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Abstract

In this article we consider the efficient estimation of the tail distribution of the maximum
of correlated normal random variables. We show that the currently recommended Monte
Carlo estimator has difficulties in quantifying its precision, because its sample variance
estimator is an inefficient estimator of the true variance. We propose a simple remedy: to
still use this estimator, but to rely on an alternative quantification of its precision. In addition
to this we also consider a completely new sequential importance sampling estimator of
the desired tail probability. Numerical experiments suggest that the sequential importance
sampling estimator can be significantly more efficient than its competitor.

Keywords. Rare event simulation; Correlated Gaussian; Tail probabilities; Sequential impor-
tance sampling.

1 Introduction

Let X be a d-dimensional random variable with an N(a,Σ) distribution and corresponding
multivariate normal density φ(x;a,Σ). In this paper we focus on techniques to efficiently
estimate the tail distribution

`(γ)
def
= P

(
max

i∈{1,...,d}
Xi ≥ γ

)
,

in the asymptotic regime that γ grows large. This problem arises, for example, in dealing with
Gaussian random fields in the physical sciences, but in various other application domains as
well; see e.g. Adler and Taylor (2009), Adler et al. (2012), and Mandjes (2007), and the refer-
ences therein.
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Recently, Adler et al. (2008) and Blanchet and Li (2011) proposed an ingenious strongly
efficient estimator for `(γ). Their idea is to recognize that, under the condition that, for all pairs
of distinct i, j in {1, . . . , d}, P(Xi > γ |Xj > γ) = o(1) as γ ↑ ∞ (which applies when
Cor(Xi, Xj) < 1; we comment on this later), the inclusion-exclusion formula implies that1

`(γ) = P

(
d⋃
i=1

{Xi > γ}

)
=

d∑
i=1

P(Xi > γ) + O

∑
i<j

P(Xi > γ,Xj > γ)

 , γ ↑ ∞.

The next step is to realize that, with Φ denoting the complementary cdf of the N(0, 1) estimator,
the marginal probabilities

αi(γ)
def
= P(Xi > γ) = Φ

(
γ − ai√

Σii

)
, i = 1, . . . , d,

are known (i.e., can be efficiently evaluated with arbitrary precision). As a consequence, the
value

α(γ)
def
=

d∑
i=1

P(Xi > γ)

is also easily computable. These observations suggest the following mixture importance sam-
pling density, with φ(x−i |xi;a,Σ) defined in the obvious way:

m(x) =
φ(x;a,Σ)

∑d
i=1 I{xi > γ}

α(γ)

=

d∑
i=1

wi
φ(xi; ai,Σii)I{xi > γ}

αi(γ)
φ(x−i |xi;a,Σ), where wi

def
=

αi(γ)

α(γ)
.

It is then straightforward to verify that the resulting importance sampling estimator, with X ∼
m(x),

˘̀=
α(γ)∑d

i=1 I{Xi > γ}
is a vanishing relative error one in the sense that, as an immediate consequence of the fact that
the likelihood ratio is bounded from above by α(γ),

Varm(˘̀)

`2(γ)
=
Em[˘̀2]

`2(γ)
− 1 ≤ α2(γ)

`2(γ)
− 1 = o(1), γ ↑ ∞;

here Em[·] and Varm(·) denote the expectation and variance operators with respect to the den-
sity m(·).

In practical simulations Adler et al. (2008); Blanchet and Li (2011) estimate the precision
by generating n independent realizations of ˘̀, namely ˘̀

1, . . . , ˘̀
n, and then computing the cor-

responding sample variance

S2
n =

1

n

n∑
i=1

(˘̀
i − ¯̀)2,

where ¯̀ = (˘̀
1 + · · · + ˘̀

n)/n. Ideally, Sn/(¯̀√n) would then yield a consistent estimator of
the relative error of the sample mean ¯̀and in numerical experiments we would report either the
pair ¯̀and Sn/(¯̀√n), or (say) the 95% approximate confidence interval ¯̀± 1.96× Sn/

√
n.

