In this section, we derive the targeting rules under optimal unrestricted monetary policy (com-

mitment) and under optimal discretionary policy using the New Keynesian Phillips curve

πt = β(1− φπ)Etπt+1 + βφππt−1 + κxt + εt−q (A.1)

and the central bank loss

Lossq = V arq(πt) + λV arq(xt) (A.2)

where 0 < β < 1, 0 ≤ φπ ≤ 1, κ > 0, q ∈ N0, λ > 0.

A.1.1 Commitment

The central bank minimizes the loss function (A.2) subject to the Phillips curve (A.1). The

Lagrange function to this problem is given by18

Jt0 = Et0

∞
∑

t=t0

βt−t0
{

π2
t + λx2t + µt[β(1− φπ)Etπt+1 − πt + βφππt−1 + κxt + εt−q]

}

(A.3)

with the first-order conditions for t > t0 (timeless perspective solutions)

∂Lt

∂xt
= 2λxt + µtκ = 0 ⇔ µt = −2

λ

κ
xt (A.4)

∂Lt

∂πt
= 2πt − µt + β2φπEtµt+1 + (1− φπ)µt−1 = 0 (A.5)

18Note that, strictly speaking, the central bank loss (A.2) is equivalent to limβ→1(1 − β)
∑∞

t=t0
βt−t0(π2

t + λx2
t ),

see Rudebusch and Svensson (1999). The constant (1 − β) however does not affect the first-order conditions
and we set the discount factor close to unity, i.e. β = 0.99.
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The optimal monetary response of the central bank can be summarized by the following tar-

geting rule:19

πt = −λ
κ
(xt − xt−1)−

λ

κ
φπxt−1 +

λ

κ
β2φπEtxt+1 (A.6)

A.1.2 Discretion

Under discretionary policy, the central bank is not able to commit to future policies. It can,

therefore, not directly affect private expectations, but only indirectly through the persistence of

the inflation rate given by the hybrid structure of the New Keynesian Phillips curve. To account

for this, we replace the expected future inflation rate in the central bank’s optimization using

the reduced-form solution of the inflation rate and the output gap. The guessed reduced-form

solutions are given by

πt = ρππt−1 + ρ0εt + ρ1εt−1 + . . .+ ρqεt−q (A.7)

xt = ηππt−1 + η0εt + η1εt−1 + . . .+ ηqεt−q (A.8)

with the undetermined coefficients ρπ, ρ0, . . . , ρq and ηπ, η0, . . . , ηq. The reduced-form solutions

imply

Etπt+1 = ρ2ππt−1 + (ρπρ0 + ρ1)εt + . . .+ (ρπρq−1 + ρq)εt−q+1 + ρπρqεt−q (A.9)

Etxt+1 = ηπρππt−1 + (ηπρ0 + η1)εt + . . .+ (ηπρq−1 + ηq)εt−q+1 + ηπρqεt−q (A.10)

Replacing Etπt+1 in the Phillips curve (A.1) gives

πt = β[(1− φπ)ρ
2
π + φπ]πt−1 + κxt + kt (A.11)

19Since the targeting rule is independent of q, it is equivalent to the one derived in Leitemo (2008).
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where kt = β(1−φπ)[(ρπρ0 + ρ1)εt+ . . .+ (ρπρq−1 + ρq)εt−q+1+ ρπρqεt−q] + εt−q. The Lagrange

function to the discretionary optimization problem is then given by

Jt0 = Et0

∞
∑

t=t0

βt−t0
{

π2
t + λx2t + µt{β[(1− φπ)ρ

2
π + φπ]πt−1 − πt + κxt + kt}

}

(A.12)

with the first-order conditions

∂Lt

∂xt
= 2λxt + κµt = 0 ⇔ µt = −2

λ

κ
xt (A.13)

∂Lt

∂πt
= 2πt − µt + β2[(1− φπ)ρ

2
π + φπ]Etµt+1 = 0 (A.14)

Thus, the optimal discretionary monetary response reads

πt = −λ
κ
xt + β2[(1− φπ)ρ

2
π + φπ]

λ

κ
Etxt+1 (A.15)

which is independent of the anticipation horizon q (holds ∀q ≥ 0).20

To determine the unknown coefficient ρπ, we replace xt, πt, Etπt+1, and Etxt+1 in the Philips

curve (A.1) and targeting rule (A.15):

