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Abstract

The triangular array of binomial coefficients, or Pascal’s triangle, is formed by starting

with an apex of 1. Every row of Pascal’s triangle can be seen as a line-graph, to each node

of which the corresponding binomial coefficient is assigned. We show that the binomial

coefficient of a node is equal to the number of ways the line-graph can be constructed when

starting with this node and adding subsequently neighboring nodes one by one. Using this

interpretation we generalize the sequences of binomial coefficients on each row of Pascal’s

triangle to so-called Pascal graph numbers assigned to the nodes of an arbitrary (con-

nected) graph. We show that on the class of connected cycle-free graphs the Pascal graph

numbers have properties that are very similar to the properties of binomial coefficients.

We also show that for a given connected cycle-free graph the Pascal graph numbers, when

normalized to sum up to one, are equal to the steady state probabilities of some Markov

process on the nodes. Properties of the Pascal graph numbers for arbitrary connected

graphs are also discussed. Because the Pascal graph number of a node in a connected

graph is defined as the number of ways the graph can be constructed by a sequence of

increasing connected subgraphs starting from this node, the Pascal graph numbers can be

seen as a measure of centrality in the graph.

Keywords: binomial coefficient, Pascal’s triangle, graph, Markov process, centrality mea-

sure.
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1 Introduction

In mathematics, for any two integers n ≥ 0 and 0 ≤ k ≤ n, the number of combinations of k

distinct elements of a given set composed by n different objects is conventionally denoted

by Ck
n or

(
n
k

)
. This number occurs in many different contexts, in particular it appears

as a coefficient in binomial expansions, wherefrom it gets its name, binomial coefficient.

Arranging the binomial coefficients C0
n, . . . , C

n
n from left to right in a row for successive

values of n, we obtain a triangular array called Pascal’s triangle. This triangle has as apex

the number 1 in row 0 and has the property that every entry in row n of the triangle

for n ≥ 1 is the sum of the two entries in row n − 1 to its left and to its right, i.e.,

Ck
n = Ck−1

n−1+Ck
n−1 for every k = 0, . . . , n, with positions outside the triangle being assigned

zero. It is well-known that in each row of Pascal’s triangle the ratio of two consecutive

binomial coefficients Ck
n and Ck+1

n is equal to the ratio of the number k + 1 of positions

0, . . . , k in that row from the position k to the left and the number n − k of positions

k + 1, . . . , n in that row from the position k + 1 to the right. Moreover, if n− 1 is a prime

number, then all binomial coefficients in row n, except those at the two ends which are

equal to 1, are divisible by this prime. Also, it is well-known that any binomial coefficient

Ck
n is equal to the number of different paths in Pascal’s triangle starting at the apex and

terminating at position k on row n, when at every step a path moves either to the left or

to the right to the nearest position at the next row.

In this paper we first revisit the binomial coefficients within the framework of line-graphs

(chains). For each integer n ≥ 0, row n of Pascal’s triangle corresponds to a line-graph

with nodes 0, . . . , n and edges between the nodes k and k+1 for k = 0, . . . , n− 1. To node

k of this line-graph we assign the binomial coefficient Ck
n. Using the above properties for

binomial coefficients we show that the binomial coefficient Ck
n assigned to node k is equal to

the number of ways the line-graph can be constructed starting with the single node k and

adding subsequently neighboring nodes one by one. We further show that the binomial

coefficient of a node in a line-graph is equal to the sum of binomial coefficients of this

node in the two subgraphs obtained by deleting precisely one of the extreme (end) nodes

0 and n. Moreover, it appears that the binomial coefficients, when normalized to sum up

to one, are the steady state probabilities of a Markov process in which at every node the

process moves to any of its neighbors in the line-graph with a probability proportional to

the number of nodes connected to this node through the corresponding neighboring node.

We generalize the binomial coefficients assigned to the nodes of line-graphs to numbers

assigned to the nodes of arbitrary connected graphs by defining the number of a node as

the number of ways the graph can be constructed when starting with this node and adding

subsequently neighboring nodes one by one. This is equivalent to say that the number of a

node is equal to the number of ways that extreme nodes, the nodes for which the subgraph
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on the set of the remaining nodes is connected, can be removed from the graph one by

one until the considered node is left. We call these numbers Pascal graph numbers. On

the class of connected cycle-free graphs we prove that the Pascal graph number of a node

is determined by the Pascal graph numbers of its neighbors in the subgraphs obtained by

deleting the edges adjacent to the node. From this it immediately follows that, similar as

for the binomial coefficients in any row of Pascal’s triangle, in a cycle-free graph the ratio

between the Pascal graph numbers of any two neighboring nodes is equal to the ratio of

the numbers of nodes in the two subgraphs resulting from deleting the edge connecting

these two neighbors. Moreover, if the number of nodes in a graph is a prime plus one,

then the Pascal graph number of every node not being an extreme node is divisible by this

prime. Further, we prove that, similar to binomial coefficients, the Pascal graph number

of a node is equal to the sum of the Pascal graph numbers of this node in all subgraphs

obtained by deleting precisely one of the extreme nodes of the graph, with the convention

that the Pascal graph number of a node outside the subgraph is zero. It also holds that the

Pascal graph numbers being normalized to sum up to one are the steady state probabilities

of a Markov process in which at any node the process moves to a neighboring node with

a probability proportional to the number of nodes connected to the node through this

neighboring node. We also discuss properties of the Pascal graph numbers for arbitrary

connected graphs. Because the Pascal graph number of a node in a connected graph is

defined as the number of ways the graph can be constructed by a sequence of increasing

connected subgraphs starting from the singleton subgraph on this node, the Pascal graph

numbers can be seen as a measure of centrality in the graph.

The structure of this paper is as follows. In Section 2 we recall some well-known

properties of binomial coefficients. The related properties when the rows of Pascal’s triangle

are considered as line-graphs are discussed in Section 3. In Section 4 the notion of Pascal

graph numbers is introduced and we show that on the class of connected cycle-free graphs

these numbers have properties that on the class of line-graphs reduce to the properties of

binomial coefficients discussed in Sections 2 and 3. In Section 5 we show that the Pascal

graph numbers being normalized to sum up to one are the steady state probabilities of a

specific Markov process on the nodes of a graph. Section 6 is devoted to consideration of the

Pascal graph numbers as a centrality measure for nodes in connected graphs. Properties

of the Pascal graph numbers for arbitrary connected graphs are discussed in Section 7.
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2 The binomial coefficients

For any two integers n ≥ 0 and 0 ≤ k ≤ n, the binomial coefficient Ck
n is given by

Ck
n =

(
n

k

)
=

n!

