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ABSTRACT

This paper investigates whether the overpricing of out-of-the money single stock calls can be
explained by Tversky and Kahneman’s (1992) cumulative prospect theory (CPT). We argue
that these options are overpriced because investors’ overweight small probability events and
overpay for such positively skewed securities, i.e., characteristics of lottery tickets. We match a
set of subjective density functions derived from risk-neutral densities, including the CPT with
the empirical probability distribution of U.S. equity returns. We find that overweighting of
small probabilities embedded in the CPT explains on average the richness of out-of-the money
single stock calls better than other utility functions. The degree that agents overweight small
probability events is, however, strongly time-varying and has a horizon effect, which implies
that it is less pronounced in options of longer maturity. We also find that time-variation in
overweighting of small probabilities is strongly explained by market sentiment, as in Baker and
Wurgler (2007).
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1 Introduction

The most distinctive contribution of Tversky and Kahneman’s (1992) cumulative prospect

theory (CPT) is that individuals overweight small probability events when making decisions

under risk. Barberis and Huang (2008), however, are the ones to hypothesize that the CPT’s

overweighting of small probability events may explain a number of seemingly unrelated pricing

puzzles. Differently from an earlier literature which concentrates on the CPT’s value function

(see Benartzi and Thaler, 1995; Barberis et al., 2001; Barberis and Huang, 2001), Barberis and

Huang (2008) focus on the probability weighting functions of the model. They conclude that the

CPT’s overweighting of small probability events helps explaining why investors prefer positively

skewed returns, or “lottery ticket” type of securities. Due to such preference, investors overpay

for positively skewed securities, turning them expensive and causing them to yield low forward

returns. This overpricing is the reason for the low long-term average return of IPO stocks, the

private equity premium puzzle, distressed stocks, and the overpricing of deep out-of-the money

(OTM) single stock calls, among other irrational pricing phenomena.

The proposition by Barberis and Huang (2008) that deep OTM single stock calls resemble

overpriced, lottery tickets-type securities has not yet been verified empirically. Empirical studies

on probability weighting functions implied by option prices are offered by Dierkes (2009), Kliger

and Levy (2009), and Polkovnichenko and Zhao (2013)1. The evidence in these papers is,

however, based on the index put options market, which is very different from the single stock

option market. The main buyers of OTM index puts are institutional investors, which use them

for portfolio insurance (Bates, 2003; Bollen and Whaley, 2004; Lakonishok et al., 2007; Barberis

and Huang, 2008). Because institutional investors comprise around two-thirds of the total

equity market capitalization (Blume and Keim, 2012), their option trading activity strongly

impacts the pricing of put options (Bollen and Whaley, 2004) by making them expensive.

The results of Dierkes (2009) and Polkovnichenko and Zhao (2013) reiterate this evidence and

suggest that overweighting of small probabilities partially explains the pricing puzzle present

in the equity index option market.

Contrary to the index put market, trading activity in single stock calls is concentrated among

individual investors (Bollen and Whaley, 2004; Lakonishok et al., 2007). Moreover, individual

investors’ demand for single stock options is speculative in nature (Lakonishok et al., 2007),

whereas Mitton and Vorkink (2007) provide important support to the link between preference

for skewness and individual investors’ trading activity. Given the very distinct clientele of these

two option markets (institutional investors vs. retail investors) and the different motivation

for trading (portfolio insurance vs. speculation), we reason that the OTM single stock calls

1These studies focus on the rank-dependent expected utility (RDEU) rather than the CPT, as the RDEU
is seamlessly effective in dealing with the overweighting of probability phenomena. The RDEU’s probability
weighting functions are strictly monotonically increasing, whereas the CPT’s one is not. RDEU functions are
also easier to estimate because they use one less parameter than the CPT.
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overpricing is a puzzle in itself, requiring an independent empirical proof from the index option

market.

The first contribution of our study is to investigate whether the CPT can empirically explain

the overpricing of OTM single stock call options. To that purpose, we empirically test whether

tails of the CPT density function outperform the risk-neutral density and rational subjective

probability density functions on matching tails of the distribution of realized returns. We find

that our estimates for the CPT probability weighting function parameter γ do not differ much

from the one predicated by Tversky and Kahneman (1992), particularly for short-term options.

This analysis complements the results of Barberis and Huang (2008) and provides novel support

to explain the overpricing of OTM single stock calls. Our empirical results extend the findings

of Dierkes (2009), Kliger and Levy (2009), Polkovnichenko and Zhao (2013), because we show

that investors’ overweighting of small probabilities2 is not restricted to the pricing of index puts

but also applies to single stock calls.

Secondly, we provide evidence that overweighting of small probabilities is strongly time-

varying and connected to the Baker and Wurgler (2007) investors’ sentiment factor. These

findings contrast the CPT model, where the probability weighting parameter for gains (γ)

is constant at 0.61. In fact, our estimations suggest that the γ parameter fluctuates widely

around that level, sometimes even reflecting underweighting of small probabilities. We show

that overweighting of small probabilities was most acute during the dot-com bubble, which

coincided with a strong rise in investors’ sentiment.

Moreover, we find that overweighting of small probabilities is largely horizon-dependent,

as such bias is mostly observed within short-term options prices (i.e., three- and six-months)

rather than in long-term ones (i.e., twelve-months). We reason that such horizon-effects exist

because individual investors may speculate using the cheapest available call at their disposal. In

other words, individual investors buy the cheapest lottery tickets that they can find. As three-

and six-month options have much less time-value than twelve-month ones, more pronounced

overweighting of small probabilities within short-term options seems sensible. This result is

consistent with individual investors being the typical buyers of OTM single stock calls and

the fact that they mostly use short-term instruments to speculate on the upside of equities

(Lakonishok et al., 2007).

In our analysis of probability weighting functions, we focus on the outmost tails of RNDs3.

We argue that, as distribution tails (mostly estimated from OTM options) are the sections of

the distribution that reflect low probability events, we may analyze these locally, thus, isolated

2We acknowledge that it is yet fully unclear whether overpicing of OTM calls is caused by overweighting of
small probablities (i.e., a matter of preferences) or rather by biased beliefs. Barberis (2013) eloquently discusses
how both phenomena are distinctly different and how both (individually or jointly) may potentially explain the
existence of overpriced OTM options, as well as many other puzzling facts in financial markets. In this paper
we take a myopic view and use only the first explanation, for ease of exposition. Disentangling the two (beliefs
and preferences) would potentially be very interesting, but we deem it to be outside the scope of this paper or
to be tackled in future versions of this study.

3Per contrast, Dierkes (2009) and Polkovnichenko and Zhao (2013) explore the relation between overweight-
ing of small probabilities and options prices by analyzing the full RND from options. Dierkes (2009) applies
Berkowitz’s tests, whereas Polkovnichenko and Zhao (2013) estimate an empirical weighting function via poly-
nomial regressions.
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from the distribution’s body. To this purpose, we use extreme value theory (EVT) and Kupiec’s

test (as a robustness check), which are especially suited for the analysis of tail probabilities

and, so far, have not been employed yet to the evaluation of overpricing of OTM options. As

an additional robustness check, we replace the CPT by the rank-dependent expected utility

(RDEU) function of Prelec (1998). This alteration reconfirms the presence of overweight of

small probabilities by investors within the OTM single stock call market but, at the same time,

suggests that such bias is less pervasive than our CPT-based results indicate. Time-variation

of the weighting function parameters is also observed when RDEU is applied.

The remainder of this paper is organized as follows. Section 2 describes the CPT model.

Section 3 describes the data and methodology employed in our study. Section 4 presents and

discusses our empirical analysis as well as robustness tests. Section 5 concludes.

2 Cumulative Prospect Theory

The Prospect theory (PT) of Kahneman and Tversky (1979) incorporates behavioral biases

into the standard utility theory (Von Neumann and Morgenstern (1947)), which presumes

that individuals are rational4. Such behavioral anomalies are i) loss aversion5, ii) risk seeking

behavior6 and iii) non-linear preferences7. The CPT is described in terms of a value function (υ)

and a probability distortion function (π). The value function is analogous to the utility function

in the standard utility theory and it is defined relative to a reference point zero. Therefore,

positive values within the value function are considered as gains and negative values are losses,

which leads to:

υ(x) =

{
xα , if x >= 0

−λ(−x)β , if x < 0
(1)

where λ ≥ 1, 0 ≤ β ≤ 1, 0 ≤ α ≤1, and x are gains or losses. Thus, along the dominium

of x, the CPT’s value function is asymmetrically S-shaped (see Figure 1) with diminishing

sensitivity as x→ ±∞.

[Please insert Figure 1 about here]

The value function is, thus, concave over gains and convex over losses, differently from the

traditional utility function used by standard utility theory. Such a shape of the value function

implies diminishing marginal values as gains or losses becomes larger, which, in other words,

4The expected utility theory of Von Neumann and Morgenstern (1947) is the standard economics framework
on decision making under risk. Their theory assumes that decision-makers behave as if they maximize the
expected value of some function defined over the potential (probabilitistic) outcomes. Individuals are assumed
to have stable and rational preferences; i.e., not influenced by the context or framing.

5Loss aversion is the property in which people are more sensitive to (or affected by) losses than gains. For
details, see Kahneman and Tversky (1979), Tversky and Kahneman (1992) and Barberis and Huang (2001).

6Risk-seeking behavior happens when individuals are attracted by gambles with unfair prospects. In other
words, the risk-seeking individual is the one that chooses for a gamble versus a sure thing even though the two
outcomes have the same expected value. For details, see Kahneman and Tversky (1979).

7Non-linear preferences occur when preferences between risky prospects are not linear in the probabilities,
thus, equally probable prospects are more heavily weighted by agents than others. For details, see Tversky and
Kahneman (1992), Fox et al. (1996), Wu and Gonzalez (1996), Prelec (1998) and Hsu et al. (2009).
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means that any additional unit of gain (loss) becomes less relevant when wealth increases

(decreases). As α and β increase, the effect of diminishing sensitivity decreases (see Figure 2),

and as λ increases the degree of loss aversion increases. We also note in Figure 1A that the

value function has a kink at the reference point, which implies loss aversion, as the function is

steeper for losses than for gains.

