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Abstract 
 
We report two information cascade game experiments that directly test the impact of altruism on 
observational learning. Participants interact in two parallel sequences, the observed and the 
unobserved sequence. Only the actions of the observed entail informational benefits to 
subsequent participants. We find that observed contradict their private information significantly 
less often than unobserved when the monetary incentives to herd are moderately weak. Long 
laboratory cascades accumulate substantial public information which increases the earnings of 
participants. In Experiment 2, participants have better opportunities to learn about the strategies 
played by observed which amplifies the impact of altruism on observational learning. 
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1 Introduction

In myriad settings where individuals with limited payoff-relevant information take actions observable

by others, there is convincing empirical support for observational learning: the behavior of individuals

is influenced by others’ actions partly because of the information contained therein. For instance,

learning from observing peers’ purchasing decisions matters for experience goods like movies, music or

restaurant meals (Cai, Chen, and Fang, 2009; Moretti, 2011; Salganik, Dodds, and Watts, 2006), and

observational learning effects have also been identified in financial, kidney and microloan markets as

well as in sequential elections (Cipriani and Guarino, 2014; Knight and Schiff, 2010; Zhang, 2010; Zhang

and Liu, 2012). The empirical confirmation of observational learning is hardly surprising since each

individual is likely to benefit from combining her private information with the information revealed

by others’ actions. At the societal level, however, learning from others is potentially detrimental given

that the more an individual relies on public information to guide her decision the less informative her

decision.

This self-defeating property of observational learning is the central message of the full-rationality

literature which concludes that learning from others results in serious failures to achieve efficient

economic outcomes (Chamley, 2004). Information cascade models even make the compelling prediction

that when a sequence of players each in turn take one of several actions, with each player observing

all of her predecessors’ actions, an information cascade eventually occurs in which players rationally

take uninformative imitative actions (Banerjee, 1992; Bikhchandani, Hirshleifer, and Welch, 1992).1

If few actions can be taken, information cascades are born quickly, and since public information stops

accumulating once a cascade starts, players benefit little from observing others’ actions. The empirical

relevance of such spectacular failures of information aggregation and inefficient economic outcomes

ultimately depends on the relative weight that individuals put on their private information when

combining it with the information contained in observed actions. The present paper investigates, both

theoretically and experimentally, whether altruism increases the response to private information and

has the potential to improve economic welfare in observational learning.2

Starting with Anderson and Holt (1997), economists have mainly utilized laboratory experiments

to test the predictions of information cascade models.3 The bulk of the experimental evidence is

summarized in Weizsäcker (2010) which compiles a meta-dataset from 13 information cascade exper-

iments and introduces a reduced-form approach to measure the success of observational learning by

1The self-defeating property holds unless players’ actions are always sufficient statistics for their information in which

case observational learning is efficient (Lee, 1993). In settings where economic outcomes are inefficient, information

cascades need not arise as observational learning is asymptotically complete with private information of unbounded

strength (Smith and Sørensen, 2000). Acemoglu, Munther, Lobel, and Ozdaglar (2011) characterize necessary and

sufficient conditions in general observation structures for learning to be asymptotically complete.

2In the observational learning settings we consider, economic welfare or efficiency simply means the sum of monetary

payoffs and we posit that an altruistic individual is willing to decrease her own monetary payoff in order to increase the

monetary payoff of another individual.

3More easily than naturally-occurring data, laboratory data allow economists to empirically identify the existence

and isolate the impact of observational learning since the information structure is under the experimenter’s control.

For example, Stone and Zafar (2014) investigate the optimality of observational learning behavior using rankings of top

American football teams submitted by sports journalists. They conclude that their findings corroborate the laboratory

findings but they acknowledge that many other explanations cannot be ruled out given the limitations of their data.
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controlling for the empirical profitability of actions (see also Ziegelmeyer, March, and Krügel, 2013).

Reassuringly, the meta-study confirms that participants learn from others’ actions and it also finds

that in situations where it is empirically optimal for participants to follow their private information

they most often do so. In the complementary set of situations, however, participants are reluctant

to contradict their private information unless the monetary incentives to follow others are strong

enough. Observational learning behavior differs from its rational counterpart in that private informa-

tion is overweighted relative to public information and participants take more uninformative imitative

actions after longer laboratory cascades (Kübler and Weizsäcker, 2005). These two behavioral regu-

larities have been either explained as resulting from a commonly known non-Bayesian updating rule

where participants exaggerate the precision of their private information (Goeree, Palfrey, Rogers, and

McKelvey, 2007) or as resulting from participants wrongly assigning a low precision to others’ actions

and applying short chains of reasoning (Kübler and Weizsäcker, 2004).4 The experimental evidence

presented in this paper shows that the explanatory power of cognitive biases is limited and that the

future informational gains of actions further drive the overemphasis on private information and its

attenuation in long laboratory cascades.

We report two information cascade game experiments that directly test the impact of altruism

on observational learning. Our first experiment consists of nine sessions where participants, in two

parallel sequences, guess which of two options has been randomly selected at the beginning of each

repetition of the cascade game. There are seven and eight participants in the observed and unobserved

sequence, respectively. In the first part of the session, each participant obtains a single draw from an

urn which has a two-thirds chance of indicating the selected option (i.e. signal quality is 2/3). Then,

one participant from each of the two parallel sequences is randomly assigned to one of the first seven

guessing periods and the remaining unobserved is assigned to the last period. Once both guesses have

been submitted in a given period, the guess of the observed is made public knowledge. Guesses of

unobserved always remain private. In each of the three repetitions of the cascade game, a correct

guess yields 1 Euro and an incorrect guess yields zero. In the second part of the session, we collect

many more guesses by doubling the number of repetitions of the cascade game and by relying on

the strategy method at the history level (this design feature is borrowed from Cipriani and Guarino,

2009). In each repetition, all fifteen participants guess one of the two options in the first period. The

guess of one observed is then randomly selected to be made public at the beginning of the next period

and this participant stops guessing. This process continues until the last period where each of the

unobserved submits a guess. For each participant, only one randomly selected guess is paid in each

repetition. The last two parts of each session are identical to part 2 except that unobserved receive

private signals of quality 18/21 and 12/21 in part 3 and 4, respectively. To cleanly identify the impact

of altruism on observational learning behavior, unobserved guesses in the last two parts are excluded

from the analysis.

In our experimental setting all participants face the same cognitive challenge when learning from

others. However, observed have an incentive to overweight their private information relative to public

information as long as they recognize the value of signaling information to subsequent participants

in any of the two sequences. To generate testable hypotheses about behavioral differences between

4A recurrent justification for non-Bayesian updating is overconfidence (Bernardo and Welch, 2001; Kariv, 2005; Nöth

and Weber, 2003). Recently, a growing literature has examined the nature of observational learning outcomes when

players make boundedly rational inferences (Bohren, 2015; Eyster and Rabin, 2010; Guarino and Jehiel, 2013).
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observed and unobserved, we study simple models of observational learning with altruistic players.

First, we show that, in the 2-by-2-by-2 setting of Bikhchandani, Hirshleifer, and Welch (1992) with

sufficiently many players, sequential equilibria exist where altruism generates additional informative

guesses. Consequently, the onset of information cascades is delayed and the expected correctness of

subsequent players’ guesses is increased. Second, we apply the logit quantal response equilibrium

(LQRE) approach to the analysis of altruistic observational learning. We show that a LQRE exists

where even a small degree of altruism increases the informativeness of guesses when the monetary

incentives to follow others are moderately weak which in turn increases the probability to contradict

private information after long herds. With the help of numerical computations, we then derive full

and precise predictions in our laboratory cascade game regarding the influence of altruism on the

equilibrium choice probabilities after any history of previous guesses.

The results of our first experiment confirm the main implications of altruistic observational learning.

First, by using the approach introduced by Weizsäcker (2010), we find that observed contradict their

private information significantly less often than unobserved in situations where the monetary incentives

to follow others are moderately weak. Once the incentives to follow others are strong enough observed

contradict their private information to the same extent as unobserved. Second, we show that the

more informative observational learning is the more public information is accumulated. Finally, we

observe that altruistic behavior often enhances the monetary payoffs of participants as its associated

benefits more than compensate for its associated costs. Unobserved, on the other hand, act as if they

slightly overweight their private information relative to the public information only when the monetary

incentives to follow others are the weakest.

In Experiment 1, participants at the end of the cascade game are informed about the selected

option and their earnings, and they are reminded of the entire sequence of observed guesses which

were made public. But, in line with previous cascade experiments, the draws of other observed are

not disclosed. Our second experiment is identical to the first one except that the feedback screens

also disclose the private signals of the observed guesses which were made public. In Experiment 2,

participants are therefore offered better opportunities to learn about the strategies played by observed

in the cascade game. We find that reducing the level of behavioral uncertainty amplifies the impact

of altruism on observational learning. The response to private information in the observed sequence is

stronger and more public information is aggregated in the second than in the first experiment. In the

unobserved sequence, participants are still slightly reluctant to contradict their private information

when the monetary incentives to follow others are the weakest. This finding suggests that in the

absence of future informational benefits of actions the overemphasis on private information is more

driven by judgment biases rather than by inferential biases.

Related Literature. The theoretical section of the present paper relates to the few models of

observational learning where players take into account the future informational gains of their actions.

Smith, Sørensen, and Tian (2014) study the altruistic observational learning model with a general

distribution of private information and an infinite number of players, and their analysis focuses on

the constrained efficient equilibrium.5 They show that with private information of bounded strength

higher degrees of altruism lead to smaller cascade sets which entails that uninformative actions are

5Vives (1997) also studies an altruistic observational learning model but in a market setting with Gaussian information.

He shows that socially optimal learning accumulates more public information than individually optimal learning.
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taken less readily. We prove related results in a simple model of observational learning with a finite

sequence of altruistic players who receive symmetric binary private signals. In particular, Proposition 2

shows that equilibria exist in which the onset of information cascades is delayed and the likelihood of

a herd on the less profitable action is reduced.

Ali and Kartik (2012) consider a simple setting of observational learning with collective preferences:

a player’s payoff depends on a binary state of nature and on the profile of actions of any subset of

all players, players may differ in how they care about the choices of others, and each player weakly

prefers others to take the most profitable action.6 They show that an equilibrium exists in which

players behave as in the unique equilibrium of the standard model where payoffs are independent. By

focusing on the specific case of homogeneous altruism in a similar observational learning setting, we

provide detailed results about the impact of forward-looking incentives on players’ response to private

information. In particular, we establish that the standard LQRE outcome differs from any of the

LQRE outcomes with altruistic players meaning that players’ relative emphasis on private information

is systematically influenced by altruism in the presence of commonly known payoff-responsive errors.

Altruistic behavior is an intuitive explanation for the fact that observational learning is more

informative in the laboratory than predicted by rational herding. Indeed, participants are likely

to understand that a stronger response to private information is an altruistic act as participants

have collectively (almost) full information. In addition, the monetary cost for a participant who

ignores a short laboratory cascade is rather trivial while the monetary benefits for her successors are

potentially substantial, and there is ample evidence of altruistic behavior in laboratory games where

own costs are low while others’ benefits are large (Andreoni, Harbaugh, and Vesterlund, 2008). Still,

the experimental literature on observational learning has either ignored the altruistic explanation or

favored an explanation in terms of judgment or inferential biases.7

Most cascade experiments have implemented short sequences of participants which undermine

the influence of efficiency concerns in observational learning (two-thirds of the observations in the

meta-dataset of Weizsäcker, 2010, come from sequences with at most six participants). But even the

longer cascade experiments did not invoke altruism as a possible explanation for participants’ relative

overemphasis on private information with the exception of Goeree, Palfrey, Rogers, and McKelvey

(2007). These authors acknowledge that the reluctance to contradict private information after short

laboratory cascades might be a manifestation of altruistic behavior rather than a base rate fallacy

(BRF). They however reject the altruistic interpretation since they find no significant difference in the

structural estimates of the BRF parameter when comparing earlier and later periods of the cascade

game or when comparing sequences of 20 and 40 participants. The validity of this conclusion is

questionable since the specification of the structural model has a critical impact on inferences about

6Thanks to the richness of the class of preferences considered by Ali and Kartik (2012), their observational learning

model encompasses many applications. For example, each player could be altruistic toward a different set of other players

i.e. the structure of altruism could be captured by a network. Another leading application is sequential voting with rich

motivations for voters such as expressive-voting preferences or preferences about margins of victory.

7Alevy, Haigh, and List (2007) is a notable exception. They find that financial market professionals respond more

strongly to private information and make better use of available public information than do students. Consequently, the

professionals are involved in weakly fewer overall laboratory cascades and significantly fewer laboratory cascades on the

wrong action. The authors conclude that “. . . data reveal that the decisions of market professionals are consistent with

behaviors that may mitigate informational externalities in market settings, and thus reduce the severity of price bubbles

due to informational cascades.”
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parameters. In fact, when applying Weizsäcker’s model-free approach to assess participants’ responses

to the empirical value of contradicting private information in prior cascade game experiments, we

find that actions are significantly more informative in long decision sequences than in short ones (see

Section 4.2).8

We have restricted our discussion of the experimental literature on observational learning to ex-

periments which implemented Bikhchandani, Hirshleifer, and Welch’s (1992) stripped-down model

of information cascades. However, the overemphasis on private information and its attenuation in

long herds has also been confirmed in other observational learning experiments (for example in the

continuous-signal-discrete-action experiment of Çelen and Kariv, 2004 or the financial-markets-with-

event-uncertainty treatment of Cipriani and Guarino, 2009).

The paper is organized as follows. Section 2 derives theoretical predictions in a simple model of

observational learning with altruistic players. Section 3 describes our experimental design and proce-

dures. Section 4 and Section 5 reports on the results in our first and second experiment, respectively.

Section 6 concludes. The online supplementary material contains a series of appendices with proofs,

complementary theoretical and statistical analyses, and the experimental instructions of our first ex-

periment.

2 Theory

We consider a simple model of observational learning where, in the absence of altruism, the failure of

information aggregation is spectacular in the unique sequential equilibrium outcome as the onset of

information cascades is almost immediate. In the presence of altruism, we show that sequential and

logit quantal response equilibria exist such that players increase their response to private information

and more information is aggregated.

2.1 A Simple Game of Altruistic Observational Learning

Nature moves first and chooses a payoff-relevant state of Nature (henceforth state) θ ∈ Θ = {B,O}

according to the common prior p ≡ Pr (θ = B) ∈ (0.5,1).9 Each player is then endowed with a symmetric

binary private signal st ∈ S = {b, o} such that Pr (st = b ∣ θ = B) = Pr (o ∣ O) = 1 − Pr (o ∣ B) = 1 −

Pr (b ∣ O) = q ∈ (p,1). Conditional on the state, signals are independently distributed across players.

The finite set of players is {1, . . . , T} with generic element t. Time is discrete and, in period

t = 1,2, . . . , T , player t chooses action xt ∈ X = {B,O} where B stands for “guess state B” and O

stands for “guess state O”. Before choosing her action, player t observes the history of previous

actions ht = (x1, . . . , xt−1) ∈Ht = {B,O}
t−1 where h1 ≡ ∅ and H ≡ ⋃

T
t=1Ht.

Player t’s preferences depend on the complete profile of actions x = (x1, . . . , xT ) and the state θ,

and they are represented by the von-Neumann Morgenstern utility function

ut (x, θ) = π(xt, θ) + α ∑
τ≠t

π(xτ , θ) (1)

8In their “majority rule institution” treatment, Hung and Plott (2001) incentivize participants to exhibit altruistic

behavior by rewarding them according to whether a majority of actions are right or wrong. In line with the logic of

efficiency concerns, they find that more information is revealed in this treatment compared to the usual treatment where

each participant is rewarded according to whether her action is right or wrong.

9We abstract from the non-generic case p = 1/2 to avoid the use of tie-breaking rules.
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where π(B,B) = π(O,O) = 1, π(B,O) = π(O,B) = 0, 0 ≤ α ≤ 1 captures the level of altruism, and

τ ∈ {1, . . . , T}. When α > 0, the second component of the utility function entails that players take into

account the future informational benefits of their actions because of their concern for efficient outcomes.

Our functional form of prosocial preferences relates to the (utilitarian) social welfare function assumed

by Smith, Sørensen, and Tian (2014) in their general welfare analysis of observational learning.

2.2 Beliefs, Strategies and Equilibrium Concepts

Denote by ⟨T,X,H,Θ, p, S, q,{ut}
T
t=1⟩ the (simple) game of altruistic observational learning. Without

loss of generality, player t’s behavior is captured by the behavioral strategy σt ∶ S ×Ht → D (X) where

(in a slight abuse of notation) σt (st,ht) denotes the probability that she chooses action xt = B.10 Call

a behavioral strategy pure (completely mixed) if σt (st,ht) ∈ {0,1} (0 < σt (st,ht) < 1) for each st ∈ S

and ht ∈Ht.

Player t forms her belief by combining the public belief, the probability of state B conditional

on the history ht, with her private information, the signal st, in a Bayesian way. Let player t’s

belief be given by the mapping µt ∶ S ×Ht → D (Θ) and let µt (st,ht) denote the probability player

t assigns to state B at history ht given signal st. Given history ht, signal st, and the strategies

σ−t = (σ1, . . . , σt−1, σt+1, . . . , σT ) of the other players, player t’s expected utility of action xt is given

by

Ut (xt ∣ st,ht,σ−t) = ∑
θ∈Θ

µt (θ ∣ st,ht) ∗ [π(xt, θ) + α ∑
τ<t

π(xτ , θ) + αCt (xt ∣ ht, θ,σ−t)] (2)

where

Ct (xt ∣ ht, θ,σ−t) = ∑
(xt+1,...,xT )

⎡
⎢
⎢
⎢
⎣
∏
τ>t

∑
sτ ∈S

Pr (sτ ∣ θ)στ (xτ ∣ sτ ,hτ)
⎤
⎥
⎥
⎥
⎦
∑
τ>t

π(xτ , θ)

with hτ ⊇ (ht, xt) for each τ > t. Ct (xt ∣ ht, θ,σ−t) is player t’s (expected) continuation value of action

xt at history ht and state θ given strategies σ−t. Lemma A1 in Appendix A presents some useful

properties of the continuation values.

