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VALUES FOR COOPERATIVE GAMES OVER GRAPHS AND
GAMES WITH INADMISSIBLE COALITIONS

ZIV HELLMAN AND RON PERETZ

ABSTRACT. We suppose that players in a cooperative game are located
within a graph structure, such as a social network or supply route, that
limits coalition formation to coalitions along connected subsets within
the graph. This in turn leads to a more general study of coalitional games
in which there are arbitrary limitations on the collections of coalitions
that may be formed. Within this context we define a generalisation of
the Shapley value that is studied from an axiomatic perspective. The re-
sulting ‘graph value’ (and ‘S-value’ in the general case) is endogenously
asymmetric, with the automorphism group of the graph playing a crucial
role in determining the relative values of players.

Keywords: Shapley value, network games.
JEL classification: C71, D46, D72.

1. INTRODUCTION

One of the standard interpretations of the Shapley value, as a measure
of the average marginal contribution of a player to each and every possible
coalition, may strain credulity if taken too literally in a great many social
situations. This holds particularly when players may, due to affinity, con-
sanguinity or other factors, have clear preferences for joining certain coali-
tions as opposed to others. Consider, for just one example, a job market.
Is it not more likely that a potential hire will join a company if he knows
someone within the company? How likely is it for a job seeker to join a
company if she does not share a common language with any of its current
employees?

Cases in which many theoretically possible coalitions will not realisti-
cally be formed are not limited to social situations alone. If one is studying
cooperative coalitions amongst players connected via supply routes, com-
puter networks or web links, there are clear structural reasons for entirely
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excluding some coalitions that would otherwise play a role in the calcula-
tion of the classic Shapley value and including in consideration instead only
coalitions that are connected along the underlying network.

Networks, for obvious reasons, have increasingly been a focus of study
in several disciplines over the past two decades.1 What we propose here
is introducing network or graph structures directly into the study of coali-
tional game theory, by limiting consideration of potential coalitions solely
to coalitions that are connected along the graph. Doing so, in the tradition
of measuring average marginal contributions, yields different values that we
argue may be more appropriate for assessing the values of players in many
situations than the classic Shapley value.

The potential applications of a graph value are many. A partial list may
include: coalition formation in complex political situations; studying power
relations and cost sharing in situations with geographic constraints such as
supply routes along roads or rivers; coalition formation in social networks;
and perhaps even cooperation between neighbouring genes inside chromo-
somes.

This requires departing in some ways from the classic model of trans-
ferable utility games, which associates a certain worth to every coalition.
That model implicitly assumes that the only force that drives the formation
of coalitions is the worth they generate. The model we introduce here takes
into account a proximity relation between players represented as edges of an
undirected graph (a symmetric binary relation). It is assumed that a player
only joins a coalition if he is connected to one of its members. As a result
the only admissible coalitions are the connected subgraphs.

Once one has taken this step, however, it is natural to continue on to
consider coalitional games in which some coalitions are inadmissible and
cannot be formed, for arbitrary reasons, not necessarily because they are not
connected along a path in a network. There may be many natural reasons
for such a restriction. For example, there may be a cost incurred for the
very formation of a coalition, depending on coalition membership, size and
so forth. If the cost is too prohibitive, some coalitions may never be formed
and should therefore be considered ‘inadmissible’. Past history or cultural
and social taboos may in some cases also place the formation of certain
coalitions entirely out of the realm of possibility.

1 Perhaps a contemporary canonical example would be an on-line social network, with
coalitions naturally growing in size by way of adding at each stage friends of current
members.
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This leads to the formal consideration of games with admissible struc-
tures, that is, games in which only a subset A of the set 2N of all poten-
tial coalitions is admissible.2 In such games, the characteristic function is
defined only for coalitions in A, yielding a different theory from that of
classical coalitional game theory.

Imposing the standard Shapley axioms (additivity, symmetry, null player
and efficiency) to games with admissible structures, we define a value con-
cept that we term an S-value. It might appear naı̈vely that doing so would
easily yield a unique value generalising the Shapley value. Matters, how-
ever, turn out to be far from this simple. Even the existence of an S-value in
a general game with an admissible structure is not always guaranteed; one
must either assume further connectivity properties or assume more axioms.

Strengthening the additivity axiom in the list of the Shapley axioms to
linearity is both necessary and sufficient for the existence of an S-value
(Theorem 1). This alone does not yet grant uniqueness. We provide a char-
acterisation of uniqueness of the S-value in Theorem 2.

After this study of values over games with admissible structures, which
is interesting in its own right, we can apply the results to the special case
of admissibility structures defined by graphs. We term monotonic S-values
adapted to such admissibility structures graph values.

However, hopes that in this way a unique graph value can always, or even
in most cases, be defined are dashed by Theorem 3, which shows that the
graph value is unique only over two graphs: the complete graph (where it
is the classic Shapley value) and the cycle. In all other graphs, the standard
axioms used for the study of the Shapley value are insufficient to pick out a
unique graph value.

The results here are, to the best of our knowledge, the first attempts to
extend the Shapley value in general to situations of limited coalition ad-
missibility and in particular to games with graphs defining relationships be-
tween players. They shed new light on the axiomatics underlying the classic
Shapley value and also indicate that the theory of values in games with ad-
missibility structures is likely to be a rich theory, requiring the addition of
more axioms to replicate the straightforward existence and uniqueness that
make the classic Shapley value such a compelling solution concept.

2. FROM THE SHAPLEY VALUE TO GRAPH VALUES

2.1. Motivation.
2 It should be noted that we do not depart from the classic assumption of complete

information. The study of coalitional games of incomplete information is important in its
own right. See for example Forges and Serrano (2011).
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As motivation, we begin with consideration of a well-known interpreta-
tion of the classic Shapley value. We suppose as background the standard
model of a coalitional game, i.e., a set N of players, of cardinality n, is
given, along with a characteristic function v which is a real-valued function
v : 2N → R with the convention that v(∅) = 0.

The players are asked to enter the room in a random order i1, i2, . . . , in.
As each player ij enters, he or she joins the coalition S = {i1, i2, . . . , ij−1}
comprised of the players who have previously entered.