(n− k)!k!
. (2.1)

Binomial coefficients have the property that for any two integers n ≥ 1 and 0 ≤ k ≤ n it

holds that

Ck
n = Ck−1

n−1 + Ck
n−1, (2.2)

with the convention that Ck−1
n−1 = 0 if k = 0 and Ck

n−1 = 0 if k = n. This property is

illustrated in Pascal’s triangle, a triangular array in which for any integer n ≥ 0 the row n

consists of n+1 positions, 0, . . . , n, from left to right, with binomial coefficient Ck
n assigned

to position k = 0, . . . , n on row n, and where this position is located to the right below

position k − 1 on row n − 1 and to the left below position k on row n − 1. The first

eight rows of Pascal’s triangle, corresponding to n = 0, . . . , 7, together with the numbers

Ck
n are depicted in Figure 1. Equation (2.2) says that for any integer n ≥ 1 the binomial

coefficient at position k on row n is equal to the sum of the binomial coefficients on the

two positions on row n− 1 diagonally to the left and to the right, where the coefficient is

considered to be zero if the position is not in the triangle. From (2.1) immediately follows

the well-known prime number property of the binomial coefficients that if n is a prime, then

for k = 1, . . . , n− 1 the binomial coefficient Ck
n is divisible by this prime. This property is

also illustrated in Figure 1 for n = 2, 3, 5, and 7. Moreover, from (2.1) it follows that for

each integer n ≥ 1 it holds that

Ck
n

Ck+1
n

=
k + 1

n− k
, k = 0, . . . , n− 1, (2.3)

saying that for any two consecutive binomial coefficients Ck
n and Ck+1

n in row n of Pascal’s

triangle it holds that their ratio is equal to the ratio of the number k + 1 of the positions

0, . . . , k in that row from the position k to the left and the number n− k of the positions

k + 1, . . . , n in that row from the position k + 1 to the right. For example, for n = 6 and

k = 1, we have
C1

6

C2
6
= 6

15
= 2

5
= 1+1

6−1
.

In the sequel, position k on row n in Pascal’s triangle is denoted (n, k). It is well-

known that for any integers n ≥ 0 and 0 ≤ k ≤ n the binomial coefficient Ck
n can also be

interpreted as the number of different paths in Pascal’s triangle that start at the apex (0, 0)

and terminate at position (n, k), where at every step a path moves diagonally downwards

to the next row either to the left or to the right. For instance, there are C3
7 = 35 such

paths from (0, 0) to (7, 3). Two of these paths are indicated in Figure 2 by the numbers

with a star and with a plus correspondingly. Indeed, for any integer n ≥ 1 the number
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Figure 1: The first eight rows of Pascal’s triangle.

of paths from the apex (0, 0) to position (n, k) is equal to the total number of paths from

(0, 0) to the positions (n− 1, k − 1) and (n− 1, k), where the number to a position is zero

if the position is not in the triangle. From this it follows that the number of paths from

(0, 0) to position (n, k) meets condition (2.2) and, therefore, is equal to Ck
n. Obviously,

the number of paths in Pascal’s triangle that start at any given position (n, k) and move

at every step diagonally upwards either to the left or to the right until the apex (0, 0) is

reached, is also equal to Ck
n.

1∗+

1∗ 1+

1 2∗ 1+

1 3∗ 3 1+

1 4∗ 6 4+ 1

1 5∗ 10 10+ 5 1

1 6 15∗ 20+ 15 6 1

1 7 21 35∗+ 35 21 7 1

Figure 2: Two of the paths from the apex (0, 0) to position (7, 3).

3 The binomial coefficients revisited on line-graphs

In this section we discuss the binomial coefficients within the framework of line-graphs. For

a given finite nonempty set N , a graph on N is a pair (N,E) with N the set of nodes and

E ⊆ {{i, j} | i, j ∈ N, j ̸= i} a set of edges between nodes. A graph (N,E) is connected
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if for each pair i, j ∈ N , i ̸= j, there is a path from i to j in (N,E), i.e., for some k ≥ 1

there exists a set of edges {ih, ih+1}, h = 1, . . . , k, in E such that i1 = i and ik+1 = j.

For a graph (N,E) and a subset N ′ ⊆ N , E|N ′ is the subset of edges of E on N ′ and

(N ′, E|N ′) is the subgraph of (N,E) on N ′. A subset of nodes N ′ ⊆ N is connected in the

graph (N,E) if the subgraph (N ′, E|N ′) is connected. A node k ∈ N is an extreme node

of a connected graph (N,E) if |N | = 1 or N\{k} is connected in (N,E). We denote the

set of extreme nodes of a connected graph (N,E) by S(N,E). If {i, j} ∈ E, then node j

is a neighbor of node i in the graph (N,E). For a connected cycle-free graph (N,E) and

node k ∈ N , BE
k = {i ∈ N | {i, k} ∈ E} is the set of neighbors of node k in (N,E) and

the number of neighbors of node k in (N,E), denoted by dk(N,E), is degree of node k in

(N,E). A connected graph (N,E) is a line-graph, or chain, if every node has at most two

neighbors and |E| = |N | − 1, where |A| is the cardinality of a finite set A. In the sequel,

for a graph (N,E) and node i ∈ N , we denote N\{i} by N−i and E|N−i
by E−i.

Given a finite set N , Π(N) denotes the set of linear orderings on N . For a connected

graph (N,E) and node k ∈ N , a linear ordering π ∈ Π(N), π = (π1, . . . , π|N |), is feasible

with respect to k in (N,E) if π1 = k and for j = 2, . . . , |N | the set of nodes {π1, . . . , πj} is

connected in (N,E). The subset of all linear orderings feasible with respect to k in (N,E)

is denoted by ΠE
k (N) and its cardinality is denoted by ck(N,E).

For given integer n ≥ 0, we may consider the n + 1 positions on row n of Pascal’s

triangle as nodes on the line-graph (N,E) with N = {0, . . . , n} as the set of nodes and

E = {{k, k+1} | k = 0, . . . , n−1} as the set of edges, where to every node k, k = 0, . . . , n,

the binomial coefficient Ck
n is assigned. For row n = 7 this is illustrated in Figure 3,

where the numbers below the line-graph indicate the nodes and the number above node k,

k = 0, . . . , 7, is the corresponding binomial coefficient Ck
7 . Within this framework we make

several observations.

u u u u u u u u
0 1 2 3 4 5 6 7

1 7 21 35 35 21 7 1

Figure 3: The binomial coefficients on the line-graph induced by row 7 of Pascal’s triangle.