1Throughout the paper x = o(y) stands for limy↑∞ x/y = 0 and x = O(y) stands for lim supy↑∞ |x/y| < ∞.
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Despite the vanishing relative error property of ¯̀, the practical performance of its error
estimate Sn/(¯̀√n) is problematic, because S2

n is not a reliable and efficient estimator of the
true variance of ¯̀. More often than not, the pair ¯̀ and S2

n does not provide any more useful
information than the asymptotic approximation α(γ), because with very high probability ˘̀

i =

α(γ) for all 1 = 1, . . . , n, and hence S2
n = 0, resulting in severely underestimating the true

variance of ¯̀.
In this article we formally prove (Section 2) that the sample variance estimator S2

n is inef-
ficient, in the sense that its relative error diverges. This has motivated us to advocate a simple
remedy to this problem: we propose estimating or bounding the variance of ¯̀using an estimator
different from the inefficient S2

n. As a consequence, it is now always possible to quantify the
accuracy of the estimator ¯̀.

In addition to this simple remedy, we also investigate a new sequential importance sampling
estimator (Section 3), whose likelihood ratio is a smooth function. The advantage of having a
smooth likelihood ratio in the current context is that the corresponding sample variance estima-
tor will deviate from zero.

On the down side, we do not provide a formal proof of the efficiency (or inefficiency, for that
matter) of the sample variance of the sequential importance sampling estimator. Nevertheless,
numerical experiments (Section 3.3) indicate that the sequential importance sampling estima-
tor provides a reliable error estimate, and can achieve (in representative examples) a variance
reduction over ¯̀of the order O(1012) .

2 Quantifying the precision

The reason why it is difficult to quantify the precision of ¯̀using S2
n is a direct consequence of

the following result. It entails that estimating the variance for large γ via S2
n is impractical.

Proposition 1 (Inefficiency of Sample Variance of ˘̀). Let S2
n be the sample variance based on

n independent replications of ˘̀. Then,

lim inf
γ↑∞

Varm(S2
n)

Var2m(˘̀)
=∞.

Proof: Define by N the number of entries ofX larger than γ:

N
def
=

d∑
i=1

I{Xi > γ},

so that `(γ) = P(N ≥ 1). Next, we define βi,j(γ) = P(Xi > γ,Xj > γ) and β(γ) =∑
i<j βi,j so that the residual α(γ)− `(γ) satisfies

r(γ)
def
= α(γ)− `(γ) = β(γ) + o

∑
i<j

P(Xi > γ,Xj > γ)

 .

Note that it holds that `(γ) = Θ(α(γ)), which means that both `(γ) = O(α(γ)) and α(γ) =

O(`(γ)) are valid. In addition, r(γ) = o(α(γ)); P(N > 1) = Θ(r(γ)); and Pm(N = 1) =

P(N = 1)/α(γ) = Θ(1).
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Using these properties, we obtain by distinguishing between the possible values of N ∈
{1, . . . , d}, that the k-th centered moment (for any k ≥ 1) of ˘̀can be written as

Em

∣∣∣˘̀− `(γ)
∣∣∣k =

d∑
j=1

Em

[∣∣∣˘̀− `(γ)
∣∣∣k I{N = j}

]

= |α(γ)− `(γ)|kPm(N = 1) +

d∑
j=2

∣∣∣∣α(γ)

j
− `(γ)

∣∣∣∣kPm(N = j)

= rk(γ)Pm(N = 1) + Θ(αk)Pm(N > 1)

= rk(γ)Pm(N = 1) + Θ(αk−1)P(N > 1)

= Θ
(
rk(γ)

)
+ Θ

(
αk−1r(γ)

)
.

Therefore, for the relative error of S2
n given in equation 9 of L’Ecuyer et al. (2010) we obtain

(abbreviating for the moment r = r(γ))

nVarm(S2
n)

Var2m(˘̀)
=

Em(˘̀− `(γ))4

[Em(˘̀− `(γ))2]2
− 1 +

2

n− 1

=
Θ(r4) + Θ(α3r)

Θ(r4) + Θ(αr3) + Θ(α2r2)
+ O(1)

The first term diverges, because r(γ) = o(α(γ)) implies that the denominator converges to zero
faster than the numerator; in fact, the relative error grows at the rate α/r. �

Even though the relative error diverges, one can still hope that the growth would be at a
very slow rate. Unfortunately, this is not the case. Assume, for example, that all pairs (Xi, Xj)

are jointly normal with zero mean, Var(Xi) = Var(Xj) = 1, and Cor(Xi, Xj) = ρi,j < 1,
then using the results in Hashorva and Hüsler (2003) we can easily show that, for ease writing
ρ = ρi,j ,

βi,j = P(Xi > γ,Xj > γ) ' (1 + ρ)2

2π
√

1− ρ2 γ2
exp

(
−γ

2

2

2

1 + ρ

)
, γ ↑ ∞ .

