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Abstract

The paper considers the problem as to whether financial returns have a com-

mon volatility process in the framework of stochastic volatility models that were

suggested by Harvey et al. (1994). We propose a stochastic volatility version of the

ARCH test proposed by Engle and Susmel (1993), who investigated whether inter-

national equity markets have a common volatility process. The paper also checks

the hypothesis of frictionless cross-market hedging, which implies perfectly corre-

lated volatility changes, as suggested by Fleming et al. (1998). The paper uses the

technique of Chesher (1984) in differentiating an integral that contains a degenerate

density function in deriving the Lagrange Multiplier test statistic.

Keywords: Volatility comovement, Cross-market hedging, Spillovers, Contagion.

JEL Classification: C12, C58, G01, G11
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1 Introduction

This paper considers the problem as to whether financial returns have a common volatility

process in the framework of stochastic volatility models that were suggested by Harvey et al.

(1994). We propose a stochastic volatility version of the ARCH test proposed by Engle and

Susmel (1993), who investigated whether international equity markets have a common volatility

process using a multivariate ARCH model. They found groups of countries that showed similar

time-varying volatility.

Fleming et al. (1998) used the multivariate stochastic volatility model of Harvey et al.

(1994), and estimated volatility linkages across stock, bond, and money markets, and found

strong correlation between the markets. Fleming et al. (1998) also suggested that cross-market

hedging in frictionless markets causes perfectly correlated volatility changes, extending the

model of Tauchen and Pitts (1983). This linkage is stronger than the presence of a common

factor in volatility changes in that it implies that the idiosyncratic part of stochastic volatility

changes will disappear and have a common volatility process. They also conducted a Wald test,

and rejected the null hypothesis of perfectly correlated volatility to conclude that cross-market

hedging is imperfect.

Contrary to what has been presented, the use of the Wald and likelihood ratio tests is

inappropriate for the null hypothesis of perfectly correlated volatility, as the asymptotic dis-

tribution of the Wald test statistics is different from the conventional chi-squared distribution,

as shown, for example, in Chernoff (1954) . As the null hypothesis is on the boundary of the

parameter space, the correlation estimator cannot be greater than one in absolute value, so that

the distribution is asymmetric, and hence non-normal, when the true correlation coefficient is

unity.

The paper proposes a new Lagrange multiplier test for the hypothesis that the volatility

changes of a bivariate series are perfectly correlated. We use the framework of a multivariate

stochastic volatility model proposed by Harvey et al. (1994), where the log-volatility follows

vector autoregressive (VAR) process of order one with diagonal autoregressive coefficient matrix.

The Lagrange multiplier test principle is the only alternative for this problem in deriving

the test statistics because it uses only the estimator of the unconstrained parameters, which are

asymptotically normally distributed, and does not estimate the parameter on the boundary of

the parameter space. Then the test statistic will follow the conventional chi-squared asymptotic

distribution under the null hypothesis.

To the best of our knowledge, the Lagrange multiplier test statistic for the perfectly corre-

lated volatility changes has not been proposed in the literature. It follows that the hypothesis

of frictionless cross-market hedging has also not been tested, so that a new test for perfectly

correlated volatility would be useful from a practical perspective.
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It is not without reason why an LM test has not been proposed to date as the conventional

method to obtain a score function that is used in constructing the LM test statistic is unworkable

for the multivariate stochastic volatility model.

The derivative of the transition density is intractable in this integral under the null hy-

pothesis, as the transition disturbance has zero variance, and the transition equation density

degenerates. We express the score function analytically with respect to the degenerate pa-

rameter using the ingenious method devised by Chesher (1984), which is the main technical

breakthrough in tackling this problem.

The new test is a stochastic volatility version of the ARCH test proposed by Engle and

Susmel (1993) to investigate whether international equity markets have a common volatility

process. The test can be regarded as a test for the number of stochastic volatility factors, in

line with the definition of Harvey et al. (1994) and Cipollini and Kapetanios (2008), when the

number of factors is one under the null hypothesis. Cipollini and Kapetanios (2008) used a

linearized model for the log of squared returns, and used the principal component methodology

of Stock and Watson (2002) in deciding the number of factors. Their method has the advantage

in that it is applicable when the number of variables is large, even though it is not a statistical

test. The new test developed in this paper is a unique statistical test for the null hypothesis of

the number of stochastic volatility factors.

Although theoretically straightforward, a generalization to multi-factor models is left to for

further research, as numerical calculation of the test statistic is extremely time consuming, even

in the simple case given here. The bottleneck lies in the calculation of score functions by the

conventional smoothing algorithm. Maximum likelihood estimation by means of the quadrature

method proposed by Watanabe (1999) is efficient when the state variable is univariate. More-

over, Monte Carlo simulation methods would work well for the estimation of multivariate state

space models, with some difficulty, as the filtering algorithm, which is required for estimation,

is far faster than the smoothing algorithm. It should be possible to generalize the results in the

paper to the multi-factor model by improving the smoothing algorithm, as well as by hardware

advancement.

The remainder of the paper is as follows. Section 2 presents the model, Section 3 develops

the LM test statistic, Monte Carlo experiments are presented in Section 4, the empirical analysis

is given in Section 5, and some concluding remarks are in Section 6, followed by the Appendices.
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2 Model

Under the alternative hypothesis, the observation vector yt = (y1t, y2t)
′ can be expressed as:(

y1t

y2t

)
=

(
exp(h1

2
) 0

0 exp(h2
2

)

)(
a1 0

a2 a3

)(
e1t

e2t

)
, t = 1, · · · , T, (1)

where the log-volatility, (h1t, h2t)
′, follows a stationary bivariate autoregressive process of order

one, defined by:(
h1t

h2t

)
=

(
ρ 0

0 ψ

)(
h1t−1

h2t−1

)
+

(
b1 0

b2
√
c

)(
u1t

u2t

)
, t = 1, · · · , T, (2)

and (
h11

h21

)
=

(
b1/
√

(1− ρ2) 0

b2/
√

(1− ψ2)
√
c/(1− ψ2)

)(
u11

u21

)
,

(e1t, e2t, u1t, u2t)
′ ∼ NID (0, I4) .

The disturbance term of the measurement equation (1) is assumed to be contemporaneously

uncorrelated, and the transition equation (2) is assumed to be contemporaneously correlated.

This model was originally suggested by Harvey et al. (1994), and was examined in detail in ?

and Asai et al. (2006).

It is easy to see that, under the null hypothesis defined by:

H0 :
√
c→ 0, ψ = ρ, b2 = b1, (3)

we have:

h1t ≡ h2t, for any t.

This is the stochastic volatility factor model discussed in Harvey et al. (1994) and Cipollini and

Kapetanios (2008) in the simple case when the number of factors is one, that is , h1t = h2t.

3 Implications for finance

According to Fleming et al. (1998), the strong linkage of volatility between markets has two

sources: (i) the common information flow that affects expectations in more than one market

simultaneously; (ii) the information spillovers caused by cross-market hedging. The new test,

which will be given in the following, can be interpreted as a test for the joint null hypothesis

of common information and frictionless information spillover between markets. If the null

hypothesis is rejected, this means that the link between the two markets is not strong enough

with respect to risk.
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It might be possible to interpret that the common information between the markets is

expressed by the the constraints c → 0 and ψ = ρ in (3), which means that the volatility

equations of more than one market have identical innovations or shocks and that frictionless

information spillovers are given by the constraint b1 = b2. However, it is not possible to

decompose the test statistic into two components, which correspond to common information and

information spillovers, as the Fisher information employed in constructing the χ2-distributed

test statistic is not diagonal. The identification of the two sources in order to construct two

test statistics is left to further research.