First, we give a new interpretation of the binomial coefficient Ck
n as the number of

paths in Pascal’s triangle from position (n, k) to apex (0, 0). Given the above line-graph

(N,E), for each linear ordering π ∈ ΠE
k (N) it holds that for every j = 2, . . . , n + 1 node

πj is the neighbor of the node either on the left end or on the right end of the connected

set {π1, . . . , πj−1}. From this it follows immediately that every π ∈ ΠE
k (N) corresponds

one-to-one to a path in Pascal’s triangle from position (n, k) to (0, 0), namely to the path
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along which we move upwards to the left (right), when πj is the neighbor of the extreme

node on the left (right) end of {π1, . . . , πj−1}, in total k times to the left and n−k times to

the right. For example, for n = 7 the linear ordering π = (3, 2, 1, 4, 5, 6, 0, 7) is feasible with

respect to node 3 and corresponds to the path from (7, 3) to (0, 0) depicted in Figure 2 by

the numbers with a star. First, starting with node 3, node 2 is added to the left of node 3,

corresponding to a move upwards to the left from position (7, 3) to (6, 2). Next, node 1 is

added to the left of node 2, corresponding to a move upwards to the left from position (6, 2)

to (5, 1). Then, node 4 is added to the right of node 3, corresponding to a move upwards to

the right from position (5, 1) to (4, 1), and so on. From this interpretation it follows that

for the line-graph (N,E) with N = {0, . . . , n} and E = {{k, k+ 1} | k = 0, . . . , n− 1}, for
every k ∈ N it holds that ck(N,E) = Ck

n, i.e., the number of linear orderings on N that

are feasible with respect to k in (N,E) is equal to the binomial coefficient Ck
n. This yields

the following theorem.

Theorem 3.1 For any two integers n ≥ 0 and 0 ≤ k ≤ n it holds that

Ck
n = |{π ∈ Π(N) | π1 = k, {π1, . . . , πj} is connected in (N,E), j = 2, . . . , n+ 1}|,

where (N,E) is the line-graph on N={0, . . . , n} with E={{k, k + 1} | k=0, . . . , n− 1}.

The theorem implies that the binomial coefficient Ck
n is equal to the number of ways the

line-graph (N,E) can be constructed by starting with node k and adding at each step a

node that is connected to one of the nodes that already have been added. Equivalently,

Ck
n is the total number of ways that extreme nodes can be removed one by one from the

graph until only the node k remains.

Second, we reconsider formula (2.2) within the framework of line-graphs. For the line-

graph (N,E) defined above, consider the two line-subgraphs (N−0, E−0) and (N−n, E−n),

both of which have n nodes and therefore correspond to row n− 1 of Pascal’s triangle. For

every k ∈ N−n = {0, . . . , n − 1} it holds that ck(N−n, E−n) = |ΠE−n

k (N−n)| = Ck
n−1, while

for every k ∈ N−0 = {1, . . . , n} it holds that ck(N−0, E−0) = |ΠE−0

k−1(N−0)| = Ck−1
n−1. Further,

define cn(N−n, E−n) = 0 and c0(N−0, E−0) = 0. Since ck(N,E) = |ΠE
k (N)| = Ck

n, the next

result follows straightforwardly from equation (2.2).

Theorem 3.2 Let (N,E) be the line-graph with N = {0, . . . , n} and E = {{k, k + 1}|k =

0, . . . , n− 1} for some integer n ≥ 1. Then for any integer 0 ≤ k ≤ n it holds that

ck(N,E) = ck(N−0, E−0) + ck(N−n, E−n). (3.4)

The theorem implies that the number of linear orderings that are feasible with respect

to a node in the line-graph (N,E) is equal to the number of linear orderings that are

feasible with respect to this node in the subgraph (N−0, E−0) without the extreme node
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0, plus the number of linear orderings that are feasible with respect to this node in the

subgraph (N−n, E−n) without the other extreme node n. The property is illustrated for

n = 7 in Figure 4, where the numbers above the upper, middle, and lower line-graphs

are the binomial coefficients assigned to the nodes in the graphs (N−0, E−0), (N−n, E−n),

and (N,E), respectively, and the numbers below the lower line-graph indicate the nodes.

For each node on the lower line-graph the binomial coefficient is equal to the sum of the

numbers of that node in the upper and middle line-graphs.

u u u u u u u d1 6 15 20 15 6 1 0

d u u u u u u u0 1 6 15 20 15 6 1

u u u u u u u u
0 1 2 3 4 5 6 7

1 7 21 35 35 21 7 1

Figure 4: Illustration for n = 7 that the binomial coefficient of a node of a line-graph is

equal to the sum of the binomial coefficients of this node in the two line-subgraphs without

one of the extreme nodes.

4 Pascal graph numbers

In the previous section we defined for a connected graph (N,E) and node k ∈ N the

number ck(N,E) = |ΠE
k (N)| as the number of linear orderings π on N such that π1 = k

and for j = 2, . . . , |N | the set {π1, . . . , πj} is connected in (N,E). We have seen that these

numbers are the binomial coefficients on row |N | − 1 in Pascal’s triangle when (N,E) is a

line-graph. Therefore in the sequel we call these numbers Pascal graph numbers.

Definition 4.1 For a connected graph (N,E), the Pascal graph number of node k ∈ N is

the number ck(N,E).

For an arbitrary connected graph (N,E), the Pascal graph number of a node k ∈ N is

equal to the number of ways the graph can be constructed by starting with this node and

adding at each step a node that is connected to one of the nodes that already have been

added, or equivalently, it is the number of ways extreme nodes can be removed from the

graph one by one until only the node k remains.
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In this section we consider the class of connected cycle-free graphs and show that the

properties of binomial coefficients discussed in the previous section for line-graphs gener-

alize to similar properties of Pascal graph numbers for this class of graphs and therefore

these numbers can be seen as a generalization of binomial coefficients.

We first introduce some notions with respect to connected cycle-free graphs. A con-

nected graph (N,E) is cycle-free if for any pair i, j ∈ N , i ̸= j, there is precisely one

path from node i to node j. Note that in a connected cycle-free graph (N,E) there are

precisely |N | − 1 edges. Given a connected cycle-free graph (N.E) and node k ∈ N , for

every neighbor h ∈ BE
k , N

E
kh is the set of nodes i ∈ N for which the unique path from

node k to node i in (N,E) contains node h. We call NE
kh a satellite of node k in (N,E).

Each neighbor of k in (N,E) induces one satellite of k, so the number of satellites of k is

equal to the number of neighbors of k in (N,E). For every k ∈ N the satellites of node k

in (N,E) form a partition of N−k and, therefore,
∑

h∈BE
k
|NE

kh| = |N | − 1. For any k ∈ N

and h ∈ BE
k , we denote by (NE

kh, Ekh) the subgraph of (N,E) on NE
kh, where Ekh = E|NE

kh
.

Each of these subgraphs is connected and cycle-free.

Example 4.2 Throughout this section we take as example the graph (N,E) with eight

nodes depicted in Figure 5. For node 4 of this graph it holds that BE
4 = {3, 5, 8} and that

NE
43 = {1, 2, 3, 7}, NE

45 = {5, 6}, and NE
48 = {8} are its satellites. The three satellites of

node 4 are depicted in Figure 6.

u u u u u u
u u

1 2 3 4 5 6

7 8

Figure 5: The graph (N,E) of Example 4.2.

u u u d u u
u u

1 2 3 4 5 6

7 8

Figure 6: The three satellites of node 4 of the graph in Figure 5.

