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ABSTRACT

This paper investigates whether the overpricing of out-of-the money single stock calls can be
explained by Tversky and Kahneman’s (1992) cumulative prospect theory (CPT). We argue
that these options are overpriced because investors’ overweight small probability events and
overpay for such positively skewed securities, i.e., characteristics of lottery tickets. We match a
set of subjective density functions derived from risk-neutral densities, including the CPT with
the empirical probability distribution of U.S. equity returns. We find that overweighting of
small probabilities embedded in the CPT explains on average the richness of out-of-the money
single stock calls better than other utility functions. The degree that agents overweight small
probability events is, however, strongly time-varying and has a horizon effect, which implies
that it is less pronounced in options of longer maturity. We also find that time-variation in
overweighting of small probabilities is strongly explained by market sentiment, as in Baker and
Wurgler (2007).
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1 Introduction

The most distinctive contribution of Tversky and Kahneman’s (1992) cumulative prospect
theory (CPT) is that individuals overweight small probability events when making decisions
under risk. Barberis and Huang (2008), however, are the ones to hypothesize that the CPT’s
overweighting of small probability events may explain a number of seemingly unrelated pricing
puzzles. Differently from an earlier literature which concentrates on the CPT’s value function
(see Benartzi and Thaler, 1995; Barberis et al., 2001; Barberis and Huang, 2001), Barberis and
Huang (2008) focus on the probability weighting functions of the model. They conclude that the
CPT’s overweighting of small probability events helps explaining why investors prefer positively
skewed returns, or “lottery ticket” type of securities. Due to such preference, investors overpay
for positively skewed securities, turning them expensive and causing them to yield low forward
returns. This overpricing is the reason for the low long-term average return of IPO stocks, the
private equity premium puzzle, distressed stocks, and the overpricing of deep out-of-the money
(OTM) single stock calls, among other irrational pricing phenomena.

The proposition by Barberis and Huang (2008) that deep OTM single stock calls resemble
overpriced, lottery tickets-type securities has not yet been verified empirically. Empirical studies
on probability weighting functions implied by option prices are offered by Dierkes (2009), Kliger
and Levy (2009), and Polkovnichenko and Zhao (2013)!. The evidence in these papers is,
however, based on the index put options market, which is very different from the single stock
option market. The main buyers of OTM index puts are institutional investors, which use them
for portfolio insurance (Bates, 2003; Bollen and Whaley, 2004; Lakonishok et al., 2007; Barberis
and Huang, 2008). Because institutional investors comprise around two-thirds of the total
equity market capitalization (Blume and Keim, 2012), their option trading activity strongly
impacts the pricing of put options (Bollen and Whaley, 2004) by making them expensive.
The results of Dierkes (2009) and Polkovnichenko and Zhao (2013) reiterate this evidence and
suggest that overweighting of small probabilities partially explains the pricing puzzle present
in the equity index option market.

Contrary to the index put market, trading activity in single stock calls is concentrated among
individual investors (Bollen and Whaley, 2004; Lakonishok et al., 2007). Moreover, individual
investors’ demand for single stock options is speculative in nature (Lakonishok et al., 2007),
whereas Mitton and Vorkink (2007) provide important support to the link between preference
for skewness and individual investors’ trading activity. Given the very distinct clientele of these
two option markets (institutional investors vs. retail investors) and the different motivation

for trading (portfolio insurance vs. speculation), we reason that the OTM single stock calls

!These studies focus on the rank-dependent expected utility (RDEU) rather than the CPT, as the RDEU
is seamlessly effective in dealing with the overweighting of probability phenomena. The RDEU’s probability
weighting functions are strictly monotonically increasing, whereas the CPT’s one is not. RDEU functions are
also easier to estimate because they use one less parameter than the CPT.



overpricing is a puzzle in itself, requiring an independent empirical proof from the index option
market.

The first contribution of our study is to investigate whether the CPT can empirically explain
the overpricing of OTM single stock call options. To that purpose, we empirically test whether
tails of the CPT density function outperform the risk-neutral density and rational subjective
probability density functions on matching tails of the distribution of realized returns. We find
that our estimates for the CPT probability weighting function parameter v do not differ much
from the one predicated by Tversky and Kahneman (1992), particularly for short-term options.
This analysis complements the results of Barberis and Huang (2008) and provides novel support
to explain the overpricing of OTM single stock calls. Our empirical results extend the findings
of Dierkes (2009), Kliger and Levy (2009), Polkovnichenko and Zhao (2013), because we show
that investors’ overweighting of small probabilities? is not restricted to the pricing of index puts
but also applies to single stock calls.

Secondly, we provide evidence that overweighting of small probabilities is strongly time-
varying and connected to the Baker and Wurgler (2007) investors’ sentiment factor. These
findings contrast the CPT model, where the probability weighting parameter for gains ()
is constant at 0.61. In fact, our estimations suggest that the v parameter fluctuates widely
around that level, sometimes even reflecting underweighting of small probabilities. We show
that overweighting of small probabilities was most acute during the dot-com bubble, which
coincided with a strong rise in investors’ sentiment.

Moreover, we find that overweighting of small probabilities is largely horizon-dependent,
as such bias is mostly observed within short-term options prices (i.e., three- and six-months)
rather than in long-term ones (i.e., twelve-months). We reason that such horizon-effects exist
because individual investors may speculate using the cheapest available call at their disposal. In
other words, individual investors buy the cheapest lottery tickets that they can find. As three-
and six-month options have much less time-value than twelve-month ones, more pronounced
overweighting of small probabilities within short-term options seems sensible. This result is
consistent with individual investors being the typical buyers of OTM single stock calls and
the fact that they mostly use short-term instruments to speculate on the upside of equities
(Lakonishok et al., 2007).

In our analysis of probability weighting functions, we focus on the outmost tails of RNDs?.
We argue that, as distribution tails (mostly estimated from OTM options) are the sections of

the distribution that reflect low probability events, we may analyze these locally, thus, isolated

2We acknowledge that it is yet fully unclear whether overpicing of OTM calls is caused by overweighting of
small probablities (i.e., a matter of preferences) or rather by biased beliefs. Barberis (2013) eloquently discusses
how both phenomena are distinctly different and how both (individually or jointly) may potentially explain the
existence of overpriced OTM options, as well as many other puzzling facts in financial markets. In this paper
we take a myopic view and use only the first explanation, for ease of exposition. Disentangling the two (beliefs
and preferences) would potentially be very interesting, but we deem it to be outside the scope of this paper or
to be tackled in future versions of this study.

3Per contrast, Dierkes (2009) and Polkovnichenko and Zhao (2013) explore the relation between overweight-
ing of small probabilities and options prices by analyzing the full RND from options. Dierkes (2009) applies
Berkowitz’s tests, whereas Polkovnichenko and Zhao (2013) estimate an empirical weighting function via poly-
nomial regressions.

3



from the distribution’s body. To this purpose, we use extreme value theory (EVT) and Kupiec’s
test (as a robustness check), which are especially suited for the analysis of tail probabilities
and, so far, have not been employed yet to the evaluation of overpricing of OTM options. As
an additional robustness check, we replace the CPT by the rank-dependent expected utility
(RDEU) function of Prelec (1998). This alteration reconfirms the presence of overweight of
small probabilities by investors within the OTM single stock call market but, at the same time,
suggests that such bias is less pervasive than our CPT-based results indicate. Time-variation
of the weighting function parameters is also observed when RDEU is applied.

The remainder of this paper is organized as follows. Section 2 describes the CPT model.
Section 3 describes the data and methodology employed in our study. Section 4 presents and

discusses our empirical analysis as well as robustness tests. Section 5 concludes.

2 Cumulative Prospect Theory

The Prospect theory (PT) of Kahneman and Tversky (1979) incorporates behavioral biases
into the standard utility theory (Von Neumann and Morgenstern (1947)), which presumes
that individuals are rational®. Such behavioral anomalies are i) loss aversion®, ii) risk seeking
behavior® and iii) non-linear preferences”. The CPT is described in terms of a value function (v)
and a probability distortion function (7). The value function is analogous to the utility function
in the standard utility theory and it is defined relative to a reference point zero. Therefore,
positive values within the value function are considered as gains and negative values are losses,
which leads to:

) ifr>=0
vlz) _{ ~M—2)? | if 2 <0 1)

where A > 1, 0 < 8 <1, 0 < a <1, and x are gains or losses. Thus, along the dominium
of z, the CPT’s value function is asymmetrically S-shaped (see Figure 1) with diminishing
sensitivity as x — Fo0.

[Please insert Figure 1 about here]

The value function is, thus, concave over gains and convex over losses, differently from the
traditional utility function used by standard utility theory. Such a shape of the value function

implies diminishing marginal values as gains or losses becomes larger, which, in other words,

4The expected utility theory of Von Neumann and Morgenstern (1947) is the standard economics framework
on decision making under risk. Their theory assumes that decision-makers behave as if they maximize the
expected value of some function defined over the potential (probabilitistic) outcomes. Individuals are assumed
to have stable and rational preferences; i.e., not influenced by the context or framing.

SLoss aversion is the property in which people are more sensitive to (or affected by) losses than gains. For
details, see Kahneman and Tversky (1979), Tversky and Kahneman (1992) and Barberis and Huang (2001).

6Risk-seeking behavior happens when individuals are attracted by gambles with unfair prospects. In other
words, the risk-seeking individual is the one that chooses for a gamble versus a sure thing even though the two
outcomes have the same expected value. For details, see Kahneman and Tversky (1979).

"Non-linear preferences occur when preferences between risky prospects are not linear in the probabilities,
thus, equally probable prospects are more heavily weighted by agents than others. For details, see Tversky and
Kahneman (1992), Fox et al. (1996), Wu and Gonzalez (1996), Prelec (1998) and Hsu et al. (2009).

4



means that any additional unit of gain (loss) becomes less relevant when wealth increases
(decreases). As a and f increase, the effect of diminishing sensitivity decreases (see Figure 2),
and as A increases the degree of loss aversion increases. We also note in Figure 1A that the
value function has a kink at the reference point, which implies loss aversion, as the function is
steeper for losses than for gains.