To characterize players’ behavior, we rely on the sequential equilibrium concept11 since it restricts

off-path beliefs more strongly than the perfect Bayesian equilibrium.12

Definition 1. A sequential equilibrium of the game ⟨T,X,H,Θ, p, S, q,{ut}
T
t=1⟩ is a strategy profile

σ∗ and a system of beliefs µ∗ such that

(i) strategies are sequentially rational, i.e. for each t, st, and ht,

σ∗t (st,ht) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if Ut (B ∣ st,ht,σ
∗
−t) > Ut (O ∣ st,ht,σ

∗
−t)

0 if Ut (B ∣ st,ht,σ
∗
−t) < Ut (O ∣ st,ht,σ

∗
−t)

;

and

10For a given (finite) set M , D (M) denotes the set of probability distributions over M .

11Kreps and Wilson (1982).

12Sequential equilibrium beliefs satisfy 1−q
q

µt(st,ht)
1−µt(st,ht) ≤

µt(st,(ht,xt))
1−µt(st,(ht,xt)) ≤

q
1−q

µt(st,ht)
1−µt(st,ht) for each t < T , ht, xt and st.
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(ii) beliefs are consistent, i.e. (σ∗,µ∗) = lim
n→∞

(σ(n),µ(n)) where, for each n, σ(n) is a profile of

completely mixed behavioral strategies and µ(n) is derived from σ(n) by Bayes rule:

µ
(n)
t (st,ht) =

⎡
⎢
⎢
⎢
⎢
⎣

1 +
1 − p

p

Pr (st ∣ O)

Pr (st, ∣ B)
∏
τ<t

∑sτ ∈S Pr (sτ ∣ O) σ
(n)
τ (xτ ∣ sτ ,hτ)

∑sτ ∈S Pr (sτ ∣ B) σ
(n)
τ (xτ ∣ sτ ,hτ)

⎤
⎥
⎥
⎥
⎥
⎦

−1

for each t, st, and ht where hτ ⊂ ht for each τ < t.

Information externalities might give rise to herding and informational cascades in the observational

learning game. Given a history ht, player t herds if her action does not depend on her signal i.e.

σt (b,ht) = σt (o,ht), thereby imitating the action of her predecessor. On the other hand, given a

history ht, player t acts informatively if σt (b,ht) ≠ σt (o,ht). An informational cascade emerges after

some history ht if, for every player τ ≥ t, στ (b,hτ) = στ (o,hτ). Finally, a herd on action xt−1 emerges

after some history ht if every player τ ≥ t chooses action xt−1 i.e. xτ = xt−1 for all τ ≥ t.

Further restrictions on off-path beliefs and monotonic equilibria

We pin down off-path beliefs further by focusing on two special cases. First, with error off-path

beliefs players treat all actions off the equilibrium path as uninformative about the state. Hence,

player t’s belief given signal st at the off-path-history ht is equal to the belief of player τ < t given

signal sτ = st at the maximal sub-history hτ ⊂ ht that is on the equilibrium path. Second, with

signal revealing off-path beliefs players treat off the equilibrium path action B (resp. action O) as

revealing signal b (resp. signal o). Accordingly, player t’s belief given signal st at the off-path-history

ht satisfies µt (st,ht) / [1 − µt (st,ht)] = µτ (st,hτ) / [1 − µτ (st,hτ)] ⋅ (q/ (1 − q))
nB−nO where hτ ⊂ ht

is the maximal sub-history of ht that is on the equilibrium path and nB (resp. nO) is the number of

times action B (resp. action O) is chosen by the subset of players {τ, . . . , t − 1}. Whenever it applies,

the off-path beliefs specification is assumed commonly known.

By restricting the analysis to pure strategies and either error or signal revealing off-path beliefs,

we are able to capture the behavior of players by the simplified strategies σ̂t (st,∆t) where ∆t ∈ Z
denotes the difference between the number of b and o signals that player t infers from history ht

(see Lemma A3 in Appendix A). For the sake of clarity, our main analysis focuses on monotonic

equilibria where players adopt such simplified strategies and which require that: i) strategies are

weakly increasing in the difference ∆; and ii) the information cascade set weakly grows over time

(there is no information cascade as long as the public belief stays in a certain interval; the complement

of that interval is called the information cascade set).

Definition 2. An equilibrium σ̂∗ is monotonic if and only if

(i) for each t = 2, . . . , T , each ∆t ∈ {2 − t, . . . , t − 1} and each st ∈ S, σ̂∗t (st,∆t) ≥ σ̂
∗
t (st,∆t − 1);

and

(ii) for each t < T and each ∆t ∈ {1 − t, . . . , t − 1}, σ̂∗t (b,∆t) ≥ σ̂
∗
t+1 (b,∆t) and σ̂∗t (o,∆t) ≤ σ̂

∗
t+1 (o,∆t).

The following properties hold in every monotonic equilibrium (see Lemma A4 in Appendix A): (i)

players are weakly more likely to choose action B with b-signals than with o-signals; (ii) players act

informatively whenever ∆ ∈ {−1,0}; (iii) for each t = 1, . . . , T , σ̂∗t (b,∆t) = 0 only if ∆t ≤ −2 and

σ̂∗t (o,∆t) = 1 only if ∆t ≥ 1; (iv) if players herd on action B when having inferred difference ∆, they

also herd on action B when the difference is ∆+ 1; and similarly (v) if players herd on action O when

having inferred difference ∆, they also herd on action O when the difference is ∆ − 1.
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2.3 Onset of Cascades and Information Aggregation in Monotonic Equilibria

There are multiple equilibrium outcomes in the altruistic observational learning game. In the absence

of altruism (α = 0), the equilibrium outcome involves the spectacular failure of information aggregation

as players herd on action B (resp. action O) as soon as there is an imbalance of one B action (resp. two

O actions) in the history of previous actions. We refer to the informationally inefficient equilibrium

outcome as to the standard equilibrium outcome. In the presence of altruism (0 < α ≤ 1), equilibrium

outcomes exist where cascades are delayed and the informativeness of public information is enhanced.

2.3.1 Immediate Cascades and Poor Information Aggregation

For a richer class of prosocial preferences than the one we consider, Ali and Kartik (2012) show that the

standard equilibrium outcome remains an equilibrium outcome of the altruistic observational learning

game for strictly positive levels of altruism.13

Proposition 1 (Ali and Kartik, 2012). For any 0 < α ≤ 1 there exists a monotonic equilibrium σ̂∗

which for each 1 ≤ t ≤ T and each ∆t ∈ Z satisfies

(σ̂∗t (b,∆t) , σ̂
∗
t (o,∆t)) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(1,1) if ∆t ≥ 1

(1,0) if − 1 ≤ ∆t ≤ 0

(0,0) if ∆t ≤ −2

.

The equilibrium characterization of Ali and Kartik (2012) establishes that the core insights from

standard economic models of observational learning, such as the swift onset of information cascades

and their inherent fragility, can be relevant even when players care directly about others’ actions.

2.3.2 Delayed Cascades and Improved Information Aggregation

For sufficiently long sequences of players, Proposition 2 characterizes a set of monotonic equilibria

where compared to the standard equilibrium the onset of information cascades is delayed and more

public information is accumulated.

Proposition 2. Assume that T is sufficiently large so that the lower bound 0 < α (p, q) < 1 exists.14

For each α > α(p, q) there exists a monotonic equilibrium σ̂∗ which for each 1 ≤ t ≤ T and each

1 − t ≤ ∆t ≤ t − 1 satisfies

(σ̂∗t (b,∆t) , σ̂
∗
t (o,∆t)) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(1,1) if ∆t ≥ ∆t

(1,0) if ∆t + 1 ≤ ∆t ≤ ∆t − 1

(0,0) if ∆t ≤ ∆t

with ∆t ≥ 1 and ∆t ≤ −2 for each 1 ≤ t ≤ T , and either ∆t ≥ 2 or both ∆t ≥ 2 and ∆t ≤ −3 for some

t < T . Moreover, ∆t ≤ ∆t+1 and ∆t ≥ ∆t+1 for each 1 ≤ t < T with strict inequality for some t < T .

13Ali and Kartik consider a general class of utility functions where each player has a type which specifies the strength of

her preference for others to correctly guess the realized state and they term this kind of payoff interdependence collective

preferences. They assume the error off-path beliefs specification.

14The restriction on T is weak. For instance, T = 5 is sufficient as long as p < 0.74 or q < 0.87, and T = 6 is sufficient

as long as p < 0.81 or q < 0.94. See Appendix A.4 for details.
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In non-standard equilibrium outcomes, players act informatively only if the monetary incentives to herd

are sufficiently weak and they have sufficiently many successors who can benefit from the revelation of

their private information. For example, early players in the sequence reveal their private information

when facing ∆ ∈ {−2,−1,0,1} as long as a few other players succeed them. On the other hand, players

herd if the monetary incentives to do so are strong or if they act late in the sequence. By inducing

players to rely more on their private information when choosing their actions, altruistic observational

learning accumulates more public information and it enhances the expected correctness of subsequent

players’ guesses. Said differently, the onset of information cascades is delayed and the likelihood of a

herd on the ex-post wrong action is reduced. For non-negligible levels of altruism, such equilibrium

outcomes are intuitively more plausible as informative actions reflect players’ concern for desirable

economic outcomes.

Since our main objective has been to establish that altruism might delay the onset of cascades

and aggregate more information, our analysis has focused on monotonic equilibria. As expected,

the combination of forward-looking incentives and information externalities implies the existence of

many non-monotonic equilibria in the altruistic observational learning game. Appendix B in the

supplementary material exhibits some of these additional equilibria and offers evidence on how rapidly

the number of equilibria grows with the degree of altruism.

2.4 Quantal Response Altruistic Observational Learning

Finally, we investigate the behavioral implications of the homogeneous Logit Quantal Response Equi-

librium (LQRE) in the altruistic observational learning game. There is a legitimate concern that

altruism has negligible influence on the response to private information and information aggregation

in the presence of payoff-responsive decision errors as both extensions alter the predictions of rational

observational learning in a similar way. Indeed, the standard LQRE (α = 0) predicts that a herd-

breaking action happens more frequently if the player received a private signal contradicting the herd

choices and the herd is short which implies a positive relationship between the length and strength of

herds and full information aggregation in the limit (Goeree, Palfrey, Rogers, and McKelvey, 2007).

Let σQt (st, µt) denote player t’s LQRE probability to choose actionB at public belief µt (∅,ht) given

signal st ∈ S with ht ∈ Ht and 1 ≤ t ≤ T , and let σQ0 = (σQ0

1 , . . . , σQ0

T ) denote the standard LQRE. In

the next proposition we compare the action probabilities in σQ0 with the action probabilities in LQRE

which are “monotonic-within-periods” for strictly positive degrees of altruism. In a monotonic-within-

periods LQRE the action probabilities satisfy the following two properties: i) σQt (b, µt) > σ
Q
t (o, µt)

for each µt ∈ (0,1); and ii) ∂σQt (st, µt) /∂µt > 0 for each st ∈ S and each µt ∈ (0,1). As shown in

Appendix C of the supplementary material, the existence of a monotonic-within-periods LQRE is

guaranteed only if large degrees of altruism are assumed away.

Proposition 3. For α > 0 but not too large, there exists a monotonic-within-periods LQRE σQ such

that, for each 1 ≤ t < T , σQt (b, µt) > σ
Q0
t (b, µt) if µt ∈ [µ,1/2) and σQt (o, µt) < σ

Q0
t (o, µt) if µt ∈ (1/2, µ]

where 0 < µ < 1 − q and 1 > µ > q.

Proposition 3 shows that a LQRE exists where informative actions are more likely than in the standard

LQRE if the monetary incentives to follow others are moderately weak. We therefore confirm the

intuition that altruism has the potential to induce more informative observational learning even in the

presence of payoff-responsive decision errors. Notice that our characterization of the LQRE is only
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partial since we have not been able to derive a closed-form expression of the interval [µ,µ] for which

informative actions are more likely in the presence of altruism. In particular, a characterization of the

size of the interval across periods is unavailable though, obviously, σQT (s, µ) = σQ0

T (s, µ) for each s ∈ S

and each µ ∈ (0,1). Finally, we note that for negligible decision errors 0 < µ ≤ (1 − q)2
/ (q2 + (1 − q)2

)

and 1 > µ ≥ q2/ (q2 + (1 − q)2
) which implies that altruism increases the probability of informative

actions when players face herds of size 1 or 2.

We complement our analytical results with the help of numerical computations and derive LQRE

predictions for the observational learning setting implemented in the laboratory. Predictions are com-

puted for degrees of altruism α ∈ {0.125,0.25,0.5}, response precisions λ ∈ {2.5,5,7.5}, and differences

with the predictions of the standard LQRE can be summarized as follows (see Appendix C.3 of the

supplementary material for more details). First, if private information contradicts the herd choices,

the increase in the probability of informative actions due to altruism declines with the size of the

(contrary) herd and the magnitude of decision errors, and higher degrees of altruism induce more

informative actions for given herd and errors sizes. For example, if λ = 5, the probability of an infor-

mative action in the standard LQRE after a herd of size 1, 2, 3 and 4 to 6 is 0.650, 0.500, 0.375 and

0.264 respectively, and it increases to 0.870, 0.589, 0.418 and 0.273 in the LQRE with α = 0.25. Thus,

unless monetary incentives to follow others are strong, even moderate degrees of altruism increase

noticeably the response to private information. Second, altruism reduces the likelihood of errors in

situations where private information agrees with the herd choices. For example, if λ = 5, the probabil-

ity of decision errors in the LQRE with α = 0.25 is about one-fourth the probability of decision errors

in the standard LQRE.

3 Experimental Design and Procedures

In this section, we describe the design and procedures of our two experiments which vary only in the

feedback that participants received at the end of each repetition of the cascade game and we elaborate

on these variations further below.

3.1 General Features

We implement a parameterized version of the observational learning setting described in Section 2.1,

but with the essential modification that participants play the cascade game in two parallel sequences.15

Each repetition of the game begins with the random selection of one of two options and the selected

option is not disclosed to participants until all decisions have been made. The two options are labeled

‘blue’ and ‘orange’ with option ‘blue’ having a 11/20 probability to be selected and option ‘orange’

having a 9/20 probability to be selected. Participants obtain independent private signals that reveal

information about which of the two options has been randomly selected. Then, in two randomly

determined sequences, participants guess an option and they receive 1 Euro for a correct guess and

nothing otherwise.

In the observed sequence each of the 7 participants receives a private signal of medium quality with

a 2/3 probability to indicate the selected option. In the unobserved sequence each of the 8 participants

receives a private signal of either medium, high or low quality depending on the part of the session.

15The “matched sequences” design is borrowed from Ziegelmeyer, Koessler, Bracht, and Winter (2010).
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Once all guesses have been submitted in a given period (but the last one), the guess of one observed

is made public knowledge and this participant stops guessing. Guesses of unobserved remain private.

Participants keep the same role of observed or unobserved during the entire session.

3.2 The Progress of a Session

Each experimental session is partitioned into four parts. In the first part participants become familiar

with the cascade game during three of its repetitions and each participant submits only one guess per

repetition. In the last three parts many more guesses are collected in each of the six repetitions of

the game since participants submit guesses in several situations distinguished only by the history of

previous choices. Following Cipriani and Guarino (2009), this design feature allows participants to

gain extensive experience with the combination of private and public information.

Part 1. In the first part of a session the procedures closely follow those used by Anderson and

Holt (1997) in their baseline experiment except for the two parallel sequences of participants and the

fact that guesses are collected and transmitted through computer terminals. Participants draw their

private signals from a physical urn (with replacement) and they are randomly assigned to guessing

periods. Each participant in the observed sequence obtains a single draw from an urn which has a two-

thirds chance of indicating the selected option i.e. the urn contains 14 balls indicative of the selected

option and 7 balls indicative of the unselected option (hereafter, simply correct and incorrect balls).

Likewise, each participant in the unobserved sequence obtains a single draw from an urn containing

14 correct and 7 incorrect balls. In each of the first seven periods one observed and one unobserved

simultaneously guess an option. The guess submitted in the observed sequence is then displayed on

all participants’ computer screens at the beginning of the next period. In the last period only the

remaining unobserved submits a guess. From the second period on, participants may condition their

guesses on the observed guesses submitted in previous periods.

Part 2. Repetitions in the second part of a session are identical to repetitions in the first one

except that participants draw private signals from virtual urns displayed on their computer screens

and submit multiple guesses. Concretely, each unobserved submits 8 guesses and each observed submits

between 1 and 7 guesses. In the first period, all 15 participants guess one of the two options. The guess

of one observed is then randomly selected to be made public at the beginning of the next period and

this participant stops guessing. In the second period, each of the 14 remaining participants submits

a guess. Again, the guess of one observed is randomly selected to be made public at the beginning of

the next period and this participant stops guessing. This process continues until the last period where

each of the unobserved submits a guess. For each participant, only one randomly selected guess is

paid in each repetition. Each observed is paid only for the last guess she submits i.e the guess which

is made public. Each unobserved is randomly assigned to a period at the end of the repetition and

paid for the guess made in that period. Exactly one unobserved is assigned to any given period.