A connected cycle-free graph (N,E) with |N | ≥ 2 has at least two extreme nodes and,

moreover, a node is an extreme node of (N,E) if and only if it has precisely one neighbor
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in (N,E). For example, in Figure 3 it holds that S(N,E) = {0, 7} and in Figure 5 it

holds that S(N,E) = {1, 6, 7, 8} and all these extreme nodes have just one neighbor. In

general, a subgraph of a connected cycle-free graph (N,E) may not be connected, but for

an extreme node h of (N,E) it holds by definition that the set N−h is the unique satellite

of node h in (N,E) and therefore the subgraph (N−h, E−h) is a connected cycle-free graph

on N−h with |N−h| = |N | − 1 nodes.

We are now ready to consider the properties of the Pascal graph numbers on the class

of connected cycle-free graphs. When the number of nodes is small, it is easy to calculate

the Pascal graph number of a node by counting the number of linear orderings which are

feasible with respect to that node.

Example 4.2 (continued) Consider node 4 in the subgraph on the set N ′ = {3, 4, 5, 6, 8}
of the graph in Figure 5. For any linear ordering π feasible with respect to node 4 in graph

(N ′, E|N ′) we have π1 = 4 and there are 12 feasible ways to place nodes 3, 5, 6 and 8 after

node 4, because the positions of nodes 3, 5 and 8 can be chosen independently from each

other and node 6 is chosen after node 5, but not necessarily directly after node 5. Hence,

c4(N
′, E|N ′) = 12. For any feasible ordering with respect to node 3 in the subgraph on N ′

we have that π1 = 3, π2 = 4, nodes 5 and 8 can be chosen independently from each other,

and then node 6 after node 5. This yields c3(N
′, E|N ′) = 3.

The next theorem generalizes (2.1) and relates the Pascal graph number of a node with

the Pascal graph numbers of the neighboring nodes in the subgraphs on the satellites these

nodes induce. For positive integers nh, h = 1, . . . , k, with sum equal to n, the multinomial

coefficient
(

n
n1,...,nk

)
is given by(

n

n1, ..., nk

)
=

n!
k∏

h=1

nh!

.

Recall that for a connected cycle-free graph (N,E) and k ∈ N it holds that
∑

h∈BE
k
|NE

kh| =
|N | − 1 and therefore the multinomial coefficient(

|N | − 1

|NE
kh|, h ∈ BE

k

)
=

(|N | − 1)!∏
h∈BE

k

|NE
kh|!

is well defined.

Theorem 4.3 For any connected cycle-free graph (N,E) it holds that for every k ∈ N

ck(N,E) =


1, |N | = 1,( |N |−1

|NE
kh|, h∈BE

k

) ∏
h∈BE

k

ch(N
E
kh, Ekh), |N | ≥ 2.

9



Proof. Clearly, ck(N,E) = 1 if N = {k}. Suppose |N | ≥ 2 and let k ∈ N . Since (N,E)

is a connected graph on at least two nodes, k has at least one neighbor in (N,E) and

therefore BE
k is not empty. Moreover, since (N,E) is cycle-free, k is only connected to

node h in the satellite NE
kh, h ∈ BE

k . Therefore, a linear ordering π ∈ Π(N) is feasible with

respect to k in (N,E) if and only if π1 = k and for every h ∈ BE
k the linear subordering of

π on NE
kh is feasible with respect to h in the subgraph (NE

kh, Ekh). Hence, ck(N,E) is equal

to the number of linear orderings π ∈ Π(N) satisfying that π1 = k and for every h ∈ BE
k

the linear subordering of π on NE
kh is feasible with respect to h in (NE

kh, Ekh). For each

h ∈ BE
k , there are ch(N

E
kh, Ekh) linear orderings π

h on NE
kh that are feasible with respect to

h in the subgraph (NE
kh, Ekh), which yields a total number of

∏
h∈BE

k
ch(N

E
kh, Ekh) different

linear orderings (πh, h ∈ BE
k ) on the satellites of k in (N,E). Since the satellites of a node

in (N,E) are not connected to each other, the nodes of different satellites are unordered

concerning feasibility with respect to k. Therefore, if for every h ∈ BE
k the linear ordering

πh on NE
kh is feasible with respect to h in (NE

kh, Ekh), then the number of linear orderings

on N for which π1 = k and for all h ∈ BE
k its subordering on NE

kh is πh, is equal to in how

many ways, for each h ∈ BE
k , |NE

kh| nodes can be selected from
∑

h∈BE
k
|NE

kh| = |N | − 1

nodes. This is precisely the multinomial coefficient
( |N |−1

|NE
kh|, h∈BE

k

)
. Hence, the product of this

latter multinomial coefficient and the number
∏

h∈BE
k
ch(N

E
kh, Ekh) is equal to the number

ck(N,E) of linear orderings on N that are feasible with respect to node k in the graph

(N,E). 2

The theorem says that in a connected cycle-free graph the Pascal graph number of a

node is equal to the multinomial coefficient of the sizes of all its satellites times the product

of the Pascal graph numbers of each of its neighbors in the subgraph on the satellite

containing this neighbor. In case of a line-graph all these multinomials are binomials,

because for every node there are (at most) two satellites, and moreover, for any node the

Pascal graph number of each neighbor in the subgraph on the satellite containing this

neighbor is equal to 1. This yields precisely (2.1).

From Theorem 4.3 we obtain straightforwardly the following two corollaries. The first

one states that the Pascal graph number of an extreme node k in a connected cycle-free

graph (N,E) with |N | ≥ 2 is equal to the Pascal graph number that his unique neighbor h

has in the subgraph (N−k, E−k). Recall that when k is an extreme node, then for his unique

neighbor h it holds that NE
kh = N−k, and therefore |NE

kh| = |N | − 1 and
( |N |−1

|NE
kh|, h∈BE

k

)
= 1.

Corollary 4.4 If k ∈ N is an extreme node of a connected cycle-free graph (N,E) and

{k, h} ∈ E, then ck(N,E) = ch(N−k, E−k).

The second corollary shows that similar to binomial coefficients the Pascal graph num-

bers meet the prime number property.

10



Corollary 4.5 If |N | − 1 is a prime number, then the Pascal graph number of any node

of a connected cycle-free graph (N,E) other than an extreme node of the graph is divisible

by this prime. Moreover, the Pascal graph number of any extreme node of this graph is not

divisible by this prime.

Theorem 4.3 provides an iterative procedure to find the Pascal graph numbers for con-

nected cycle-free graphs. It shows that the Pascal graph number of a node can be calculated

from the Pascal graph numbers of the neighboring nodes in the smaller subgraphs of the

satellites. Clearly, for the latter numbers the same procedure can be applied and so on,

making the satellite subgraphs smaller and smaller. For small enough subgraphs the num-

ber of feasible linear orderings is easy to compute, in particular it holds that eventually all

satellites become line-graphs, on which the Pascal graph numbers are binomial coefficients.