4 LM Test statistic

We propose an LM test statistic for the null hypothesis for the observation series y1t and

y2t. For the sake of computational simplicity and parameter parsimony, we set a1 = a2 =

1 by standardizing the returns variance. Define the unrestricted parameter vector as θ1 =

(c, ψ, b2, ρ, b1), and the restricted parameter vector as θ0 = (0, ψ, b2, ψ, b2) .

First, we obtain the maximum likelihood estimator of the constrained parameter, θ0, of the

state space system, (1) and (2), at time t. Denote y1 = (y11, y12, . . . , y1t)
′
, y2 = (y21, y22, . . . , y2t)

′
,

h1 = (h11, h12, . . . , h1t)
′
, and h2 = (h21, h22, . . . , h2t)

′
. The likelihood function is expressed as:

f(y) =

∫
f(h,y)dh =

∫
f(y1,y2|h1,h2)f(h2|h1)f(h1)dh1dh2,

where the specified densities f(y1|h1), f(y2|y1,h1,h2), f(h2|h1), and f(h1) are given in the

Appendix.

Second, we derive the score function under the alternative hypothesis, and evaluate it under

the null hypothesis. Denote:

y1:t = (y11, y12, . . . , y1t, y21, y22, . . . , y2t)
′
, yt = (y1,y2), ft = f(yt),

and the score function as:

∂ log ft
∂θ1

=

(
∂ log ft
∂c

,
∂ log ft
∂ψ

,
∂ log ft
∂b2

,
∂ log ft
∂ρ

,
∂ log ft
∂b1

)
.

Note that log f(yt|y1:t−1) = log f(y1:t)− log f(y1:t−1). Define the conditional score function as:

Qt =
∂ log f(yt|y1:t−1)

∂θ
′
1

=
∂ log f(y1:t)

∂θ
′
1

−
∂ log f(y1:t−1)

∂θ
′
1

.

The Fisher information matrix can be expressed as:

I(θ) =
1

T

T∑
t=1

QtQ
′

t,
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and the full information score function is given as:

U(θ) =
1

T

T∑
t=1

Qt =
1

T

∂ log f(y1:T )

∂θ
′
1

,

which is evatulated at θ1 = θ.Then we have the following proposition:

Proposition: Define the LM test statistic as:

LM = TU ′
(θ̂0)I(θ̂0)

−1U(θ̂0)
L−→ χ2(3),

where θ̂0 is the maximum likelihood estimator of θ0 under the null hypothesis. The asymptotic

χ2-distribution has three degrees of freedom corresponding to the three restrictions under the

null hypothesis.

As
∂ log f(y1:t)

∂θ
′
1

=
1

f(y1:t)

∂f(y1:t)

∂θ
′
1

, we focus on how to obtain
∂f(y1:t)

∂θ
′
1

. A problem is that

the score function derived in the usual way diverges as the parameter c approaches 0. In order

to solve this singularity, we use the method proposed in Chesher (1984). Denote y1:t as y. The

score functions with respect to each parameter under the null hypothesis are given below:

∂ log f(y)

∂c
|H0 = trEh1|y(Jt),

∂ log f(y)

∂ψ
|H0 =

1

2
11×tV

1/2
ρ ZρEh1|y[h1]−

1

2
tr
[
Y2V

1/2
ρ ZρEh1|y[h1 exp(−h

′

1)]
]
,

∂ log f(y)

∂b2
|H0 = − 1

2b1
11×tEh1|y [h1] +

1

2b1
tr
[
y2′

2 Eh1|y [exp(−h1) ◦ h1]
]
,

∂ log f(y)

∂ρ
|H0 = −∂ log f(y)

∂ψ
|H0 +

[
− ρ

1− ρ2
− 1

2
b−21 tr

(
∂V−1ρ
∂ρ

Eh1|y

(
h1h

′

1

))]
,

∂ log f(y)

∂b1
|H0 = −∂ log f(y)

∂b2
|H0 −

t

b1
+

1

b31
tr
(
V−1ρ Eh1|y

(
h1h

′

1

))
,

where

Jt =
1

8
{−2× 11×tVρY2 exp(−h1) + 1t×tVρ

+ VρY2 exp(−h1) exp(−h
′

1)Y2 − 2VρY2H
−1
1

}
.

Further details are given in the Appendix.

5 Monte Carlo Experiments

In order to confirm that the proposed new test statistic is asymptotically distributed as χ2(3)

under the null, and whether it has power to reject a false null hypothesis, we conduct two

Monte Carlo experiments, as given below.
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5.1 Asymptotic distribution

This experiment is to generate samples drawn under the null hypothesis, H0, calculates the

new test statistic, and obtains the empirical distribution of the test statistic.

In this test, the significance level corresponds to the probability of the rejection region for the

upper-tailed distribution of χ2(3), so the experiment calculates the rejection rate that is larger

than the theoretical critical value. Using the calculated statistics, we obtain the empirical

distribution of the statistic and use kernel estimation or a simple histogram to show that it

follows the asymptotic χ2(3) distribution.

First, we generate samples drawn from different null hypotheses, particularly for different values

of the parameter, ψ, which is the autocorrelation coefficient of the state variable. The rejection

rates correspond to different critical values, and are shown in Table 1. The parameter vector,

θ, follows the same definition as in the previous section, namely θ0 = (0, ψ, b2, ψ, b2). As the

time length T increases, the rejection rate converges to the theoretical significance level.

Table 1: Rejection rates under the null hypothesis

Sampling from H0 Rejection rates

c ψ b2 ψ b2
T=100 T=200 T=500

5% 1% 5% 1% 5% 1%

0 0.7 1 0.7 1 10.2% 4.3% 8.3% 2.7% 7.1% 1.3%

0 0.9 1 0.9 1 21.0% 9.5% 13.1% 4.8% 6.3% 1.7%

0 0.95 0.45 0.95 0.45 22.5% 10.2% 14.7% 5.6% 7.4% 1.6%

From the table, we can see that the rejection rate converges sufficiently well when the time

length is 500, which suggests that we should use data with at least 500 observations in practice.

The histogram of the samples statistics obtained when T = 500 is given in the Appendix.

5.2 Statistical power

In comparison with the previous experiments, we generate data drawn from the alternative

hypothesis, H1, and calculate the rejection rates to see whether the statistic has power to reject

a false null hypothesis. The parameter vector under H1 shifts from the parameter vector under

H0. The Monte Carlo results are shown in Table 2, where the vector of parameters under the

null hypothesis is given as θ0 = (0, 0.7, 0.32, 0.7, 0.32).