One could then possibly assign player ij the marginal value that he or
she adds to S, i.e., v(S ∪ ij) − v(S). That, however, would introduce a
dependency on a particular random order. To avoid this, the celebrated
Shapley value of a player (Shapley (1953a)) is defined to be the expected
marginal contribution he or she adds to a coalition formed under such a
random ordering, with respect to the uniform distribution over all orderings
of N .

Underlying this story are several implicit assumptions, including:

(1) The assumption that all possible coalitions, e.g., all subsets of N ,
are admissible for consideration and may be constructed.

(2) The assumption that coalitions are constructed monotonically, that
is, that new players are always added to existing coalitions but play-
ers in a coalition never leave.

(3) The assumption that players are always added one at a time to ex-
isting coalitions.

As noted in the introduction, however, there are many natural situations
cases in which the assumption that all possible coalitions are admissible is
untenable. In what follows we therefore limit the coalitions that are admis-
sible and consider values in that more general case. It also turns out that
this alone is not sufficient; the ways in which coalitions can be constructed,
by adding or subtracting players, are also important for the study of values
over games with admissibility structures.

2.2. Preliminaries.
A finite set of playersN of cardinality n = |N | is assumed fixed through-

out.
In a classic coalitional game theory model, one would proceed at this

point to define a characteristic function assigning a worth to every possible
subset of N . However, since we wish to generalise the classic Shapley
value, we restrict the collection of coalitions which may be formed in our
model. A collection A ⊆ 2N of subsets of N that includes the empty
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set ∅ and the grand coalition N defines an admissibility structure, denoted
(N,A).

The elements of A intuitively play the role of the coalitions that may be
formed, excluding the elements of 2N \ A from consideration. They will
therefore formally be termed admissible coalitions, although we will often
just call them coalitions for short.

Only admissible coalitions have a defined worth in the model, which af-
fects the range of possible games. A coalitional game over an admissibility
structure (N,A) is given by a characteristic function v which is a real-
valued function v : A → R with the convention that v(∅) = 0. Denote the
collection of all coalitional games over a fixed admissibility structure A by
K(N,A), or simply byK for short whenN andA are fixed and understood.

In the special case in which the admissibility structure A = 2N , the
above definitions reduce to the standard definitions used in classic coali-
tional game theory.

Symmetry, as determined by automorphisms, will play a major role in
the study of K. We denote by Aut(N,A) the set of all permutations over
N that preserve A, meaning bijective mappings π : N → N such that
{i ∈ N : π(i) ∈ A} ∈ A, for all A ∈ A. With tolerable abuse of notation,
given a permutation π : N → N we also consider π to be a mapping
π : 2N → 2N by defining π({i1, i2, . . . , ik}) = {π(i1), π(i2), . . . , π(ik)}.
We will also abuse notation by sometimes writing i instead of the singleton
set {i} when no confusion is possible, for the sake of readability.

We say that player i ∈ N is a null player in a game v ∈ K, if v(S) =
v(S ∪ i), whenever S, S ∪ i ∈ A. An A preserving function f : N → N
defines an operator on games, f ◦ v(S) = v(f−1(S)). A game v ∈ K is
called monotonic if v(S) ≤ v(T ), for every S, T ∈ A such that S ⊂ T .

2.3. Generalising the Shapley Value.
Conceptually, a value for a coalitional game is a way of assigning a payoff

to every player in the game. A value for player i onK is therefore a function
ϕi : K → R. Given a value for each player, a (group) value on K, ϕ =
(ϕ1, ϕ2, . . . , ϕn), concatenates the individual values into a payoff vector in
RN for each game.

The classic Shapley value was defined for A = 2N in Shapley (1953a)
using four axioms. These four Shapley axioms form the basis for our gen-
eralisation of Shapley’s value to more general admissibility structures.

Definition 1. We say that ϕ : K(N,A)→ R is an S-value if it satisfies the
following axioms:

Additivity: ϕ(v + u) = ϕ(v) + ϕ(u), for every v, u ∈ K.
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Symmetry: ϕπ(i)(π ◦ v) = ϕi(v), for every i ∈ N , v ∈ K, and
π ∈ Aut(N,A).
Null player: ϕi(v) = 0 whenever i is a null player in v.
Efficiency:

∑
i∈N ϕi(v) = v(N), for every v ∈ K.

We say that ϕ is monotonic if it satisfies

Monotonicity: ϕi(v) ≥ 0, for every player i and every monotonic
game v.

We say that ϕ is linear if it satisfies

Linearity: ϕ(av+u) = aϕ(v)+ϕ(u), for every v, u ∈ K and a ∈ R.

Note that additivity is a special case of linearity; the latter is a stronger
assumption than the former.

The classic Shapley value is the special case of an S-value when A =
2N . In that case, Lloyd Shapley proved that existence and uniqueness are
guaranteed. In the more general setting, existence might not hold, and it is
natural to inquire under what conditions S-values exist and when they are
unique.

As noted above, the proofs in Shapley (1953a) make use only of the prop-
erties of the additivity, symmetry, null player and efficiency axioms. The
‘players entering a room one by one’ explanation of the Shapley value as
expected marginal contribution is a later interpretation. It makes implicit
use of a ‘connectivity’ property inherent in the case A = 2N , namely that
adding one player to an already existing coalition always yields a new, ad-
missible coalition.

As we will show, it turns out that in the general setting the existence
of an S-value depends exactly on assuming a connectivity property for the
admissibility structure. We say that (N,A) is connected if there exists a
finite sequence of admissible coalitions ∅ = S0, S1, . . . , Sk = N such that
|(Sl \ Sl−1) ∪ (Sl−1 \ Sl)| = 1 for every 1 ≤ l ≤ k. Such a sequence is
called a chain.

The definition of a chain deliberately invokes the player-by-player con-
struction of coalitions taken from the intuitive interpretation of the Shapley
value. It is, however, more general in that the chain process admits the
possibility of coalitions shrinking as well as expanding.