[Please insert Figure 2 about here]

The use of a probability distortion function or decision weight function is the adjustment
made to the PT to address nonlinear preferences. This function takes probabilities and weights
them nonlinearly, so that the difference between probabilities at high percentiles, e.g., between
99 percent and 100 percent, has more impact on preferences than the difference between prob-
abilities at small percentiles, e.g., between 10 percent and 11 percent. This is the main advance
of the CPT over the original PT. The CPT applies probability distortions to the cumulative
probabilities (i.e., the CDF), whereas the PT applies them to individual probabilities (i.e.,
the PDF). The enhancement brought by this new formulation satisfies stochastic dominance
conditions not achieved by the PT, which renders the CPT applicable to a wider number of
experiments. The probability distortion functions suggested by Tversky and Kahneman (1992),

respectively, for gains (7)) and losses (7_,,) are:

Ty = w" (pn) (2a)

= w (pi ..+ pp) —wt(Pig1 + o+ pp), for0 <i<n-—1 (2b)
T = W (P-m) (2c)

T, =W (Ppom+ o+ pi) =W P+ . +Dic1) , for1—m <i<0 (2d)

where p are objective probabilities of outcomes, which are ranked for gains from the reference
point ¢ = 0 to ¢ = n, the largest gain, and for losses from the largest loss ¢ = —m to ¢ = 0, the
reference point. Further, wt and w™, the parametric form of the decision weighting functions,

are given by:

Y P’
w (p) - (p,y + (1 _p),y)l/7 (33)

p6

w (p) = (P + (1 — p)d)i/

where parameters v and 0 define the curvature of the weighting function for gains and losses,

(3b)

which leads the probability distortion functions to assume inverse S-shapes. Figure 3 depicts
how low probability events are overweighted at the cost of moderate and high probabilities
within the CPT probability distortion functions. Tversky and Kahneman (1992) indicate that
the weighting functions for gains are slightly more curved than for losses (i.e. 7 < ¢§). The
parameters estimated by the authors for the CPT model are A\ = 2.25; 8 = 0.88; a = 0.88;
v =0.61; 6 = 0.69.



[Please insert Figure 3 about here]

3 Data and Methodology

In this section, we first describe the theoretical background that allows us to relate empirical
density functions (EDF), RND, and subjective density functions. This is a key step for testing
the hypothesis that the CPT helps explaining overpricing of OTM options because we build on
the assumption that investors’ subjective density estimates should correspond, on average®, to
the distribution of realizations (see Bliss and Panigirtzoglou, 2004). Thus, testing whether the
CPT’s weighting function explains the overpricing of OTM options, ultimately, relates to how
the subjective density function produced by CPT’s preferences matches empirical returns. Be-
cause the representative agent is not observable, subjective density functions are not estimable
like EDF and RND are. As such, we build on the following theory to derive subjective density
functions from RNDs.

In our empirical exercise, we first derive subjective density functions for (a) the power
and (b) exponential utility functions. Because the CPT model contains not only a utility
function (the value function) but also a probability weighting scheme (the weighting function),
we produce two density functions resulting from such model: (c) the hereafter called partial
CPT density function (PCPT), where only the value function is taken into account, and (d) the
CPT density function, where the value and the weighting functions are considered. Lastly, we
also calibrate v to market data and are, then, able to compute (e) the estimated CPT density
(ECPT). We provide details on estimation methods for our five subjective density functions,
(a) to (e), in section 3.1, and for the RND and EDF in section 3.4.

Once all five subjective density functions are obtained, we distinguish four main independent
analyses in our methodology section: 1) the estimation of long-term CPT value and weighting
function parameters (from which we can produce the ECPT density); 2) EVT-based tests of
consistency between tails of the EDF, the RND and our five subjective probability distributions;
3) the estimation of time-varying A and  parameters; and 4) a regression linking the CPT time-
varying probability weighting parameter (vy) to sentiment measures as well as numerous control
variables.

Barclays Capital provided the single stock weighted average IV data used for the largest 50
stocks of the S&P 500 index. The data consists of closing mid-prices from January 2, 1998 to
March 19, 2013 for fixed maturities for five moneyness levels, i.e., 80, 90, 100, 110, and 120, at
the three-, six- and twelve-month maturity. Continuously compounded stock market returns
are calculated through our analysis from the S&P 500 index prices using a daily frequency,

which is obtained via Thomson Reuters Datastream.

8This implies that investors are somewhat rational. Such an assumption is not incoherent with the CPT
assumption that the representative agent is less than fully rational. The CPT suggests that investors are biased,
not that decision makers are utterly irrational to the point of rejecting that their subjective density forecast
should not correspond, on average, to the realized return distribution.



3.1 Subjective density functions

Standard utility theory tells us that since the representative agent does not have risk-neutral
preferences, RNDs are inconsistent with subjective and physical densities®. Hence, if investors
are risk-averse or risk-seeking, their subjective probability function should differ from the one
implied by option prices. The relation between the RND, fo(Sr), and the EDF, fp(Sr), with

St being wealth, is accomplished by the representative investor utility function, U(St):

fr(ST) _ )\U/(ST)
fo(Sr) U'(S)

where A is the constant subjective discount factor and ¢(St) is the pricing kernel'®. Thus,

= <(57), (4)

the empirical distribution equates to the RND adjusted by the pricing kernel, the subjective
density function of the representative investor of utility function U(Sr). By applying Eq. (4)
we can estimate the subjective density function for an (rational) investor that has power and
exponential utility functions, hereafter, called power and exponential density functions.

Since CPT-biased investors price options as if the data-generating process has a cumulative
distribution F5(Sr) = w(Fp(Sr))', its density function becomes f5(Sr) = w'(Fp(Sr))- fp(Sr)
(see Dierkes, 2009; Polkovnichenko and Zhao, 2013). Thus, CPT-biased agents assess proba-
bility distributions as if their tails would contain more weight than in reality they do. In other
words, CPT-biased agents 'see’ fat tails where, in fact, they are not. Consequently, evaluating
whether the CPT’s propositions apply is equivalent to testing whether Eq. (4) still holds if
fp(St) is replaced by f3(Sr), thus:

w'(Fp(Sr)) - fp(ST)
fo(ST)
which, re-arranged into Eq. (7), demonstrates that for the CPT to hold, the subjective density
function should be consistent with the probability weighted EDF.

= §(ST) (5)

fo(Sr) = w'(Fp(St)) - fr(Sr)- <(S1) (6a)
—— ~———— —— ——
RND probability weighing EDF pricing kernel
Jo(Sr) = /5(57) - (57) (6b)
—— —— ——
RND probability weighted EDF pricing kernel

9 Anagnou et al. (2002) and Bliss and Panigirtzoglou (2004) have tested the consistency between RNDs and
physical densities estimated from historical data and found that such distributions are inconsistent, i.e., RNDs
are poor forecasters of the distribution of realizations.

0The condition necessary for Eq. (4) to hold is that markets are complete and frictionless and a single risky
asset is traded.

HSimilarly, if investors are rational, their subjective density functions should be consistent, on average, with
the empirical density function. Bliss and Panigirtzoglou (2004) find that subjective density functions, produced
from RND adjusted by two types of representative investors’ utility functions (power and exponential) with
plausible relative risk aversion parameters, outperform RND on forecasting density functions.



fo(Sr) _ fo(Sr)

AZELo(Sr)

Subjecti:/; density
Following Ait-Sahalia and Lo (2000) and Bliss and Panigirtzoglou (2004), Eq. (7) can be
manipulated so that the constant A of the pricing kernel vanishes, producing Eq. (8), which
directly relates the probability weighted EDF, the RND, and the marginal utility, U’(St):

/5(57) (7)

——
_ probability weighted EDF

St fo(ST)
_wHesn B
[p(57) U'(5) Jatz) (®)
e Q(:E)dx I dx

~~
Generic subjective density function

N—_——
probability weighted EDF

where [ %dm normalizes the resulting subjective density function to integrate to one. Once
the utility function is estimated, Eq. (8) allows us to convert RND into the probability weighted
EDF. As we hypothesize that the representative investor has a CPT utility function, its marginal
utility function is U’(Sy) = v'(Sr), and, thus, v'(Sr) = aS3™! for Sp >= 0, and v'(Sy) =
A3(=Sr)P~1 for Sy < 0, leading to Eq. (9):

fQ(STl)
f5(S7) = f o for Sr>0, and (9)
cxr"‘ 1
fQ(STg i
f5(S7) = & for Sp<0, and (10)

v f Ag{Q(zﬁ I
probability weighted EDF . x) ,

Partial CPT density function

Egs. (9) and (10), hence, relate the EDF where probabilities are weighted according to the
CPT probability distortion functions, on the LHS, to the subjective density function derived
from the CPT value function, on the RHS, separately for gains and losses, i.e., the PCPT
density function. The relationships specified by Eqs. (9) and (10) fully state the relation we
would like to depict, although one additional manipulation is convenient for our argumentation.
Assuming that the function w(Fp(Sr)) is strictly increasing over the domain [0,1], there is a one-
to-one relationship between w(Fp(Sr)) and a unique inverse w(Fp(Sr)). So, result f5(Sr) =
w' (Fp(St)) fp(Sr) also implies f5(Sr).(w™) (Fp(Sr)) = fp(Sr)'?. This outcome allows us to
directly relate the original EDF to the CPT subjective density function, by “undoing” the effect
of the CPT probability distortion functions within the PCPT density function:

120ne drawback of the CPT model is that it enables for non-strictly increasing functions, which would not
allow invertibility. This is the reason why the newer literature on probability distortions functions favors
other strictly monotonic functions, such as Prelec’s (1998) w(p) = e=(=In(®)’  ag their weighting functions.
Nevertheless, because the CPT parameters of our interest (v = 0.61; 6 = 0.69) impose strict monotonicity, we
can obtain the inverse of the probability function, w~!(p) numerically.



fo(ST)

— ﬁ —1y\/
fl;(})iT) = [z x)d (w™) (Fp(ST)) (11)

~
CPT density function

Thus, once the relation between the probability weighting function of EDF and the PCPT
density is established, as in Egs. (9) and (10), one can eliminate the weighting scheme affecting
returns by applying the inverse of such weightings to the subjective density function without
endangering such equalities, as in Eq. (11). This result allows us to obtain a clear representation
of the CPT subjective density function, thus, where the value and the weighting function are
simultaneously taken into account. At this stage, as we can produce RND and the set of
subjective densities of our interest, including the CPT density, one can evaluate how consistent

with realizations their tails are.

