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ABSTRACT

We introduce a new estimation framework which extends the Generalized Method
of Moments (GMM) to settings where a subset of the parameters vary over time
with unknown dynamics. To filter out the dynamic path of the time-varying pa-
rameter, we approximate the dynamics by an autoregressive process driven by the
score of the local GMM criterion function. Our approach is completely observation
driven, rendering estimation and inference straightforward. It provides a unified
framework for modeling parameter instability in a context where the model and
its parameters are only specified through (conditional) moment conditions, thus
generalizing approaches built on fully specified parametric models. We provide
examples of increasing complexity to highlight the advantages of our method.
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1 Introduction

We introduce a new estimation framework which extends the Generalized Method of Mo-

ments (GMM) of Hansen (1982) to allow for time-variation in a subset of the parameters. Our

approach only requires the researcher to specify a set of conditional moment conditions and a

set of parameters that are believed to vary over time. Given these moment conditions, we ap-

proximate the unknown dynamics of the time-varying parameter by an autoregressive process

whose shocks are linear transformations of the scaled gradient of the conditional GMM objective

function. This adjusts the parameters in a (local) steepest descent direction using the model’s ob-

jective function at time t. The resulting dynamics for the time-varying parameter are observation-

driven, making estimation of the model straightforward. We label our approach as the Gener-

alized autoregressive Method of Moments (GaMM) and provide several empirical applications

that illustrate its usefulness.

GaMM directly builds on GMM; see Hansen (1982). GMM is appealing because it provides a

unified framework for estimation and testing using only a vector of moment conditions. Moment

conditions are often derived from economic theory, and express an economic agent’s conditional

expectations over future outcomes given an appropriate information set. GMM does not require

the researcher to specify the entire data generating process, which economic theory often does not

provide. However, many economic models do require additional flexibility to match key features

of the data, such as time-varying conditional means, conditional heteroscedasticity, or regime

shifts. Research over the past decade has emphasized the economic importance of capturing these

features by introducing latent variables or time-varying parameters into the model; for surveys

in macro and financial economics, see, e.g. Shephard (2005), Hamilton (2010), and Fernández-

Villaverde and Rubio-Ramírez (2013).

Despite the widespread appeal of GMM estimators, their extension to handle time-varying

parameter models typically requires simulation based estimators as discussed further below. Our

approach using observation-driven GaMM dynamics for the time-varying parameters offers a

complementary and easy-to-implement alternative to these procedures.

We provide three empirical applications that illustrate the usefulness of GaMM estimation.

Our examples highlight settings where traditional techniques are either difficult to implement

or no alternative technique is readily available. These applications include: (i) estimation of sta-
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ble distributions with time-varying scale parameters where no closed-form density exists, thus

making likelihood based estimation a challenge; (ii) consumption-based asset pricing models

with myopic expectations formation and unstable structural risk aversion parameters. A web

appendix contains further material for a setting with time-varying parameters in a linear regres-

sion model with an endogenous regressor.

GaMM factor dynamics use the gradient of the local GMM objective function to determine

next period’s value of the time-varying parameter. We show that this factor recursion based on

the gradient satisfies local optimality properties, even if the moment conditions are misspecified.

In particular, the GaMM dynamics result in parameter changes that improve the local quadratic

GMM objective function formulated in the (possibly misspecified) moment conditions. Simi-

lar optimality results were established for the more specialized maximum likelihood framework

with the generalized autoregressive score dynamics of Creal et al. (2011, 2013) and Harvey (2013);

see Blasques et al. (2015). GaMM factor dynamics have an additional advantage because they are

observation-driven in the sense of Cox (1981): parameters vary over time as a function of lagged

dependent variables and exogenous variables. Next period’s parameter values are perfectly pre-

dictable given the current information set. The recursive nature of the estimation problem is

similar to generalized autoregressive conditional heteroscedasticity (GARCH) models. Estima-

tion and inference is relatively straightforward in the GaMM framework and does not require

simulation.

Our paper is related to two strands of literature. The first deals with the estimation of parameter-

driven (state space) models with partially specified conditional observation densities. For tra-

ditional parameter-driven state space models with fully specified observation densities, see for

instance Kim and Nelson (1999) and Durbin and Koopman (2012). Our interest lies in the setting

where the observation density is only partially specified. Method of moments (or more generally

minimum distance) estimators become more attractive than fully specified parametric likelihood

methods in this setting. Procedures for estimating the unknown, static parameters of parameter-

driven models by method of moment estimators include the simulated method of moments of

McFadden (1989), the efficient method of moments by Gallant and Tauchen (1996), indirect infer-

ence as in Gouriéroux et al. (1993), and the recent extension of GMM to latent variables by Gallant

et al. (2014). Except for a few special cases, estimation of the latent variables in parameter-driven

models can become quite involved. Estimation of the latent, time-varying parameters in models
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whose conditional observation densities are only partially specified is even more challenging.

Two contributions in this setting are the re-projection method proposed by Gallant and Tauchen

(1998) in conjunction with their efficient method of moments (EMM) and the approach by Gal-

lant et al. (2014) that uses sequential Monte Carlo methods. In contrast to the above approaches,

the unknown path of the time-varying parameters in our GaMM framework follows directly as

a by-product of the (fairly straightforward) estimation of the model’s static parameters.

Second, our paper extends the literature on method of moments estimation of fully-specified

observation-driven models. The most prominent example of this is Gaussian quasi-maximum

likelihood (QML) estimation of GARCH models in the absence of conditional normality; see for

example the overview of Francq and Zakoïan (2010). QML estimation of GARCH models can

be viewed as a special case of GaMM estimation, with the latter offering more flexibility to in-

clude additional conditional moment conditions. The GaMM estimation framework also gen-

eralizes other observation-driven approaches proposed in the recent literature. In particular,

when the conditional moment conditions are the scores of a fully parametric likelihood function,

GaMM encompasses the generalized autoregressive score approach of Creal et al. (2011, 2013)

and Harvey (2013). Consequently, GaMM nests many popular econometric models including

the GARCH model of Engle (1982) and Bollerslev (1986), the ACD model of Engle and Russell

(1998), as well as many new models for time-varying parameters under fat-tails and mixed ob-

servation densities; see the references in Creal et al. (2011, 2013) as well Harvey and Luati (2014),

Lucas et al. (2014), and Creal et al. (2014). In addition, our framework gives rise to new time-

varying parameter models that have not been studied before.

The remainder of this paper is organized as follows. In Section 2, we describe the basic

methodology. Section 3 contains examples to illustrate the relevance of GaMM for applied work.

In Section 4, we discuss penalized extensions of the methodology that allow for improved finite

sample properties of the estimator. Section 5 concludes.

2 Methodology

2.1 A motivating example

We start with a motivating example. Consider the problem of estimating the mean µ of a

random variable yt using the moment condition E[yt − µ] = 0. The standard GMM objective
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function for this problem is (
∑T

t=1(yt − µ))2, with solution µ̂ = T−1
∑T

t=1 yt. Assume the

true mean of yt changes at time τ + 1, such that E[yt] = µ0 for t = 1, . . . , τ , and E[yt] = µ1

for t = τ + 1, . . . , T , where µ0 < µ1. Using the same (unconditional) moment condition

to estimate µ and abstracting for a moment from potential finite sample issues, the full-sample

GMM estimate is too high for the first part of the sample, and too low for the second compared to

the true conditional mean. Furthermore, ifµ0 is substantially belowµ1, then (yt−µ̂) is negative

on average for t = 1, . . . , τ , and positive for t = τ + 1, . . . , T . Put differently, the moment

condition evaluated for the observation at the time t provides a signal about the direction in

which to adjust µ̂ to obtain a better fit to the data.

If consecutive observations yt give a persistent signal that the current estimate µ̂ of µ is too

high, it may be advisable to temporarily lower the value of µ̂, as decreasing µ̂ at time t is likely to

reduce the predictive variance of yt+1− µ̂. The converse holds if the data signals that the current

estimate µ̂ of µ is too low. Thus, if the true parameter varies slowly over time or only changes

incidentally, an adjustment based on time t’s moment condition helps reduce the criterion func-

tion at time t + 1. It is precisely this persistence in ‘misfit’ that we exploit in the Generalized

autoregressive Method of Moments (GaMM) dynamics.

To introduce the GaMM dynamics for a time-varying parameter ft, consider a GMM crite-

rion function for the observation at time t only, i.e., Et−1[yt − ft]
2, where the conditional mean

ft replaces the unconditional mean µ, and the conditional expectation Et−1[ · ] replaces its un-

conditional counterpart E[ · ]. Taking the derivative of this objective function with respect to ft

and evaluating it at the t-th observation rather than taking the expectation, we obtain

st = −2(yt − ft). (1)

We use this gradient st of the time t objective function to formulate autoregressive dynamics for

the time-varying parameter ft. For example, with autoregressive dynamics of order one, we set

ft+1 = ω · (I −B1) +B1ft + A1st, (2)

where ω, A1, and B1 are static parameters that need to be estimated and that describe the dy-

namic behavior of ft. It is easy to generalize this specification to include more lags of ft and

st (see Creal et al., 2013), non-linearity, structural time series dynamics (see Harvey and Luati,
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2014), or fractional integration (see Janus et al., 2014).

It is evident that ft in (2) has observation-driven dynamics. Given information up to time

t, the parameter ft+1 is known as it only depends on yt, yt−1, . . . which is similar to a GARCH

model. This makes the proposed GaMM methodology computationally fast and renders param-

eter estimation and inference straightforward. We emphasize that the GaMM factor dynamics

are not arbitrary. In Section 2.3, we describe the optimality properties of these dynamics.