Given a chain c = (S0, S1, . . . , Sk) it is natural to define a value ψc by

(1) ψci (v) =
k∑
l=1

1(i ∈ (Sl \ Sl−1) ∪ (Sl−1 \ Sl))[v(Sl)− v(Sl−1)],
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A (linear) S-value is then defined as

ϕc =
∑

π∈Aut(N,A)

ψπ(c),

where π(c) := (π(S0), . . . , π(Sk)).
In general, ϕc need not be monotonic, but if S0 ⊂ S1 ⊂ · · · ⊂ Sk (equiv-

alently, k = n, i.e., the coalition construction process monotonically adds
one new player at each step) then ϕc is monotonic. Such a chain is called
monotonic. If a monotonic chain for (N,A) exists, we say that (N,A) is
monotonically connected.

It turns out that the existence of chains is necessary for the existence of
the corresponding values. The following observations are further explained
in Section 3.

Proposition 1. An admissibility structure admits an S-value if and only if it
is connected.

Proposition 2. An admissibility structure admits a monotonic S-value if
and only if it is monotonically connected.

Every solution concept that satisfies additivity and the null player prop-
erty is linear over Q. Monotonicity implies continuity; therefore any mono-
tonic S-value is linear.

The relation between (additive) S-values and linear S-values is as follows.
Any S-value is linear over Q. LetK1 be the linear space over Q of Q-valued
games. The space of real-valued gamesK can be represented as a direct sum
of copies of K1. An S-value on K is obtained by independently specifying
it on each one of the copies of K1. Specifying the same value on each one
of the copies yields a linear S-value (on K).

Consequently, both the existence and the uniqueness of an S-value co-
incide with the existence and the uniqueness of a linear S-value. We can
thus concentrate on the class of linear S-values in our quest for conditions
on existence and uniqueness of S-values in general. This is the content of
Theorem 1.

Theorem 1. An admissibility structure admits an S-value if and only if it
admits a linear S-value. Furthermore, an S-value is uniquely defined if and
only if a linear S-value is uniquely defined.

In order to attain a similar relation between linear and monotonic S-
values, we assume an additional connectivity condition. We say that an
admissibility structure (N,A) is well-connected if there is a monotonic
chain through any admissible coalition. In other words, for every admis-
sible coalition S there is a monotonic chain S0 ( S1 ( · · · ( Sn, such that
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S = Sl for some 0 ≤ l ≤ n. On a well-connected admissibility structure,
the set of all linear S-values is the affine span of the set of all monotonic
S-values; therefore we have the following theorem:

Theorem 2. With respect to any well-connected admissibility structure, the
following statements are equivalent:

(1) The S-value is uniquely defined.
(2) Every S-value is monotonic.
(3) Every S-value is linear.
(4) Every linear S-value is monotonic.

2.4. Graph Values.
Our original motivation for studying values over admissibility structures

was consideration of coalition formation over graphs. Graphs provide a nat-
ural class of admissibility structures: a coalition over a graphs is admissible
only if it can be constructed step-by-step by following a path in the graph.
More formally, a connected graph G = (N,E) whose vertex set is the set
of players defines an admissibility structure (N,A(G)), where A(G) is the
collection of all connected subsets S ⊂ N . Namely, between any i, j ∈ S
there is a path of G that visits only vertices of S. A monotonic S-value
adapted to such an admissibility structure is called a graph value.

By Theorem 2, a graph G admits a unique graph value if and only if it
admits a unique S-value. We immediately know at least one graph over
N that admits a unique graph value: the admissibility structure (N, 2N =
A(Kn)) of the complete graph Kn over N (i.e., the graph in which each
player is connected by an edge to every other player) is exactly the set 2N .
The graph value in this case is therefore the unique classic Shapley value.

Which other graphs over N admit a unique graph value? Surprisingly,
apart from the complete graph there is only one other graph that admits a
unique graph value.

Theorem 3. The graphs on which the graph value is uniquely defined are
exactly the complete graph Kn and the cycle Cn.

On the way to proving the above theorems we characterise the values that
satisfy subsets of the axioms. These results are presented in Section 3 and
summarised in Table 1.

3. VALUES ON ADMISSIBILITY STRUCTURES

3.1. Coalitional DAG and n-linear values.
An admissibility structure (N,A) is associated with a directed acyclic

graph (DAG) DA = (A, E(A)) whose vertex set is A, and there is an arc
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FIGURE 1. The directed acyclic graph associated with the
4-cycle. The admissible coalitions are subsets of Z4 of the
form {i, i+ 1 . . . , i+ k}, 0 ≤ i, k ≤ 3.

from S to T if and only if T = S∪ i, for some i ∈ N \S (see an example in
Figure 1). Note that an undirected path from ∅ to N corresponds to a chain,
a directed path – to a monotonic chain, and the fact that there are exactly
one source and one sink – to (N,A) being well-connected.

The values that satisfy the axioms of linearity and null player correspond
to assignments of real numbers on the arcs of the coalitional DAG.

Before proving the above statement, let us fix some useful notation. Let
{χT}T∈A\{∅} be the standard basis for K = K(N,A) over R. That is,

χT (S) =

{
1 if S = T ,
0 if S 6= T .

For a collection of coalitions B ⊂ A \ {∅}, we define χB :=
∑

T∈B χT ,
with tolerable abuse of notation. We also denote χ⊇T := χ{S∈A:S⊇T} and
χ)T := χ{S∈A:S)T}.

For a coalition T ∈ A, let T+ be the set of all players i ∈ N \ T such
that T ∪ i ∈ A. Similarly, let T− be the set of all players i ∈ T such that
T \ i ∈ A. For i ∈ N , we define A−i = {T ∈ A : i ∈ T+}.

If ϕ : K → RN is linear, we have

(2) ϕi(v) = ϕi(
∑
T∈A

v(T )χT ) =
∑
T∈A

v(T )ϕi(χT ).
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If i ∈ T+, then i is a null player in χ{T,T∪i}; therefore if ϕ satisfies linearity
and the null player axiom, we have ϕi(χT ) + ϕi(χT∪i) = 0. Since the
players not in T+ ∪ T− are null players in χT , Equation (2) becomes

(3) ϕi(v) =
∑

T∈A:i∈T+

piT (v(T ∪ i)− v(T )),

where piT = ϕi(χT∪i).
We call values that satisfy both the null-player and the linearity axioms

n-linear values. From Equation (3) we get a one-to-one correspondence
between the n-linear values on (N,A) and functions from E(A) to R.