Example 4.2 (continued) For node 2 in Figure 5 we obtain by Theorem 4.3 that

c2(N,E) =
7!

1! 1! 5!
c1({1}, E|{1}) · c7({7}, E|{7}) · c3(N ′, EN ′),

where N ′ = {3, 4, 5, 6, 8}. Clearly, c1({1}, E|{1}) = c7({7}, E|{7}) = 1, and applying

Corollary 4.4 we find that c3(N
′, E|N ′) = c4(N

′
−3, E|N ′

−3
) = 3, because the subgraph on

N ′
−3 = {4, 5, 6, 8} is a line-graph. Hence,

c2(N,E) =
7!

1! 1! 5!
· 1 · 1 · 3 = 42 · 3 = 126.

Similar, it holds that

c4(N,E) =
7!

4! 2! 1!
· c3(N ′′, E|N ′′) · c5({5, 6}, E|{5,6}) · c8({8}, E|{8}),

where N ′′ = {1, 2, 3, 7}. Clearly, c8({8}, E|{8}) = c5({5, 6}, E|{5,6}) = 1, and, again by

Corollary 4.4, we find that c3(N
′′, E|N ′′) = c2(N

′′
−3, E|N ′′

−3
) = 2. Hence,

c4(N,E) =
7!

4! 2! 1!
· 2 · 1 · 1 = 210.

Note that according to Corollary 4.5 both c2(N,E) = 126 and c4(N,E) = 210 are divisible

by the prime number |N | − 1 = 7. For the extreme node 1 we have that

c1(N,E) = c2(N−1, E−1) =
6!

1!5!
c7({7}, E|{7}) · c3(N ′, E|N ′) = 6 · 1 · 3 = 18,

which is according to Corollary 4.5 not divisible by 7.

11



Example 4.6 Let (N,E) be the star graph given byN = {0, . . . , n} and E = {{0, h} | h =

1, . . . , n}, in which each node k ̸= 0 is connected to the hub at node 0. From Theorem 4.3

it follows that

c0(N,E) = n!,

because |N | − 1 = n, BE
0 = {1, . . . , n} and for h = 1, . . . , n it holds that ch(N

E
0h, E0h) = 1

since NE
0h = {h}. Further, because each node h, h = 1, . . . , n, is an extreme node connected

to only node 0 and the subgraph on its unique satellite NE
h0 = N−h is also a star graph

with hub node 0, but having in total n nodes, it follows from Corollary 4.4 that for all

h = 1, . . . , n,

ch(N,E) = c0(N−h, E−h) = (n− 1)!.

Note that c0(N,E) = nch(N,E) for all h ∈ N−0. So, in a star graph the Pascal graph

number of the hub is equal to the sum of the Pascal graph numbers of all other nodes.

Next, let (N,E) be a generalized star graph given by N = {0, . . . , n} with the hub at

node 0 having as neighbors nodes m1, . . . ,mk, that is the graph (N,E) for which for every

h = 1, . . . , k the subgraph on the satellite NE
0mh

of node 0 is a line-graph with nh nodes

having node mh as an extreme node. Hence, cmh
(NE

0mh
, E0mh

) = 1 for h = 1, . . . , k and∑k
h=1 nh = n. Then, from Theorem 4.3 it follows that

c0(N,E) =

(
n

n1, . . . , nk

)
.

Therefore, in a generalized star graph the Pascal graph number of the hub is equal to the

multinomial coefficient for the numbers of nodes in each of the satellites of the hub.

The next theorem is a consequence of Theorem 4.3. The theorem states that for a

connected cycle-free graph (N,E) the ratio between the Pascal graph numbers of any two

neighbors in the graph is equal to the ratio of the numbers of nodes in the two subgraphs

that result from deleting the edge between these two nodes. For the line-graph (N,E) with

N = {0, . . . , n} and E = {(k, k + 1)| k = 0, . . . , n− 1} this result reduces to (2.3).

Theorem 4.7 For any connected cycle-free graph (N,E) and {k, h} ∈ E it holds that

ck(N,E)

ch(N,E)
=

|NE
hk|

|NE
kh|

.

Proof. According to Theorem 4.3 and since |N | ≥ 2, it holds that

ck(N,E) =

(
|N | − 1

|NE
kℓ|, ℓ ∈ BE

k

) ∏
ℓ∈BE

k

cℓ(N
E
kℓ, Ekℓ) (4.5)
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and

ch(N,E) =

(
|N | − 1

|NE
hℓ|, ℓ ∈ BE

h

) ∏
ℓ∈BE

h

cℓ(N
E
hℓ, Ehℓ). (4.6)

Since {k, h} ∈ E, it holds that both h ∈ BE
k and k ∈ BE

h . Moreover, since the graph

(N,E) is cycle-free, the sets NE
hℓ, ℓ ∈ BE

h \{k}, are the satellites of node h in the subgraph

(NE
kh, Ekh), while the sets NE

kℓ, ℓ ∈ BE
k \{h}, are the satellites of node k in the subgraph

(NE
hk, Ehk). Therefore, using again Theorem 4.3,

ch(N
E
kh, Ekh) =


1, |NE

kh| = 1,( |NE
kh|−1

|NE
hℓ|, ℓ∈BE

h \{k}

) ∏
ℓ∈BE

h \{k}
cℓ(N

E
hℓ, Ehℓ), |NE

kh| ≥ 2,
(4.7)

and

ck(N
E
hk, Ehk) =


1, |NE

hk| = 1,( |NE
hk|−1

|NE
kℓ|, ℓ∈BE

k \{h}

) ∏
ℓ∈BE

k \{h}
cℓ(N

E
kℓ, Ekℓ), |NE

hk| ≥ 2.
(4.8)

Substituting (4.7) into (4.5) and (4.8) into (4.6) yields

ck(N,E)

ch(N,E)
=

(|NE
kh| − 1)!/|NE

kh|!
(|NE

hk| − 1)!/|NE
hk|!

=
|NE

hk|
|NE

kh|
.

2

This theorem implies that if the Pascal graph number of one node is known, the Pascal

graph numbers of the other nodes can be calculated by successive application of the ratio

property. Starting from the node for which the Pascal graph number is known, the Pascal

graph numbers of the other nodes follow in any linear ordering which is feasible with respect

to the initial node. The next result immediately follows from Theorem 4.7.

Corollary 4.8 If in a connected cycle-free graph the deletion of an edge splits the graph

in two subgraphs having the same number of nodes, then irrespective to the structure of

the two subgraphs obtained, the two nodes adjacent to that edge have equal Pascal graph

numbers. Moreover, the Pascal graph number of any other node is smaller.

Note that in Pascal’s triangle indeed Ck−1
n = Ck

n holds for k = 1
2
(n+ 1) when n is odd.

Example 4.2 (continued) For the graph in Figure 5 we found above that c4(N,E) = 210.