[Please insert Figure 2 about here]

The use of a probability distortion function or decision weight function is the adjustment

made to the PT to address nonlinear preferences. This function takes probabilities and weights

them nonlinearly, so that the difference between probabilities at high percentiles, e.g., between

99 percent and 100 percent, has more impact on preferences than the difference between prob-

abilities at small percentiles, e.g., between 10 percent and 11 percent. This is the main advance

of the CPT over the original PT. The CPT applies probability distortions to the cumulative

probabilities (i.e., the CDF), whereas the PT applies them to individual probabilities (i.e.,

the PDF). The enhancement brought by this new formulation satisfies stochastic dominance

conditions not achieved by the PT, which renders the CPT applicable to a wider number of

experiments. The probability distortion functions suggested by Tversky and Kahneman (1992),

respectively, for gains (π+
n ) and losses (π−−m) are:

π+
n = w+(pn) (2a)

π+
i = w+(pi + ...+ pn)− w+(pi+1 + ...+ pn) , for 0 ≤ i ≤ n− 1 (2b)

π−−m = w−(p−m) (2c)

π−i = w−(p−m + ...+ pi)− w−(p−m + ...+ pi−1) , for 1−m ≤ i ≤ 0 (2d)

where p are objective probabilities of outcomes, which are ranked for gains from the reference

point i = 0 to i = n, the largest gain, and for losses from the largest loss i = −m to i = 0, the

reference point. Further, w+ and w−, the parametric form of the decision weighting functions,

are given by:

w+(p) =
pγ

(pγ + (1− p)γ)1/γ
(3a)

w−(p) =
pδ

(pδ + (1− p)δ)1/δ
(3b)

where parameters γ and δ define the curvature of the weighting function for gains and losses,

which leads the probability distortion functions to assume inverse S-shapes. Figure 3 depicts

how low probability events are overweighted at the cost of moderate and high probabilities

within the CPT probability distortion functions. Tversky and Kahneman (1992) indicate that

the weighting functions for gains are slightly more curved than for losses (i.e. γ < δ). The

parameters estimated by the authors for the CPT model are λ = 2.25; β = 0.88; α = 0.88;

γ = 0.61; δ = 0.69.
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[Please insert Figure 3 about here]

3 Data and Methodology

In this section, we first describe the theoretical background that allows us to relate empirical

density functions (EDF), RND, and subjective density functions. This is a key step for testing

the hypothesis that the CPT helps explaining overpricing of OTM options because we build on

the assumption that investors’ subjective density estimates should correspond, on average8, to

the distribution of realizations (see Bliss and Panigirtzoglou, 2004). Thus, testing whether the

CPT’s weighting function explains the overpricing of OTM options, ultimately, relates to how

the subjective density function produced by CPT’s preferences matches empirical returns. Be-

cause the representative agent is not observable, subjective density functions are not estimable

like EDF and RND are. As such, we build on the following theory to derive subjective density

functions from RNDs.

In our empirical exercise, we first derive subjective density functions for (a) the power

and (b) exponential utility functions. Because the CPT model contains not only a utility

function (the value function) but also a probability weighting scheme (the weighting function),

we produce two density functions resulting from such model: (c) the hereafter called partial

CPT density function (PCPT), where only the value function is taken into account, and (d) the

CPT density function, where the value and the weighting functions are considered. Lastly, we

also calibrate γ to market data and are, then, able to compute (e) the estimated CPT density

(ECPT). We provide details on estimation methods for our five subjective density functions,

(a) to (e), in section 3.1, and for the RND and EDF in section 3.4.

Once all five subjective density functions are obtained, we distinguish four main independent

analyses in our methodology section: 1) the estimation of long-term CPT value and weighting

function parameters (from which we can produce the ECPT density); 2) EVT-based tests of

consistency between tails of the EDF, the RND and our five subjective probability distributions;

3) the estimation of time-varying λ and γ parameters; and 4) a regression linking the CPT time-

varying probability weighting parameter (γ) to sentiment measures as well as numerous control

variables.

Barclays Capital provided the single stock weighted average IV data used for the largest 50

stocks of the S&P 500 index. The data consists of closing mid-prices from January 2, 1998 to

March 19, 2013 for fixed maturities for five moneyness levels, i.e., 80, 90, 100, 110, and 120, at

the three-, six- and twelve-month maturity. Continuously compounded stock market returns

are calculated through our analysis from the S&P 500 index prices using a daily frequency,

which is obtained via Thomson Reuters Datastream.

8This implies that investors are somewhat rational. Such an assumption is not incoherent with the CPT
assumption that the representative agent is less than fully rational. The CPT suggests that investors are biased,
not that decision makers are utterly irrational to the point of rejecting that their subjective density forecast
should not correspond, on average, to the realized return distribution.
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3.1 Subjective density functions

Standard utility theory tells us that since the representative agent does not have risk-neutral

preferences, RNDs are inconsistent with subjective and physical densities9. Hence, if investors

are risk-averse or risk-seeking, their subjective probability function should differ from the one

implied by option prices. The relation between the RND, fQ(ST ), and the EDF, fP (ST ), with

ST being wealth, is accomplished by the representative investor utility function, U(ST ):

fP (ST )

fQ(ST )
= λ

U
′
(ST )

U ′(St)
≡ ς(ST ), (4)

where λ is the constant subjective discount factor and ς(ST ) is the pricing kernel10. Thus,

the empirical distribution equates to the RND adjusted by the pricing kernel, the subjective

density function of the representative investor of utility function U(ST ). By applying Eq. (4)

we can estimate the subjective density function for an (rational) investor that has power and

exponential utility functions, hereafter, called power and exponential density functions.

Since CPT-biased investors price options as if the data-generating process has a cumulative

distribution FP̃ (ST ) = w(FP (ST ))11, its density function becomes fP̃ (ST ) = w′(FP (ST ))·fP (ST )

(see Dierkes, 2009; Polkovnichenko and Zhao, 2013). Thus, CPT-biased agents assess proba-

bility distributions as if their tails would contain more weight than in reality they do. In other

words, CPT-biased agents ’see’ fat tails where, in fact, they are not. Consequently, evaluating

whether the CPT’s propositions apply is equivalent to testing whether Eq. (4) still holds if

fP (ST ) is replaced by fP̃ (ST ), thus:

w′(FP (ST )) · fP (ST )

fQ(ST )
= ς(ST ) (5)

which, re-arranged into Eq. (7), demonstrates that for the CPT to hold, the subjective density

function should be consistent with the probability weighted EDF.

fQ(ST )︸ ︷︷ ︸
RND

= w′(FP (ST ))︸ ︷︷ ︸
probability weighing

· fP (ST )︸ ︷︷ ︸
EDF

· ς(ST )︸ ︷︷ ︸
pricing kernel

(6a)

fQ(ST )︸ ︷︷ ︸
RND

= fP̃ (ST )︸ ︷︷ ︸
probability weighted EDF

· ς(ST )︸ ︷︷ ︸
pricing kernel

(6b)

9Anagnou et al. (2002) and Bliss and Panigirtzoglou (2004) have tested the consistency between RNDs and
physical densities estimated from historical data and found that such distributions are inconsistent, i.e., RNDs
are poor forecasters of the distribution of realizations.

10The condition necessary for Eq. (4) to hold is that markets are complete and frictionless and a single risky
asset is traded.

11Similarly, if investors are rational, their subjective density functions should be consistent, on average, with
the empirical density function. Bliss and Panigirtzoglou (2004) find that subjective density functions, produced
from RND adjusted by two types of representative investors’ utility functions (power and exponential) with
plausible relative risk aversion parameters, outperform RND on forecasting density functions.
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fQ(ST )

λU
′(ST )
U ′(St)

=
fQ(ST )

ς(ST )︸ ︷︷ ︸
Subjective density

= fP̃ (ST )︸ ︷︷ ︸
probability weighted EDF

(7)

Following Ait-Sahalia and Lo (2000) and Bliss and Panigirtzoglou (2004), Eq. (7) can be

manipulated so that the constant λ of the pricing kernel vanishes, producing Eq. (8), which

directly relates the probability weighted EDF, the RND, and the marginal utility, U ′(ST ):

fP̃ (ST )︸ ︷︷ ︸
probability weighted EDF

=
λU
′(ST )
U ′(St)

Q(ST )∫ U ′(St)
U ′(x)

Q(x)dx
=

fQ(ST )

U ′(ST )∫ fQ(x)

U ′(x)
dx︸ ︷︷ ︸

Generic subjective density function

(8)

where
∫ Q(x)

U ′(x)
dx normalizes the resulting subjective density function to integrate to one. Once

the utility function is estimated, Eq. (8) allows us to convert RND into the probability weighted

EDF. As we hypothesize that the representative investor has a CPT utility function, its marginal

utility function is U ′(ST ) = υ′(ST ), and, thus, υ′(ST ) = αSα−1T for ST >= 0, and υ′(ST ) =

λβ(−ST )β−1 for ST < 0, leading to Eq. (9):

fP̃ (ST ) =

fQ(ST )

αSα−1
T∫ fQ(x)

αxα−1dx
for ST ≥ 0, and (9)

fP̃ (ST )︸ ︷︷ ︸
probability weighted EDF

=

fQ(ST )

λβ(−ST )β−1∫ fQ(x)

λβ(−x)β−1dx︸ ︷︷ ︸
Partial CPT density function

for ST < 0, and (10)

Eqs. (9) and (10), hence, relate the EDF where probabilities are weighted according to the

CPT probability distortion functions, on the LHS, to the subjective density function derived

from the CPT value function, on the RHS, separately for gains and losses, i.e., the PCPT

density function. The relationships specified by Eqs. (9) and (10) fully state the relation we

would like to depict, although one additional manipulation is convenient for our argumentation.

Assuming that the function w(FP (ST )) is strictly increasing over the domain [0,1], there is a one-

to-one relationship between w(FP (ST )) and a unique inverse w−1(FP (ST )). So, result fP̃ (ST ) =

w′(FP (ST ))fP (ST ) also implies fP̃ (ST ).(w−1)′(FP (ST )) = fP (ST )12. This outcome allows us to

directly relate the original EDF to the CPT subjective density function, by “undoing” the effect

of the CPT probability distortion functions within the PCPT density function:

12One drawback of the CPT model is that it enables for non-strictly increasing functions, which would not
allow invertibility. This is the reason why the newer literature on probability distortions functions favors

other strictly monotonic functions, such as Prelec’s (1998) w(p) = e−(−ln(p))δ , as their weighting functions.
Nevertheless, because the CPT parameters of our interest (γ = 0.61; δ = 0.69) impose strict monotonicity, we
can obtain the inverse of the probability function, w−1(p) numerically.
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fP (ST )︸ ︷︷ ︸
EDF

=

fQ(ST )

ν′(ST )∫ fQ(x)

ν′(x)
dx

(w−1)′(FP (ST ))︸ ︷︷ ︸
CPT density function

(11)

Thus, once the relation between the probability weighting function of EDF and the PCPT

density is established, as in Eqs. (9) and (10), one can eliminate the weighting scheme affecting

returns by applying the inverse of such weightings to the subjective density function without

endangering such equalities, as in Eq. (11). This result allows us to obtain a clear representation

of the CPT subjective density function, thus, where the value and the weighting function are

simultaneously taken into account. At this stage, as we can produce RND and the set of

subjective densities of our interest, including the CPT density, one can evaluate how consistent

with realizations their tails are.