3.2 Estimating CPT parameters

We start evaluating the empirical validity of the CPT for single stock call options by com-
paring EDF to the CPT density function parameterized by Tversky and Kahneman (1992).
Subsequently, we estimate CPT weighting function parameters A\, 8, o and ~ with the same
goal. We only estimate v within the probability weighting function, and not 9, because we
are interested in the gains-side of the distribution, which is extracted from call options. We
estimate these parameters non-parametrically, by sequentially minimizing the squared distance
between physical distribution and the partial CPT density function for every bin of the two

distributions, as follows:

(12a)

prob) ’

B
vl =B,\*) = Mmz EDF},,, — CPT,

v(\, o, B) = Mmz (EDF},,, — CPT" ,)?, (12b)
b=1

where, a=p3, the value function diminishing sensitivity parameters, in Eq. (12a) are constrained
to be between [0 and 1.6]; and A, the risk aversion parameter, in Eq. (12b) is constrained to
the [0.5,3] interval and B is the total number of bins. Once the optimal A, & and § are known,

we minimize:

B
w+(77 5*) = Min Z EDF;))T‘Ob cpP prob) ) (13)

where 7, the probability weighting parameter for gains,, is constrained to the (0.28, 1.2] interval.

Our non-linear bounded optimization is a single parameter one, where we first estimate op-

timal (constraint) intervals for a=p and A, and subsequently we estimate them as suggested by

the sequence of optimizations described by Eqgs. (12a), (12b), (13). This method resembles the

one of Kliger and Levy (2009), Dierkes (2009), Chabi-Yo and Song (2013), and Polkovnichenko
9



and Zhao (2013). Once optimal A\, a=f, v are estimated, we can produce another subjective
density function: the ECPT, which stands for estimated CPT, where we apply the optimal ~

for the characterization of its probability weighting function.

3.3 Density function tails’ consistency test

We check for tail consistency of our set of five subjective density functions (CPT, PCPT, ECPT,
power and exponential), RND, and the EDF by applying extreme value theory (EVT). EVT
allows us to estimate the shape of the tails of these eight PDFs and to extract the returns
implied by an extreme quantile within our PDFs. We estimate the tail shape estimator (¢) by
means of the Hill (1975) estimator:

_1_1 i (14)
6 k = $k+1 )
where £ is the number of extreme returns used in the tail estimation, and z(;41) is the tail
cut-off point. The tail shape estimator ¢ measures the curvature, i.e., the fatness of the tails
of the return distribution: a high (low) ¢ indicates that the tail is fat (thin). The inverse of
¢ is the tail index (@), which determine the tail probability’s rate of decay. A high (low) 6
indicates that the tail decays quickly (slowly) and, therefore, is thin (fat). Such tail shape
estimator and tail index give us a good representation of the curvature of the tails, but since
tails may have the same shape while estimating diverse extreme observations, we also employ

the semi-parametric extreme quantile estimator from De Haan et al. (1994):

. k
qp = wk-i—l(ﬁ) ) (15)

=

where n the sample size, p is a corresponding exceedance probability, which means the likelihood
that a return x; exceeds the tail value ¢, and xj; is the tail cut-off point. We note that one
of the input of ¢, is the tail shape estimator ¢. Similar to value-at-risk (VaR) modeling, the
g, statistic indicates the level of the worst return occurring with probability p, which is small.
This is the reason why we call ¢, extreme quantile return (EQR). As we are interested only in
the upside returns with a p probability estimated from calls, we only compute cj; by applying
the same methodology to the right side of the RND obtained from the single stock option
market!3.

In addition to the EQR, we also evaluate the density function tails’ using expected short-
fall (ES), which typically captures the average loss beyond the tail cut-off point. As we are
interested in the upside of the distribution, we call such measure expected upside (EU) as the
average gain beyond the tail cut-off point. We evaluate the EU following Danielsson et al.
(2006) formulae for the ES, which relates the EQR (i.e., the VaR) to the ES (i.e., the CVaR)

as described below:

130ur EQR measure is closely connected to the risk-neutral tail loss measure of Vilkov and Xiao (2013).
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De Haan et al. (1994) show that the tail shape estimator statistic Vk(¢(k) — @) and the
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to Hartmann et al. (2004) and Straetmans et al. (2008), the ¢-statistics for such estimators are
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where the denominators are calculated as the bootstrapped difference between the estimated
shape parameters ¢ and the quantile parameters ¢, using 1000 bootstraps. The null hypothesis
of this test is that ¢ and ¢, parameters do not come from independent samples of normal
distributions, therefore, ¢1 = ¢2 and ¢; = ¢2. The alternative hypothesis is that ¢ and ¢, have
unequal means. Such t-test is also applied to our EU analysis, as the distribution of EU follows
ﬂ [lné(p)

the same distribution of the tail quantile statistic (k) M]’ given that EU is the extreme
™ok

quantile estimator multiplied by a constant.

3.4 Estimating RND and EDF

For the estimation of the RND, the first step taken is the application of the Black-Scholes
model to our IV data to obtain options prices (C) for the S&P 500 index. Once our data
is normalized, so strikes are expressed in terms of percentage moneyness, the instantaneous
price level of the S&P 500 index (Sp) equals 100 for every period for which we would like to
obtain implied returns. Contemporaneous dividend yields for the S&P 500 index are used for
the calculation of P as well as the risk-free rate from three-, six-, and twelve-month T-bills.
Because we have IV data for five levels of moneyness, we implement a modified Figlewski (2010)
method for extracting our RND structure, as in Felix et al. (2015).

The Figlewski (2010) method is close to the one employed by Bliss and Panigirtzoglou
(2004), where body and tails are also extracted separately. Bliss and Panigirtzoglou (2004) use
a weighted natural spline algorithm for interpolation, which has the same decreasing-noise effect
in RNDs of using splines in the absence of knots, as done in Figlewski (2010). The extrapolation
in Bliss and Panigirtzoglou (2004) is done by the introduction of a pseudo-data point, which
has the effect of pasting lognormal tails into the RND. One advantage of these two approaches
is that the extrapolation does not result in negative probabilities, which is possible when spline
interpolation is applied in such case. Nevertheless, we favor Figlewski’s (2010) approach as

the lognormal tails employed by Bliss and Panigirtzoglou (2004) assume that IV is constant
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beyond the observable strikes, resembling the Black-Scholes model. The modification made to
the Figlewski (2010) method by Felix et al. (2015) entailed having flexible inner anchor points
(as opposed to having fixed anchor points) for fitting tails to the risk neutral density. The aim
of this modification is to prevent the method to estimate distribution density functions with
implausible shapes.

We estimate the EDF in two different ways. First, using the entire sample of realized
returns (r), we estimate “long-term” EDFs non-parametrically, where r = In(Sy/S;) and S;
is the S&P500 index at time ¢ and Sy is the forward level of the same index three-, six- or
twelve-month forward. Because of overlapping periods, we estimate our empirical distribution
of returns for these three maturities using multiple samples and distinct starting points.

In a second step, we estimate time-varying EDFs built from an invariant component, the
standardized innovation density, and a time-varying part, the conditional variance (af't_l) pro-
duced by an EGARCH model (see Nelson, 1991). We first define the standardized innovation,
being the ratio of empirical returns and their conditional standard deviation (In(S;/S¢-1)/0i-1)
produced by the EGARCH model. From the set of standardized innovations produced, we can
then estimate a density shape, i.e., the standardized innovation density. The advantage of
such a density shape versus a parametric one is that it may include, the typically observed,
fat-tails and negative skewness, which are not incorporated in simple parametric models, e.g.,
the normal. As mentioned, such density shape is invariant and it is turned time-varying by
multiplication of each standardized innovation by the EGARCH conditional standard deviation

at time ¢, which is specified as follows:

In(St/Se-1) = 1o+ e, € ~ £(0, 07, _y) (18a)

and

Uf‘t_l =w +aet |+ 503—1#—2 +IMax[0, —e;,_1)%, (18b)

where « captures the sensitivity of conditional variance to lagged squared innovations (e?;_1);
[ captures the sensitivity of conditional variance to the conditional variance (O’Qt_1|t_2) and ¢
allows for the asymmetric impact of lagged returns (9Maz[0, —€;_1]?). The model is estimated
using maximum log-likelihood where innovations are assumed to be normally distributed.

Up to this point, we managed to produce a one-day horizon EDF for every day in our
sample but we still lack time-varying EDFs for the three-, six-, and twelve-month horizons.
Thus, we use bootstrapping to draw 1,000 paths towards these desired horizons by randomly
selecting single innovations (e;y1) from the one-day horizon EDFs available for each day in
our sample. We note that once the first return is drawn, the conditional variance is updated
(Uf_l‘ o) affecting the subsequent innovation drawings of a path. This sequential exercise
continues through time until the desired horizon is reached. In order to account for drift in
the simulated paths, we add the daily drift estimated from the long-term EDF plus the risk-
free rate to drawn innovations, thus the one-period simulated returns is €,,7 + u + Rf. The

density functions produced by the collection of returns implied by the terminal values of every
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path and their starting points are our three-, six-, and twelve-month EDFs. These simulated
paths contain, respectively, 63, 126, and 252 daily returns. We note that by drawing returns
from stylized distributions with fat-tails and excess skewness, our EDFs for the three relevant
horizons also imbed such features. Finally, once these three time-varying EDF's are estimated
for all days in our sample, we estimate A and ~ for each of these days using Egs. (12b) and
(13)14.

Our approach for estimating both the long-term EDF and the time-varying EDF is closely
connected to the method applied by Polkovnichenko and Zhao (2013). The time-varying method
used by these authors is based on Rosenberg and Engle (2002). The choice for an EGARCH
approach versus the standard GARCH model is due to the asymmetric feature of the former

model that imbeds the “leverage effect”!®.

4 Empirical analysis and results

In this section, we present our results of the empirical analysis described in section 3. We
note that since we estimate EDF in the two ways described (the “long-term” and time-varying
EDFs), we are able to estimate long-term 7’s and time-varying ~’s by minimizing (13). We
use our long-term ~ estimates to compute the ECPT with the aim to compare it to the other
subjective density functions using the tests described in section 3.3. The time-varying estimates
of X\ and v are analyzed in sections 4.3 and 4.4, respectively, with the use of an ordinary least
squares (OLS) regression model. We describe this regression together with its results in section
4.4. Finally, in section 4.5, we perform robustness tests on our results by using an alternative
weighting function to the CPT; the one imbedded in the Prelec (1998) model.

