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Abstract 
 
We propose an estimation strategy that accounts for two major problems raised in the empirical 
literature testing for the prevalence of the inverted U-shaped relation between environmental 
degradation and economic activity, namely the Environmental Kuznets Curve (EKC) 
hypothesis. First, we use pairwise differencing to properly identify the income effect, and to 
make use of estimators that likely suffer less from heterogeneity, cross-sectional dependence, 
and other common factor problems. Second, we apply nonlinear-nonstationary parametric and 
non-parametric estimation techniques to estimate the pairwise differenced regressions, since 
panel unit root tests indicate that our income and emission series are integrated of order one. Our 
results for regional CO2 emissions systematically yield positive income effects while the 
estimated time effects do not compensate for these income effects sufficiently to generate an 
inverted U-shape for CO2 emissions. 
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1 Introduction

The large literature estimating Environmental Kuznets Curve (EKC hereafter) postulates an

inverted U-shaped relationship between environmental pollution and per capita gross domestic

product (GDP). Environmental pollution is assumed to follow an increasing pattern up to

a certain level of per capita income and once that level, which is called "turning point,"

is reached, pollution starts to decline. This so called EKC hypothesis has been tested in

numerous empirical papers for many environmental indicators and (sub)samples of countries

mostly in a panel setting following the seminal paper by Grossman and Krueger (1991). At

the same time, this literature has also been severely criticized, for example, for applying

unsatisfactory econometric techniques (see, for instance, Millimet et al., 2003; Stern, 2004;

Wagner, 2008). Others like Vollebergh et al. (2009) have raised fundamental identi�cation

problems in this context because one may be concerned by the interaction between the main

explanatory variable (income e�ect) and its controls (for example, time e�ects).

This paper proposes and applies a new estimation approach that controls for two of the

major challenges that plague EKC estimation. First, a somewhat older and persistent issue

is that per capita income and emission series might be non-stationary, and only if the series

would be cointegrated, the estimations would properly take this non-stationarity into account

(for example, De Bruyn et al. (1998)). Even contributions that control for this issue (see,

for instance, Perman and Stern (2003)) have been criticized, however, because results are

dependent on the type of unit root or cointegration tests chosen (see, for instance, Wagner

(2008)).1 Moreover, as argued by Muller-Furstenberger and Wagner (2007) and formalized by

Wagner and Hong (2015), a non-linear functional speci�cation of a nonstationary exogenous

variable requires an appropriate estimation technique in combination with an appropriate

cointegration test for the hypothesized relation.

Second, and at a more fundamental level, the existing literature also su�ers from non-

robustness due to the use of di�erent econometric techniques (for example, Harbaugh et al.

(2002)), the role of heterogeneity in panel based estimations (for example, Dijkgraaf and

Vollebergh (2005)) and cross-section dependency (Wagner, 2008). Vollebergh et al. (2009) have

noted that these issues in this reduced form setting are likely to be related to identi�cation

problems arising from the separation of a time related independent variable, in this case

income, from control variables, like country and time e�ects in particular. They show that

restrictions imposed on the controls are likely to seriously a�ect the shape of the estimated

1Wagner (2008) �nds no longer signi�cant evidence in favor of the EKC hypothesis if one properly accounts
for cross-sectional dependence compared to cointegrated estimators that do not control for this dependency.
Galeotti et al. (2009) criticize unit root and cointegration tests because they do not allow the order of integration
to take a non-integer values. By applying fractional unit root and cointegration tests in a panel context which
allows the order of integration to be non-integer values, they �nd mixed results. However, their method does
not account of cross sectional dependency nor does their estimation strategy take account of nonlinear terms
of GDP per capita.
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income-emission relationship. As a solution to this fundamental problem they propose to

identify the income e�ect under the assumption that for each region there is at least one other

region having the same time e�ect. Taking pairwise di�erences then eliminates the common

time e�ect and allows a fully nonparametric estimation of the income e�ects. When applying

this pairwise di�erencing strategy, however, Vollebergh et al. (2009) assume the variables of

interest to be stationary, and therefore, their approach is subject to the previous criticism.

The aim of this paper is to deal with both criticisms at the same time. Our starting point

is the new identi�cation approach proposed by Vollebergh et al. (2009) that yields an income

e�ect consistent with important theoretical speci�cations of the long run mechanisms that

drive economic growth models (for example, Brock and Taylor (2005)). Their identi�cation

approach, however, assumes that a pair of countries or regions have a common time e�ect while

they select country pairs based on the best �tting country. In this paper, we do not assume the

existence of a common time e�ect. Instead, we simply de�ne the income e�ect of a country or

region, relative to another country or region, to be what remains (as function of income) after

taking di�erences which eliminates common time e�ects.2 So what remains is the di�erence of

the two income e�ects of the two paired countries or regions (with respect to each other). In

this way, the two income e�ects are identi�ed and can be estimated both parametrically and

fully non-parametrically without imposing any functional form restriction. In addition, the

common time e�ects, which are di�erenced out, are allowed to be fully �exible as well. Each

country or region can be coupled with any other country or region, generating case speci�c

decompositions of total emissions into an income and a time e�ect (and a residual idiosyncratic

e�ect) relative to the coupled region. In other words, both e�ects exist only relative to another

country or region.3

In line with the �rst criticism, we also observe that our series are sensitive to nonstationarity

and require proper estimation techniques in the face of those problems. However, we also aim

to remain as �exible as possible in applying di�erent parametric and non-parametric estimation

techniques in order to avoid potential misspeci�cation. Our parametric benchmark estimation

strategy follows �E�cient nonstationary nonlinear least squares� (EN-NLS) as suggested by

Chang et al. (2001). Although this estimation approach allows for a wide variety of nonlinear

functions, our focus here is on polynomials (one for each income e�ect). The order of the

polynomial in our approach is empirically based and not assumed right from the start. We

2Without a common time e�ect, a country or region would have its own time e�ect. However, a country-
or region-speci�c time e�ect, without further restrictions, can be made so �exible that it captures all variation
in the dependent variable, leaving no room for an income e�ect.

3Our pairwise di�erencing strategy eliminates not only the e�ects that are common to all cross-sectional
units, but also all pair speci�c common e�ects. Therefore this strategy also accounts for cross-sectional de-
pendence problems raised for the panel estimations in the EKC literature. In the current paper we allow for
full heterogeneity in the income e�ects and provide separate regressions for each pair. We leave improving the
e�ciency of our estimators by taking into account the possible correlations between di�erent pairs to future
research.
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test the underlying cointegration assumption, using residual based nonlinear cointegration

tests developed by Wagner (2012) and Wagner and Hong (2015). Furthermore, to select pairs

and to validate the parametric estimates we also apply a non-parametric approach. Here we

follow Schienle (2013) who recently developed an estimator for non-parametric non-stationary

regressions with many covariates and which is suitable for our case.4

Pairwise di�erencing can be applied to any country or region together with a paired country

or region. In this study we explore the EKC hypothesis by focusing on large world regions

(like in the context of the Intergovernmental Panel on Climate Change scenarios). We present

the outcomes only for two regions in the main text, namely, �Western O�shoots� (consisting of

the Australia, Canada, New Zealand, and the United States), representing a developed region,

and China, representing a developing region. The outcomes for the other (seven) regions are

reported in the appendix.5 Environmental quality is proxied by CO2 emission per capita

(Boden et al., 2013) and economic activity by GDP per capita (the Maddison-Project, 2013

version).6 We use data over the period 1950 to 2010.