Parts 3 and 4. Repetitions in parts 3 and 4 of a session are identical to repetitions in part 2

except that participants in the unobserved sequence are endowed with a private signal of different

quality than participants in the observed sequence. Concretely, each unobserved obtains a signal of

high quality in part 3 which corresponds to a single draw from a virtual urn containing 18 correct and

3 incorrect balls whereas the signal is of low quality in part 4 which corresponds to a single draw from

a virtual urn containing 12 correct and 9 incorrect balls.
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Feedback screens. The feedback that participants receive at the end of each repetition of the cascade

game differs in the two experiments.

In the first experiment, draws made by other participants remain private. In part 1, each participant

is reminded of her draw, her guessing period, the guess she made and the sequence of observed guesses,

and she is informed about the selected option and her earnings. In the next three parts, feedback

screens are identical to those in the first part except that each participant is only reminded of the

payoff-relevant guess she made and of the sequence of observed guesses which were made public. In all

four parts, feedback screens of observed only display the composition of the urn used in the observed

sequence whereas feedback screens of unobserved display the urn compositions of both sequences.

In addition to the information they provide in the first experiment, the feedback screens in the

second experiment disclose the private signals of the observed guesses which were made public.

3.3 Experimental Procedures

The experimental sessions took place at the laboratory for experimental economics of the Technische

Universität München (experimenTUM) in April 2014, February and March 2015. Students from the

Technische Universität München and the Ludwig-Maximilians-Universität München were invited using

the ORSEE recruitment system (Greiner, 2015). We conducted nine and six sessions in the first and

second experiment respectively with 16 participants in each session. One participant was randomly

selected to serve as the laboratory assistant and the remaining participants were randomly assigned

to computer terminals. Both experiments were programmed in zTree (Fischbacher, 2007).

Each session started with short demonstrations of the option-selection procedure to small groups

of participants. An experimenter shuffled a deck of 20 cards – 11 cards with a blue front and 9 cards

with an orange front – and laid the cards face down on a table. The assistant then picked 1 card out of

the 20 cards, and the front color of the picked card determined the randomly selected option.16 After

the demonstrations, paper instructions for part 1 were distributed and participants were given time

to read them at their own pace. Instructions were then read aloud and finally participants learned

about their role (observed or unobserved).

Once the three repetitions of the cascade game were over, paper instructions for part 2 were

distributed and subjects were given time to read them at their own pace. A summary of the instructions

was then read aloud. The paper instructions were followed by a short on-screen-demonstration of the

draws from the virtual urns. Again, one of the experimenters summarized aloud the main points of

the demonstration. After that, the six repetitions of part 2 were run.

The third part of the experiment was conducted in a similar way as the second one except that only

short paper instructions were distributed. Part 3 was followed by a short break. Participants were

offered soft drinks and water, and a paper questionnaire was distributed asking for gender, month and

year of birth, academic major, mother tongue, and citizenship. Short paper instructions for part 4

were then distributed and the six repetitions of part 4 were conducted. Finally, participants privately

retrieved their earnings.

In each session we collected 45 guesses from the three repetitions of the first part and 552 guesses

16The laboratory assistant randomly selected the option in each repetition of the cascade game. The assistant also

helped with the drawing of signal realizations from the physical urns in the first part of sessions and she monitored the

progress of the session on her own computer terminal.
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from the six repetitions of each following part. We collected a total of 4,725 observed and 10,584

unobserved guesses in the first experiment, and a total of 3,150 observed and 7,056 unobserved guesses

in the second experiment. On average, a participant in the role of observed earned 17.33 and 17.71

Euro in the first and second experiment respectively whereas a participant in the role of unobserved

earned 17.96 and 18.19 Euro in the first and second experiment respectively, including a show-up

fee of 3 Euro. A session lasted for about 105 minutes. In all parts of a session, participants only

interacted through the computers and no other communication was permitted. Appendix E in the

supplementary material contains a translated version of the instructions of our first experiment.

4 Results of Experiment 1

In the first two parts of the experiment, all participants face the same cognitive challenge when com-

bining private and public information since all of them learn from the history of observed guesses

once endowed with a private signal of medium quality. However, observed have an incentive to over-

weight their private information relative to public information as long as they recognize the value of

signaling information to subsequent participants in any of the two sequences. Unobserved guesses, on

the other hand, never reveal any information to others and deviations from rational herding can only

be caused by cognitive biases. Thus, if the intuitive prediction that altruism induces more informa-

tive observational learning—as formalized by Propositions 2 and 3 in Section 2—holds true, observed

should contradict their private information less often than unobserved in guessing situations where

the monetary incentives to herd are moderately weak and observed have sufficiently many successors

who can benefit from the revelation of their private information. By the same argument, the behavior

of observed and unobserved should be similar in all other guessing situations particularly those where

the public belief is strong or participants act late in the sequence.

In this section, we first summarize the aggregate properties of our data. Second, we examine the

extent to which participants contradict their private information both in situations where making

an informative guess is materially beneficial and in situations where it is materially costly to the

participant. Finally, we measure the amount of information aggregated by observed guesses and we

analyze participants’ earnings in the two sequences. Unobserved guesses made in parts 3 and 4 of

sessions are excluded from the analysis.

4.1 Descriptive Statistics

As an overview of the observational learning behavior in our first experiment, we report the strength

distribution of the evidence conveyed by the final histories i.e. the histories composed of the seven

guesses made public in each repetition of the cascade game. For each final history, the strength of

the public evidence is captured by the absolute difference between the number of blue and orange

guesses which we refer to as the size of the majority. Thus, the size of the majority is given by

∣ #blue − #orange ∣ where #blue and #orange is the number of blue and orange guesses in the

final history respectively, and it equals either 1, 3, 5 or 7. We also consider the situations where

the participant’s private signal and the majority of previous public guesses are conflicting pieces

of information and we compare the relative frequency of herding on contrary majorities in the two

sequences of participants. We examine the herding behavior of participants by considering all histories

of public guesses which generate a strict majority.
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The left panel of Figure 1 shows the distribution of majority sizes and the relative frequency of

herding in the two sequences of participants depending on the size of the contrary majority. Black and

gray bars display the fractions of majority sizes in part 1 and in parts 2 to 4, respectively. Herding

frequencies of observed and unobserved are indicated by square and circle markers, respectively. Notice

that the herding frequencies of unobserved after contrary majorities of size 7 have been omitted. The

right panel of Figure 1 shows the difference between herding frequencies of unobserved in part 2 and

observed in parts 2 to 4 by guessing period when participants face contrary majorities of size 1 or 2.

Though for the sake of clarity we bundle parts 2 to 4 in the figure, the main differences between later

parts of sessions are discussed below.

FIGURE 1. Majority Sizes and Herding Frequencies (Exp. 1)

Before commenting on Figure 1, we note that more than 97% of either observed or unobserved

guesses agree with private information when participants face favoring majorities i.e. in situations

where the private signal and the majority of public guesses are concordant pieces of information.

Even when facing histories with an equal number of blue and orange guesses, participants guess

overwhelmingly in accordance with private information (95% of observed and 92% of unobserved

guesses are informative).

Across all parts, about 30% of the 106 final histories which start with two identical guesses contain

both blue and orange guesses and only about 38% of the 189 final histories are full laboratory cas-

cades.17 The distribution of majority sizes is rather identical in the later parts of sessions with about

three-quarters of the majorities being of size 5 or 7 and very few majorities of size 1. By contrast, a

similar fraction of final histories are majorities of size 1, 3 or 5 in part 1 which is the consequence of

low herding frequencies when observed face small contrary majorities.

As in prior cascade game experiments, we find that larger majorities are more stable since herding

frequencies increase with the size of the contrary majority. In later parts of sessions, observed contra-

dict their private information in about two-thirds (resp. four-fifths) of the situations where they face

a contrary majority of size 2 (resp. 3). Most importantly, we find that when the contrary majority

17In previous cascade game experiments with a unique signal quality of 2/3, a prior of either 0.5 or 0.55 and sequence

lengths from 6 to 10, the proportion of full laboratory cascades equals approximately 40%.

15



size is lower than 4, the herding frequency is lower for observed than for unobserved. The difference

is particularly pronounced in part 1 (black markers), and it reduces in part 2 with observed (resp.

unobserved) herding more (resp. less) than in the previous part. In the last two parts of sessions

observed make more informative guesses when facing small contrary majorities than in part 2. There

are no systematic differences in the herding frequencies of participants for contrary majorities of size

5 or 6. These descriptive results indicate that observed act more informatively than unobserved when

the discordant public evidence is weak but the difference vanishes once the evidence is strong enough.

Figure 1 also shows that in situations where participants face short contrary majorities observed

act more informatively than unobserved only in the early guessing periods (see right panel). In the

last two guessing periods, observed herd to the same extent or more than unobserved in line with

altruistic observational learning which predicts that informative guesses are made only if sufficiently

many successors can benefit from them.

Finally, we note that the proportion of correct guesses increases with the reluctance of observed to

contradict their private information when facing small contrary majorities. The proportion of guesses

which match the selected option is highest in part 1 with 72% and 75% of correct guesses for observed

and unobserved respectively, it decreases in part 2 to 67% in both sequences, and in the last two

parts of sessions 69% of observed guesses are correct. Informative guesses at small contrary majorities

therefore generate overall efficiency gains, and as expected these gains are largest for unobserved (for

the sake of comparability, reported efficiency levels exclude unobserved guesses made in period 8).

Subsection 4.3.2 examines the earning consequences of observational learning in more details.

Further data analysis excludes the few guesses made in the first part of sessions during which partici-

pants familiarized themselves with the cascade game.

4.2 Responses to the Empirical Value of Contradicting Private Information

In this subsection, we examine the extent to which participants contradict their private information

in diverse guessing situations. By controlling for the monetary incentives, the regression analysis

tests whether observed make the empirically money-maximizing guess as often as unobserved both

in situations where following private information is materially beneficial and in situations where it is

materially costly to the participant. For each guessing situation, i.e. each couple (history of observed

guesses, private signal), we estimate the relative frequency with which the participant receives e1 if

she contradicts her private signal across all observations with the same history and private signal.

This empirical value of contradicting private information, denoted by value contra PI, approaches the

true expected value of contradicting private information in a given guessing situation as its number of

occurrences increases in the dataset. For example, averaged across histories with an equal number of

blue and orange guesses (including the empty history in period 1), value contra PI equals 0.286 and

0.384 when the signal realization is ‘blue’ and ‘orange’, respectively. And value contra PI increases

when histories induce contrary majorities of size 1 or 2: Averaged across observations where the

contrary majority size is 1 (resp. 2), value contra PI equals 0.441 and 0.533 (resp. 0.592 and 0.615)

when the signal realization is ‘blue’ and ‘orange’, respectively. Participants who perfectly assess the

value of their available information and maximize their own monetary payoffs follow their signal if

and only if value contra PI ≤ 1/2.

Figure 2 plots the empirical value of contradicting private information against the proportion
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of contradictions collected in identical guessing situations. The abscissae of bubbles are given by

levels of value contra PI and the size of a bubble reflects the number of occurrences of the situation.

The ordinates of black, dark gray, light gray and white bubbles are given by the proportions of

contradictions for unobserved, observed in part 2, 3 and 4, respectively. Notice that the four sets of

bubbles have different abscissae since the levels of value contra PI have been estimated separately

for the two sequences of participants in part 2 and for the different parts in the observed sequence.

And each bubble corresponds to a guessing situation which occurs at least 10 times as value contra PI

is likely to be far away from the true expected value of contradicting private information for rarely

occurring situations. There are 139 distinct guessing situations depicted in the figure for a total of

6,329 individual observations.

Figure 2 also superimposes fitted lines from a weighted linear regression that includes a cubic

polynomial in value contra PI fully interacted with indicator variables for unobserved and observed in

part 3 and in part 4 of sessions.18 To correct for the fact that value contra PI imperfectly measures

the true expected value of contradicting private information, we follow the split-sample instrumental

variable (IV) method described in Weizsäcker (2010) which obtains an instrument by partitioning

the dataset in two subsamples. The black, dark gray, light gray and dotted line is the fitted line for

unobserved, observed in part 2, 3 and 4, respectively. Appendix D in the supplementary material

details the derivation of value contra PI and the split-sample instrumental variable method, it reports

the regression results, and it also contains robustness checks with different subsets of data and OLS

specifications. In almost all instances we find the same qualitative results and the few dissimilarities

are mentioned below.

FIGURE 2. Proportion of Private Information Contradictions (Exp. 1)

18The regression was run using the data from our two experiments meaning that all regressors are also interacted with

an indicator variable for Experiment 2.
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We first discuss unobserved responses to the empirical value of contradicting private information as

they provide a benchmark against which to assess the influence of altruism on observational learning

behavior. Indeed, since their guesses never reveal any information to others, we expect unobserved to

make money-maximizing guesses as long as they are able to use their available information successfully.

In situations where their private information happens to support the empirically optimal guess

unobserved largely follow their signal. Averaging across observations where value contra PI ≤ 0.5,

the relative frequency of unobserved guesses that are optimal is 0.922. Even in the more challenging

situations where their private information is correct in less than half of the cases unobserved often

guess optimally and follow others. Averaging across observations where value contra PI > 0.5, the

relative frequency of unobserved guesses that are optimal is 0.761. Notice that incentives to act

optimally are much stronger in the left than in the right half of the figure as value contra PI ranges

(approximately) between 0.1 and 0.7. For similar incentive levels, the reluctance of unobserved to

contradict private information is comparable in the two halves of the figure: Across observations

where 0.3 < value contra PI ≤ 0.5, the relative frequency of unobserved guesses that are optimal

is 0.785 on average. The proportions of contradictions therefore indicate that unobserved respond

strongly to the empirical value of contradicting private information. Still, if the average unobserved

were to make the money-maximizing guess in each situation, the fitted line for unobserved would be

an S-shaped line through (0.5, 0.5). Actually, the dark line goes through (0.5, 0.279) and (0.549,

0.5), and we reject the hypothesis that unobserved probabilistically best respond to the value of their

available information as the vertical distance between the dark line and (0.5, 0.5) is strongly significant

(two-tailed p-value < 0.01). Only in situations where the empirical likelihood of the private signal being

wrong is at least 0.549 does the average unobserved contradict private information more often than

not. We conclude that in most situations unobserved make the money-maximizing guess though they

fall short of successfully learning from others. When the monetary incentives to follow others are

the weakest unobserved imperfectly assess the value of their available information and act as if they

overweight their private information relative to the public information contained in the history of

observed guesses.19

We now discuss the observed responses to the empirical value of contradicting private information.

Differences between the proportions of observed and unobserved contradictions in the left half of

the figure show that observed are more likely to follow their private information than unobserved in

situations where private and public information are concordant. Averaging across observations where

value contra PI ≤ 0.5, the relative frequency of optimal guesses is 0.952, 0.951 and 0.981 for observed

in part 2, part 3 and part 4 of sessions, respectively. Differences in the likelihood of errors between

observed and unobserved also increase as monetary incentives decrease. Averaging across observations

where 0.3 < value contra PI ≤ 0.5, the relative frequency of guesses in line with private information is

0.909, 0.924 and 0.958 for observed in part 2, 3 and 4, respectively.

The main insight of our theoretical analysis is that altruism induces more informative observational

learning and our data largely support this intuitive prediction. Averaging across observations where

value contra PI > 0.5, the relative frequency of contradictions is 0.653, 0.542 and 0.468 for observed

in part 2, 3 and 4, respectively. Moreover, as the monetary incentives to follow others increase, the

19Not all robustness checks confirm this last observation. For the OLS specification, we fail to reject the null hypothesis

that the true correspondence between the value of contradicting and its frequency goes through (0.5, 0.5) even for subsets

of data where the monetary incentives are precisely measured.
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proportions of observed contradictions tend to get closer to the proportions of unobserved contra-

dictions. The difference between the proportion of unobserved and observed contradictions averaged

across observations where 0.5 ≤ value contra PI < 0.6 is 0.092, 0.386 and 0.577 for observed in part 2,

3 and 4, respectively. The same difference averaged across observations where value contra PI ≥ 0.6

is -0.044, 0.056 and 0.210 for observed in part 2, 3 and 4, respectively. We test whether observed act

more informatively than unobserved by comparing predicted frequencies to contradict private infor-

mation at value contra PI = 0.549 which corresponds to the level of monetary incentives necessary for

unobserved to follow others with more than probability one-half. We find that the vertical distance

between the fitted line and (0.549, 0.5) is strongly significant for observed in all the later parts of

sessions (one-tailed p-values < 0.01). The same conclusions hold for predicted frequencies to contra-

dict private information after “full agreement” histories i.e. histories which contain either only blue

or orange guesses. Our findings are therefore robust to the exclusion of the relatively few guessing

situations where value contra PI is close to one-half but participants have few successors.

Observed act more informatively than unobserved in part 2 of sessions and observed also become

more reluctant to contradict their private information as the session progresses. Indeed, predicted

observed frequencies to contradict private information at value contra PI = 0.549 differ significantly

between parts 2 and 3 (two-tailed p-value < 0.01) as well as between parts 3 and 4 (two-tailed p-value

= 0.04). Our interpretation of these behavioral dynamics is that, as they accumulate experiences in the

cascade game, observed better understand that in certain situations informative observational learning

induces small monetary costs for them but large monetary benefits for their successors (observed

monetary payoffs are discussed in the next subsection). It is doubtful that the change in the signal

quality of unobserved across parts explains much of the observed behavioral dynamics. In part 3

unobserved are endowed with private signals of high quality which implies that they have little to

gain from observed acting informatively. Though unobserved have more to gain from observed acting

informatively in part 4, as they are endowed with private signals of low quality, LQRE predictions

show that this small increase in information benefits should hardly affect observed responses to the

empirical value of contradicting private information.20

To summarize, unobserved make the money-maximizing guess in all situations except in those where

the monetary incentives to follow others are the weakest. This observation suggests that the reluctance

of participants to contradict private information in cascade games is partly due to cognitive biases

which prevent participants to successfully learn from others. More importantly, observed contradict

their private information significantly less often than unobserved in situations where the monetary

incentives to follow others are moderately weak. Future informational gains of guesses therefore

enhance the overemphasis on private information in our first experiment. Once the incentives to

follow others are strong enough observed contradict their private information to the same extent as

unobserved.