0 =
[

β2[(1− φπ)ρ
2
π + φπ]ηπρπ −

κ

λ
ρπ − ηπ

]

πt−1

+

q−1
∑

j=0

[

β2[(1− φπ)ρ
2
π + φπ](ηπρj + ηj+1)−

κ

λ
ρj − ηj

]

εt−j

+
[

(1 + φπ − φπρ
2
π)β

2ηπρq −
κ

λ
ρq − ηq

]

εt−q (A.16)

0 =
[

β(1− φπ)ρ
2
π + βφπ + κηπ − ρπ

]

πt−1

+

q−1
∑

j=0

[β(1− φπ)(ρπρj + ρj+1) + κηj − ρj ] εt−j

+ [β(1− φπ)ρπρq + κηq + 1− ρq] εt−q (A.17)

For {ρπ, ρ0, ρ1, ρ2, ηπ, η0, η1, η2} to be solutions, equations (A.16) and (A.17) should hold for any

20The targeting rule (A.15) is equivalent to the one derived in Leitemo (2008) for q = 0.
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{πt, εt}. Thus, the unknown coefficient ρπ is determined by the system

β2[(1− φπ)ρ
2
π + φπ]ηπρπ −

κ

λ
ρπ − ηπ = 0 (A.18)

β(1− φπ)ρ
2
π + βφπ + κηπ − ρπ = 0 (A.19)

Solving (A.19) for ρπ and substituting into (A.18), ρπ is the stable solution of the following

polynomial equation of order five:

0 = β3(1− φπ)
2ρ5π − β2(1− φπ)ρ

4
π + 2φπβ

3(1− φπ)ρ
3
π −

(

β(1− φπ) + β2φπ

)

ρ2π

+

(

1 +
κ2

λ
+ β3φ2

π

)

ρπ − βφπ (A.20)

Note that the limit case φπ = 0 implies ρπ = 0 so that the targeting rule (A.15) collapses

to πt = −(λ/κ)xt. In the limit case φπ = 1, the targeting rules under optimal unrestricted

monetary and discretionary policy are equivalent.

A.2 Microfounded central bank loss and Phillips curve

In this section, we derive the targeting rules under optimal unrestricted monetary policy (com-

mitment) and under optimal discretionary policy using the microfounded hybrid New Keynesian

Phillips curve that follows from partial price indexation:

πt = ω1Etπt+1 + ω2πt−1 + ω3xt + εt−q (A.21)

with ω1 = β/(1 + βγ), ω2 = γ/(1 + βγ), and ω3 = κ/(1 + βγ).21 γ is the degree of price

indexation. Following Woodford (2003), the welfare theoretic loss function based on (A.21) is

given by

Lossq = V arq(πt − γπt−1) + λV arq(xt) (A.22)

21A similar Phillips curve is used by Smets and Wouters (2003).
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with

λ =
κ

(1 + βγ)χ
(A.23)

where χ is the elasticity of substitution between differentiated goods. κ can be presented as

a function of structural parameters. Assuming separable preferences and neglecting capital,

κ = (σ + η) (1−θ)(1−βθ)
θ

where θ is the Calvo parameter, σ is the inverse of the intertemporal

elasticity of substitution, and η is the inverse of the Frisch elasticity of labor supply.22

A.2.1 Commitment

The central bank minimizes the loss function (A.22) subject to the Phillips curve (A.21). The

Lagrange function to this problem is given by

Jt0 = Et0

∞
∑

t=t0

βt−t0
{

(πt − γπt−1)
2 + λx2t + µt[ω1Etπt+1 − πt + ω2πt−1 + ω3xt + εt−q]

}

(A.24)

with the first-order conditions

∂Lt

∂xt
= 2λxt + ω3µt = 0 ⇔ µt = −2

λ

ω3
xt (A.25)

∂Lt

∂πt
= 2(πt − γπt−1)− µt − 2βγ(Etπt+1 − γπt) + βω2Etµt+1 +

ω1

β
µt−1 = 0 (A.26)

⇔ 2βγEtπt+1 − 2(1 + βγ2)πt + 2γπt−1 = βω2Etµt+1 − µt +
ω1

β
µt−1 (A.27)