From the example above, define the vector of static parameters as θ = (ω,A1, B1)
⊺. To esti-

mate θ, we need unconditional moment conditions which we obtain these by instrumenting the

conditional moment condition Et−1[yt − ft]. We propose the unconditional moment conditions

E [(yt − ft)⊗ (1,ft−1, st−1)
⊺] = 0, (3)

with ⊗ denoting the Kronecker product. Due to the presence of the constant term in the vector

of instruments, the original (conditional) moment condition E[yt − ft] also needs to hold un-

conditionally. GaMM thus provides a natural extension of the static GMM moment conditions

that we started out with. GaMM dynamics exploit any persistence in the misfit of the original

moment condition Et−1[yt − ft] = 0 by including in (3) the autocorrelation of the misfit of the

cross-product between st = −2(yt − ft) and st−1. The fact that the unconditional expectation

of this cross-product needs to be zero in (3) forces the dynamic scheme in (2) to remove as much

autocorrelation in (yt − ft) as possible.

The distributional properties of the GMM estimator for θ in a framework with GaMM dy-

namics turn out to be straightforward. Equation (3) fits into the GMM framework of Hansen

(1982) under standard assumptions. Therefore, consistency and asymptotic normality of the es-

timator for θ follow easily, as do the optimal weighting matrices for two-stage feasible GMM

estimation of θ. In the remaining sections, we provide the formal background of the intuitive

results presented in this section and show the performance of GaMM estimation in a range of

different settings.
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2.2 GaMM dynamics

To introduce Generalized autoregressive Methods of Moments (GaMM) dynamics, consider

the moment conditions

E [gt (wt; f,θ)] = 0, (4)

where gt : Rm × F × Θ → RK , wt ∈ Rm is observed, and f ∈ F and θ ∈ Θ denote

parameter vectors that lie in the parameter spacesF and Θ, respectively. In our case, we assume

that f varies over time as ft with unknown dynamics. We approximate the dynamics of ft in an

observation-driven way and denote the approximation as ft. As ft is observation-driven, it can

be written as a function of past observations wt−1,wt−2, . . .

We now replace the unconditional moment condition (4) by its conditional counterpart

Et−1 [gt (wt;ft,θ)] = 0. (5)

The dynamic specification for ft starts by considering the GMM objective function at time t,

Et−1 [gt (wt;ft,θ)]
⊺ Ωt Et−1 [gt (wt;ft,θ)] . (6)

whereΩt is a time t−1measurable weighting matrix that is positive semi-definite almost surely.

The expectations in (6) are computed under the true time t − 1 conditional measure Fw of wt,

for which (5) holds. To propagate ft forward to ft+1 given the realization of wt, we take a scaled

steepest descent step of (6) using an appropriate derivative of (6) evaluated at ft. The derivative

concept used should account for the specific value of wt realized at time t. In our setting, the

appropriate concept is given by the Fréchet derivative. It is directly related to the concept of the

influence function of the estimator for ft given the objective function (6); see, e.g., Hampel et al.

(2011).

To define the Fréchet derivative, consider a contaminated measure F ϵ
w = (1− ϵ)Fw + ϵ δwt ,

where δwt is the Dirac measure that puts unit mass on the realized value of wt. By considering

F ϵ
w instead of Fw, we account for the appropriate information in wt when updating ft to ft+1.
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The first order condition corresponding to (6) evaluated at the measure F ϵ
w is

(Gϵ
t)

⊺Ωt Eϵ
t−1 [gt (wt;ft,θ)] = 0, Gϵ

t = Eϵ
t−1 [∂gt (wt;ft,θ) /∂f

⊺
t ] , (7)

where Eϵ
t−1 and Et−1 ≡ E0

t−1 denote the expectations operators taken with respect to F ϵ
w and

F 0
w ≡ Fw, respectively. The influence function of ft for the criterion function (6) is the Fréchet

derivative of (7) in the direction δwt , evaluated at ϵ = 0. After some minor algebra, it is easy to

show that the influence function equals G⊺
tΩt gt (wt;ft,θ), with Gt = G0

t for ϵ = 0; see again

Hampel et al. (2011) for more details. We scale this influence function by its inverse conditional

covariance matrix to account for the curvature of the objective function and to obtain a Gauss-

Newton type improvement when updating ft to ft+1. The resulting scaled step is

∇t = − (G⊺
tΩtG)⋆G⊺

tΩtgt (wt;ft, θ) , (8)

whereH⋆ denotes the Moore-Penrose pseudo-inverse of a general matrixH . The use of a pseudo-

inverse rather than a regular inverse in equation (7) is important, because some of the moment

and scaling matrices in a GMM context may be rank deficient in general. For example, this can

arise when Gt does not depend on either the data or the time-varying parameters; see the case

of the stable distribution in Section 3.1, where most of the relevant matrices have rank one.

We could use the steps ∇t directly in a random walk type updating scheme ft+1 = ft+∇t.

Such dynamics are a special case of the more general autoregressive scheme

ft+1 = ω +

p∑
j=1

Bj

(
f t+1−j − ω

)
+

q∑
i=1

Ai st+1−i, (9)

which we call GaMM(p, q) dynamics, where ω = ω(θ), Bj = Bj(θ), and Ai = Ai(θ) are

appropriately sized vectors and matrices that depend on the static parameter vector θ, and

st = −St∇t, (10)

for some time t − 1 measurable (almost surely) positive semi-definite scaling matrix St. The

scaling matrix St adjusts the direction of the step, for example, if one wants to annihilate the

effect of (G⊺
tΩtG)⋆ in (8) to fully concentrate on the steepest descent direction. Additionally, we

can use an efficient conditional weighting matrix Ωt = Et−1[gt (wt;ft, θ) g
⊺
t (wt;ft, θ)]

⋆ in (6).
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However, as Ωt needs to be computed at each time t, this is computationally more demanding.

In this paper, we set Ωt = I and St = I, which provides good results in the empirical examples

considered later on; see Section 3 and Supplemental Appendix A.

Under the assumption that equation (5) holds, {st}t∈Z forms a martingale difference se-

quence Et−1[st] = 0, where the expectation is taken with respect to the probability measure Fw.

Due to properties of martingale differences, the unconditional mean of ft in (9) is E[ft] = ω if ft

is first-order stationary. To start up the recursion in (9), we can setft = ω for t = 0,−1, . . . ,−p+

1 and st = 0 for t = 0,−1, . . . ,−q+1. Alternatively, the initial values can be estimated together

with the static parameters in θ, though such estimates of initial values will not be consistent.

For the remainder of the discussion, we set p = q = 1 and consider the case of GaMM(1,1)

dynamics with A = A1 and B = B1. If A = B = 0 and f 1 = ω, GaMM dynamics reproduce

a static parameter ft ≡ ω. The static parameter framework is thus a special case of GaMM.

We can exploit this feature to write down a joint model for the static and dynamic parameters.

Partition the vector of static parameters as θ =
(
θ⊺
f , θ

⊺
c

)⊺ where θf contains the parameters

governing the dynamics offt, i.e.,ω,A, andB, and θc includes the remaining static parameters.

The joint GaMM(1,1) dynamics for the vector f̃t+1 = (ft
⊺,θ⊺

c)
⊺ are

f̃t+1 =

 ft

θc

 = ω̃ + B̃
(
f̃ t−j+1 − ω̃

)
+ Ãs̃t−i+1, (11)

B̃ =

 B CB

0 0

 , ω̃ =

 ω

θ

 , Ã =

 A CA

0 0

 ,

where s̃t contains the derivatives with respect to the entire parameter vector f̃t rather than ft

only. The matrices CA and CB allow the time-varying parameter ft to also react to the score of

the static parameters θc. This can be useful, for example, when modeling financial returns with

constant mean but time-varying volatility. In that case the matrices CA capture the leverage

effect. To see this, consider a model with time-varying variance σ2
t and constant mean µ, i.e.,

yt = µ + εt, with εt = σtzt, and zt ∼ D (0, 1) for some distribution D with zero mean and

variance one. We obtain that

gt =

 yt − µ

(yt − µ)2 − σ2
t

 =

 εt

ε2t − σ2
t

 , Gt = −I. (12)
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Fixing CB = 0, the GaMM(1,1) recursion for ft = σ2
t is

σ2
t+1 = (σ2

t − ω)B + ω +CAεt +Aε2t −Aσ2
t

= ω (1−B) + Aε2t + (B −A)σ2
t︸ ︷︷ ︸

GARCH(1,1)

+ CAεt︸ ︷︷ ︸
Leverage

. (13)

Equation (13) coincides with the familiar GARCH(1,1) model of Engle (1982) and Bollerslev (1986)

with an additional leverage effect CAεt. The leverage effect is similar in form and spirit to the

optimal leverage effect of GARCH filters in a misspecified model setting as laid out in Nelson

and Foster (1994). Allowing for CB and/or CA to be different from zero generalizes the score

driven approach from Creal et al. (2013).

2.3 Local optimality of GaMM

In this section, we derive generic local optimality properties for the GaMM dynamics intro-

duced in Section 2.2. Similar optimality properties were derived in Blasques et al. (2015) for

the generalized autoregressive score model of Creal et al. (2011, 2013). In particular, Blasques

et al. show that generalized autoregressive score updates improve the local Kullback–Leibler

divergence between the true data density and the model density. They further show that any

observation-driven update with similar optimality properties needs to be ‘score-equivalent’. All

these results, however, are framed entirely in the setting of information theoretic optimality and

Kullback–Leibler divergences. This follows directly from the use of the conditional log observa-

tion density as the criterion function in the generalized autoregressive score framework. In our

current GMM context, optimality instead centers around the quadratic objective function of the

moment conditions. As a result, the concepts and results in Blasques et al. need to be adapted

accordingly. Interestingly, the optimality results in Blasques et al. (2015) hold whether or not

the statistical model is correctly specified. Similarly, our results hold whether or not the moment

conditions E [g(wt;ft,θ)] = 0 are correctly specified.

