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Abstract 

 

The energy sector is one of the most important in the world, so that time series fluctuations in leading 

energy sources have been analysed widely. As the leading energy commodities are traded on 

international stock exchanges, the analysis of the fluctuations in stock and financial derivatives prices 

and returns have also been investigated extensively in recent years. Much of the empirical analysis 

has concentrated on using daily, weekly or monthly data, with little research based on intra-day data. 

The paper analyses the relationships among the S&P 500 Index and futures prices, returns and 

volatility of three leading energy commodities, namely crude oil, natural gas and ethanol, using intra-

day data. The detailed analysis of intra-day temporal aggregation in examining returns relationships 

and volatility spillovers across the equity and energy futures markets, and the effects of overnight 

returns, volume, realized volatility, asymmetry, and spillovers across the four financial markets, leads 

to interesting and useful results for decision making and hedging strategies. The empirical results 

relating to alternative models of mean and variance feedback and asymmetry for intra-daily returns, 

asymmetry and volatility spillovers, and dynamic conditional correlations and covariances, show that 

the relationships between the stock market and alternative energy financial derivatives, specifically 

futures prices and returns, can and do vary according to the trading range, whether daily or overnight 

effects are considered, and the temporal aggregation and time frequencies that are used.  

  

Keywords: Trading range, Intra-day prices and returns, S&P 500 Index, Crude oil futures, Natural 
gas futures, Ethanol futures, Overnight returns, Overnight volume, Overnight realized volatility, 
Asymmetry, Spillovers. 
 
JEL Codes: C22, C32, C58, G12, G15.  
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1. Introduction 

 

As the energy sector is one of the most important in the world in terms of its contribution to world 

trade, income and employment, it is not surprising that the time series fluctuations in leading energy 

sources, such as oil, natural gas and ethanol have been analysed widely in terms of economics and 

finance, thereby leading to significant research in energy economics and energy finance. Given the 

recent emphasis on the development of green energy, in which agricultural products, especially sugar 

cane and corn, have been used to produce bio-ethanol, the emphasis on agricultural finance has also 

not been surprising. As the leading energy and agricultural commodities are traded on international 

stock exchanges, the analysis of the fluctuations in stock and financial derivatives prices and returns, 

as well as the accompanying dynamic volatility to analyse risk and to develop hedging strategies, 

have also been investigated extensively in recent years. 

 

In this context, the returns, volatility and volatility spillovers (namely, the delayed effect of a returns 

shock in one financial/energy/agricultural asset on the subsequent volatility or covolatility in another 

financial/energy/agricultural asset), among alternative energy commodities across different markets 

have been analysed using a variety of univariate and multivariate returns and volatility models, 

alternative data frequencies, and different data sets. Given the recent interest and emphasis in bio-

fuels and green energy, and the various agricultural products that can be used to produce bio-ethanol, 

there is a topical and developing literature on the spillovers between energy and agricultural markets 

(see Chang et al. (2015) for a recent crticial review of the literature that connects the energy and 

agricultural sectors). 

 

Much of the preceding literature has used data frequencies such as one day, week or month to analyse 

the relationships and spillovers across different financial/energy/agricultural markets, with few if any 

examining the relationships among such financial, energy and agricultural assets using intra-day data. 

The advantages of using intra-day data include the ability ot examine the effects of intra-day temporal 

aggregation in examining returns relationships and volatility spillovers across different 

financial/energy/agricultural markets, such as 5-minute, 15-minute, 45-minute frequencies, as well as 

the effects of overnight returns, volume, realized volatility, asymmetry, and spillovers, in comparison 

with the daily frequency.  
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The purpose of the paper is to analyse the relationships among the S&P 500 Index and futures prices, 

returns and volatility of three leading energy commodities, namely crude oil, natural gas and ethanol, 

using intra-day data. This will lead to a detailed analysis of intra-day temporal aggregation in 

examining returns relationships and volatility spillovers across the equity and energy futures markets, 

and examine the effects of overnight returns, volume, realized volatility, asymmetry, and spillovers 

across the four financial markets. 

 

The plan of the remainder of the paper is given as follows. Section 2 examines energy futures and the 

stock market index, including alternative daily and overnight measures and an empirical analysis of 

three energy futures, namely crude oil, natural gas and ethanol, and the S&P 500 Index, and 

alternative daily and overnight measures of returns, volume and realized volatility. Section 3 analyses 

alternative models of mean and variance feedback and asymmetry for intra-daily returns, asymmetry 

and volatility spillovers, dynamic conditional correlations and covariances, and empirical analysis. 

Some concluding comments are given in Section 4. 

 

 

2. Energy Futures and Stock Market Index 

 

2.1 Alternative Measures of Three Energy Futures and S&P 500 Index 

 

In this paper we consider the time series behaviour, especially the correlations among, three important 

energy-related futures and the equity stock market index. All data are obtained from TickData.1 We 

consider the futures of WTI Crude Oil, Natural Gas, and Ethanol, and the S&P500 equity market 

index. Ethanol futures are traded at CME/CBOT2, while Natural Gas and Crude Oil futures are traded 

at NYMEX. 

 

The futures data and the equity market index have different time coverage within the TickData 

database. Nevertheless, in order to perform analyses on a common sample, we restrict attention to a 

four-year period starting in January 2010 and ending in December 2013. The choice of sample period 

is limited by the availability of Ethanol futures data from January 2010. 

                                                            
1 See www.tickdata.com for details on the database coverage of the TickData company, and for further information on 
data accessibility. 
2 The selected contract is not the most highly traded, but data for Ethanol Platts futures are not available through TickData. 
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The S&P500 data are available at the 1-minute frequency and have been pre-filtered by TickData to 

remove cancelled trades, misalignment of data with the previous or subsequent trades, and bad ticks. 

All these corrections have been validated with third-party sources. In addition, TickData time series 

take into account the effects of corporate actions. The available dataset for the equity index includes, 

for each 1-minute interval, the open-high-low-close prices. Empty intervals, if present, have been 

filled by using the last available prices, so that a zero return would be induced. 

 

The management of futures data is more complex. In fact, on any given day, several futures are traded 

on the same underlying asset, and differ in the maturity date. However, for the purposes of this paper, 

a continuous time series is required. Consequently, from the TickData dataset we extract a continuous 

time series which is based on the front future contract (that is, the nearest contract which, in our case, 

is also the most actively traded). In addition, as several futures reach maturity within our sample, a 

roll method to the next future is required.  

 

The Automatic Roll method provided by TickData through its TickWrite software is used. The 

automatic roll method performs the transition between the current front future and the next future on 

the basis of the daily volume.3 Finally, in order to remove rollover gaps across contracts, we perform 

a backward ratio adjustment on the prices. For each 1-minute interval, we obtain the open-high-low-

close prices, together with the volume traded within the minute, and the number of ticks recorded in 

the minute. Prices are adjusted for rollovers, and are also corrected and validated for the same type 

of errors and problems that can affect the equity index data. The volume data and tick counts refer 

only to the front contract adopted in the construction of the continuous time series. 

 

A further aspect deserves attention, namely the trading hours of futures contracts, as opposed to the 

trading hours for the equity market. Taking as a reference the New York Stock Exchange, the equity 

market has trading beginning at 9:30 AM and ending at 4 PM Eastern US time. However, for the 

futures contracts, we can have trading expressed in either Eastern or Central US time. For reasons of 

simplicity, we use Eastern US time. In Eastern US time, trading for Natural Gas and Crude Oil futures 

lasts for almost the entire day in electronic form, with a break from 5:15 PM to 6PM. Trading starts 

on Sunday at 6 PM and ends on Friday at 5:15 PM. For both contracts, open outcry starts at 9 AM 

and ends at 2:30 PM, excluding week-ends.  