4.1 Estimated CPT long-term parameters

We report the estimated CPT parameters (A, « = 3, and ) extracted from long-term density
functions in Table 1, Panel A. Our first finding is that A, the parameter of risk aversion, which
is 2.25 in the CPT, does indeed fluctuate around that number. Our estimation of A from
three-month options is 1.98, whereas for the six- and twelve-month options is 2.49 and 1.85,
respectively. This finding suggests that risk aversion is the highest at the six-month maturity,
even higher than suggested by the CPT. The o and  parameters obtained are all close to
unity, suggesting that the diminishing sensitivity to gains and losses is higher than suggested
by the CPT (i.e., 0.88).
[Please insert Table 1 about here]

“Duye to drift, the model of time-varying EDF for the twelve-month horizon occasionally does not match the
one of the PCPT model. This difference has been challenging for the estimation of v (Eq. (13)), as a large
amount of 7 estimates produce unreasonable PDFs such as non-monotonic CDFs. Therefore, to perform the
optimizations given by Eq. (13), we neutralize the impact of the drift by forcing the mode of the simulated
EDF to match the one of the PCPT.

15The leverage effect is the negative correlation between an asset’s returns and changes in its volatility. For
a comparison between alternative GARCH approaches, see Bollerslev et al. (2009).
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The estimated probability weighting function parameters v matches the one suggested by
the CPT (i.e., 0.61) at the three-month horizon but overshoots the CPT ones at longer horizons.
For six-month options, 7y is around 0.7, whereas at the twelve-month horizon, it is close to unity,
0.97. These results suggest that overweighting of small probabilities is generally present within
the average pricing of single stock options. Such lottery tickets buying effect occurs essentially
in short-term option markets (up to six-months), while the twelve-month option market seems
to behave more rational. These findings provide initial support of our hypothesis that individual
investors do behave as buying lottery tickets (i.e., overweighting small probability events) when

purchasing single stock call options, as suggested by Barberis and Huang (2008).

4.2 Density functions tails’ consistency test results

As specified in section 3.3,we test the empirical consistency of density function tails among a set
of five subjective distributions (CPT, PCPT, ECPT, power, exponential), the RND, and the
EDF. We perform such tests by employing EVT through the application of Eqgs. (14) and (15).
In order to apply such methods, we require return streams (z;), which are only available for the
long-term EDF. Thus, we apply an inversion transform sampling technique to our other PDFs
to obtain sampled returns for them. Such method, also known as the Smirnov method, entails
drawing n random numbers from a uniformly distributed variable U = (uy, ug, ..., u,) bounded
at interval [0, 1] and, subsequently, computing z; - F~*(u;), where F are the CDF's of interest
(see Devroye, 1986, p.28). Hence, the Smirnov method simulates returns that resemble the
ones of the inverse CDF by randomly drawing probabilities along such function.

Once we obtain returns for all five PDF's, the next step is to set k£ as the optimal number
of observations used for estimation of ¢ by Eq. (14), the Hill-estimator. For this purpose, we
produce Hill-plots for the right tail of our distributions, which depict the relationship between
k and ¢ as a curve (see Straetmans et al., 2008). Picking the optimal & is done by observing
the interval in such curve where the value of ¢ stabilizes while k changes. This area suggests a
stable trade-off between a good approximation of the tail shape by the Pareto distribution and
the uncertainty of such approximation (by the use of fewer observations). The interval that
corresponds to roughly four to seven percent of observations seems to be a stable region across
the Hill-plots of the tails of the EDF and the CPT. As an increase in k increases the statistical
power of the estimator but may distort the shape of the tail, we decide to set k as chosen from
the Hill-plots for EDF and CPT tails, equal to four percent.

We examine whether the tail shape parameter (¢), computed via the Hill (1975) estimator,
for the RND and for our subjective density functions (i.e., power, exponential, PCPT, CPT
and ECPT) match the one for the EDF. The outcomes from the statistical tests performed to
compare tail shape parameters (Eq. (17a)) are provided in Table 1, Panel B. Results suggest
that for the three-month maturity options, ¢ for the CPT and ECPT (at 0.25) are very close
and statistically equal to the EDF parameter (at 0.24). The ¢ estimate for the RND (0.2)
also equals the one from physical returns, despite being slightly off the EDF parameter. The

v estimate for the power, exponential, and PCPT density functions do not match the one for

14



the EDF, as they are all around 0.17 and, thus, exhibit fatter tails than the EDF.

We observe that the results for the six- and twelve-month options are very similar to the
ones obtained for the three-month expiry. The parameter estimate ¢ of the EDF is statistically
equal to the CPT and ECPT. Parameter ¢ ranges from 0.18 to 0.24 for the CPT, ECPT, and
RND for the six- and twelve-month maturities, whereas it is 0.23 for the EDF. The estimate
of ¢ for the RND (0.19 and 0.22 for the six- and twelve-month maturities, respectively) also
matches the one for the EDF but with less statistical power than for the CPT. The parameter
estimates ¢ for the power, exponential and PCPT functions do not match the EDF’s ¢ in any
case. Generally, the parameter estimates ¢ for these subjective density functions are too small
in comparison to the one of the EDF. This means that such six- and twelve-month maturity
subjective density functions have fatter tails than the EDF and the other subjective densities
(CPT and ECPT), and the RND. These results suggest that the shape of the CPT density
function seems to be a good match to the shape of realized tails, supporting our hypothesis
that individual investor behave as lottery buyers when trading in single stock options.

After k is chosen and the shape estimator ¢ for the EDF, RND, Power, Exponential, PCPT,
CPT and ECPT is computed, extreme quantile returns (EQR) can also be estimated via Eq.
(15). Subsequently, the t-test in Eq. (17b) is applied using the one, the five and the ten percent
statistical significance levels. Such statistical test aims to evaluate whether the EQR estimated
from a set of two distributions being compared (RND, power, exponential, PCPT, and CPT
versus EDF) have equal means (the null hypothesis). The results of this test are shown in Table
2, Panel A.

[Please insert Table 2 about here]

Analyzing the density functions derived from the three-month option maturity, we find that
the EQR implied by the CPT matches very closely the realized ones: 11 percent at the tenth
quantile, 13 percent for the fifth quantile, and around 20 percent for the first quantile. The
EQR implied by the ECPT is the same as implied by the CPT, thus, it also matches the EDF.
This result was expected as the estimated long-term parameter v used in the ECPT matches
the one of the CPT (0.61). Contrarily, the EQRs for the RND, power, exponential, and PCPT
densities always overshoot the one for the EDF. All comparisons between these distributions’
EQR at the three-month maturity reject the null hypothesis that returns at the same quantile
are equal. This pattern is observed across all quantiles analyzed, i.e., at the tenth, the fifth,
and the first quantiles. This empirical finding indicates that the equity market upside implied
in option markets (i.e., the RND) and the power, exponential and PCPT densities are always
higher than the ones realized by the equity market. The results for the PCPT are somewhat
similar to the ones for the RND. The exponential utility density has the farthest off EQR
relative to the EDF. On average, EQR for the exponential and power utilities overshoot the
one for the EDF by roughly ten percent. Thus, the EQRs from the CPT and the ECPT are
by far the best matches of the EQR for the EDF.

For the six-month maturity, upside returns priced by the RND and ECPT are the ones to
best match the EQR for the realized return distribution. The EQR for the EDF are roughly 18,
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21, and 30 percent for the tenth, the fifth, and the first quantile of returns, respectively, whereas
the EQRs for the ECPT are 17, 20, and 26 percent. For the RND, such extreme upside return
estimates are 19, 22, and 30 percent. Thus, the ECPT statistically matches the realized EQR
best at the tenth and fifith quantile, whereas the RND is the best match for the first quantile.
No rational subjective density function consistently matches the EQR of the EDF. The power,
exponential, and PCPT densities always overshoot the EQR of realized returns. Contrarily,
the CPT density always undershoots the EDF’s extreme returns. Despite always overshooting
the EQR of the EDF, the PCPT is the only other subjective density (apart from the ECPT)
that has EQR statistically equal to the EDF, which happens only at the first quantile EQR
and with only weak (5 percent) statistical significance.

In contrast to the three- and six-month maturities, the EQR from the RND for the twelve-
month maturity all underestimate the EQR from realized returns. The EQR of realized returns
are 25, 29, and 42 percent for the tenth, fifth and first quantiles, respectively, whereas for the
RND these are 22, 26, and 37 percent, respectively. However, the EQRs of the power and
of the exponential densities continue to largely overshoot the ones for the EDF. The PCPT
and the ECPT, in which probabilities are neutrally (or rationally) weighted (recall that ~y
estimated for the twelve-month horizon is 0.97), are the models that best matches the EQR
of the realized returns, as they are around 25, 29, and 39 percent, respectively, for the three
quantiles studied. As such, the EQR of realized returns, the PCPT and the ECPT densities are
strongly statistically equal at the tenth and fifth quantiles and somewhat weaker statistically
equal at the first quantile. This finding supports our earlier evidence that twelve-month single
stock options are likely priced more rationally than short-term ones. Given that the CPT model
will always reduce the EQR from the PCPT, as it is parameterized for overweighting small
probabilities, the EQRs for these distributions undershoot the EDF ones. Such overshooting
is very large in the current case, as the EQR implied by the CPT is 15, 18, and 26 percent for
the tenth, fifth and first quantiles, respectively.

The above results suggest that CPT-related densities, despite not always matching the EQRs
of the EDF, seem to be the distribution with the highest consistency in matching the EQR of
the EDF. The ECPT is, by far, the best performing model in matching realized extreme quantile
returns. This result is not a surprise as allowing the CPT weighting function to assume different
shapes entails extra flexibility of such model on matching the data relative to traditional utility
functions. Thus, if our findings suggest that the CPT does not fully explain single stock options
pricing, its overweighting small probabilities feature goes very far on explaining such market
data, with exception of twelve-month options. These findings reiterate our takeaway from
section 4.1, in which a horizon-effect seems to play a role within the pricing of these options:
twelve-month options seem to be priced more rationally than the shorter term ones, which seem
to be priced as a result of lottery buying by individual investors.