We introduce the local GMM objective function

C(t,ft,W) = Et−1 [gt (wt; f,θ) |wt ∈ W ]⊺ Ωt−1 Et−1 [gt (wt; f,θ) |wt ∈ W ]. (14)

Equation (14) considers the behavior of the GMM objective function (6) for a restricted setW ⊆

Rm of realizations of the random variable wt. If W = Rm, then(14) coincides with (6). For
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concreteness, let wt denote the realization of the random variable wt at time t. Our results are

local in nature in that they focus on setsW that contain the empirical realization wt, i.e., {wt} ⊂

W . This approach aligns with the nature of observation-driven models, which intend to improve

the ‘model fit’ close to the most recent observation wt of wt. Though we hope that such an

improvement also leads to a better fit of the model and moment conditions for other regions of the

sample space, observation-driven update steps concentrate on making the model fit better near

the most recent realizations of the data. Note that we do not require the moment conditions to

be correctly specified, i.e., we do not require Et−1 [gt(wt;ft,θ)] = 0. In that sense we only focus

on update steps that reduce the model’s misfit as measured in terms of the quadratic function of

the moment condition. We introduce the following notions of optimality.

Definition 1. Conditional on a realization wt = wt ∈ W for a neighborhoodW of wt, an update from

ft to ft+1 is called Realized Locally (RL) optimal if and only if

C(t,ft,W)− C(t,ft+1,W) ≥ 0, (15)

for every (wt,ft). The update is called Conditionally Locally (CL) optimal if and only if

∫
W
[C(t,ft,W)− C(t,ft+1,W)] dFw(wt) ≥ 0, (16)

for every ft, where Fw is the distribution of wt conditional on the information up to time t − 1 and

conditional on wt ∈ W .

Here, ft+1 can be seen as a function of wt. Note that ft does not depend on wt. The concept

of RL optimality considers updates from ft to ft+1 that improve the local criterion C(t,ft,W)

in a neighborhoodW of the realization wt for given values of wt = wt and ft. It, thus, treats the

realized data value wt as given. CL optimality goes one step further and no longer conditions

on the realization wt, but rather takes the expectation over the entire neighborhood wt ∈ W .

This accounts for the fact that wt has an impact on ft+1 through the update equation. Note that

Definition 1 generalizes the definitions in Blasques et al. (2015) from a fully parametric setting

to the semi-parametric setting of GMM. The proof of the following proposition can be found in

Section Appendix A.

Proposition 1. Let gt(w;f ,θ) and Gt = Gt(w;f ,θ) be continuous in all their arguments, and let

G⊺
tΩt−1Gt be positive definite for all wt ∈ W and given ft. Then there is a GaMM(1,1) update with
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ω = 0, A = a · I for a ∈ R+, and B = I that is both RL-optimal and CL-optimal.

Proposition 1 ensures that the score driven GaMM(1,1) factor dynamics improve the local

GMM objective function (14) at each time step. These results hold without specifying the true

conditional distribution of the data Fw and without assuming that the conditional moment con-

ditions Et−1 [g(wt;ft,θ)] = 0 are correctly specified: the GaMM dynamics still operate to min-

imize the local deviations from the moment conditions laid down by the econometrician by ef-

ficiently processing the new observations and updating ft to ft+1. Note that the positive semi-

definiteness of the matrix G⊺
tΩt−1Gt may be easily satisfied, depending on the specific setting.

For example, if Gt does not depend on wt such as in our example of stable distributions with

time-varying scale, the positive semi-definiteness follows directly for small enoughW .

Along the same lines as the results in Blasques et al. (2015) for generalized autoregressive

score models, the results for GaMM dynamics can be substantially extended to establish non-local

optimality properties. Using the same arguments, we can derive optimality properties for the

more general autoregressive scheme in (9) rather than the restrictive setting of ω = 0, A = a · I,

and B = I. Each of these properties continues to hold under model misspecification.

2.4 Choice of instruments

To estimate θ⊺ = (θ⊺
c,θ

⊺
f ), we augment the conditional moment conditions in (5) by the

matrix of instruments W t ∈ RL×K to arrive at the unconditional moment conditions

E [W tgt(wt;ft,θ)] = 0, (17)

and the corresponding GMM objective function

min
θ∈Θ

ḡ⊺
T Ω̄T ḡT , ḡT =

1

T

T∑
t=1

W tgt(wt;ft,θ), (18)

where Ω̄T is a positive definite matrix. As usual, we can start by setting Ω̄T = I in a first stage

estimation, and set Ω̄T to be an estimate of Var
[
T 1/2 ḡT

]
in a second stage; see Hansen (1982).

The matrix of instruments we propose equals W t =
(
1,f⊺

t−1, s
⊺
t−1

)⊺ ⊗ I, such that

E
[((

1 , f⊺
t−1 , s

⊺
t−1

)⊺ ⊗ I
)
gt(wt;ft,θ)

]
= E

[(
1 , f⊺

t−1 , s
⊺
t−1

)⊺ ⊗ gt(wt;ft,θ)
]
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E
[(

1 , f⊺
t−1 , s

⊺
t−1

)⊺ ⊗ gt(wt;ft,θ)
]
= 0. (19)

The instrumented moment conditions E [1⊗ gt(wt;ft,θ)] = 0, E [st−1 ⊗ gt(wt;ft,θ)] = 0,

and E [ft−1 ⊗ gt(wt;ft,θ)] = 0 are intuitive in that they impose the unconditional moment

condition and also exploit any autocorrelation in the sample values of the moment conditions.

In particular, (gt(wt;ft,θ) ⊗ st−1) holds the cross products of the moment conditions gt and

their lags gt−1 via the lagged scores st−1. If there is autocorrelation in gt, GMM adjusts A and

B to push this autocorrelation closer to zero in line with the intuition underlying the GaMM

dynamics.

A different way to motivate (19) is to consider what optimal instruments would be for estimat-

ing θ; see, e.g. Davidson and MacKinnon (1993) for a textbook treatment on optimal instruments.

Deriving optimal instruments in a general setting is non-trivial. To facilitate the exposition, we

make a simplifying assumption that the moment conditions are correctly specified in the sense

that for all t < s we have

E [gs(ws;f s,θ)g
⊺
t (wt;ft,θ)] = 0. (20)

The optimal instruments are then given by

W ⊺
t = Ωt Et−1

[
d gt(wt;ft,θ)

dθ⊺

]
, (21)

with Ωt = Et−1[gt (wt;ft, θ) g
⊺
t (wt;ft, θ)]

⋆. Note that ft depends on θ through the GaMM

dynamics in (11). We make this explicit by writing ft = ft(wt−1;ft−1,θ), to obtain

d gt(wt;ft,θ)

dθ⊺ =
∂gt(wt;ft,θ)

∂θ⊺ +
∂gt(wt;ft,θ)

∂f⊺
t

dft(wt−1;ft−1,θ)

dθ⊺ ,

such that

W ⊺
t = Ωt Et−1

[
∂gt(wt;ft,θ)

∂θ⊺

]
+Ωt Gt

dft(wt−1;ft−1,θ)

dθ⊺ , (22)

with Gt = G0
t as defined in (7). Let (ω⊺, vec [B]⊺ , vec [A]⊺ )⊺ constitute the lower part of θ.
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Then the last derivative in (22) follows the recursion

dft+1

dθ⊺ =
dft+1(wt;ft,θ)

dθ⊺

=
d(I−B)ω

dθ⊺ + (ft(wt−1;ft−1,θ)
⊺ ⊗ I)

d vec [B]

dθ⊺ +

(st(wt;ft,θ)
⊺ ⊗ I)

d vec [A]

dθ⊺ +B
dft(wt−1;ft−1,θ)

dθ⊺ +

A
∂st(wt;ft,θ)

∂θ⊺ +A
∂st(wt;ft,θ)

∂f⊺
t

dft(wt−1;ft−1,θ)

dθ⊺

=
(

0 I−B f⊺
t ⊗ I s⊺t ⊗ I

)
+B

dft

dθ⊺ +A
∂st
∂θ⊺ +A

∂st
∂f⊺

t

dft

dθ⊺ . (23)

In empirical work, we expect GaMM dynamics to work well if time-variation in parameters is

persistent and relatively slow. This implies A will often be estimated close to zero and B close

to the identity matrix. Consequently, the last two terms in (23) are typically small relative to

the first two terms. As long as I − B is non-singular, the first term in (23) is equivalent to the

matrix of instruments proposed earlier in (19). The instruments in (19) therefore account for the

dominant sources of variation in the optimal instruments (22), while avoiding the use of a second

recursion for the derivatives (23) during estimation. The main difference between (19) and (23)

is the presence of B dft/ dθ⊺, which induces additional smoothing of the instruments in W t

as proposed in (19).

The instruments in (19) have computational advantages over optimal instruments. Compo-

nents of (22) can be hard to compute for specific models, particularly given the need to compute

conditional expectations. The instruments in (19) simplify the computational challenges because

the time-varying parameter ft as well as its derivatives are always time (t − 1)-measurable by

construction. We demonstrate the usefulness of the instruments in (19) for different models in

Section 3 using both simulated and empirical data.

2.5 Asymptotic distribution theory

GaMM dynamics fall entirely within the standard set-up of GMM estimation. The consis-

tency and asymptotic normality results for the GMM estimator as in Hansen (1982) can therefore

be applied directly, including the expression for the asymptotic covariance matrix of θ̂, under

standard high-level regularity conditions. We make the following assumptions.

Assumption 1. Let Θ denote the compact parameter space with interior int(Θ). The GMM objec-
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tive function (18) is almost surely twice continuously differentiable and has a unique minimum at θ0 ∈

int(Θ).

Assumption 2. (i) A central limit theorem holds for T
1
2 ḡT , i.e., T− 1

2 ḡT
d→ N(0, V̄ ), with ḡT as

defined in (18), and T ·Var [ḡT ]→ V̄ . (ii) Let Ḡt = d(W t gt)/ dθ, then E[Ḡt] exists and a uniform

law of large numbers result holds for T−1
∑T

t=1 Ḡt → Ḡ. (iii) The matrix Ω̄T converges in probability

to a positive semi-definite matrix Ω̄. (iv) The matrix H̄ = Ḡ
⊺
Ω̄Ḡ is invertible.

These high-level conditions can be worked out for low-level conditions along the lines of for

instance White (1996) for specific models. The following standard result now follows directly

from Hansen (1982).