We �nd, �rst, that the second generation panel unit root tests (applied to the panel

including all nine regions) clearly indicate nonstationarity in the form of unit roots in both

CO2 emission per capita and GDP per capita. Second, using the nonparametric estimator of

Schienle (2013), we pair Western O�shoots to Western Europe (i.e., the former EU) and we

pair China to Latin America. Third, both our parametric and non-parametric estimations,

which allow for nonlinearity and nonstationarity, suggest no evidence for a slowdown in the

income e�ects of both China relative to Latin America and Western O�shoots relative to

Western Europe. More important, however, is that the calibrated time e�ect of China is

clearly increasing too, while the negative time e�ects of Western O�shoots do not compensate

for the corresponding positive income e�ects. Hence, we �nd no evidence supporting the EKC

hypothesis for our investigated pairs, neither for the income e�ect, nor for the joint e�ect of

both income and time.

The remainder of this paper is organized as follows. In the next section we discuss our

identi�cation strategy. In Section 3 we present our dataset and we investigate the stationarity

properties of our data. Section 4 then describes the estimation strategies. In section 5, esti-

mation results, focusing on China and Western O�shoots, are provided. Section 6 concludes.

4For the univariate case some studies exist on non-parametric non-stationary regressions (such as, for
example, Wang and Phillips (2009) and Karlsen et al. (2007)). However, we focus on the special case where
the two-dimensional nonstationarity in the GDP per capita levels of the paired regions turn out to be as
nonstationary as in the univariate GDP per capita levels. In this special case, Schienle's estimator becomes
the Smooth Back�tting Estimator; see Schienle (2013) for further details.

5The underlying data consists of a balanced panel from nine regions, where the regional division is geo-
graphically based and covers the whole world with only a few small country exceptions, see also Melenberg et
al., 2011.

6See http://www.ggdc.net/maddison/maddison-project/home.htm. See also Maddison (2009).
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2 Identi�cation Strategy

The general econometric model behind the empirical literature investigating the EKC hypoth-

esis is as follows:

yit = f(xit, i) + λ(i, t) + εit, (1)

where i stands for the cross-sectional units, such as countries or regions, and t represents time.

The emissions, denoted with yit, is driven by two e�ects. The �rst one is the so called income

e�ect which is denoted with f , and which is a function of xit, i.e., GDP per capita. Secondly,

λ stands for the time e�ect. Finally, εit stands for the idiosyncratic error term. In this

very general model, both income and time e�ect can also be a function of some cross-section

speci�c e�ects. The functional form (1) can be motivated by the so-called IPAT-equation (see,

for example, Chertow, 2000), i.e., I = P ×A× T , where I stands for the impact (in our case

of carbon dioxide emission), P stands for population, A stands for a�uence, and T stands for

technology. In per capita- and log-terms we get log(I/P ) = log(A) + log(T ). Translated into

equation (1), we model y = log(I/P ) as a function f of GDP per capita, representing log(A),

plus a function λ of time, representing log(T ). Both f and λ are allowed to be cross section

unit-speci�c. Adding the error term εit completes speci�cation (1).

In order to identify (and estimate) the hypothesized relationship between emission and

income, we apply as identi�cation strategy �pairwise di�erencing.� This strategy does not im-

pose any additional functional form restrictions (on top of equation (1)). Instead, it interprets

what can be estimated, using equation (1), without additional functional form restrictions,

after taking di�erences of yit and ykt (for each t) of two di�erent regions i and k. Formally,

consider two regions i and k collected in c = {i, k}. Then we de�ne fc(xit, i) and fc(xkt, k),

the region-speci�c income e�ects of regions i and k, respectively, given the set of regions c as

follows

yjt = fc(xjt, j) + λc(t) + εc,jt, j ∈ {i, k}, (2)

where λc(t) represents the common time e�ect, and where εc,jt, j ∈ {i, k}, are the region-

speci�c idiosyncratic error terms. Applying pairwise di�erencing to (2) with j = i and j = k

leads to the following equation:

yit − ykt = fc (xit, i)− fc (xkt, k) + εc,it − εc,kt. (3)

Assuming (for example) E (εc,it − εc,kt|xit, xkt) = 0, both fc (·, i) and fc (·, k) are identi�ed (up
to a constant), without imposing additional functional form restrictions.7 Moreover, because

λc(t) is di�erenced out, it can be any function of t.

We could generalize c = {i, k} to c = {i, (k1, · · · , kT )}, where kt is the coupled region at

7The assumption E (εc,it − εc,kt|xit, xkt) = 0 identi�es hc (xit, xkt) = E (yit − ykt|xit, xkt). Then´
hc (·, x) dµ(x) = fc (·, i)+c, for some constant c, where µ is some probability measure, satisfying

´
dµ(x) = 1.
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time t, with t ∈ {1, · · · , T}. In equation (3), applying to period t we then have to replace k

by kt. However, we leave this generalization to future research, assuming in this paper kt = k

for all t.

The assumption of a common time e�ect (λc(t), for c = {i, k}) (or its generalization to

c = {i, (k1, · · · , kT )}) is a minimum requirement for being able to identify a nonzero income

e�ect f . Without a common time e�ect, and without other constraints, the region-speci�c

time e�ect λ(i, t) can be made so �exible to capture all variation in the dependent variable

(namely, by setting λ(i, t) = yit), leaving no room for a nonzero income e�ect.

A di�erent coupling, represented by c′ 6= c, typically will generate a di�erent income e�ect

fc′(·, i) 6= fc(·, i) and a di�erent time e�ect λc′(·) 6= λc(·). This shows that a region's income

e�ect is only identi�ed relative to another region, as given by the set c.

The next step is the estimation of (3). However, the appropriate estimation technique

depends on the characteristics of the data, which we therefore consider �rst.

3 Description and Properties of the Data

Our underlying dataset is a balanced panel for all countries, covering the period between

1950 and 2010. CO2 emission data consist of the sum of emissions from gas, liquid and

solid fuels (based on consumption �gures), and from gas �aring and cement production (see

Boden et al. (2013). For each type of fuel, data on annual CO2 emissions result from three

aspects: the amount of fuel consumed, the fraction of the fuel that becomes oxidized, and

a factor for the carbon content of the fuel. The fuel types incorporated in the calculations

are coal, other solid fuels, crude oil, petroleum products, and natural gas. Total energy

use and emissions per country are corrected for exports and imports of fuels, as well as for

stock changes, international marine bunkers, and non-energy use of fuels, such as chemical

feedstock. The estimation of the amounts of CO2 released through gas �aring are based

on the UNSTAT database, supplemented by estimations from DOE/EIA. The estimations

of the amounts of CO2 released from cement manufacturing are based on �gures indicating

the quantity of manufactured cement, the average calcium oxide content per unit of cement,

and a factor to convert the calcium oxide content into CO2 equivalents. Data on GDP per

capita is taken from the Maddison-Project, 2013 version.8 All �gures are expressed in 1990

International Geary-Khamis dollars, using purchasing power parities.

We aggregate data on a country by country basis into nine regions: India, China, �Other

Asia�, Western Europe, Eastern Europe, Former USSR, �Western O�shoots�, Africa, and Latin

America. In contrast to the division into regions by the Intergovernmental Panel on Climate

8See http://www.ggdc.net/maddison/maddison-project/home.htm. In order to construct the emission per
capita series at the regional level, we employ the population data from Maddison (2009) which is available up
to 2009. For the 2010 values, we use the US Census Bureau database.
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Change (IPCC), we distinguish explicitly between Eastern Europe and Former USSR, divide

the �old� OECD into Western Europe (old EU) and what we indicate as �Western O�shoots�

(Australia, Canada, New Zealand, and the United States), while Japan together with the

countries of the Middle East are grouped under the name �Other Asia�. Finally, we split the

IPCC region ALM into Africa and Latin America. In our empirical analysis we focus on two

regions in particular: Western O�shoots (to be paired to Western Europe) and China (to be

paired in the main text with Latin America).