Since the deletion of the edge {3, 4} yields two subgraphs with four nodes in each, due to

Corollary 4.8 we obtain that c3(N,E) = c4(N,E) = 210. Next, by Theorem 4.7, we get

c2(N,E) =
3

5
c3(N,E) = 126,

13



which we also found above. Continuing this way we find

c1(N,E) = c7(N,E) =
1

7
c2(N,E) = 18

and

c5(N,E) =
2

6
c4(N,E) = 70, c6(N,E) =

1

7
c5(N,E) = 10, c8(N,E) =

1

7
c4(N,E) = 30.

To summarize, the nodes 3 and 4 have equal and maximal Pascal graph numbers and the

Pascal graph numbers of the extreme nodes are not divisible by 7, whereas these numbers

for all the other nodes are divisible by 7. All Pascal graph numbers are given in Figure 7.

u u u u u u
u u

18 126 210 210 70 10

18 30

Figure 7: The Pascal graph numbers for the graph in Figure 5.

The next theorem generalizes formula (3.4) and states that the Pascal graph number of

a node in a connected cycle-free graph is equal to the sum of the Pascal graph numbers of

that node in all subgraphs obtained by deleting one of the extreme nodes from the graph.

Theorem 4.9 For any connected cycle-free graph (N,E) it holds that for every k ∈ N

ck(N,E) =


1, |N | = 1,∑

h∈S(N,E)

ck(N−h, E−h), |N | ≥ 2,

where ch(N−h, E−h) = 0 for all h ∈ S(N,E).

Proof. Clearly, ck(N,E) = 1 if N = {k}. Suppose n = |N | ≥ 2 and let k ∈ N . Since

(N,E) is a connected cycle-free graph on at least two nodes, for every linear ordering

π ∈ ΠE
k (N) it holds that πn ∈ S(N,E). Clearly, for any h ∈ S(N,E), the linear ordering

π = (π1, . . . , πn−1, h) on N is feasible with respect to node k in (N,E) if and only if the

linear ordering (π1, . . . , πn−1) on N−h is feasible with respect to node k in the subgraph

(N−h, E−h). Hence, for every h ∈ S(N,E), h ̸= k, ck(N−h, E−h) is precisely the number of

linear orderings π in ΠE
k (N) satisfying πn = h, which proves the theorem. 2

Theorem 4.9 gives a third iterative procedure for finding the Pascal graph numbers by

starting with the calculation of the Pascal graph numbers of the nodes in the subgraphs of

14



small size and increasing successively their sizes. When |N | = 1, the Pascal graph number

of the unique node is 1. For the (unique) graph for |N | = 2 from Theorem 4.9 we get that

the Pascal graph number of any of the two nodes is equal to the sum of their Pascal graph

numbers in the two subgraphs with one of the nodes (with a number equal to zero when

the node is not in the graph), which gives Pascal graph number 1 for both nodes. For

|N | = 3 the unique cycle-free graph is (still) a line-graph, with the Pascal graph numbers

equal to the sum of the numbers in the two (line-)subgraphs with two nodes obtained by

leaving out one of the two extreme nodes. There are two types of cycle-free graphs for

|N | = 4. Type 1 is the line-graph with four nodes and we have again that the Pascal graph

numbers are the sum of the numbers in the two line-graphs with three nodes obtained by

leaving out one of the two extreme nodes. Type 2 is a star graph with one hub node and

three extreme nodes. From Example 4.6 we then know that the Pascal graph number of

the hub node is equal to 6 and each extreme node has Pascal graph number 2. This also

follows by applying Theorem 4.9. Assuming that node 1 is the hub and the nodes 2, 3 and

4 are the extreme nodes, it follows from (4.9) that for any node k = 1, 2, 3, 4 it holds that

ck(N,E) =
∑

h∈{2,3,4}

ck(N−h, E−h).

Since every of the three subgraphs in this summation is a line-graph with three nodes and

corresponding Pascal graph numbers 1, 2 and 1, with in any of the three graphs the number

2 for the hub 1, and the Pascal graph number is zero if h = k, it follows that c1(N,E) = 6

and ch(N,E) = 2 for h = 2, 3, 4. Continuing in this way we can find for any graph (N,E),

the Pascal graph numbers for any connected cycle-free subgraph with |N |−1 nodes. Then

the Pascal graph numbers for the nodes in (N,E) follow from adding up their Pascal graph

numbers on all these subgraphs, where a number is zero if the node is not in the subgraph.

Example 4.2 (continued) The graph in Figure 5 has four extreme nodes, nodes 1, 6,

7, and 8. The Pascal graph numbers on the four subgraphs obtained by deleting precisely

one of these extreme nodes are given in Figure 8, with number zero for the node deleted

from the graph. By applying Theorem 4.9, for each node the sum of the Pascal graph

numbers in the four subgraphs in Figure 8 is equal to the Pascal graph number of this

node in the graph, as depicted in Figure 7.

5 The Pascal graph numbers and steady state proba-

bilities

In this section we show that when normalizing the sum of the Pascal graph numbers of

the nodes of a cycle-free connected graph to one we get the steady state probabilities of a
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u u u u u u
u d

5 30 40 30 12 2

5 0

u u u u u u
d u

3 18 45 60 24 4

0 10

u u u u u d
u u

10 60 80 60 10 0

10 10

d u u u u u
u u

0 18 45 60 24 4

3 10

Figure 8: The Pascal graph numbers on the four subgraphs (N−h, E−h), h = 1, 6, 7, 8, of

the graph in Figure 5.

Markov chain with the set of nodes as the states. For an integer n ≥ 1, we first consider

row n of Pascal’s triangle represented by the line-graph (N,E) with N = {0, . . . , n} and

E = {{k, k + 1} | k = 0, . . . , n − 1}. Let sn ∈ IRN be the row vector of corresponding

binomial coefficients, i.e., snk = Ck
n for k = 0, . . . , n, and let P n be the (n + 1) × (n + 1)

transition matrix defined by

P n =



0 1 0 . . . . 0
1
n

0 n−1
n

0 . . . 0

0 2
n

0 n−2
n

0 . . 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

0 . . . 0 n−1
n

0 1
n

0 . . . . 0 1 0


,
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i.e., for k, j = 0, . . . , n the (k, j)th element of the matrix P n is given by pnkj =
k
n
if j = k−1,

pnkj = n−k
n

if j = k + 1, and pnkj = 0 otherwise. Since in the line-graph (N,E) induced

by the row n of Pascal’s triangle there are k nodes to the left of node k, those with index

smaller than k, and n− k nodes to the right of node k, those with index larger than k, the

transition probability from node k to any of its neighbors is proportional to the number

of nodes that are connected to k through that neighbor. The next theorem follows from

straightforward calculations.

Theorem 5.1 For any integer n ≥ 1 it holds that snP n = sn, i.e., for every k ∈ N

the normalized binomial coefficient Ck
n/2

n is the steady state probability that the Markov

process with transition matrix P n is in state k.