3.2 Estimating CPT parameters

We start evaluating the empirical validity of the CPT for single stock call options by com-

paring EDF to the CPT density function parameterized by Tversky and Kahneman (1992).

Subsequently, we estimate CPT weighting function parameters λ, β, α and γ with the same

goal. We only estimate γ within the probability weighting function, and not δ, because we

are interested in the gains-side of the distribution, which is extracted from call options. We

estimate these parameters non-parametrically, by sequentially minimizing the squared distance

between physical distribution and the partial CPT density function for every bin of the two

distributions, as follows:

υ(α = β, λ∗) = Min
B∑
b=1

(EDF b
prob − CPT bprob)2, (12a)

υ(λ, α∗, β∗) = Min

B∑
b=1

(EDF b
prob − CPT bprob)2, (12b)

where, α=β, the value function diminishing sensitivity parameters, in Eq. (12a) are constrained

to be between [0 and 1.6]; and λ, the risk aversion parameter, in Eq. (12b) is constrained to

the [0.5,3] interval and B is the total number of bins. Once the optimal λ, α and β are known,

we minimize:

w+(γ, δ∗) = Min

B∑
b=1

(EDF b
prob − CPT bprob)2, (13)

where γ, the probability weighting parameter for gains,, is constrained to the (0.28, 1.2] interval.

Our non-linear bounded optimization is a single parameter one, where we first estimate op-

timal (constraint) intervals for α=β and λ, and subsequently we estimate them as suggested by

the sequence of optimizations described by Eqs. (12a), (12b), (13). This method resembles the

one of Kliger and Levy (2009), Dierkes (2009), Chabi-Yo and Song (2013), and Polkovnichenko
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and Zhao (2013). Once optimal λ, α=β, γ are estimated, we can produce another subjective

density function: the ECPT, which stands for estimated CPT, where we apply the optimal γ

for the characterization of its probability weighting function.

3.3 Density function tails’ consistency test

We check for tail consistency of our set of five subjective density functions (CPT, PCPT, ECPT,

power and exponential), RND, and the EDF by applying extreme value theory (EVT). EVT

allows us to estimate the shape of the tails of these eight PDFs and to extract the returns

implied by an extreme quantile within our PDFs. We estimate the tail shape estimator (ϕ) by

means of the Hill (1975) estimator:

ϕ̂ =
1

θ̂
=

1

k

K∑
j=1

ln(
xj
xk+1

), (14)

where k is the number of extreme returns used in the tail estimation, and x(k+1) is the tail

cut-off point. The tail shape estimator ϕ measures the curvature, i.e., the fatness of the tails

of the return distribution: a high (low) ϕ indicates that the tail is fat (thin). The inverse of

ϕ is the tail index (θ), which determine the tail probability’s rate of decay. A high (low) θ

indicates that the tail decays quickly (slowly) and, therefore, is thin (fat). Such tail shape

estimator and tail index give us a good representation of the curvature of the tails, but since

tails may have the same shape while estimating diverse extreme observations, we also employ

the semi-parametric extreme quantile estimator from De Haan et al. (1994):

q̂p = xk+1(
k

pn
)
1

θ̂ , (15)

where n the sample size, p is a corresponding exceedance probability, which means the likelihood

that a return xj exceeds the tail value q, and xk+1 is the tail cut-off point. We note that one

of the input of q̂p is the tail shape estimator ϕ. Similar to value-at-risk (VaR) modeling, the

q̂−p statistic indicates the level of the worst return occurring with probability p, which is small.

This is the reason why we call q̂p extreme quantile return (EQR). As we are interested only in

the upside returns with a p probability estimated from calls, we only compute q̂+p by applying

the same methodology to the right side of the RND obtained from the single stock option

market13.

In addition to the EQR, we also evaluate the density function tails’ using expected short-

fall (ES), which typically captures the average loss beyond the tail cut-off point. As we are

interested in the upside of the distribution, we call such measure expected upside (EU) as the

average gain beyond the tail cut-off point. We evaluate the EU following Danielsson et al.

(2006) formulae for the ES, which relates the EQR (i.e., the VaR) to the ES (i.e., the CVaR)

as described below:

13Our EQR measure is closely connected to the risk-neutral tail loss measure of Vilkov and Xiao (2013).
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ÊU q(p) =
θ̂

θ̂ − 1
· xk+1(

k

pn
)
1

θ̂ , (16)

where θ is the tail index.

De Haan et al. (1994) show that the tail shape estimator statistic
√
k(ϕ̂(k) − ϕ) and the

tail quantile statistic

√
k

ln( k
pk

)
[ln q̂(p)

q(p)
] are asymptotically normally distributed. Hence, according

to Hartmann et al. (2004) and Straetmans et al. (2008), the t-statistics for such estimators are

given by:

Tϕ =
ϕ̂1 − ϕ̂2

σ[ϕ̂1 − ϕ̂2]
∼ N(0, 1), (17a)

and

Tq =
q̂1 − q̂2
σ[q̂1 − q̂2]

∼ N(0, 1), (17b)

where the denominators are calculated as the bootstrapped difference between the estimated

shape parameters ϕ and the quantile parameters q̂p using 1000 bootstraps. The null hypothesis

of this test is that ϕ̂ and q̂p parameters do not come from independent samples of normal

distributions, therefore, ϕ̂1 = ϕ̂2 and q̂1 = q̂2. The alternative hypothesis is that ϕ̂ and q̂p have

unequal means. Such t-test is also applied to our EU analysis, as the distribution of EU follows

the same distribution of the tail quantile statistic

√
k

ln( k
pk

)
[ln q̂(p)

q(p)
], given that EU is the extreme

quantile estimator multiplied by a constant.

3.4 Estimating RND and EDF

For the estimation of the RND, the first step taken is the application of the Black-Scholes

model to our IV data to obtain options prices (C) for the S&P 500 index. Once our data

is normalized, so strikes are expressed in terms of percentage moneyness, the instantaneous

price level of the S&P 500 index (S0) equals 100 for every period for which we would like to

obtain implied returns. Contemporaneous dividend yields for the S&P 500 index are used for

the calculation of P as well as the risk-free rate from three-, six-, and twelve-month T-bills.

Because we have IV data for five levels of moneyness, we implement a modified Figlewski (2010)

method for extracting our RND structure, as in Felix et al. (2015).

The Figlewski (2010) method is close to the one employed by Bliss and Panigirtzoglou

(2004), where body and tails are also extracted separately. Bliss and Panigirtzoglou (2004) use

a weighted natural spline algorithm for interpolation, which has the same decreasing-noise effect

in RNDs of using splines in the absence of knots, as done in Figlewski (2010). The extrapolation

in Bliss and Panigirtzoglou (2004) is done by the introduction of a pseudo-data point, which

has the effect of pasting lognormal tails into the RND. One advantage of these two approaches

is that the extrapolation does not result in negative probabilities, which is possible when spline

interpolation is applied in such case. Nevertheless, we favor Figlewski’s (2010) approach as

the lognormal tails employed by Bliss and Panigirtzoglou (2004) assume that IV is constant
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beyond the observable strikes, resembling the Black-Scholes model. The modification made to

the Figlewski (2010) method by Felix et al. (2015) entailed having flexible inner anchor points

(as opposed to having fixed anchor points) for fitting tails to the risk neutral density. The aim

of this modification is to prevent the method to estimate distribution density functions with

implausible shapes.

We estimate the EDF in two different ways. First, using the entire sample of realized

returns (r), we estimate “long-term” EDFs non-parametrically, where r = ln(ST/St) and St

is the S&P500 index at time t and ST is the forward level of the same index three-, six- or

twelve-month forward. Because of overlapping periods, we estimate our empirical distribution

of returns for these three maturities using multiple samples and distinct starting points.

In a second step, we estimate time-varying EDFs built from an invariant component, the

standardized innovation density, and a time-varying part, the conditional variance (σ2
t|t−1) pro-

duced by an EGARCH model (see Nelson, 1991). We first define the standardized innovation,

being the ratio of empirical returns and their conditional standard deviation (ln(St/St−1)/σt|t−1)

produced by the EGARCH model. From the set of standardized innovations produced, we can

then estimate a density shape, i.e., the standardized innovation density. The advantage of

such a density shape versus a parametric one is that it may include, the typically observed,

fat-tails and negative skewness, which are not incorporated in simple parametric models, e.g.,

the normal. As mentioned, such density shape is invariant and it is turned time-varying by

multiplication of each standardized innovation by the EGARCH conditional standard deviation

at time t, which is specified as follows:

ln(St/St−1) = µ+ εt, ε ∼ f(0, σ2
t|t−1) (18a)

and

σ2
t|t−1 = ω1 + αε2t−1 + βσ2

t−1|t−2 + ϑMax[0,−εt−1]2, (18b)

where α captures the sensitivity of conditional variance to lagged squared innovations (ε2t−1);

β captures the sensitivity of conditional variance to the conditional variance (σ2
t−1|t−2) and ϑ

allows for the asymmetric impact of lagged returns (ϑMax[0,−εt−1]2). The model is estimated

using maximum log-likelihood where innovations are assumed to be normally distributed.

Up to this point, we managed to produce a one-day horizon EDF for every day in our

sample but we still lack time-varying EDFs for the three-, six-, and twelve-month horizons.

Thus, we use bootstrapping to draw 1,000 paths towards these desired horizons by randomly

selecting single innovations (εt+1) from the one-day horizon EDFs available for each day in

our sample. We note that once the first return is drawn, the conditional variance is updated

(σ2
t−1|t−2) affecting the subsequent innovation drawings of a path. This sequential exercise

continues through time until the desired horizon is reached. In order to account for drift in

the simulated paths, we add the daily drift estimated from the long-term EDF plus the risk-

free rate to drawn innovations, thus the one-period simulated returns is εt+1 + µ + Rf . The

density functions produced by the collection of returns implied by the terminal values of every
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path and their starting points are our three-, six-, and twelve-month EDFs. These simulated

paths contain, respectively, 63, 126, and 252 daily returns. We note that by drawing returns

from stylized distributions with fat-tails and excess skewness, our EDFs for the three relevant

horizons also imbed such features. Finally, once these three time-varying EDFs are estimated

for all days in our sample, we estimate λ and γ for each of these days using Eqs. (12b) and

(13)14.