In Table 1 some descriptive statistics for the nine regions are presented. For all variables

it seems that there are no strong outliers. Considering only the mean, median, standard

deviation, maximum and minimum values, all variables seem to be right tailed. We shall take

logarithms of the per capita variables to correct for the skewness of the level variables.

Table 1: Descriptive statistics

Units Mean Median St. Dev. Min. Max.

Emission Tons (mln.) 534.976 336.746 477.245 18.171 2259.856

GDP 1990 US$ (bln) 2496.036 1513.059 2573.609 183.017 11375.480

Population mln 503.575 372.464 347.016 87.637 1620.231

Emission pc. kg. 1524.967 784.454 1532.208 39.255 5806.490

GDP pc. 1990 US$ 6118.600 4277.080 6369.410 448.022 30547.928

Emission pc. (log) 6.705 6.665 1.236 3.670 8.667

GDP pc. (log) 8.234 8.361 1.016 6.105 10.327

Note: Descriptive statistics are for the period 1950 - 2010. Total number of observation is 549.

In Figure 1 GDP per capita series of the regions are presented. Three groups can be

distinguished. Western O�shoots and Western Europe have the highest income per capita.

India and Africa are always in the lowest income group. Other Asia shows a gradual rise

of income per capita and is part of the middle income group since the 1970s. GDP per

capita for China started to grow later but faster and is part of the middle income group only

recently. Eastern Europe, Former USSR, and Latin America stay in the middle income group

throughout the period, although Former USSR experiences a decline following its collapse in

1990.

Figure 2 illustrates the corresponding CO2 emissions per capita.This �gure shows some

clear di�erences compared to Figure 1. First, the high emission group is limited to only one

region, namely, Western O�shoot. Second, the middle emission group consists of former USSR,

Eastern and Western Europe, and, recently, China. Third, emission growth per capita lags

behind compared to GDP growth per capita for most regions. Finally, the highest emission

regions seem to re�ect a turning point at some point in time which is suggestive evidence for

the EKC hypothesis.
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Figure 1: GDP Per Capita (thousand US $ - 1990)
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Figure 2: CO2 Emission Per Capita (ton)
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Next, we turn to the stationarity properties of our variables, considering our dataset as a

panel including all nine regions. To test the stationarity of our variables in levels, we focus

on the second generation panel data unit root tests, that take cross sectional correlation into

account. Here, we focus on Bai and Ng (2004). Sen (2014) also reports the outcomes of other

second generation unit root tests.9

Bai and Ng (2004) consider a multi-factor framework called �Panel Analysis of Non-

stationarity in Idiosyncratic and Common Components� (PANIC) where the factors and id-

iosyncratic components are analyzed separately and hence allow for cross-unit cointegration.

Furthermore, this method allows testing the number of factors with a unit root. Their model

is as follows:

zit = dit + λ
′
iFt + Eit

Ft = Ft−1 + ηt (4)

Eit = ρiEi,t−1 + eit

where zit is the variable under consideration, with index i (in our case) referring to region i and

index t to year t, where Ft is the vector of common factors, Eit is the idiosyncratic component,

and dit is the deterministic component of the data generating process which indicates whether

the model includes a constant or a trend. The disturbances ηt and eit are assumed to be white

noise processes.10

In this data generating process, one or more of the common factors might follow a random

walk. Therefore, the standard factor analysis does not apply to identify the factor loadings.

To deal with this issue, Bai and Ng (2004) suggest basing the principal component analysis

on the �rst di�erences of the series. The standard PANIC analysis uses the selection criteria

suggested by Bai and Ng (2002) to determine the number of common factors. However, this

criterion performs poorly when the cross-sectional dimension is small, like in our case. So, in

order to apply these tests, we assume the number of common factors to be at most three.

In Table 2 the results of the Bai and Ng test are presented. The �rst column indicates

the given number of common factors which is assumed to be one, two, or three. In order to

investigate the number of common factors with a unit root, the Bai and Ng (2004) method

applies ADF unit root tests, labeled as �ADF� in Table 2. In case of more than one common

factor, individual ADF tests may over-state the number of common stochastic trends (Bai

and Ng, 2004), since only the space spanned by the factors can be estimated. Therefore,

9Sen (2014) contains as one of the chapters a previous version of the current paper. This chapter in Sen
(2014) includes an appendix, also presenting results of univariate unit root tests and �rst generation panel
data unit root tests. When investigating cross sectional dependence, Sen (2014) clearly �nds evidence for cross
sectional dependence (both via common factors and via idiosyncratic components).

10The r-dimensional disturbance term ηt is modeled as ηt = C(L)ut, with C(L) =
∑∞
j=0 CjL

j and ut i.i.d.,
where rank(C(1)) = r1, with 0 ≤ r1 ≤ r the number of I(1) factors and r−r1 the number of stationary factors.
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Bai and Ng (2004) suggest two tests (MQf and MQc), which are modi�ed versions of the

cointegration tests suggested by Stock and Watson (1988). The null hypothesis states the

number of common stochastic trends against the alternative that it is less than the stated

number in the null hypothesis. The test is applied successively by decreasing the number of

stochastic trends in the null hypothesis as long as it is rejected.

For the idiosyncratic components, Bai and Ng (2004) provide two test statistics, one that

is asymptotically normally distributed (BNN ) and the other one that has an asymptotic chi-

square distribution (BNξ2). Both tests depend on pooling the p-values from the ADF tests

applied to individual idiosyncratic components.

The results in Table 2 indicate that there are likely multiple common factors with a unit

root, while also the idiosyncratic components of both the GDP and the emission series seem

to have a unit root. Given these outcomes, we shall proceed under the assumption that both

the GDP and the emission series are nonstationary, in line with the �ndings of Wagner (2008)

who also applied the PANIC analysis (and other tests) to carbon dioxide and GDP per capita,

using data over 100 countries during the period 1950 to 2000.

In our analysis, we shall use pairwise di�erenced emissions as dependent variables. As

follows from (4), pairwise di�erencing does not eliminate the e�ect of unit roots via the common

factors, unless λi of two di�erent regions would be the same. However, Sen (2014) �nds

unit roots in the (investigated) pairwise di�erenced variables. Thus, we shall proceed under

the assumption that not only GDP and the emission series are nonstationary, but also the

(investigated) pairwise di�erences.

4 Estimation Strategies

In this section we discuss our estimation strategies for estimating (3), taking into account the

nonstationarity properties found in the previous section. First, we rewrite (3) as

yik,t = fc (xit, i)− fc (xkt, k) + εc,ik,t. (5)

with yik,t = yit − ykt and εc,ik,t = εc,it − εc,kt. Given a pair c = {i, k}, we consider as

benchmark the �e�cient nonstationary nonlinear least squares� (EN-NLS) estimator of Chang

et al. (2001). We use the Fully Modi�ed (FM)-OLS estimator of Wagner and Hong (2015) for

comparison. To select a pair c = {i, k} and to validate these two parametric approaches we

apply the nonparametric approach by Schienle (2013).