The theorem implies that for every positive integer n the row vector sn of binomial coef-

ficients Ck
n, k = 0, . . . , n, is a left eigenvector of the matrix P n and therefore the vector

sn/2n gives the stationary state distribution of the Markov chain with transition matrix

P n. Thus, the binomial coefficients yield the relative probabilities that the Markov process

is in each state.

Next, we show that also for a connected cycle-free graph the Pascal graph numbers

determine the stationary distribution of a Markov process with the set of nodes as the

set of states. For a connected cycle-free graph (N,E) with |N | ≥ 2, let sE ∈ IRN be

the |N |-dimensional row vector of Pascal graph numbers with sEk = ck(N,E) the Pascal

graph number of node k ∈ N . Further, let PE be the |N | × |N | transition matrix with for

k, h ∈ N the (k, h)th element given by

pEkh =


|NE

kh|
|N | − 1

, {k, h} ∈ E,

0, otherwise.

When being in state (node) k ∈ N , the process goes with probability
|NE

kh|
|N |−1

to neighboring

state h ∈ N and with zero probability to any non-neighbor, i.e., the probabilities pEkh,

h ∈ BE
k , are proportional to the number of nodes that are connected to node k in (N,E)

through node h. Then we have the following theorem, which generalizes Theorem 5.1 to

the class of all connected cycle-free graphs.

Theorem 5.2 For any connected cycle-free graph (N,E) with |N | ≥ 2 it holds that sEPE =

sE, i.e., for every k ∈ N the normalized Pascal graph number ck(N,E)/
∑

h∈N ch(N,E) is

the steady state probability that the Markov process with transition matrix PE is in state

k.

17



Proof. Since (N,E) is a connected cycle-free graph with |N | ≥ 2, for every k ∈ N it holds

that
∑

h∈BE
k
|NE

kh| = |N |−1. From Theorem 4.7 it follows that |NE
kh| = |NE

hk|ch(N,E)/ck(N,E)

for all h ∈ BE
k and k ∈ N . Therefore, for every k ∈ N ,∑

h∈BE
k

|NE
hk|ch(N,E) = (|N | − 1)ck(N,E).

Dividing both sides by |N | − 1 yields for every k ∈ N∑
h∈BE

k

sEh p
E
hk = sEk .

2

The theorem states that for a connected cycle-free graph (N,E) with |N | ≥ 2 the row

vector sE of Pascal graph numbers is a left eigenvector of the transition matrix PE and

therefore the vector sE/
∑

k∈N sEk gives the stationary state distribution of the Markov

chain. Thus when normalizing the Pascal graph numbers to sum up to one, for any k ∈ N

the normalized Pascal graph number ck(N,E)/
∑

h∈N ch(N,E) of node k is the long-term

probability that the process is in state k.

It is well-known that the degrees, when normalized to sum equal to one, are the steady

state probabilities of the Markov process that in any node moves with equal probability to

each of its neighbors. This property also holds for connected graphs that are not cycle-free.1

6 Pascal graph numbers as a centrality measure

Each linear ordering feasible with respect to some fixed node in a connected graph induces

a way to construct the graph by a sequence of increasing connected subgraphs starting from

the singleton subgraph determined by this node. This gives grounds to consider the Pascal

graph number of a node in a given connected graph as a measure of centrality of the node

in the graph. A centrality measure answers the question which nodes in a graph under

consideration are important. In fact, it gives a complete or partial ordering of the nodes

with respect to importance, cohesiveness, or influence. Formally, let G be the collection of

all connected graphs. Then a centrality measure is a function f on G which assigns to each

connected graph (N,E) ∈ G a vector f(N,E) ∈ IRN with entries fi(N,E), i ∈ N . The

entry fi(N,E) measures the centrality of node i in graph (N,E). The higher fi(N,E) is,

the higher the influence of node i within the graph. A well-known centrality measure is

the degree measure which assigns to any graph the vector of degrees of its nodes.

1It is easy to verify that for any connected graph (N,E) it holds that dPE = d, where d is the vector

of degrees dk(N,E), k ∈ N , and PE is a transition matrix with elements pEkh = 1/dk(N,E) when h is a

neighbor of k, and zero otherwise.
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We define the connectivity centrality measure as the mapping c on G that assigns to each

connected graph (N,E) ∈ G the vector c(N,E) ∈ IRN of the Pascal graph numbers of its

nodes. For each node in a given connected graph it measures in how many ways the graph

can be generated when starting with this node and adding one by one the other nodes

which are connected to at least one node that already has been added. The connectivity

centrality measure is illustrated by the binomial coefficients on the line-graph in Figure 3

and the Pascal graph numbers on the connected cycle-free graph in Figure 7. Also, as

shown in Example 4.6, for a star graph with n + 1 nodes, the connectivity centrality of

the hub is n times as large as the connectivity centrality of each of the n extreme nodes

and is therefore equal to the sum of the connectivity centrality of all other nodes. For

a star graph this property holds for many centrality measures, for instance, also for the

degree measure. Example 4.6 also shows that in a generalized star graph the connectivity

centrality of the hub is equal to the multinomial coefficient of the sizes of the subgraphs

connected to the hub.

In the literature it is quite standard to characterize centrality measures by a number of

their properties (axioms). We show below that the connectivity centrality measure on the

subclass of cycle-free connected graphs, denoted by Ĝ, can be characterized by the three

following properties.

Single node normalization A centrality measure f on G satisfies single node normaliza-

tion if fk(N,E) = 1 when N = {k}.

Ratio property A centrality measure f on Ĝ satisfies the ratio property if for every

(N,E) ∈ Ĝ and edge {k, h} ∈ E it holds that fk(N,E)
fh(N,E)

=
|NE

hk|
|NE

kh|
.

Extreme node consistency A centrality measure f on Ĝ satisfies extreme node con-

sistency if for every (N,E) ∈ Ĝ with |N | ≥ 2 and extreme node k ∈ S(N,E) it holds that

fk(N,E) = fh(N−k, E−k), where h is the unique neighbor of node k in (N,E).

Because in a singleton connected graph there is just one node, only this node is impor-

tant to measure centrality in the graph. This importance is normalized to be equal to one.2

To the best of our knowledge the ratio property does not hold for any centrality measure

known in the literature, nevertheless it seems to be rather natural. It states that the ratio

of centralities of two neighboring nodes k and h is equal to the number of nodes including

node h for which node h is on the path to node k divided by the number of nodes including

2Note that the degree measure does not satisfy single node normalization, because the degree of a node

in a graph with one node is equal to zero, saying that the importance of a node in a singleton connected

graph is zero. It seems to be more natural to define this value to be positive.
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node k for which node k is on the path to node h. Consistency properties are quite usual

in the literature on characterization of functions, for instance, in the theory of solutions

for cooperative games. Here it states that if in a graph a node is connected to only one

other node, then its centrality is the same as the centrality of this connected node in the

subgraph without the node. We now have the following result.