Given the accurate finite sample rejection rates, it was felt reasonable to perform the Monte

Carlo simulations only 100 times.
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Table 2: Rejection rates under the alternative hypothesis

Sampling from H1 Rejection rates

c ψ b2 ρ b1
T=500

5% 1%

0.32 0.7 0.32 0.7 0.32 28% 13%

0.45 0.7 0.32 0.7 0.32 72% 43%

0 0.7 0.25 0.7 0.32 24% 7%

0 0.7 0.19 0.7 0.32 51% 28%

0 0.5 0.32 0.7 0.32 14% 7%

0 0.9 0.32 0.7 0.32 86% 72%

6 Empirical Analysis

6.1 Data adjustment

Before using the LM test statistic, it is worth recalling that the error terms (e1t, e2t) in the

measurement equation are mutually independent. However, as the usual situation is that they

are contemporaneously correlated, we need to adjust the data to eliminate the correlation

between y1t and y2t. Instead of using the original data, y1t and y2t, we use a linear combination

of y1t and y2t. A similar approach is used in Engle and Kozicki (1993). We illustrate the reason

with the linear transformations, as follows.

First, under the null hypothesis, the measurement equation can be written simply as:(
y

′′
1t

y
′′
2t

)
= exp

(
h1
2

)(
a1 0

a2 a2

)(
e1t

e2t

)
.

It is easy to see that any linear operator applied to (y
′′
1t, y

′′
2t) does not change the state part,

exp(h1
2

), of the equation. If the null hypothesis is true, with linear transformation, we only alter

the structure of the measurement noise, and the state part exp(h1
2

) remains the same after the

data adjustment.

Second, if the original data are drawn under the alternative hypothesis:(
y

′′
1t

y
′′
2t

)
=

(
exp(h1

2
) 0

0 exp(h2
2

)

)(
a1 0

a2 a3

)(
e1t

e2t

)
, (4)

then any linear transformation between (y
′′
1t, y

′′
2t) will retain the two “features” exp(hi

2
), i = 1, 2,

where the word “feature” is used in Engle and Kozicki (1993).
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Finally, any linear combination between (y
′′
1t, y

′′
2t) has its own significant meaning in empirical

finance. Notice that the original data, (y
′′
1t, y

′′
2t), denote the difference in the log-price, namely

the financial returns of the assets:

y
′′

1t = log(p1t)− log(p1t−1),

y
′′

2t = log(p2t)− log(p2t−1).

For example, consider two assets, S&P 500 and Nikkei 225, for which the linear combination

of the return is the returns on the portfolio which shares the weights between S&P 500 and

Nikkei 225. In this situation, we can also use the model to analyse two new assets which always

contain two “features”, which makes our test statistic useful for empirical analysis.

We need two steps to adjust the data, which are given as:(
y1t

y2t

)
= a−10

(
y

′
1t

y
′
2t

)
= a−10 Λ−

1
2

(
y

′′
1t

y
′′
2t

)
, (5)

where estimation of Λ and a0 are given by:

Λ̂ =
1

T

( ∑
y

′′2
1t

∑
y

′′
1ty

′′
2t∑

y
′′
1ty

′′
2t

∑
y

′′2
2t

)
, (6)

â0 =

(
exp

{[
1
T

(∑
log y

′2
1t

)
+ 1.27

]
/2
}

0

0 exp
{[

1
T

(∑
log y

′2
2t

)
+ 1.27

]
/2
} ) . (7)

If:

a−10 Λ−
1
2

p→

(
a1 0

a2 a3

)−1
, (8)

we can obtain a new data set, (y1t, y2t), that has the same distribution compared with the

model that is used in the new test statistic, with the same asymptotic null distribution. Further

adjustments are shown in the Appendix.

6.2 Empirical result

Using the proposed new statistical test in the previous section, we examine the relationship

between different stock markets, and also investigate the exchange rate movements over different

time periods.

6.2.1 Analysis of stock markets

First, we investigate whether there exists a common factor of volatility between different stock

market indices. The data we use for analysis come from Yahoo finance, and we use the Adjusted-

Close price pt. The stock market indices list is given below.
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Table 3: Stock market indices

Index number Stock Market Symbol Country/Region

1 Dow Jones Industrial Average DOW United State

2 FTSE Index FTSE Unite Kingdom

3 DAX Index DAX Germany

4 Shanghai Composite Index SSCI China

5 Nikkei 225 Stock Average Index NIKKEI Japan

6 Hang Seng Index HSI Hong Kong

7 Straits Times Index STI Singapore

8 All Ordinaries Index AORD Australia

We obtained daily data from 1 January 2011 to 30 December 2014 and separated them

into two sets to check the performance in different years. The test needs a combination of two

indices, so there are 28 pairs. We excluded data whenever there were closed-market days in

one market, such as holidays.

The data adjustment follows the two steps given in the previous section. The parameter

estimates are shown in the Appendix as Tables 9,10,11,12, and the test outcomes for different

pairs are shown in Tables 4 and 5.

Table 4: LM statistics between markets from 2011 to 2012

HHH
HHH

HH
y1

y2
DOW FTSE DAX SSCI NIKKEI HSI STI AORD

DOW 9.1* 9.19* 21.48** 24.22** 5 10.44* 4.07

FTSE 5.14 1.39 20.33** 25.33** 3.66 3.74 1.07

DAX 5.96 8.7* 17.84** 30.19** 2.52 6.22 6.82

SSCI 21.07** 7.63 15.72** 18.07** 4.7 7.92* 8.46*

NIKKEI 22.15** 8.88* 29.5** 15.23** 2.34 10.23* 5.22

HSI 4.9 2.73 5.88 4.14 40.52** 2.87 4.69

STI 7.69 2.99 7.03 3.17 34.31** 18.12** 1.98

AORD 2.46 5.56 12.88** 5.19 69.35** 15.88** 2.68

Note: * significant at 5% level, ** significant at 1% level.

As can be seen from the tables, even for different time periods, the group that contains the

FTSE, STI and AORD stock markets share the same volatility factor. Stock markets in the
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Table 5: LM statistics between markets from 2013 to 2014

HH
HHH

HHH
y1

y2
DOW FTSE DAX SSCI NIKKEI HSI STI AORD

DOW 0.39 8.05* 11.83** 15.43** 9.24* 4.97 5.21

FTSE 15.79** 9.9* 2.28 4.76 4.17 1.92 2.68

DAX 4.34 7.52 10.64* 21.47** 3.31 7.83* 10.22*

SSCI 11.53** 2.14 10.72* 3.39 12.84** 3.79 6.11

NIKKEI 15.05** 5.68 25.2** 2.58 9.92* 9.78* 9.88*

HSI 7.88* 1.54 7.13 7.47 12.39** 19.45** 2.58

STI 11.42** 1.91 23.23** 7.08 7.13 8.32* 1.63

AORD 6.11 0.8 8.03* 2.31 5.71 3.99 4.13

Note: * significant at 5% level, ** significant at 1% level.

Asian region (such as China and Japan) appear to have a unique factor compared with other

regions during 2011 and 2012. However, in 2013 and 2014, there appear to be more groups that

share the same factor, namely:

Group 1 : FTSE, SSCI, NIKKEI

Group 2 : FTSE, HSI, AORD

Group 2 : FTSE, STI, AORD

6.2.2 Analysis of exchange rates

We also use foreign exchange rates to evaluate the performance during extreme situations,

especially when volatility is higher than usual. Comparing the performance for two time periods,

namely the global financial crisis and normal times, we focus on the rates that are aggregated

from the table instead of a single result between only two currency pairs.