Proposition 2. Under Assumptions 1 and 2, the GMM estimator for the static parameters θ, including

the parameters ω, A and B specifying the GaMM dynamics, is consistent and asymptotically normal,

i.e.,

T 1/2
(
θ̂ − θ0

)
d→ N

(
0,H−1D̄H−1

)
, D̄ = Ḡ

⊺
Ω̄V̄ Ω̄Ḡ. (24)

The efficient weighting matrix is Ω̄ = V̄
−1, in which case the asymptotic covariance matrix collapses to

(Ḡ
⊺
Ω̄ Ḡ)−1.

Though the differentiability conditions in Assumption 1 are typically straightforward to ver-

ify and the uniqueness of the optimum is typically imposed by assumption, Assumption 2 can

be more cumbersome to verify. The applicability of a central limit theorem and a law of large

numbers typically builds on stationarity and ergodicity requirements for the sequences {W t}

and {gt}, which in turn depend on the stationarity and ergodicity of the underlying data, and

that of the time-varying parameter ft and of its derivatives with respect to θ.

A key difference here is the non-linearity of the GaMM transition equation describing the

dynamics of ft as a function of the data, i.e., the filtering equations. Even if the data wt are

stationary, ergodic, near epoch dependent, and have the appropriate moments, these properties

are not necessarily inherited by the ‘filtered’ time-varying parameter ft and its derivatives. In

order to obtain stationarity and ergodicity results for ft, the transition equation (2) needs to be

studied separately. Formulating low-level conditions to establish such properties is hard at the

current level of generality. We therefore stick with the high-level conditions in Assumption 2. For
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particular models or model classes, lower level conditions are obtainable; see, e.g.Straumann and

Mikosch (2006) for generalized autoregressive conditional heteroscedasticity models, or Blasques

et al. (2014) for generalized autoregressive score models.

2.6 Penalized objective function

There are two settings where we could improve the GaMM approach further. First, given the

autoregressive structure of GaMM dynamics, these dynamics may react too slowly to structural

changes if such changes are sizable and abrupt. Second, we want to prevent GaMM from picking

up noise rather than the signal when estimating the dynamics of the time-varying parameters ft.

The GaMM methodology can solve these problems by introducing a penalized objective func-

tion. Penalization has been considered previously, e.g., in the context of Maximum Likelihood

Estimation (see Eggermont and LaRiccia, 2001) or duration models (see Rondeau et al., 2003).

Penalties can be introduced as a means of incorporating a priori knowledge about qualitative fea-

tures of the model. For instance, if we expect the estimated path of a time-varying parameter

to be relatively smooth, we can introduce a penalty that takes higher values for rougher paths.

In addition, statistical procedures like the Kalman filter can be regarded as penalized maximum

likelihood procedures for linear regression under normality, placing a quadratic penalty on the

magnitude of parameter changes from one period to the next.

Rather than augmenting our GMM objective function with a quadratic penalty, we propose a

piecewise linear penalty function. The penalized procedure then weights a sequence of smaller

departures as much as it does one single large departure. The penalized criterion function takes

the form

min
θ∈Θ

ḡ⊺
T Ω̄T ḡT +

λT

T

T∑
t=1

ι⊺ |st| , (25)

where ιdenotes a vector of ones, andλT ≥ 0 is a smoothing parameter. The impact of the penalty

term T−1λT

∑T
t=1 ι

⊺|st| is twofold. First, the penalty on |st| favors dynamics that have lower

scores not only on average (case without penalty), but at every time t. Given the GaMM dynamic

specification, this induces smoother paths and discourages the approach from capturing noise

rather than the signal. Second, given the linear rather than quadratic tail shape of the penalty

function in st, the penalty favors a path with one large jump, as long as this jump can prevent a
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large number of smaller steps with non-negligible st in other regions of the sample. This feature

is particularly relevant in cases where there are incidental structural breaks in the paths of the

parameter.

We assume that the scores st are stationary and ergodic and satisfy Et−1 [ι
⊺ |st|] < ∞, and

furthermore that T · λT → 0. This ensures that the smoothing parameter vanishes at an ap-

propriate rate in order not to impact the objective function asymptotically. To see this, note that

T · ḡ⊺
T Ω̄T ḡT converges to a non-degenerate random variable under Assumptions 1 and 2. The

above assumptions on Et−1 [ι
⊺ |st|] and λT then ensure that the penalty term in (25) becomes

negligible asymptotically compared to the first term. Further assumptions need to be developed

to ensure consistency and asymptotic normality of penalized GaMM estimation. We leave this

for future work.

3 Example applications of GaMM

In this section we apply GaMM to empirical examples of increasing complexity. Each example

highlights a different feature of the methodology that is not easily dealt with in other generic

observation-driven modeling frameworks, such as for example the generalized autoregressive

score framework of Creal et al. (2013). An additional illustration of GaMM for time-varying linear

regression models with endogeneity problems is provided in the Supplementary Appendix to

this paper.

3.1 Stable distributions

Model

The use of α-stable distributions has a long history in finance. Mandelbrot (1963) and Fama

(1965) show that it is possible to capture a number of stylized facts about financial returns using

these distributions. Stable distributions continue to attract attention in the recent empirical and

theoretical literature, see for example Garcia et al. (2011), and can be particularly convenient for

modeling highly erratic data such as changes in electricity or energy prices.

A challenging aspect of α-stable distributions is that their density function is generally not

known analytically. If the problem at hand requires that some of the distributional assumptions
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are relaxed, for example, by allowing the scale of the stable distribution to vary over time, it

is therefore hard to base parameter dynamics on the density of the stable distribution by, for

example, using a generalized autoregressive score model as in Creal et al. (2013). Similarly, us-

ing standard volatility models such as generalized autoregressive conditional heteroscedasticity

(GARCH) models does not seem to be appropriate either: as the stable distribution allows for the

realization of much more extreme observations than the normal distribution, updating the scale

of the stable distribution by the squared lagged observations (like in QML GARCH) results in

significant instability in the filtered volatility paths and potentially a large bias in the estimated

time-varying scale parameter.

The family of α-stable distributions is fully characterized by four parameters: the stability

parameter α ∈ (0, 2] (which corresponds with a tail index of α−1), the skewness parameter

β ∈ [−1, 1], the scale parameter σ ∈ R+, and the location parameter µ ∈ R. Stable distribu-

tions have p < α finite moments and thus infinite variance and heavy tails if α < 2. Apart

from a few specific cases—of which Cauchy (α = 1, β = 0), Lévy (α = 1
2
, β = 1), and Gaussian

(α = 2, β = 0) distributions are the most notable—closed form expressions for density functions

ofα-stable distributions are not known. Although the densities are not known in closed-form, the

characteristic function of α-stable distributions is (i) readily available and has a simple and intu-

itive form. The α-stable model with time-varying scale provides a good example of how GaMM

dynamics can be operationalized and lead to useful results since the characteristic function can

be written as a set of moment conditions.

The conditional characteristic function c (u;α, β, σt, µ) of a stable distributionS ( · ;α, β, σt, µ),

has the following simple expression:

log c (u;α, β, σt, µ) = log Et−1

[
eiuXt

]
(26)

=

iµu− (σt |u|)α
{
1− iβ sign (u) tan

(
1
2
απ

)}
, α ̸= 1,

iµu− σt |u|
{
1 + 2i

π
β sign (u) logu

}
, α = 1.

(27)

Given equation (27), we can therefore formulate the conditional moment condition

Et−1 [g
c
t ] = 0, gc

t = exp(iuiXt)− c (ui;α, β, σt, µ) , i = 1, . . . , K, (28)

where m denotes the number of grid points u1, . . . , uK . The dimensionality of the moment
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condition vector depends on the choice of the uis. One extreme is to choose a continuum of uis.

The number of moment conditions then becomes infinite and the parameters can be estimated

with Continuous GMM (CGMM) as proposed by Carrasco and Florens (2000); see also Kotchoni

(2012) for a good empirically oriented discussion of CGMM. In this section, we opt for a simpler

approach and use a finite set of K grid points as in Yu (2004). Feuerverger and McDunnough

(1981) show that by choosing a sufficiently dense and extended grid the asymptotic covariance

matrix of the resulting GMM estimator can be made arbitrarily close to the Cramer-Rao bound.

Feuerverger and McDunnough (1981) and Yu (2004) suggest that the points on the grid should

be equidistant. We find that the choice of the grid (both in terms of its density and range) should

depend on the size of the parameters α, β, σt, and µ; for example, for large values of σt the

grid should be much denser around zero than for smaller values of σt; see also the discussion in

Carrasco and Florens (2000).

For a given grid {u1, . . . , uK}, the moment conditions are constructed by stacking the real

and imaginary parts of gc
t for different values of ui,

g⊺
t = (Re (gc

t)
⊺ , Im (gc

t)
⊺) . (29)

This produces 2K moment conditions and sets the maximum number of grid-points to T/2.

Given equations (27)–(28), the matrix Gt from (7) is

∂gc
t

∂σt

=

 ct × iα |uσt|α
{
i+ β sign (u) tan

(
1
2
απ

)}
, for α ̸= 1,

ct × (− |uσt|)
{
1 + 2

π
iβ sign (u) log (u)

}
, for α = 1,

(30)

where ct ≡ c (u;α, β, σt, µ). As the partial derivatives do not contain wt, we do not need to

compute conditional expectations to obtain Gt. Also the optimality results from Section 2.3 hold

directly.

Simulation results

To study the performance of GaMM in this setting, we generate a time series of T = 5000

observations from a stable distribution with α0 = 1.5, β0 = −0.5, µ0 = −0.5, and a time-

varying scale σ0,t that varies between 1 and 12. We refer to the Section Appendix B for details

about the sampling procedure. We estimate the static parameters θ⊺ = (α, β, µ, ω,B,A) as
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described in Section 2 using GaMM(1,1) dynamics. We guarantee positivity of the estimated

scale σt by defining ft = logσt.