Proposition 3. The values satisfying the linearity and null-player axioms
are exactly all the values of the form

ϕi(v) =
∑
T∈A−i

piT [v(T ∪ i)− v(T )],

where {piT : i ∈ N, T ∈ A−i} are arbitrary real numbers.

In the rest of this section, we gradually introduce further axioms and
examine the constraints that these axioms impose on the possible values of
{piT}.

3.2. The dummy axiom and probabilistic values.
The dummy axiom asserts that the value of a player whose marginal con-

tribution is constant is exactly that constant. Formally, a player i is called a
dummy player with marginal contribution di ∈ R in a game v ∈ K(N,A),
if A−i 6= ∅ (i has a marginal contribution) and v(T ∪ i) − v(T ) = di, for
every T ∈ A−i.

If di = 0 then i is also a null player. If di 6= 0, we say that i is a proper
dummy player.

We say that ϕ : K → RN satisfies the dummy axiom if

Dummy: ϕi(v) = di, whenever i is a dummy player with marginal
contribution di in v.

From Equation (3) and the fact that whenever A−i 6= ∅ there exists a game
in which i is a proper dummy player (e.g., χ{T∈A:i∈T}), we see that postu-
lating the dummy axiom for n-linear values is equivalent to imposing the
following constraint:∑

T∈A−i

piT = 1, for every player i for whom A−i 6= ∅.(4)



VALUES FOR COOPERATIVE GAMES OVER GRAPHS AND GAMES WITH INADMISSIBLE COALITIONS11

Proposition 4. The values satisfying the linearity, null-player and dummy
axioms are exactly all the values of the form

ϕi(v) =
∑
T∈A−i

piT [v(T ∪ i)− v(T )],

where {piT : i ∈ N, T ∈ A−i} are real numbers satisfying∑
T∈A−i:

piT = 1,

for every i ∈ N such that A−i 6= ∅.

Following Weber (1988), a probabilistic value is a function ϕ : K → RN

given by Equation (3) that satisfies Equation (4) and

piT ≥ 0, for every i and T ∈ A−i.(5)

If we allow piT to be negative (imposing only Equation (4)), we say that ϕ
is a pre-probabilistic value.

Imposing Equation (5) is equivalent to postulating monotonicity for n-
linear values.

Proposition 5. The monotonic values satisfying the linearity and null-player
axioms are exactly all the values of the form

ϕi(v) =
∑
T∈A−i

piT [v(T ∪ i)− v(T )],

where {piT : i ∈ N, T ∈ A−i} are non-negative real numbers.

Proof. If all piT ≥ 0 then Equation (3) yields a monotonic value. It re-
mains to show the converse: every monotonic n-linear value ϕ satisfies
ϕi(χT∪i) ≥ 0, for all i ∈ N and T ∈ A−i. Take such ϕ, i, and T . Since i is
a null player in both χ{T,T∪i} and χ⊇T , we have 0 = ϕi(χT ) + ϕi(χT∪i) =
ϕi(χT ) + ϕi(χ)T ), and so ϕi(χT∪i) = ϕi(χ)T ). The game χ)T is mono-
tonic; therefore ϕi(χ)T ) ≥ 0.

Propositions 4 and 5 together yield the following corollary.

Corollary 1. A function ϕ : K → RN is

– a pre-probabilistic value if and only if it satisfies the linearity, null
player, and dummy axioms;
– a probabilistic value if and only if it satisfies the linearity, null
player, dummy and monotonicity axioms.



VALUES FOR COOPERATIVE GAMES OVER GRAPHS AND GAMES WITH INADMISSIBLE COALITIONS12

3.3. Efficiency, flows, and random order values.
We now introduce efficiency. First we remark that, in conjunction with

n-linearity, efficiency implies the dummy axiom. To see that, suppose ϕ is
an efficient n-linear value. Let v ∈ K(N,A) be a game in which player i
is a dummy player with marginal contribution di. Let u = diχ{T∈A:i∈T}.
Player i is a null player in v−u; therefore ϕi(v) = ϕi(u). All of the players
other than i are null players in u, and so ϕi(u) = u(N) = di, by efficiency.

Efficient n-linear values are related to flows on the coalitional DAG. Let
ϕ : K(N,A) → RN be an n-linear value associated with weights {piT :
i ∈ N, T ∈ A−1} through Equation (3). If ϕ is efficient, then for any
T ∈ A \ {∅} we have

χT (N) =
∑
i∈N

ϕi(χT ).

Since

χT (N) =

{
0 if T 6= N ,
1 if T = N ,

ϕi(χT ) =


piT\i if i ∈ T−,
−piT∪i if i ∈ T+,
0 otherwise,

we have ∑
i∈T−

piT =
∑
i∈T+

piT∪i, for all T ∈ A \ {∅, N},(6)

and ∑
i∈N−

piN = 1.(7)

Conversely, if {piT : i ∈ N, T ∈ A−1} satisfies Equations (6) and
(7), then the associated n-linear value is efficient. Indeed, for every v ∈
K(N,A),∑
i∈N

ϕi(v) =
∑
i∈N

∑
T∈A−i

piT (v(T ∪ i)− v(T )) (by Equation (3))

=
∑

T∈A\{∅}

v(T )

∑
i∈T−

piT\i −
∑
j∈T+

pjT


= v(N) (by Equations (6) and (7)).

An assignment of real numbers to the arcs of the coalitional DAG {piT :
i ∈ N, T ∈ A−1} that satisfies Equation (6) is called a flow (from the source
∅ to the sink N ). A flow that satisfies Equation (7) is called a unit flow. If
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all the weights satisfy the constraint that piT ≥ 0, then the flow is called a
non-negative (unit) flow.

Proposition 6. The values satisfying the linearity, null-player, and effi-
ciency axioms are exactly all the values of the form

ϕi(v) =
∑
T∈A−i

piT [v(T ∪ i)− v(T )],

where {piT : i ∈ N, T ∈ A−i} constitutes a unit flow.

Corollary 2. The monotonic values satisfying the linearity, null-player, and
efficiency axioms are exactly all the values of the form

ϕi(v) =
∑
T∈A−i

piT [v(T ∪ i)− v(T )],

in which {piT : i ∈ N, T ∈ A−i} constitutes a non-negative unit flow.