First, we define two time periods representing the financial crisis and normal times. We use

the Chicago Board Options Exchange (CBOE) Volatility Index (VIX) as an indicator to detect

when volatility is high. It is easy to see that volatility changed from the historical chart (see

Figures 1 and 2). We choose Period 1: Oct/1/2008 ∼ Oct/31/2008 as the financial crisis, and

Period 2: Oct/1/2012 ∼ Oct/31/2012 as normal times.
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Figure 1: VIX during global financial crisis (2008)
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Oct/1/2008~Oct/31/2008

Note: VIX data are downloaded from Yahoo Finance.

Figure 2: VIX during normal times (2012)
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Oct/1/2012~Oct/31/2012

Note: VIX data are downloaded from Yahoo Finance.

Second, we use 6 major currency pairs that are traded widely. The pairs used are listed in

Table 6, and all contain USD, so that all currencies are priced in USD.

We obtained hourly data for a month, which means roughly 500 data series. The estimated

parameters are listed in the Appendix as Tables 13,14,15,16, and the statistical results are
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Table 6: Currency Pairs list

Currency Pairs EUR/USD USD/JPY GBP/USD AUD/USD USD/CHF USD/CAD

shown in Tables 7 and 8.

Table 7: LM statistics for exchange rates during Period 1

H
HHH

HHHH
y1

y2
EURUSD USDJPY GBPUSD AUDUSD USDCHF USDCAD

EURUSD 23.73** 12.06** 34.09** 10.43* 17.89**

USDJPY 35.45** 17.28** 15.62** 28.23** 54.5**

GBPUSD 14.49** 14.34** 53.78** 18.74** 22.03**

AUDUSD 37.32** 33.16** 30.01** 25.47** 28.3**

USDCHF 24.47** 33.96** 43.9** 39.49** 23.63**

USDCAD 18.31** 37.44** 15.14** 19.02** 14.64**

Note: * significant at 5% level, ** significant at 1% level. The exchange rate is downloaded

from FXDD’s historical data.

Table 8: LM statistics for exchange rates during Period 2

HH
HHH

HHH
y1

y2
EURUSD USDJPY GBPUSD AUDUSD USDCHF USDCAD

EURUSD 11.27* 5.17 7.56 6.61 25.69**

USDJPY 15.88** 28.67** 12.97** 16.73** 14.86**

GBPUSD 2.15 23.74** 20.35** 5.39 8.38*

AUDUSD 28.07** 18.32** 26.51** 14.97** 22.86**

USDCHF 3.22 9.53* 4.64 6.9 17.66**

USDCAD 5.5 6.47 4.83 5.82 4.41

Note: * significant at 5% level, ** significant at 1% level. The exchange rate is downloaded

from FXDD’s historical data.

As can be seen from Tables 7 and 8, during the financial crisis volatility is larger than usual,

so it is difficult to find a single asset to hedge volatility. The accepted rate is given as 0 in

14



Table 7. Conversely, it is easy to find currency pairs that potentially share the same volatility

factor during normal times. The accepted rate is given as 43.3% in Table 8.
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7 Conclusion

In this paper, we considered whether financial returns has a common volatility process in the

framework of stochastic volatility models, and proposed a Lagrange Multiplier test statistic for

the null hypothesis that the volatility changes of a bivariate series are perfectly correlated. It

is useful in investigating the correlation between different markets, even for frictionless cross-

market hedging.

In the empirical analysis of stock markets, we found some groups that potentially share

common time-varying volatility, especially markets for the United Kingdom, Singapore and

Australia. We also investigated the correlations between different major currencies when big

events, such as financial crises, occurred. The empirical analysis suggested that, during high

volatility periods, it is more difficult to find a common factor between currencies, compared

with low volatility periods, so that it is harder to hedge with different currencies.

However, the approach adopted in the paper it is the simplest case of a multiple stochastic

volatility model. The extension to a multi-factor model, even stochastic volatility with a fat-

tailed distribution of the test, is left for further research.
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Appendices

A Likelihood Function

In order to express the transition equation (2) in matrix form, we express the log volatilities

and disturbance terms used in (1) and (2) in vector form, as follows:

h1 = (h11, . . . , h1t)
′, h2 = (h21, . . . , h2t)

′, (9)

u1 = (u11, . . . , u1t)
′, u2 = (u21, . . . , u2t)

′, (10)

e1 = (e11, . . . , e1t)
′, e2 = (e21, . . . , e2t)

′. (11)

Then the transition equation (2) is expressed as:

h1 = V1/2
ρ (b1u1), h2 = V

1/2
ψ (b2u1 +

√
cu2) = V

1/2
ψ (V−1/2ρ h1b2/b1 +

√
cu2), (12)

where Vρ and Vψ are the covariance matrices of the autoregressive processes of order one, h1

and h2, respectively, and V1/2
ρ and V

1/2
ψ are defined by their Cholesky decomposition:

Vρ = (V1/2
ρ )(V1/2

ρ )′, Vψ = (V
1/2
ψ )(V

1/2
ψ )′,

where

V
1/2
ψ =



1/
√

1− ψ2 0 . . . 0 0

ψ/
√

1− ψ2 1 . . . 0 0

ψ2/
√

1− ψ2 ψ . . . 0 0
...

ψn−1/
√

1− ψ2 ψn−2 . . . ψ 1


, V1/2

ρ =



1/
√

1− ρ2 0 . . . 0 0

ρ/
√

1− ρ2 1 . . . 0 0

ρ2/
√

1− ρ2 ρ . . . 0 0
...

ρn−1/
√

1− ρ2 ρn−2 . . . ρ 1


,

(13)

It is easy to see that their inverses are decomposed as Vψ
−1 = (V

− 1
2

ψ )′V
− 1

2
ψ , Vρ

−1 = (V
− 1

2
ρ )′V

− 1
2

ρ ,

where:

V
− 1

2
ψ =



√
1− ψ2 0 . . . 0 0

−ψ 1 . . . 0 0

0 −ψ . . . 0 0

0 0 . . . 0 0
...

0 0 . . . −ψ 1


, V

− 1
2

ρ =



√
1− ρ2 0 . . . 0 0

−ρ 1 . . . 0 0

0 −ρ . . . 0 0

0 0 . . . 0 0
...

0 0 . . . −ρ 1


. (14)
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Then the density functions of the transition and measurement equations of the model can

be expressed as:

f(h1) =
1

(2π)
t
2

∣∣∣V1/2
ρ

∣∣∣ bt1 exp

(
−1

2
b−21 h

′

1V
−1
ρ h1

)
, (15)

f(h2|h1) =
1

(2π)
t
2

∣∣∣V1/2
ψ

∣∣∣ (√c)t exp

(
−1

2
u

′

2u2

)
, (16)

f(y1|h1) =
1

(2π)
t
2

1∣∣∣H1/2
1

∣∣∣ exp

(
−1

2
y

′

1H
−1
1 y1

)
, (17)

f(y2|h2) =
1

(2π)
t
2

1∣∣∣H1/2
2

∣∣∣ exp

(
−1

2
y

′

2H
−1
2 y2

)
, (18)

where

u2 =

(
V
− 1

2
ψ h2 −V

− 1
2

ρ h1
b2
b1

)
/
√
c, (19)

H1 = diag(exp(h11), . . . , exp(h1t)), H2 = diag(exp(h21), . . . , exp(h2t)). (20)

Then we can rewrite the likelihood function, given by:

f(y1,y2) =

∫
f(y2|h2)f(y1|h1)f(h2|h1)f(h1)dh2dh1, (21)

as

f(y1, y2) =

∫
f(y2|u2,h1)f(y1|h1)f(u2|h1)f(h1)du2dh1, (22)

where

f(u2|h1) =
1

(2π)
t
2

exp

(
−1

2
u

′

2u2

)
, (23)

in terms of u2, instead of h2, by the variable transformation given in (19).