20Though the standard LQRE is an imperfect benchmark to capture the average behavior of unobserved, we believe

that LQRE predictions are helpful to understand the influence of future informational gains of guesses on the responses

to monetary incentives. Appendix C.3.1 of the supplementary material illustrates the predicted differences between

observed and unobserved responses to value contra PI.
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Indirect Evidence of Altruistic Behavior in Previous Cascade Game Experiments

Finally, we investigate whether participants’ responses to value contra PI in previous cascade game

experiments are also supportive of altruistic observational learning. Though previous settings are

ill-suited to cleanly measure the influence of altruism on observational learning, participants’ behavior

should vary with the length of the cascade game if they recognize the value of signaling information.

Indeed, for any given α > 0, longer sequences of players induce stronger responses to private information

in the altruistic observational learning game as more successors benefit from informative actions.

Participants should therefore contradict their private information more often in cascade games with

short decision sequences than in cascade games with long decision sequences when the monetary

incentives to follow others are moderately weak. We test this prediction by comparing the responses

to value contra PI in the short (T ≤ 6) and long cascade games contained in the meta-dataset of

Ziegelmeyer, March, and Krügel (2013) (see Appendix D.2 for details).

The regression analysis delivers two main results. First, participants in short cascade games are

reluctant to contradict their private information when monetary incentives to follow others are mod-

erately weak. The fitted line for short cascade games goes through (0.5, 0.328) and (0.592, 0.5), and

we reject the hypothesis that the average participant always makes the money-maximizing guess as

the vertical distance between the fitted line and (0.5, 0.5) is strongly significant (two-tailed p-value

< 0.01). Second, observational learning is significantly more informative in long than in short cascade

games. The fitted line for long cascade games goes through (0.5, 0.241) and (0.662, 0.5), and we find

that the vertical distance between the fitted line and (0.592, 0.5) is strongly significant (one-tailed p-

value < 0.01). Thus, participants’ responses to value contra PI in previous cascade game experiments

provide additional support for the influence of future informational gains of guesses on observational

learning.

4.3 Information Aggregation and Fractions of Correct Guesses

An increase in the response to private information at small contrary majorities is potentially beneficial

for the two sequences of participants though the observed who acts informatively incurs a modest

monetary cost. Indeed, large majorities should accumulate more public information which in turn

might heighten the relative frequency of correct guesses. In this subsection we investigate whether the

reluctance of observed to contradict their private information entails the benefits predicted by altruistic

observational learning. First, we measure the amount of information aggregated by observed guesses

in the different parts of sessions. Second, we analyze participants’ earnings in the two sequences.

4.3.1 Measuring the Information Aggregated by Observed Guesses

Subsection 4.2 has established that in situations where the monetary incentives to follow others are

moderately weak observed become more reluctant to contradict their private information as the ses-

sion progresses. These behavioral dynamics offer the opportunity to check whether increased responses

to private information enhance the informativeness of public information. If observational learning

becomes more informative as the session progresses then large majorities should aggregate more infor-

mation in later parts of sessions. We also assess the informational efficiency of observational learning

behavior by comparing the amount of information aggregated in large majorities of observed guesses

to the amount of information aggregated in standard equilibrium majorities.
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The empirical value of contradicting private information is a natural measure of the information

aggregated by a sequence of guesses. The more information guesses aggregate the lower the levels

of value contra PI at large favoring majorities and the higher the levels of value contra PI at large

contrary majorities. For example, when averaged over signal realizations, a sequence of guesses con-

tains no valuable information if value contra PI = 1/3, a favoring majority aggregates one (resp. two)

private signal(s) if value contra PI = 1/5 (resp. 1/9), and a contrary majority aggregates one (resp.

two) private signal(s) if value contra PI = 1/2 (resp. 2/3).

To test whether more information is aggregated in later parts of sessions, we regress value contra PI

on indicator variables for parts fully interacted with indicator variables for the type of majority (all

regressors are also interacted with an experiment dummy as the analysis uses the data from our

two experiments). We distinguish between large favoring majorities, moderate majorities, and large

contrary majorities where the size of a large majority belongs to {3,4,5,6}. For the sake of conciseness,

the two signal realizations are bundled together. We use an OLS specification with robust standard

errors clustered at the session level and we include every guessing situation for which value contra PI

can be computed. Table 1 reports the predicted levels of value contra PI by session parts and types

of majorities. Appendix D.3 in the supplementary material reports the regression results as well as

robustness checks where the analysis is restricted to subsamples with a more precise measurement of

value contra PI and where the size of a large majority belongs to {4,5,6}. In all instances we obtain

the same qualitative results in Experiment 1.

Part 2 Part 3 Part 4

Large Favoring Majorities 0.154 0.134 0.108
(0.147, 0.160) (0.112, 0.157) (0.104, 0.112)

Moderate Majorities 0.330 0.335 0.340
(0.314, 0.345) (0.322, 0.348) (0.324, 0.357)

Large Contrary Majorities 0.578 0.617 0.671
(0.569, 0.586) (0.598, 0.635) (0.657, 0.685)

Every guessing situation for which value contra PI can be computed is included for a total

of 7,068 individual observations. 95% robust confidence interval in brackets, clustered at

the session level and constructed using the delta method.

TABLE 1. Predicted Levels of value contra PI in the Observed Sequence (Exp. 1)

The regression analysis confirms that large majorities aggregate more information in later parts of

sessions. At large favoring majorities the predicted level of value contra PI equals 0.154, 0.134 and

0.108 in part 2, 3 and 4, respectively. Differences in the predicted levels of value contra PI between

parts are significant (one-tailed p-value = 0.046 for part 2 versus part 3 and 0.016 for part 3 versus

part 4). At large contrary majorities the predicted level of value contra PI equals 0.578, 0.617 and

0.671 in part 2, 3 and 4, respectively. Differences in the predicted levels of value contra PI between

parts are always strongly significant (one-tailed p-values < 0.01). On the other hand, the predicted

levels of value contra PI do not differ significantly between parts at moderate majorities which, as

expected, contain no valuable information on average.

We now compare the empirical and theoretical levels of the value of contradicting private infor-

mation to assess how successful observed are in aggregating information. In the standard sequential

equilibrium, the value of contradicting private information equals 51/89 ≈ 0.573 at any contrary ma-
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jority of size larger than 2 and 19/121 ≈ 0.157 at any favoring majority of size larger than 2. Table 1

shows that in each part of the sessions large majorities of observed guesses aggregate at least as much

information as any equilibrium history, and in parts 3 and 4 significantly more information is aggre-

gated. In fact, large majorities of observed guesses in part 4 aggregate significantly more information

than any standard LQRE history since the value of contradicting private information belongs to the

range [0.124, 0.639] for every equilibrium history and every λ ≥ 0 in our laboratory cascade game.

In sum, the predicted levels of value contra PI in the different parts confirm that observed guesses

become more informative as the session progresses. Eventually more public information is accumulated

in the observed sequence than in the standard LQRE. Future informational gains of guesses therefore

improve the information aggregation process in our first experiment.

Information Aggregation in Similar Cascade Game Experiments

In the previous subsection, we have shown that participants contradict their private information

more often in cascade games with short decision sequences than in cascade games with long decision

sequences when the monetary incentives to follow others are moderately weak. Long cascade games

should therefore aggregate more information at large majorities than short cascade games (given

the sequence length of short games, the size of a large majority belongs to {3, 4, 5}). We regress

value contra PI on an indicator variable for the length of the game fully interacted with indicator

variables for the type of majority, and we test the hypothesis by comparing the predicted levels of

value contra PI at large majorities in short and long cascade games. For the sake of comparability

with the predicted levels in our experiment, we only include previous cascade games with a unique

signal quality equal to 2/3 (for subsets of data where value contra PI is measured precisely, the same

qualitative results hold in the entire sample of games).

We find that the predicted level of value contra PI at moderate majorities is identical in both

game lengths (0.328) and that large majorities aggregate significantly more information in long than

in short games (one-tailed p-values < 0.01). Moreover, for large majorities the predicted levels of

value contra PI in part 4 of our experiment are comparable to those in short games (0.101 and 0.689)

but they are significantly lower than those in long games (0.077 and 0.755) as confidence intervals

don’t overlap.

4.3.2 Relative Frequencies of Correct Guesses

Finally, we compare the earnings of observed and unobserved in part 2 as well as the earnings of

observed across parts 2 to 4 in Experiment 1. Earnings are measured by use of the dummy variable

correct which takes value one if the guess is correct and zero otherwise. We first regress the relative

frequency of correct guesses against indicator variables for observed in the different parts interacted

with an indicator variable for Experiment 2. Second, we control for the monetary incentives to make

the correct guess by including the variable value correct which equals value contra PI if the private

signal supports the wrong guess and 1 - value contra PI otherwise. The second regression follows

the split-sample IV method and it uses guessing situations which occur at least ten times. In both

regressions, unobserved guesses made in period 8 are excluded for the sake of comparability. Columns

(1) and (2) of Table 2 reports the OLS and IV regression results.

As shown in the first column of the table, the earnings of observed and unobserved in part 2 are
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Dependent variable is correct guess

OLS IV

Observed in part 2 0.000 0.038∗∗∗

(0.010) (0.013)

Observed in part 3 0.018 −0.028

(0.029) (0.040)

Observed in part 4 0.006 0.068∗∗∗

(0.051) (0.012)

Experiment 2 0.057 0.024

(0.039) (0.019)

Experiment 2 × observed in part 2 −0.014 −0.008

(0.020) (0.030)

Experiment 2 × observed in part 3 −0.124∗∗ 0.028

(0.052) (0.054)

Experiment 2 × observed in part 4 −0.062 −0.085∗∗

(0.077) (0.030)

value correct 1.612∗∗∗

(0.076)

Constant 0.675∗∗∗ −0.345∗∗∗

(0.027) (0.050)

Observations 12,600 9,695

Cluster 15 15

R2 0.004 0.270

Robust standard errors in parentheses, clustered at the session level.
∗∗ (5%) and ∗∗∗ (1%) significance level.

TABLE 2. Frequencies of Correct Guesses (Exp. 1 and 2)

identical. At first the result seems surprising since observed and unobserved equally benefit from the

increased response to private information but only the former incur the costs. However, we should

remember that observed follow their private information more often than unobserved also in situations

where value contra PI ≤ 1/2 which is clearly beneficial (the relative frequency of optimal guesses is

0.922 and 0.952 for unobserved and observed, respectively). By reducing the likelihood of errors in

situations where private and public information agree, the altruistic behavior of observed compen-

sates for the costs of aggregating more information. Once the benefits of more information being

aggregated are taken into account, altruistic observational learning enhances the average monetary

payoff. Compared to part 2, observed make the correct guess more often in part 3 and in part 4

though the difference is never statistically significant. We also note that the earnings of participants

in Experiment 1 are comparable to the highest earnings predicted by the standard LQRE.

Importantly enough, the absence of a difference in the earnings of observed and unobserved does

not reflect the fact that on average participants in the two sequences use their available information

equally efficiently. Indeed, in each repetition of the cascade game, there are eight unobserved guesses in

every period but there are only 8−t observed guesses in period t ∈ {1, . . . ,7}. This feature of our design
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implies that unobserved make relatively more guesses at large majorities than observed which puts the

latter at a disadvantage. The proportion of guesses made at large majorities equals 39% and 23% in

the unobserved and observed sequence, respectively. Our second regression controls for the incentives

to make the correct guess which enables us to assess whether the altruistic behavior of observed leads

them to use their available information more efficiently than unobserved. As shown in the second

column of the table, we find that once incentives are controlled for the relative frequency of correct

guesses is significantly higher for observed than for unobserved at the 1% level.21 Because observed

become more reluctant to contradict their private information as the session progresses, the proportion

of observed guesses made at large majorities decreases to 20% in parts 3 and 4. Once incentives are

controlled for we find that the relative frequency of correct guesses is lower for observed in part 3 than

in part 2 though not significantly so whereas the relative frequency of correct guesses is significantly

higher for observed in part 4 than in part 2 at the 5% level. These findings are mainly driven by the

fact that, averaged across observations where value contra PI ≤ 1/2, the relative frequency of optimal

guesses is 0.951 and 0.982 for observed in part 3 and 4, respectively.

We conclude that altruism enhances the monetary payoffs of participants in our first experiment

as its associated benefits more than compensate for its associated costs.

5 Results of Experiment 2

In addition to the information they provide in Experiment 1, the feedback screens in Experiment 2

disclose the private signals of the public guesses after each repetition of the cascade game. Thus,

participants in Experiment 2 are offered better opportunities to learn about the strategies played

by observed in the cascade game. We expect the additional feedback to influence the observational

learning behavior of participants differently in the two sequences. On the one hand, unobserved should

more often extract the correct information from the public guesses. And since their guesses entail no

future information benefits, unobserved should more frequently make the money-maximizing guess for

a given value of the available information especially if inferential biases are the main driving force of

their overemphasis on private information. On the other hand, though they should also better assess

the informational content of public histories, observed are still expected to guess in accordance with

their private information when the incentives to follow others are moderately weak. In fact, given

the net benefits of altruistic behavior in Experiment 1, the guesses of observed should be even more

informative in situations where the costs of following private information are negligible but the benefits

for others are large. And if observed are more successful at identifying the strategies played by their

predecessors they should more frequently make the money-maximizing guess in situations where the

monetary incentives to follow others are strong. Thus, observed could coordinate on a more efficient

outcome under reduced behavioral uncertainty.

We report the results of Experiment 2 following the same structure as in the previous section.

We first provide some descriptive statistics, we then compare the proportion of private information

contradictions in the two sequences of participants when incentives are controlled for, and we finally

evaluate the success of observational learning in diverse guessing situations. The same data restrictions

21As a robustness check, we repeat the OLS regression on the subset of payoff relevant guesses as for each participant

only one randomly selected guess is paid in each repetition of the cascade game. We find that the relative frequency of

correct guesses is significantly higher for observed (0.701) than for unobserved (0.656) at the 10% level.
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apply to the various parts of the analysis as for the first experiment.

5.1 Descriptive Statistics

Like in Experiment 1, participants guess overwhelmingly in accordance with their private information

in situations where private and public information do not contradict each other. At favoring majorities

98% of observed and 96% of unobserved guesses follow private information. And when participants

face histories with an equal number of blue and orange guesses 96% of observed and 93% of unobserved

guesses are informative.

Moreover, herding frequencies of unobserved in part 2 are slightly higher than those in the first

experiment with about 31%, 75% and 95% of the guesses contradicting private information after

contrary majorities of size 1, 2 and more than 3, respectively. In contrast to Experiment 1, there are

small differences between the herding frequencies of observed and unobserved in part 2 for any size

of the contrary majority. In parts 3 to 4 observed herd less frequently than in part 2 and frequencies

of informative guesses reach comparable levels as in the first experiment though they remain lower.

Higher observed herding frequencies in the second than in the first experiment lead to more majorities

of size 7 and less majorities of size 5 in the second than in the first experiment (46% versus 38% and

30% versus 38% when averaging over parts 2 to 4).

5.2 Responses to the Empirical Value of Contradicting Private Information

Figure 3 plots value contra PI against the proportion of contradictions collected in identical guessing

situations and it superimposes IV fitted lines for observed in the last three parts of sessions and

for unobserved. There are 109 distinct guessing situations depicted in the figure for a total of 3,986

individual observations.

FIGURE 3. Proportion of Private Information Contradictions (Exp. 2)
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The responses of unobserved to value contra PI are similar in our two experiments. In each half

of the figure the overall proportion of unobserved contradictions is (almost) identical in the two ex-

periments, and we also reject the hypothesis that the average unobserved systematically makes the

money-maximizing guess in Experiment 2 as the vertical distance between the dark line and (0.5, 0.5)

is strongly significant (two-tailed p-value < 0.01; the dark line goes through (0.5, 0.326) and (0.533,

0.5)). The evidence therefore indicates that in situations where the monetary incentives to herd are

the weakest an easier identification of the strategies played by observed does not enable unobserved

to assess the value of their available information significantly better. In fact, averaging across ob-

servations where value contra PI ∈ [0.5,0.6[, the relative frequency of unobserved guesses that are

optimal is lower in Experiment 2 than in Experiment 1 (0.695 versus 0.733). Thus, in the absence

of future information benefits of guesses, the overemphasis on private information partly originates

from the fact that participants incorrectly combine their private signal with the information inferred

from public guesses. On the other hand, once the incentives to follow others are stronger unobserved

make more money-maximizing guesses in Experiment 2 than in Experiment 1: Averaging across ob-

servations where value contra PI ∈ [0.6,0.65[, 84% and 89% of the unobserved guesses are optimal in

Experiment 1 and 2, respectively (there is no guessing situation which occurs at least 10 times for

which value contra PI ≥ 0.65 in Experiment 2).

As in Experiment 1, observed always act more informatively than unobserved in Experiment 2.