In other words,

βi,j
αj

= P(Xi > γ |Xj > γ) ' (1 + ρ)2√
2π(1− ρ2) γ

exp

(
−γ

2

2

1− ρ
1 + ρ

)
, (1)

and from r = Θ(
∑

i<j βi,j) we conclude that the relative error of S2
n grows at the exponential

rate c1γ exp(c2γ
2) for some strictly positive constants c1, c2.

Example 1 (Positive Correlation). To illustrate the failure of S2
n as an estimator, consider the

case with a = 0 with covariance matrix with entries Σi,j = exp(−|i− j|) for d = 103. Table 1
below shows that S2

n is only nonzero when γ is small, and that it fails as an estimator for γ ≥ 5.5.
In fact, for the precision considered in this simulation, the estimator ¯̀= α for γ ≥ 5.5.
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Table 1: Estimates of `, using n = 103 and d = 103.

γ α(γ) ¯̀ Sn/(¯̀√n) κ

3 0.73 0.0165 0.036 0.036
4 0.0316 0.0311 0.0029 0.0046
5 0.0002866 0.0002865 0.00050 0.00078

5.5 1.899× 10−5 1.899× 10−5 0 0.00037
6 9.8659× 10−7 9.8659× 10−7 0 0.00018

6.5 4.0160× 10−8 4.0160× 10−8 0 8.2× 10−5

7 1.2798× 10−9 1.2798× 10−9 0 3.6× 10−5

7.5 3.1908× 10−11 3.1908× 10−11 0 1.5× 10−5

8 6.22096× 10−13 6.22096× 10−13 0 6.0× 10−6

9 1.128588× 10−16 1.128588× 10−16 0 8.0× 10−7

10 7.6198530× 10−21 7.6198530× 10−21 0 8.5× 10−8

Note that in this example the covariance matrix has positive correlation structure, which is ben-
eficial for the performance of the estimator S2

n, as seen from (1). For a negative correlation
matrix, the performance of S2

n is even worse. The last column shows κ, which is an alternative
estimator of the true relative error, which we introduce below. �

Given the problem with quantifying the error of the estimator ¯̀, a natural way to proceed
is to attempt to modify ˘̀ so that we do observe some variability during the course of the simu-
lation. One such idea is the undershooting adaptation investigated by Blanchet and Li (2011)
for completely different reasons (relating to the discretization of Gaussian random fields), but
which may be helpful in our context as well. The idea is to sample from the modified importance
sampling density which undershoots by ε, say ε = 1/γ:

mε(x) =
φ(x;a,Σ)

∑d
i=1 I{xi > γ − ε}∑d

i=1P(Xi > γ − ε)
=
φ(x;a,Σ)

∑d
i=1 I{xi > γ − ε}
αε(γ)

and then use the importance sampling estimator

˘̀
ε = αε(γ)

I{maxiXi > γ}∑d
i=1 I{Xi > γ − ε}

.

With a suitable choice of ε, this modification introduces some variability in ˘̀
ε, but at a significant

loss of efficiency. For example, for γ = 10 in Table 1 one can at most obtain an accuracy of
one significant figure for the same simulation effort. Observe, however, that it does not seem
logical to use an expensive Monte Carlo estimator to obtain a mediocre accuracy of one or two
significant figures when the simple asymptotic approximation α is already accurate at least to
seven significant figures (where we again refer to the κ column in Table 1). Summarizing, the
estimator ˘̀ should not be tampered with, because it already provides a nice transition from a
Monte Carlo estimate (for small γ) to a very accurate deterministic estimate α (for large γ). The
estimator is efficient, but the problem is that we simply do not know how efficient it is. The
remedy we propose in this paper, is that we advise to use an upper bound on the relative error.
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To find how efficient ˘̀ is, one can consider the following upper bound on the relative error
(writing for ease ` for `(γ)):

nVar(¯̀)

`2
=
α(γ)

`2
E

[
I{N ≥ 1}

N

]
− 1

≤ α(γ)

`2
P(N ≥ 1)− 1

≤ α(γ)

`
− 1 =

α(γ)− `
`(γ)

≤ β(γ)

`
,

where β(γ)
def
=
∑

i<j P(Xi > γ,Xj > γ). Thus, if we knew β(γ), we can use κ def
=√

β(γ)/(¯̀n) as our estimate for the relative error of ¯̀. This is the value displayed in the last
column of Table 1.