B Score function with respect to c

We obtain the score function with respct to c from (22) as:

∂f(y)

∂c
=

∫
∂f(y2|u2,h1)

∂c
f(y1|h1)f(u2|h1)f(h1)du2dh1, (24)

as the variance parameter c appears only in:

f(y2|h1,u2) =
1

(2π)
t
2

1∣∣∣H1/2
2

∣∣∣ exp

(
−1

2
y

′

2H
−1
2 y2

)
through h2 in H2 = diag(exp(h2)) because, from (12), we have:

h2 = V
− 1

2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)
. (25)
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Then we obtain the derivative of f(y2|h1,u2, ) with respect to c, as follows. First, noting

(25), we define:

f(y2|h1,u2, ) = DtFt, (26)

where

Dt =
1

|H2|1/2
= exp

(
−1

2
11×th2

)
= exp

(
−1

2
11×tV

1/2
ψ

(√
cu2 + V

− 1
2

ψ

b2
b1

h1

))
, (27)

Ft = exp

(
−1

2
y

′

2H
−1
2 y2

)
= exp

{
−1

2
( exp(−h2))

′y2
2

}
, (28)

and, for notational convenience, we define:

exp(−h2) = (exp(−h21), . . . , exp(−h2t))′, y2
2 = (y221, y

2
22, . . . , y

2
2t)
′,

and h2 denotes a function of u2 as the abbreviation of equation (25).

Then, from (24), we have:

Bt = lim
c→0

∂f(y)

∂c
(29)

= lim
c→0

∫
(other terms)(Ft

∂Dt

∂c
+Dt

∂Ft
∂c

)du2dh1 (30)

= lim
c→0

√
c
∫

(other terms)(Ft M1t +Dt M2t)du2dh1

c
, (31)

where we define:

M1t =
∂Dt

∂c

1√
c
, M2t =

∂Ft
∂c

1√
c
. (32)

We need
√
c in the denominator of (32) as:

∂Dt

∂c
= −1

2
Dt

1

2
√
c
11×tV

1/2
ψ u2 (33)

= − 1

4
√
c
Dt 11×tV

1/2
ψ u2, (34)

∂Ft
∂c

= −1

2
Ft

(
∂

∂c
exp(−h

′

2)y
2
2

)
(35)

= −1

2
Ft

(
− 1

2
√
c
u

′

2V
1/2
ψ

′

H−12 y2
2

)
(36)

=
1

4
√
c
Ft Gt, (37)

Gt = u
′

2V
1/2
ψ

′

H−12 y2
2, (38)
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as

∂h2

∂c
=

1

2
√
c
V

1/2
ψ u2,

∂ exp(−h2)

∂c
= − 1

2
√
c
H−12 V

1/2
ψ u2.

Note that the denominators of the derivatives (34) and (37) contain c, which converges to zero,

and hence is intractable by conventional methods. It is convenient to use the method proposed

by Chesher (1984). First, applying L’Hopital’s rule to (31) with respect to c , we obtain:

Bt =
1

2
Bt + lim

c→0

√
c
∂

∂c

∫
(other terms)(Ft M1t +Dt M2t)du2dh1. (39)

Comparing both sides of equation (39), we have:

Bt = 2 lim
c→0

√
c

∫
(other terms)

(
∂Ft
∂c

M1t +
∂Dt

∂c
M2t + Ft

∂M1t

∂c
+Dt

∂M2t

∂c

)
du2dh1 (40)

= 2 lim
c→0

√
c

∫
(other terms)

(
2M1t M2t + Ft

∂M1t

∂c
+Dt

∂M2t

∂c

)
du2dh1. (41)

Defining Y2 = diag(y2
2), the terms in the integrand can be expressed as follows:

M1t M2t =
√
c
∂Dt

∂c

√
c
∂Ft
∂c

=

(
−1

4
Dt 11×tV

1/2
ψ u2

)(
1

4
Ft u

′

2V
1/2
ψ

′

Y2 exp(−h2)

)
=− 1

16
DtFt

(
11×tV

1/2
ψ u2u

′

2V
1/2
ψ

′

Y2 exp(−h2)

)
,

∂M1t

∂c
=− 1

4

∂Dt

∂c
11×tV

1/2
ψ u2

=− 1

4

(
−
√
c

4c

)
Dt 11×tV

1/2
ψ u2u

′

2V
1/2
ψ

′

1t×1

=
1

16
√
c
Dt tr

(
11×tV

1/2
ψ u2u

′

2V
1/2
ψ

′

1t×1

)
=

1

16
√
c
Dt tr(1t×tV

1/2
ψ u2u

′

2V
1/2
ψ

′

),

∂M2t

∂c
=

1

4

∂Ft
∂c

Gt +
1

4
Ft
∂Gt

∂c

=
1

16
√
c
FtG

2
t +

1

4
Ft
∂Gt

∂c
,

∂Gt

∂c
=u

′

2V
1/2
ψ

′

Y2
∂ exp(−h2)

∂c

=− 1

2
√
c
u

′

2V
1/2
ψ

′

Y2H
−1
2 V

1/2
ψ u2

=− 1

2
√
c
tr

(
u

′

2V
1/2
ψ

′

Y2H
−1
2 V

1/2
ψ u2

)
=− 1

2
√
c
tr

(
V

1/2
ψ

′

Y2H
−1
2 V

1/2
ψ u2u

′

2

)
,
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G2
t =u

′

2V
1/2
ψ

′

Y2 exp(−h2) exp(−h
′

2)Y2V
1/2
ψ u2

=tr

(
u

′

2V
1/2
ψ

′

Y2 exp(−h2) exp(−h
′

2)Y2V
1/2
ψ u2

)
=tr

(
V

1/2
ψ

′

Y2 exp(−h2) exp(−h
′

2)Y2V
1/2
ψ u2u

′

2

)
.

Then we have:

Bt =
1

8
lim
c→0

∫
f(y1|h1)

1

(2π)
t
2

DtFt{
−2tr

(
11×tV

1/2
ψ u2u

′

2V
1/2
ψ

′

Y2 exp(−h2)

)
+ tr

(
1t×tV

1/2
ψ u2u

′

2V
1/2
ψ

′
)

+ tr

(
V

1/2
ψ

′

Y2 exp(−h2) exp(−h
′

2)Y2V
1/2
ψ u2u

′

2

)
− 2tr

(
V

1/2
ψ

′

Y2H
−1
2 V

1/2
ψ u2u

′

2

)}
f(u2|h1)f(h1)du2dh1. (42)

We can perform the integration with respect to u2 in (42) analytically. As u2|h1 follows the

t-dimensitonal standard normal distribution:∫
u2u

′

2f(u2|h1)du2 = It, (43)

under the null hypothesis h2 = h1 and ψ = ρ, equation (42) is expressed as:

Bt =
1

8

∫
f(y1|h1)

1

(2π)
t
2

DtFt{
−2tr

(
11×tV

1/2
ρ V1/2

ρ

′

Y2 exp(−h1)
)