The optimal monetary response of the central bank can be summarized by the following tar-

geting rule:

βγEtπt+1 − (1 + βγ2)πt + γπt−1 = − λ

ω3
βω2Etxt+1 +

λ

ω3
xt −

λ

ω3

ω1

β
xt−1 (A.28)

22χ can bet set to 8 implying a steady state price mark-up on the goods market of approximately 14 percent.
Setting σ = η = 2, β = 0.99 and θ = 0.75 gives κ = 0.34.
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A.2.2 Discretion

To derive the discretionary policy, we again use the following reduced-form solutions:

πt = ρππt−1 + ρ0εt + ρ1εt−1 + . . .+ ρqεt−q (A.29)

xt = ηππt−1 + η0εt + η1εt−1 + . . .+ ηqεt−q (A.30)

implying

Etπt+1 = ρ2ππt−1 + (ρπρ0 + ρ1)εt + . . .+ (ρπρq−1 + ρq)εt−q+1 + ρπρqεt−q (A.31)

Etxt+1 = ηπρππt−1 + (ηπρ0 + η1)εt + . . .+ (ηπρq−1 + ηq)εt−q+1 + ηπρqεt−q (A.32)

Replacing Etπt+1 in the Phillips curve (A.21) gives

πt = (ω1ρ
2
π + ω2)πt−1 + ω3xt + kt (A.33)

where kt = ω1[(ρπρ0+ρ1)εt+ . . .+(ρπρq−1+ρq)εt−q+1+ρπρqεt−q]+εt−q. The Lagrange function

to the discretionary optimization problem is then given by

Jt0 = Et0

∞
∑

t=t0

βt−t0
{

(πt − γπt−1)
2 + λx2t + µt[ω1ρ

2
ππt−1 − πt + ω2πt−1 + ω3xt + kt]

}

(A.34)

with the first-order conditions

∂Lt

∂xt
= 2λxt + ω3µt = 0 ⇔ µt = −2

λ

ω3

xt (A.35)

∂Lt

∂πt
= 2(πt − γπt−1)− µt − 2βγ(Etπt+1 − γπt) + β(ω1ρ

2
π + ω2)Etµt+1 = 0 (A.36)

⇔ 2βγEtπt+1 − 2(1 + βγ2)πt + 2γπt−1 = β(ω1ρ
2
π + ω2)Etµt+1 − µt (A.37)

Thus, the optimal discretionary monetary response reads

βγEtπt+1 − (1 + βγ2)πt + γπt−1 = − λ

ω3

β(ω1ρ
2
π + ω2)Etxt+1 +

λ

ω3

xt (A.38)
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which is independent of the anticipation horizon q.

To determine the unknown coefficient ρπ, we replace xt, πt, Etπt+1, and Etxt+1 in the Philips

curve (A.21) and targeting rule (A.38):

0 =
[

ω1ρ
2
π − ρπ + ω3ηπ + ω2

]

πt−1 +

q
∑

j=0

ψ1,jεt−j (A.39)

0 =

[

ω1

ω3

βληπρ
3
π + βγρ2π +

(

ω2

ω3

βληπ − 1− βγ2
)

ρπ −
λ

ω3

ηπ + γ

]

πt−1 +

q
∑

j=0

ψ2,jεt−j (A.40)

where ψ1,j and ψ2,j are constants which are not relevant for the determination of ρπ and ηπ. ρπ

and ηπ follow from the solution of

ω1ρ
2
π − ρπ + ω3ηπ + ω2 = 0 (A.41)

ω1

ω3
βληπρ

3
π + βγρ2π +

(

ω2

ω3
βληπ − 1− βγ2

)

ρπ −
λ

ω3
ηπ + γ = 0 (A.42)

The two equations can be reduced to a single equation of order five:

−βλω
2
1

ω2
3

ρ5π + βλ
ω1

ω2
3

ρ4π +

(

−2βλ
ω1ω2

ω2
3

)

ρ3π +

(

βγ + βλ
ω2

ω2
3

+ λ
ω1

ω2
3

)

ρ2π

+

(

−βλω
2
2

ω2
3

− 1− βγ2 − λ

ω2
3

)

ρπ + λ
ω2

ω2
3

+ γ = 0 (A.43)

⇔ −βλω2
1ρ

5
π + βλω1ρ

4
π − 2βλω1ω2ρ

3
π +

(

βγω2
3 + βλω2 + λω1

)

ρ2π

−
(

βλω2
2 + ω2

3 + βγ2ω2
3 + λ

)

ρπ + λω2 + γ = 0 (A.44)

The limit case γ = 0 implies ω2 = 0 and ρπ = 0.