The benchmark EN-NLS estimator of Chang et al. (2001) assumes that (5) can be written

as

yik,t = qc (xt, β) + εc,ik,t, (6)
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Table 2: Bai&Ng (2004) Panel Unit Root Test

Number of Number of Idiosyncratic

Common Factors Stochastic Trends Components

ADF MQc MQf BNN BNχ2

Model with individual intercept

log(Emission pc.) 1 1 0.938 0.964

2 2 2 0.903 0.926

3 3 3 0.831 0.834

log(GDP pc.) 1 1 0.574 0.532

2 2 2 0.460 0.412

3 3 3 0.803 0.798

Model with individual intercept and trend

log(Emission pc.) 1 1 0.957 0.983

2 2 2 0.468 0.425

3 3 3 0.851 0.860

log(GDP pc.) 1 1 0.954 0.980

2 2 2 0.636 0.598

3 3 3 0.641 0.605

Unit root tests on the common factors are conducted at the 5% signi�cance level. For the
idiosyncratic components, p-values from the pooled unit root tests are presented, based on
the Augmented Dickey-Fuller (ADF) tests on the individual series, and rejection indicates
stationarity. The column �number of common factors� indicates the imposed number of
common factors. Next, �the number of stochastic trends� indicates how many of these
common factors are non-stationary.
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for some known function qc depending on xt = (xit, xkt)
′ and depending on an unknown, �nite-

dimensional parameter vector β, that is to be estimated, and where εc,ik,t is some stationary

error process. The possible nonlinear transformation of the nonstationary regressors in (6)

requires a di�erent asymptotic theory than in case of nonlinear least squares with stationary

regressors.11

In line with (5), we take qc to be separable in xit and xkt. Moreover, we shall assume that

the separable parts are polynomials up to some order, where the order will be determined as

part of the empirical analysis.12 These assumptions allow us to compare our benchmark with

the Fully Modi�ed (FM)-OLS considered by Wagner and Hong (2015). This latter estimation

approach assumes polynomials in terms of xit and xkt as regression function right from the

start.13

The parametric estimation of (6) with nonstationary regressors requires a cointegration

relationship, i.e., the residuals in the regression equations should satisfy speci�c stationarity

assumptions. Given the choice for a speci�cation in terms of polynomials, we are dealing with

Cointegrating Polynomial Regressions (CPRs), using the terminology of Wagner and Hong

(2015). For such CPRs, Wagner and Hong (2015) and Wagner (2012) developed a series of

residual based nonlinear cointegration tests, which we employ in order to verify the underlying

cointegration assumption in our estimations.

Wagner and Hong (2015) propose a KPSS test on the residuals of the polynomial regression

estimation. As in the linear case, the KPSS test is inclined to over-reject the null hypothesis

of having a cointegrating relationship. In order to mitigate this problem, Wagner and Hong

(2015) also propose a sub-sample KPSS test as in Choi and Saikkonen (2010). The null

hypothesis in these KPSS type tests is cointegration. As alternative, they provide a variance

ratio test under the null of no-cointegration by extending the Phillips and Ouliaris (1990) test

for linear cointegration to polynomial cointegration. In our application we use all three tests.

To select the couples c = {i, k} and to validate our parametric estimations, we use a

nonparametric estimator avoiding a potential functional misspeci�cation. Recently, Schienle

(2013) shows how to generalize the nonparametric smooth back�tting estimation for addi-

tive models suggested by Mammen et al. (1999) to account for non-stationary regressions

with many covariates. We focus on the special case where the two income components have

the same type of nonstationarity (using the terminology of Schienle, 2013). For the paired

GDP-s per capita this seems to be a reasonable approximation.14 If so, Schienle's general-

11For details we refer to Chang et al. (2001). EN-NLS estimation also allows to incorporate a linear trend and
stationary regressors, in addition to multiple I(1) regressors. In our case, we do not have stationary variables,
but only two nonstationary variables as regressors in (6).

12As a consequence, the function qc is an asymptotically homogeneous function, using the terminology of
Chang et al. (2001).

13The di�erence in assumptions between Chang et al. (2001) and Wagner and Hong (2015) is minor, given
our choice to model qc in terms of polynomials: see page 5 of Wagner and Hong (2015).

14Cointegration tests for the GPD-s per capita in the paired regions, reported in Sen (2014), suggest that
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ized estimator is the smooth back�tting estimator, see Schienle (2013) for further details.15

An accessible description of the smooth back�tting estimator including its computation in a

practical application can be found in Nielsen and Sperlich (2005).

In pairwise di�erencing estimations, it is possible to calibrate the time e�ects. From

equation (3), we obtain the emissions depending on the GDP per capita of the region i as

f̂c (xit, i) and region k as f̂c (xkt, k), where f̂c is the estimated fc from the pairwise di�erencing

estimations. The time e�ect of each region is constructed by subtracting the income e�ects

from the observed emissions as d̂c(i, t) = yit − f̂c (xit, i) for region i, and d̂c(k, t) = yk,t −
f̂c (xkt, k) for region k. The time e�ects are homogeneous across paired regions. Therefore, in

order to calibrate the time e�ects, we average these two time e�ects.16

One �nal issue is the choice to pair regions. Melenberg et al. (2011) propose to choose

pairs on the basis of a so-called �Goodness-of-Fit (GoF) prior�: among all candidate regions

choose the pair region such that pairwise di�erencing estimation gives the lowest sum of

squared errors. In this paper, we use the nonparametric non-stationary estimator suggested

by Schienle (2013) to calculate the sum of squared errors. When applying this estimator we

use Gaussian (product) kernels. We check for sensitivity to boundary correction methods, such

as normalization, local linearization, and re�ection.17 For nonstationary multivariate kernel

regressions, the bandwidth selection is still an open question. As argued by Schienle (2013)

it seems plausible to choose a larger bandwidth compared to the stationary case. For that

reason we use, next to Silverman's rule of thumb, the normal scale rule, the direct plug-in

rule, and also the oversmoothing rule.18 We check for sensitivity to these bandwidth choices

by increasing the selected bandwidths up to a factor two.

5 Estimation Results

In this section we present the estimation results. Out of the nine regions we focus on China

and Western O�shoots. The estimation results of the other regions are presented in the

appendix. Using the selection procedure explained at the end of the previous section, we

always couple Western O�shoots to Western Europe, but depending on the combination of

boundary correction method and bandwidth choice, we couple China most often to Latin

America, but sometimes to India or Former USSR. For these latter pairs (i.e., �China and

Latin America�, �China and India�, and �China and Former USSR�) the resulting parametric

there is a cointegrating relationship between the paired GDP-s per capita.
15The error terms in the Schienle (2013) approach also have to satisfy speci�c conditions. However, we are

not aware of any formal way to test these conditions.
16In our companion paper, we model these calibrated time e�ects as a function of time to generate forecasts

of future carbon dioxide emissions.
17See, for example, Karunamunia and Alberts (2005).
18The direct plug-in rule is a variant of the Sheather-Jones plug-in bandwidth estimation. See, for example,

Wand and Jones (1995) for the details about these bandwidth selection procedures.
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outcomes for China (to be discussed next) turn out to be quite similar, thus robust to the

bandwidth choice. In the sequel, we present the outcomes for China coupled to Latin America

(as this region is chosen in the majority of cases considered).19 A sensitivity check by taking

the two alternative best pairs is presented in the appendix.