+ tr
(
1t×tV

1/2
ρ V1/2

ρ

′)
+ tr

(
V1/2
ρ

′

Y2 exp(−h1) exp(−h
′

1)Y2V
1/2
ρ

)
− 2tr

(
V1/2
ρ

′

Y2H
−1
1 V1/2

ρ

)}
f(h1)dh1. (44)

Noting that Vρ = V1/2
ρ V1/2

ρ

′

, and applying the cyclic property of the trace operator to

simplify equation (44), we have:

Bt =
∂f(y)

∂c

∣∣∣∣
H0

=

∫
trJtf(y,h1)dh1, (45)

where

Jt =
1

8
{−2× 11×tVρY2 exp(−h1) + 1t×tVρ (46)

+ VρY2 exp(−h1) exp(−h
′

1)Y2 − 2VρY2H
−1
1

}
. (47)
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It follows that:

∂ log f(y)

∂c

∣∣∣∣
H0

= lim
c→0

1

f(y)

∂f(y)

∂c
(48)

=

∫
trJt

1

f(y)
f(h1,y)dh1 (49)

= tr

∫
Jtf(h1|y)dh1 (50)

= trEh1|y(Jt), (51)

as f(h1|y) = f(h1,y)/f(y). From (46), we have only to evaluate Eh1|y [exp(−h1)] and

Eh1|y

[
exp(−h1) exp(−h1)

′
]

to obtain the score function with respect to ψ. These expected values have no analytic expres-

sions, so that they will need to be evaluated numerically.

C Score function with respect to ψ

In the log-likelihood function, ψ appears only in f(y1|h1,u2) = DtFt, as shown in (22) and

(26). The partial derivative of the likelihood with respect to ψ can be expressed as :

∂f(y)

∂ψ
=

∫ (
∂Dt

∂ψ
D−1t +

∂Ft
∂ψ

F−1t

)
f(y,u2,h1)du2dh1 (52)

=

∫ (
∂Dt

∂ψ
D−1t +

∂Ft
∂ψ

F−1t

)
f(y,h1)dh1, (53)

since, as will be seen later, u2 can be integrated out in
(
∂Dt
∂ψ
D−1t + ∂Ft

∂ψ
F−1t

)
. Then we have:

∂ log f(y)

∂ψ

∣∣∣
H0

=

∫ (
∂Dt

∂ψ
D−1t +

∂Ft
∂ψ

F−1t

)
f(h1|y)dh1 = Eh1|y

(
∂Dt

∂ψ
D−1t +

∂Ft
∂ψ

F−1t

)
, (54)

as

f(h1|y) = f(h1,y)/f(y).

First, using the formula:

∂V
1/2
ψ

∂ψ
= −V

1/2
ψ ZψV

1/2
ψ , (55)

where

Zψ =
∂V

−1/2
ψ

∂ψ
,
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note that

∂Dt

∂ψ
= −1

2
Dt

[
11×t

∂V
1/2
ψ

∂ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)]
(56)

=
1

2
Dt

[
11×tV

1/2
ψ ZψV

1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)]
, (57)

∂Ft
∂ψ

= −1

2
Ft

∂

∂ψ

[
y2′

2 exp(−h2)
]

(58)

=
1

2
Ft

[
y2′

2 H−12

∂V
1/2
ψ

∂ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)]
(59)

= −1

2
Ft

[
y2′

2 H−12 V
1/2
ψ ZψV

1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)]
, (60)

as we have:

h2 = V
1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)
, (61)

so that:
∂

∂ψ
h2 =

∂V
1/2
ψ

∂ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)
, (62)

Dt = exp

(
−1

2
11×tV

1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

))
,

Ft = exp

{
−1

2
( exp(−h2))

′y2
2

}
.

We have used−V
1/2
ψ ZψV

1/2
ψ rather than

∂V
1/2
ψ

∂ψ
because it is easy to generate computationally.

Evaluating each term under the null hypothesis c = 0 and b1 = b2, we have:

∂Dt

∂ψ
|H0 =

1

2
Dt11×tV

1/2
ψ Zψh1, (63)

∂Ft
∂ψ
|H0 = −1

2
Ft y2′

2 H−11 V
1/2
ψ Zψh1 (64)

= −1

2
Ft tr

[
exp(−h

′

1)Y2V
1/2
ψ Zψh1

]
(65)

= −1

2
Ft tr

[
Y2V

1/2
ψ Zψh1 exp(−h

′

1)
]
,

using the identity:

y2′

2 H−11 = exp(−h
′

1)Y2.

From (54), we have:

∂ log f(y)

∂ψ

∣∣∣∣
H0

=
1

2
× 11×tV

1/2
ρ ZρEh1|y[h1]−

1

2
tr
[
Y2V

1/2
ρ ZρEh1|y[h1 exp(−h

′

1)]
]
. (66)

Note that the matrix Y2V
1/2
ρ Zρ is lower triangular, and we have only to calculate the upper

triangular part of the matrix Eh1|y[h1 exp(−h
′

1)] in evaluating the score function (66).
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D Score function with respect to b2

First, note that, in the log-likelihood function, b2 appears only in f(y2|h1,u2) = DtFt, through:

h2 = V
1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

)
, (67)

as shown in (22) and (26). Then we have the formula:

∂ log f(y)

∂b2
= Eu2,h1|y

(
∂Dt

∂b2
D−1t +

∂Ft
∂b2

F−1t

)
, (68)

using:

∂f(y)

∂b2
=

∫
(y1|h1)

∂f(y2|h1,u2)

∂b2
f(h1)f(u2|h1)du2h1 =

∫ (
∂Dt

∂b2
D−1t +

∂Ft
∂b2

F−1t

)
f(y,h1)dh1,

as we have:

∂f(y2|h1,u2)

∂b2
=
∂Dt

∂b2
Ft +Dt

∂Ft
∂b2

=

(
∂Dt

∂b2
D−1t +

∂Ft
∂b2

F−1t

)
f(y2|h1,u2). (69)

The partial derivatives of Dt and Ft are:

∂Dt

∂b2
= −1

2
Dt11×tV

1/2
ψ

(
V
− 1

2
ρ

1

b1
h1

)
, (70)

∂Ft
∂b2

= −1

2
Ft

∂

∂b2

[
y2′

2 exp(−h2)
]

(71)

=
1

2
Ft tr

[
y2′

2 H2V
1/2
ψ

(
V
− 1

2
ρ

1

b1
h1

)]
. (72)

Note that, under the null hypothesis, ρ = ψ,h1 = h2, and Vρ = Vψ, so that we have:

∂Dt

∂b2

∣∣∣∣
H0

= −1

2
Dt11×t

1

b1
h1, (73)

∂Ft
∂b2

∣∣∣∣
H0

= −1

2
Ft

∂

∂b2
y2′

2 exp(−h2)
∣∣∣
H0

, (74)

=
1

2
Ft tr

[
y2′

2 H2
1

b1
h1

] ∣∣∣
H0

, (75)

as
∂

∂b2
exp(−h2) = −H−12 b2/b1.