The vertical distance between the fitted line for observed and (0.533, 0.5) is significant in part 2

(one-tailed p-value = 0.038) and strongly so in parts 3 and 4 (one-tailed p-values < 0.01). More

interestingly, when the strategies they play are easier to identify observed seem to strengthen their

responses to private information. At the level of monetary incentives where the average unobserved

response reaches 0.5—value contra PI = 0.549 and 0.533 in Experiment 1 and 2, respectively—the

predicted frequencies to contradict private information for observed are lower in Experiment 2 than in

Experiment 1 (the difference between the two predicted frequencies equals -0.047, -0.056 and -0.048

in part 2, 3 and 4, respectively). But as the monetary incentives to herd increase, the proportions

of observed and unobserved contradictions also become more similar in Experiment 2. The difference

between the proportion of unobserved and observed contradictions averaged across observations where

0.5 ≤ value contra PI < 0.6 is 0.247, 0.220 and 0.570 in part 2, 3 and 4, respectively. And the same

difference averaged across observations where value contra PI ≥ 0.6 is 0.078, -0.017 and 0.228 in

part 2, 3 and 4, respectively. Finally, observed make slightly more money-maximizing guesses when

value contra PI ≤ 0.5 in Experiment 2 than in Experiment 1 (across parts the average proportion

equals 0.961 and 0.967 in Experiment 1 and 2, respectively) though the proportion of unobserved

contradictions is exactly the same in the two experiments.

To summarize, in Experiment 2 observed increase the informativeness of their guesses whereas

unobserved reluctance to contradict private information slightly decreases only in situations where

the monetary incentives to follow others are strong enough. We conclude that reducing behavioral

uncertainty amplifies the difference in the overemphasis on private information between the observed

and unobserved sequence.
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5.3 Information Aggregation and Fractions of Correct Guesses

5.3.1 Measuring the Information Aggregated by Observed Guesses

Table 3 reports the predicted levels of value contra PI in Experiment 2 by session parts and types of

majorities (as explained in Subsection 4.3.1, the predicted levels in both experiments are derived from

the same OLS regression).

Part 2 Part 3 Part 4

Large Favoring Majorities 0.130 0.127 0.082
(0.116, 0.144) (0.117, 0.136) (0.068, 0.095)

Moderate Majorities 0.324 0.340 0.338
(0.307, 0.341) (0.330, 0.349) (0.324, 0.353)

Large Contrary Majorities 0.601 0.644 0.740
(0.557, 0.645) (0.621, 0.667) (0.699, 0.782)

Every guessing situation for which value contra PI can be computed is included for a total

of 7,068 individual observations. 95% robust confidence interval in brackets, clustered at

the session level and constructed using the delta method.

TABLE 3. Predicted Levels of value contra PI in the Observed Sequence (Exp. 2)

For every part of sessions, the predicted level of value contra PI is lower in Experiment 2 than in

Experiment 1 at large favoring majorities and it is higher at large contrary majorities. The difference

is strongly significant for both types of large majorities in part 4, it is strongly significant for large

favoring majorities but insignificant for large contrary majorities in part 2, and it is weakly significant

for large contrary majorities but insignificant for large favoring majorities in part 3. Overall, large

majorities aggregate more information in Experiment 2 than in Experiment 1 and the effect is most

pronounced in the latest part of sessions. On the other hand, the predicted levels of value contra PI

do not differ significantly in the two experiments at moderate majorities for any part.22

We conclude that reducing the level of behavioral uncertainty improves the information aggregation

process in our laboratory cascade game.

5.3.2 Relative Frequencies of Correct Guesses

Finally, based on the regression results reported in Table 2, we discuss how much participants earn

and how efficiently they use their available information in Experiment 2 compared to Experiment 1.

In line with their responses to value contra PI, the second column of Table 2 shows that unob-

served use their available information more efficiently in Experiment 2 than in Experiment 1 though

the difference is statistically non-significant. And since observed guesses in part 2 aggregate more in-

formation in the second than in the first experiment, the earnings of unobserved are (non-significantly)

higher in Experiment 2 than in Experiment 1.

Similarly, observed in parts 2 and 3 use their available information more efficiently in Experiment 2

than in Experiment 1 though the difference is never statistically significant. This finding is driven by

22Robustness checks always confirm that in part 4 large majorities aggregate significantly more information in the

second than in the first experiment. However, differences between the two experiments in parts 2 and 3 are less robust

to the subset of data used or to the minimum threshold of the large majority size. See Appendix D.3 for details.

27



the fact that, though observed in parts 2 and 3 increase the informativeness of their guesses in Exper-

iment 2 when the monetary incentives to herd are moderately weak i.e. value contra PI ∈ (0.5,0.6),

they make more (resp. as many) money-maximizing guesses in Experiment 2 than in Experiment 1

when value contra PI ≤ 0.5 (resp. when value contra PI ≥ 0.6). We therefore expect observed in parts

2 and 3 to receive higher earnings in Experiment 2 than in Experiment 1 given that their guesses

always aggregate more information in the second than in the first experiment. This is indeed the case

for observed in part 2 whose earnings are (non-significantly) higher in Experiment 2 than in Exper-

iment 1 but, surprisingly enough, observed in part 3 earn significantly less in Experiment 2 than in

Experiment 1 at the 10% level. The reason for this surprising finding is that the relative frequency of

signal realizations which indicate the correct state is unfortunately much lower in Experiment 2 than

in Experiment 1 (0.60 versus 0.71).23

On the other hand, we find that observed in part 4 use their available information significantly less

efficiently in Experiment 2 than in Experiment 1 at the 5% level. Indeed, not only do observed in

part 4 increase the informativeness of their guesses in Experiment 2 when value contra PI ∈ (0.5,0.6),

they also make less money-maximizing guesses in Experiment 2 than in Experiment 1 both when

value contra PI ≤ 0.5 and when value contra PI ≥ 0.6. Thanks to their guesses aggregating more

information, the earnings of observed in part 4 are basically identical in the two experiments.

To summarize, when the behavioral uncertainty is reduced unobserved as well as observed in parts

2 and 3 are able to better use their available information on average which enhances their earnings

(expect in the unfortunate case of observed in part 3). By contrast, observed in part 4 fail to reap the

benefits of their informative guesses as they follow others too little when the monetary incentives to

do so are strong.

6 Conclusion

The experimental evidence presented in this paper enriches our understanding of how people learn

from the actions of others. Previous cascade game experiments concluded that the reluctance of

participants to contradict their private information originates either from non-Bayesian updating or

from a misperception of the informational content of observed actions. Past experiments however have

not been designed to properly separate the explanation in terms of judgment or inferential biases from

the intuitive explanation that participants recognize the future informational benefits of actions and

behave altruistically. Our laboratory cascade setting, on the other hand, enables us to cleanly assess

the relative impact of altruism and cognitive biases on observational learning. Participants play the

cascade game in two parallel decision sequences, the observed and the unobserved sequence, and in each

sequence they face the challenge of extracting information from the actions of others and combining it

with their private information. In the observed sequence future informational benefits of actions are

present but they are absent in the unobserved sequence. We report two cascade game experiments

that directly test the impact of altruism on observational learning where participants in the second

experiment are offered better opportunities to learn about the strategies played by observed.

The results of Experiment 1 confirm the main implications of altruistic observational learning which

23In Experiment 1, the empirical signal quality equals 0.66, 0.71 and 0.67 for observed in part 2, 3 and 4, respectively.

In Experiment 2, the empirical signal quality equals 0.70, 0.60 and 0.65 for observed in part 2, 3 and 4, respectively. For

unobserved, the empirical signal quality equals 0.65 and 0.71 in Experiment 1 and 2, respectively.
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are derived in our theoretical section. Future informational benefits of actions reduce the likelihood

of errors in situations where private and public information are concordant and they induce partici-

pants to significantly increase their response to private information when the monetary incentives to

follow others are moderately weak. Once these incentives are strong enough, however, participants

largely follow others. As a consequence, long laboratory cascades accumulate substantial public in-

formation which in turn increases the earnings of participants. In the absence of future informational

benefits of actions, participants act as if they slightly overweight their private information relative to

the public information only when the monetary incentives to follow others are the weakest. These

findings therefore indicate that future informational benefits of actions are the main driving force of

the overemphasis on private information and its attenuation in long laboratory cascades.

Reducing the level of behavioral uncertainty in Experiment 2 amplifies the impact of altruism on

observational learning. The response to private information in the observed sequence is stronger and

more public information is aggregated in the second than in the first experiment. Yet, the earnings of

observed do not always increase when the strategies played by their predecessors are easier to identify

since in part 4 they become reluctant to contradict their private information even when the monetary

incentives to follow others are strong. In the unobserved sequence, participants are still slightly

reluctant to contradict their private information when the monetary incentives to follow others are

the weakest. This finding suggests that in the absence of future informational benefits of actions the

overemphasis on private information is more driven by judgment biases rather than by inferential

biases.

We use Weizsäcker’s approach to compare the proportions of money-maximizing guesses in the

observed and unobserved sequence as it controls for the monetary incentives. The approach enables

us to assess the impact of altruistic behavior on participants’ reluctance to contradict their private

information in different guessing situations without having to rely on a structural behavioral model

which would undoubtedly be an imperfect benchmark. Estimating the monetary incentives that

participants face in diverse situations enables us also to shed light on another essential aspect of

observational learning behavior. Indeed, the empirical value of actions is a natural measure of the

information aggregated in the decision sequence. By estimating the value of actions, we are therefore

able to directly measure the informational efficiency of observational learning in our laboratory cascade

games.24 The crucial requirement of the approach is to have sufficient data in a large variety of guessing

situations which can be satisfied by relying on the strategy method at the history level.25

Our findings are important from two perspectives. First, our experimental results show that both

altruism and cognitive biases influence how participants learn from others in cascade games. The

methodological implication of our findings is that laboratory settings without future informational

benefits of actions are the most appropriate for isolating and in turn understanding the influence

of cognitive biases on observational learning behavior. Second, the presence of future informational

benefits of actions is a contextual factor which favors the aggregation of information and heightens

efficiency levels relative to rational herding. Concerned by the underinvestment in public information

of rational herders, economists have designed mechanisms which release additional public informa-

24The strength of the underlying monetary incentives can also be used in other laboratory interactions to assess the

amount of information aggregated by the decision-making institution.

25As noted by Cipriani and Guarino (2009), the use of the strategy-like method does not seem to induce a different

herd behavior in laboratory financial markets.
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tion or incentivize individuals to reveal their private information (Smith, Sørensen, and Tian, 2014).

Our findings suggest that interventions which simply emphasize to individuals the value of signaling

information to their successors might already improve economic welfare.
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Supplementary material for

Altruistic Observational Learning

Christoph March and Anthony Ziegelmeyer
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Appendix A contains the proofs of Propositions 1 and 2. Appendix B exhibits some non-monotonic

equilibria and it offers evidence on how rapidly the number of equilibria grows with the degree of altruism.

Appendix C outlines the Logit Quantal Response Equilibrium (LQRE) concept, it contains the proof of

Proposition 3, and it provides detailed LQRE predictions for our laboratory cascade game. Appendix

D complements the statistical analysis reported in the main text. Finally, Appendix E provides the

instructions for Experiment 1. Instructions for Experiment 2 were adapted accordingly and they are

available from the authors upon request.

Notational remark:

Throughout the paper we focus on behavioral strategies σt : S �Ht Ñ DpXq for t � 1, . . . , T where

σt pxt | s, htq denotes the probability that player t picks action xt P X at history ht P H given signal s P S.

In the main text we rely on the simplified notation in which σt ps, htq denotes the probability that the

player picks action xt � B and 1� σt ps, htq denotes the probability that she picks action xt � O. In this

appendix, we sometimes rely on the more rigorous notation σt p� | s, htq, and we employ the simplified

notation whenever the meaning is obvious.
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Appendix A. Proofs of Propositions 1 and 2

Section A.1 contains the proof of Proposition 1. Section A.2 collects in a series of lemmas several properties

of continuation values and sequential equilibria, and provides a discussion of monotonic equilibria. In

Section A.3 we prove four lemmas that form the basis of Proposition 2. Finally, section A.4. completes

the proof of Proposition 2.

A.1. Proof of Proposition 1

Ali and Kartik (2012) consider a simple setting of observational learning with collective preferences:

a player’s payoff depends on a binary state of nature and on the profile of any subset of all players.

While players may differ in how they care about the choices of others, each player weakly prefers oth-

ers to take the most profitable action. The observational learning game of Ali and Kartik is given

by
A
T,X,H,Θ, p, S, q,Ξ, φ, tvtu

T
t�1

E
where Ξ is a set of preference types and the vector of players’

preference types pξ1, . . . , ξT q is drawn from the distribution φ P D
�
ΞT

�
. The von-Neumann Morgen-

stern utility functions vt : XT � Θ � Ξ Ñ R, t � 1, . . . , T , satisfy for each t, τ � 1, . . . , T , each

x�τ � px1, . . . , xτ�1, xτ�1, . . . , xT q P X
T�1, and each ξt P Ξ

(Assumption 1) vt
�
x��τ ,B, ξt

�
¥ vt

�
x��τ ,B, ξt

�
and vt

�
x��τ ,O, ξt

�
¤ vt

�
x��τ ,O, ξt

�
;

(Assumption 2) c
�
vt
�
x��τ ,B, ξt

�
� vt

�
x��τ ,B, ξt

��
� p1� cq

�
vt
�
x��τ ,O, ξt

�
� vt

�
x��τ ,O, ξt

��
for some c P p0, 1q;

where x��τ � px1, . . . , xτ�1, B, xτ�1, . . . , xT q and x��τ � px1, . . . , xτ�1, O, xτ�1, . . . , xT q.

Theorem 1 (Ali and Kartik, 2012). For any payoff structure that satisfies Assumptions 1 and 2, the

strategy profile pσtq
T
t�1 given by

σt pst,ht, ξtq �

$'&'%
1 if µt pst,htq ¡ c

c if µt pst,htq � c

0 if µt pst,htq   c

is a sequential equilibrium of the observational learning game with collective preferences.

To prove Proposition 1 we show that the utility function

ut px, θq � π pxt, θq � α
¸
τ�t

π pxτ , θq

satisfies (Assumption 1) and (Assumption 2) (there is a single preference type).

(Assumption 1) This follows from π pB,Bq � 1 ¡ 0 � π pO,Bq and π pB,Oq � 0   1 � π pO,Oq.

(Assumption 2) The assumption holds with c � 1{2 since

ut
�
x��τ ,B

�
� ut

�
x��τ ,B

�
� ut

�
x��τ ,O

�
� ut

�
x��τ ,O

�
�

#
1 if τ � t

α if τ � t
.

Notice finally that p ¡ 1{2 implies that µt pst,htq � 1{2 never occurs, so the definition of the strategy in

this case is inconsequential. l
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A.2. Additional Lemmas

To ease the writing of the proofs of Propositions 2 and 3, we derive in a series of lemmas some useful

properties of continuation values, strategies, and sequential equilibria.

The first lemma gives a recursive statement of the continuation values.

Lemma A1. The continuation values satisfy

(i) CT pxT | hT , θ,σ�T q � 0 for each xT P X, hT P HT , θ P Θ, and each σ�T ,

(ii) Ct pxt | ht, θ,σ�tq �
°

xt�1PX
Pr pxt�1 | θ,ht�1q

�
π pxt�1, θq � Ct�1

�
xt�1 | ht�1, θ,σ�pt�1q

��
for each

t   T , xt, ht, θ and σ�t where Pr pxt�1 | θ,ht�1q �
°
st�1PS

Pr pst�1 | θq σt�1 pxt�1 | st�1,ht�1q

and ht�1 � pht, xtq.

Proof. The first property holds by definition. For the second property fix σ, t   T , xt P X, ht P Ht, and

θ P Θ, and let Pr pxτ | θ,hτ q �
°
sτPS

Pr psτ | θq στ pxτ | sτ ,hτ q. The continuation value satisfies

Ct pxt | ht, θ,σ�tq

�
¸

pxt�1,...,xT q

¹
τ¡t

Pr pxτ | θ,hτ q
¸
τ¡t

π pxτ , θq

�
¸

xt�1PX

¸
pxt�2,...,xT q

Pr pxt�1 | θ,ht�1q
¹

τ¡t�1

Pr pxτ | θ,hτ q

�
π pxt�1, θq �

¸
τ¡t�1

π pxτ , θq

�

�
¸

xt�1PX

Pr pxt�1 | θ,ht�1q

��π pxt�1, θq �
¸

pxt�2,...,xT q

¹
τ¡t�1

Pr pxτ | θ,hτ q
¸

τ¡t�1

π pxτ , θq

��
�

¸
xt�1PX

Pr pxt�1 | θ,ht�1q
�
π pxt�1, θq � Ct�1

�
xt�1 | ht�1, θ,σ�pt�1q

��
where pht, xtq � hτ for each τ ¡ t. The third equality follows from

°
pxt�2,...,xT q

±
τ¡t�1 Pr pxτ | θ,hτ q � 1,

and we may replace σ�t by σ�pt�1q in the last line since the continuation values of player t only depend

upon strategies στ for τ ¡ t.

The second lemma shows that the behavior of player T is uniquely determined in any equilibrium.

Accordingly, equilibria can be derived backwards.

Lemma A2. In any sequential equilibrium σT psT ,hT q � 1 p0q if µT psT ,hT q ¡ p q 1{2.

Proof. Since UT pxT | sT ,hT ,σ�T q equals

µT psT ,hT q

�
π pxT ,Bq � α

¸
t T

π pxt,Bq

�
� p1� µT psT ,hT qq

�
π pxT ,Oq � α

¸
t T

π pxt,Oq

�

for each xT P X, UT pB | sT ,hT ,σ�T q ¡ p qUT pO | sT ,hT ,σ�T q if µT psT ,hT q ¡ p q 1� µT psT ,hT q.
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The third lemma states that, given the focus on pure strategies and on error or signal-revealing off-

path beliefs, players’ behavior may be captured by (alternative) strategies σ̂t pxt | st,∆tq which depend

on the signal st, and the difference ∆t between the number of b and o signals that may be inferred from

the history ht. For instance, ∆1 � 0 by definition. Accordingly, we henceforth work with alternative

strategies, alternative continuation values Ĉt p∆t�1, θq,
1 and alternative beliefs

µ̂ ps,∆tq �

�
1 �

1� p

p

Pr ps | Oq
Pr ps | Bq

�
1� q

q


∆t
��1

.