Using our selected pairs, we apply EN-NLS as our benchmark approach. For c = {i, k}, we
consider polynomials up to order �ve for both fc(·, i) and fc(·, k). We present the estimation

results for the �ve polynomials (from order one to �ve) for China in Table 3 and for Western

O�shoots in Table 4. For each polynomial we only include the corresponding �best� polynomial

of the paired region. To select the �best� polynomials, we use the BIC criterion, including in

the comparison only the models whose highest order polynomial term is signi�cantly di�erent

from zero (at the 10% level). Thus, for China, we only make a comparison between the

�rst, fourth, and �fth order polynomial, and for Western O�shoots we only compare the �rst,

second, and �fth order polynomial. Using this selection criterion, we �nd that for both China

and Western O�shoots the �rst order polynomial is the �best� �tting polynomial (with in both

cases a third order polynomial as �best� �tting polynomial for the paired region, i.e., Latin

America in case of China and Western Europe in case of Western O�shoots). The �nal column

of both tables (with heading �FM-OLS�) contains as comparison the FM-OLS estimates when

using the same speci�cation as the �best� EN-NLS estimates (i.e., in both cases a �rst order

polynomial vs. a third order polynomial).

Figure 3 for i = China and Figure 4 for i = Western O�shoot illustrate f̂c(xit, i), λ̂c(t),

their sum, and yit as a function of time t, with time t running over the sample period. The

pairwise di�erencing estimation does not identify the levels of these curves. Therefore, we

normalize the curves such that the level of the sample average for each curve is equal to the

average level of the observed emission in that region. For both China and Western O�shoot we

�nd a clear upward trending income e�ect. In case of China the calibrated time e�ect is also

upward sloping, whereas in case of Western O�shoots the calibrated time e�ect is downward

sloping, at least in the second half of the sample period.

Next, in Figure 5 we show the shapes of the income e�ects, i.e., f̂c(·, i) over the sample

range of GDP per capita, for both China and Latin America (left panel), and for both Western

O�shoots and Western Europe (right panel). These graphs show the resulting income e�ect

using the �best� EN-NLS estimates (i.e., using the parameter estimates of columns (1) of

Tables 3 and 4) and the resulting income e�ect using the corresponding FM-OLS estimates

(i.e., using the parameter estimates of columns �FM-OLS� of Tables 3 and 4). Since the levels

19For China the generalization of our approach to consider the paired region to be time-dependent (i.e.,
c = {i, (k1, · · · , kT )} instead of c = {i, k}) might be relevant: if for each paired region the goodness-of-�t is
considered to be poor, or if the pairing of the best �tting region does not turn out to be very robust, we might
consider di�erent pairing regions during di�erent parts of the sample period to improve the goodness-of-�t.
However, in this paper we do not consider this extension, also because the results for China itself seem to be
robust (i.e., not very sensitive to the paired region).
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Table 3: Pairwise Di�erenced EN-NLS Estimations China

(1) (2) (3) (4) (5) FM-OLS

log(GDP pc.)1 0.581∗∗∗ 2.719∗ 10.294 -334.037∗ 0.000 0.690∗∗∗

(0.096) (1.462) (16.909) (180.411) (.) (0.096)

log(GDP pc.)2 -0.145 -1.147 67.630∗ -21.730∗

(0.098) (2.224) (36.002) (12.390)

log(GDP pc.)3 0.044 -6.036∗ 5.871∗

(0.097) (3.183) (3.276)

log(GDP pc.)4 0.201∗ -0.590∗

(0.105) (0.324)

log(GDP pc.)5 0.021∗

(0.011)

P-log(GDP pc.)1 -1035.780∗∗∗ -1402.189∗∗∗ -1339.121∗∗∗ 0.000 -1464.623∗∗∗ -1219.0∗∗∗

(242.873) (339.640) (365.089) (.) (359.336) (265.500)

P-log(GDP pc.)2 122.359∗∗∗ 167.193∗∗∗ 159.556∗∗∗ -89.042∗∗∗ 174.212∗∗∗ 143.8∗∗∗

(29.147) (41.113) (44.144) (21.521) (43.407) (30.770)

P-log(GDP pc.)3 -4.816∗∗∗ -6.642∗∗∗ -6.334∗∗∗ 14.109∗∗∗ -6.904∗∗∗ -5.651∗∗∗

(1.166) (1.658) (1.779) (3.462) (1.747) (1.230)

P-log(GDP pc.)4 -0.628∗∗∗

(0.157)

P-log(GDP pc.)5

Adjusted R2 0.908 0.909 0.907 0.911 0.912

AIC -30.1 -31.7 -29.6 -31.3 -29.8

BIC -19.7 -21.3 -17.2 -16.8 -13.2

Observations 59 59 59 59 59 59

Notes: Paired region is Latin America. Polynomial terms of the pair region is indicated with �P-� at the
lower part of the table. Standard errors are in parentheses.
Signi�cance of the coe�cients is labeled as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4: Pairwise Di�erenced EN-NLS Estimations Western O�shoots

(1) (2) (3) (4) (5) FM-OLS

log(GDP pc.)1 0.499∗∗∗ 7.914∗∗∗ 29.140 0.000 0.000 0.424∗∗∗

(0.181) (2.079) (50.938) (.) (.) (0.182)

log(GDP pc.)2 -0.385∗∗∗ -2.519 1.945 0.000

(0.110) (5.116) (2.668) (.)

log(GDP pc.)3 0.071 -0.233 0.484∗

(0.171) (0.357) (0.264)

log(GDP pc.)4 0.008 -0.075∗

(0.013) (0.041)

log(GDP pc.)5 0.003∗

(0.002)

P-log(GDP pc.)1 50.799∗∗∗ 7.741∗∗∗ 8.312∗∗∗ 8.294∗∗∗ 0.000 54.380∗∗∗

(13.809) (1.800) (2.310) (2.277) (.) (13.820)

P-log(GDP pc.)2 -5.302∗∗∗ -0.396∗∗∗ -0.428∗∗∗ -0.427∗∗∗ 0.000 -5.679∗∗∗

(1.480) (0.104) (0.131) (0.129) (.) (1.481)

P-log(GDP pc.)3 0.186∗∗∗ 0.503∗∗ 0.199∗∗∗

(0.053) (0.219) (0.053)

P-log(GDP pc.)4 -0.081∗∗

(0.037)

P-log(GDP pc.)5 0.003∗∗

(0.002)

Adjusted R2 0.832 0.831 0.829 0.829 0.833

AIC -253.8 -253.0 -253.2 -253.2 -254.6

BIC -243.4 -242.6 -242.9 -242.9 -242.1

Observations 59 59 59 59 59 59

Notes: Paired region is Western Europe. Polynomial terms of the pair region is indicated with �P-� at the
lower part of the table. Standard errors are in parentheses.
Signi�cance of the coe�cients is labeled as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 3: Pairwise Di�erencing Estimations for China
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Explanation: This �gure shows the estimated e�ects of the EN-NLS estimation for China when coupled with
Latin America. All series are in logarithms. Levels of the estimated e�ects are normalized such that the means
are equal to the mean of the observed emission series (in logs).

Figure 4: Pairwise Di�erencing Estimations for WO
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Explanation: This �gure shows the estimated e�ects of the EN-NLS estimation for Western O�shoots when
coupled with Western Europe. All series are in logarithms. Levels of the estimated e�ects are normalized such
that the means are equal to the mean of the observed emission series (in logs).
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Figure 5: Comparison of income e�ects of the EN-NLS and FM-OLS estimations
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Explanation: This �gure shows a comparison of the EN-NLS (E) estimates and the corresponding FM-OLS
(F) estimates. The left panel compares the estimates for China (Ch) and Latin America (LAm). The right
panel compares the estimates for Western O�shoots (WO) and Western Europe (WE).

are not identi�ed, we set the level in these graphs such that in the middle of the region-speci�c

sample range of GDP per capita the level is equal to zero.