Then we have:

∂ log f(y)

∂b2
|H0 = − 1

2b1
11×tEh1|y [h1] +

1

2b1
tr
[
y2′

2 Eh1|y [exp(−h1) ◦ h1]
]
, (76)

where ◦ denotes the Hadamard (or element-by-element) product.
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E Score function with respect to ρ

In the log-likelihood function, ρ appears only in f(y1|h1,u2) = DtFt and f(h1), as shown in

(15) and (26). Then we have the derivative using the formula:

∂ log f(y)

∂ρ

∣∣∣
H0

= Eh1|y

(
∂Dt

∂ρ
D−1t +

∂Ft
∂ρ

F−1t +
∂f(h1)

∂ρ
f(h1)

−1
)
, (77)

analogously to that of (54). As:

Dt = exp

(
−1

2
11×tV

1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

))
, (78)

Ft = exp

(
−1

2
exp(−h

′

2)y
2
2

)
, (79)

f(h1) =
1

(2π)
t
2

∣∣∣V1/2
ρ

∣∣∣ bt1 exp

(
−1

2
b−21 h

′

1V
−1
ρ h1

)
, (80)

defining

Zρ =
∂V−1/2ρ

∂ρ
, (81)

their derivatives are expressed as:

∂Dt

∂ρ
= −1

2
Dt

[
11×tV

1/2
ψ Zρ

b2
b1

h1

]
, (82)

∂Ft
∂ρ

=
1

2
Ft

[
y2′

2 H−11 V
1/2
ψ Zρ

b2
b1

h1

]
, (83)

∂f(h1)

∂ρ
= f(h1)

[
− ρ

1− ρ2
− 1

2
b−21 tr

(
h

′

1

∂V−1ρ
∂ρ

h1

)]

= f(h1)

[
− ρ

1− ρ2
− 1

2
b−21 tr

(
∂V−1ρ
∂ρ

h1h
′

1

)]
. (84)

We have used (∂/∂ρ)
∣∣∣V1/2

ρ

∣∣∣ = 1/
√

1− ρ2 in deriving the first term of equation (84).

Noting that exp(−h1
′)Y2 = (y2

2)
′H−11 under the null hypothesis, the above can be expressed

as:

∂Dt

∂ρ
|H0 = −1

2
Dt

[
11×tV

1/2
ρ Zρ

b2
b1

h1

]
(85)

= −∂Dt

∂ψ
|H0 , (86)

∂Ft
∂ρ
|H0 = −1

2
Ft tr

[
Y2V

1/2
ρ Zρ

b2
b1

h1 exp(−h
′

1)

]
(87)

= −∂Ft
∂ψ
|H0 . (88)
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The score function with respect to ρ can be expressed as:

∂ log f(y)

∂ρ
|H0 = −∂ log f(y)

∂ψ
|H0 −

ρ

1− ρ2
− 1

2
b−21 tr

(
∂V−1ρ
∂ρ

Eh1|y

(
h1h

′

1

))
. (89)

F Score function with respect to standard deviation b1

In the likelihood function, b1 appears only in:

Dt = exp

(
−1

2
11×tV

1/2
ψ

(√
cu2 + V

− 1
2

ρ
b2
b1

h1

))
, (90)

Ft = exp

(
−1

2
exp(−h

′

2)y
2
2

)
, (91)

f(h1) =
1

(2π)
t
2

∣∣∣V1/2
ρ

∣∣∣ bt1 exp

(
−1

2
b−21 h

′

1V
−1
ρ h1

)
. (92)

Then we can derive the score function with respect to b1 using the formula analogous to that

of ρ given in (77), with ρ replaced by b1. We can easily show from (27) and(28) that, under

the null hypothesis b2 = b1, the derivatives of Dt and Ft with respect to b1 are equal to the

negative of the derivatives with respect to b2 , namely:

∂Dt

∂b1
|H0 = −∂Dt

∂b2
|H0 , (93)

∂Ft
∂b1
|H0 = −∂Ft

∂b2
|H0 , (94)

so that no additional calculations are necessary. From (15), the derivative of f(h1) can be

expressed as:

∂f(h1)

∂b1
= f(h1)

[
− t

b1
+

1

b31
tr
(
h

′

1V
−1
ρ h1

)]
(95)

= f(h1)

[
− t

b1
+

1

b31
tr
(
V−1ρ h1h

′

1

)]
. (96)

Using the formula:

∂ log f(y)

∂b1

∣∣∣
H0

= Eh1|y

(
∂Dt

∂b1
D−1t +

∂Ft
∂b1

F−1t +
∂f(h1)

∂b1
f(h1)

−1
)
, (97)

where the derivation is analogous to that of (77), and comparing it with the formula (68), we

have:

∂ log f(y)

∂b1
|H0 = −∂ log f(y)

∂b2
|H0 −

t

b1
+

1

b31
tr
(
V−1ρ Eh1|y

(
h1h

′

1

))
. (98)

G Monte Carlo Results

Histogram of LM statistic distribution:
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Figure 3: Histogram of LM statistic for ψ=0.7

Figure 4: Histogram of LM statistic for ψ=0.9
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Figure 5: Histogram of LM statistic for ψ=0.95
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H Data adjustment

The model to which we can apply the statistic test is:(
y

′′
1t

y
′′
2t

)
=

(
exp(h1

2
) 0

0 exp(h2
2

)

)(
a1 0

a2 a3

)(
e1t

e2t

)
. (99)

Adding to the correlation between e1t and e2t we have the measurement equation given as:(
y

′′
1t

y
′′
2t

)
=

(
a1 exp(h1

2
) 0

0 a2 exp(h2
2

)

)(
1 0

λ 1

)(
e1t

e2t

)
, (100)

where e1t and e2t remain independent, and λ represents the correlation coefficient. Owing to

the identification between (a1, a2) and the variance of (e1t, e2t), we set the variance of (e1t, e2t)

equal to 1. Recall that the null hypothesis is h1t = h2t for any t, so that the measurement

equation can be rewritten as:(
y

′′
1t

y
′′
2t

)
= exp

(
h1
2

)(
a1 0

λa2 a2

)(
e1t

e2t

)
, (101)

and the product and moment of (y
′′
1t, y

′′
2t) would be given as:(

y
′′2
1t y

′′
1ty

′′
2t

y
′′
1ty

′′
2t y

′′2
2t

)
= exp(h1)

(
a1 0

λa2 a2

)(
e21t e1te2t

e1te2t e22t

)(
a1 λa2

0 a2

)
, (102)

E

(
y

′′2
1t y

′′
1ty

′′
2t

y
′′
1ty

′′
2t y

′′2
2t

)
= E(exp(h1))

(
a1 0

λa2 a2

)(
a1 λa2

0 a2

)
(103)

= E(exp(h1))

(
a21 λa1a2

λa1a2 a22

)
(104)

≡ Λ, (105)

where Λ is defined as:

Λ = Λ
1
2

(
Λ

1
2

)′
, Λ

1
2 = (E(exp(h1)))

1
2

(
a1 0

λa2 a2

)
. (106)

It follows that:

Λ−
1
2

(
y

′′
1t

y
′′
2t

)
= exp

(
h1
2

)
(E(exp(h1)))

− 1
2

(
e1t

e2t

)
. (107)

At the first adjustment, we define:(
y

′
1t

y
′
2t

)
= Λ−

1
2

(
y

′′
1t

y
′′
2t

)
= a0 exp

(
h1
2

)(
e1t

e2t

)
, (108)
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where

a0 = (E(exp(h1)))
− 1

2 , (109)

and the second adjustment is given as:(
y1t

y2t

)
= a−10

(
y

′
1t

y
′
2t

)
. (110)

Note that: (
log y

′2
1t

log y
′2
2t

)
= 2 log a0 + h1 +

(
log e21t

log e22t

)
, (111)

E

(
log y

′2
1t

log y
′2
2t

)
= 2 log a0 − 1.27, (112)

since E(h1) = 0 and E(log(e2)) = −1.27 approximately, as shown by Harvey et al. (1994).