Proof of Propostions 1 and 2. The proof follows from the fact that a (non-
negative) unit flow exists if and only if there is an un-directed (directed)
path from ∅ to N in DA.

Monotonic efficient n-linear values have the following interpretation: the
players enter the room in a random order i1, i2, . . . , in. The value of player
i is his or her expected marginal contribution with respect to that random
order.

So far, this story follows the standard interpretation of the classic Shap-
ley value. However, in our context, in order for the marginal contribution to
be well defined, we must require that the players in the room at any given
time form an admissible coalition (with probability one). This is equivalent
to requiring that the coalitions Sk = {i1, . . . , ik} (k = 0, 1, . . . , n) form a
chain. Following Weber (1988), a value obtained in this way from a prob-
ability distribution over monotonic chains is called a random order value.
Formally, for a monotonic chain c, the value ψc (defined by Equation (1))
is a random order value; any convex combination of such values is called
a random order value. An affine combination of random order values is
called a pre-random order value.

Proposition 7. The monotonic values satisfying the linearity, null-player,
and efficiency axioms are exactly the random order values.

Proof. For any monotonic chain c, ψc satisfies linearity, null-player, ef-
ficiency, and monotonicity. Each one of these axioms is preserved under
convex combinations; therefore random order values satisfy these axioms.
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Conversely, by Corollary 2, the set of monotonic efficient n-linear values
correspond to the set of non-negative unit flows on the coalitional DAG.
The set of non-negative unit flows is a convex polytope given by Equation
(5), Equation (6), and Equation (7). The extreme points of this polytope are
unit flows supported on a single directed path; therefore any non-negative
unit flow is a convex combination of such paths. The proof is concluded
with the observation that the value induced by any unit flow supported on a
path S0S1 · · ·Sn is exactly ψS0,S1,...,Sn .

Non-negative flows are supported on directed paths from the source ∅
to the sink N ; therefore random order values do not depend on the worth
of coalitions that are not contained in any monotonic chain. Removing
these coalitions from A does not change the set of random order values.
Let (N,A) be a monotonically connected admissibility structure. Define
A′ ⊂ A as the largest sub-collection of coalition w.r.t. (N,A′) being well-
connected. Explicitly,

A′ = {T ∈ A : DA contains a directed path from ∅ to N through T}.

Proposition 8. The affine space of pre-random order values on a monoton-
ically connected admissibility structure (N,A) is isomorphic to the affine
space of pre-random order values on (N,A′) through the natural isomor-
phism

κ : (RN)K(N,A
′) → (RN)K(N,A),

(κϕ)(v) = ϕ(v|A′).

Any pre-random order value is efficient and n-linear. On well-connected
admissibility structures, the converse is also true.

Proposition 9. The pre-random order values on a well-connected admissi-
bility structure are exactly the efficient n-linear values.

Proof. The coalitional DAG of a well-connected admissibility structures
has a single source ∅ and a single sink N . In light of Proposition 6 and
Corollary 2, the proof follows from the combinatorial fact that on a finite
directed graph with one source s and one sink t, every unit flow from s to t
is an affine combination of non-negative unit flows from s to t (Lemma 2).

From Propositions 8 and 9 we have the following corollary.

Corollary 3. The affine space of pre-random order values on a monoton-
ically connected admissibility structure (N,A) is isomorphic to the affine
space of efficient n-linear values on (N,A′) through the natural isomor-
phism κ of Proposition 9.
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Lemma 2. Let D be a finite directed graph with one source s and one sink
t. Every unit flow from s to t is an affine combination of non-negative unit
flows from s to t.

Proof. Let f : E(D)→ R be a unit flow from s to t. We prove the lemma
by induction on the number of arcs e such that f(e) < 0. Let e ∈ E(D)
with f(e) < 0. Extend the arc e to a maximal simple directed path p. Since
s and t are the only source and sink, p is a simple directed path from s to t.
Let g be the non-negative unit flow supported on p. We can express f as an
affine combination of unit flows

f = (1 + |f(e)|)f + |f(e)|g
1 + |f(e)|

− |f(e)|g,

where g is non-negative and f+|f(e)|g
1+|f(e)| has one less negative edge than f .

3.4. The symmetry projection. Recall thatAut(N,A) acts on games v ∈
K(N,A) by

(π ◦ v)(T ) = v(π−1(T )).

By identifying vectors in RN with additive games it is standard to define
right and left actions of Aut(N,A) on values ϕ : K(N,A)→ RN by

(π ◦ ϕ)(v) = π ◦ (ϕ(v)),

(ϕ ◦ π)(v) = ϕ(π ◦ v).

The conjugation action
ϕ 7→ π ◦ ϕ ◦ π−1

preserves each one of the axioms: additivity, linearity, null-player, dummy,
efficiency, and monotonicity separately. Therefore, we can think of symme-
try as the property of being a fixed point of a mixing operator Sym defined
by

Symϕ =
1

|Aut(N,A)|
∑

π∈Aut(N,A)

π ◦ ϕ ◦ π−1.

Note that a value is symmetric if and only if its conjugation orbit is a sin-
gleton.

The operator Sym is a projection from the set of values (RN)K(N,A) to the
set of symmetric values Sym

(
(RN)K(N,A)

)
. Additionally, for any subset

X ⊂ (RN)K(N,A) obtained by postulating a subset of the above axioms,
Sym(X) is the set of symmetric values satisfying that subset of axioms.

Since Sym is a linear operator, we get the following characterisation of
the linear S-values.
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Proposition 10. The monotonic S-values on a well-connected admissibility
structure (N,A) are exactly the random order values defined byAut(N,A)-
invariant distributions over chains on (N,A).

Proposition 11. With respect to a well-connected admissibility structure,
the affine space of linear S-values is exactly the affine span of the set of
monotonic S-values.

3.5. Additivity and Characterisation of S-values. In this section we fi-
nally present the proofs of Theorems 1 and 2.

Proof of Theorem 1. Additivity and the null player axiom imply linearity
over Q. Denote the Q-linear space of all rational games by

(8) K1 := {v ∈ K(N,A) : v(S) ∈ Q, ∀S ∈ A}.
For a real number x 6= 0 let

(9) Kx := xK1 = {v ∈ K(N,A) : x−1v(S) ∈ Q, ∀S ∈ A}.
For any Q-linear function ψ : K(N,A)→ RN and any x ∈ R \ {0}, let ψx
be the restriction of ψ to Kx. Let ϕx be the unique R-linear extension of ψx
to K(N,A). Note that ϕx is a linear over R.