As the �gure shows, the EN-NLS and FM-OLS estimates yield rather similar outcomes.

The common time e�ect of China and Latin America shown in Figure 3, is rather steep,

leaving enough space for an increasing income e�ect for China, but too steep for an increasing

income e�ect for Latin America. The reason is the rather spectacular growth, both in income

and carbon dioxide emissions in China, while the corresponding growth in income and carbon

dioxide emissions in Latin America was quite moderate, compared to China. Thus, relative

to China, Latin America is showing a negative income e�ect over a large part of the sample

range. However, relative to its own best �tting paired region (India), Latin America shows an

almost �at (calibrated) time e�ect, and a clearly increasing income e�ect (see below).20

In Table 5 we present the results of various cointegrating tests for China and Western

O�shoots. The results for the other regions are presented in the appendix. For each of the

test statistics we present two versions. The �rst one (reported under the heading �1 stage� in

Table 5) is the version where the long-run covariance matrix is computed from the residuals

of OLS regression prior to calculating the Polynomial Cointegration Estimator, as suggested

in Wagner and Hong (2015). For the second version (presented in the column labeled as �2

Stage�) we recompute the long-run covariance matrix from the residuals of the Polynomial

Cointegration Estimator prior to calculating the test statistics, cf. Wang and Wu (2012).

Both approaches are asymptotically equivalent. The critical values for the sub-sample test

20See Section 2 for a detailed explanation of interpreting the results relative to another region.
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Table 5: Cointegration Tests

Test Statistics Critical Values

1 Stage 2 Stage 90% 95% 99%

China

H0: Cointegration

KPSS 0.067 0.065 0.140 0.191 0.348

Sub-sample KPSS 0.517 0.725 3.484 3.983

H0: No cointegration

Variance ratio test 37.993 42.293 39.676 47.702 63.828

Western O�shoots

H0: Cointegration

KPSS 0.074 0.090 0.137 0.193 0.342

Sub-sample KPSS 0.964 1.076 3.741 4.220

H0: No cointegration

Variance ratio test 31.006 31.888 45.521 54.064 73.813

can be found in Wagner and Hong (2015). The critical values for the KPSS test and the

Variance Ratio test in case there is more than one covariate with higher order polynomials are

not tabulated yet. For these cases, we present the critical values from our own Monte-Carlo

simulations with 800 observations and 1600 replications.

In Table 5, the results from the KPSS tests and the sub-sample KPSS tests do not reject

the null hypothesis of a cointegrating relationship for both China and Western O�shoots.

The results from the variance ratio tests support this �nding for China, but not for Western

O�shoots. When the two-step procedure is applied, the null hypothesis of �no cointegration�

is rejected for China at the 10% signi�cance level. In case of the one-step procedure, the test

statistic is insigni�cant at the margin. Overall, there is a strong evidence for a cointegrating

relationship for China. However, for Western O�shoots, the variance ratio tests do not indicate

a cointegrating relationship in contrast the KPSS tests. We �nd similar outcomes in case of

the other regions (see appendix).

Finally, we confront the empirically-selected benchmark EN-NLS estimates with the 95%-

con�dence intervals based on the nonparametric non-stationary estimator (generalized smooth

back�tting) suggested by Schienle (2013).21 The presented nonparametric estimates for China

and Western O�shoots are based on employing univariate Gaussian kernel and their products

for the multivariate density estimations in combination with using the direct plug-in bandwidth

estimation method for each covariate.22 The con�dence intervals are constructed as described

21See footnote 14 for some additional information.
22We apply the direct plug-in bandwidth estimation with �ve iterations. The estimated patterns are robust
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Figure 6: Comparison of parametric and non-parametric estimations
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Explanation: This �gure shows a comparison of the EN-NLS estimates and the non-parametric estimates.
The left panel compares the estimates for China. The right panel compares the estimates for Western O�shoots.
The 95% non-parametric con�dence intervals from the non-parametric estimations are indicated by the shaded
area.
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Figure 7: ENNLS Estimation for all regions
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Explanation: This �gure shows the estimated e�ects of the EN-NLS estimation for all regions. See the
estimation tables for the pair regions. All series are in logarithms. Levels of the estimated e�ects are normalized
such that the means are equal to the mean of observed emission series (in logs).
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in Nielsen and Sperlich (2005), see also Sen (2014). Figure 6 shows the results. In case

of China the nonparametric and �best� parametric estimation results are very close. For

Western O�shoots the nonparametric estimate shows somewhat more curvature than the �best�

parametric one, but the latter clearly lies inside the con�dence band.

Estimation results for all regions are presented in Figure 7. Related estimation tables and

cointegration tests are provided in the appendix. The �gure also includes the results for China

and Western O�shoots in order to ease comparison of the estimated series across regions.

The striking result is that the income e�ect is increasing for all regions. That is, holding the

time e�ects constant, scaling up economic activity leads to higher emissions. The estimated

patterns for the income e�ects indicate smoothly increasing patterns. Indeed, the degree of

the chosen polynomial for �ve out of nine regions is one. On the other hand, the estimated

time e�ects follow heterogeneous patterns across regions. It is clearly decreasing for Western

O�shoots and Western Europe which are the advanced economies in our sample. That is, time

e�ects play a mitigating role in high income regions, but this is not the case for other regions.

This result is in line with the theoretical arguments in the EKC literature that technological

e�ects and compositional e�ects can reduce emissions at high income levels. Interestingly, our

results also indicate that these factors are not su�cient to create a down-turn in emissions

and hence do not support an inverted U-shaped relationship between pollution and income.

6 Conclusion

In this paper we deal with two econometric issues related to the traditional quanti�cation

and estimation of the Environmental Kuznets Curves (EKCs), namely the lack of robustness

which is likely to be related to fundamental identi�cation problem of the income e�ect, and

the need to use nonlinear estimation techniques that can handle non-stationary data. Using

the PANIC-approach proposed by Bai and Ng (2004) we �nd, in line with the earlier litera-

ture, strong evidence that carbon dioxide emissions and GDP per capita are non-stationary.

Estimation procedures suitable for nonstationarity is therefore essential. Furthermore, we use

the estimation approach suggested by Vollebergh et al. (2009) to identify the income e�ect of

regions in the reduced form EKC literature.

Our pairwise di�erencing estimations do not yield income e�ects that support the EKC

hypothesis. For both China and Western O�shoots (the regions we focus on) we �nd clearly

to using a wide range of kernels including those employing boundary correction methods such as normaliza-
tion, local linearization, and re�ection, and robust to using alternative bandwidth selection methods, namely
Silverman, normal scale rule, and oversmoothing rule. As argued in Schienle (2013), the mentioned bandwidth
selection methods, which are not designed for the non-stationary case, seem to yield too narrow bandwidths.
Increasing the selected bandwidth, up to a factor two, leads to results that are more in line with the paramet-
ric estimations. The combination of the chosen methods a�ects the slope and the curvature of the estimated
curves, but not the estimated patterns. In some cases, the income e�ects of Western O�shoots stay out of the
con�dence band for a few periods at the boundary values.
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increasing income e�ects. Moreover, the downward sloping time e�ects of Western O�shoots

are not likely to compensate for the increasing income e�ects. This �nding also applies to the

other regions. A comparison of the parametric and nonparmetric estimation results reveals

similar patterns, supporting our empirical �ndings.