Note that there are deterministic quadrature algorithms for the computation of each βij ; see,
for example, Drezner and Wesolowsky (1990). Thus, in principle, β(γ) is computable in O(d2)

time, which is acceptable since the simulation of X requires O(d3) time — the complexity of
the Cholesky decomposition of the matrix Σ.

3 Sequential importance sampling estimator

As mentioned in the previous section, there is no point in considering an alternative to the
already quite good ˘̀, unless the new estimator is at least as efficient as ˘̀and provides an error
estimate. In this section we provide one such alternative estimator. The new estimator also
enjoys vanishing relative error, and in all numerical experiments that we performed it turned out
to be more accurate than ˘̀. The proposed estimator is based on the following splitting of the
event into d components Kroese et al. (2011, Page 396):

`(γ) = P

(
max

i∈{1,...,d}
Xi > γ

)
=

d∑
i=1

P

(
Xi > γ,Xi ≥ max

k 6=i
Xk

)
=

d∑
i=1

P (APiX ≥ l) ,

where Pi is a permutation matrix that swaps the i-th entry with the first entry, and

A
def
=


1 0 · · · · · · 0

1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
. . . . . .

...
1 0 · · · 0 −1

 , l
def
=


γ

0
...
0

 (2)

Since APi(X − a) ∼ N(0, APiΣP
>
i A
>) we can write

P(APiX ≥ l) = P(LiZ ≥ li), Z ∼ N(0, I),

where li = l−APi a; the matrix Li is the L factor in the LQ matrix decomposition (Golub and
Van Loan, 2012) of the covariance

LiL
>
i = APiΣP

>
i A
>
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We insist that Li has nonnegative entries down the main diagonal so that, whenever Li is full
rank, it coincides with the Cholesky factor of LiL>i .

We propose to estimate the probabilities pi = P(LiZ ≥ li) separately. Suppose p̂i is an
unbiased Monte Carlo estimator of pi constructed from a sample size of ni, and with variance
Var(p̂i) = σ2i /ni. Our goal now is to estimate ` via ˆ̀ =

∑
i p̂i, using a total computational

budget of n =
∑

i ni. We choose

ni
def
=

⌈
n× αi(γ)

α(γ)

⌉
∧ 3,

that is, ni ∝ αi, for reasons that will be discussed later. All that remains to make ˆ̀ a viable
estimator is to explain how we estimate a generic probability of the form p = P(LZ ≥ l),
where L is lower triangular.

We use the sequential Monte Carlo method of Genz and Bretz (2009). The method relies on
the observation that the set {z : L z ≥ l} can be written as the intersection of

z1 ≥ l̃1
def
=

l1
L11

, z2 ≥ l̃2
def
=

l2 − L21z1
L22

, · · · , zd ≥ l̃d
def
=

ld −
∑d−1

j=1 Ldjzj

Ldd

This decomposition suggests the sequential importance sampling pdf:

g(z) = g(z1)g(z2 | z1) · · · g(zd−1 | zd)

with

g(zi | z1, . . . , zi−1) =
φ(zi; 0, 1)I{zi > l̃i}

Φ(l̃i)
,

where Φ(·) is, as before, the tail distribution of the standard normal. Thus, conditional on all
preceding variables, eachZi is drawn from a truncated normal density. The resulting importance
sampling estimator of p = P(LZ ≥ l) based on a single simulation is

V =
φ(Z;0, I)

g(Z)
= exp

( d∑
i=1

log Φ

(
li −

∑i−1
j=1 LijZj

Lii

))
, Z ∼ g(z) (3)

We can now summarize the main ingredients of the proposed algorithm.

Algorithm 1 Estimating `(γ) = P(maxi∈{1,...,d}Xi ≥ γ) withX ∼ N(a,Σ).

Require: parameter γ; d× d covariance Σ; mean a; sample sizes {ni} such that
∑d

i=1 ni = n.
for i = 1, . . . , d do

2: Let Pi be a permutation matrix swapping the i-th element with the first element.
li ← l−APi a, where A, l are defined in (2).