The transformation ψ 7→ ϕx preserves efficiency and symmetry, since
linear extensions preserve properties defined by linear equalities (and sym-
metry is characterised as a fixed point of a linear operator).

We show that ψ 7→ ϕx preserves the null-player axiom. Suppose i ∈
N is a null player in a game v =

∑
T∈A rTxχT . We can write v =∑

T∈A−i rTxχT,T∪i +
∑

T :i 6∈T−∪T+ rTxχT . Player i is a null player in each
one of the summands; therefore if ψ satisfies the null player axiom, then so
does ϕx, since

(fx)i(v) =
∑
T∈A−i

rTψ(xχT,T∪i) +
∑

T :i 6∈T−∪T+

rTψ(xχT ) = 0.

It follows that an admissibility structure admits an S-value iff it admits a
linear S-value.

Suppose now that ψ is an S-value. Then ϕx, for each x, is a linear S-
value. If there is only one linear S-value, then ψ is uniquely defined on
every Kx, and since K(N,A) =

∑
x∈R\{0}Kx, ψ is uniquely defined on

K(N,A).
We next turn to the proof of Theorem 2.

Proof of Theorem 2. The equivalence between the uniqueness of the S-
value and linear S-value is established in Theorem 1. When they are not
unique, one can take two different linear S-values ϕ and ψ. Let B ⊂ R



VALUES FOR COOPERATIVE GAMES OVER GRAPHS AND GAMES WITH INADMISSIBLE COALITIONS17

be a basis for R over Q. Take some x ∈ B. Define a Q-linear value η by
specifying, using a basis for K(N,A) over Q,

η(bχT ) =

{
ϕ(bχT ) if b = x,
ψ(bχT ) if b 6= x.

for every b ∈ B and T ∈ A.
The restriction of η to every Kb (for all b ∈ B, using the denotation of

Equation (9)) satisfies the Shapley axioms; therefore η is an S-value. If η
were R-linear, then we would have η = ϕ since they agree on Kx which
spans K(N,A) over R. Similarly, we would have η = ψ, since they agree
on some Kb, b ∈ B \ {x}. This would be a contradiction, hence η is not
R-linear.

Well-connected admissibility structures always admit a monotonic value.
By Proposition 5 the space of linear values is the affine span of the set of
monotonic values. It follows that the uniqueness of the latter implies the
uniqueness of the former. Since the set of monotonic S-values is bounded
it can be equal to its affine span only if it is a single point.

3.6. Summary of the axiomatics of values.
Table 1 summarises the different classes of values obtained by postulating

various subsets of the Shapley axioms on a well-connected admissibility
structure.

n-Linear Value +: Equivalent to:
dummy pre-probabilistic value
dummy, monotonicity probabilistic value
efficiency pre-random order value
efficiency, monotonicity random order value
efficiency, symmetry Aut(N,A)-invariant pre-r.o.v.
efficiency, monotonicity, symmetry Aut(N,A)-invariant r.o.v.

TABLE 1. Axiomatics summary for well-connected admis-
sibility structures.

4. GRAPH VALUE

Recall that a connected graph G = (N,E) whose vertex set is the set
of players defines an admissibility structure (N,A(G)), where A(G) is the
collection of all connected subsets ofN . A graph value onG is a monotonic
S-value adapted to (N,A(G)).
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Note that the automorphism group of the admissibility structureAut(N,A(G))
is also the automorphism group of the graphAut(G). Any monotonic chain
can be identified with an admissible ordering of the players, an enumeration
of the players {i1, i2, . . . , in} = N such that {i1, . . . , ik} is connected for all
k = 1, . . . , n. A probability distribution on the set of admissible orderings
is called a random order, and it is called an invariant random order if it is
invariant under the action of Aut(G). By Proposition 10, the graph values
on G are exactly the invariant random order values, namely, random order
values defined through invariant random orders.

Example 3 (Spectrum Value). Álvarez, Hellman and Winter (2013) intro-
duced the spectrum value, a graph value defined over Pn, the path on n
vertices. Here, the edges are all pairs {k, k + 1}, k = 1, . . . , n− 1.

In this case the set of automorphisms contains only two elements: the
identity mapping and the mapping that reverses the ordering of the players
(so that player 1 is mapped to player n, player 2 to player n− 1 and so on).
�

Example 4 (Classic Shapley Value). LetKn be the complete graph overN .
Since the action of Aut(Kn) on the admissible orderings is transitive, there
is only one invariant random order (the uniform distribution) in this case;
therefore the graph value is uniquely defined.

This unique graph value in this case is precisely the classic Shapley value.
�

The proof of the uniqueness of the classic Shapley value in Example 4
relies on the fact that there is only one invariant random order over the
complete graph. In fact, the complete graph is the only graph on which
there is only one invariant random order. The graph value in general is not
unique, mainly because there may be several invariant random orders.

Nevertheless there is one more graph, in addition to the complete graph,
on which the graph value is uniquely defined – the cycle Cn. This holds true
despite the fact that the cycle Cn admits more than one invariant random
order.

Example 5 (n-cycle). An n-cycle, for n ≥ 3 is the graph whose vertex set
is {1, . . . , n} with edge set E = {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}}.

Claim 1. The graph value over the n-cycle is unique for all n ≥ 3.

Let ϕ be any graph value over Cn. By construction, for each player i
there are exactly two players j and k that are connected to i in Cn. Let
T ⊂ N be a connected coalition of players in Cn. Define i to be an internal
vertex of T if each of the two players j and k connected to i are also in T .
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Consider the unanimity game χ⊇T with carrier T ∈ A(Cn) \ ∅. If i is
an internal vertex of T then i is pivotal with respect to a given admissible
ordering iff i is the last player in that ordering. By symmetry, each internal
player has an equal probability of being last; it follows that ϕi(χ⊇T ) = 1/n
for all internal vertices i.

If T has a boundary (T 6= N ), then the two players on the boundary are
symmetric and they must therefore receive the same value by the symmetry
axiom. The players outside T are null player; therefore, by efficiency,

ϕj(χ⊇T ) =
1

2

(
1− |T | − 2

n

)
for each player j on the boundary of T .