A �nal observation is that our pairwise di�erencing approach yields consistent estimations

of the identi�ed income e�ect of a region relative to another region. Moreover, our �nding of

a positive income e�ect is consistent with the main �ndings in the theoretical literature, i.e.

a scale e�ect would drive emissions systematically upward along any economic growth path

(e.g. Brock and Taylor, 2005). In this literature declining emissions would be due to either

sectoral shifts or technological change. Those e�ects are typically re�ected by unmeasured

temporal variablity correlated with emissions and picked up by our time e�ect. However, the

time e�ects are only calibrated. A natural next step is to construct and estimate a model for

the time e�ects using these calibrated time e�ects. This is a topic that we leave for future

research.
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Appendix: Estimation Results Other Regions

Table 6: Pairwise Di�erenced ENNLS Estimations Africa

(1) (2) (3) (4) (5)

log(GDP pc.)1 0.329∗ -18.580 576.846 0.000 0.000

(0.183) (11.811) (374.089) (.) (.)

log(GDP pc.)2 1.294 -80.561 39.091 0.000

(0.808) (51.409) (26.036) (.)

log(GDP pc.)3 3.750 -7.276 3.527

(2.355) (4.766) (2.424)

log(GDP pc.)4 0.381 -0.738

(0.245) (0.499)

log(GDP pc.)5 0.041

(0.027)

P-log(GDP pc.)1 260.658∗∗∗ 249.341∗∗ 535.033∗∗ 527.581∗∗∗ 519.987∗∗∗

(96.564) (95.432) (201.852) (196.518) (191.630)

P-log(GDP pc.)2 -31.783∗∗∗ -31.174∗∗∗ -64.865∗∗∗ -63.973∗∗∗ -63.065∗∗∗

(11.559) (11.403) (23.871) (23.237) (22.655)

P-log(GDP pc.)3 1.291∗∗∗ 1.296∗∗∗ 2.620∗∗∗ 2.584∗∗∗ 2.548∗∗∗

(0.461) (0.455) (0.941) (0.916) (0.893)

P-log(GDP pc.)4

P-log(GDP pc.)5

Adjusted R2 0.328 0.346 0.365 0.366 0.366

AIC -155.5 -156.2 -157.0 -157.1 -157.1

BIC -147.2 -145.9 -144.6 -144.6 -144.6

Observations 59 59 59 59 59

Notes: Paired region is Latin America. Polynomial terms of the pair region is indicated
with �P-� at the lower part of the table. Standard errors are in parentheses. Signi�cance
of the coe�cients is labeled as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 7: Pairwise Di�erenced ENNLS Eastern Europe

(1) (2) (3) (4) (5)

log(GDP pc.)1 0.193∗∗∗ -0.103 -23.622 0.000 -101.314

(0.037) (0.910) (29.692) (.) (257.954)

log(GDP pc.)2 0.018 2.823 -1.393 0.000

(0.054) (3.541) (1.784) (.)

log(GDP pc.)3 -0.111 0.223 2.784

(0.141) (0.283) (7.367)

log(GDP pc.)4 -0.010 -0.326

(0.013) (0.879)

log(GDP pc.)5 0.011

(0.031)

P-log(GDP pc.)1 0.256∗∗∗ 0.253∗∗∗ 0.246∗∗∗ 0.246∗∗∗ 0.248∗∗∗

(0.049) (0.050) (0.050) (0.051) (0.051)

P-log(GDP pc.)2

P-log(GDP pc.)3

P-log(GDP pc.)4

P-log(GDP pc.)5

Adjusted R2 0.322 0.311 0.303 0.303 0.293

AIC -169.3 -167.4 -166.0 -166.0 -166.1

BIC -163.1 -159.1 -155.7 -155.6 -155.8

Observations 59 59 59 59 59

Notes: Paired region is Former USSR. Polynomial terms of the pair region is indicated
with �P-� at the lower part of the table. Standard errors are in parentheses. Signi�cance
of the coe�cients is labeled as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 8: Pairwise Di�erenced ENNLS Estimations Former USSR

(1) (2) (3) (4) (5)

log(GDP pc.)1 0.256∗∗∗ 0.924 106.317 0.000 0.000

(0.049) (1.855) (83.290) (.) (.)

log(GDP pc.)2 -0.039 -12.513 6.379 0.000

(0.109) (9.852) (4.937) (.)

log(GDP pc.)3 0.492 -0.999 0.514

(0.388) (0.778) (0.390)

log(GDP pc.)4 0.044 -0.090

(0.034) (0.069)

log(GDP pc.)5 0.004

(0.003)

P-log(GDP pc.)1 0.193∗∗∗ 0.196∗∗∗ 0.213∗∗∗ 0.214∗∗∗ 0.214∗∗∗

(0.037) (0.039) (0.040) (0.040) (0.040)

P-log(GDP pc.)2

P-log(GDP pc.)3

P-log(GDP pc.)4

P-log(GDP pc.)5

Adjusted R2 0.322 0.311 0.327 0.327 0.328

AIC -169.3 -167.5 -169.0 -167.0 -167.0

BIC -163.1 -159.1 -160.7 -156.6 -156.6

Observations 59 59 59 59 59

Notes: Paired region is Eastern Europe. Polynomial terms of the pair region is indicated
with �P-� at the lower part of the table. Standard errors are in parentheses. Signi�cance
of the coe�cients is labeled as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 9: Pairwise Di�erenced ENNLS Estimations India

(1) (2) (3) (4) (5)

log(GDP pc.)1 1.350∗∗∗ 10.433∗∗∗ 72.286∗∗∗ -1139.631∗∗∗ 0.000

(0.080) (0.992) (21.299) (323.337) (.)

log(GDP pc.)2 -0.642∗∗∗ -9.097∗∗∗ 243.307∗∗∗ -74.074∗∗∗

(0.067) (2.911) (67.340) (22.835)

log(GDP pc.)3 0.385∗∗∗ -22.938∗∗∗ 21.183∗∗∗

(0.133) (6.225) (6.323)

log(GDP pc.)4 0.807∗∗∗ -2.255∗∗∗

(0.215) (0.656)

log(GDP pc.)5 0.085∗∗∗

(0.024)

P-log(GDP pc.)1 457.881∗∗∗ 0.738∗∗∗ 0.966∗∗∗ 0.905∗∗∗ 0.897∗∗∗

(115.141) (0.086) (0.111) (0.101) (0.101)

P-log(GDP pc.)2 -56.407∗∗∗

(13.862)

P-log(GDP pc.)3 2.317∗∗∗

(0.556)

P-log(GDP pc.)4

P-log(GDP pc.)5

Adjusted R2 0.955 0.970 0.974 0.979 0.979

AIC -129.5 -152.5 -159.0 -172.3 -172.2

BIC -121.2 -144.1 -148.6 -161.9 -161.8

Observations 59 59 59 59 59

Notes: Paired region is Latin America. Polynomial terms of the pair region is indicated
with �P-� at the lower part of the table. Standard errors are in parentheses. Signi�cance
of the coe�cients is labeled as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 10: Pairwise Di�erenced ENNLS Estimations Latin America

(1) (2) (3) (4) (5)

log(GDP pc.)1 0.905∗∗∗ -1.450 -408.468∗∗∗ 0.000 0.000

(0.101) (5.488) (148.952) (.) (.)

log(GDP pc.)2 0.140 49.061∗∗∗ -24.396∗∗∗ 0.000

(0.327) (17.835) (8.981) (.)

log(GDP pc.)3 -1.960∗∗∗ 3.907∗∗∗ -1.914∗∗

(0.712) (1.432) (0.721)

log(GDP pc.)4 -0.176∗∗∗ 0.345∗∗

(0.064) (0.129)

log(GDP pc.)5 -0.017∗∗∗

(0.006)

P-log(GDP pc.)1 -1139.631∗∗∗ -1257.813∗∗∗ 0.000 -540.975∗∗∗ -534.598∗∗∗

(323.337) (418.749) (.) (139.004) (138.315)

P-log(GDP pc.)2 243.307∗∗∗ 267.240∗∗∗ -150.663∗∗∗ 0.000 0.000

(67.340) (86.242) (38.658) (.) (.)