B Derivation of variances and loss

B.1 Hybrid univariate model

In this section, we derive the variance of a hybrid univariate model of the form

yt = aEtyt+1 + byt−1 + cεt−q (B.1)

18



with εt
i.i.d.∼ N(0, σ2) can be written as MA(∞) of the form

yt =
∞
∑

s=0

αs

q
∑

k=0

δkβ0εt−s+k−q =
∞
∑

s=0

αsht−s with ht =

q
∑

k=0

δkβ0εt+k−q (B.2)

where α =
(

1−
√
1− 4ab

)

/(2a), β0 = c/(1− aα), and δ = a/(1− aα). The variance of yt can

be derived as follows:

V ar(yt) =

∞
∑

s=0

∞
∑

s̃=0

αsαs̃

q
∑

k=0

q
∑

k̃=0

β2
0δ

kδk̃E(εt−s+k−qεt−s̃+k̃−q) (B.3)

= β2
0

∞
∑

s=0

α2s

q
∑

k=0

δ2kσ2 + 2β2
0

∞
∑

s=0

q−1
∑

j=0

q−1−j
∑

k=0

α2s+j+1δ2k+j+1σ2 (B.4)

= β2
0vtσ

2 + 2β2
0wtσ

2 (B.5)

vt and wt can be simplified to

vt =
∞
∑

s=0

α2s

q
∑

k=0

δ2k =
1

1− α2

1− δ2(q+1)

1− δ2
(B.6)

wt =
∞
∑

s=0

q−1
∑

j=0

q−1−j
∑

k=0

α2s+j+1δ2k+j+1 (B.7)

=
αδ

1− δ2

∞
∑

s=0

α2s

q−1
∑

j=0

(αδ)j − δ2(q+1)

1− δ2

∞
∑

s=0

α2s

q−1
∑

j=0

(α

δ

)j+1

(B.8)

=
αδ

1− δ2
1

1− α2

1− (αδ)q

1− αδ
− αδ2(q+1)

1− δ2
1

1− α2

1−
(

α
δ

)q

δ − α
(B.9)

In summary, the variance of yt is given by V ar(yt) = V (q) where

V (q) =
β2
0

(1− α2)(1− δ2)

{

1− δ2(q+1) + 2
αδ

1− αδ
[1− (αδ)q] + 2

α

α− δ

[

δ2(q+1) − δ2(αδ)q
]

}

σ2

(B.10)

Note that V (q) can also be written as

V (q) =
1

1− α2
[V ar(ht) + 2αCov(xt−1, ht)] (B.11)
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where

V ar(ht) =
β2
0

1− δ2
(1− δ2(q+1))σ2 = β2

0σ
2

q
∑

k=0

δ2k (B.12)

Cov(xt−1, ht) =
β2
0

1− δ2

{

δ

1− αδ
[1− (αδ)q] +

1

α− δ

[

δ2(q+1) − δ2(αδ)q
]

}

σ2 (B.13)

= β2
0σ

2δ

q−1
∑

j=0

(αδ)j
q−1−j
∑

k=0

δ2k (B.14)

B.2 Purely forward-looking price setting

In this section, we discuss the variance of the output gap, the inflation rate and the central

bank’s loss in the limit case of purely forward-looking price setting behavior. In this limit case

(φπ = 0), the New Keynesian model under optimal unrestricted monetary policy given by (A.1)

and (A.6) reduces to

πt = βEtπt+1 + κxt + εt−q (B.15)

πt = −λ
κ
(xt − xt−1) (B.16)

The output gap xt can be written as hybrid univariate model equation of the form (B.1) with

a = βb (B.17)

b =
λ

λ(1 + β) + κ2
(B.18)

c = − κ

λ(1 + β) + κ2
(B.19)

Hence, the variance of xt is given by V ar(xt) = V (q), where

δ =
2a

1 +
√
1− 4ab

(B.20)

αδ =
1−

√
1− 4ab

1 +
√
1− 4ab

(B.21)

1− 4ab =
(1− β)2 + 2(1 + β)z + z2

(1 + β + z)2
(B.22)

z =
κ2

λ
(B.23)
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Since dV arq(ht)/dq > 0 and dCovq(xt−1, ht)/dq > 0, it holds dV arq(xt)/dq > 0.