In line with the results for the EQR presented in the previous section, Table 2, Panel
B, shows that the expected upside for the EDF is more closely matched within the three-
month horizon by the expected upside for the CPT and ECPT density functions for the tenth,
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fifth and first quantile. The three-month horizon expected upside estimated from the realized
returns is given as 15, 17, and 26 percent for the mentioned quantiles. The CPT and ECPT
expected upside for this same horizon is 14, 17, and 25 percent, respectively. These estimates
are statistically equal to the ones estimated from the realized returns. Once again, similarly
to our analysis on the EQR, for the other subjective densities, the expected upside for all
quantiles is also much larger than the EDF expected upside. The exponential density has the
highest expected upside across the different quantiles, being the furthest away from the realized
returns. The RND-implied expected upside is somewhat conservative and relatively closer to
the realized ones, however, never statistically significant equal to it.

For the six-month maturity, the expected upside for the CPT and ECPT density functions
are no longer that close to each other nor to the realized ones. The EDF expected upside is
always higher than the ones for the CPT and ECPT. Only at the tenth quantile, the expected
upside of the ECPT density function is statistically significant equal to the realized one. The
CPT’s expected upside is always lower than the one of the ECPT density function, as the ~
parameter estimated equals 0.71, implying less overweighting of small probabilities than the
CPT. The densities which better match the expected upside of the EDFs are the PCPT and,
specially, the RND for which the expected upside is statistically equal to the EDF ones across all
quantiles. The expected upside is statistically equal for the PCPT at the one percent statistical
level and for the first quantile tail only.

Similarly to the results from our EQR analysis, Table 2, Panel B, shows that the expected
upside is statistically equal at the twelve-month horizon for the PCPT, ECPT, and the realized
returns for the tenth and fifth quantiles. The expected upside for the realized returns is 32, 37,
and 54 percent for the tenth, fifth and first quantile, respectively, whereas for the PCPT it is
32, 36, and 48 percent, respectively, and 31, 35, and 47 percent, respectively, for the EPCT.
The proximity between the expected upside for the PCPT and for the ECPT is due to the
fact that the estimated v parameter at the twelve-month horizon is 0.97, thus, we observe a
virtually neutral-weighting of probabilities. The only exception to the match of the realized
expected upside and the one for the PCPT and ECPT density functions is at the first quantile,
where the expected upside for the exponential and power densities matches the expected upside
for the EDF of roughly 54 percent. At the twelve-month horizon, the expected upside coming
from the exponential and power utilities, typically overshoots the ones for the EDF, whereas
the RND expected upside undershoots them. The expected upside implied by the CPT at the
twelve-month horizon strongly undershoots the expected upside of the realized returns. This
observation suggests that a pronounced overweighting of small probabilities or lottery buying
is strongly rejected by the expected upside from realized returns. As such, we conclude that
long-dated options seem to be priced more rationally than short-term options.

These results on the expected upside reiterate the insights gained by our earlier findings
using the EQR and the estimation of long-term 7. The CPT-model densities, despite not
always matching the EDF’s expected upside, seem to be the framework that more frequently

approximates the right tail of the EDF, provided that an appropriate 7 is used. The extent that
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the original CPT matches the data seems to be related to the option horizon: the CPT model
and our proposition of single stock options as lottery tickets is more applicable to short-term
options than long-term options.

Figure 4 compares graphically the CDF's from six of our equity return densities: the EDF,
the RND, the CPT, the PCPT, the exponential- and the power-utility density'®. We focus
on the right tails of these distributions as we are interested in how closely the RND from call
options and derived subjective density functions match the tails of the EDF. The plots display
the cumulative probabilities on the y-axis and the terminal price levels on the x-axis, given an
initial price level of 100.

[Please insert Figure 4 about here]

We see that the tails implied by option prices (RND, in red) seem fatter than the tails from
the CPT (in dark blue) and EDF (in green) density functions over the three-month horizon.
The tails for the CPT and the EDF are almost identical above the 110 terminal level, i.e., at the
10 percent return. The right tail of the RND distribution is clearly much fatter than the ones
of the CPT and EDF but it is still thinner than the ones of the PCPT, the exponential- and
the power-utility densities. Thus, the upside risk implied from options is much higher than the
one realized by the EDF, a sign of a potentially biased behavior by investors in such options.
This observation is confirmed by the tail shape parameter (¢), the EQRs and the EU estimated
across the different quantiles, which in all cases report higher upside in the RND than in the
EDF and the CPT. Figure 4 also suggests that the upside risk of the RND seems to be much
more consistent with the one of the PCPT density, whereas the CPT tails seem very distinct
from the PCPT, which is in line with our earlier findings.

The plot in column B, which depicts the CDF for our studied densities at the six-month
horizon, suggests that the RND and the EDF are much closer than at the three-month horizon.
At the same time, the CPT density seems somewhat disconnected from the EDF, at least beyond
the 105 terminal level. This finding matches our results from the EQR and the expected upside
comparisons. The PCPT tail is, at this horizon, higher than the EDF, CPT, and RND ones.
But the PCPT tail is much closer to the EDF one than to the CPT one, especially at its very
extreme. This finding is also confirmed by our EQR and expected upside tests, as the PCPT is
statistically equal to the EDF at the one percent quantile. The exponential and power utility
densities have right tails that are much fatter than the other densities, including the EDF.

Figure 4 shows that at the twelve-month horizon the CPT’s CDF tails seem completely
disconnected from the EDF. The EDF tails are much fatter than the CPT ones and slightly
fatter than the RND ones. In fact, the RND seems to match the EDF for terminal levels above
120. This finding suggests that long-term options trade in a much less CPT-biased manner
than short-term options. At this horizon, the PCPT density seems to closely match the EDF,

performing much better than the exponential and power utilities. This finding is confirmed by

16We omit the ECPT for better visualization as its CDFs are very similar to the CPT ones. The similarity is
caused by the ECPT left tail weighting function parameter (§) being the same for the CPT and because their
estimated long-term «y for the three maturities are not too different from the Tversky and Kahneman (1992)
one.
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the results of the EQR and the expected upside tests over such a horizon, which suggest that
the tails of the EDF and PCTP are statistically equal in almost all quantile levels.

Overall, this visual inspection of our density function CDFs confirms our hypothesis that
end-users of OTM single stock calls are likely biased and behave as buying lottery tickets
when trading short-term options. The fact that the CPT and the PCPT density (as it already
incorporates some elements of the CPT model) are the best matches for the right tail of the
EDF suggests that individual investor overweight small probabilities. On the other hand, end-
users of OTM index calls at the six-month horizon seem to be neutral to risk, as the RND
is the best forecaster of the empirical returns at that time span, while options trading at the
twelve-month horizon is not CPT-biased.

These results strengthen the evidence provided by Barberis and Huang (2008), Ilmanen
(2012) and Barberis (2013) that investors may push options prices to extreme levels because
they have a biased model (i.e., CPT) for estimating the distribution of equity returns. Investor
seems to overweight small probabilities and to behave as buying lottery tickets when trading

single stock options, especially at short-term horizons (i.e. three-month).

4.3 Estimated CPT time-varying parameters

In order to investigate any potential time-variation in the CPT’s overweighting of small proba-
bilities or lottery tickets buying reflected in single stock options, we apply Eqgs. (12b) and (13)
to each day in the sample to estimate the empirical y (weighting function) and A (risk aversion)
parameters. We first evaluate the results for the estimation of A\ (risk aversion). We report
summary statistics of the estimated A for three-, six-, and twelve-month options in Panels A
and B of Table 3. Panel A reports the statistics when A is estimated, assuming that the other
two parameters of the value function, o and [, equals to 0.88, i.e., the CPT calibration. In
contrast, in Panel B the parameters o and § are optimized by the application of Eq. (12a).
Our general impression is that the A estimates are very similar across the two calibrations. The
median of A is 1.75 for the CPT parameterization and 1.74 when the parameters o and [ vary
for the three-month option maturity. The median for the six-month maturity for these two
methods equal 1.81 and 1.79, respectively, and for the twelve-month maturity, these values are
1.89 and 1.92, respectively. Thus, we find that the o and § parametrization virtually does not
affect the X\ estimates. The distributions of A for these two types of o and  parametrization
are also very close to each other, since the 25'" and 75" percentile are almost the same for these
different a and [ parameters. We also observe that risk aversion estimated is slightly lower
than the implied by the CPT model (at 2.25). Our findings suggest that the kink observed in
the value function’s reference point is less pronounced than suggested by the CPT model. The
A estimates can be highly volatile though, with a standard deviation of around 0.5 and a range
between 0.57 and 2.97. Such volatility and such a wide fluctuation interval of A confirm that
this parameter is strongly time-varying.
[Please insert Table 3 about here]

We report summary statistics of the estimated CPT parameter ~y for three-; six- and twelve-
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month options in Panels C of Table 3. We find that the median and the mean time-varying
values of v, estimated from the three-month options, roughly match the parameter value of
0.61 suggested by Tversky and Kahneman (1992), which range between 0.66 and 0.68. This
suggests that overweighting of small probabilities is present within the pricing of three-month
call options as suggested by the theory. Nevertheless, our daily estimates of v are volatile,
having a standard deviation of 0.29. The estimates of v range from 0.28 to 1.20 (i.e., an
underweighting of small probabilities) and its distribution is slightly skewed to the left as the
median is just smaller than the mean.

At the six-month maturity, overweighting of small probabilities seems less acute than sug-
gested by the theory and by the empirical results of the three-month options. The median and
the mean v for such maturity are 0.72 and 0.75, respectively. The long-term ~ equals 0.70 and
is somewhat in line with the time-varying estimates. The distribution of v is somewhat skewed
to the left (towards a more pronounced overweighting of small probabilities), as the median is
smaller than the mean. The 75" quantile of v equals 1.05 and suggests a neutral weighting of
probabilities.

The results for the twelve-month maturity tend even more towards a neutral probability
weighting than the six-month ones. The median v is 0.83, whereas the mean v is 0.80. In
contrast with other maturities, the distribution of v is strongly skewed to the right, towards a
neutral- to under-weighting of small probabilities. Estimates are highly volatile though, as the
standard deviation of 7 is 0.32.

In summary, statistics discussed above and reported in Table 3, Panel C, indicate that the
weighting function parameters v for the three maturities evaluated are clearly time-varying!?.
But, since the risk-aversion parameter \ is also time-varying, we re-estimate ~ for each day in
our sample using the daily estimate of A in Eq. (12b).