P-log(GDP pc.)3 -22.938∗∗∗ -25.090∗∗∗ 42.017∗∗∗ 21.068∗∗∗ 20.828∗∗∗

(6.225) (7.888) (10.554) (5.188) (5.162)

P-log(GDP pc.)4 0.807∗∗∗ 0.879∗∗∗ -4.376∗∗∗ -2.922∗∗∗ -2.889∗∗∗

(0.215) (0.270) (1.079) (0.707) (0.704)

P-log(GDP pc.)5 0.161∗∗∗ 0.121∗∗∗ 0.120∗∗∗

(0.039) (0.029) (0.029)

Adjusted R2 0.979 0.978 0.980 0.980 0.980

AIC -172.3 -170.5 -174.3 -174.3 -174.1

BIC -161.9 -158.0 -159.8 -159.7 -159.6

Observations 59 59 59 59 59

Notes: Paired region is India. Polynomial terms of the pair region is indicated with �P-�
at the lower part of the table. Standard errors are in parentheses. Signi�cance of the
coe�cients is labeled as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 11: Pairwise Di�erenced ENNLS Estimations Other Asia

(1) (2) (3) (4) (5)

log(GDP pc.)1 1.361∗∗∗ 17.217∗∗∗ 17.919 0.000 -637.544∗∗∗

(0.101) (1.484) (39.326) (.) (176.594)

log(GDP pc.)2 -1.009∗∗∗ -1.097 2.722 0.000

(0.094) (5.072) (2.458) (.)

log(GDP pc.)3 0.004 -0.355 20.868∗∗∗

(0.218) (0.422) (5.715)

log(GDP pc.)4 0.013 -2.657∗∗∗

(0.020) (0.726)

log(GDP pc.)5 0.101∗∗∗

(0.028)

P-log(GDP pc.)1 -3670.966∗∗∗ 0.000 0.000 0.000 -445.273∗∗

(422.080) (.) (.) (.) (176.980)

P-log(GDP pc.)2 765.486∗∗∗ 13.802∗∗∗ 13.750∗∗∗ 13.840∗∗∗ 0.000

(88.038) (2.234) (2.322) (2.308) (.)

P-log(GDP pc.)3 -70.713∗∗∗ -2.415∗∗∗ -2.405∗∗∗ -2.422∗∗∗ 17.776∗∗∗

(8.150) (0.404) (0.420) (0.417) (6.600)

P-log(GDP pc.)4 2.443∗∗∗ 0.119∗∗∗ 0.118∗∗∗ 0.119∗∗∗ -2.496∗∗∗

(0.283) (0.020) (0.021) (0.021) (0.900)

P-log(GDP pc.)5 0.105∗∗∗

(0.037)

Adjusted R2 0.936 0.948 0.947 0.947 0.958

AIC -139.8 -151.3 -149.1 -149.3 -162.3

BIC -129.4 -138.9 -134.5 -134.8 -145.7

Observations 59 59 59 59 59

Notes: Paired region is India. Polynomial terms of the pair region is indicated with �P-�
at the lower part of the table. Standard errors are in parentheses. Signi�cance of the
coe�cients is labeled as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 12: Pairwise Di�erenced ENNLS Estimations Western Europe

(1) (2) (3) (4) (5)

log(GDP pc.)1 0.831∗∗∗ 7.741∗∗∗ 50.799∗∗∗ 0.000 169.070

(0.058) (1.800) (13.809) (.) (103.354)

log(GDP pc.)2 -0.396∗∗∗ -5.302∗∗∗ 2.920∗∗∗ 0.000

(0.104) (1.480) (0.768) (.)

log(GDP pc.)3 0.186∗∗∗ -0.405∗∗∗ -3.739

(0.053) (0.110) (2.424)

log(GDP pc.)4 0.016∗∗∗ 0.394

(0.004) (0.262)

log(GDP pc.)5 -0.012

(0.008)

P-log(GDP pc.)1 0.958∗∗∗ 7.914∗∗∗ 0.499∗∗∗ 0.504∗∗∗ 0.477∗∗

(0.071) (2.079) (0.181) (0.181) (0.180)

P-log(GDP pc.)2 -0.385∗∗∗

(0.110)

P-log(GDP pc.)3

P-log(GDP pc.)4

P-log(GDP pc.)5

Adjusted R2 0.799 0.831 0.832 0.831 0.835

AIC -243.5 -253.0 -253.8 -253.4 -255.8

BIC -237.2 -242.6 -243.4 -243.0 -245.4

Observations 59 59 59 59 59

Notes: Paired region is Western O�shoots. Polynomial terms of the pair region is indicated
with �P-� at the lower part of the table. Standard errors are in parentheses. Signi�cance
of the coe�cients is labeled as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 13: Cointegration tests for other regions

Test Statistics Critical Values

1 Stage 2 Stage 90% 95% 99%

Africa (paired to: Latin America)

H0: Cointegration

KPSS 0.265 0.690 0.140 0.191 0.348

Sub-sample KPSS 0.617 0.530 3.741 4.220

H0: No cointegration

Variance ratio test 23.630 22.351 39.676 47.702 63.828

Eastern Europe - Former USSR

H0: Cointegration

KPSS 0.436 0.166 0.161 0.219 0.384

Sub-sample KPSS 2.361 0.612 3.588 4.081

H0: No cointegration

Variance ratio test 14.634 14.985 33.850 40.903 55.800

India - Latin America

H0: Cointegration

KPSS 0.294 0.527 0.137 0.186 0.339

Sub-sample KPSS 0.733 0.896 3.276 3.797

H0: No cointegration

Variance ratio test 31.092 36.119 41.457 49.663 66.696

Other Asia (paired to: India)

H0: Cointegration

KPSS 0.158 0.058 0.110 0.154 0.306

Sub-sample KPSS 1.614 0.480 3.741 4.220

H0: No cointegration

Variance ratio test 15.660 18.592 74.506 85.437 104.851

Western Europe - Western O�shoots

H0: Cointegration

KPSS 0.074 0.090 0.137 0.193 0.342

Sub-sample KPSS 0.964 1.076 3.484 3.983

H0: No cointegration

Variance ratio test 31.006 31.357 45.521 54.064 73.813

Note: In case of �Eastern Europe - Former USSR�, �India - Latin America�, and
�Western Europe - Western O�shoots� ', the pairs are best pairs to each other,
leading to the same cointegration test statistics for each of the pairs. In case of
Africa and Other Asia, the pairs have di�erent best pairs.
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Figure 8: Pairwise Di�erencing Estimations for China with Alternative Best Pairs
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Explanation: This �gure shows the estimated e�ects of the EN-NLS estimation for China when coupled with
India and Former USSR. All series are in logarithms. Levels of the estimated e�ects are normalized such that
the means are equal to the mean of observed emission series (in logs).
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