4: Compute the lower triangular factor Li such that LiL>i = APiΣP
>
i A
>.

Simulate ni independent replications of (3), V1, . . . , Vni .
6: p̂i ← 1

ni

∑
j Vj , so that E[p̂i] = P(LiZ ≥ li)

σ̂2i ← 1
ni

∑
j(Vj − p̂i)2

8: ˆ̀←
∑

i p̂i

return ˆ̀and its estimated relative error
√∑

i σ̂
2
i /ni

/
ˆ̀.
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In the following two subsections we comment on two issues: (1) the efficiency of the newly
constructed estimator ˆ̀as γ ↑ ∞, and the concomitant choice ni ∝ αi/α, and (2) the efficient
computation of the factors L1, . . . , Ld.

3.1 Efficiency and Strata Sample Sizes

First note that pi ' αi(γ), in the sense that

αi(γ) ≥ pi = αi(γ)− αi(γ)P

(
max
k 6=i

Xk > Xi |Xi > γ

)
≥ αi(γ)− αi(γ)P

(
max
k 6=i

Xk > γ |Xi > γ

)
= αi(γ)× (1− o(1)).

Next, observe that (3) can be rearranged as

V

P(L11Z1 > γ)
=

d∏
i=2

Φ

(
li −

∑i−1
j=1 LijZj

Lii

)
≤ 1.

In other words, all the p̂i s can be written as p̂i = αi(γ) q̂i where q̂i ≤ 1 is an unbiased estimator
of the conditional probability P(maxk 6=iXk < Xi |Xi > γ). Therefore,

niVar(p̂i) = σ2i ≤ αi(γ) pi − p2i

Then,
∑

i pi = `(γ) ' α(γ) and pi ' αi(γ) in combination with ni ' n× αi(γ)/α(γ) imply
a vanishing relative error estimator:

nVar(ˆ̀)

`2
=
n
∑

i σ
2
i /ni

`2

'
α(γ)

∑
i σ

2
i /αi(γ)

`2

≤
α(γ)

∑
i pi

`2
−
α(γ)

∑
i p

2
i /αi(γ)

`2
= o(1).

3.2 Computation of L1, L2, . . . , Ld in O(d3) Time

At first examination, it would seem that in Step 4 of Algorithm 1 we need to compute each lower
triangular factor Li from scratch at a cost of O(d3), and since this step is inside a loop of length
d, the running time of the algorithm would be O(d4). But in fact, the computation of all the d
lower triangular factors can still be accomplished in O(d3) time, as we point out now. Let

C1C
>
1 = P1 ΣP1 = Σ

be the standard Cholesky decomposition of the unpermuted covariance Σ. Set Q1 = I , so that
C1Q1 is the LQ decomposition of C1 (or equivalently Q>1 C

>
1 is the QR decomposition of C>1 ).

The computation of C1 takes O(d3) operations.
Given C1 we wish to compute the Cholesky decomposition CiC>i of the permuted covari-

ance matrix
Pi ΣP>i = (PiC1)(PiC1)

>

8



in O(d2) operations. To this end, let ei denote the unit column vector with one in the i-th
position and ci denote the i-th row of C1. Then, we can express PiC1 as a rank one perturbation
of matrix C1:

PiC1 = C1 + (e1 − ei)(c>i − c>1 )

It is well known, see for example (Golub and Van Loan, 2012, Page 593), that given the LQ
factors of C1, we can obtain the LQ factors, Ci and Qi, of the rank-1 perturbed matrix

C1 + (e1 − ei)(c>i − c>1 )

in O(d2) time. Hence, the entire list C1, . . . , Cd is computable in O(d3) time. From this list we
can easily obtain the factors Li as follows.

Observe that ACi is lower triangular, because A is lower triangular. Set ui = diag(ACi)

to be the vector containing the diagonal elements of matrix ACi and let Di = diag(sign(ui))

be a diagonal matrix with diagonal corresponding to the signs of the elements of ui. Then,

Li = ACiDi

is the desired factor of PiΣP>i , because Li is lower triangular by construction, and has nonneg-
ative diagonal entries. Note that, whenever Li is full rank, it coincides with the Cholesky factor
of Pi ΣP>i .

3.3 A Numerical Study

In this subsection we discuss two numerical examples.