Our approach for estimating both the long-term EDF and the time-varying EDF is closely

connected to the method applied by Polkovnichenko and Zhao (2013). The time-varying method

used by these authors is based on Rosenberg and Engle (2002). The choice for an EGARCH

approach versus the standard GARCH model is due to the asymmetric feature of the former

model that imbeds the “leverage effect”15.

4 Empirical analysis and results

In this section, we present our results of the empirical analysis described in section 3. We

note that since we estimate EDF in the two ways described (the “long-term” and time-varying

EDFs), we are able to estimate long-term γ’s and time-varying γ’s by minimizing (13). We

use our long-term γ estimates to compute the ECPT with the aim to compare it to the other

subjective density functions using the tests described in section 3.3. The time-varying estimates

of λ and γ are analyzed in sections 4.3 and 4.4, respectively, with the use of an ordinary least

squares (OLS) regression model. We describe this regression together with its results in section

4.4. Finally, in section 4.5, we perform robustness tests on our results by using an alternative

weighting function to the CPT; the one imbedded in the Prelec (1998) model.

4.1 Estimated CPT long-term parameters

We report the estimated CPT parameters (λ, α = β, and γ) extracted from long-term density

functions in Table 1, Panel A. Our first finding is that λ, the parameter of risk aversion, which

is 2.25 in the CPT, does indeed fluctuate around that number. Our estimation of λ from

three-month options is 1.98, whereas for the six- and twelve-month options is 2.49 and 1.85,

respectively. This finding suggests that risk aversion is the highest at the six-month maturity,

even higher than suggested by the CPT. The α and β parameters obtained are all close to

unity, suggesting that the diminishing sensitivity to gains and losses is higher than suggested

by the CPT (i.e., 0.88).

[Please insert Table 1 about here]

14Due to drift, the model of time-varying EDF for the twelve-month horizon occasionally does not match the
one of the PCPT model. This difference has been challenging for the estimation of γ (Eq. (13)), as a large
amount of γ estimates produce unreasonable PDFs such as non-monotonic CDFs. Therefore, to perform the
optimizations given by Eq. (13), we neutralize the impact of the drift by forcing the mode of the simulated
EDF to match the one of the PCPT.

15The leverage effect is the negative correlation between an asset’s returns and changes in its volatility. For
a comparison between alternative GARCH approaches, see Bollerslev et al. (2009).
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The estimated probability weighting function parameters γ matches the one suggested by

the CPT (i.e., 0.61) at the three-month horizon but overshoots the CPT ones at longer horizons.

For six-month options, γ is around 0.7, whereas at the twelve-month horizon, it is close to unity,

0.97. These results suggest that overweighting of small probabilities is generally present within

the average pricing of single stock options. Such lottery tickets buying effect occurs essentially

in short-term option markets (up to six-months), while the twelve-month option market seems

to behave more rational. These findings provide initial support of our hypothesis that individual

investors do behave as buying lottery tickets (i.e., overweighting small probability events) when

purchasing single stock call options, as suggested by Barberis and Huang (2008).

4.2 Density functions tails’ consistency test results

As specified in section 3.3,we test the empirical consistency of density function tails among a set

of five subjective distributions (CPT, PCPT, ECPT, power, exponential), the RND, and the

EDF. We perform such tests by employing EVT through the application of Eqs. (14) and (15).

In order to apply such methods, we require return streams (xj), which are only available for the

long-term EDF. Thus, we apply an inversion transform sampling technique to our other PDFs

to obtain sampled returns for them. Such method, also known as the Smirnov method, entails

drawing n random numbers from a uniformly distributed variable U = (u1, u2, ..., un) bounded

at interval [0, 1] and, subsequently, computing xj ← F−1(uj), where F are the CDFs of interest

(see Devroye, 1986, p.28). Hence, the Smirnov method simulates returns that resemble the

ones of the inverse CDF by randomly drawing probabilities along such function.

Once we obtain returns for all five PDFs, the next step is to set k as the optimal number

of observations used for estimation of ϕ by Eq. (14), the Hill-estimator. For this purpose, we

produce Hill-plots for the right tail of our distributions, which depict the relationship between

k and ϕ as a curve (see Straetmans et al., 2008). Picking the optimal k is done by observing

the interval in such curve where the value of ϕ stabilizes while k changes. This area suggests a

stable trade-off between a good approximation of the tail shape by the Pareto distribution and

the uncertainty of such approximation (by the use of fewer observations). The interval that

corresponds to roughly four to seven percent of observations seems to be a stable region across

the Hill-plots of the tails of the EDF and the CPT. As an increase in k increases the statistical

power of the estimator but may distort the shape of the tail, we decide to set k as chosen from

the Hill-plots for EDF and CPT tails, equal to four percent.

We examine whether the tail shape parameter (ϕ), computed via the Hill (1975) estimator,

for the RND and for our subjective density functions (i.e., power, exponential, PCPT, CPT

and ECPT) match the one for the EDF. The outcomes from the statistical tests performed to

compare tail shape parameters (Eq. (17a)) are provided in Table 1, Panel B. Results suggest

that for the three-month maturity options, ϕ for the CPT and ECPT (at 0.25) are very close

and statistically equal to the EDF parameter (at 0.24). The ϕ estimate for the RND (0.2)

also equals the one from physical returns, despite being slightly off the EDF parameter. The

ϕ estimate for the power, exponential, and PCPT density functions do not match the one for
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the EDF, as they are all around 0.17 and, thus, exhibit fatter tails than the EDF.

We observe that the results for the six- and twelve-month options are very similar to the

ones obtained for the three-month expiry. The parameter estimate ϕ of the EDF is statistically

equal to the CPT and ECPT. Parameter ϕ ranges from 0.18 to 0.24 for the CPT, ECPT, and

RND for the six- and twelve-month maturities, whereas it is 0.23 for the EDF. The estimate

of ϕ for the RND (0.19 and 0.22 for the six- and twelve-month maturities, respectively) also

matches the one for the EDF but with less statistical power than for the CPT. The parameter

estimates ϕ for the power, exponential and PCPT functions do not match the EDF’s ϕ in any

case. Generally, the parameter estimates ϕ for these subjective density functions are too small

in comparison to the one of the EDF. This means that such six- and twelve-month maturity

subjective density functions have fatter tails than the EDF and the other subjective densities

(CPT and ECPT), and the RND. These results suggest that the shape of the CPT density

function seems to be a good match to the shape of realized tails, supporting our hypothesis

that individual investor behave as lottery buyers when trading in single stock options.

After k is chosen and the shape estimator ϕ for the EDF, RND, Power, Exponential, PCPT,

CPT and ECPT is computed, extreme quantile returns (EQR) can also be estimated via Eq.

(15). Subsequently, the t-test in Eq. (17b) is applied using the one, the five and the ten percent

statistical significance levels. Such statistical test aims to evaluate whether the EQR estimated

from a set of two distributions being compared (RND, power, exponential, PCPT, and CPT

versus EDF) have equal means (the null hypothesis). The results of this test are shown in Table

2, Panel A.

[Please insert Table 2 about here]

Analyzing the density functions derived from the three-month option maturity, we find that

the EQR implied by the CPT matches very closely the realized ones: 11 percent at the tenth

quantile, 13 percent for the fifth quantile, and around 20 percent for the first quantile. The

EQR implied by the ECPT is the same as implied by the CPT, thus, it also matches the EDF.

This result was expected as the estimated long-term parameter γ used in the ECPT matches

the one of the CPT (0.61). Contrarily, the EQRs for the RND, power, exponential, and PCPT

densities always overshoot the one for the EDF. All comparisons between these distributions’

EQR at the three-month maturity reject the null hypothesis that returns at the same quantile

are equal. This pattern is observed across all quantiles analyzed, i.e., at the tenth, the fifth,

and the first quantiles. This empirical finding indicates that the equity market upside implied

in option markets (i.e., the RND) and the power, exponential and PCPT densities are always

higher than the ones realized by the equity market. The results for the PCPT are somewhat

similar to the ones for the RND. The exponential utility density has the farthest off EQR

relative to the EDF. On average, EQR for the exponential and power utilities overshoot the

one for the EDF by roughly ten percent. Thus, the EQRs from the CPT and the ECPT are

by far the best matches of the EQR for the EDF.

For the six-month maturity, upside returns priced by the RND and ECPT are the ones to

best match the EQR for the realized return distribution. The EQR for the EDF are roughly 18,
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21, and 30 percent for the tenth, the fifth, and the first quantile of returns, respectively, whereas

the EQRs for the ECPT are 17, 20, and 26 percent. For the RND, such extreme upside return

estimates are 19, 22, and 30 percent. Thus, the ECPT statistically matches the realized EQR

best at the tenth and fifith quantile, whereas the RND is the best match for the first quantile.

No rational subjective density function consistently matches the EQR of the EDF. The power,

exponential, and PCPT densities always overshoot the EQR of realized returns. Contrarily,

the CPT density always undershoots the EDF’s extreme returns. Despite always overshooting

the EQR of the EDF, the PCPT is the only other subjective density (apart from the ECPT)

that has EQR statistically equal to the EDF, which happens only at the first quantile EQR

and with only weak (5 percent) statistical significance.

In contrast to the three- and six-month maturities, the EQR from the RND for the twelve-

month maturity all underestimate the EQR from realized returns. The EQR of realized returns

are 25, 29, and 42 percent for the tenth, fifth and first quantiles, respectively, whereas for the

RND these are 22, 26, and 37 percent, respectively. However, the EQRs of the power and

of the exponential densities continue to largely overshoot the ones for the EDF. The PCPT

and the ECPT, in which probabilities are neutrally (or rationally) weighted (recall that γ

estimated for the twelve-month horizon is 0.97), are the models that best matches the EQR

of the realized returns, as they are around 25, 29, and 39 percent, respectively, for the three

quantiles studied. As such, the EQR of realized returns, the PCPT and the ECPT densities are

strongly statistically equal at the tenth and fifth quantiles and somewhat weaker statistically

equal at the first quantile. This finding supports our earlier evidence that twelve-month single

stock options are likely priced more rationally than short-term ones. Given that the CPT model

will always reduce the EQR from the PCPT, as it is parameterized for overweighting small

probabilities, the EQRs for these distributions undershoot the EDF ones. Such overshooting

is very large in the current case, as the EQR implied by the CPT is 15, 18, and 26 percent for

the tenth, fifth and first quantiles, respectively.