Lemma A3. For any pure sequential equilibrium σ� with error or signal-revealing off-path beliefs there

exists a profile σ̂� of alternative strategies σ̂�t : S � Z Ñ DpXq such that for each t � 1, . . . , T , each

st P S, and each ht P Ht

σ�t pxt | st,htq � σ̂�t pxt | st,∆tq

where ∆1 � 0, and for each t ¡ 1

∆t�1 � ∆t �

#
σt pxt | b,∆tq � σt pxt | o,∆tq if σt pxt | st,∆tq � 0 for some st P S

zt if σt pxt | st,∆tq � 0 for each st P S

with zt � 0 for error off-path beliefs, and zt � 1 p�1q if xt � B pOq for signal-revealing off-path beliefs.

Proof. Fix a pure sequential equilibrium σ with either error or signal revealing off-path beliefs. The proof

shows that beliefs and continuation values only depend upon the difference ∆t for each player t.

Beliefs: For each t P t1, . . . , T u, each st P S, and each ht P Ht on the equilibrium path,

µt pst,htq �

�
1 �

1� p

p

Pr pst | Oq
Pr pst | Bq

¹
τ t

p1� qqστ pxτ | b,hτ q � q στ pxτ | o,hτ q

q στ pxτ | b,hτ q � p1� qqστ pxτ | o,hτ q

��1

.

Since ht is on the equilibrium path, στ pxτ | sτ ,hτ q ¡ 0 for each τ   t and at least one sτ P S. In

addition, either στ pxτ | b,hτ q � στ pxτ | o,hτ q, or στ pxτ | b,hτ q � 1 and στ pxτ | o,hτ q � 0 or vice versa.

It follows that

p1� qqστ pxτ | b,hτ q � q στ pxτ | o,hτ q

q στ pxτ | b,hτ q � p1� qqστ pxτ | o,hτ q
�

�
1� q

q


στ pxτ |b,hτ q�στ pxτ |o,hτ q
.

and therefore ¹
τ t

p1� qqστ pxτ | b,hτ q � q στ pxτ | o,hτ q

q στ pxτ | b,hτ q � p1� qqστ pxτ | o,hτ q
�

�
1� q

q


∆t

.

On the other hand off-path beliefs are well-defined through the assumption that the interpretation of off-

path choices is commonly known. This is formalized by the auxiliary variable zt for the two specifications

of off-path beliefs that we focus on.

Continuation Values: We show inductively that continuation values only depend upon the difference ∆t

for each period t � 1, . . . , T . Since continuation values and beliefs uniquely determine strategies, this is

1Note that continuation values in period t depend upon the history ht and the own action xt. Accordingly, ∆t�1 is the
difference between the number of b and o signals that can be inferred from history ht�1 � pht, xtq, and therefore depends
on player t’s action xt.
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sufficient to prove the claim. For player T , CT
�
xT | hT , θ,σ

�
�T

�
� 0 for each xT , hT , and θ implies that

CT
�
xT | hT , θ,σ

�
�T

�
� ĈT p∆T�1, θq if ĈT p∆T�1, θq � 0 for each ∆ P Z and each θ P Θ. Accordingly,

assume that for each τ ¡ t

Cτ
�
xτ | hτ , θ,σ

�
�τ

�
� Ĉτ p∆τ�1, θq

where ∆τ�1 is derived from hτ and xτ as determined above. Lemma A1 and the induction assumption

imply that for each τ P tt� 1, . . . , T � 1u, each ∆τ P t1� τ, . . . , τ � 1u, and each θ P Θ

Ĉτ p∆τ�1, θq �
¸

xτ�1PX

Pr pxτ�1 | θ,∆τ�1q
�
π pxτ�1, θq � Ĉτ�1 p∆τ�2, θq

�
with Pr pxτ�1 | θ,∆τ�1q �

°
sτ�1PS

Pr psτ�1 | θq σ̂τ�1 pxτ�1 | sτ�1,∆τ�1q. Using Lemma A1 we obtain

for period t

Ct
�
xt | ht, θ,σ

�
�t

�
�

¸
xt�1PX

Pr pxt�1 | θ,∆t�1q
�
π pxt�1, θq � Ĉt�1 p∆t�1, θq

�
.

It suffices to show that ∆t�1 is uniquely determined at ht and xt. For choices on the equilibrium path

this is true since ∆t�1 �
°
τ t rσ

�
τ pxτ | b,hτ q � σ�τ pxτ | o,hτ qs. For off-path choices it follows from the

assumption that the interpretation of off-path choices is commonly known.

The remaining lemmas collect some properties of monotonic sequential equilibria. According to

Definition 2 in the main text a sequential equilibrium is monotonic if it satisfies two properties. The two

conditions are minimal in the sense that none implies the other.

First, for each period t � 1, . . . , T strategies are increasing in the difference ∆t between the number of

b- and o-signals inferrable from the history ht. Given the focus on pure strategies this implies that a player

who finds it optimal to guess B (O) regardless of her signal at difference ∆ must guess B (O) at any larger

(smaller) difference (part (i) of Lemma A4). Therefore, for each period t the set of possible differences

t1� t, . . . , t� 1u may by split into (up to) three subsets DO
t � t1� t, . . . ,∆tu, D

s
t � t∆t� 1, . . . ,∆t� 1u,

and DB
t � t∆t, . . . , t � 1u such that a player herds on action B (O) for each ∆t P D

B
t (∆t P D

O
t ), and

her guess strictly depends on private information for each ∆t P D
s
t . D

B
t and DO

t are called cascade sets.

The second property of monotonic equilibria implies that the third subset Ds
t is non-empty for each

t, and players follow private information for ∆t P D
s
t (parts (ii) and (iii) of Lemma A4). Moreover the

set is weakly shrinking in t or equivalently, the cascade sets grow weakly with t.

To save upon notation define for a given strategy profile σ̂, and for each t � 1, . . . , T , and each

∆t P t1� t, . . . , t� 1u,

ρ̂t p∆tq � pσ̂t pb,∆tq , σ̂t po,∆tqq .

Lemma A4. In each monotonic sequential equilibrium it holds for each t � 1, . . . , T , and each ∆t P

t1� t, . . . , t� 1u,

(i) ρ̂t pzq � ρ̂t p∆tq for each z ¡ p q∆t if ρ̂t p∆tq � p1, 1q pρ̂t p∆tq � p0, 0qq,

(ii) σ̂t pb,∆tq ¥ σ̂t po,∆tq,

(iii) ρ̂t p∆tq � p1, 0q for each ∆t P t�1, 0u.

(iv) σ̂t po,∆tq � 1 only if ∆t ¥ 1, and σ̂t pb,∆tq � 0 only if ∆t ¤ �2.
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Proof. (i) The properties follow directly from the first part of Definition 2 (main text).

(ii) The proof is by induction: First, the property holds for t � T since σ̂T pb,∆T q � 1 p0q for ∆T ¥

p q � 1, and σ̂T po,∆T q � 1 p0q for ∆T ¥ p q 1 by Lemma A2. Second, the property holds

for t if it holds for t � 1, since σ̂t pb,∆tq ¥ σ̂t�1 pb,∆tq ¥ σ̂t�1 po,∆tq ¥ σ̂t po,∆tq for each ∆t P

t1� t, . . . , t� 1u � t1� pt� 1q, pt� 1q � 1u using part (ii) of Definition 2 (main text).

(iii) The property follows from Lemma A2 and the second part of Definition 2 (main text).

(iv) By part (iii) and the first part of Definition 2 (main text) σ̂t po, zq ¤ σ̂t po, 0q � 0 for each z ¤ �1,

and σ̂t pb, zq ¥ σ̂t pb,�1q � 1 for each z ¥ �1.

Lemma A5 states that continuation values are weakly increasing (decreasing) in the difference ∆

under state B (O).

Lemma A5. In any monotonic sequential equilibrium it holds for each t � 2, . . . , T , and each 1 � t ¤

∆t ¤ t� 2, (i) Ĉt p∆t,Bq ¤ Ĉt p∆t � 1,Bq, and (ii) Ĉt p∆t,Oq ¥ Ĉt p∆t � 1,Oq.

Proof. The proof is by induction. For t � T both claims are trivially true, since ĈT p∆T , θq � 0 for each

∆T P t1� T, . . . , T � 1u, and each θ P Θ. Assume the claims are true for t� 1. By Lemma A4 we need

to distinguish 5 cases:

(A) ρ̂t�1 p∆� 1q � ρ̂t�1 p∆q � p1, 1q

(B) ρ̂t�1 p∆� 1q � p1, 1q and ρ̂t�1 p∆q � p1, 0q

(C) ρ̂t�1 p∆� 1q � ρ̂t�1 p∆q � p1, 0q

(D) ρ̂t�1 p∆� 1q � p1, 0q and ρ̂t�1 p∆q � p0, 0q

(E) ρ̂t�1 p∆� 1q � ρ̂t�1 p∆q � p0, 0q

To prove these cases we employ Lemma A1.

Ad (A): Ĉt p∆,Bq � 1 � Ĉt�1 p∆,Bq ¤ 1 � Ĉt�1 p∆� 1,Bq � Ĉt p∆� 1,Bq, and Ĉt p∆,Oq �
Ĉt�1 p∆,Oq ¥ Ĉt�1 p∆� 1,Oq � Ĉt p∆� 1,Oq.

Ad (B): Ĉt p∆,Bq � q � q Ĉt�1 p∆� 1,Bq � p1 � qq Ĉt�1 p∆� 1,Bq ¤ q � Ĉt�1 p∆� 1,Bq ¤
1 � Ĉt�1 p∆� 1,Bq � Ĉt p∆� 1,Bq, and Ĉt p∆,Oq � q � q Ĉt�1 p∆� 1,Oq � p1� qq Ĉt�1 p∆� 1,Oq ¥
q � Ĉt�1 p∆� 1,Oq ¥ Ĉt�1 p∆� 1,Oq � Ĉt p∆� 1,Oq.

Ad (C): Ĉt p∆,Bq � q � q Ĉt�1 p∆� 1,Bq � p1 � qq Ĉt�1 p∆� 1,Bq ¤ q � q Ĉt�1 p∆� 2,Bq �
p1 � qq Ĉt�1 p∆,Bq � Ĉt p∆� 1,Bq, and Ĉt p∆,Oq � q � q Ĉt�1 p∆� 1,Oq � p1 � qq Ĉt�1 p∆� 1,Oq ¥
q � q Ĉt�1 p∆,Oq � p1� qq Ĉt�1 p∆� 2,Oq � Ĉt p∆� 1,Oq.

Ad (D): Ĉt p∆,Bq � Ĉt�1 p∆,Bq ¤ q Ĉt�1 p∆,Bq � p1 � qq Ĉt�1 p∆� 2,Bq ¤ q � q Ĉt�1 p∆,Bq �
p1 � qq Ĉt�1 p∆� 2,Bq � Ĉt p∆� 1,Bq, and Ĉt p∆,Oq � 1 � Ĉt�1 p∆,Oq ¥ q � q Ĉt�1 p∆,Oq � p1 �

qq Ĉt�1 p∆� 2,Oq � Ĉt p∆� 1,Oq.

Ad (E): Ĉt p∆,Bq � Ĉt�1 p∆,Bq ¤ Ĉt�1 p∆� 1,Bq � Ĉt p∆� 1,Bq, and Ĉt p∆,Oq � 1� Ĉt�1 p∆,Oq
¥ 1� Ĉt�1 p∆� 1,Oq � Ĉt p∆� 1,Oq.
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A.3. Lemmas Relevant for the Proof of Proposition 2

The subsequent lemmas are the building blocks of Proposition 2. Lemma A6 establishes that a player finds

it optimal to herd on action B (O), if her direct successor finds it optimal to herd on this action whatever

the player’s choice, and if beliefs are sufficiently high (low). Conversely, according to Lemma A7, a player

finds it optimal to follow private information at ∆, if her direct successor does so at ∆ � 1 and ∆ � 1.

Finally, lemmas A8 and A9 consider the boundary of the cascade sets. For instance, Lemma A8 implies

that player t is weakly more inclined to follow an o-signal at each ∆ P
 
∆t�1 � 1,∆t�1

(
than player t�1.

Accordingly, player t must follow her o-signal at ∆t�1 � 1, and she may do so at ∆t�1. Furthermore,

Lemma A9 shows that following a b-signal is always favorable for player t at ∆ P
 
∆t�1 � 1,∆t�1

(
.

Similar considerations apply to ∆ P
 
∆t�1,∆t�1 � 1

(
.

Lemma A6. In any monotonic sequential equilibrium it holds for each t   T , and each 1� t ¤ ∆ ¤ t�1

(i) σ̂t pst,∆q � 1 for each st P S if σ̂t�1 pst�1,∆� 1q � 1 for each st�1 P S and µ̂ po,∆q ¡ 1{2,

(ii) σ̂t pst,∆q � 0 for each st P S if σ̂t�1 pst�1,∆� 1q � 0 for each st�1 P S and µ̂ pb,∆q   1{2.

Proof. σ̂t�1 pst�1,∆� 1q � 1 for each st�1 P S implies that σ̂t�1 pst�1, zq � 1 for each st�1 P S and each

z ¥ ∆� 1 (part (i) of Lemma A4). Hence, σ̂τ psτ , zq � 1 for each τ ¡ t, each sτ P S, and each z ¥ ∆� 1,

since σ̂τ pb, zq ¥ σ̂τ po, zq ¥ σ̂t�1 po, zq � 1 for each z ¥ ∆ � 1 where the first inequality follows from

Lemma A4(ii), and the second inequality follows from part (ii) of Definition 2 (main text). Accordingly,

Ĉt pz,Bq � T � t and Ĉt pz,Oq � 0 for each z ¥ ∆� 1. Since any choice of player t leads to a difference

no smaller than ∆� 1, Ût pB | st,∆q ¡ Ût pO | st,∆q provided

µ̂ pst,∆q r1 � α pT � tqs ¡ µ̂ pst,∆q α pT � tq � r1� µ̂ pst,∆qs

ô µ̂ pst,∆q ¡ 1� µ̂ pst,∆q

which follows from µ̂ pb,∆q ¡ µ̂ po,∆q ¡ 1{2. Therefore only σ̂t pst,∆q � 1 for each st P S can be

sustained in equilibrium.

The second part of the lemma follows analogously from σ̂t�1 pst�1,∆� 1q � 0 for each st�1 P S

which implies that σ̂τ psτ , zq � 0 for each τ ¡ t, sτ P S, and z ¤ ∆ � 1, and hence Ĉt pz,Bq � 0 and

Ĉt pz,Oq � T � t for each z ¤ ∆� 1.

Lemma A7. For each pure sequential equilibrium σ̂, each t   T , and each ∆ P t1� t, . . . , t� 1u,

ρ̂t�1p∆q � p1, 0q if ρ̂t�1p∆� 1q � ρ̂t�1p∆� 1q � p1, 0q.

Proof. Notice first that if player t is expected to follow private information at ∆

Ût pB | st,∆q � µ̂ pst,∆q
�
1 � α Ĉt p∆� 1,Bq

�
� r1� µ̂ pst,∆qs α Ĉt p∆� 1,Oq

and Ût pO | st,∆q � µ̂ pst,∆q α Ĉt p∆� 1,Bq � r1� µ̂ pst,∆qs
�
1 � α Ĉt p∆� 1,Oq

�
.

Hence, Ût pB | st,∆q ¡ p q Ût pO | st,∆q iff

α
!
µ̂ pst,∆q

�
Ĉt p∆� 1,Bq � Ĉt p∆� 1,Bq

�
� r1� µ̂ pst,∆qs

�
Ĉt p∆� 1,Oq � Ĉt p∆� 1,Oq

�)
¡ p q r1� µ̂ pst,∆qs � µ̂ pst,∆q .
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By Lemma A1, and since ρ̂t�1pzq � p1, 0q for each z P t∆� 1,∆� 1u the LHS equals

α
!
µ̂ pst,∆q

�
q � q Ĉt�1 p∆ � 2,Bq � p1 � qq Ĉt�1 p∆,Bq � q � q Ĉt�1 p∆,Bq ,� p1 � qq Ĉt�1 p∆ � 2,Bq

�

� r1 � µ̂ pst,∆qs
�
q � q Ĉt�1 p∆ � 2,Oq � p1 � qq Ĉt�1 p∆,Oq � q � q Ĉt�1 p∆,Oq � p1 � qq Ĉt�1 p∆ � 2,Oq

�)

� α
!
q µ̂ pst,∆q

�
Ĉt�1 p∆ � 2,Bq � Ĉt�1 p∆,Bq

�
� p1 � qq r1 � µ̂ pst,∆qs

�
Ĉt�1 p∆,Oq � Ĉt�1 p∆ � 2,Oq

�)

� α
!
p1 � qq µ̂ pst,∆q

�
Ĉt�1 p∆,Bq � Ĉt�1 p∆ � 2,Bq

�
� q r1 � µ̂ pst,∆qs

�
Ĉt�1 p∆ � 2,Oq � Ĉt�1 p∆,Oq

�)
.