Results based on 10,000 replications are shown in Panels A–D of Figure 1. We let the true

scale parameter σ0,t follow four distinct paths: structural breaks (Panel A); slow gradual changes

(Panel B); an autoregressive (AR) process of order 1, i.e., an AR(1) process (Panel C); and a dy-

namic pattern obtained by estimating the dynamic α-stable scale model for empirical S&P 500

returns over the last 30 years, as used in our empirical application later on (Panel D). At every

point in time, we report the median estimate across all replications along with some quintiles to

form Monte Carlo confidence bands. In all cases, the median scale estimate σ̂t at time t is close

to the true value σ0,t. From the quantile bands around the median estimate, we see that the dis-

tribution of σ̂t is more or less symmetric. The variability in the estimate of σt increases with the

level of the scale. The latter phenomenon is intuitive: as the scale increases, the signal-to-noise

ratio of the data decreases.

For each simulation, we summarize the bias and root mean squared error (RMSE) of the

time-varying scale into a single summary statistic,

Average Bias =
1

T

T∑
1

(σ̂t − σt,0) , Average RMSE =

[
1

T

T∑
1

(σ̂t − σt,0)
2

] 1
2

. (31)

We also compute the bias and RMSE for the static parameters α, β, and µ. Box plots for the

bias and RMSE across all simulations are presented to the right of each of the different panels

of Figure 1. GaMM(1,1) overall produces unbiased estimates of the static parameters α, β, and

µ. These parameters are typically also estimated with a low RMSE. The estimated path for the

scale parameter also appears to be unbiased, though it tends to oscillate around the true value for

any given replication. This results in a somewhat higher RMSE statistic. The oscillating behavior

is typical for observation-driven models and filtering methods in general; see the discussion in

Nelson and Foster (1994). It indicates that the GaMM(1,1) dynamics are able to capture the un-

known true dynamics of the scale parameter and adapt to it based on the information in the data

and the shape of the moment conditions.
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Figure 1

Estimating Time-Varying Scale of a Stable Distribution with GaMM

This figure contains summary figures for a series of simulations in which returns are drawn from a stable
distribution. We let the scale parameter, σ, vary in different ways. The remaining parameters are static
and (apart from Panel D) are as follows: α0 = 1.5, β0 = −0.5, µ0 = −0.5. In each panel, we show the
true path of σ, a path of median estimates, and some quantile bands around the median path. The results
are based on 10,000 replications. We report distributions of average biases and RMSEs for all parameters
across replications. MSE (bias) for the time-varying scale is computed as the average of MSEs (biases) per
replication.
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Figure 1

Estimating Time-Varying Scale of a Stable Distribution With GaMM
 This figure contains summary figures for a series of simulations in which returns are drawn from a stable distribution. We let the scale
parameter, , vary in different ways. The remaining parameters are static and (apart from Panel D) are as follows: 

. In each panel, we show the true path of , a path of median estimates, and some quantile bands around the
median path. We also report distributions of average biases and RMSEs for all parameters. We report the results based on 10000 replications.
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Panel B: Sigma is threshold sinusoidal (high periodicity); 
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Panel C: Sigma follows AR(1); 
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Panel D: Sigma follows the path estimated in Figure 2 for SP500 index returns; 
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Empirical application

For our empirical illustration, we use S&P 500 daily returns over the period 1988–2013 and

fit a time-varying scale stable distribution with GaMM(1,1) dynamics as above. The results are

shown in Figure 2. We provide two benchmark estimates, namely a GJR-GARCH(1,1,1) model of

Glosten et al. (1993), and the Student’s t-GAS(1,1) model of Creal et al. (2011) and Harvey (2013).

Figure 2

S&P 500 Returns as Draws From a Stable Distribution

This figure contains estimated time-varying volatility of daily returns on the S&P 500 index in 1988–2013.
In Panel A, we use GaMM(1,1) to fit a time-varying scale stable distribution to the data. As benchmarks,
panels B and C contain estimated time-varying volatility paths obtained with GJR-GARCH(1,1,1) and t-
GAS(1,1).

Figure 2

S&P 500 Returns as Draws From a Stable Distribution

 This figure contains estimated time-varying volatility of the S&P 500 index in 1988--2013. We use GaMM(1,1) to fit a time-varying scale stable
distribution to the data. As a benchmark we also provide estimated time-varying volatility obtained with GJR-GARCH(1,1,1) and t-GAS(1,1).
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Panel A: Stable distribution fitted with GaMM(1,1)
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Panel C: GJR-GARCH(1,1,1)

Overall, the estimated paths of σt for the GJR-GARCH(1,1,1) and Student’s t-GAS(1,1) are

similar. However, the dynamics for t-GAS(1,1) are less responsive to incidentally large observa-

tions, for example, at the end of 1989, or in 1997 and 1998. This stems from the fact the t-GAS(1,1)
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results are based on the fat-tailed Student’s t distribution with an estimated 5.76 degrees of free-

dom. The path produced with the stable distribution and GaMM(1,1) dynamics is smoother than

that of the other two models. Given the assumption of a stable distribution, the GaMM(1,1) dy-

namics are much more cautious in ascribing the realization of a large positive or negative return

to an increase in the time-varying scale parameter. Extreme absolute returns could be the result

of the heavy-tailed (vs fat-tailed in Student’s t) nature of the stable distribution with α < 2. This

effectively removes the smaller up and down movements in the volatility estimates compared to

the two benchmark models. Also note that the magnitude of σt cannot be compared directly to

that of the GJR-GARCH or GAS models, because the stable distribution does not have a finite sec-

ond moment for α < 2. The estimated values for α̂ and β̂ are 1.58 and−0.04, respectively. The

former suggests heavy tails even after correcting for changes in scale, while the latter indicates

that there is hardly any unconditional skewness.

All three paths of σt sketch a similar story for the volatility of returns and move in the same

directions. This also holds for the much smoother time-varying scale of the stable distribution.

It is worth noting, though, that the assumption of a stable distribution for the returns alters the

relative magnitude of volatility over time between the different models. For instance, based on

the GJR-GARCH and Student’s t-GAS results, the maximum volatility over the 2008 financial

crisis was twice as high compared to 2003 and to the subsequent European sovereign debt crisis.

However, the GaMM estimates suggest there is only roughly a 50% difference in magnitude of

the scale of the stable distribution between 2003 and 2008: much of the remainder increase is

attributed to the heavy tails of the distribution.

3.2 Consumption CAPM with power utility

Model

In this application, we use GaMM to estimate a simple non-linear asset pricing model with

time-varying risk-aversion coefficient. Building on the seminal work of Hansen and Singleton

(1982), we consider the power utility function which produces the following Euler equations for

pricing assets:

Et

[
β (Ct+1/Ct)

−γ Rx
t+1

]
= 1, (32)
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where Rx
t+1 denotes the vector of gross asset returns, β is a subjective discount factor, and γ

represents curvature of the utility function as well as relative risk aversion. Both consumption

and asset returns are assumed to be expressed in real terms. Euler equations in (32) imply a

stochastic discount factor Mt = β (Ct+1/Ct)
−γ . Empirical estimates of the risk-aversion param-

eter γ are sensitive to the particular sample period, starting values, and instruments employed.

Results of many studies suggest that time series estimates of γ are typically too high compared

to risk-aversion estimates obtained from experimental data and that the simple model in (32)

fails at explaining the cross-sectional variation in stock returns, e.g. see Savov (2011); Mehra and

Prescott (1985); Chen and Ludvigson (2009); Lettau and Ludvigson (2009), or Ludvigson (2011)

for a recent summary of the literature and developments in the field. Mehra and Prescott (1985)

dubbed this phenomenon the equity premium puzzle. The reason for poor performance stems

from the fact that consumption growth is too smooth relative to the variation in returns and thus

the stochastic discount factor needs to be blown up through high γ and β.

Poor performance of the standard model in (32) can be addressed by allowing for habit for-

mation which adds an additional source of variation to the stochastic discount factor, see for ex-

ample Constantinides (1990); Campbell and Cochrane (1999), or Ludvigson (2011). The vastness

of literature on habit formation shows it is generally accepted to think of relative risk-aversion

as a time-varying quantity1. Furthermore, stability of deep parameters in the simple structural

model in (32) is already questioned by Ghysels and Hall (1990). Ghysels and Hall introduce a

structural break test for γ, but do not find sufficient evidence to reject the hypothesis of a con-

stant risk aversion parameter in their sample. These tests, however, may have low power against

specific mean-reverting alternatives.

In this example, we consider the simple consumption CAPM model in (32). The relative risk-

aversion, γt, is allowed vary in time and we filter it out by endowing the standard Euler equation

with GaMM(1,1) dynamics. We assume that the shocks to risk-aversion are exogenous and that

agents are myopic in the sense that they consider γt to remain fixed forever when making their

decision at time t. This results in the Euler equation

Et

[
β (Ct+1/Ct)

−γt Rx
t+1

]
= 1. (33)

1Allowing for habit formation implies that relative risk-aversion depends on γ and on the current values of con-
sumption and consumption habit.
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Using (33), we can directly employ the GaMM framework by taking ft = γt.

One complication in our current context concerns the estimation of Gt, which in this case

depends both on the consumption growth data, the return data, and on the time varying param-

eter ft. Computing this conditional expectation analytically is impossible in this case, as we do

not know the distribution of the risky returns nor of consumption growth. Moreover, replacing

the expectation by a sample average is also not appropriate: the conditional distribution of asset

returns given consumption growth in equilibrium depends on the current (myopic) risk aversion

parameter, or put differently, observations from previous time-periods strictly speaking are real-

izations from a distribution characterized by a different value of γt. Still, if ft varies sufficiently

slowly, observations in the recent past can be informative about the curvature Gt of the moment

conditions now. We therefore estimate Gt as an exponentially weighted moving average

Gt = λGt−1 + (1− λ)
∂gt (wt;ft,θ)

∂f⊺
t

, (34)

where we choose λ in the range (0.98, 1.0). If ft varies sufficiently slowly, such an exponentially

weighted moving average estimates the local curvature of the score accurately enough to provide

an adequate form of scaling in the GaMM transition dynamics (9). This holds even though Ĝt

may not be a consistent estimate of Gt. See Section Appendix C for further details.