We report the summary statistics of the new 7 estimates in Panel D of Table 3. The new
median and the new mean estimates for v are 0.72 and 0.74, respectively, and, thus, higher
than when  was estimated under a fixed risk aversion calibration. The 75" percentile of v also
increases, from 0.87 to 0.94, respectively. At the six-month horizon, the difference between ~
with a fixed or with a varying A is even larger. The median ~ for the static A is 0.72, whereas
for the time-varying it is 1.07. The means are 0.74 and 0.96, respectively. At the 75" percentile
using the time-varying A, v becomes 1.2, which is the upper bound of our optimization. For
the twelve-month maturity, we observe a similar effect. The median v for the time-varying A
is 1.15, whereas for the static one it is 0.83.

These findings suggest that once we account for empirical risk aversion, the extent that
investor overweight smaller probabilities reduces. For six- and twelve-month maturities, on
average, probabilities are neutrally weighted. This implies that RND tails might be fatter than

EDF ones not because investor are biasedly overweighting small probabilities, but because

ITFor the three maturities evaluated, v estimates can be as low as zero if the lower bound is set at zero, which
is unreliable as it specifies a probability weighting function for the CPT that is non-monotonic (for further
details on the subject see Ingersson, 2008). The imposition of a lower-bound of 0.28 for « in order to avoid such
non-monotonicity problem does not alter, however, our estimated mean and median  materially.
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the risk premium charged by investors to hold call options is lower. Interestingly, an average
overweighting of small probabilities remains present in three-month options, despite changes in
investors’ risk aversion.

Further, accounting for time-variation of A does not affect the time-variation in 7. The
standard deviation of the v estimates barely changes when we account for time-varying A. This
result applies to options across all maturities. Thus, the fact that six- and twelve-month options
show, on average, neutral or under-weighting of tails does not preclude that overweighting (or
even underweighting) of small probabilities is present at times. An alternation between periods
of overweighting of small probabilities and underweighting is also observed by Chabi-Yo and
Song (2013) and Polkovnichenko and Zhao (2013), with a clear prevalence of overweighting
of tails. Their findings are very consistent with ours, even after we have accounted for the
time-variation of A. The fact that their conclusions are based on options with short maturities
of 28 days, also connects to our findings, as our strongest results occur for options with the

shortest maturity in our sample (three-month).

4.4 Time variation in probability weighting parameter and investors’

sentiment

As observed in section 4.3, the probability weighting parameter v is clearly time-varying given
the large standard deviation and the range observed. In the following we investigate which
factors may explain such time-variation of v. Our main hypothesis is that the time variation
of 7 is linked to investors’ sentiment. The link between sentiment and overweighting of small
probabilities or lottery buying in out-of-the-money (OTM) single stock calls originates from the
fact that individual investors are highly influenced by market sentiment and attention-grabbing
stocks (see Barberis et al., 1998; Barber and Odean, 2008) and that OTM single stock calls
trading is speculative in nature and mostly done by individual investors (Lakonishok et al.,
2007). For instance, Lakonishok et al. (2007) reckon that the IT bubble of 2000, a period
of high variation of ~, is linked to elevated investors’ sentiment, when the least sophisticated
investors were the ones that substantially purchased calls on growth and IT stocks. Figure
5 depicts time-varying +’s and the Baker and Wurgler (2007) sentiment factor. It provides
evidence that these measures move in tandem at times. For example, during the I'T bubble,
the level of v seems quite connected with the level of sentiment, especially for the six-month
options. At the same time, changes in v from three-month options seem linked to changes in
sentiment, despite a relative disconnect in levels.

[Please insert Figure 5 about here]

To formally test our hypothesis that time variation of ~ is linked to investors’ sentiment,
we design a regression model. Within Eq. (19), the explained variables are « for the three-
, six-, and twelve-month horizons and the explanatory variables are the Baker and Wurgler

(2007) sentiment measure'®, the percentage of bullish investors minus the percentage of bearish

18 Available at http://people.stern.nyu.edu/jwurgler/.
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investors given by the survey of the American Association of Individual Investors (AAII), a
proxy for individual investors’ sentiment (see Han, 2008), and a set of control variables among
the ones tested by Goyal and Welch (2008)'? as potential forecasters of the equity market. The
data frequency used in the regression is monthly as this is the highest frequency available from
the sentiment data and from the Goyal and Welch (2008) dataset?®. Our regression sample
starts in January 1998 and ends in December 2010%!. Our OLS regression model is specified as

follows:

Ve = ¢+ 1y - Senty + g - [1Senty + 13 - E12, + )y - B/my + 15 - Ntis,+

(19)
Ve - Rfreey + 7 - Infly 4 g - Corpry + 1)g - Svary + 1o - CSP; + €,

where Sent is the Baker and Wurgler (2007) sentiment measure, /1Sent is the AAII individual
investor sentiment measure, F12 is the twelve-month moving sum of earnings on the S&P5000
index, B/m is the book-to-market ratio, Ntis is the net equity expansion, R free is the risk-free
rate, Infl is the annual inflation rate, C'orpr is the corporate spread, Svar is the stock market
variance and, C'S'P is the cross-sectional premium.

Additionally, we run univariate models for each explanatory factor to understand the indi-

vidual relation between v and the control variables:

Ve =Ci+ Ui T+ €, (20)

where x replaces the n explanatory variable earlier specified, given ¢ = 1...n.
[Please insert Table 4 about here]

Table 4, Panel A presents the estimates of Eq. (19). We note the high explanatory power
of the multivariate regression, ranging from 31 to 57 percent. As expected, we observe that
Sent is consistently negative across the three different horizons studied. We find that high
sentiment exacerbates overweighting of small probabilities in calls of shorter horizon. However,
Sent is not significantly linked to v at the twelve-month horizon. The univariate regressions
of Sent confirm the negative link between sentiment and . But this relation is, once again,
lost at the twelve-month horizon as the variable is no longer significant. These relationships
show up in the the scatter plot in Figure 6. On the three- and six-month horizons (Plots A and
B), a negative relation exists between the Baker and Wurgler (2007) sentiment measure and
v, whereas at the twelve-month horizon it does not. The explanatory power of the variable

Sent in the univariate setting is also high, 11 and 23 percent, respectively, for the three- and

19The complete set and description of variables suggested by Goyal and Welch (2008) is provided in Appendix
A. Within the complete set of variables used by Goyal and Welch (2008), we select fewer ones using the cross-
correlation between them to avoid multicollinearity in our regression analysis. As we run a multivariate model,
using the full set of variables is undesirable as some of them correlate 80 percent with each other. We exclude
variables that correlate more than 40 percent with each other.

20Given the fact that v is estimated on a daily basis, we average v through each month.

21This regression sample is only possible because Goyal and Welch (2008) updated their dataset after the
paper publication. The regression sample however, could not be extended further than December 2010 because
the sentiment measure of Baker and Wurgler (2007) is available until that date.
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six-month horizon. The twelve-month univariate regression has, however, a R? of zero. These
findings strengthen our hypothesis that overweighting of small probabilities increases at higher
levels of sentiment and that sentiment strongly impacts the probability weighting bias of call
investors. However, this conclusion applies to the three- and six-month horizons only.

[Please insert Figure 6 about here]

In contrast with the variable Sent, the individual investor sentiment (I//Sent) has only low
explanatory power. The regression run on three- and six-month + has zero percent explanatory
power, whereas the twelve-month ~ can be partially explained by I1Sent with a significance
level of 5 percent. More importantly, at the twelve-month horizon, I1Sent is positively linked to
~ and this relation is statistically significant, in contrast to the other univariate regression using
IISent. The relation of /11Sent and v within the multivariate regression is very similar to the
one captured by the univariate regression: statistical significance is found only at the twelve-
month horizon with a positive coefficient. This positive relationship between these variables
may be attributed to potential mean-reversion in individual investor sentiment, whereas at the
twelve-month horizon, an increase in sentiment relates to a more pronounced underweighting
of small probabilities.

In a next step, we specify the Goyal and Welch (2008) factors as control variables in our
regression in order to add potential explanation to the model. The three-, six-, and twelve-
month multivariate models explain 31, 57, and 51 percent, respectively, of the level of v. Most
of these relations are stable, because the coefficient signs change only rarely. The control
variables that are statistically significant in our multivariate setting are E12, Rfree, Infl,
Svar, and CSP (Table 4). We observe that 7 is positively linked to E12, the twelve-month
moving sum of earnings on the S&P 500 index, as well as to Rfree, the risk-free rate. The
positive relation between E12 and ~ could be explained by mean-reversion of earnings being
linked to a greater overweighting of small probabilities, which could be justified by the higher
investor sentiment outweighting earning downgrades in a rallying market. The sign of Rfree
suggests that, as interest rates rise, OTM calls become more rational, as less overweighting of
small probabilities is observed. The explanatory variables Swvar, the stock market variance,
and C'SP, the cross-sectional premium, are negatively linked to . Such results suggest that
the higher the variance, the higher the overweighting of small probabilities is. In a univariate
setting (at the six-month horizon), the explanatory power of such univariate regression is 17
percent, relatively high. Table 4, Panel B indicates that the cross-sectional premium C'SP
is statistically significant only at the six-month horizon. The univariate regression between ~
and C'SP does not, however, capture a statistically significant relation and has a coefficient
with the opposite sign to the coefficient in the multivariate setting. This proves that supportive
fundamental data for equity markets do not necessarily intensify biased behavior of single stock
call option investors. This is an interesting takeaway, especially if considered that sentiment
does appear to affect such behavior: single stock option investors seem to overweight small
probabilities when sentiment is exuberant, not necessarily when fundamentals are exuberant.