The variance of the inflation rate can be deduced from the targeting rule (B.16):

V ar(πt) = 2

(

λ

κ

)2

(V ar(xt)−E(xtxt−1)) (B.24)

=
2

1 + α

(

λ

κ

)2

[V arq(ht)− (1− α)Covq(xt−1, ht)] (B.25)

=
2

1 + α

(

λ

κ

)2

β2
0σ

2

[

q
∑

k=0

δ2k − (1− α)δ

q−1
∑

j=0

(αδ)j
q−1−j
∑

k=0

δ2k

]

(B.26)

To derive the condition for V arq=0(πt) > V arq→∞(πt), note that

V arq=0(ht) = β2
0σ

2 (B.27)

Covq=0(xt−1, ht) = 0 (B.28)

V arq→∞(ht) =
β2
0

1− δ2
σ2 (B.29)

Covq→∞(xt−1, ht) =
β2
0

1− δ2
δ

1− αδ
σ2 (B.30)

Using the definitions (B.17) to (B.19), V arq=0(πt)
!
> V arq→∞(πt) is equivalent to

(1− α)Covq→∞(xt−1, ht) > V arq→∞ht − V arq=0ht ⇔ 1− α

1− αδ
> δ ⇔ (B.31)

1− β−1a− 2β−1a2 > [(2 + β−1)a− 1]
√

1− 4β−1a2 ⇔ (B.32)

(β2 − β) + (1 + 2β)
δ2

λ
+
κ4

λ2
>

(

β − κ2

λ

)

√

(1− β)2 + 2(1 + β)
κ2

λ
+
κ4

λ2
(B.33)

Let z = κ2/λ, then inequality B.33 can be simplified to

z2 + 2(1 + β)z + β(β − 2) > 0 (B.34)

and holds if

z =
κ2

λ
>
√

1 + 4β − (1 + β) (B.35)

Although the variance of the inflation rate may decrease with increasing anticipation horizon
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q, it can be shown that the loss

Lossq = V arq(πt) + λV arq(xt) (B.36)

is always smaller for q = 0 than for q → ∞. It holds:

Lossq→∞ =

{

2

1 + α

(

λ

κ

)2
1− δ

1− αδ

1

1− δ2
+ λ

1

1− α2

1

1− δ2
1 + αδ

1− αδ

}

β2
0σ

2 (B.37)

Lossq=0 =

{

2

1 + α

(

λ

κ

)2

+ λ
1

1− α2

}

β2
0σ

2 (B.38)

Then Jq→∞

!
> Jq=0 is equivalent to

2λ

κ
[1− α(1 + δ)] <

2α + δ(1− αδ)

(1− α)(1− δ)
⇔ 2b[

√
1− 4ab− b] < b+ b(1 + β)

√
1− 4ab (B.39)

Since b = 1/[1 + β + z], 1− 4ab = 1− 4β/[1 + β + z]2, (B.39) is equivalent to

0 < 4β(1− β)2 + β(2− β)(1 + β + z) + 4(1 + β + z) (B.40)

This inequality is always satisfied since z = κ2/λ > 0.

B.3 Purely backward-looking price setting

In this section, we discuss volatility results in the opposite limit case of purely backward-looking

price setting behavior. In this limit case (φπ = 1), the New Keynesian model under optimal

unrestricted monetary policy given by (A.1) and (A.6) reduces to23

πt = βπt−1 + κxt + εt−q (B.41)

πt = −λ
κ
(xt − β2Etxt+1) (B.42)

23Note that under purely backward-looking price setting behavior, the model under discretionary policy is equiv-
alent to the model under unrestricted monetary policy. Thus, the results in this section also hold in the regime
discretion.
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The inflation rate can be written as a hybrid univariate equation of the form