Simulation results

For our simulations, we fix β = 1, which is close to its typical empirical estimate; see for

instance Hansen et al. (2008) or Savov (2011). Furthermore, we endow the true risk-aversion

parameter γ0,t either with a structural break or with exogenous AR(1) dynamics. Given a series

of {γ0,t}we use the following DGP to simulate data:

∆ct = µc + εct εct ∼ N
(
0, σ2

γ

)
(35)

Rt = eγ0,t∆ct + εRt εRt ∼ N
(
0, σ2

R

)
, (36)

where we set µc = 0.041, σct = 0.09, and σRt = 0.1. Estimation results using the GaMM(1,1)

specification are presented in Figure 3. Note that the classical full sample GMM estimates of γ for

the structural break and the AR(1) case are 11.10 and 12.25, respectively. For the case of the AR(1),

this implies that 70% of the γt observations actually lie below the full sample GMM estimate. If

25



there is time-variation in γt, the full sample GMM estimates are thus severely biased towards the

high-end realizations of the time-varying risk-aversion parameter which as we show later may

be part of the explanation of why the equity premium puzzle arises.

Figure 3

Time-Varying Risk Aversion in CCAPM With Power Utility

This figure illustrates performance of GaMM in estimating the risk-aversion parameter in CCAPM. We use
the basic power utility specification:

1 = Et

[
β

(
Ct+1

Ct

)−γt

Rt+1

]
,

and assume that agents are myopic about the changes in risk-aversion parameter γt. Furthermore, in sim-
ulations we fix β = 1 and we do not estimate the discount factor. Results are based on 10,000 replications.
Paths were estimated with GaMM(1,1). We juxtapose the true value of the parameter at time t with the
median estimate across all replications. We also present 95, 90, and 50

If we consider the estimation results for the approach based on GaMM(1,1), we clearly see

that the filtered path γ̂t tends to follow the true path closely. In case of a large structural break,

the estimator takes some time to adjust to the new setting. Overall, however, the path is able to

capture both the episodes of high and low relative risk aversion. In case of the mean-reverting
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AR(1) dynamics, the GaMM(1,1) approach also recovers the major up and down swings in γt.

Empirical equity premium results for U.S. data

We estimate the model for quarterly U.S. data between 1947 and 2015. The tests assets are

comprised of the 3-Month Treasury Bill rate (from Board of Governors of the Federal Reserve

System) and six equity portfolios double sorted on size and book-to-market as provided by Fama

and French. Data on population size in the U.S. as well as expenditure on non-durable goods

and consumption of services is provided by US. Bureau of Economic Analysis. Apart from the

six Fama-French portfolios we obtain all remaining data from FRED2. All series are deflated with

an implicit price deflator (2009=100) which we calculate for the combined consumption (non-

durables and services) series. We use two-step feasible GMM/GaMM and we report results from

the second step only. Standard errors for parameter θ are estimated using the Newey and West

(1987) HAC covariance matrix with truncation lag, p, chosen following the procedure proposed

by Newey and West (1994). We denote them as se(p)θ . In the results reported below, the model is

estimated without additional conditioning information; see Ludvigson (2011) for a discussion of

why this is appropriate. We note that adding standard instrumental variables to the model does

not impact the results qualitatively.

We first estimated the model without time-varying relative risk-aversion and obtain the fol-

lowing estimates for γ and β. The discount rate is estimated at β̂ = 1.42 with se
(7)
β = 0.14

while the curvature parameter is γ̂ = 133.06 with se
(7)
γ = 38.92. The very high and imprecisely

estimated value for the relative risk aversion parameter is in line with previous research (Savov,

2011; Lettau and Ludvigson, 2009). A similarly high value of β is reported by Lettau and Ludvig-

son (2009) for a shorter sample. Not only do we see the equity premium puzzle but the results

suggest that agents value future utility more than the present one. A closer inspection of the data

suggests that given the static model there are many ‘outliers’ (1949–1953, 1960, 1980, and 2008)

which are both clustered in time and heavily bias the estimates upwards3.

2The specific series we use are: 3-Month Treasury Bill (TB3MS), population (B230RC0Q173SBEA), personal con-
sumption expenditures on nondurable goods (PCND) and services (PCESV) with their corresponding implicit price
deflators (DNDGRD3Q086SBEA and DSERRD3Q086SBEA respectively).

3It is worth noting what impact do β and γ have on moment conditions in a neighborhood of time t. Ceteris
paribus, an increase in the discount rate increases both the mean and dispersion of moment conditions without
affecting higher moments of their distribution. On the other hand, an increase in the curvature increases variance
and skewness of moment conditions and thus lowers the mean. At the estimated values of parameters, the ‘outliers’
we identify bring an order of magnitude higher contributions to the criterion function and thus have huge leverage
on the outcome.
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Figure 4

Equity Premium Puzzle

This figure illustrates performance of GaMM in estimating the time-varying relative risk-aversion param-
eter in CCAPM. We use the basic power utility specification:

1 = Et

[
β

(
Ct+1

Ct

)−γt

Rt+1

]
,

and assume that agents are myopic about the changes in risk-aversion parameter γt. Tests assets are com-
prised of the 3-Month Treasury Bill rate and six equity portfolios double sorted on size and book-to-market.
We use consumption of non-durable goods and services. All series are deflated with an implicit price de-
flator (2009=100). Shaded regions correspond to NBER recessions while other relevant events are labeled
separately.

In contrast, GaMM(1,1) produces reasonable values for both the subjective discount factor

and the relative risk aversion. The discount factor is estimated at β̂ = 0.98 with se
(4)
β = 0.001.

Figure 4 shows the estimated path of the relative risk-aversion parameter γ̂t based on GaMM(1,1)

dynamics together with NBER recession periods. Average value of the relative risk aversion

is ¯̂γt = 1.42 (3.13 in 1950–1960, 1.06 in 1990-2000, and 0.55 in 2000-2010). Static parameters

governing the GaMM dynamics are estimated as ω̂ = 3.03 with se
(4)
ω = 0.75, B̂ = 1.00 with

se
(4)
B = 0.006, and finally Â = 0.02 with se

(4)
A = 0.005.

There are two components in the time-varying risk aversion parameter γt: a long-term and a

short-term cycle. The short-term cycle appears to follow the business cycle. We find that during
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recessions and sometimes even before the recession, risk-aversion is pushed downwards. Given

the postulated utility framework and corresponding Euler equation, these pro-cyclical short-term

fluctuations imply that agents adjust their consumption slowly and with a delay compared to

reactions of financial markets. In other words, when a recession hits there is a period during

which consumption is too high given the observable (negative) returns. In the current limited

framework, this can only be explained by a lower risk-aversion parameter, which is why we see

the drops in γt. After the recession ends, we observe risk aversion returning to its long-term

path. This can happen either because agents adjusted their consumption expenditure or because

markets recovered. These patterns are consistent with many of the phenomena and extensions

to the basic model setting as reported in the literature, such as habit formation (Campbell and

Cochrane, 2000), increasing leverage and shortening of investment time-horizon for households

(Adrian and Shin, 2010), and loss-aversion (Kahneman and Tversky, 1984) where agents exhibit

(in this case relative) risk-loving behavior in the loss domain and risk-aversion in the gain domain.

More interesting than the short-term cyclical behavior is the secular (long-term) pattern in

risk-aversion. In particular, we notice a continuous decrease in risk aversion since the 1950s, when

γ̂t was higher possibly due to the post World War II recovery period. Comparing the first and

the last decade in the sample shows the extent of the change. On the one hand, in both periods

the average real consumption growth was between 0.4 and 0.5%. On the other hand, the real

returns in the 1950s were more than three times as high as they were in the 2000s (7% versus 2%)

based on data in Shiller (2005). Such a difference in realized returns given the relatively constant

pattern of consumption growth can only be consistently explained in the proposed model if risk-

aversion has decreased substantially: from the 1950s to the 2000s the GaMM(1,1) estimates of

risk-aversion decrease from an average value of about 3.13 to a value of about 0.55, i.e. a full

order of magnitude.

4 Example results for penalized GaMM

To illustrate the usefulness of the penalized version of GaMM from Section 2.6, we consider

a simple linear regression model with an endogenous regressor xt and an instrument zt,

yt = β0,t + β1,txt + εyt, εyt ∼ N
(
0, σ2

εy

)
, E [εytεxt] = ρ, (37)

xt = π0,x + π1,xzt + εxt, εxt ∼ N
(
0, σ2

εx

)
, zt ∼ N

(
µz, σ

2
z

)
, (38)
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βi,t+1 = πββi,t + ηi,t, ηi,t ∼ N
(
0, σ2

i,η

)
, i = 0, 1. (39)

If ρ ̸= 0 and σ2
εx > 0, we have a standard endogenous regressor problem. Lower values of σ2

εx re-

sult in larger endogeneity biases when estimating β1,t by ordinary least-squares methods. Define

x⊺
t = (1, xt), z

⊺
t = (1, zt), and β⊺

t = (β0,t, β1,t), and let Πx be such that x⊺
t = z⊺

tΠx + (0, εxt).

In the Supplementary Appendix to this paper, we provide an elaborate simulation experiment

demonstrating the usefulness of GaMM in this setting compared to a standard Kalman Filtering

approach: GaMM tracks the dynamic parameter well, while removing the endogeneity biases.

In this section, we focus on the effect of including the penalty function in the GMM objective

function on the smoothness of the estimated path of βt. Given the availability of an instrument

variable zt, the obvious way to estimate βt is via the conditional moment condition

Et−1 [zt (yt − x⊺
tβt)] = 0. (40)

The complication here is that the parameters βt are time-varying. The moment condition (40),

however, lends itself directly to the GaMM framework by setting ft = βt.