The above results suggest that CPT-related densities, despite not always matching the EQRs

of the EDF, seem to be the distribution with the highest consistency in matching the EQR of

the EDF. The ECPT is, by far, the best performing model in matching realized extreme quantile

returns. This result is not a surprise as allowing the CPT weighting function to assume different

shapes entails extra flexibility of such model on matching the data relative to traditional utility

functions. Thus, if our findings suggest that the CPT does not fully explain single stock options

pricing, its overweighting small probabilities feature goes very far on explaining such market

data, with exception of twelve-month options. These findings reiterate our takeaway from

section 4.1, in which a horizon-effect seems to play a role within the pricing of these options:

twelve-month options seem to be priced more rationally than the shorter term ones, which seem

to be priced as a result of lottery buying by individual investors.

In line with the results for the EQR presented in the previous section, Table 2, Panel

B, shows that the expected upside for the EDF is more closely matched within the three-

month horizon by the expected upside for the CPT and ECPT density functions for the tenth,
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fifth and first quantile. The three-month horizon expected upside estimated from the realized

returns is given as 15, 17, and 26 percent for the mentioned quantiles. The CPT and ECPT

expected upside for this same horizon is 14, 17, and 25 percent, respectively. These estimates

are statistically equal to the ones estimated from the realized returns. Once again, similarly

to our analysis on the EQR, for the other subjective densities, the expected upside for all

quantiles is also much larger than the EDF expected upside. The exponential density has the

highest expected upside across the different quantiles, being the furthest away from the realized

returns. The RND-implied expected upside is somewhat conservative and relatively closer to

the realized ones, however, never statistically significant equal to it.

For the six-month maturity, the expected upside for the CPT and ECPT density functions

are no longer that close to each other nor to the realized ones. The EDF expected upside is

always higher than the ones for the CPT and ECPT. Only at the tenth quantile, the expected

upside of the ECPT density function is statistically significant equal to the realized one. The

CPT’s expected upside is always lower than the one of the ECPT density function, as the γ

parameter estimated equals 0.71, implying less overweighting of small probabilities than the

CPT. The densities which better match the expected upside of the EDFs are the PCPT and,

specially, the RND for which the expected upside is statistically equal to the EDF ones across all

quantiles.The expected upside is statistically equal for the PCPT at the one percent statistical

level and for the first quantile tail only.

Similarly to the results from our EQR analysis, Table 2, Panel B, shows that the expected

upside is statistically equal at the twelve-month horizon for the PCPT, ECPT, and the realized

returns for the tenth and fifth quantiles. The expected upside for the realized returns is 32, 37,

and 54 percent for the tenth, fifth and first quantile, respectively, whereas for the PCPT it is

32, 36, and 48 percent, respectively, and 31, 35, and 47 percent, respectively, for the EPCT.

The proximity between the expected upside for the PCPT and for the ECPT is due to the

fact that the estimated γ parameter at the twelve-month horizon is 0.97, thus, we observe a

virtually neutral-weighting of probabilities. The only exception to the match of the realized

expected upside and the one for the PCPT and ECPT density functions is at the first quantile,

where the expected upside for the exponential and power densities matches the expected upside

for the EDF of roughly 54 percent. At the twelve-month horizon, the expected upside coming

from the exponential and power utilities, typically overshoots the ones for the EDF, whereas

the RND expected upside undershoots them. The expected upside implied by the CPT at the

twelve-month horizon strongly undershoots the expected upside of the realized returns. This

observation suggests that a pronounced overweighting of small probabilities or lottery buying

is strongly rejected by the expected upside from realized returns. As such, we conclude that

long-dated options seem to be priced more rationally than short-term options.

These results on the expected upside reiterate the insights gained by our earlier findings

using the EQR and the estimation of long-term γ. The CPT-model densities, despite not

always matching the EDF’s expected upside, seem to be the framework that more frequently

approximates the right tail of the EDF, provided that an appropriate γ is used. The extent that
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the original CPT matches the data seems to be related to the option horizon: the CPT model

and our proposition of single stock options as lottery tickets is more applicable to short-term

options than long-term options.

Figure 4 compares graphically the CDFs from six of our equity return densities: the EDF,

the RND, the CPT, the PCPT, the exponential- and the power-utility density16. We focus

on the right tails of these distributions as we are interested in how closely the RND from call

options and derived subjective density functions match the tails of the EDF. The plots display

the cumulative probabilities on the y-axis and the terminal price levels on the x-axis, given an

initial price level of 100.

[Please insert Figure 4 about here]

We see that the tails implied by option prices (RND, in red) seem fatter than the tails from

the CPT (in dark blue) and EDF (in green) density functions over the three-month horizon.

The tails for the CPT and the EDF are almost identical above the 110 terminal level, i.e., at the

10 percent return. The right tail of the RND distribution is clearly much fatter than the ones

of the CPT and EDF but it is still thinner than the ones of the PCPT, the exponential- and

the power-utility densities. Thus, the upside risk implied from options is much higher than the

one realized by the EDF, a sign of a potentially biased behavior by investors in such options.

This observation is confirmed by the tail shape parameter (ϕ), the EQRs and the EU estimated

across the different quantiles, which in all cases report higher upside in the RND than in the

EDF and the CPT. Figure 4 also suggests that the upside risk of the RND seems to be much

more consistent with the one of the PCPT density, whereas the CPT tails seem very distinct

from the PCPT, which is in line with our earlier findings.

The plot in column B, which depicts the CDF for our studied densities at the six-month

horizon, suggests that the RND and the EDF are much closer than at the three-month horizon.

At the same time, the CPT density seems somewhat disconnected from the EDF, at least beyond

the 105 terminal level. This finding matches our results from the EQR and the expected upside

comparisons. The PCPT tail is, at this horizon, higher than the EDF, CPT, and RND ones.

But the PCPT tail is much closer to the EDF one than to the CPT one, especially at its very

extreme. This finding is also confirmed by our EQR and expected upside tests, as the PCPT is

statistically equal to the EDF at the one percent quantile. The exponential and power utility

densities have right tails that are much fatter than the other densities, including the EDF.

Figure 4 shows that at the twelve-month horizon the CPT’s CDF tails seem completely

disconnected from the EDF. The EDF tails are much fatter than the CPT ones and slightly

fatter than the RND ones. In fact, the RND seems to match the EDF for terminal levels above

120. This finding suggests that long-term options trade in a much less CPT-biased manner

than short-term options. At this horizon, the PCPT density seems to closely match the EDF,

performing much better than the exponential and power utilities. This finding is confirmed by

16We omit the ECPT for better visualization as its CDFs are very similar to the CPT ones. The similarity is
caused by the ECPT left tail weighting function parameter (δ) being the same for the CPT and because their
estimated long-term γ for the three maturities are not too different from the Tversky and Kahneman (1992)
one.
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the results of the EQR and the expected upside tests over such a horizon, which suggest that

the tails of the EDF and PCTP are statistically equal in almost all quantile levels.

Overall, this visual inspection of our density function CDFs confirms our hypothesis that

end-users of OTM single stock calls are likely biased and behave as buying lottery tickets

when trading short-term options. The fact that the CPT and the PCPT density (as it already

incorporates some elements of the CPT model) are the best matches for the right tail of the

EDF suggests that individual investor overweight small probabilities. On the other hand, end-

users of OTM index calls at the six-month horizon seem to be neutral to risk, as the RND

is the best forecaster of the empirical returns at that time span, while options trading at the

twelve-month horizon is not CPT-biased.

These results strengthen the evidence provided by Barberis and Huang (2008), Ilmanen

(2012) and Barberis (2013) that investors may push options prices to extreme levels because

they have a biased model (i.e., CPT) for estimating the distribution of equity returns. Investor

seems to overweight small probabilities and to behave as buying lottery tickets when trading

single stock options, especially at short-term horizons (i.e. three-month).

4.3 Estimated CPT time-varying parameters

In order to investigate any potential time-variation in the CPT’s overweighting of small proba-

bilities or lottery tickets buying reflected in single stock options, we apply Eqs. (12b) and (13)

to each day in the sample to estimate the empirical γ (weighting function) and λ (risk aversion)

parameters. We first evaluate the results for the estimation of λ (risk aversion). We report

summary statistics of the estimated λ for three-, six-, and twelve-month options in Panels A

and B of Table 3. Panel A reports the statistics when λ is estimated, assuming that the other

two parameters of the value function, α and β, equals to 0.88, i.e., the CPT calibration. In

contrast, in Panel B the parameters α and β are optimized by the application of Eq. (12a).

Our general impression is that the λ estimates are very similar across the two calibrations. The

median of λ is 1.75 for the CPT parameterization and 1.74 when the parameters α and β vary

for the three-month option maturity. The median for the six-month maturity for these two

methods equal 1.81 and 1.79, respectively, and for the twelve-month maturity, these values are

1.89 and 1.92, respectively. Thus, we find that the α and β parametrization virtually does not

affect the λ estimates. The distributions of λ for these two types of α and β parametrization

are also very close to each other, since the 25th and 75th percentile are almost the same for these

different α and β parameters. We also observe that risk aversion estimated is slightly lower

than the implied by the CPT model (at 2.25). Our findings suggest that the kink observed in

the value function’s reference point is less pronounced than suggested by the CPT model. The

λ estimates can be highly volatile though, with a standard deviation of around 0.5 and a range

between 0.57 and 2.97. Such volatility and such a wide fluctuation interval of λ confirm that

this parameter is strongly time-varying.

[Please insert Table 3 about here]

We report summary statistics of the estimated CPT parameter γ for three-, six- and twelve-
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month options in Panels C of Table 3. We find that the median and the mean time-varying

values of γ, estimated from the three-month options, roughly match the parameter value of

0.61 suggested by Tversky and Kahneman (1992), which range between 0.66 and 0.68. This

suggests that overweighting of small probabilities is present within the pricing of three-month

call options as suggested by the theory. Nevertheless, our daily estimates of γ are volatile,

having a standard deviation of 0.29. The estimates of γ range from 0.28 to 1.20 (i.e., an

underweighting of small probabilities) and its distribution is slightly skewed to the left as the

median is just smaller than the mean.

At the six-month maturity, overweighting of small probabilities seems less acute than sug-

gested by the theory and by the empirical results of the three-month options. The median and

the mean γ for such maturity are 0.72 and 0.75, respectively. The long-term γ equals 0.70 and

is somewhat in line with the time-varying estimates. The distribution of γ is somewhat skewed

to the left (towards a more pronounced overweighting of small probabilities), as the median is

smaller than the mean. The 75th quantile of γ equals 1.05 and suggests a neutral weighting of

probabilities.