(1)

Consider st � b. σ̂t�1 pb,∆� 1q � 1 implies that Ût�1 pB | b,∆� 1q ¡ Ût�1 pO | b,∆� 1q or equivalently

α
!
µ̂ pb,∆ � 1q

�
Ĉt�1 p∆ � 2,Bq � Ĉt�1 p∆,Bq

�
� r1 � µ̂ pb,∆ � 1qs

�
Ĉt�1 p∆,Oq � Ĉt�1 p∆ � 2,Oq

�)

¡ r1 � µ̂ pb,∆ � 1qs � µ̂ pb,∆ � 1q

Using

µ̂ pb,∆� 1q �
p q∆�2

D∆�2
� q

D∆�1

D∆�2

p q∆�1

D∆�1
�
D∆�1

D∆�2
q µ̂ pb,∆q ,

1� µ̂ pb,∆� 1q �
p1� pq p1� qq∆�2

D∆�2
� p1� qq

D∆�1

D∆�2

p1� pq p1� qq∆�1

D∆�1
�
D∆�1

D∆�2
p1� qq r1� µ̂ pb,∆qs

where D∆ � p q∆ � p1� pq p1� qq∆ we obtain

α
!
q µ̂ pb,∆q

�
Ĉt�1 p∆ � 2,Bq � Ĉt�1 p∆,Bq

�
� p1 � qq r1 � µ̂ pb,∆qs

�
Ĉt�1 p∆,Oq � Ĉt�1 p∆ � 2,Oq

�)

¡ p1 � qq r1 � µ̂ pb,∆qs � q µ̂ pb,∆q
(2)

Analogously, σ̂t�1 pb,∆� 1q � 1 implies that

α
!
p1 � qq µ̂ pb,∆q

�
Ĉt�1 p∆,Bq � Ĉt�1 p∆ � 2,Bq

�
� q r1 � µ̂ pb,∆qs

�
Ĉt�1 p∆ � 2,Oq � Ĉt�1 p∆,Oq

�)

¡ q r1 � µ̂ pb,∆qs � p1 � qq µ̂ pb,∆q
(3)

since

µ̂ pb,∆� 1q �
p q∆

D∆
�

1� q

q p1� qq

D∆�1

D∆

p q∆�1

D∆�1
�

D∆�1

q p1� qqD∆�2
p1� qq µ̂ pb,∆q ,

1� µ̂ pb,∆� 1q �
p1� pq p1� qq∆

D∆
�

q

q p1� qq

D∆�1

D∆

p1� pq p1� qq∆�1

D∆�1
�

D∆�1

q p1� qqD∆
q r1� µ̂ pb,∆qs .

Combining equations (1), (2), and (3) yields

α
!
µ̂ pb,∆q

�
Ĉt�1 p∆� 1,Bq � Ĉt�1 p∆� 1,Bq

�
� r1� µ̂ pb,∆qs

�
Ĉt�1 p∆� 1,Oq � Ĉt�1 p∆� 1,Oq

�)
¡p1� qq r1� µ̂ pb,∆qs � q µ̂ pb,∆q � q r1� µ̂ pb,∆qs � p1� qq µ̂ pb,∆q

� r1� µ̂ pb,∆qs � µ̂ pb,∆q

which implies that Ût pB | b,∆q ¡ Ût pO | b,∆q.

The case st � o follows analogously from σ̂t�1 po, zq � 0 for each z P t∆� 1,∆� 1u.
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Lemma A8. Let µ∆ � p q∆

p q∆ �p1�pq p1�qq∆
and define ϕt p∆q � µ∆ Ĉt p∆,Bq � p1� µ∆q Ĉt p∆,Oq. Any

monotonic sequential equilibrium satisfies for each t   T and each 1� t ¤ ∆ ¤ t� 1

ϕt p∆q ¥ ϕt�1 p∆q � max tµ∆, 1� µ∆u .

Proof. The proof is by induction.

Period T � 1: Since ĈT p∆q � 0 for each 1� T ¤ ∆ ¤ T � 1 and each θ P Θ it is sufficient to prove that

ϕT�1 p∆q ¥ µ∆ for each 0 ¤ ∆ ¤ T �2, and ϕT�1 p∆q ¥ 1�µ∆ for each 2�T ¤ ∆ ¤ �1. By Lemma A2

ρ̂T p∆q �

$'&'%
p1, 1q if ∆ ¡ 0

p1, 0q if ∆ P t�1, 0u

p0, 0q if ∆   �1

.

Accordingly, Lemma A1 implies that

ĈT�1 p∆,Bq �

$'&'%
1 if ∆ ¡ 0

q if ∆ P t�1, 0u

0 if ∆   �1

, and ĈT�1 p∆,Oq �

$'&'%
0 if ∆ ¡ 0

q if ∆ P t�1, 0u

1 if ∆   �1

.

Hence, ϕT�1 p∆q � µ∆ for ∆ ¡ 0, ϕT�1 p∆q � 1 � µ∆ for ∆   �1, and ϕT�1 p∆q � q for ∆ P t�1, 0u

which proves the claim since q ¡ µ0 � p and q ¡ 1� µ�1 �
p1�pq q

p p1�qq� p1�pq q .

Period t   T : Assume the claim is true for period t � 1 (i.e. ϕt�1 p∆q ¥ ϕt�2 p∆q � max tµ∆, 1� µ∆u

for each �t ¤ ∆ ¤ t). Part (ii) of Definition 2 (main text) implies that 5 cases must be distinguished:

(A) ρ̂t�1 p∆q � ρ̂t�2 p∆q � p1, 1q

(B) ρ̂t�1 p∆q � ρ̂t�2 p∆q � p0, 0q

(C) ρ̂t�1 p∆q � ρ̂t�2 p∆q � p1, 0q

(D) ρ̂t�1 p∆q � p1, 0q and ρ̂t�2 p∆q � p1, 1q

(E) ρ̂t�1 p∆q � p1, 0q and ρ̂t�2 p∆q � p0, 0q

Ad (A): ϕt p∆q � µ∆ � ϕt�1 p∆q since Ĉt p∆,Bq � 1 � Ĉt�1 p∆,Bq and Ĉt p∆,Oq � Ĉt�1 p∆,Oq.
Moreover µ∆ ¡ 1� µ∆ since ∆ ¥ 1 by Lemma A4 (iv).

Ad (B): ϕt p∆q � 1�µ∆ � ϕt�1 p∆q since Ĉt p∆,Bq � Ĉt�1 p∆,Bq and Ĉt p∆,Oq � 1 � Ĉt�1 p∆,Oq.
Moreover 1� µ∆ ¡ µ∆ since ∆ ¤ �2 by Lemma A4 (iv).

For cases (C) – (E), ρ̂t�1 p∆q � p1, 0q. By Lemma A1 this implies

ϕt p∆q � q � q µ∆ Ĉt�1 p∆� 1,Bq � p1� qqµ∆ Ĉt�1 p∆� 1,Bq

� p1� qq p1� µ∆q Ĉt�1 p∆� 1,Oq � q p1� µ∆q Ĉt�1 p∆� 1,Oq .
(4)
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Ad (C): Using equation (4) we obtain

ϕt p∆q � q �
D∆�1

D∆
ϕt�1 p∆� 1q � q p1� qq

D∆�1

D∆
ϕt�1 p∆� 1q

¥ q �
D∆�1

D∆
rϕt�2 p∆� 1q � max tµ∆�1, 1� µ∆�1us

� q p1� qq
D∆�1

D∆
rϕt�2 p∆� 1q � max tµ∆�1, 1� µ∆�1us

� ϕt�1 p∆q � max tq µ∆, p1� qq p1� µ∆qu � max tp1� qqµ∆, q p1� µ∆qu .

with D∆ � p q∆ � p1� pq p1� qq∆ where the inequality follows from the induction assumption, and the

last line employs equation (4) for period t� 1 since ρ̂t�2 p∆q � p1, 0q. For ∆ ¥ 1 the claim follows from

q µ∆ ¡ p1 � qq p1� µ∆q, p1 � qqµ∆ ¡ q p1� µ∆q, and µ∆ ¡ 1 � µ∆. Equivalently, for ∆ ¤ �2 we

have q µ∆   p1 � qq p1� µ∆q, p1 � qqµ∆   q p1� µ∆q, and µ∆   1 � µ∆. Finally, if �1 ¤ ∆ ¤ 0,

q µ∆ ¡ p1� qq p1� µ∆q and p1� qqµ∆   q p1� µ∆q imply that ϕt p∆q ¥ ϕt�1 p∆q � q which proves the

claim since q ¡ p � µ0 ¡ 1� µ0 and q ¡ p1�pq q
p p1�qq� p1�pq q � 1� µ�1 ¡ µ�1.

Ad (D): By Lemma A4 and Definition 2 (main text) ρ̂t�2 p∆q � p1, 1q implies that ρ̂τ pzq � p1, 1q

for each τ ¡ t� 1, and each z ¥ ∆. Therefore Ĉt�1 p∆, θq � Ĉt�1 p∆� 1, θq for each θ P Θ. Furthermore

∆ ¥ 1 by Lemma A4 (iv). Hence, by equation (4) ϕt p∆q ¥ ϕt�1 p∆q � max tµ∆, 1� µ∆u is equivalent

to

µ∆ p1� qq
�
Ĉt�1 p∆� 1,Bq � Ĉt�1 p∆� 1,Bq

�
� p1� µ∆q q

�
Ĉt�1 p∆� 1,Oq � Ĉt�1 p∆� 1,Oq

�
¤ q � max tµ∆, 1� µ∆u � q � µ∆.

On the other hand σ̂t�1 po,∆q � 0 implies that Ût�1 pB | o,∆q   Ût�1 pO | o,∆q or equivalently

µ∆ p1� qq
�
Ĉt�1 p∆� 1,Bq � Ĉt�1 p∆� 1,Bq

�
� p1� µ∆q q

�
Ĉt�1 p∆� 1,Oq � Ĉt�1 p∆� 1,Oq

�
� q p1� qq

D∆�1

D∆

$&% µ̂ po,∆q
�
Ĉt�1 p∆� 1,Bq � Ĉt�1 p∆� 1,Bq

�
�p1� µ̂ po,∆qq

�
Ĉt�1 p∆� 1,Oq � Ĉt�1 p∆� 1,Oq

� ,.-
  q p1� qq

D∆�1

D∆

1� µ̂ pg,∆q � µ̂ pg,∆q

α
¤ q p1� µ∆q � p1� qqµ∆ � q � µ∆

where the last inequality follows from α ¤ 1 and 1� µ∆   µ∆ (since ∆ ¥ 1).

Ad (E): As in the previous case ρ̂t�2 p∆q � p0, 0q implies that Ĉt�1 p∆, θq � Ĉt�1 p∆� 1, θq for each

θ P Θ and ∆ ¤ �2. Accordingly, by equation (4) ϕt p∆q ¥ ϕt�1 p∆q � max tµ∆, 1� µ∆u iff

µ∆ q
�
Ĉt�1 p∆� 1,Bq � Ĉt�1 p∆� 1,Bq

�
� p1� µ∆q p1� qq

�
Ĉt�1 p∆� 1,Oq � Ĉt�1 p∆� 1,Oq

�
¥ max tµ∆, 1� µ∆u � q � p1� µ∆q � q.
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This inequality follows from σ̂t�1 pb,∆q � 1 since Ût�1 pB | b,∆q ¡ Ût�1 pO | b,∆q is equivalent to

µ∆ q
�
Ĉt�1 p∆� 1,Bq � Ĉt�1 p∆� 1,Bq

�
� p1� µ∆q p1� qq

�
Ĉt�1 p∆� 1,Oq � Ĉt�1 p∆� 1,Oq

�
�
D∆�1

D∆

$&% µ̂ pb,∆q
�
Ĉt�1 p∆� 1,Bq � Ĉt�1 p∆� 1,Bq

�
�p1� µ̂ pb,∆qq

�
Ĉt�1 p∆� 1,Oq � Ĉt�1 p∆� 1,Oq

� ,.-
¡
D∆�1

D∆

1� µ̂ pb,∆q � µ̂ pb,∆q

α
¥ p1� qq p1� µ∆q � q µ∆ � 1� µ∆ � q

where the last inequality follows from α ¤ 1 and 1� µ∆ ¡ µ∆ (since ∆ ¤ �2).

Lemma A9. There exists a lower bound 0   αpp, qq   1 s.t. for each αpp, qq   α ¤ 1 any monotonic

sequential equilibrium in which ρ̂�t p∆tq � p1, 0q whenever possible satisfies for each t   T and each

1� t ¤ ∆ ¤ t� 1

(i) σ̂t pb,∆q � 1 if ρ̂t�1 p∆� 1q � p1, 0q and ρ̂t�1 p∆� 1q � p1, 1q,

and (ii) σ̂t po,∆q � 0 if ρ̂t�1 p∆� 1q � p1, 0q and ρ̂t�1 p∆� 1q � p0, 0q,

Proof. We focus on property (i) as (ii) follows from similar arguments. Assume first that subsequent

players expect player t to follow private information, i.e. identify player t’s action B (O) with st � b

(st � o). In this case Ût pB | b,∆q ¡ Ût pO | b,∆q iff

1� µ̂ pb,∆q � µ̂ pb,∆q

 α
!
µ̂ pb,∆q

�
Ĉt p∆� 1,Bq � Ĉt p∆� 1,Bq

�
� r1� µ̂ pb,∆qs

�
Ĉt p∆� 1,Oq � Ĉt p∆� 1,Oq

�)
�α

$&% µ̂ pb,∆q
�
1 � Ĉt�1 p∆� 1,Bq � q � q Ĉt�1 p∆,Bq � p1� qq Ĉt�1 p∆� 2,Bq

�
�r1� µ̂ pb,∆qs

�
q � q Ĉt�1 p∆� 2,Oq � p1� qq Ĉt�1 p∆,Oq � Ĉt�1 p∆� 1,Oq

� ,.-
�α

!
µ̂ pb,∆q p1� qq

�
Ĉt�1 p∆,Bq � Ĉt�1 p∆� 2,Bq

�
� r1� µ̂ pb,∆qs q

�
Ĉt�1 p∆� 2,Oq � Ĉt�1 p∆,Oq

�)
� α

!
µ̂ pb,∆q

�
Ĉt�1 p∆� 1,Bq � Ĉt�1 p∆,Bq

�
� r1� µ̂ pb,∆qs

�
Ĉt�1 p∆,Oq � Ĉt�1 p∆� 1,Oq

�)
� α tp1� qq µ̂ pb,∆q � q r1� µ̂ pb,∆qsu

where we employ lemma A1 and ρ̂t�1 p∆� 1q � p1, 0q on the third line. σ̂t�1 pb,∆� 1q � 1 implies that

Ût�1 pB | b,∆� 1q ¡ Ût�1 pO | b,∆� 1q, or equivalently

α
!
µ̂ pb,∆q p1� qq

�
Ĉt�1 p∆,Bq � Ĉt�1 p∆� 2,Bq

�
� r1� µ̂ pb,∆qs q

�
Ĉt�1 p∆� 2,Oq � Ĉt�1 p∆,Oq

�)
� q p1� qq

D∆

D∆�1
α

$&% µ̂ pb,∆� 1q
�
Ĉt�1 p∆,Bq � Ĉt�1 p∆� 2,Bq

�
� r1� µ̂ pb,∆� 1qs

�
Ĉt�1 p∆� 2,Oq � Ĉt�1 p∆,Oq

� ,.-
¡ q p1� qq

D∆

D∆�1
t1� µ̂ pb,∆� 1q � µ̂ pb,∆� 1qu

� q r1� µ̂ pb,∆qs � p1� qq µ̂ pb,∆q � q � µ̂ pb,∆q
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Hence, it suffices to show that

p1� qq r1� µ̂ pb,∆qs � q µ̂ pb,∆q

 α
!
µ̂ pb,∆q

�
Ĉt�1 p∆� 1,Bq � Ĉt�1 p∆,Bq

�
� r1� µ̂ pb,∆qs

�
Ĉt�1 p∆,Oq � Ĉt�1 p∆� 1,Oq

�)
� α tp1� qq µ̂ pb,∆q � q r1� µ̂ pb,∆qsu .

(5)

If ρ̂t�1 p∆q � p1, 1q, it follows that Ĉt�1 p∆, θq � Ĉt�1 p∆� 1, θq for each θ P Θ by Lemma A4 and

Definition 2 (main text). Hence, (5) is equivalent to 1 � µ̂ pb,∆q � q   α tµ̂ pb,∆q � qu which is true

since µ̂ pb,∆q ¡ q ¡ 1� µ̂ pb,∆q (∆ ¥ 1 by Lemma A4 (iv)).

If ρ̂t�1 p∆q � p1, 0q, we may use Ĉt�1 p∆� 1, θq � Ĉt�1 p∆� 2, θq since σ̂t�1 po,∆� 1q � 1 to show

that (5) is equivalent to
1� µ̂pb,∆q

µ̂pb,∆q
 

q � α p1� qq � αZB
1� q � α q � αZO

(6)

where Zθ �
���Ĉt�1 p∆� 2, θq � Ĉt�1 p∆, θq

��� ¡ 0 for each θ P Θ. Moreover by the assumption that

ρ̂�t p∆tq � p1, 0q whenever possible, σ̂t�1 po,∆� 1q � 1 also implies that Ût�1 pB | o,∆� 1q ¡ Ût�1 pO | o,∆� 1q,

or equivalently
1� µ̂ po,∆� 1q

µ̂ po,∆� 1q
�

q

1� q

1� µ̂ pb,∆q

µ̂ pb,∆q
 

1 � αZB
1 � αZO

.

Equation (6) is therefore true if

1� q

q

1 � αZB
1 � αZO

 
q � α p1� qq � αZB
1� q � α q � αZO

or equivalently

p1� qq2 � α q p1� qq � p1� qqαZO � p1� qq2 αZB � q p1� qqα2 ZB � p1� qqα2 ZB ZO

  q2 � α q p1� qq � q2 αZO � q p1� qqα2 ZO � q αZB � q α2 ZB ZO.

This holds for any α ¡ 1�q�q2

q p1�qq . Accordingly, if subsequent players expect player t to follow private

information, following signal b is optimal under the conditions of the theorem.