                                                            
3 See the user manual of TickWrite software, which is available from the TickData website, for additional details. 
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The trading hours of Ethanol futures are sensibly shorter, and change during the sample period. In 

fact, up to mid-2012, electronic trading had a night session from 6 PM to 7:15 AM from Sunday to 

Friday, and a daily session (contemporaneous to the open outcry session) from 9:30 AM to 1:15 PM, 

Monday to Friday. In 2012, electronic trading was extended, beginning at 5 PM and ending at 2 PM 

on the following day, from Sunday to Friday. The daily session with open outcry was also extended 

from 9:30 AM to 2 PM, as of June 25, 2012.4 

 

The various changes pose a relevant challenge to the joint analysis of the energy futures and equity 

data. We opt for what will be viewed as a simple but reasonable choice: when we consider the 

estimation of models involving data associated with the four assets (Natural Gas, Crude Oil, Ethanol, 

and the S&P500 index), we will restrict the time span to the range 9:30 AM to 1:15 PM, which lasts 

for 3 hours and 45 minutes. We are aware that relevant information may well be excluded. However, 

as will be argued below, information arising from the trading activity that occurs outside the previous 

range will be collapsed into an indicator or into additional variables that will be incorporated into the 

empirical analysis. 

 

With the 1-minute data related to the assets of interest, we can perform a number of preliminary 

analyses to evaluate the evolution of the trading activity during the day. This can be monitored, for 

instance, by the intra-daily volume, tick count, and volatility. Intuitively, we can expect significantly 

different levels of volume and tick counts when comparing ethanol futures with the futures on light 

crude oil and natural gas.  

 

In addition, as the ethanol market liquidity is lower than the liquidity on oil and gas, we can expect a 

large number of 1-minute intervals with zero volumes and zero returns. Such preliminary analyses 

suggests aggregation of the available 1-minute data to that of a 5-minute frequency. This leaves a 

total of 288 intra-day observations for each 24-hour day. At this stage, we will focus on the entire day 

as the trading of financial futures is allowed even during the night, as was noted above. 

 

                                                            
4 The trading time has been further modified and aligned to that of Crude Oil and Natural Gas, as reported in the CME 
website (last access date, July 2014). 
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For each five-minute interval, we recover the number of tick counts, volume, close-to-close returns,5 

and a suitable proxy for volatility, as measured by squared returns. The graphical evaluation of the 

raw time series is, however, not particularly informative. More interesting issues arise when we 

average across days. For a given measure (such as returns or volumes), denoted by ,i tm , where i refers 

to the five-minute interval during the day, and t is the daily time index, the 5-minute average value is 

given as: 

 

,. ,
1

1 T

i i t
t

m m
T 

  .           (1) 

 

In the sample, we have a total of 1461 days, including holidays and Saturdays, which is the only day 

of the week where there are no trades for energy-related commodities. Where tick counts and returns 

do not provide insightful results, the analysis of volume and volatility can provide more useful 

informative. 

 

2.2 Empirical Analysis of Three Energy Futures and S&P 500 Index 

 

Figures 1 to 3 report the average traded volume for Ethanol, Crude Oil, and Natural Gas futures. The 

shaded areas in the graphs highlight the range 9:30 AM to 1:15 PM. The S&P 500 index is not present 

as the volume for the index is not included in our database. The Ethanol plot (Figure 1) shows clearly 

visible three different spikes associated with the opening of the outcry/daily negotiation (9:30 AM), 

and with the closing of the outcry/daily trading session. For the latter, we have two spikes, at 1:15 

PM and at 2PM, as the closing time was modified in June 2012. We also note that the volume is 

extremely high at closing, namely about 10 times larger than during the morning, and five times larger 

than at opening. Trades occurring before 9:30 AM and after 2 PM, that is, during the night or the 

electronic sessions, is sparse and is concentrated in the last months of our sample. 

 

For Natural Gas and Crude Oil futures (Figures 2 and 3, respectively), we observe a similar pattern, 

with spikes in the volume observed at 9 AM, 10:30 AM and 2:30 PM. The first and third spikes are 

                                                            
5 At the five-minute frequency, the close-to-close return is computed as the log difference between the last price (close 
price) of two consecutive 5-minutes intervals. For the first trading period after a market closure (for instance, at 6PM – 
the market is closed from 5:15 PM to 6 PM - for Natural Gas, or after week-ends), we consider the closing price of the 
last trading period. 
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associated with the beginning and end of the open outcry trading sessions. We associate the 10:30 

AM spike with the closing of the European markets.6  

 

A different picture emerges when we examine the volatility proxy (that is, squared returns). These 

are graphically represented in Figures 4 to 7, which includes the S&P500 index. In the Ethanol case 

(Figure 5), volatility is high at the beginning of the daily trading session, that is, at around 9:30 AM. 

However, what is interesting is that the highest spike occurs at 5 PM when the night session begins. 

This could be associated with the reaction of Ethanol prices to news released after 2 PM, or inferred 

by traders and operators from other energy commodity trading prices that are observed from 2 PM to 

5 PM.  

 

Overall, the Ethanol 5-minute volatility (as measured by squared returns) shows a pattern that is 

similar to that of equities, and is generally called an Inverse-J shape, which involves peaking at the 

opening, decreasing during the morning, with a minimum at around 12 PM, and then recovering 

towards the close of the day session. 

 

Moving to Crude Oil and Natural Gas (Figures 6 and 7, respectively), we observe increases in the 

volatility at around the opening of the outcry session (9 AM), and at its close (2:30 PM). In addition, 

we have a further spike at around 10:30 AM, which is striking in the Natural Gas case. Notably, for 

both Natural Gas and Crude Oil, we observe a further spike at 6 PM, when the market re-opens after 

the weekday evening break.  

 

As for Ethanol, we associate this spike with the typical movement observed at the equity market 

opening; for energy commodities, we observe two “opening” spikes, one in the morning at the 

opening of the outcry session, and one in the evening. These two spikes are very clear for Natural 

Gas, while for Crude Oil the behaviour is more erratic. For both commodities, the Inverse-J shape is 

distorted, but its fundamental movement might be observed if we focus on the morning up to 2 PM, 

and discard the 10:30 AM spike. For the S&P 500 index, we observe the known effect with the 

inverse-J shape for the 5-minute volatility. 

 

                                                            
6 We note the double spike is not associated with data management issues associated with daylight saving time. Had this 
been the case, a double spike would have been observed at the closing, specifically at 3:30 PM. 
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In order to proceed to further empirical analysis that will consider joint modelling of the three 

commodities and the equity index, we restrict attention to a subset of the daily trading activity that 

lasts from 9:35 AM to 1:15 PM.7 With such a choice, in principle, we exclude a relevant amount of 

information, in particular, for Crude Oil and Natural Gas, whose trading range lasts for almost the 

entire day. In order to recover the information from trades (in terms of price, volume, and volatility) 

executed from 1:15 PM for a given day, up to 9:30 AM of the following trading day, we create a set 

of “overnight” indicators. Although these indicators are not strictly “overnight” as they monitor trades 

occurring during the traditional daily trading sessions, they will nevertheless have the same impact 

as the overnight returns, as in Gallo (2001). 

 

2.3 Alternative Measures of Returns, Volume and Realized Volatility 

 

The three measures we consider which, by construction, have a daily frequency, are the following, 

where it is noted that the overnight return could span more than one day as t+1 might be a holiday or 

be located during week-ends: 

 

(1) overnight returns: computed as the log-price difference between the price observed at 1:15 

PM of a given trading day t, and the opening price observed at 9:30 AM of the subsequent 

trading day;  

(2) overnight volume: computed as the sum of all trades that occur between 1:15 PM of day t 

and 9:30 AM of the subsequent trading day;  

(3) overnight realized volatility: computed as the sum of all the squared 5-minute returns 

observed in the range 1:15 PM of day t up to 9:30 AM of the next trading day. 

 

In addition to the construction of overnight-related variables, for purposes of defining a common 

sample, we exclude some days when either the Ethanol futures or the equity market was not trading.  

 

After the selection of the daily trading range and the exclusion of specific days, the overall sample 

reduces to a total of 997 trading days. For these specific days, we have 5-minute data for all of the 

variables of interest, corresponding to 45 observations per day. The data can also be aggregated into 

lower frequencies, namely 15 minutes, for 15 observations each day, or to 45 minutes, for 5 

observations each day, or to the daily frequency. 

                                                            
7 The first 5-minute interval is marked at 9:35 AM as it refers to the 5-minute period ending at 9:35 AM. 
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Tables 1 to 5 report some descriptive statistics across the various frequencies for both the equity index 

and the three energy-related commodity futures. We note some well-known stylized facts. The 

average returns are small, positive for the equity index, and negative for all the energy-related 

commodities. Such behaviour is stable across the different frequencies. The standard deviations of 

the energy commodities are always higher than those of the index, coherently with the different nature 

of the series (that is, the commodities are associated with futures contracts, while the equity is a spot 

market index), with the perception that commodities are more risky than equities.  