πt = aEtπt+1 + bπt−1 + c(εt−q − β2Etεt−q+1) (B.43)

with c = ϕ/(1 + ϕ+ ϕβ3), b = βc, a = β2c, and ϕ = λ/(κ2). The system can again be written

as

πt =

∞
∑

s=0

αsht−s (B.44)

where α = (1−
√
1− 4ab)/2a and

ht =

q
∑

k=0

δkβ0εt+k−q − β2

q−1
∑

k=0

δkβ0εt+k−q+1 (B.45)

The variance of the inflation rate can be derived as follows:

V ar(πt) = E

(

∞
∑

s=0

αs

q
∑

k=0

δkβ0εt−s+k−q − β2

∞
∑

s=0

αs

q−1
∑

k=0

δkβ0εt−s+k−q+1

)2

(B.46)

= V (q)− 2β2Z + β4V (q − 1) (B.47)

where V (·) is given by (B.10) and

Z = E

[(

∞
∑

s=0

αs

q
∑

k=0

δkβ0εt−s+k−q

)(

∞
∑

s=0

αs

q−1
∑

k=0

δkβ0εt−s+k−q+1

)]

(B.48)

= E

[(

∞
∑

s=0

αsβ0εt−s−q

)(

∞
∑

s=0

αs

q−1
∑

k=0

δkβ0εt−s+k−q+1

)]

+ δV (q − 1) (B.49)

=
α

1− α2

1− (αδ)q

1− αδ
β2
0σ

2 + δV (q − 1) =
α

1− α2
β2
0σ

2

q−1
∑

j=0

(αδ)j + δV (q − 1) (B.50)

Then V arq(πt) can be written as

V ar(πt) = V (q)− 2β2 α

1− α2

1− (αδ)q

1− αδ
β2
0σ

2 + (β4 − 2β2δ)V (q − 1) (B.51)
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C Solution method for rational expectations models with

news shocks under optimal unrestricted monetary pol-

icy

The hybrid New Keynesian model under optimal unrestricted monetary policy given by equa-

tions (A.1) and (A.6) can be written in matrix form

Φst+1 = Ψst + gεt+1 (C.1)

where st+1 = (η̃
(q)
t+1, x̃t+1, π̃t+1, Etxt+1, Etπt+1)

′, η̃
(q)
t+1 = (η

(0)
t+1, η

(1)
t+1, . . . , η

(q−1)
t+1 , η

(q)
t+1)

′ with x̃t =

xt−1, π̃t = πt−1, η
(j)
t = εt−j ∀ j = 0, . . . , q and g = (1, 0, . . . , 0)′, and

Φ =







Iq+3 02×(q+3)

0(q+3)×2 Φ22






(C.2)

Ψ =







Ψ11 0(q+1)×5

04×q Ψ22






(C.3)

with 0n×m as (n×m)-dimensional zero matrix, In as n-dimensional identity matrix, and

Φ22 =







λβ2φπ

κ
0

0 β(1− φπ)






(C.4)

Ψ11 =







01×q

Iq






(C.5)

Ψ22 =



















0 0 0 1 0

0 0 0 0 1

0 −(1− φπ)
λ
κ

0 λ
κ

1

−1 0 −βφπ −κ 1



















(C.6)
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Let wt+1 = (η̃
(q)
t+1, x̃t+1, π̃t+1)

′ contain the backward-looking variables. The variance-covariance

matrix Cov(wt) = Σw in vectorized form is given by

vec(Σw) = (I(q+3)2 −M ⊗M)−1vec(gg′)σ2 (C.7)

where M = Z11S
−1
11 T11Z

−1
11 .

24 According to Söderlind (1999), Z11, S11, and T11 follow from the

Generalized Schur decomposition Φ = Q
′
SZ

′
and Ψ = Q

′
TZ

′
with

S =







S11 S12

0 S22






, T =







T11 T12

0 T22






, Z =







Z11 Z12

Z21 Z22






(C.8)

Q and Z are the complex-conjugates of Q and Z, respectively. The (q+3× q+3)-dimensional

submatrices S11 and T11 contain the stable eigenvalues of the system (C.1).

24Note that S−1

11 and Z−1

11 exist if the conditions of Blanchard and Kahn (1980) hold.
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