Moreover, as we have also estimated daily v when the risk aversion parameter \ is time-
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varying, we run our regression models (Eqgs.(19) and (20)) using such new estimation of 7 as the
explained variable. Table 5 indicates that the results for Sent are similar to the ones obtained
in our earlier regression: Sent is negatively linked to v and statistically significant at the three-
and six-month horizon but not at the twelve-month horizon. These results apply to both the
multivariate and univariate regression models. The magnitude of the Sent parameters is little
altered at the three- and six-month regression within both the multivariate and univariate
models, suggesting a robust relationship. The explanatory power of the regressions is, once
again high, as R? ranges from 31 to 59 percent in the multivariate models. The explanatory
power of Sent is 11 and 24 percent for the three- and six-month maturities in the univariate
setting, vis-a-vis 11 and 23 percent in the previous regression setting. The explanatory power of
Sent in the twelve-month regression is one percent, similar to our earlier univariate regression
results. Table 5 shows that the explanatory variable I1Sent, the AAII individual investor
sentiment measure, is not significantly linked to v within the short-term options. However, in
the longer term options with a twelve-month horizon such a relationship is positive, rather than
negative, as we expected. Such a positive relationship means a decrease in the overweighting
of tails as individual investor sentiment rises. Several signs of control variables change in the
multivariate and univariate setting in comparison to the regression results that used static
risk aversion parameter. The control variables that remain statistically significant are £12
and Rfree. The moving sum of equity earnings F12, however, changes its sign from positive
to negative. The default return spread C'orpr and the cross-sectional premium C'SP become
statistically significant in the univariate regressions. Concurrently, whereas the relation between
the v and the book-to-market ratio B/m and the stock market variance factor Svar, which we
observed as strongly statistically significant in the univariate regressions, become insignificant
once we take time-variation in the risk aversion parameter into account.
[Please insert Table 5 about here]

We conjecture that the profound impact that changing the parameter A has on the control
variables in our regression is due to the fact that some of these variables are either directly
linked to uncertainty or their time variation may be conditional to risk-states. For example, the
stock variance factor Svar and the default return spread C'orpr can be interpreted as ex-post
variants of A, which is a forward-looking risk measure. Therefore, the introduction of a time-
varying A plausibly changes the relationship between Svar and v from strong and negative to
statistically weak and positive, whereas the regression estimates of the default return spread
changed from negative and insignificant to positive and significant.

The robust results, in which the relation between ~ and Sent is little modified once A
varies, suggests that changes in the overweighting of tails are not conditional on the level of the
investors risk aversion parameter only, as section 4.3 may suggests for the six- and twelve-month
options. In fact, earlier results only suggest that, on average, overweight of small probabilities
has diminished for these two maturities, but fluctuations in v may still be linked to the Baker
and Wurgler (2007) sentiment measure . In other words, levels of risk aversion do not fully drive

investors to overweight upside tail events, as one could hypothesize when associating upside
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speculation with a state of low risk aversion. Our results suggest that overweighting of small
probabilities seems to be a much more stable phenomenon, linked mostly to sentiment than to

fundamental factors or risk states.

4.5 Robustness tests

We employ Kupiec’s (1995) test to compare the tails of the EDF with the ones of the subjective
density functions and of the RND as a triangulation to the EVT methods applied. Kupiec’s
test was originally designed to evaluate the accuracy of Value-at-risk (VaR) models, where the
estimated VaR were compared with realized ones. Because the VaR is no different from the
EQR on the downside, i.e., the ¢, statistic, we can also make use of Kupiec’s method to test
the accuracy of the cj; statistic for subjective densities and the RND on matching realized
EQRs. More specifically, Kupiec’s method computes a proportion of failure (POF) statistic
that is used to evaluate how often a VaR level is violated over a specified time span. Thus, if
the number of realized violations is significantly higher than the number of violations implied
by the level of confidence of the VaR, then such a risk model is challenged. Kupiec’s POF test,

which is designed as a log-likelihood ratio test, is defined as:

LRpor = —2log[(1 — p*)" " (p™)"] + 2log[(1 — [2])) " "(£)"] ~ X*(1), (21)

n n

where p* is the POF under the null hypothesis, n is the sample size, and b is the number of
violations in the sample. The null hypothesis of such test is % = p*, i.e., the realized probability
of failure matches the predicted one. Thus if the LR exceeds the critical value, x? (1)=3.841,
the hypothesis is rejected at the five percent level.

By translating this methodology to our empirical problem, p* equals the assumed probability
that the EQR of the subjective and risk-neutral densities will violate the EQR of the realized
returns, whereas % is the realized number of violations. We note that because we intend to
apply Kupiec’s test to upside returns, violations mean that returns are higher than a positive
threshold.

The first step on applying Kupiec’s test to our data set is outlining the expected percentage
of failure (p*) between the EQR from the EDF and from the subjective and risk-neutral den-
sities. We pick p* as being five and ten percent. The percentages can be seen as the expected
frequency that the tails of the subjective and of the RND distributions overstate the tails of
the distribution of the realized returns. As fatter tails are symptom of an overweighting of
small probabilities, we expect that densities that do not adjust for the CPT weighting function
may deliver a higher frequency of failures than the CPT density function. The results of our
application of the Kupiec’s test are reported in Table 6.

[Please insert Table 6 about here]

Panel A in Table 6 suggests that the probability of failure for the RND, power, exponential,
and PCPT densities is particularly high at the three-month horizon, with more than 97 percent
for the EQR at 90 and 95 percent and for p* equals to five and ten percent. The L R-statistics
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for these densities tend to infinity in all of these cases??, at the same time that their p-values
approach zero. These results suggest that the EQR for these densities usually violates (over-
states) the EQR recorded for the EDF. In other words, such densities contain often fatter tails
than the EDF. Among these distributions, the RND density presents POFs that are smaller
than for the other densities, roughly 97.4 percent vs. 99.9 percent, though such difference is
still marginal. For the CPT density, the POF is much lower across the two values of p* used
and the 90 and 95 percent EQR. The POF for the 90 percent EQR is roughly 52 percent for the
CPT, irrespective of p*. At the 95 percent EQR, the POF is 40.6 percent for the CPT. These
findings suggest that at the 90 and 95 percent EQR, the CPT and ECPT densities overstate less
frequently the EDF tails than other densities. The violations of the EDF tails are, however,
still significant as they occur between 40.6 and 52 percent of times. Nevertheless, when we
analyze the 99 percent EQR, we find that the POF for all densities decreases considerably and,
for the CPT, it becomes 8.4 percent, quite low. Using such tail violation criteria, these results
indicate that the CPT and the EDF tails are statistically significant equal at the 99 percent
EQR.

Panel B of Table 6 depicts a very similar pattern of the POF for the probability densities
derived from the six-month options as we find for the three-month options. The POF is very
close to 100 percent for all densities apart from the CPT at the 90 percent EQR, while at the
95 and 99 percent EQR violations fall substantially, even more than what we observed for the
three-month options. Nevertheless, the CPT remains the best approximation for the EDF, as
its POF is the lowest. The Kupiec’s test result suggests that the CPT density is statistically
equal to the EDF, whereas the RND also equals the empirical returns at the ten percent level.
The results for p* at the five or ten percent are very similar. Panel C presents the POF for
the twelve-month maturity. We find once again that the CPT tails are the ones which violate
the EDF tails the least. The POF for these densities are about 20 percent for the 90 percent
EQR, seven percent for the 95 percent EQR, and five percent for the 99 percent EQR. This
finding suggests that the tails of the CPT closely match the EDF ones, especially far out in the
tail, i.e., at the 95 and 99 percent EQR. The RND, power, exponential, and PCPT densities
record POF's that are much smaller than for the three- and six-month maturities but that are
still high in comparison to the CPT.

We note that results for the PCPT and the CPT are quite distinct, whereas results for
the PCPT are somewhat closer to the ones of the RND. This suggests that the weighting
function is the component within the CPT density function that more forcefully causes the
RND to approximate the EDF, so not the value function. Such finding highlights the fact that
a weighting function within a utility framework is important in understanding options pricing
and investors’ behavior. Overall, our analysis using Kupiec’s test leads to similar results as the
ones reached within our EVT analysis and adds to the evidence that the CPT model is superior
to others in matching realized returns.

As another robustness check, we estimate the weighting function parameter o of the RDEU

22The calculated L R-statistic for several Kupiec’s tests is infinite as the number of failures is very high and
because the data set used is large.
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model suggested by Prelec (1998) in order to test whether our conclusions are robust to other
weighted functions formulations®®. We note that according to Prelec (1998) the standard «
parameter value equals 0.65. Our findings are presented in Table 7.

[Please insert Table 7 about here]

The long-term estimates of o are somewhat in line with the one suggested by the RDEU
but less so for the twelve-month horizon: « estimated from the three-, six-, and twelve-month
is 0.61, 0.75, and 0.99, respectively. This is quite consistent with our long-term estimates for
v being, 0.71, 0.70, and 0.97 (see Table 1), as it suggests overweighting of small probabilities
that fades with the increase in the option horizon. Nevertheless, the time-varying estimates
of a differ substantially from the long-term ones. We find the mean (0.93) and median (0.93)
for time-varying estimates of o from three-month options to be much higher than the ones
suggested by Prelec (1998). This means that overweighting of small probabilities within the
single stock option markets is far less than our results suggested by RDEU. For the six- and
twelve-month maturities, underweighting of small probabilities is even more frequent than an
overweighting. The average « for the six-month options is 1.01 (median being 1.03), and for the
twelve-month options it is 1.05 (median being 1.11). The fact that investors tend to overweight
small probabilities to a much lesser extent in the short-term and that estimates are higher
than suggested by their respective lab-based estimates confirm our main findings. The absence
of overweighting of small probabilities in six- and twelve-month maturities is in line with our
results when the risk aversion parameter is also time-varying but disconnected from our results
when such a parameter is fixed.

The dispersion among « estimates (ranging from 0.14 to 0.18) is much smaller than the ones
for v, which is always above 0.28 and reaches 0.32 for the twelve-month horizon. This suggests
that o estimates may be more reliable than ~ estimates. The 25" quantile for o estimates,
which varies from 0.83 to 1.02, is already much closer to their median than for 7, confirming
that v has much more disperse estimates. The maximum « for the three-month maturity is
1.20, which suggests that the overweighting of small probabilities does not hold through the
entire sample.

Overall, the robustness checks following Prelec (1998) confirm our main findings regarding
long-term estimates for overweighting of small probabilities, and they reiterate our conclusion

that the overweighting weakens with the increase of the horizon.

5 Conclusion

Single stock OTM call options are deemed overpriced because investors overpay for positively
skewed securities, so-called lottery tickets (Mitton and Vorkink, 2007; Barberis and Huang,
2008). According to Barberis and Huang (2008), the CPT’s probability weighting function

23 A major advance of Prelec’s (1998) weighting function vis-a-vis the CPT is that it is monotonic for any
value of a, whereas the CPT can have a non-monotonic probability weighting for low levels of «. Because of
that, the optimization used to estimate o uses a lower bound of zero instead of 0.28 as in our CPT optimizations.
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of Tversky and Kahneman (1992) provide an appealing explanation why such options are
expensive: investors’ preferences for positively skewed securities.