 

It is notable the Ethanol futures have volatility that is smaller than that of the Natural Gas contract. 

However, such a result might be affected by both the number of zeros present in the series and the 

limited trading activity on the contract, and corresponds to the limited movements that are observed 

in the Ethanol price. We also note the increase in the kurtosis when moving to higher frequencies. 

However, the levels of excess kurtosis are sensibly different: the Natural Gas results are similar to 

those of the S&P500 index, despite being lower, but those of Crude Oil futures are quite different, 

with excess kurtosis, which does not increase exponentially in moving to higher frequencies, but 

instead increases slowly, reaching a level of 5.4 at the 5-minute frequency.  

 

On the contrary, the Ethanol kurtosis explodes, but this is a by-product of the infrequent trading of 

the Ethanol futures contract. This is confirmed by the large amount of zeros, which we detect at the 

highest frequencies (specifically, 75% of the series is comprised of zero values at the 5-minute 

frequency, and about 45% at the 15-minute frequency). Asymmetry in increasing (in absolute terms) 

with an increase in frequency, and is negative, coherently with what is observed on single stocks, 

with the exception of Natural Gas, which is characterized by positive asymmetry. Again, for Ethanol, 

we observe the largest values. 

 

The volume time series levels are influenced by the nature of the future contracts. In fact, the Crude 

Oil contract unit is 1,000 barrels, while for Natural Gas the contract is 10,000 million British thermal 

units, and for Ethanol, the contract size is 29,000 gallons. Nevertheless, we observe the small volume 

of Ethanol, and the large number of transactions for both Natural Gas and Crude Oil. 

 

The overnight series show some differences compared with the daily time series, which are associated 

with a trading range starting at 9:30 AM and ending at 1:15 PM. As shown in Table 5, overnight 
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Ethanol futures returns have positive asymmetry, and the volume is quite high for Crude Oil, but with 

very large dispersion. In addition, we observe how the Realized Variance (RV) is comparable to the 

overnight dispersion of the returns.8 

 

 

3. Mean and Variance Feedback and Asymmetry for Intra-daily Returns 

 

3.1 Models of Energy Futures and Equity Intra-daily Returns 

 

We first discuss the model for the analysis of futures and equity intra-daily returns. Denote by 

, , , , ,   i t i t i t i t i tY R E O G     the day t interval i returns for the variables of interest, namely the S&P 500 

index, ,i tR  Ethanol futures, ,i tE , Light Crude Oil futures, ,i tO , and Natural Gas futures, ,i tG . The “day” 

can contain a different number of intervals, depending on the frequency adopted (namely, 5, 15 or 45 

minutes). If the data are daily, the indication of the interval becomes redundant and can easily be 

avoided. 

 

The mean dynamics follow a VARMAX-type model: 

 

, 1 1, 2 , 1 , 1 ,i t i t i t i i t i tY Y Y X         ,        (2) 

 

where 1,i tY   represents a standard VAR(1) term that captures the short-term serial correlation that is 

commonly observed for high-frequency data (see Cont (2001), and  Dacorogna et al. (2001), among 

others); if i=1, the term refers to the last observation of day t-1; , 1i tY   is a VAR term associated with 

the interval i returns of the previous day (for example, this corresponds to lag 45 for 5-minute data); 

and , 1i tX   is a matrix of lagged exogenous explanatory variables.  

 

                                                            
8 In order to compare values, we must take into account that the figures reported in Table 5 for the mean and variance are 
multiplied by 100, and that the RV columns report Realized Variances. Thus, we take the RV column mean, divide it by 
100, take the square root, and then multiply by 100 for compatibility with the Returns Standard Deviation. 
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The matrix tX  is partitioned into four elements, each of which contains a set of asset-specific 

variables, that is, , , , , ,   R E O G
i t i t i t i t i tX X X X X     . Each asset-specific element ,

j
i tX  contains the following 

indicators: 

 

- previous interval traded volume: 1,
j

i tv  ; 

- overnight traded volume: ,
j j

i t tonv onv ; 

- overnight returns: ,
j j

i t tor or ; 

- overnight realized volatility: ,
j j

i t torv orv . 

 

Note that, despite being indexed at time t, the overnight variables are included in the information set 

at time t-1 as they monitor market activity up to the opening of day t. Thus, the information set at 

time t-1 contains information available up to the opening of the markets on day t. The overnight 

variables have a daily frequency, as highlighted above, and volume is not available for the equity 

index.  

 

In order to allow for a different impact of the overnight variables across the intra-daily observations, 

the coefficient matrix, i , is interval specific. In such a way, we might have overnight variables that 

impact with different coefficients across all intervals during the day, or might impact in the first part 

of the day (as one can easily obtain by means of a set of zero restrictions), or might even have an 

impact for the first observation of the day. The last of these is empirically the most relevant structure, 

leading to matrix, i , with just two designs, namely one for the first interval of the day, and a second 

for the other intervals of the day.  

 

In such a case, the model can be recast in the following alternative representation: 

 

1
, 1 1, 2 , 1 , 1 1 , ,i t i t i t vol i t ove t i t i tY Y Y V X D u          ,      (3) 

 

where  , 1i tV   contains only the previous interval volume of the three Energy-related commodities; 

vol  is a parameter matrix containing 12 coefficients (namely the volume of, say, crude oil impacts 

on all the commodities, as well as on the equity index); 1tX   contains the overnight variables of the 
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energy commodities and the equity index (namely, 11 variables, as the equity index volume is not 

available), and is constant across intra-daily intervals; 1
,i tD  is a dummy variable, taking the value 1 

for the first interval of the day, and zero otherwise; and, finally, ove  is a matrix of coefficients that 

allow interactions across all the overnight variables and each endogenous (that is, dependent) 

variable. 

 

In order to evaluate the possible asymmetric impact of past returns and overnight returns, we 

generalize the model, as follows: 

 

   
 

1
, 1 1, 2 , 1 , 1 1 , 1 1, 1, 2 , 1 , 1

1
3 , ,

0 0

        0

i t i t i t vol i t ove t i t i t i t i t i t

t t i t i t

Y Y Y V X D I Y Y I Y Y

I W W D u

                        
     

 (4) 

 

where I(.) is an matrix indicator variable that takes the following form for a generic k-dimensional 

vector a: 

 

 

 
 

 

1

2

0 0 0

0 0 0
0

0 0 0k

I a

I a
I a

I a

 
   
 
 

  





   



       (5) 

 

so that it has zero elements outside the main diagonal, while on the diagonal it assumes a value of 1 

when the argument is true, and zero otherwise; the vector tW  contains the overnight returns of the 

four assets; and the parameter matrices, 1 , 2 , and 3 , monitor the additional impacts of negative 

returns and overnight returns. Note that asymmetric terms can be also introduced in specification (2). 

Although leverage is not permitted, given the specification of the volatility models (for further details, 

see McAleer (2014)). 

 

In order to verify the relevance of the various components of the models introduced above, we will 

estimate five different specifications, as follows: (i) a model with only the VAR component (M1) 

corresponding to equation (2), with the parameter matrix i  restricted to have zero coefficients; (ii) 

model M1 extended with the introduction of exogenous variables, lagged volume and overnight 
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variables, with the latter having an impact over the entire daily trading range (M2), corresponding to 

equation (2); (iii) model M2, with the overnight variables impacting only on the first interval of the 

day (M3), corresponding to equation (3); (iv) M2 extended with asymmetric terms (M4), that the 

model in (2) with the inclusion of asymmetric impact as in (4); and (v) M3 extended with asymmetric 

terms (M5), that is, the model in equation (4).   

 

All the models are estimated using the least squares method, with robust Newey-West HAC standard 

errors due to the presence of residual heteroskedasticity. Moreover, we estimate the models for the 

various intra-daily frequencies previously considered, namely at 5, 15 and 45 minutes, as well as for 

daily data. In the case of daily data, the models M3 and M5 are not considered. 