The results for the twelve-month maturity tend even more towards a neutral probability

weighting than the six-month ones. The median γ is 0.83, whereas the mean γ is 0.80. In

contrast with other maturities, the distribution of γ is strongly skewed to the right, towards a

neutral- to under-weighting of small probabilities. Estimates are highly volatile though, as the

standard deviation of γ is 0.32.

In summary, statistics discussed above and reported in Table 3, Panel C, indicate that the

weighting function parameters γ for the three maturities evaluated are clearly time-varying17.

But, since the risk-aversion parameter λ is also time-varying, we re-estimate γ for each day in

our sample using the daily estimate of λ in Eq. (12b).

We report the summary statistics of the new γ estimates in Panel D of Table 3. The new

median and the new mean estimates for γ are 0.72 and 0.74, respectively, and, thus, higher

than when γ was estimated under a fixed risk aversion calibration. The 75th percentile of γ also

increases, from 0.87 to 0.94, respectively. At the six-month horizon, the difference between γ

with a fixed or with a varying λ is even larger. The median γ for the static λ is 0.72, whereas

for the time-varying it is 1.07. The means are 0.74 and 0.96, respectively. At the 75th percentile

using the time-varying λ, γ becomes 1.2, which is the upper bound of our optimization. For

the twelve-month maturity, we observe a similar effect. The median γ for the time-varying λ

is 1.15, whereas for the static one it is 0.83.

These findings suggest that once we account for empirical risk aversion, the extent that

investor overweight smaller probabilities reduces. For six- and twelve-month maturities, on

average, probabilities are neutrally weighted. This implies that RND tails might be fatter than

EDF ones not because investor are biasedly overweighting small probabilities, but because

17For the three maturities evaluated, γ estimates can be as low as zero if the lower bound is set at zero, which
is unreliable as it specifies a probability weighting function for the CPT that is non-monotonic (for further
details on the subject see Ingersson, 2008). The imposition of a lower-bound of 0.28 for γ in order to avoid such
non-monotonicity problem does not alter, however, our estimated mean and median γ materially.
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the risk premium charged by investors to hold call options is lower. Interestingly, an average

overweighting of small probabilities remains present in three-month options, despite changes in

investors’ risk aversion.

Further, accounting for time-variation of λ does not affect the time-variation in γ. The

standard deviation of the γ estimates barely changes when we account for time-varying λ. This

result applies to options across all maturities. Thus, the fact that six- and twelve-month options

show, on average, neutral or under-weighting of tails does not preclude that overweighting (or

even underweighting) of small probabilities is present at times. An alternation between periods

of overweighting of small probabilities and underweighting is also observed by Chabi-Yo and

Song (2013) and Polkovnichenko and Zhao (2013), with a clear prevalence of overweighting

of tails. Their findings are very consistent with ours, even after we have accounted for the

time-variation of λ. The fact that their conclusions are based on options with short maturities

of 28 days, also connects to our findings, as our strongest results occur for options with the

shortest maturity in our sample (three-month).

4.4 Time variation in probability weighting parameter and investors’

sentiment

As observed in section 4.3, the probability weighting parameter γ is clearly time-varying given

the large standard deviation and the range observed. In the following we investigate which

factors may explain such time-variation of γ. Our main hypothesis is that the time variation

of γ is linked to investors’ sentiment. The link between sentiment and overweighting of small

probabilities or lottery buying in out-of-the-money (OTM) single stock calls originates from the

fact that individual investors are highly influenced by market sentiment and attention-grabbing

stocks (see Barberis et al., 1998; Barber and Odean, 2008) and that OTM single stock calls

trading is speculative in nature and mostly done by individual investors (Lakonishok et al.,

2007). For instance, Lakonishok et al. (2007) reckon that the IT bubble of 2000, a period

of high variation of γ, is linked to elevated investors’ sentiment, when the least sophisticated

investors were the ones that substantially purchased calls on growth and IT stocks. Figure

5 depicts time-varying γ’s and the Baker and Wurgler (2007) sentiment factor. It provides

evidence that these measures move in tandem at times. For example, during the IT bubble,

the level of γ seems quite connected with the level of sentiment, especially for the six-month

options. At the same time, changes in γ from three-month options seem linked to changes in

sentiment, despite a relative disconnect in levels.

[Please insert Figure 5 about here]

To formally test our hypothesis that time variation of γ is linked to investors’ sentiment,

we design a regression model. Within Eq. (19), the explained variables are γ for the three-

, six-, and twelve-month horizons and the explanatory variables are the Baker and Wurgler

(2007) sentiment measure18, the percentage of bullish investors minus the percentage of bearish

18Available at http://people.stern.nyu.edu/jwurgler/.
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investors given by the survey of the American Association of Individual Investors (AAII), a

proxy for individual investors’ sentiment (see Han, 2008), and a set of control variables among

the ones tested by Goyal and Welch (2008)19 as potential forecasters of the equity market. The

data frequency used in the regression is monthly as this is the highest frequency available from

the sentiment data and from the Goyal and Welch (2008) dataset20. Our regression sample

starts in January 1998 and ends in December 201021. Our OLS regression model is specified as

follows:

γt = c+ ψ1 · Sentt + ψ2 · IISentt + ψ3 · E12t + ψ4 ·B/mt + ψ5 ·Ntist+

ψ6 ·Rfreet + ψ7 · Inflt + ψ8 · Corprt + ψ9 · Svart + ψ10 · CSPt + εt,
(19)

where Sent is the Baker and Wurgler (2007) sentiment measure, IISent is the AAII individual

investor sentiment measure, E12 is the twelve-month moving sum of earnings on the S&P5000

index, B/m is the book-to-market ratio, Ntis is the net equity expansion, Rfree is the risk-free

rate, Infl is the annual inflation rate, Corpr is the corporate spread, Svar is the stock market

variance and, CSP is the cross-sectional premium.

Additionally, we run univariate models for each explanatory factor to understand the indi-

vidual relation between γ and the control variables:

γt = ci + ψi · xi,t + εt, (20)

where x replaces the n explanatory variable earlier specified, given i = 1...n.

[Please insert Table 4 about here]

Table 4, Panel A presents the estimates of Eq. (19). We note the high explanatory power

of the multivariate regression, ranging from 31 to 57 percent. As expected, we observe that

Sent is consistently negative across the three different horizons studied. We find that high

sentiment exacerbates overweighting of small probabilities in calls of shorter horizon. However,

Sent is not significantly linked to γ at the twelve-month horizon. The univariate regressions

of Sent confirm the negative link between sentiment and γ. But this relation is, once again,

lost at the twelve-month horizon as the variable is no longer significant. These relationships

show up in the the scatter plot in Figure 6. On the three- and six-month horizons (Plots A and

B), a negative relation exists between the Baker and Wurgler (2007) sentiment measure and

γ , whereas at the twelve-month horizon it does not. The explanatory power of the variable

Sent in the univariate setting is also high, 11 and 23 percent, respectively, for the three- and

19The complete set and description of variables suggested by Goyal and Welch (2008) is provided in Appendix
A. Within the complete set of variables used by Goyal and Welch (2008), we select fewer ones using the cross-
correlation between them to avoid multicollinearity in our regression analysis. As we run a multivariate model,
using the full set of variables is undesirable as some of them correlate 80 percent with each other. We exclude
variables that correlate more than 40 percent with each other.

20Given the fact that γ is estimated on a daily basis, we average γ through each month.
21This regression sample is only possible because Goyal and Welch (2008) updated their dataset after the

paper publication. The regression sample however, could not be extended further than December 2010 because
the sentiment measure of Baker and Wurgler (2007) is available until that date.
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six-month horizon. The twelve-month univariate regression has, however, a R2 of zero. These

findings strengthen our hypothesis that overweighting of small probabilities increases at higher

levels of sentiment and that sentiment strongly impacts the probability weighting bias of call

investors. However, this conclusion applies to the three- and six-month horizons only.

[Please insert Figure 6 about here]

In contrast with the variable Sent, the individual investor sentiment (IISent) has only low

explanatory power. The regression run on three- and six-month γ has zero percent explanatory

power, whereas the twelve-month γ can be partially explained by IISent with a significance

level of 5 percent. More importantly, at the twelve-month horizon, IISent is positively linked to

γ and this relation is statistically significant, in contrast to the other univariate regression using

IISent. The relation of IISent and γ within the multivariate regression is very similar to the

one captured by the univariate regression: statistical significance is found only at the twelve-

month horizon with a positive coefficient. This positive relationship between these variables

may be attributed to potential mean-reversion in individual investor sentiment, whereas at the

twelve-month horizon, an increase in sentiment relates to a more pronounced underweighting

of small probabilities.

In a next step, we specify the Goyal and Welch (2008) factors as control variables in our

regression in order to add potential explanation to the model. The three-, six-, and twelve-

month multivariate models explain 31, 57, and 51 percent, respectively, of the level of γ. Most

of these relations are stable, because the coefficient signs change only rarely. The control

variables that are statistically significant in our multivariate setting are E12, Rfree, Infl,

Svar, and CSP (Table 4). We observe that γ is positively linked to E12, the twelve-month

moving sum of earnings on the S&P 500 index, as well as to Rfree, the risk-free rate. The

positive relation between E12 and γ could be explained by mean-reversion of earnings being

linked to a greater overweighting of small probabilities, which could be justified by the higher

investor sentiment outweighting earning downgrades in a rallying market. The sign of Rfree

suggests that, as interest rates rise, OTM calls become more rational, as less overweighting of

small probabilities is observed. The explanatory variables Svar, the stock market variance,

and CSP , the cross-sectional premium, are negatively linked to γ. Such results suggest that

the higher the variance, the higher the overweighting of small probabilities is. In a univariate

setting (at the six-month horizon), the explanatory power of such univariate regression is 17

percent, relatively high. Table 4, Panel B indicates that the cross-sectional premium CSP

is statistically significant only at the six-month horizon. The univariate regression between γ

and CSP does not, however, capture a statistically significant relation and has a coefficient

with the opposite sign to the coefficient in the multivariate setting. This proves that supportive

fundamental data for equity markets do not necessarily intensify biased behavior of single stock

call option investors. This is an interesting takeaway, especially if considered that sentiment

does appear to affect such behavior: single stock option investors seem to overweight small

probabilities when sentiment is exuberant, not necessarily when fundamentals are exuberant.