We consider a setting where β1,t has a structural break at t = t⋆. The result without the use of

the penalty is presented in Panel A of Figure 5. A perfect fit to the structural break would require

st⋆ ̸= 0, while st = 0 for all t ̸= t⋆. The GaMM criterion function in (18) does not incorporate this

prior knowledge about the properties of {st}. Panel A of Figure 5 shows the consequences of this.

Because of the low rate of adjustment after the structural break, we accumulate a long sequence

of observations for which the moment conditions are not minimized. In the end, we obtain a path

that is negatively biased directly after the break, and positively biased before the break and long

after the break. Given that ḡn in (18) considers the average (instrumented) moment condition

across all times, it follows that the negative bias directly after the structural break offsets the

other two (positive) biases.

The effect of the penalty is presented in Panel B of Figure 5. We clearly see that the upward

bias in the path before the time of the break has been almost entirely removed. The same holds

with the upward bias after observation 700.

To obtain further insight, we run a Monte-Carlo simulation study for a variety of parameter

settings using the penalized criterion function (25) with λT = {10, 5, 1, 0.6, 0.2, 0}, a variety
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Figure 5

Penalizing the GaMM Criterion Function

In this figure we show how introduction of penalty impacts a filtered path. In Panel A, we see that due
to the long adjustment time around the structural break, the path is biased upwards before and after the
break. This happens because the upward bias outside of the break offsets the negative bias in the transition
period. In Panel B, we introduce the proposed penalty which does not increase the rate of adjustment in
the transition period. It does, however, remove the upward bias outside of this period.

of sample sizes T , and a moderate endogeneity problem. We only report a subset of the results

here. The full results can be found in the Supplementary Appendix. As a benchmark, we include

maximum likelihood estimates of two linear state space models, one with AR(1) and one with

random walk dynamics for the parameters. Both state space models are estimated using Kalman

Filtering methods. We plot the impact of the penalty on the bias and RMSE of β̂t in Figure 6.

The figure contains the average bias and RMSE for the constant (top) and for the slope param-

eter (bottom). Within each panel, we see 6 boxplots for the different values of the smoothing

parameter λT . The two grey boxplots correspond to the state space models.

Bias of the parameter path for the constant term, i.e. the exogenous regressor, obtained by

GaMM is generally negligible and similar to both state-space models. However, the average bias

in the path of the slope parameter (endogenous regressor) for both Kalman Filter methods is
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Figure 6

Performance of GaMM for a Simple Endogeneity Problem With Penalized
Criterion Function

The figure compares performance of GaMM (black) to Kalman Filter with AR1 (dark grey) or Random
Walk (light grey) dynamics for coefficients. We simulate observations and true parameters from a linear
regression model with an endogenous regressor. GaMM estimation was performed for different values of
the smoothing parameter, λ = {10, 5, 1, 0.6, 0.2, 0}, and are presented in this order.

substantial. The GaMM methods perform much better in this respect. Biases are visible for

very high values of λT = 10, but quickly vanish for smaller values of λT . Even for λT = 10,

the average bias is smaller than for the state space models estimated with Kalman Filter, which

does not account at all for the endogeneity problem. The penalized estimates also come with

substantially lower RMSEs though this difference becomes smaller if the endogeneity problem is

increased; see the additional results in the Supplementary Appendix.

We conclude that already small values of the penalty parameter λT such as λT = 0.2 result

in considerable improvements in terms of RMSE. Even if bias is found to be a prime concern, we

recommend that θ is first estimated using the penalized GaMM criterion, e.g., with λT = 1. The

resulting estimates can then be used as starting values for θ when estimating under λT = 0. We
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have found that this results in a numerically much more stable algorithm that is less susceptible

to the potential issues of multiple local optima of the G(a)MM criterion function.

5 Conclusions

In this paper we proposed a new approach for modeling time-varying parameters in linear

and non-linear econometric models identified through moment conditions. We call the approach

the Generalized Autoregressive Method of Moments (GaMM) as it endows parameters that are

identified via standard GMM (conditional) moment conditions with autoregressive dynamics

based on local deviations of those same (conditional) moment conditions. The method goes sub-

stantially beyond previous observation-driven approaches and encompasses many of the previ-

ous observation-driven models found in the literature, including the generalized autoregressive

score approach of Creal et al. (2013) and Harvey (2013). Being observation-driven, the method

also falls directly within the generic GMM framework of Hansen (1982) in terms of the develop-

ment of the appropriate asymptotic theory for the estimator.

Using a range of different examples, we illustrated the forcefulness of the new approach. To

the best of our knowledge, we are the first to endow the class of stable distributions with an

observation-driven time-varying scale in a way that is both computationally fast and intuitively

appealing. The approach also turns out to work well in settings with endogeneity problems or

in settings where we use Euler equations to identify our parameters of interest.

Interestingly, the approach can be further refined by using a penalized version of the GaMM

criterion function. We showed how penalization can decrease the average root mean squared

error of the estimated path of the time-varying parameter by allowing for quicker adjustments to

large incidental parameter changes and structural breaks. Though we provided some first steps

in this direction, the current paper also opens new research directions, for example to establish

the optimal penalty parameter in the adjusted objective function. We look forward to further

developments in this area.
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Appendix A: Proofs

Proof of Proposition 1. Define

g̃t(f) =

∫
W
gt(w;f ,θ) dFw(w), (A.1)

G̃t(f) =
∂

∂f⊺

∫
W
gt(w;f ,θ) dFw(w), (A.2)

whereFw(w) is the conditional distribution ofwt given all information up to time t−1 and given

wt ∈ W . Also define V = G⊺
tΩt−1Gt, which is positive definite for wt ∈ W by assumption.

IfW collapses to the singleton {wt}, then g̃t(ft) = gt(wt;ft,θ) and G̃t(ft) = Gt(wt;ft,θ).

As gt(w;f ,θ) is assumed to be continuously differentiable, also ft+1 is a continuous function

of wt We obtain

g̃t(ft)
⊺Ωt−1g̃t(ft)− g̃t(ft+1)

⊺Ωt−1g̃t(ft+1)

= −2(ft+1 − ft)
⊺G̃t(f

∗
t+1)

⊺Ωt−1g̃t(f
∗
t+1)

= 2gt(wt;ft+1,θ)
⊺Ωt−1GtV

⋆A⊺G̃t(f
∗
t+1)

⊺Ωt−1g̃t(f
∗
t+1),

= 2a

∫
W
gt(wt;ft+1,θ)

⊺Ωt−1 ·GtV
⋆G̃t(f

∗
t+1)

⊺·

Ωt−1gt(w;f∗
t+1,θ) dFw(w), (A.3)

where f∗
t+1 is a point between ft and ft+1. ForW = {wt}, the integrand is strictly positive.

Given the assumed continuity of gt(w;f ,θ) and Gt(w;f ,θ) in w and f , and the subsequent

continuity of ft+1 as a function of wt, the result follows immediately for a small enough ballW

around {wt}.

Appendix B: Sampling from stable distributions

To simulate draws from a stable distribution, we follow the generalized Chambers-Mallows-

Stuck procedure developed in Weron (1996, including erratum). Let vu and wu be two i.i.d. ran-

dom variables drawn from a uniform distribution U [0, 1]. Define v = π
(
vu − 1

2

)
and w =

− logwu. For given α, β, σ, and µ, we obtain a random vector Z ∼ S (α, β, σ, µ) from the trans-
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formations

B =
1

α
atan

[
β tan

(
α
π

2

)]
, (B.1)

S =

[
1 + β2 tan2

(
1

2
απ

)] 1
2α

, (B.2)

Z = µ+ σ
S sin (α [v +B])

cos
1
α (v)

(
cos (v − α [v +B])

w

)−1+ 1
α

, (B.3)

for α ̸= 1, and

B =
π

2
+ βv, (B.4)

Z =
2

π
Bσ tan (v)− 2

π
σβ log

( π
2
w cos (v)

B

)
+ µ+

2

π
βσ log (σ) , (B.5)

for α ≡ 1.

Appendix C: Estimating procedure for the derivative matrix

Two considerations need to be made when it is necessary to estimate Gt and θ jointly; see

the example in Subsection 3.3.2. First of all, since in these models Gt depends on the true values

of θ and ft at time t; if f 0,t=i ̸= f 0,t=j then Gt=i ̸= Gt=j (parameter-value inconsistency). It

follows that estimates of Gt need to take into account in which neighbourhood of the parameter

space F the filtered parameter f̂ t−1 is located. More importantly, especially at the beginning of

the estimation procedure for θ it may very well be that while f̂ t=i = f̂ t=j , it is still true that

f 0,t=i ̸= f 0,t=j (time-period inconsistency) and thus using the same value of Gt for t = i and

t = j should be avoided. If {ft} is relatively slowly-varying, we can account for both issues by

estimating Gt as an exponentially weighted moving average. Let for some λ:

G
(i)
t =

−→
G

(i)
t = λ

−→
G

(i)
t−1 + (1− λ)

∂gt (wt;ft,θ)

∂ft

, (C.1)

where the superscript (i) denotes the i-th iteration of the optimizing algorithm and the arrow

denotes direction in the time domain in which we apply the EWMA. In practice we find that λ

can be chosen to be in the (0.98, 1.0) interval. For i = 0, we initialize the recursion in (C.1) by

setting
−→
G

(0)
t=0 = I. In order to update this initial guess for Gt=0 we propose to apply the EWMA
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in reverse, i.e. let:

←−
G

(i)
t = λ

←−
G

(i)
t+1 + (1− λ)

∂gt (wt;ft,θ)

∂ft

, (C.2)

−→
G

(i+1)
t=0 =

←−
G

(i)
t=0. (C.3)

Note that estimating Gt in this manner does not increase computational burden significantly.