 

3.2 Empirical Results 

 

A summary of the empirical results is reported in Tables 6 to 9, while detailed tables reporting all the 

estimated coefficients are available upon request. What emerges from the mean estimation is that 

statistically significant coefficients are few, relative to the total number of coefficients included in 

each model.9 This is somewhat to be expected as financial returns are being modelled. We also note 

that the asymmetry components are statistically significant (at least for some of the coefficients) when 

the model allows for the impact of overnight variables for the whole trading session. On the contrary, 

asymmetry is not present if we have an impact of the overnight asymmetry solely on first return of 

the day.  

 

However, when we test for the joint significance of asymmetry behaviour by means of Wald-type 

tests of models M4 and M5, the result is opposite, and asymmetry seems to be more relevant when 

the models include the impact of overnight measures only on the first return of the day. Such an 

empirical result, which is slightly surprising, might occur as a by-product of the number of 

coefficients included in the models, in which case the joint test could be more powerful than the 

significance of individual coefficients. Overall, the empirical results show some evidence of the 

presence of asymmetric impacts of both overnight variables and past returns. 

 

In addition, serial correlation is relevant at the intra-daily level, as can be seen for the Wald test for 

model M1, but not at the daily level, as can be seen in Table 9. This confirms the relevance of serial 

                                                            
9 In each table we report the number of coefficients included in each estimated model 
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correlation for the intra-daily data and its limited, or virtually absent, impact at the daily frequency. 

The overnight variables and volume are relevant drivers of information, despite the number of 

significant coefficients being very small.  

 

Nevertheless, we also note that the joint significance of the coefficients, as derived from the Wald 

tests, is more pronounced if we restrict the impact of the overnight variables for the first interval of 

the day (as can be seen in a comparison of the Wald tests for models M2 and M3). This suggests that 

the overnight information impacts mostly during the first interval, which is an expected result that 

confirms previous studies, but it can also be influenced by the way we define the daily trading range 

and the overnight variables. 

 

3.3 Asymmetry and Volatility Spillovers 

 

We now analyse the conditional variances and their relation with spillovers of shocks and asymmetry. 

In this case, we follow an approach similar to that of Billio and Caporin (2010) and to the VARMA-

GARCH family that was proposed by Ling and McAleer (2003) as a generalization of the CCC model 

of Bollerslev (1990), and subsequently extended to include asymmetry, as in McAleer et al. (2007, 

2008, 2009). 

 

When dealing with models that include asymmetry and volatility spillovers, the number of parameters 

can increase quickly, thereby making estimation infeasible (which is widely known as the “curse of 

dimensionality”). In terms of volatility spillovers and co-volatility spillovers across different financial 

assets, Chang et al. (2015) give three new definitions of volatility spillovers, specifically full volatility, 

full covolatility spillovers, and partial covolatility spillovers, and evaluate the leading alternative 

multivariate models in terms of the new definitions, 

 

For the data considered in the paper, the model should also take into account the periodic evolution 

of intra-daily volatility, which is a known feature of the data (see Andersen and Bollerslev (1997), 

and Dacorogna et al. (2001), among others). In order to control for the increase in the number of 

parameters, we filter out the periodic evolution in a preliminary step. Therefore, for each mean 

innovation, , ,  , , ,j
i tu j R E O G , we assume that the periodic pattern is a multiplicative component that 

leads to: 
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, , , ,   , , ,j j j
i t i t i tu p j R E O G  .          (6) 

 

We recover the periodic pattern with the following linear model: 

 

       2 2 2 2

, , , , ,
1

ln ln ln ln
k

j j j j l j
i t i t i t l i t i t

l

u p D  


           (7) 

 

where ,
l
i tD  are dummy variables for each intra-daily interval, and k is the number of intervals within 

a day. Thus, we take a simplified approach to remove the periodic behaviour. Alternative methods 

could be used (see, among others, Andersen and Bollerslev (1997) and Boudt et al. (2011)). After the 

periodic pattern has been estimated, we can easily filter it out from the mean innovations, use the 

estimates of the series, ,i t , and then analyse asymmetric and spillover effects by estimating, for 

example, a multivariate GARCH model, of which several alternatives are available. 

 

3.4 Dynamic Conditional Correlations and Covariances 

 

The model we consider focuses on the conditional variance, ,i t , of the innovations, ,i t . For the 

second-order moment, we use the following dynamic structure: 

 

, , , ,i t i t i t i tD R D             (8) 

 

where ,i tD  is the diagonal matrix of conditional volatilities, such as , , , , ,   R E O G
i t i t i t i t i tD diag          

, 

and  diag a  is a matrix operator that creates a diagonal matrix, with the vector a on the main 

diagonal. Moreover, ,i tR  is assumed to be a dynamic conditional correlation matrix, although the 

caveats given in McAleer et al. (2008) should be borne in mind in interpreting the estimates from ,i tR   

as conditional correlations.  

 

If the conditional correlations can be estimated consistently, the conditional covariances, as defined 

by equation (8), can also be estimated consistently. As the definition in equation (8) can be rewritten 

to express the conditional correlations in terms of the conditional covariances, if the conditional 
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covariances can be estimated consistently, the conditional correlations can also be estimated 

consistently. 

 

We then model the log-conditional variances,        2, 2, 2, 2,
, , , , ,ln  ln  ln  lnR E O G

i t i t i t i t i tH         , as 

follows: 

 

     
   

, 1 1, 2 , 1 1 1, 2 , 1 1 1, 1,

1 1
2 , 1 , 1 1 , 2 ,

0

      0 0

i t i t i t i t i t i t i t

i t i t i t t i t t t

H diag H diag H I

I D ORV D I W ORV

    

 

     

 

        
        

β β α α γ

γ δ δ

  


  (9) 

 

where 1α , 2α , 1γ , 2γ , 1δ , and 2δ  are parameter matrices, 

 

           2 2 2 2

, , , , ,ln  ln  ln  lnR E O G
i t i t i t i t i t    

    
 ,      (10) 

 

and 

 

       ln  ln  ln  lnR E O G
t t t t tORV orv orv orv orv

    .       (11) 

 

As previously discussed, the last component in equation (11), despite being indexed with time t, is 

known before “day” t, as it contains variables observed up to the opening. Moreover, the indicator 

variables, as well as the dummy variable pre-multiplying the overnight volatility, have the same 

structure as those adopted for the mean dynamics. 

 

The model provides dynamics for the log-variances, which is similar to Bordignon et al. (2007, 2009). 

The innovations are not given by variance standardized residuals, as in the EGARCH model of Nelson 

(1991), but rather by log-squared innovations. The model shares the same advantage of EGARCH in 

excluding positivity restrictions to model the parameters. In addition, as for EGARCH, the model 

allows for asymmetry, which is defined as the possibly different impacts on volatility of positive and 

negative shocks of equal magnitude, but not leverage, which was defined in Black (1976), based on 

the debt-equity ratio (see McAleer and Hafner (2014) and McAleer (2014) for caveats regarding the 

signs of the coefficients in EGARCH).  
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The model in equation (9) shares some similarities with the model in Billio and Caporin (2010) as it 

does not allow for volatility spillovers. In fact, the log-conditional variances of a given asset are a 

function of only the past log-conditional variances of the same asset. This is due to the diagonality 

restriction imposed on the parameter matrices that pre-multiply the lagged log-conditional variances. 

On the contrary, the shocks of the other assets can be relevant, and their effects can depend on the 

signs allowing for asymmetry, as in McAleer et al. (2007, 2009).  

 

The diagonality assumption adopted for the GARCH part of the model, as highlighted in Billio and 

Caporin (2010), allows parameter estimation on the basis of marginal univariate likelihoods, but at 

the cost of reduced efficiency. Nevertheless, we believe the loss in efficiency is acceptable in light of 

the sensible computational advantages. In fact, the full model, including the four variables, has 108 

parameters. By moving to univariate models, the parameter number decreases to 27, which is still a 

large number, but with computationally feasible estimation. We also note that the model is similar to 

the models developed in McAleer et al. (2007, 2009) with respect to the introduction of asymmetry 

for the variables that are under consideration. 