Moreover, as we have also estimated daily γ when the risk aversion parameter λ is time-
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varying, we run our regression models (Eqs.(19) and (20)) using such new estimation of γ as the

explained variable. Table 5 indicates that the results for Sent are similar to the ones obtained

in our earlier regression: Sent is negatively linked to γ and statistically significant at the three-

and six-month horizon but not at the twelve-month horizon. These results apply to both the

multivariate and univariate regression models. The magnitude of the Sent parameters is little

altered at the three- and six-month regression within both the multivariate and univariate

models, suggesting a robust relationship. The explanatory power of the regressions is, once

again high, as R2 ranges from 31 to 59 percent in the multivariate models. The explanatory

power of Sent is 11 and 24 percent for the three- and six-month maturities in the univariate

setting, vis-à-vis 11 and 23 percent in the previous regression setting. The explanatory power of

Sent in the twelve-month regression is one percent, similar to our earlier univariate regression

results. Table 5 shows that the explanatory variable IISent, the AAII individual investor

sentiment measure, is not significantly linked to γ within the short-term options. However, in

the longer term options with a twelve-month horizon such a relationship is positive, rather than

negative, as we expected. Such a positive relationship means a decrease in the overweighting

of tails as individual investor sentiment rises. Several signs of control variables change in the

multivariate and univariate setting in comparison to the regression results that used static

risk aversion parameter. The control variables that remain statistically significant are E12

and Rfree. The moving sum of equity earnings E12, however, changes its sign from positive

to negative. The default return spread Corpr and the cross-sectional premium CSP become

statistically significant in the univariate regressions. Concurrently, whereas the relation between

the γ and the book-to-market ratio B/m and the stock market variance factor Svar, which we

observed as strongly statistically significant in the univariate regressions, become insignificant

once we take time-variation in the risk aversion parameter into account.

[Please insert Table 5 about here]

We conjecture that the profound impact that changing the parameter λ has on the control

variables in our regression is due to the fact that some of these variables are either directly

linked to uncertainty or their time variation may be conditional to risk-states. For example, the

stock variance factor Svar and the default return spread Corpr can be interpreted as ex-post

variants of λ, which is a forward-looking risk measure. Therefore, the introduction of a time-

varying λ plausibly changes the relationship between Svar and γ from strong and negative to

statistically weak and positive, whereas the regression estimates of the default return spread

changed from negative and insignificant to positive and significant.

The robust results, in which the relation between γ and Sent is little modified once λ

varies, suggests that changes in the overweighting of tails are not conditional on the level of the

investors risk aversion parameter only, as section 4.3 may suggests for the six- and twelve-month

options. In fact, earlier results only suggest that, on average, overweight of small probabilities

has diminished for these two maturities, but fluctuations in γ may still be linked to the Baker

and Wurgler (2007) sentiment measure . In other words, levels of risk aversion do not fully drive

investors to overweight upside tail events, as one could hypothesize when associating upside
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speculation with a state of low risk aversion. Our results suggest that overweighting of small

probabilities seems to be a much more stable phenomenon, linked mostly to sentiment than to

fundamental factors or risk states.

4.5 Robustness tests

We employ Kupiec’s (1995) test to compare the tails of the EDF with the ones of the subjective

density functions and of the RND as a triangulation to the EVT methods applied. Kupiec’s

test was originally designed to evaluate the accuracy of Value-at-risk (VaR) models, where the

estimated VaR were compared with realized ones. Because the VaR is no different from the

EQR on the downside, i.e., the q̂−p statistic, we can also make use of Kupiec’s method to test

the accuracy of the q̂+p statistic for subjective densities and the RND on matching realized

EQRs. More specifically, Kupiec’s method computes a proportion of failure (POF) statistic

that is used to evaluate how often a VaR level is violated over a specified time span. Thus, if

the number of realized violations is significantly higher than the number of violations implied

by the level of confidence of the VaR, then such a risk model is challenged. Kupiec’s POF test,

which is designed as a log-likelihood ratio test, is defined as:

LRPOF = −2log[(1− p∗)(n−b)(p∗)b] + 2log[(1− [ b
n
])(n−b)( b

n
)b] ∼ χ2(1), (21)

where p∗ is the POF under the null hypothesis, n is the sample size, and b is the number of

violations in the sample. The null hypothesis of such test is b
n

= p∗, i.e., the realized probability

of failure matches the predicted one. Thus if the LR exceeds the critical value, χ2 (1)=3.841,

the hypothesis is rejected at the five percent level.

By translating this methodology to our empirical problem, p∗ equals the assumed probability

that the EQR of the subjective and risk-neutral densities will violate the EQR of the realized

returns, whereas b
n

is the realized number of violations. We note that because we intend to

apply Kupiec’s test to upside returns, violations mean that returns are higher than a positive

threshold.

The first step on applying Kupiec’s test to our data set is outlining the expected percentage

of failure (p∗) between the EQR from the EDF and from the subjective and risk-neutral den-

sities. We pick p∗ as being five and ten percent. The percentages can be seen as the expected

frequency that the tails of the subjective and of the RND distributions overstate the tails of

the distribution of the realized returns. As fatter tails are symptom of an overweighting of

small probabilities, we expect that densities that do not adjust for the CPT weighting function

may deliver a higher frequency of failures than the CPT density function. The results of our

application of the Kupiec’s test are reported in Table 6.

[Please insert Table 6 about here]

Panel A in Table 6 suggests that the probability of failure for the RND, power, exponential,

and PCPT densities is particularly high at the three-month horizon, with more than 97 percent

for the EQR at 90 and 95 percent and for p∗ equals to five and ten percent. The LR-statistics
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for these densities tend to infinity in all of these cases22, at the same time that their p-values

approach zero. These results suggest that the EQR for these densities usually violates (over-

states) the EQR recorded for the EDF. In other words, such densities contain often fatter tails

than the EDF. Among these distributions, the RND density presents POFs that are smaller

than for the other densities, roughly 97.4 percent vs. 99.9 percent, though such difference is

still marginal. For the CPT density, the POF is much lower across the two values of p∗ used

and the 90 and 95 percent EQR. The POF for the 90 percent EQR is roughly 52 percent for the

CPT, irrespective of p∗. At the 95 percent EQR, the POF is 40.6 percent for the CPT. These

findings suggest that at the 90 and 95 percent EQR, the CPT and ECPT densities overstate less

frequently the EDF tails than other densities. The violations of the EDF tails are, however,

still significant as they occur between 40.6 and 52 percent of times. Nevertheless, when we

analyze the 99 percent EQR, we find that the POF for all densities decreases considerably and,

for the CPT, it becomes 8.4 percent, quite low. Using such tail violation criteria, these results

indicate that the CPT and the EDF tails are statistically significant equal at the 99 percent

EQR.

Panel B of Table 6 depicts a very similar pattern of the POF for the probability densities

derived from the six-month options as we find for the three-month options. The POF is very

close to 100 percent for all densities apart from the CPT at the 90 percent EQR, while at the

95 and 99 percent EQR violations fall substantially, even more than what we observed for the

three-month options. Nevertheless, the CPT remains the best approximation for the EDF, as

its POF is the lowest. The Kupiec’s test result suggests that the CPT density is statistically

equal to the EDF, whereas the RND also equals the empirical returns at the ten percent level.

The results for p∗ at the five or ten percent are very similar. Panel C presents the POF for

the twelve-month maturity. We find once again that the CPT tails are the ones which violate

the EDF tails the least. The POF for these densities are about 20 percent for the 90 percent

EQR, seven percent for the 95 percent EQR, and five percent for the 99 percent EQR. This

finding suggests that the tails of the CPT closely match the EDF ones, especially far out in the

tail, i.e., at the 95 and 99 percent EQR. The RND, power, exponential, and PCPT densities

record POFs that are much smaller than for the three- and six-month maturities but that are

still high in comparison to the CPT.

We note that results for the PCPT and the CPT are quite distinct, whereas results for

the PCPT are somewhat closer to the ones of the RND. This suggests that the weighting

function is the component within the CPT density function that more forcefully causes the

RND to approximate the EDF, so not the value function. Such finding highlights the fact that

a weighting function within a utility framework is important in understanding options pricing

and investors’ behavior. Overall, our analysis using Kupiec’s test leads to similar results as the

ones reached within our EVT analysis and adds to the evidence that the CPT model is superior

to others in matching realized returns.

As another robustness check, we estimate the weighting function parameter α of the RDEU

22The calculated LR-statistic for several Kupiec’s tests is infinite as the number of failures is very high and
because the data set used is large.
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model suggested by Prelec (1998) in order to test whether our conclusions are robust to other

weighted functions formulations23. We note that according to Prelec (1998) the standard α

parameter value equals 0.65. Our findings are presented in Table 7.

[Please insert Table 7 about here]

The long-term estimates of α are somewhat in line with the one suggested by the RDEU

but less so for the twelve-month horizon: α estimated from the three-, six-, and twelve-month

is 0.61, 0.75, and 0.99, respectively. This is quite consistent with our long-term estimates for

γ being, 0.71, 0.70, and 0.97 (see Table 1), as it suggests overweighting of small probabilities

that fades with the increase in the option horizon. Nevertheless, the time-varying estimates

of α differ substantially from the long-term ones. We find the mean (0.93) and median (0.93)

for time-varying estimates of α from three-month options to be much higher than the ones

suggested by Prelec (1998). This means that overweighting of small probabilities within the

single stock option markets is far less than our results suggested by RDEU. For the six- and

twelve-month maturities, underweighting of small probabilities is even more frequent than an

overweighting. The average α for the six-month options is 1.01 (median being 1.03), and for the

twelve-month options it is 1.05 (median being 1.11). The fact that investors tend to overweight

small probabilities to a much lesser extent in the short-term and that estimates are higher

than suggested by their respective lab-based estimates confirm our main findings. The absence

of overweighting of small probabilities in six- and twelve-month maturities is in line with our

results when the risk aversion parameter is also time-varying but disconnected from our results

when such a parameter is fixed.

The dispersion among α estimates (ranging from 0.14 to 0.18) is much smaller than the ones

for γ, which is always above 0.28 and reaches 0.32 for the twelve-month horizon. This suggests

that α estimates may be more reliable than γ estimates. The 25th quantile for α estimates,

which varies from 0.83 to 1.02, is already much closer to their median than for γ, confirming

that γ has much more disperse estimates. The maximum α for the three-month maturity is

1.20, which suggests that the overweighting of small probabilities does not hold through the

entire sample.

Overall, the robustness checks following Prelec (1998) confirm our main findings regarding

long-term estimates for overweighting of small probabilities, and they reiterate our conclusion

that the overweighting weakens with the increase of the horizon.