Example 2 (Negative Correlation). We consider estimating ` with a = 2 × 1, d = 100, and
precision matrix (Fernández et al., 2007):

Σ−1 =
1

2
I +

1

2
11>

Table 2 below shows the estimate ˆ̀ and the relative error estimator for both ˆ̀ and ¯̀ (including
the new estimate κ). The last column shows the factor by which the variance is reduced using
the sequential importance sampling estimator, namely, the ratio V̂ar(¯̀)/V̂ar(ˆ̀). �
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Table 2: Estimates of ` using n = 105 for both methods.

γ ˆ̀ rel. err. ˆ̀ Sn/(¯̀√n) κ variance gain

6 0.202 2.2× 10−4 7× 10−4 1.0× 10−3 32

7 1.887× 10−2 2.0× 10−5 2.0× 10−4 2.8× 10−4 102

8 1.0044× 10−3 1.2× 10−6 4.2× 10−5 6.3× 10−5 352

8.5 1.92672× 10−4 2.4× 10−7 1.8× 10−5 2.7× 10−5 802

8.8 6.74778× 10−5 1.2× 10−7 1.2× 10−5 1.6× 10−5 1002

9 3.271876× 10−5 5.4× 10−8 5× 10−6 1.1× 10−5 922

9.5 4.917356× 10−6 9.0× 10−9 7× 10−6 4.2× 10−6 4602

10 6.5380233× 10−7 1.0× 10−9 0 1.5× 10−6 15002

11 7.990587315× 10−9 1.3× 10−11 0 1.6× 10−7 108

12 5.95823969666× 10−11 1.5× 10−13 0 1.3× 10−8 109

13 2.70552710714302× 10−13 6.1× 10−16 0 8.4× 10−10 1012

Example 3 (Random Correlation Matrices). We next compare the two estimators by using a
large scale simulation with randomly generated test correlation matrices. The random correla-
tion matrices are simulated via the method of Davies and Higham (2000), whereby the eigen-
values {λi} of each correlation matrix are uniformly distributed over the simplex {λ :

∑
i λi =

d, λi > 0}.
Thus, the experiments consist of the following. For a given value of γ and d = 100, we

simulate 100 independent realizations of a ∼ U(0, 1)100 (uniformly distributed in the unit hy-
percube) and Σ (simulated according to the Davies and Higham (2000) generator). In each
of these 100 experiments we compute ˆ̀ and ¯̀ (estimators of `(γ), X ∼ N(a,Σ)) and their
respective relative errors using a sample size of n = 104.

The boxplots on Figure 1 show the empirical distribution of the relative errors of ˆ̀ and ¯̀

(using n = 104) for different values of γ. Each boxplot is built based on the 100 independent
replications. The boxplots corresponding to ¯̀are all in the upper left part of the graph (in black).
The boxplots corresponding to ˆ̀are always in lower position (in blue).
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Figure 1: Distribution of relative errors of ˆ̀and ¯̀for different values of γ.

We observe that the relative error of ˆ̀ is always lower compared to that of ¯̀, and that the
difference in computational cost between the algorithms is negligible. In addition, the sample
variance S2

n works only up until γ ≤ 6, after which it yields the meaningless estimate of 0. In
fact, the boxplot for γ = 6 is not fully formed, because most of the 100 independent simulations
did not yield a meaningful variance estimate. The rest of the boxplots for γ > 6 are computed
from the distribution of our new error estimate κ. �

4 Concluding remarks

We considered the estimation of the tail distribution of the maximum of correlated normal ran-
dom variables. We showed that the sample variance of an vanishing relative error estimator is
not suitable for assessing its Monte Carlo variance. As a simple remedy, we propose an alterna-
tive estimate of the error. In addition, we consider a new sequential Monte Carlo estimator of
the tail probability, which turns out to be more accurate in all of the examples we considered.

In future research we hope to achieve even better accuracy by exploiting the representation

`(γ) = α(γ)−
∑
i

αi(γ)P

(
max
k>i

Xk > γ |Xi > γ

)
,

and applying the mixture importance sampling idea of Adler and Taylor (2009) to the estima-
tion of the terms P(maxk>iXk > γ |Xi), conditional on having simulated an Xi > γ. This
approach seems promising in that one may be able to prove a bounded relative error property
for the sample variance estimator.
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