 

The model includes an “exogenous” variable, namely the overnight realized volatility. In fact, this is 

a natural information driver for volatility (as well as its asymmetric impact), given the movements 

occurring outside the trade range under consideration. Note that the asymmetric impact is driven by 

the sign of the overnight returns. Moreover, asymmetry and overnight volatility impact only on the 

first observation of the day, given the empirical evidence that has already been presented for the 

conditional mean. 

 

3.5 Estimation 

 

Estimation is performed at the univariate level, and the parameter restrictions are not needed to ensure 

the positivity of the conditional variances. However, the parameters are restricted to ensure 

stationarity. The constraints can be recovered by considering the ARMA representation of the model. 

We start from the dynamic equation of a single conditional variance, as follows: 

 

             
   

2 2 2 2 2 2
, 1 1, 2 , 1 1 1, 2 , 1 1 1, 1,

2
2 , 1 , 1 ,

ln ln ln ln ln ln 0

      ln 0

i t i t i t i t i t i t i t

i t i t i t

I

I X

            

  

     

 

      

   δ
 (12) 



19 

 

 

where ,i tX  is a set of exogenous variables. Note that the innovations also include the other asset 

shocks, which are considered as exogenous variables. The innovations, ,i t , are given as products of 

the conditional volatility and the variance standardized shocks, ,i tz , with , , ,i t i t i tz  .  

 

Upon taking squared logs, we have: 

 

       2 2 2 2 2
, , , , ,ln ln ln lni t i t i t i t i tz z     .        (13) 

 

Moreover, given that the distribution of  2
,ln i tz  is non-standard, we define its unconditional mean as 

 2
,ln i tE z     . By taking the latter into account, we can define a martingale difference sequence, 

   2 2
, , ,ln lni t i t i t      , that can be used to recover the ARMA representation of the model in 

equation (12), which is given as follows: 

 

       2
, 1 2 1 2 , ,ln 1 1 k

i t i t i tL L L X                 δ ,     (14) 

 

where 

 

       1 1 1, 1 2 2 , 1 21 0 0 k
i t i tL I L I L                  ,    (15) 

 

and k is the number of intervals for a given day.  

 

Therefore, under symmetry of the density of ,i t , the expectation of the indicator variables equals ½, 

so that:  

 

  1 1 1 2 2 2

1 1
1

2 2
kL L L                  

   
. 
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Stationarity is associated with the roots of  L  lying outside the unit circle, thereby indirectly 

imposing the constraints on the parameters.  

 

3.6 Empirical Analysis 

 

Tables 10 to 13 report the estimated parameters for the four assets and the four different frequencies, 

while Figure 8 contains an example of the estimated conditional variance patterns. For each (asset, 

frequency) combination, we estimate three different models, namely: (1) a baseline specification that 

does not include other asset shocks, overnight realized volatility (H1), or asymmetry; (2) a model that 

adds to H1 asymmetry with respect to the asset shocks and ORV (H2); and (3) the most general 

specification with asymmetry and all the other asset shocks (H3). 

 

We first focus on the high frequency results, namely Tables 10 to 12. It is noted that the GARCH 

coefficients are highly significant for lag 1, with point values decreasing in some cases when the data 

frequency is decreased towards daily data. This is particularly evident for Crude Oil, mainly at the 

45-minute frequency. The GARCH coefficient capturing the “daily” effect has a minor relevance, 

and its significance decreases with the data frequency. We also note that some GARCH coefficients 

for lag are occasionally greater than 1. This does not necessarily imply non-stationarity as the 

condition is acting on the roots of the polynomial in equation (15), and not on each single coefficient. 

 

In considering the ARCH coefficients, which reflects the short-run persistence of returns shocks on 

volatility, there is confirmation of the observations reported for the GARCH component of the model, 

namely they are statistically significant at lag 1, irrespective of the frequency, and the significance of 

the “daily” coefficients decreases with the data frequency. In addition, as is commonly observed in 

empirical GARCH models, the size of the ARCH coefficients is much smaller than those of the 

GARCH coefficients. The previous comments are valid irrespective of the estimated model, namely 

H1, H2 or H3. 

 

Consider now the shock spillovers, namely those monitored by the coefficients 1α  and 2α , which are 

located in the off-diagonal terms. These coefficients, which are included only in model H3, are in 

most cases not significant. The largest number of significant coefficients is observed at the 5-minute 

frequency. The coefficient sizes are small, in some cases negative and, in general, are lower (in 

absolute terms) than the values obtained for the diagonal coefficients (namely, the standard ARCH 
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components). Thus, we conclude that the shock spillovers across the assets have limited impacts 

across the intra-daily frequencies. 

 

An important result of the empirical analysis is associated with the impact of the overnight volatility. 

Such an exogenous variable is statistically significant for all assets and for all data frequencies for 

model H1 (namely, the specification without asymmetry and shocks and asymmetry spillovers). The 

coefficients are always positive, thereby implying that the overnight volatility increases the daily 

volatility level. This is a somewhat expected outcome as this variable conveys the information from 

the close of the previous day’s trading range to the opening of the daily trading range.  

 

When asymmetry is included in specification H2, it is observed that the positive impact on the intra-

day volatility for the S&P index is mainly associated with the overnight volatility for the negative 

overnight returns. On the contrary, the overnight volatility that is matched with positive overnight 

returns leads to a decrease in the intra-daily volatility for higher frequencies. The results of Ethanol 

suggest a compensation effect between positive and negative overnight returns across the various 

frequencies. For Crude Oil, most relevant are the negative overnight returns, leading to an increase 

in the intra-daily volatility.  

 

Somewhat surprisingly, for Natural Gas the most relevant effects arise from the positive overnight 

returns, where the volatility leads to an increase in intra-daily volatility, while negative overnight 

returns do not have such an impact. The latter results might be explained by examining the estimates 

for model H3, which include the cross-impacts of overnight volatility. We observe that the most 

relevant role is now played by the S&P 500 overnight volatility that enters (for both positive and 

negative overnight returns) into the dynamics of the energy commodities in many cases, with a 

negative coefficient for positive overnight returns, and a positive coefficient for negative overnight 

returns. Therefore, it can be concluded that the overnight volatility has a relevant role for the intra-

daily dynamics of energy commodities, with a fundamental role afforded by the equity market 

variable. 

 

Finally, we focus on the shock spillovers and asymmetry across the equity market and energy 

commodities. The baseline specification is model H2, with only asymmetry but not any cross-

impacts. Across the intra-daily frequencies, we note that the asymmetric coefficients (as included in 

the matrices 1γ  and 2γ ) are, in most cases, statistically significant, positive at lag 1, and negative at 
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the “daily” lag. These results imply that the previous intra-day period sign matters, and that negative 

returns have larger impacts, as compared with positive returns.  

 

The introduction of asymmetry also explains the few cases of insignificant ARCH coefficients at lag 

1. The “daily” lag has the opposite effect, a kind of mean-reversion applied to the volatility dynamics. 

Nevertheless, we note that the coefficients are, as is typical in empirical (G)ARCH models, very 

small. When spillovers for both the shocks and asymmetry are taken into account, the previous results 

are confirmed, with a positive effect from the previous period and a negative effect from the “daily” 

lag. Moreover, many cross-asset effects are present, but all with very small magnitudes. In addition, 

the relevance of the asymmetry and shock spillovers is sensibly reduced at the 45-minute frequency, 

which indicates that the relation is present at quite high data frequencies. 

 

The last empirical finding might also be associated with the somewhat unusual results at the daily 

frequency (see Table 13). In fact, for this frequency, the estimated parameters are, in some sense, 

non-standard, with smaller GARCH effects, higher ARCH coefficients, and an extremely large 

impact of the overnight variables.  

 

This empirical result might be explained by the approach taken for the construction of the trading 

range, which was driven by the need for creating a common foundation for the spillovers. The 

spillovers can be detected at higher frequencies, and the GARCH parameters have standard values 

owing to the persistence of the intra-daily volatility patterns. When moving to lower frequencies (such 

as the 45-minute interval) or the daily frequency, the role of the excluded trading periods becomes 

fundamental, thereby leading to an extremely large impact of the overnight volatility. 

 

As a final check on the variance standardized series, 1
, , ,i t i t i t    , we fit the dynamic conditional 

correlation (DCC) model of Engle (2002), and the Asymmetric DCC model of Cappiello et al. (2006). 