5 Conclusion

Single stock OTM call options are deemed overpriced because investors overpay for positively

skewed securities, so-called lottery tickets (Mitton and Vorkink, 2007; Barberis and Huang,

2008). According to Barberis and Huang (2008), the CPT’s probability weighting function

23A major advance of Prelec’s (1998) weighting function vis-à-vis the CPT is that it is monotonic for any
value of α, whereas the CPT can have a non-monotonic probability weighting for low levels of γ. Because of
that, the optimization used to estimate α uses a lower bound of zero instead of 0.28 as in our CPT optimizations.
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of Tversky and Kahneman (1992) provide an appealing explanation why such options are

expensive: investors’ preferences for positively skewed securities.

We find empirically that the CPT subjective density function of stock returns outperforms

the RND and two rational densities functions (from the power and exponential utilities) on

matching tails of realized equity returns. We estimate the CPT probability weighting function

parameter γ and find that it does not differ much from the one predicated by Tversky and

Kahneman (1992), particularly for short-term options. This outcome confirms our hypothesis

that investors in single stock call options are CPT-biased. This is a strong finding since ex-

plaining the overpricing of single stock call options via the CPT weighting function had not

yet been accomplished empirically. It adds to the recent advances in research that explain the

overpricing of OTM index puts by investors’ overweighting of small probabilities (Dierkes, 2009;

Kliger and Levy, 2009; Polkovnichenko and Zhao, 2013).

However, the estimated γ’s indicate that such overweighting of small probabilities is less

pronounced than suggested by the CPT and has a horizon effect. This observed horizon effect

implies that overweighting of small probabilities becomes less pronounced as the option maturity

increases. This finding suggests that investors in single stock calls are mostly biased when

trading short-term contracts, whereas they seem to be more rational (less biased) when trading

long-term calls. This result is consistent with individual investors being the typical buyers

of OTM single stock calls and the fact that they mostly use short-term instruments (cheaper

lottery tickets) to speculate on the upside of equities (Lakonishok et al., 2007). The fact that

longer maturity options are less positively skewed than short-term ones is also consistent with

our results.

We also find that investors’ overweighting of small probabilities is largely time-varying, as γ

varies from extreme overweighting to underweighting of small probabilities. Such time-variation

in γ’s remains strong even when we account for time-varying risk aversion. Nevertheless, when

we allow the risk aversion parameter to vary, the average overweighting of tails weakens for

options of all maturities. As such, we argue that such overweighting of small probabilities

might be partially linked to priced-in risk-premium. We find that the Baker and Wurgler

(2007) sentiment measure explains up to 23 percent of the time-variation in the investors’

overweighting of small probabilities. However, the strong link between market sentiment and

investors’ overweighting of small probabilities is only present at the shorter maturities (three-

and six-month). The horizon effect earlier observed for γ seems to be a corollary of how market

sentiment connects to investors’ overweighting of small probabilities: when overweighting of

small probabilities is pervasive, sentiment seems to explain their time-variation.

Our findings have several important practical implications. First, the understanding of

time-variation in investors’ overweighting of small probabilities should be a strong pillar in the

development of behavioral option pricing models, which remains in its infancy. To the extent

that overweighting of small probabilities is a latent variable or, simply, not trivial to estimate,

we contemplate that future option pricing models should be more sentiment-aware than current

ones. Second, of importance for such next generation option-pricing models is the inclusion of
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the horizon-effect found by us. Such potential modifications on options’ pricing have large

and direct consequences to risk-management, hedging and arbitrage activities. Third, from a

financial stability point of view, investors’ overweighting of small probabilities in single stock

options could be of use to regulators for triangulating the presence of equity markets bubbles.

Finally, as behavioral-led overpricing of OTM options is now uncovered in the single stock call

market (beyond the index put market), further research connecting this finding across these

two markets is warranted. The study of time-variation in overweighting of tails across these

two markets is of particular interest. We believe that the understanding of equity sentiment

can be substantially expanded via this route, leading to a better comprehension of expected

stock returns and volatility.
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Appendix A - Goyal and Welch (2008) equity market predictors

The complete set and summarized descriptions of variables provided by Goyal and Welch

(2008)24 is:

1. Dividendprice ratio (log), D/P: Difference between the log of dividends paid on the

S&P 500 index and the log of stock prices (S&P 500 index).

2. Dividend yield (log), D/Y: Difference between the log of dividends and the log of

lagged stock prices.

3. Earnings, E12: 12-month moving sum of earnings on the S&P500.

4. Earningsprice ratio (log), E/P: Difference between the log of earnings on the S&P

500 index and the log of stock prices.

5. Dividendpayout ratio (log), D/E: Difference between the log of dividends and the

log of earnings.

6. Stock variance, SVAR: Sum of squared daily returns on the S&P 500 index.

7. Book-to-market ratio, B/M: Ratio of book value to market value for the Dow Jones

Industrial Average.

8. Net equity expansion, NTIS: Ratio of twelve-month moving sums of net issues by

NYSE-listed stocks to total end-of-year market capitalization of NYSE stocks.

9. Treasury bill rate, TBL: Interest rate on a three-month Treasury bill.

10. Long-term yield, LTY: Long-term government bond yield.

11. Long-term return, LTR: Return on long-term government bonds.

12. Term spread, TMS: Difference between the long-term yield and the Treasury bill

rate.

13. Default yield spread, DFY: Difference between BAA- and AAA-rated corporate

bond yields.

14. Default return spread, DFR: Difference between returns of long-term corporate and

government bonds.

15. Cross-sectional premium, CSP: Measures the relative valuation of high- and low-

beta stocks.

16. Inflation, INFL: Calculated from the CPI (all urban consumers) using xi,t−1 in Eq.

(1) for inflation due to the publication lag of inflation numbers.

17. Investment-to-capital ratio, I/K: Ratio of aggregate (private nonresidential fixed)

investment to aggregate capital for the entire economy (Cochrane, 1991).

24Available at http://www.hec.unil.ch/agoyal/.
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Table 6: Robustness checks: Kupiec’s test

This table reports the results from Kupiec’s (1995) percentage of failure (POF) test for violations of the

extreme quantile returns (EQR) from the empirical density function (EDF) by the EQR of a set of RND and

subjective density functions. The null hypothesis, which is designed as a log-likelihood ratio test (Eq. (21)), is

that the realized probability of failure ( b
n ) matches the predicted one p∗. Thus if the LR exceeds the critical

value, χ2 (1)=3.841, such a hypothesis is rejected at the five percent level. Translating the methodology to our

empirical problem, (p∗) becomes the assumed probability that the EQR of the subjective and of the

risk-neutral densities will violate the EQR of the realized returns, whereas b
n is the realized number of

violations. We note that because we apply Kupiec’s test on the upside returns, violations mean that returns

are higher than a positive threshold.

Panel A - Three-month calls

EQR 90% EQR 95% EQR 99%

p = 10% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat

RNDvsEDF 99.4% 0.0000 ∞ 97.4% 0.0000 ∞ 25.5% 0.0000 77.8
PowervsEDF 100.0% 0.0000 ∞ 100.0% 0.0000 ∞ 65.4% 0.0000 711.2
ExpovsEDF 100.0% 0.0000 ∞ 100.0% 0.0000 ∞ 70.1% 0.0000 821.1
PCPTvsEDF 100.0% 0.0000 ∞ 99.9% 0.0000 ∞ 39.9% 0.0000 244.9
CPTvsEDF 52.2% 0.0000 443.6 40.6% 0.0000 255.7 8.4% 0.2666 1.2

p = 5% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat

RNDvsEDF 99.4% 0.0000 ∞ 97.4% 0.0000 ∞ 25.5% 0.0000 186.1
PowervsEDF 100.0% 0.0000 ∞ 100.0% 0.0000 ∞ 65.4% 0.0000 ∞
ExpovsEDF 100.0% 0.0000 ∞ 100.0% 0.0000 ∞ 70.1% 0.0000 ∞
PCPTvsEDF 100.0% 0.0000 ∞ 99.9% 0.0000 ∞ 39.9% 0.0000 438.2
CPTvsEDF 52.2% 0.0000 709.9 40.6% 0.0000 453.5 8.4% 0.0048 8.0

Panel B - Six-month calls

p = 10% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat

RNDvsEDF 99.8% 0.0000 ∞ 67.5% 0.0000 759.6 9.4% 0.7016 0.1
PowervsEDF 99.9% 0.0000 ∞ 96.2% 0.0000 ∞ 16.5% 0.0001 15.7
ExpovsEDF 99.9% 0.0000 ∞ 96.5% 0.0000 ∞ 17.4% 0.0000 20.5
PCPTvsEDF 99.9% 0.0000 ∞ 88.1% 0.0000 ∞ 12.9% 0.0613 3.5
CPTvsEDF 59.4% 0.0000 582.5 22.8% 0.0000 55.0 3.2% 0.0000 27.0

p = 5% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat

RNDvsEDF 99.8% 0.0000 ∞ 67.5% 0.0000 ∞ 9.4% 0.0003 13.1
PowervsEDF 99.9% 0.0000 ∞ 96.2% 0.0000 ∞ 16.5% 0.0000 70.4
ExpovsEDF 99.9% 0.0000 ∞ 96.5% 0.0000 ∞ 17.4% 0.0000 81.0
PCPTvsEDF 99.9% 0.0000 ∞ 88.1% 0.0000 ∞ 12.9% 0.0000 37.3
CPTvsEDF 59.4% 0.0000 891.6 22.8% 0.0000 147.2 3.2% 0.0793 3.1

Panel B - Twelve-month calls

p = 10% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat

RNDvsEDF 45.6% 0.0000 332.1 23.7% 0.0000 62.7 14.9% 0.0022 9.3
PowervsEDF 58.2% 0.0000 558.6 42.1% 0.0000 277.5 25.0% 0.0000 73.1
ExpovsEDF 58.9% 0.0000 572.8 42.7% 0.0000 286.9 25.8% 0.0000 80.7
PCPTvsEDF 53.4% 0.0000 467.2 35.1% 0.0000 181.8 19.4% 0.0000 31.7
CPTvsEDF 20.3% 0.0000 37.3 6.7% 0.0218 5.3 5.2% 0.0005 12.3

p = 5% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat

RNDvsEDF 45.6% 0.0000 559.7 23.7% 0.0000 160.5 14.9% 0.0000 54.8
RNDvsEDF 58.2% 0.0000 860.6 42.1% 0.0000 484.1 25.0% 0.0000 178.3
RNDvsEDF 58.9% 0.0000 879.0 42.7% 0.0000 497.3 25.8% 0.0000 190.9
RNDvsEDF 53.4% 0.0000 741.1 35.1% 0.0000 347.2 19.4% 0.0000 104.0
RNDvsEDF 20.3% 0.0000 114.9 6.7% 0.1321 2.3 5.2% 0.8789 0.0
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