In second stage step of GaMM estimation, it is possible to replace this procedure and use

non-parametric estimation method for Gt. This is because given the estimate of θ̂ form the first-

step, the path
{
f̂t

}
should be relatively close to the true path and the time-period inconsistency

is no longer an issue. We propose to use a Guassian kernel to obtain G
(i)
t based on previously

obtained
{
G

(i−1)
t

}
and

{
f
(i−1)
t

}
. For i = 0, we initialize the kernel density smoother with {Gt}

and {ft} obtained at the first stage of the estimation.
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Supplemental Appendix A: Time-varying linear regression mod-

els with endogenous covariates

Model

Linear regression models are standard tools in economic analysis. A typical concern is the

endogeneity of one of the regressors with the error term due to omitted variable bias or measure-

ment error.

yt = x⊺
tβt + εt

Given the availability of an instrument variable zt, the obvious way to estimate βt is via the

conditional moment condition

Et−1 [zt (yt − x⊺
tβt)] = 0. (SA.1)

The complication here is that the parameters βt are time-varying. The moment condition (SA.1),

however, lends itself directly to the GaMM framework by setting ft = βt.

In contrast to the setting with stable distributions in Section 3.1 where Gt did not depend on

the data at time t, Gt = − Et−1 [ztx
⊺
t ] now obviously does requires us to compute the condi-

tional expectation for each time t, even though the exogenous instruments zt are assumed to lie

in the conditioning information set used to compute this conditional expectation. We can obtain

the matrix Gt in a straightforward way by noting from (SA.3) that Et−1 [ztx
⊺
t ] = ztz

⊺
tΠx. De-

fine X and Z as the T × 2 matrices with tth row equal to x⊺
t and z⊺

t , respectively. Given the

exogeneity of the instruments zt, we can estimate Gt in the standard way by Ĝ
⊺
t = ztz

⊺
t Π̂x =

ztz
⊺
t (Z

⊺Z)−1Z⊺X . The fact that we can use all observations to estimate Π̂x rather than only the

observations up to time t− 1 follows from the exogeneity assumption for zt and the assumption

that Πx is static.
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Simulation results

Consider a simple linear model where all coefficients are time-varying:

yt = β0,t + β1,txt + εyt, εyt ∼ N
(
0, σ2

εy

)
, E [εytεxt] = ρ, (SA.2)

xt = π0,x + π1,xzt + εxt, εxt ∼ N
(
0, σ2

εx

)
, zt ∼ N

(
µz, σ

2
z

)
, (SA.3)

βi,t+1 = πββi,t + ηi,t, ηi,t ∼ N
(
0, σ2

i,η

)
, i = 0, 1. (SA.4)

If ρ ̸= 0 and σ2
εx > 0, we have a standard endogenous regressor problem. For lower values

of σ2
εx , the size of the bias when estimating β1,t using standard least-squares based methods,

is larger. Define x⊺
t = (1, xt), z

⊺
t = (1, zt), and β⊺

t = (β0,t, β1,t), and let Πx be such that

x⊺
t = z⊺

tΠx + (0, εxt). As a benchmark model we use an ordinary state space model consisting

of equations (SA.2) and (SA.4) and estimated using standard Kalman Filter methods. This is close

to comparing the performance of an instrumental variables (IV) estimator with an ordinary least

squares (OLS) estimator in a static context, where in our dynamic context the Kalman Filter and

the GaMM estimator take the roles of the OLS and IV estimators, respectively.

Our data generating process uses equations (SA.2)–(SA.4). The parameters we selected are

ρ = 0.5, σ2
εy = 1, πx = 0.5, µz = 0, σ2

z = 1, and π⊺
β = [0.98, 0.98]⊺. We vary σεx and ση

to study the effect of different magnitudes of the endogeneity problem and of the time-variation

of the coefficients. We use σ2
εx = {0.5, 4} and σ2

η = {0.01, 0.25, 0.75}, where lower values of

σεx result in larger biases of the least-squares based estimator. All simulations are repeated for

T = {1000, 2500, 5000} observations, with 1000 observations corresponding to approximately

4 years of daily data. We obtained similar results for simulations conducted with shorter time-

series T = {250, 500}, as well as for other time-varying patterns for βt than in equation (SA.4),

including structural breaks and slowly varying sinusoid waves.

The results of 10,000 replications are presented in Figure SA.1 and Figure SA.2. The figures

summarize a substantial amount of information. In the top panel (Panel A), we summarize the

results for β̂0,t, while the bottom panel (Panel B) presents the results for the coefficient β1,t cor-

responding to the endogenous regressor. The results are presented as box-plots using the 10,000

simulated average bias and RMSE statistics as defined in equation (31). In the left-half of the plot,

the endogeneity problem is moderate with a high value of σ2
εx = 4.0. In the right-hand half of

the graph, the endogeneity problem is more severe with σ2
εx = 0.5. This becomes particularly
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Figure SA.1

Bias of GaMM for a Simple Endogeneity Problem

The figure compares performance of GaMM (black) to Kalman Filter with AR1 (light grey) or Random
Walk (dark grey) dynamics for coefficients. We simulate observations and true parameters from a simple
linear model where all coefficients are time-varying:

yt = β0,t + xtβ1,t + εt

xt = 0.5zt + ϕt

βi,t+1 = 0.98βi,t + ηi,t

E [εtϕt] = 0.5 εt ∼ N (0, 1) , ϕt ∼ N (0, σϕ) zt ∼ N (0, 1) ηi,t ∼ N (0, ση)

We consider moderate (σ2
εx = 4.0) and high (σ2

εx = 0.5) degree of the endogeneity problem. For both the
moderate and the high endogeneity bias case, we consider different degrees of time-variation in βt, from
low (σ2

η = 0.01) to high (σ2
η = 0.75). Simulations are run for different sample sizes (horizontal axis). The

results are based on 10,000 replications.

important for the coefficient β1,t in Panel B. For both the moderate and the high endogeneity

bias case, we consider different degrees of time-variation in βt, from low (σ2
η = 0.01) to high

(σ2
η = 0.75). For each of the 2 × 9 = 18 combinations, we plot the results for three different

simulated sample sizes T = {1000, 2500, 5000}. Each group of three box-plots corresponds to a

combination of sample size, degree of time-variation inβt, and severity of the endogeneity prob-
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lem. The three box-plots correspond to three different models: GaMM(1,1) (black), state space

model with random walk dynamics (dark grey), and state space model with autoregressive (AR)

dynamics of order 1 (light grey).

Figure SA.2

RMSE of GaMM for a Simple Endogeneity Problem

The figure compares performance of GaMM (black) to Kalman Filter with AR1 (light grey) or Random
Walk (dark grey) dynamics for coefficients. We simulate observations and true parameters from a simple
linear model where all coefficients are time-varying:

yt = β0,t + xtβ1,t + εt

xt = 0.5zt + ϕt

βi,t+1 = 0.98βi,t + ηi,t

E [εtϕt] = 0.5 εt ∼ N (0, 1) , ϕt ∼ N (0, σϕ) zt ∼ N (0, 1) ηi,t ∼ N (0, ση)

We consider moderate (σ2
εx = 4.0) and high (σ2

εx = 0.5) degree of the endogeneity problem. For both the
moderate and the high endogeneity bias case, we consider different degrees of time-variation in βt, from
low (σ2

η = 0.01) to high (σ2
η = 0.75). Simulations are run for different sample sizes (horizontal axis). The

results are based on 10,000 replications.

Figure SA.1 shows the in-sample performance in terms of the average bias. Typically, out

of the two state space models, the specification with random walk dynamics for the parameters
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performs better and we continue with this model as our main benchmark.

In Panel A, we see that in most cases both the GaMM and the Kalman Filter estimates based

on random walk dynamics offer a similar bias performance for the exogenous parameter. The

average and median biases are close to zero. It is also clear that the distribution of the average bias

for the GaMM approach has a higher spread. The relative differences in performance diminish

substantially as the sample size increases. For the largest sample sizes the results produced with

GaMM are often as accurate as the ones produced with the Kalman Filter.

In Panel B of Figure SA.1 we see that GaMM clearly outperforms the Kalman Filter in terms

of bias of the estimator for the parameter corresponding to the endogenous variable. Regardless

of sample size, size of the time-variability, or magnitude of the endogeneity bias; the Kalman

Filter estimates are clearly biased (as expected), whereas the GaMM approach results in unbiased

estimates of the parameter path in almost all cases. As expected, the bias of the Kalman Filter

estimates is larger for σ2
εx = 0.5 than for σ2

εx = 4.0. In fact, the 5% of best results generated

by the Kalman Filter are in most cases worse than 95% of the results produced by GaMM. As

before, the performance of GaMM improves with the sample size, making the improvement over

the biased least-squares based methods even more apparent.

Figure SA.2 focuses on average root-mean square errors produced by both methods. For both

the exogenous and endogenous variables, RMSEs produced by either method are comparable on

average. However, the distribution of RMSE produced by GaMM has a considerably heavier

right tail: in some cases, the RMSE behavior of GaMM can be substantially worse than that of

the Kalman Filter methods. The number of simulations with poor RMSE produced by GaMM

reduces substantially as the sample size increases.

Summarizing, the trade-off between the Kalman Filter and GaMM approach seems to mirror

the differences between OLS and IV estimation in the case of static parameters. The Kalman Filter

produces results which are biased but with low sampling variability, whereas paths estimated

by GaMM appear to be unbiased, but at the cost of a higher sampling variance.

We also repeat the exercise using the penalized criterion function. Partial results are dis-

cussed in Section 4. Figure SA.3 contains results for other sample sizes, and different values of

both σεx and ση
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Figure SA.3

Performance of GaMM for a Simple Endogeneity Problem With Penalized
Criterion Function

The figure compares performance of GaMM (black) to Kalman Filter with AR1 (dark grey) or Random
Walk (light grey) dynamics for coefficients. We simulate observations and true parameters from a simple
linear model where all coefficients are time-varying as in Figures 3 and 4. GaMM estimation was per-
formed for different values of the smoothing parameter, λ = {10, 1, 0.2, 0, 0∗}, and are presented in
this order. 0∗ denotes the case where unpenalized GaMM was initialized with estimates obtained after
running GaMM with penalty weight of 1.
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