The results, which are not reported but are available upon request, show the persistence of conditional 

correlations. As stated previously, the caveats given in McAleer et al. (2008) should be borne in mind 

in interpreting the estimates from these two models as conditional correlations. 

 

Table 14 reports the unconditional correlations observed over the various frequencies on the variance 

standardized residuals (using conditional variances from model H3). We first note that the only 

correlation assuming a somewhat large value is that between Crude Oil futures and the stock market 
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index. This is understandable given the interaction between the oil price, economic growth or the 

economic cycle, and the subsequent relation of each with financial markets and the financial cycle.  

 

On the contrary, all the other correlations take very small values. Moreover, by increasing the 

sampling frequency, the conditional correlations decrease, again with the exception of the Oil futures 

and S&P 500 index, where we note an increase from the daily to the intra-daily values. The latter 

depends on the construction of the trading range, and is associated with the odds results on modelling 

daily conditional covariances.  

 

In moving to conditional modelling, as already mentioned, we obtained parameter estimates for the 

DCC model, which indicates high persistence, with data that are close to being integrated (see also 

Aielli, 2013). Figure 9 reports the time evolution of conditional correlations at the 15-minute 

frequency. Similar patterns can be obtained for other intra-day frequencies. Again, the caveats given 

in McAleer et al. (2008) should be borne in mind in interpreting the estimates from DCC as 

conditional correlations. 

 

Several relevant elements are noted. At first, the only correlation providing high value is, as expected, 

given Table 14, namely for the S&P 500 index and Crude Oil futures. The correlation shows a 

decreasing trend, a pronounced decrease, followed by a recovery, with a minimum in February 2011. 

Somewhat differently, the dynamic correlations involving Ethanol futures all oscillate around zero, 

while the conditional correlations between Natural Gas and the S&P or Crude Oil are positive, but 

are nevertheless quite low.  

 

The last two empirical findings suggest that the estimated persistence could be driven by the stronger 

relation between Crude Oil futures and the stock market. This is confirmed by the fit of more general 

models allowing for asymmetry in the correlation dynamics and/or for correlation-specific parameters 

(as in Cappiello et al. (2006)). However, the estimation of these models provide non-standard results 

and convergence problems that are due to the joint presence of constant and dynamic correlations.  

 

Such empirical findings would suggest, as a possible alternative, the estimation of alternative systems 

of bivariate models. Nevertheless, with the focus of this paper on the evaluation of spillovers and 

asymmetry across variables, bivariate specifications would be expected to have minor relevance, and 

are thereby not considered. 
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4. Concluding Remarks 

 

The purpose of the paper was to analyse the relationships among the S&P 500 Index and futures 

prices, returns and volatility of three leading energy commodities, namely crude oil, natural gas and 

ethanol, using intra-day data. The analysis led to a detailed analysis of intra-day temporal aggregation 

in examining returns relationships and volatility spillovers across the equity and energy futures 

markets, and examined the effects of overnight returns, volume, realized volatility, asymmetry, and 

spillovers across the four financial markets. 

 

The paper examined the time series fluctuations in three energy futures, namely crude oil, natural gas 

and ethanol, and the stock market index, including alternative measures of returns, volume and 

realized volatility at the daily frequency.  

 

The empirical results relating to alternative models of mean and variance feedback and asymmetry 

for intra-daily returns, asymmetry and volatility spillovers, dynamic conditional correlations and 

covariances, showed that the relationships between the stock market and alternative energy financial 

derivatives, specifically futures prices and returns, could and did vary according to the trading range, 

whether daily or overnight effects were considered, and the temporal aggregation and time 

frequencies that were used.  
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Table 1: 5-minute Descriptive Statistics 

 S&P Ethanol Crude Oil Natural Gas 
 returns returns volume returns volume returns volume 
Mean 0.00084 -0.00065 2.88 -0.00010 2357.92 -0.00300 952.41
St. Dev. 0.12225 0.20871 7.58 0.15479 1820.53 0.25377 1176.06
Min. -0.02617 -0.11940 0 -0.01656 0 -0.04890 0
Max. 0.02677 0.08970 202 0.01626 34407 0.05915 31133
Asymmetry -0.351 -4.301 5.485 -0.155 3.011 0.315 7.645
Exc. Kur. 74.826 396.763 49.890 5.382 18.769 47.756 98.559
No. zeros 234 33585 29431 1753 1 3043 14
No. obs. 44865       

Note: Mean and St. Dev. multiplied by 100 for returns and RV (= Realized Variances).  

 

 

Table 2: 15-minute Descriptive Statistics 

 S&P Ethanol Crude Oil Natural Gas 
 returns returns volume returns volume returns Volume 
Mean 0.00252 -0.00196 8.63 -0.00029 7073.75 -0.00899 2857.23
St. Dev. 0.20873 0.35563 14.53 0.26451 4625.80 0.42893 2882.46
Min. -0.03048 -0.11940 0 -0.02656 501 -0.04911 0
Max. 0.03534 0.08970 322 0.01715 72589 0.06601 44366
Asymmetry -0.128 -2.690 3.797 -0.238 2.204 0.170 5.133
Exc.Kur. 35.075 142.410 29.993 4.208 9.649 21.101 39.166
No. zeros 0 6825 5229 3 0 13 4
No. obs. 14955   

Note: Mean and St. Dev. multiplied by 100 for returns and RV (= Realized Variances).  

  

 

Table 3: 45-minute Descriptive Statistics 

 S&P Ethanol Crude Oil Natural Gas 
 returns returns volume returns volume returns Volume 
Mean 0.00755 -0.00589 25.88 -0.00088 21221.25 -0.02697 8571.68
St. Dev. 0.36535 0.59427 27.50 0.45108 11410.25 0.73309 6458.57
Min. -0.04203 -0.11940 0 -0.04202 1808 -0.05066 0
Max. 0.03297 0.08567 405 0.01948 95323 0.06496 63092
Asymmetry -0.204 -1.698 2.469 -0.350 1.322 0.214 2.943
Exc. Kur. 15.140 51.922 13.613 3.552 2.730 7.873 11.895
No. zeros 0 669 386 0 0 1 1
No. obs. 4985   

Note: Mean and St. Dev. multiplied by 100 for returns and RV (= Realized Variances). 
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Table 4: Daily Descriptive Statistics 

 S&P Ethanol Crude Oil Natural Gas 
 returns returns volume returns volume returns Volume 
Mean 0.00038 -0.00029 129.41 -0.00004 106106.23 -0.00135 42858.40
St. Dev. 0.00827 0.01375 74.33 0.01007 37014.83 0.01616 18654.90
Min. -0.04132 -0.13226 11 -0.04097 17510 -0.07160 9970
Max. 0.03602 0.09771 894 0.03404 269954 0.09709 143511
Asymmetry -0.311 -0.726 2.118 -0.299 0.807 0.079 1.276
Exc. Kur. 2.695 13.039 12.852 1.216 1.227 2.518 2.140
No. zeros 0 0 0 0 0 0 0
No. obs 997   

Note: Mean and St. Dev. multiplied by 100 for returns and RV (= Realized Variances). 
 