Therefore, we reach the conclusion:(
y1t

y2t

)
= a−10

(
y

′
1t

y
′
2t

)
= a−10 Λ−

1
2

(
y

′′
1t

y
′′
2t

)
, (113)

where the estimates of Λ and a0 are given as:

Λ̂ =
1

T

( ∑
y

′′2
1t

∑
y

′′
1ty

′′
2t∑

y
′′
1ty

′′
2t

∑
y

′′2
2t

)
, (114)

â0 =

(
exp

{[
1
T

∑
log y

′2
1t + 1.27

]
/2
}

0

0 exp
{[

1
T

∑
log y

′2
2t + 1.27

]
/2
} ) . (115)

Then the adjusted data (y1t, y2t) can be applied to the proposed test.
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I Empirical estimates

Table 9: Empirical estimates between stock markets correspond to b̂ from 2011 to 2012

Stocks DOW FTSE DAX SSCI NIKKEI HSI STI AORD

DOW 0.1711 0.2103 0.147 0.3169 0.1998 0.1819 0.211

FTSE 0.165 0.1605 0.6314 0.2718 0.1879 0.1384 0.1495

DAX 0.199 0.1632 0.1089 0.3065 0.1676 0.1374 0.157

SSCI 0.1464 0.1016 0.1043 0.6901 0.7408 0.7272 0.7892

NIKKEI 0.318 0.2688 0.3078 0.685 0.3443 0.2865 0.3301

HSI 0.2 0.1904 0.1695 0.7045 0.343 0.1839 0.1576

STI 0.1858 0.1359 0.1374 0.7086 0.2871 0.1968 0.1137

AORD 0.2093 0.1469 0.1577 0.7487 0.3617 0.1768 0.1129

Table 10: Empirical estimates between stock markets correspond to ψ from 2011 to 2012

Stocks DOW FTSE DAX SSCI NIKKEI HSI STI AORD

DOW 0.9717 0.9634 0.9717 0.9178 0.9699 0.9732 0.9674

FTSE 0.9714 0.9793 0.4727 0.9164 0.9732 0.9825 0.982

DAX 0.9657 0.9795 0.9811 0.9141 0.9821 0.9858 0.9833

SSCI 0.9711 0.9817 0.984 0.2652 0.0901 0.09 0.09

NIKKEI 0.9157 0.9147 0.915 0.2833 0.8388 0.8938 0.8648

HSI 0.9694 0.9725 0.9815 0.0902 0.8438 0.9662 0.9724

STI 0.9713 0.9829 0.9856 0.0901 0.8961 0.9609 0.9888

AORD 0.9674 0.9826 0.983 0.09 0.8449 0.9647 0.9885
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Table 11: Empirical estimates between stock markets correspond to b from 2013 to 2014

Stocks DOW FTSE DAX SSCI NIKKEI HSI STI AORD

DOW 0.3496 0.3341 0.3013 0.2941 0.2959 0.31 0.3048

FTSE 0.3665 0.289 0.2017 0.2479 0.2441 0.2416 0.2448

DAX 0.3328 0.2922 0.2458 0.1955 0.8115 0.3015 0.2804

SSCI 0.2966 0.1943 0.2476 0.1187 0.7535 0.2666 0.3395

NIKKEI 0.2957 0.2493 0.2046 0.1205 0.116 0.1465 0.1975

HSI 0.2861 0.2459 0.8285 0.1746 0.6946 0.7223 0.4359

STI 0.3108 0.2475 0.3074 0.6258 0.1478 0.6895 0.1905

AORD 0.3053 0.2433 0.2765 0.3251 0.2031 0.4082 0.1878

Table 12: Empirical estimates between stock markets correspond to ψ from 2013 to 2014

Stocks DOW FTSE DAX SSCI NIKKEI HSI STI AORD

DOW 0.8696 0.8769 0.8857 0.9065 0.8611 0.8792 0.8857

FTSE 0.8633 0.8633 0.9502 0.9337 0.8932 0.918 0.9179

DAX 0.8776 0.8672 0.9294 0.9542 0.1669 0.8881 0.8981

SSCI 0.8908 0.9574 0.9269 0.9841 0.24 0.9123 0.8596

NIKKEI 0.9041 0.9342 0.9467 0.983 0.972 0.968 0.9451

HSI 0.8816 0.8928 0.1741 0.9523 0.2281 0.09 0.7186

STI 0.8751 0.9151 0.8847 0.6001 0.9662 0.09 0.9391

AORD 0.8856 0.9182 0.8984 0.8594 0.9419 0.7373 0.9395
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Table 13: Empirical estimates for exchange rates correspond to b in financial crisis

Curencies EURUSD USDJPY GBPUSD AUDUSD USDCHF USDCAD

EURUSD 0.322 0.6375 0.4357 0.5225 0.4753

USDJPY 0.3004 0.4268 0.4564 0.3658 0.5701

GBPUSD 0.5962 0.4318 0.4854 0.5239 0.6284

AUDUSD 0.4413 0.4552 0.4797 0.4342 0.535

USDCHF 0.5745 0.349 0.5816 0.4315 0.5294

USDCAD 0.4799 0.5578 0.6279 0.5191 0.5133

Table 14: Empirical estimates for exchange rates correspond to ψ in financial crisis

Currencies EURUSD USDJPY GBPUSD AUDUSD USDCHF USDCAD

EURUSD 0.9014 0.7209 0.8183 0.7963 0.8463

USDJPY 0.9101 0.872 0.8523 0.8703 0.8261

GBPUSD 0.7437 0.8703 0.8449 0.8033 0.8038

AUDUSD 0.8089 0.8527 0.8475 0.8239 0.8616

USDCHF 0.768 0.8854 0.7953 0.8368 0.8243

USDCAD 0.8445 0.8281 0.8029 0.8661 0.8259
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Table 15: Empirical estimates for exchange rates correspond to b in normal times

Currencies EURUSD USDJPY GBPUSD AUDUSD USDCHF USDCAD

EURUSD 0.8462 0.8073 0.7858 0.918 0.8892

USDJPY 0.8599 0.8206 0.6888 0.85 0.8186

GBPUSD 0.8037 0.8333 0.7449 0.7302 0.7736

AUDUSD 0.8515 0.7424 0.8307 0.8041 0.8936

USDCHF 0.9163 0.8165 0.7198 0.6969 0.8686

USDCAD 0.8833 0.8113 0.818 0.8534 0.9306

Table 16: Empirical estimates for exchange rates correspond to ψ in normal times

Currencies EURUSD USDJPY GBPUSD AUDUSD USDCHF USDCAD

EURUSD 0.404 0.644 0.4239 0.4179 0.6104

USDJPY 0.4325 0.5258 0.467 0.4317 0.5272

GBPUSD 0.6537 0.4644 0.5188 0.6825 0.677

AUDUSD 0.4202 0.4001 0.4774 0.4384 0.3643

USDCHF 0.4613 0.4794 0.7036 0.5476 0.6441

USDCAD 0.6384 0.5173 0.6559 0.3455 0.5727
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