This is sufficient to show that the graph value is unique over the n-cycle,
since the unanimity games span the space of all games. Note that the graph
value on the n-cycle is different from the classic Shapley vale that assigns
equal vales to all members of the carrier of a unanimity game. �

Subsequently, in the proof of Theorem 3 we will show that the complete
graph and the cycle are, in fact, the only graphs on which the graph value is
unique.

Finally, we consider one more example of a graph with an interesting
graph value.

Example 6 (n-star). The n-star graph is defined over the vertex set {0, 1, 2, . . . , n}
with edges {{0, 1}, {0, 2}, . . . , {0, n}}. Consider the simple majority game
v and any graph value ψ over the n-star graph. Then straightforward com-
binatorial calculations show that

ψ0(v) = 0

ψ1(v) = ψ2(v) = · · · = ψn(v) =
1

n
.

�

The result in Example 6 is again very different from the Shapley value,
because the internal vertex receives a zero value under all circumstances.
This is because the graph value essentially counts the number of times each
player is a pivot player among all admissible orderings. In the simple ma-
jority game over the star graph, the internal node can never be the pivot
player in any admissible coalition.

This may at first seem surprising, since one natural representation of the
internal node of a star graph is a market maker through whom everyone else
needs to go to conduct trade, or similarly a hub for resource distribution.
One might think this would grant the internal player a great deal of power,
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yet the axioms that we assumed, which are almost verbatim adaptations
of the standard Shapley axioms for our setting in which only connected
coalitions may be formed, end up giving that player zero value.

One explanation for this phenomenon is as follows. In the standard Shap-
ley value approach, measuring the average marginal gain a player causes by
joining coalitions is entirely equivalent to measuring the average marginal
loss he causes by leaving coalitions. In the graph value setting, this equiv-
alence no longer obtains. Since only connected coalitions may be formed,
leaving a coalition is only possible if the remaining coalition is connected.

4.1. Proof of Theorem 3.
The proof is based on a combinatorial lemma that uses the following

ad hoc definition: we say that a connected graph (N,E) satisfies the con-
nencted complements (CC) property, if for any connected subset of the ver-
tices A ⊂ N , the complement N \ A is connected, as well.

Lemma 7. The only graphs that satisfy the CC property are the complete
graph Kn and the cycle Cn.

Proof. Clearly the complete graph and the cycle satisfy CC. Let G =
(N,E) be a connected graph satisfying CC. Let ∆ be G’s maximal degree.
That is, ∆ is the maximal number of neighbours of any single vertex in N .

If ∆ ≤ 2, then G is a collection of cycles, lines, and isolated vertices.
Since G is connected, it is either a cycle, a line, or a single vertex. Lines
of more than three vertices do not satisfy CC; therefore G must be either a
cycle, K1, or K2.

Assume now that ∆ ≥ 3. The graph G has a spanning tree T with at
least ∆ vertices. One can find such a tree by starting at a maximal degree
vertex, adding the edges around it, and completing to a spanning tree. Any
two leaves of T are connected by an edge of G, since the rest of the vertices
are connected (through T ).

Since the degree of any leaf is at most ∆ and it is has edges to all other
leaves plus one internal vertex, there are at most ∆ leaves. It follows that
there are exactly ∆ leaves, and they are connected by vertex disjoint paths
to the root vertex. If all of these paths are of length 1, i.e. T is a star, then
G is a complete graph. Otherwise, at least one path is longer than 1. Say
this path ends with the vertices x′ followed by x. Let y and z be two other
leaves of T . The tree T ′ = T − x′x+ yx is a spanning tree. Similarly to T ,
the leaves of T ′ are connected by edges of G. In particular, zx′ is an edge of
G, but this is a contradiction since z cannot have more than ∆ neighbours.
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Proof of Theorem 3 assuming Lemma 7. In one direction, the graph
values on Kn and Cn are unique, since for Kn the graph and the classic
Shapley values coincide, and for Cn the unique graph value is given by
Claim 1.

The other direction of the proof proceeds in two steps.
Step 1. A graph G is called a transitive if for every two vertices there is an
automorphism of G that maps one vertex to the other. The graph value is
unique only on transitive graphs.

Supposing G = (N,E) is a non-transitive graph, we show it has multiple
values. Let x, y ∈ N such that there is no automorphism of G that maps x
to y. Let c and d be a chains that begins with x and y respectively. Let ϕ
be the random order value supported on c’s orbit, and similarly ψ the graph
value supported on d’s orbit. Consider the game v in which the worth of
any nonempty coalition is 1. On one hand, ϕy(v) = 0, since y is never the
first element of an automorphic image of c. On the other hand, ψy(v) > 0,
since y is the first element of d. Therefore, ϕ and ψ are two different graph
values.
Step 2. Any transitive graph that does not satisfy CC has multiple graph
values.

Let G = (N,E) be a connected transitive graph that does not satisfy
CC. Let A ⊂ N be a maximal connected set with respect to N \ A being
disconnected. IfN \A contained more than two vertices, one of them could
be added to A, and so A would not be maximal. Therefore, N \ A must
consists of exactly two vertices, say (x, y) 6∈ E.

Let c be an admissible ordering ending with x and then y. Let d be an
admissible ordering ending with an edge. Let ϕ be the random order value
supported on c’s orbit, and ψ on d’s orbit. Let v be the unanimity game with
carrier A∪{x}. For x to be pivotal in v with respect to an admissible order-
ing, the ordering must end with either x or xy. Since the graph is transitive
the probability of the former event is 1

|N | , under any invariant probability.
Since xy is not an edge, and d ends with an edge, none of the orderings in
d’s orbit end with xy; therefore ψx(v) = 1

|N | . The ordering c does end with
xy; therefore ϕx(v) > 1

|N | , showing that ϕ and ψ are two different graph
values.