 

Table 5: Overnight Descriptive Statistics 

 S&P Ethanol  
 returns RV returns volume RV  
Mean 0.011 0.002 0.134 27.23 0.023  
St. Dev. 0.524 0.006 1.011 45.42 0.241  
Min. -0.026 0.000 -0.043 0 0.000  
Max. 0.028 0.001 0.103 376 0.059  
Asymmetry -0.258 13.418 1.717 2.386 19.362  
Exc. Kur. 4.213 231.063 15.286 8.321 415.625  
No. zeros 135 1035 16470 25830 25335  
 Crude Oil Natural Gal 
 returns Volume RV returns volume RV 
Mean -0.024 101813 0.018 0.005 36806 0.034 
St. Dev. 1.273 344712 0.019 1.652 13855 0.027 
Min. -0.069 0 0.000 -0.077 0 0.000 
Max. 0.046 391342 0.002 0.076 160567 0.004 
Asymmetry -0.315 2.168 5.507 0.134 1.862 5.169 
Exc. Kur. 1.540 10.583 47.144 1.435 8.445 56.293 
No. zeros 135 45 45 360 45 45 

Note: Mean and St. Dev. multiplied by 100 for returns and RV (= Realized Variances). 
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Table 6: 5-minute frequency results 

 M1 M2 M3 M4 M5 
No. of significant intercepts 1 0 1 0 0 
No. of significant AR terms (diagonal) 5 6 4 3 0 
No. of significant AR terms (off-diagonal) 5 5 5 3 0 
No. of significant Vol. Change coefficients  2 2 3 0 
No. of significant Overnight coefficients  8 8 6 1 
No. of significant Asymmetry coefficients    4 0 
No. of coefficients in the system 36 92 92 140 140 
Wald 104.57 183.39 625.39 54.70 71.56 
P.value 0.00 0.00 0.00 0.24 0.02 

Note: M1 refers to the model including only the VAR(1) and VAR(45) lags; M2 adds to M1 the exogenous variables 
(lagged volume change and overnight variables); M3 adds to M1 the exogenous variables with the overnight variables 
affecting only the first interval of the day; M4 adds to M2 the asymmetry coefficients; M5 adds to M3 the asymmetric 
coefficients; the Wald test reported in the two bottom lines is a joint significance test for the VAR(1) and VAR(5) 
coefficients for M1, a joint significance test on the exogenous variables for M2 and M3, and a joint significance test of 
the asymmetry coefficients in M4 and M5. 
 

 

Table 7: 15-minute frequency results 

 M1 M2 M3 M4 M5 
No. of significant intercepts 1 0 1 0 0
No. of significant AR terms (diagonal) 2 2 2 2 0 
No. of significant AR terms (off-diagonal) 0 0 0 2 0 
No. of significant Vol. Change coefficients --- 1 1 0 0 
No. of significant Overnight coefficients --- 8 8 5 3 
No. of significant Asymmetry coefficients --- --- --- 3 0 
No. of coefficients in the system 36 92 92 140 140 
Wald 58.66 175.11 474.77 43.94 69.74 
P.value 0.00 0.00 0.00 0.64 0.02 

See Note to Table 6. 
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Table 8: 45-minute frequency results 

 M1 M2 M3 M4 M5 
No. of significant intercepts 1 0 1 0 0 
No. of significant AR terms (diagonal) 2 3 1 1 0 
No. of significant AR terms (off-diagonal) 3 3 3 3 0 
No. of significant Vol. Change coefficients --- 1 1 0 0 
No. of significant Overnight coefficients --- 9 6 5 5 
No. of significant Asymmetry coefficients --- --- --- 1 0 
No. of coefficients in the system 36 92 92 140 140 
Wald 81.80 196.85 358.22 35.77 69.28 
P.value 0.00 0.00 0.00 0.90 0.02 

See Note to Table 6. 
 

 

 

Table 9: Daily frequency results 

 M1 M2 M4 
No. of significant intercepts 1 0 0 
No. of significant AR terms (diagonal) 1 0 1 
No. of significant AR terms (off-diagonal) 0 0 0 
No. of significant Vol. Change coefficients  0 0 
No. of significant Overnight coefficients  7 6 
No. of significant Asymmetry coefficients   1 
No. of coefficients in the system 20 76 108 
Wald 12.48 288.56 31.73 
P.value 0.71 0.00 0.67 

Note: M1 refers to the model including only the VAR(1) and VAR(45) lags; M2 adds to M1 the exogenous  
variables (lagged volume change and overnight variables); M4 adds to M2 the asymmetry coefficients; the Wald  
test reported in the bottom two lines is a joint significance test for the VAR(1) and VAR(5) coefficients for M1,  
a joint significance test of the exogenous variables for M2, and a joint significance test of asymmetry in M4. 
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Table 10: 5-minute frequency results 
 H1 H2 H3 
 SP ET CL NG SP ET CL NG SP ET CL NG 
ω 0.032* 0.016* 0.026* 0.057* 0.028* 0.001* 0.015* 0.044* 0.026* 0.000* 0.013* 0.039* 
β1 0.955* 0.982* 0.951* 0.856* 0.945* 0.981* 0.932* 0.845* 0.944* 1.003* 0.924* 0.841* 
β2 0.016* 0.008 0.022* 0.097* 0.020* 0.013* 0.035* 0.102* 0.021* -0.003* 0.045* 0.105* 
α1R 0.029*    0.025*    0.024* 0.001* 0.000 0.000 
α1E  0.004*    0.002*   0.001 0.001* 0.002 0.003 
α1O   0.019*    0.013*  -0.001 0.001* 0.012* 0.000 
α1G    0.038*    0.034* -0.002* 0.000 0.001 0.034* 
α2R -0.005*    0.000    0.000 0.000 -0.001 0.000 
α2E  -0.001*    -0.002*   -0.001 -0.001* -0.004* 0.005* 
α2O   0.000    0.004*  -0.002* -0.001* 0.004* -0.001 
α2G    -0.002    -0.001 -0.002* -0.001 -0.004* -0.001 
δ1R 1.425*    -0.825*    -2.258* -0.835* -2.177* -0.170 
δ1E  0.049*    0.104*   -0.018 0.003 -0.039* -0.021 
δ1O   0.631*    0.057  0.362* 0.137* 0.250* -0.787* 
δ1G    0.332*    0.428* 0.156* 0.039* -0.019 0.645* 
γ1R     0.016*    0.014* -0.001 0.006* 0.002 
γ 1E      0.007*   0.001 0.005* 0.001 0.002 
γ 1O       0.023*  0.008* 0.003* 0.021* 0.001 
γ 1G        0.020* -0.001 -0.003* 0.004* 0.020* 
γ 2R     -0.008*    -0.006* -0.001 0.001 -0.009* 
γ 2E      -0.002*   0.000 -0.005* 0.000 0.000 
γ 2O       -0.007*  0.001 -0.001 -0.005* 0.002 
γ 2G        -0.005* 0.002 0.004* 0.002 -0.006* 
δ2R     2.160*    1.911* 0.557* 1.682* 0.261 
δ2E      -0.098*   0.034* -0.001 0.024 0.014 
δ2O       0.501*  0.418* -0.283* 0.591* 0.163 
δ2G        -0.286* -0.049 -0.097* 0.054 -0.222* 
LL -14747.4 -21535.1 -19000.2 -19935.7 -14517.3 -20811.6 -18691.9 -19852.5 -14408.3 -20549.8 -18603.5 -19800.4
LR vs H1     0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LR vs H2         0.00 0.00 0.00 0.00 

Note: The parameters are defined according to equation (9): ω is the intercept; β1 and β2 refer to the one-period and daily GARCH effects, respectively; α1i and  
α2i refer to the one-period and daily ARCH effects, respectively; i = R,E,O,G, corresponding to S&P 500, Ethanol, Oil and Gas, respectively; δ1i  is the impact  
of overnight volatility and δ2i the overnight asymmetry; γ1i  refers to one-period asymmetry, and γ2i refers to daily asymmetry. Over columns, H1 identifies the  
baseline model with just the overnight volatility impact, while H2 adds asymmetry, with both models excluding spillovers, while H3 includes spillovers. The  
last two rows contain likelihood ratio tests between the three nested models, H3 being the most general. Bold stars denote statistical significance at the 1% level. 
 