Theorem 6.1 A centrality measure f on the class of cycle-free connected graphs Ĝ satisfies

single node normalization, the ratio property, and extreme node consistency if and only if

it is the connectivity centrality measure.

Proof. We prove by induction that the centrality measure f determined by the three

properties is unique and yields the Pascal graph numbers on each connected cycle-free

graph, i.e., f(N,E) = c(N,E) for all (N,E) ∈ Ĝ. First, the single node normalization

uniquely determines the Pascal graph numbers on (N,E) when |N | = 1. Next, suppose

the three properties uniquely determine the Pascal graph numbers on each (N,E) ∈ Ĝ,
i.e., f(N,E) = c(N,E) , when |N | ≤ n− 1 for some n ≥ 2. Take some graph (N,E) ∈ Ĝ
with |N | = n. Since (N,E) is connected and cycle-free, it has at least one extreme node.

Let k be any extreme node of (N,E) and let node h be the unique neighbor of k in (N,E).

Since |N | ≥ 2 this unique neighbor exists. By extreme node consistency it holds that

fk(N,E) = ch(N−k, E−k). From Corollary 4.4 it follows that fk(N,E) is the Pascal graph

number of node k in (N,E). By repeated application of the ratio property for some linear

ordering that is feasible with respect to k in (N,E) we obtain numbers fj(N,E) for every

j ̸= k. Since fk(N,E) is the Pascal graph number of node k in (N,E), it follows from

Theorem 4.7 that for every j ̸= k the number fj(N,E) is the Pascal graph number of the

node j in (N,E). Therefore, f(N,E) = c(N,E). 2

Note that in the proof the determination of the numbers fj(N,E) of every node j ∈ N

is independent of the choice of the extreme node k in (N,E).

7 Pascal graph numbers on arbitrary connected graphs

In Section 4 the Pascal graph numbers are defined on the class of all connected graphs and

on the subclass of connected cycle-free graphs certain properties of the binomial coefficients

are generalized to similar properties of the Pascal graph numbers. In this section we discuss

whether or not these properties can be generalized also to properties of the Pascal graph

numbers on the class of all connected graphs.

We first reconsider Theorem 4.3. For a connected graph (N,E) and subset N ′ ⊆ N with

E ′ = E|N ′ , N ′/E ′ denotes the collection of maximal connected subsets of N ′ in (N,E),
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called components of N ′ in (N,E). For a cycle-free graph (N,E) and node k ∈ N , the

components of N−k are the satellites of node k in (N,E).

For an arbitrary connected graph (N,E), k ∈ N and C ∈ N−k/E−k, the extended

subgraph of (N,E) on C with respect to node k is the graph (C,Ek
C) on C with

Ek
C = E|C ∪ {{i, j} ⊆ C | i ̸= j, {i, k} ∈ E and {j, k} ∈ E}.

So, when two different nodes i and j in C do not form an edge in (N,E) but both form

an edge with node k, then edge {i, j} is added to the subgraph (C,E|C). Now, Theorem

4.3 generalizes as follows. The proof follows straightforwardly along the lines of the proof

of Theorem 4.3 and is therefore omitted.

Theorem 7.1 For any connected graph (N,E) it holds that for every k ∈ N

ck(N,E) =


1, |N | = 1,( |N |−1

|C|, C∈N−k/E−k

) ∏
C∈N−k/E−k

∑
h∈BE

k ∩C
ch(C,E

k
C), |N | ≥ 2.

In case k ∈ N is an extreme node of (N,E) and thus the collection of components N−k/E−k

only containsN−k as its unique element, the expression for ck(N,E) reduces to the following

generalization of Corollary 4.4.

Corollary 7.2 If k is an extreme node of a connected graph (N,E) with |N | ≥ 2, then

ck(N,E) =
∑
h∈BE

k

ch(N−k, E
k
N−k

).

In case k ∈ N is not an extreme node of (N,E), node k is an extreme node of the set

C+k = C∪{k} for any component C of N−k in (N,E). From Theorem 7.1 and the previous

corollary we obtain that for that case ck(N,E) can be expressed as follows.

Corollary 7.3 If k is not an extreme node of a connected graph (N,E) with |N | ≥ 2, then

ck(N,E) =

(
|N | − 1

|C|, C ∈ N−k/E−k

) ∏
C∈N−k/E−k

ck(C+k, E|C+k
).

The latter expression can also be used to express the Pascal graph number of a node that

is not an extreme node of a cycle-free connected graph. In that case a satellite C of k in

(N,E) is equal to NE
kh with h ∈ BE

k being the unique node in C connected to node k, i.e.,

C+k = NE
kh ∪ {k}, and therefore ck(C+k, E|C+k

) = ch(N
E
kh, Ekh).

From the last corollary it follows that the first part of Corollary 4.5 still holds. When

|N | − 1 is a prime number, then the Pascal graph number of any node that is not an

extreme node of a connected graph (N,E) on N is divisible by this prime. In case the
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graph contains cycles, however, it might be that the Pascal graph number of an extreme

node is divisible by this prime. For example, if (N,E) is the complete graph, then every

node is an extreme node and its Pascal graph number is equal to (|N | − 1)!.

When (N,E) is cycle-free, then for any edge {k, h} ∈ E the graph (N,E \ {{k, h}})
consists of the two components NE

hk and NE
kh and the ratio property of Theorem 4.7 applies.

When (N,E) contains cycles, the ratio property still holds for any edge {k, h} ∈ E which

is a bridge in (N,E), i.e., deleting the edge {k, h} from E splits the remaining graph in

two disconnected subgraphs, (NE
kh, Ekh) containing h as a node and (NE

hk, Ehk) containing

k as a node.

Theorem 7.4 For any connected graph (N,E) and bridge {k, h} ∈ E, it holds that

ck(N,E)

ch(N,E)
=

|NE
hk|

|NE
kh|

.

Note that in a cycle-free connected graph every edge is a bridge. If the graph (N,E)

contains cycles and the edge {k, h} ∈ E is not a bridge, then the graph (N,E\{{k, h}})
is still connected and the ratio property does not apply. Since the ratio property may not

hold in case of graphs with cycles, Theorems 5.2 and 6.1 cannot be generalized to the class

of connected graphs.

Finally, Theorem 4.9 holds for any connected graph. The proof goes along the same

lines of the proof of Theorem 4.9, because for any linear ordering π ∈ Π(N) that is feasible

with respect to a node k ∈ N in a connected graph (N,E) with |N | ≥ 2 it holds that π|N |

is an extreme node of (N,E).

Theorem 7.5 For any connected graph (N,E) it holds that for every k ∈ N

ck(N,E) =


1, |N | = 1,∑

h∈S(N,E)

ck(N−h, E−h), |N | ≥ 2,

where ch(N−h, E−h) = 0 for all h ∈ S(N,E).

In Figure 9 we illustrate this theorem by a connected graph with four nodes and a cycle

on three of the nodes.
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Figure 9: Illustration of Theorem 7.5.
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