We find empirically that the CPT subjective density function of stock returns outperforms
the RND and two rational densities functions (from the power and exponential utilities) on
matching tails of realized equity returns. We estimate the CPT probability weighting function
parameter v and find that it does not differ much from the one predicated by Tversky and
Kahneman (1992), particularly for short-term options. This outcome confirms our hypothesis
that investors in single stock call options are CPT-biased. This is a strong finding since ex-
plaining the overpricing of single stock call options via the CPT weighting function had not
yet been accomplished empirically. It adds to the recent advances in research that explain the
overpricing of OTM index puts by investors’ overweighting of small probabilities (Dierkes, 2009;
Kliger and Levy, 2009; Polkovnichenko and Zhao, 2013).

However, the estimated 7’s indicate that such overweighting of small probabilities is less
pronounced than suggested by the CPT and has a horizon effect. This observed horizon effect
implies that overweighting of small probabilities becomes less pronounced as the option maturity
increases. This finding suggests that investors in single stock calls are mostly biased when
trading short-term contracts, whereas they seem to be more rational (less biased) when trading
long-term calls. This result is consistent with individual investors being the typical buyers
of OTM single stock calls and the fact that they mostly use short-term instruments (cheaper
lottery tickets) to speculate on the upside of equities (Lakonishok et al., 2007). The fact that
longer maturity options are less positively skewed than short-term ones is also consistent with
our results.

We also find that investors’ overweighting of small probabilities is largely time-varying, as ~y
varies from extreme overweighting to underweighting of small probabilities. Such time-variation
in 7’s remains strong even when we account for time-varying risk aversion. Nevertheless, when
we allow the risk aversion parameter to vary, the average overweighting of tails weakens for
options of all maturities. As such, we argue that such overweighting of small probabilities
might be partially linked to priced-in risk-premium. We find that the Baker and Wurgler
(2007) sentiment measure explains up to 23 percent of the time-variation in the investors’
overweighting of small probabilities. However, the strong link between market sentiment and
investors’ overweighting of small probabilities is only present at the shorter maturities (three-
and six-month). The horizon effect earlier observed for v seems to be a corollary of how market
sentiment connects to investors’ overweighting of small probabilities: when overweighting of
small probabilities is pervasive, sentiment seems to explain their time-variation.

Our findings have several important practical implications. First, the understanding of
time-variation in investors’ overweighting of small probabilities should be a strong pillar in the
development of behavioral option pricing models, which remains in its infancy. To the extent
that overweighting of small probabilities is a latent variable or, simply, not trivial to estimate,
we contemplate that future option pricing models should be more sentiment-aware than current

ones. Second, of importance for such next generation option-pricing models is the inclusion of
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the horizon-effect found by us. Such potential modifications on options’ pricing have large
and direct consequences to risk-management, hedging and arbitrage activities. Third, from a
financial stability point of view, investors’ overweighting of small probabilities in single stock
options could be of use to regulators for triangulating the presence of equity markets bubbles.
Finally, as behavioral-led overpricing of OTM options is now uncovered in the single stock call
market (beyond the index put market), further research connecting this finding across these
two markets is warranted. The study of time-variation in overweighting of tails across these
two markets is of particular interest. We believe that the understanding of equity sentiment
can be substantially expanded via this route, leading to a better comprehension of expected

stock returns and volatility.
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Appendix A - Goyal and Welch (2008) equity market predictors

The complete set and summarized descriptions of variables provided by Goyal and Welch
(2008)%* is:

1. Dividendprice ratio (log), D/P: Difference between the log of dividends paid on the
S&P 500 index and the log of stock prices (S&P 500 index).

2. Dividend yield (log), D/Y: Difference between the log of dividends and the log of
lagged stock prices.

3. Earnings, E12: 12-month moving sum of earnings on the S&P500.

4. Earningsprice ratio (log), E/P: Difference between the log of earnings on the S&P
500 index and the log of stock prices.

5. Dividendpayout ratio (log), D/E: Difference between the log of dividends and the
log of earnings.

6. Stock variance, SVAR: Sum of squared daily returns on the S&P 500 index.

7. Book-to-market ratio, B/M: Ratio of book value to market value for the Dow Jones
Industrial Average.

8. Net equity expansion, NTIS: Ratio of twelve-month moving sums of net issues by
NYSE-listed stocks to total end-of-year market capitalization of NYSE stocks.

9. Treasury bill rate, TBL: Interest rate on a three-month Treasury bill.

10. Long-term yield, LTY: Long-term government bond yield.

11. Long-term return, LTR: Return on long-term government bonds.

12. Term spread, TMS: Difference between the long-term yield and the Treasury bill
rate.

13. Default yield spread, DFY: Difference between BAA- and AAA-rated corporate
bond yields.

14. Default return spread, DFR: Difference between returns of long-term corporate and
government bonds.

15. Cross-sectional premium, CSP: Measures the relative valuation of high- and low-
beta stocks.

16. Inflation, INFL: Calculated from the CPI (all urban consumers) using z;;1 in Eq.
(1) for inflation due to the publication lag of inflation numbers.

17. Investment-to-capital ratio, I/K: Ratio of aggregate (private nonresidential fixed)

investment to aggregate capital for the entire economy (Cochrane, 1991).

24 Available at http://www.hec.unil.ch/agoyal/.
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Table 6: Robustness checks: Kupiec’s test

This table reports the results from Kupiec’s (1995) percentage of failure (POF) test for violations of the
extreme quantile returns (EQR) from the empirical density function (EDF) by the EQR of a set of RND and
subjective density functions. The null hypothesis, which is designed as a log-likelihood ratio test (Eq. (21)), is
that the realized probability of failure (%) matches the predicted one p*. Thus if the LR exceeds the critical
value, x? (1)=3.841, such a hypothesis is rejected at the five percent level. Translating the methodology to our
empirical problem, (p*) becomes the assumed probability that the EQR of the subjective and of the
risk-neutral densities will violate the EQR of the realized returns, whereas % is the realized number of
violations. We note that because we apply Kupiec’s test on the upside returns, violations mean that returns

are higher than a positive threshold.

Panel A - Three-month calls

| EQR 90% | EQR 95% | EQR 99%

p=10% POF p-value  LR-stat POF p-value LR-stat POF  p-value LR-stat
RNDvsEDF 99.4% 0.0000 () 97.4% 0.0000 00 25.5%  0.0000 77.8
PowervsEDF  100.0%  0.0000 00 100.0%  0.0000 o0 65.4%  0.0000 711.2
ExpovsEDF 100.0% 0.0000 00 100.0% 0.0000 00 70.1% 0.0000 821.1
PCPTvsEDF 100.0%  0.0000 ) 99.9% 0.0000 00 39.9%  0.0000 244.9
CPTvsEDF 52.2% 0.0000 443.6 40.6% 0.0000 255.7 8.4% 0.2666 1.2

p=5% POF p-value L R-stat POF p-value  LR-stat POF  p-value LR-stat
RNDvsEDF 99.4% 0.0000 00 97.4% 0.0000 () 25.5%  0.0000 186.1
PowervsEDF  100.0% 0.0000 00 100.0% 0.0000 00 65.4% 0.0000 00
ExpovsEDF 100.0%  0.0000 ) 100.0%  0.0000 00 70.1%  0.0000 00
PCPTvsEDF  100.0%  0.0000 00 99.9% 0.0000 ) 39.9%  0.0000 438.2
CPTvsEDF 52.2% 0.0000 709.9 40.6% 0.0000 453.5 8.4% 0.0048 8.0

Panel B - Six-month calls

p=10% POF p-value L R-stat POF p-value  LR-stat POF  p-value LR-stat
RNDvsEDF 99.8% 0.0000 ) 67.5% 0.0000 759.6 9.4% 0.7016 0.1
PowervsEDF 99.9% 0.0000 0o 96.2% 0.0000 00 16.5% 0.0001 15.7
ExzpovsEDF 99.9% 0.0000 00 96.5% 0.0000 00 17.4%  0.0000 20.5
PCPTvsEDF  99.9% 0.0000 0 88.1% 0.0000 00 12.9%  0.0613 3.5
CPTvsEDF 59.4% 0.0000 582.5 22.8% 0.0000 55.0 3.2% 0.0000 27.0

p=5% POF p-value  LR-stat POF p-value  LR-stat POF  p-value LR-stat
RNDvsEDF 99.8% 0.0000 0 67.5% 0.0000 o0 9.4% 0.0003 13.1
PowervsEDF  99.9% 0.0000 00 96.2% 0.0000 00 16.5%  0.0000 70.4
EzxpovsEDF 99.9% 0.0000 0o 96.5% 0.0000 00 17.4% 0.0000 81.0
PCPTvsEDF  99.9% 0.0000 00 88.1% 0.0000 00 12.9%  0.0000 37.3

CPTvsEDF 59.4% 0.0000 891.6 22.8% 0.0000 147.2 3.2% 0.0793 3.1

Panel B - Twelve-month calls

p=10% POF p-value  LR-stat POF p-value LR-stat POF  p-value LR-stat

RNDvsEDF 45.6% 0.0000 332.1 23.7% 0.0000 62.7 14.9%  0.0022 9.3
PowervsEDF 58.2% 0.0000 558.6 42.1% 0.0000 277.5 25.0%  0.0000 73.1
ExpovsEDF 58.9% 0.0000 572.8 42.7% 0.0000 286.9 25.8%  0.0000 80.7
PCPTvsEDF  53.4% 0.0000 467.2 35.1% 0.0000 181.8 19.4%  0.0000 317
CPTvsEDF 20.3% 0.0000 37.3 6.7% 0.0218 5.3 5.2% 0.0005 12.3

p=5% POF p-value L R-stat POF p-value  LR-stat POF  p-value LR-stat

RNDvsEDF 45.6% 0.0000 559.7 23.7% 0.0000 160.5 14.9%  0.0000 54.8
RNDvsEDF 58.2% 0.0000 860.6 42.1% 0.0000 484.1 25.0%  0.0000 178.3
RNDvsEDF 58.9% 0.0000 879.0 42.7% 0.0000 497.3 25.8%  0.0000 190.9
RNDvsEDF 53.4% 0.0000 741.1 35.1% 0.0000 347.2 19.4%  0.0000 104.0
RNDvsEDF 20.3% 0.0000 114.9 6.7% 0.1321 2.3 5.2% 0.8789 0.0
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