32 

 

Table 11: 15-minute frequency results 
 H1 H2 H3 
 SP ET CL NG SP ET CL NG SP ET CL NG 
ω 0.032* 0.068* 0.011* 0.030* 0.021* -0.001* 0.004* 0.021* 0.021* 0.003* 0.002 0.018* 
β1 0.956* 0.945* 0.969* 0.827* 0.948* 1.026* 0.993* 0.800* 0.939* 0.988* 0.992* 0.814* 
β2 0.011 -0.039* 0.014 0.134* 0.019* -0.026* 0.000 0.156* 0.024* 0.012 0.001 0.146* 
α1R 0.033*    0.024*    0.024* 0.001 0.000 0.001 
α1E  0.013*    0.006*   0.004* 0.007* -0.001 -0.006* 
α1O   0.020*    0.010*  -0.003* -0.003 0.010* -0.014* 
α1G    0.032*    0.029* 0.002 0.003 -0.005* 0.029* 
α2R -0.009*    -0.003    0.000 -0.004 0.001 -0.001 
α2E  0.009*    -0.006*   0.001 -0.007 0.000 0.009 
α2O   -0.010*    -0.006*  -0.002 0.003 -0.006* 0.008 
α2G    -0.008*    -0.006* -0.004 -0.005 0.005 -0.008* 
δ1R 1.261*    -1.054*    -2.096* -0.296 -0.697* -1.572* 
δ1E  0.070*    0.005   -0.008 0.011* -0.002 0.032 
δ1O   0.298*    -0.056*  0.416* 0.159* 0.087 0.021 
δ1G    0.354*    0.327* 0.043 0.104* 0.014 0.382* 
γ1R     0.023*    0.020* 0.008* 0.011* 0.014* 
γ 1E      0.010*   0.001 0.012* 0.002 0.002 
γ 1O       0.019*  0.007 0.011* 0.015* 0.020* 
γ 1G        0.019* -0.009* -0.010* 0.000 0.013* 
γ 2R     -0.013*    -0.012* -0.006* -0.010* -0.012* 
γ 2E      -0.010*   0.000 -0.013* -0.002 -0.004 
γ 2O       -0.016*  -0.001 -0.006 -0.013* -0.004 
γ 2G        -0.007 0.004 0.012* 0.001 -0.008* 
δ2R     2.434*    2.451* 0.481 0.976* 1.484* 
δ2E      0.002   0.020 -0.016* -0.010 -0.041 
δ2O       0.164*  0.210 -0.374* 0.133* -0.257 
δ2G        0.042 -0.102 -0.193* -0.050 0.100 

LL -5264.41 -7083.14 -6447.81 -6845.28 -5145.52 -6797.81 -6363.55 -6830.40 -5096.78 -6679.42 -6326.65 -6784.87
LR vs H1     0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LR vs H2         0.00 0.00 0.00 0.00 

See note to Table 10. 
 
 
 
 
 



33 

 

Table 12: 45-minute frequency results 
 H1 H2 H3 
 SP ET CL NG SP ET CL NG SP ET CL NG 
ω 0.026* 0.091* 0.014* -0.003 0.005 0.029* -0.006 0.003 -0.006 0.033* -0.027* -0.006 
β1 0.981* 0.718* 0.871* 1.090* 0.894* 0.800* 0.643* 0.874* 0.867* 0.797* 0.554* 1.023* 
β2 -0.020 0.178* 0.098 -0.120* 0.053 0.118* 0.311* 0.079 0.069 0.119* 0.409* -0.055 
α1R 0.032*    0.022*    0.022* 0.027* -0.002 0.008* 
α1E  0.035*    0.017*   -0.002 0.015* -0.011 -0.009 
α1O   0.012*    0.010  -0.008 -0.017* 0.004 0.009 
α1G    0.010*    0.019* 0.003 0.002 0.006 0.010* 
α2R -0.009    -0.002    -0.001 0.005 0.003 -0.009 
α2E  0.014    0.010   0.003 0.010 -0.006 0.001 
α2O   0.004    0.004  -0.001 -0.018 0.000 -0.006 
α2G    -0.001    -0.002 -0.009 -0.001 0.002 -0.001 
δ1R 1.056*    -0.439    -1.143* -0.930 -3.696* 0.267 
δ1E  0.047*    0.144*   0.011 0.141* -0.003 -0.001 
δ1O   0.248*    -0.099  0.342* 0.231 0.105 0.228* 
δ1G    0.206*    0.225* 0.067 -0.123 -0.046 0.194* 
γ1R     0.041*    0.038* 0.020 0.057* -0.003 
γ 1E      0.048*   0.005 0.048* 0.013 0.002 
γ 1O       0.014*  0.017 -0.008 0.000 0.020* 
γ 1G        0.007 -0.016 -0.016 0.010 -0.001 
γ 2R     -0.011    -0.008 0.000 -0.030* 0.006 
γ 2E      -0.019*   0.010 -0.020* -0.013 -0.008 
γ 2O       0.019*  -0.005 0.008 0.023* -0.009 
γ 2G        -0.003 0.013 0.011 -0.001 0.002 
δ2R     2.106*    2.207* -0.556 3.141* -0.553 
δ2E      -0.145*   -0.002 -0.143* -0.038 0.003 
δ2O       0.483*  0.087 -0.118 0.729* -0.213* 
δ2G        0.106 -0.144 -0.046 0.056 0.053 

LL -2002.93 -2312.47 -2273.07 -2290.81 -1969.65 -2255.95 -2242.10 -2290.49 -1946.05 -2232.19 -2188.58 -2261.65
LR vs H1     0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.00
LR vs H2         0.00 0.00 0.00 0.00 

See note to Table 10. 
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Table 13: Daily frequency results 
 H1 H2 H3 
 SP ET CL NG SP ET CL NG SP ET CL NG 
ω -2.171* -1.723* -6.318* -3.643* -1.913* -2.297* -5.430* -3.058* -3.450 -2.372* -5.111* -3.403* 

β1 0.755* 0.717* 0.261 0.633* 0.797* 0.654* 0.373* 0.687* 0.621* 0.584* 0.372* 0.657* 

α1R 0.029*    0.025*    0.021 0.013 0.021 -0.025 

α1E  0.071*    0.071*   0.010 0.058* 0.019 0.031* 

α1O   0.064*    0.055*  0.025 0.017 0.044* -0.003 

α1G    -0.032*    -0.032* -0.003 0.031 0.004 -0.039* 

δ1R 2.519*    2.587*    1.427 -1.020 -1.590 0.233 

δ1E  0.000    0.176*   0.035 0.184* -0.152* -0.106* 

δ1O   0.898*    1.376*  0.847 0.334 1.477* 0.139 

δ1G    0.716*    0.536* -0.160 -0.259* -0.005 0.569* 

γ1R     -0.021*    -0.019* -0.016* -0.017* 0.001 

γ 1E      0.001   -0.010 0.004 0.001 0.001 

γ 1O       -0.006  0.007 0.005 -0.002 0.002 

γ 1G        0.017* 0.007 0.008 0.003 0.015* 

δ2R     -0.189    -0.489 -1.219 1.039 -0.539 

δ2E      -0.186   -0.036 -0.184* 0.012 0.081* 

δ2O       -0.663*  0.136 0.196 -0.626 0.034 

δ2G        0.043 0.116 0.047 -0.056 0.033 

LL 4437.90 3814.79 4100.89 3651.62 4451.83 3831.16 4105.78 3652.09 4466.81 3843.12 4119.97 3661.75 

LR vs H1     0.00 0.00 0.02 0.82 0.00 0.00 0.01 0.50 

LR vs H2         0.04 0.16 0.06 0.37 
See note to Table 10. It should be noted that the one-period and daily effects now collapse to a single coefficient. 
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Table 14: Unconditional correlations 
 S&P Ethanol Crude Oil S&P Ethanol Crude Oil
 Daily frequency 45-minute frequency 
Ethanol 0.0518   0.0305   
Crude Oil 0.3792 0.1112  0.4599 0.0301  
Natural Gas 0.0536 0.0715 0.1091 0.0651 0.0214 0.1029 
 15-minute frequency 5-minute frequency 
Ethanol 0.0029   -0.0044   
Crude Oil 0.4536 0.0130  0.4542 0.0056  
Natural Gas 0.0530 0.0168 0.0810 0.0492 0.0101 0.0790 
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Figure 1: Average 5-minute ethanol futures volume (shaded area denotes 9:35-13:15) 
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Figure 2: Average 5-minute crude oil futures volume (shaded area denotes 9:35-13:15) 
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Figure 3: Average 5-minute natural gas futures volume (shaded area denotes 9:35-13:15) 
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Figure 4: Average squared 5-minute S&P500 index returns (shaded area denotes 9:35-13:15) 
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Figure 5: Average squared 5-minute ethanol futures returns (shaded area denotes 9:35-13:15) 
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Figure 6: Average squared 5-minute crude oil futures returns (shaded area denotes 9:35-13:15) 
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Figure 7: Average squared 5-minute natural gas futures returns (shaded area denotes 9:35-13:15) 
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Figure 8: Conditional variances of model H3 in log-scale at the 15-minute frequency  
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Figure 9: Conditional correlations of scalar DCC at the 15-minute frequency 
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