From Steps 1 and 2, it follows that the graph value is unique only on
graphs that satisfy CC. Lemma 7 says that these graphs are exactly Kn and
Cn.
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5. REVIEW OF LITERATURE

Our main inspiration, and the paper that is most similar in approach to
this one, is Álvarez, Hellman and Winter (2013), which proposes a way to
measure the relative power of political parties in a parliament by explic-
itly taking into account a political spectrum. That paper notes that it is
highly unlikely for a left-wing party to form a coalition with a party hold-
ing strongly diametrical right-wing views unless there are other parties in
the coalition that can ‘bridge’ the ideological differences. In more general
terms, a political party will tend to join a pre-existing coalition only if the
coalition contains at least one other party that is ideologically close to it.
To formalise this idea, Álvarez, Hellman and Winter (2013) postulates that
parties can be ordered along a political spectrum (i.e., a strict linear order-
ing), from right to left, and a coalition will form only if it consists of a
consecutive range of ideological views along this spectrum.3

One possible shortcoming of that approach is that it may be artificial to
ascribe all ideological differences to positioning along a single linear order-
ing. In practice, ideologies are often multidimensional, relating to several
issues. That observation led to the model presented in this paper, which
is a generalisation of the model in Álvarez, Hellman and Winter (2013).
As an added benefit, by extending the underlying topology of the connec-
tions between players to any graph, the model here is potentially applicable
to a very wide range of cooperative situations, including but by no means
restricted to political-coalitional settings.

Weakening the axiom of symmetry for the sake of considering variations
on the Shapley value is a very old idea. Weighted Shapley values were
proposed by Lloyd Shapley himself in his seminal PhD thesis (Shapley
(1953b)). Each weighted Shapley value associates a positive weight with
each player. These weights are the proportions of the players’ shares in una-
nimity games. The symmetric Shapley value is the special case in which all
weights are the same. This concept was studied axiomatically in Kalai and
Samet (1987).

The weights in these models, however, are imposed exogenously, repre-
senting some pre-existing measure of the relative strengths of the players
which is then used for calculating weighted Shapley values. In contrast, in
the approach here asymmetries arise endogenously from the positioning of
the players along the underlying graph structure.

3 As here, Álvarez, Hellman and Winter (2013) work with a weak version of symmetry
and hence do not derive a unique value from the standard Shapley axioms alone. In that pa-
per, an axiom reminiscent of various balanced contributions axioms, relating to unanimity
games, needs to be added to attain uniqueness of the value.
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This paper is also far from the first to study situations in which not ev-
ery coalition is feasible or equally likely. The issue is usually tackled by
considering some structure on the set of players that circumscribes the way
players can form coalitions. Games with these kind of structures are usually
denoted games with restricted cooperation.

Among the earliest efforts in this direction, the beginnings of a large
literature, are Aumann and Drèze (1975) and Owen (1977). These start
from the supposition that cooperative games are endowed with a coalitional
structure, an exogenously given partition of the players. When coalitions
are formed, the players interact at two levels: first, bargaining takes place
among the unions and then bargaining takes place inside each union. Within
each union, however, every possible coalition is admissible.

Edelman (1997) and Bilbao and Edelman (2000) take an approach sim-
ilar to the one adopted in the present paper, using geometric constraints to
dictate which coalitions may be formed and which are deemed impossible.
They, however, use the theory of convex geometries as the basis for their re-
search, as opposed to the model of connected graphs used here. In respect to
the axiomatics our treatment more closely resembles Shpaley’s axiomatics
as opposed to the more descriptive approach of Bilbao and Edelman (2000).

Graphs appear explicitly in Myerson (1977), but in a very different role
from the one they have in this paper. There, an undirected graph describes
communication possibilities between the players. A modification of the
Shapley value is then proposed under the assumption that coalitions that are
not connected in this graph are split into connected components. In that
model too, within components all possible coalitions are admissible.

Myerson’s model implicitly assumes superadditivity by granting (discon-
nected) coalitions the sums of the worths of their connected components. In
our model disconnected coalitions are simply impossible, hence they do not
assume any worth and we need not assume superadditivity.

Myerson (1977) assumes a fixed coalitional function while letting net-
work structures vary, with axioms focussed on how allocation rules are re-
lated as the network structure changes. We consider the network as given,
with our axioms focussed on how allocation rules are related as coalition
functions vary, in the tradition of Shapley (1953a).

One may propose modelling impossible coalitions by setting their worths
to zero while all other coalitions have positive worths. However, the choice
of zero as the worth of impossible coalitions would be rather arbitrary
and unjustified, as it makes the model variant under conditions of strate-
gic equivalence.
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A situation in which the above is particularly problematic is cost sharing
models (Megiddo, 1978; Granot and Huberman, 1981; Young, 1985). Con-
sider, for example, organisations attempting to establish a communication
network or supply route between themselves. Setting up a link between
two organisations induces a cost. Due to physical constraints or geographic
barrier, not every pair of organizations can be linked directly, while indirect
connections via a sequence of links requires the active cooperation of all the
organisations along these links. Examples may include a network of mon-
etary transactions between banks or commodity flows between countries.
The cost associated with a connected (admissible) coalition is the mini-
mal total cost of links that connect the members of that coalition (minimal
spanning tree). The cost of setting up the entire network has to be divided
amongst the players (organisations).

The Shapley value, with its axioms interpreted as describing acceptable
requirements for ‘fair’ cost allocation, has been proposed as the solution
for cost sharing problems (the literature on this is vast, going back at least
as far as Shubik (1962)). When some coalitions are deemed impossible,
one could be tempted to compute an appropriate Shapley value by associat-
ing an extremely large cost with each impossible coalition. This approach
does not work, since very large costs dictate heavy the costs in the resultant
Shapley value. Some players will pay very large costs whereas others will
receive very large payments (negative cost). As the costs associated with
impossible coalitions grow, the actual costs of the links become negligible.
The present paper proposes a solution that generalises the Shapley value
to situations in which some coalitions are impossible while avoiding these
potential conceptual pitfalls.

Jackson (2005) considers network games in which players can influence
the structure of the network to serve their interests. Our model is different
in that it exogenously imposes a fixed network structure.

6. ACKNOWLEDGEMENTS

We wish to thank Eyal Winter, Omer Edhan, and Yannai Gonczarowski
for many helpful comments.

REFERENCES

Álvarez-Mozos, M., Z. Hellman and E. Winter (2013), Spectrum Value for
Coalitional Games, Games and Economic Behavior, 82, pp. 132–142.
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