Assume second that subsequent players expect player t to herd on action B and interpret the off-path

action O as evidence of st � o. Accordingly, if player t chooses action B (O), the relevant difference for

player t� 1 is ∆ (∆� 1). If ρ̂t�1 p∆q � p1, 0q player t� 1 follows private information regardless of player

t’s action, and therefore σ̂t pb,∆q � 1 by Lemma A7. If ρ̂t�1 p∆q � p1, 1q, Ĉt�1 p∆, θq � Ĉt�1 p∆� 1, θq,

and Ût pB | b,∆q ¡ Ût pO | b,∆q follows from 1� µ̂ pb,∆q � q   α tµ̂ pb,∆q � qu (see above).

Finally, if subsequent players expect player t to herd on action B and interpret the off-path action O

as an uninformative error, player t’s action does not influence player t� 1’s belief, and thus continuation

values. Consequently, Ut pB | b,htq ¡ Ut pO | b,htq iff µ̂ pb,∆q ¡ 1{2 which is true since σ̂t�1 po,∆� 1q � 1

implies that ∆ ¥ 0 by Lemma A4 (iv).
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A.4. Proof of Proposition 2

Proposition 2 follows straightforwardly from the series of lemmas presented in the previous section. We

first establish existence of an equilibrium for sufficiently large α (such that Lemma A9 holds) which

satisfies for each t � 1, . . . , T

ρ̂t p∆q �

$'&'%
p1, 1q if ∆ ¥ ∆t

p1, 0q if ∆t   ∆   ∆t

p0, 0q if ∆ ¤ ∆t

(7)

where 1 � t ¤ ∆t ¤ �2 and 1 ¤ ∆t ¤ t � 1 for each t � 1, . . . , T , and ∆t ¤ ∆t�1 and ∆t ¥ ∆t�1 for

each t   T . It is easily seen that such an equilibrium is monotonic. Second, we show that ∆t   ∆t�1 or

∆t ¡ ∆t�1 for some t   T provided T and α are sufficiently large.

To prove the first claim, we proceed backwards, starting with player T . Lemma A2 shows that player

T ’s strategy satisfies (7) with ∆T � �2 and ∆T � 1. Assume therefore that strategies for players τ ¡ t

satisfy (7). We proceed in three steps.

(A) Lemma A7 shows that ρ̂tp∆q � p1, 0q if ρ̂t�1 pzq � p1, 0q for each z P t∆� 1,∆� 1u, and Lemma A6

shows that for each x P t0, 1u, ρ̂tp∆q � px, xq if ρ̂t�1 pzq � px, xq for each z P t∆� 1,∆� 1u.

Accordingly, it remains to show that (i) ρ̂t
�
∆t�1 � 1

�
� p1, 0q and ρ̂t

�
∆t�1

�
P tp1, 1q, p1, 0qu, and

(ii) ρ̂t
�
∆t�1 � 1

�
� p1, 0q and ρ̂t

�
∆t�1

�
P tp0, 0q, p1, 0qu.

(B) For ∆ P
 
∆t�1 � 1,∆t�1

(
we have ρ̂t�1 p∆� 1q � p1, 1q and ρ̂t�1 p∆� 1q � p1, 0q. By Lemma A9

σ̂t pb,∆q � 1. Consider signal st � o. If subsequent players expect player t to follow her private

information, Ût pO | o,∆q ¡ Ût pB | o,∆q is equivalent to

α
!
µ̂ po,∆q

�
Ĉt p∆� 1,Bq � Ĉt p∆� 1,Bq

�
� r1� µ̂ po,∆qs

�
Ĉt p∆� 1,Oq � Ĉt p∆� 1,Oq

�)
  1� µ̂ po,∆q � µ̂ po,∆q .

By ρ̂t�1 p∆� 1q � p1, 1q, Lemma A4 and Definition 2 (main text) Ĉt p∆� 1,Bq � 1� Ĉt�1 p∆� 1,Bq
and Ĉt p∆� 1,Oq � Ĉt�1 p∆� 1,Oq. Consequently, the LHS is equivalent to

α
!
µ̂ po,∆q

�
Ĉt�1 p∆ � 1,Bq � Ĉt�1 p∆ � 1,Bq

�
� r1 � µ̂ po,∆qs

�
Ĉt�1 p∆ � 1,Oq � Ĉt�1 p∆ � 1,Oq

�)

� α tµ̂ po,∆q � ϕt�1 p∆ � 1q � ϕt p∆ � 1qu

¤ α
!
µ̂ po,∆q

�
Ĉt�1 p∆ � 1,Bq � Ĉt�1 p∆ � 1,Bq

�
� r1 � µ̂ po,∆qs

�
Ĉt�1 p∆ � 1,Oq � Ĉt p∆ � 1,Oq

�)
.

where the inequality follows from Lemma A8. Therefore, σ̂t po,∆q � 0 if σ̂t�1 po,∆q � 0, and thus

∆t ¥ ∆t�1. On the other hand it is possible that σ̂t�1 po,∆q � 1 while σ̂t po,∆q � 0 (see below).

If σ̂t po,∆q � 0 cannot hold in equilibrium, there exists an equilibrium in which player t herds on

action B at ∆ under either specification of off-path beliefs. For signal revealing off-path beliefs this

follows since

α
!
µ̂ po,∆q

�
Ĉt p∆,Bq � Ĉt p∆� 1,Bq

�
� r1� µ̂ po,∆qs

�
Ĉt p∆� 1,Oq � Ĉt p∆,Oq

�)
� α

!
µ̂ po,∆q

�
Ĉt p∆� 1,Bq � Ĉt p∆� 1,Bq

�
� r1� µ̂ po,∆qs

�
Ĉt p∆� 1,Oq � Ĉt p∆� 1,Oq

�)
.

For error off-path beliefs it follows from µ̂ po,∆q ¡ 1{2 (since σ̂t�1 po,∆q � 1 implies ∆ ¥ 1), and
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since continuation values do not depend on player t’s choice.

(C) ∆ P
 
∆t�1 � 1,∆t�1

(
implies that ρ̂t�1 p∆� 1q � p1, 0q and ρ̂t�1 p∆� 1q � p0, 0q. This case is

similar to (B): Lemmas A9 shows that σ̂t po,∆q � 0. On the other hand ρ̂t�1 p∆� 1q � p0, 0q,

Lemmas A4 and A8, and Definition 2 (main text) imply that

α
!
µ̂ pb,∆q

�
Ĉt p∆ � 1,Bq � Ĉt p∆ � 1,Bq

�
� r1 � µ̂ pb,∆qs

�
Ĉt p∆ � 1,Oq � Ĉt p∆ � 1,Oq

�)

¥ α
!
µ̂ pb,∆q

�
Ĉt�1 p∆ � 1,Bq � Ĉt�1 p∆ � 1,Bq

�
� r1 � µ̂ pb,∆qs

�
Ĉt�1 p∆ � 1,Oq � Ĉt p∆ � 1,Oq

�)
.

Therefore σ̂t pb,∆q � 1 if σ̂t�1 pb,∆q � 1, while possibly σ̂t�1 pb,∆q � 0 and σ̂t pb,∆q � 1. If

σ̂t pb,∆q � 1 is not possible similar arguments as in (B) establish existence of an equilibrium in

which player t herds on action O at ∆ for either specification of off-path beliefs.

We finally show that ∆t   ∆t�1 or ∆t ¡ ∆t�1 is possible for some t   T provided T and α are

sufficiently large. For given values of p and q the lower bounds on α and T may be calculated backwards

by starting from the (arbitrary) period T and proceeding to earlier periods t   T until either ∆t   2, or

∆t ¡ 1. These calculations (programmed in Mathematica) are available from the authors upon request.

Figure 1 and Table 1 give an overview of the conditions on the parameters pT, p, qq under which NO lower

bound 0   α pT, p, qq ¤ 1 exists.

Note: Colors represent respectively T � 3 (purple), T � 4 (yellow), T � 5 (blue), T � 6 (orange),
T � 7 (green), T � 8 (red), and T � 9 (black).

Figure 1: pp, qq-values for which NO more revealing equilibrium exists.

T � 3 T � 4 T � 5 T � 6 T � 7 T � 8 T � 9

% of pp, qq-space 0.667 0.277 0.083 0.037 0.020 0.012 0.008

Table 1: Relative size of the subsets for which NO more revealing equilibrium exists.
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Appendix B. Complementary Theoretical Results

In this appendix we first address the multiplicity of sequential equilibria in the observational learning

game when prosocial preferences are present (B.1). Second, we study the equilibria of the laboratory

cascade game which features two parallel sequences of players (B.2).

B.1. A Large Variety of Equilibrium Outcomes

Proposition 4 establishes that there is a large variety of equilibrium outcomes. We call a property generic

if it holds for a subset of parameters which is open and dense (Smith and Sørensen, 2000).

Proposition 4. Generically there exist sequential equilibria satisfying one of the following properties:

(i) ρ̂�t p∆q P tp1, 1q, p0, 0qu while ρ̂�t�1 p∆q � p1, 0q for some t   T and some 1� t ¤ ∆ ¤ t� 1,

(ii) ρ̂�t p∆tq � p0, 1q for some t   T and some 1� t ¤ ∆t ¤ t� 1,

where ρ̂�t p∆tq � pσ̂�t pb,∆tq , σ̂
�
t po,∆tqq.

Equilibria for which either one of the properties characterized in Proposition 4 holds are non-monotonic.

In case (i) player t picks an action (the one supported by the public belief) regardless of her signal, which

is why player t’s action does not convey new information. Still, player t�1 who is in the same position as

player t finds it optimal to follow her private signal. Notice that in such a situation there usually exists

another equilibrium in which players τ ¡ t behave similarly, and player t follows her private information.

This is possible since different continuation values (at different beliefs) are relevant depending on whether

subsequent players expect player t to follow private information, or to disregard it. On the other hand

if property (ii) holds in equilibrium, player t finds it optimal to mirror her private information, i.e. to

choose action B (resp. O) given signal o (resp. b). Intuitively, while this strategy is clearly suboptimal

for the player’s expected own monetary payoff, it is sustained by the fact that in equilibrium subsequent

players interpret actions conversely.

As becomes clear from Proposition 4 the combination of information and payoff externalities induces

multiple equilibria. Moreover the number of equilibria grows with α. Section B.2 below provides sev-

eral concrete equilibrium outcomes, and collects some statistics about the number of equilibria for the

experimental social learning game.

Proof of Proposition 4. Part (i): We show that the property may hold in period t � T � 2 for ∆t � 1

provided 1
2   p   2

3 , p   q   3 p � 1, and α pp, qq � 2 p� 1
q� p   α ¤ 1. Moreover we show that in

this case player T � 3’s strategy is monotonic, and ϕT�3 p∆q ¥ ϕT�2 p∆q � max tµ∆, 1� µ∆u for each

1�pT �3q ¤ ∆ ¤ pT �3q�1 which implies that there exists a sequential equilibrium as in Proposition 2

which is monotonic from this point backwards.

Part (ii): We continue the construction of the equilibrium by showing that player T � 4 may find

it optimal to reverse her private information at ∆ � 0 (i.e. ρ̂T�4 p0q � p0, 1q) for generic values of p

and q. Hence, a sequential equilibrium satisfying the second property of Proposition 2 exists for those

values and T � 5. This completes the proof since any singleton of the natural numbers is open and dense.

As before let ρ̂t p∆tq � pσ̂t pb,∆tq , σ̂t po,∆tqq.
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Player T : By definition ĈT p∆T�1, θq � 0 for each θ P Θ and each ∆T�1 P Z. Hence, by Lemma A2

ρ̂T p∆T q �

$'&'%
p1, 1q if ∆T ¥ 1

p1, 0q if ∆T P t�1, 0u

p0, 0q if ∆T ¤ �2

.

Player T � 1: σ̂T and Lemma A1 imply that continuation values are given by

∆T ¥ 1 ∆T P t�1, 0u ∆T ¤ �2

ĈT�1 p∆T ,Bq � 1 q 0

ĈT�1 p∆T ,Oq � 0 q 1

Lemma A6 implies that ρ̂T�1 p∆T�1q � p1, 1q for ∆T�1 ¡ 1 and pρ̂T�1 p∆T�1q � p0, 0qq for ∆T�1  

�2. Second, if subsequent players expect player T � 1 to follow private information

ÛT�1 pB | sT�1,∆T�1q ¡ ÛT�1 pO | sT�1,∆T�1q

is equivalent to

µ̂ psT�1,∆T�1q

1� µ̂ psT�1,∆T�1q
¡

1 � α
�
ĈT�1 p∆T�1 � 1,Oq � ĈT�1 p∆T�1 � 1,Oq

�
1 � α

�
ĈT�1 p∆T�1 � 1,Bq � ĈT�1 p∆T�1 � 1,Bq

� . (8)

Hence, ρ̂T�1 p∆T�1q � p1, 0q for each ∆T�1 P t0,�1u as

µ̂ po, 0q

1� µ̂ po, 0q
�

p

1� p

1� q

q
 

1 � α q

1 � α p1� qq
 

p

1� p

q

1� q
�

µ̂ pb, 0q

1� µ̂ pb, 0q

and
µ̂ po,�1q

1� µ̂ po,�1q
�

p

1� p

�
1� q

q


2

 
1 � α p1� qq

1 � α q
 

p

1� p
�

µ̂ pb,�1q

1� µ̂ pb,�1q
.

Third, for ∆T�1 � 1, p
1�p

�
q

1�q

	2
¡ 1�α q

1�α p1�qq implies that σ̂T�1 pb, 1q � 1, while σ̂T�1 po, 1q � 0

can only hold if
p

1� p
 

1 � α q

1 � α p1� qq
ô α ¡ α1 pp, qq �

2 p � 1

q � p
.

In particular, α1 pp, qq   1 if and only if q ¡ 3 p � 1. We will focus on this case henceforth. Finally,

at ∆T�1 � �2, σ̂T�1 po,�2q � 0 since p
1�p

�
1�q
q

	3
  1�α p1�qq

1�α q , while σ̂T�1 pb,�2q � 1 can only

hold if
p

1� p

1� q

q
¡

1 � α p1� qq

1 � α q
ô α ¡ α2 pp, qq �

q � p

q p1� qq p2 p � 1q
.

Since q ¡ 3 p � 1 implies α2 pp, qq ¡ 1 and since in addition ĈT�1 p�2, θq � ĈT�1 p�3, θq for each

θ P Θ we obtain

ρ̂T�1 p∆T�1q �

$'&'%
p1, 1q if ∆T�1 ¥ 2

p1, 0q if ∆T�1 P t�1, 0, 1u

p0, 0q if ∆T�1 ¤ �2

.
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Player T � 2: σ̂T�1 and Lemma A1 imply that

∆T�2 ¥ 2 ∆T�2 P t0, 1u ∆T�2 � �1 ∆T�2 ¤ �2

ĈT�2 p∆T�2,Bq � 2 q p3� qq q p1� qq 0

ĈT�2 p∆T�2,Oq � 0 q p1� qq q p3� qq 2

One can directly see that ρ̂T�2 p1q � p1, 1q can be sustained in equilibrium under either specification

of off-path beliefs. With error off-path beliefs this is trivial since player T�2’s action has no influence

on subsequent players’ beliefs, and since µ̂ po, 1q � p ¡ 1{2. With signal revealing off-path beliefs it

follows from ĈT�2 p1, θq � ĈT�2 p0, θq for each θ P Θ. The full equilibrium strategy at t � T � 2 is

given by

ρ̂T�2 p∆T�2q �

$'&'%
p1, 1q if ∆T�2 ¥ 1

p1, 0q if ∆T�2 P t�1, 0, 1u

p0, 0q if ∆T�2 ¤ �2

.

For ∆T�2 ¥ 3 and ∆T�2 ¤ �3 this follows from Lemma A6. For ∆T�2 P t�2,�1, 0, 2u it follows

from equation (8) (adapted to period T � 2), using 3 p� 1   q   1 for ∆T�2 � �2.

Player T � 3: Applying Lemma A1 and σ̂T�2 we obtain

∆T�3 ¥ 2 ∆T�3 � 1 ∆T�3 � 0 ∆T�3 � �1 ∆T�3 ¤ �2

ĈT�3 p∆T�3,Bq � 3 1� 3q � q2 q p2� qq p2q � 1q q
�
1� 3q � q2

�
0

ĈT�3 p∆T�3,Oq � 0 q p1� qq q p2� qq p2q � 1q q
�
4 � q2

�
3

Straightforward algebraic manipulations then imply that ϕT�3 p∆q ¥ ϕT�2 p∆q � max tµ∆, 1� µ∆u

for each 4�T ¤ ∆ ¤ T � 4 (the difficult cases are ∆ P t�1, 0u since ĈT�3 p∆,Bq � 1� ĈT�2 p∆,Bq
and ĈT�3 p∆,Oq � ĈT�2 p∆,Oq for each ∆ ¡ 0, and ĈT�3 p∆,Bq � ĈT�2 p∆,Bq and ĈT�3 p∆,Oq �
1� ĈT�2 p∆,Oq for each ∆   �1). One may thus show that

ρ̂T�3 p∆T�3q �

$''''&''''%
p1, 1q if ∆T�3 ¥ 2

p1, 0q if ∆T�3 P t�1, 0, 1u

P tp1, 0q, p0, 0qu if ∆T�3 � �2

p0, 0q if ∆T�3 ¤ �3

where for ∆T�3 P t0, 1u this follows from 1{2   p   2{3 and 3p�1   q   1, and ρ̂T�3 p�2q � p1, 0q if

and only if (additionally to 2p�1
q�p   α ¤ 1) q�p

qp1�qqp3�q�q2 � 2pp2�qqp1�qqq
  α ¤ 1. However, regardless

of ρ̂T�3 p�2q it is easily seen that σ̂T�3 satisfies properties (i) and (ii) of the definition of monotonic

equilibria. Hence, as in the proof of Proposition 2 we may construct an equilibrium inductively

from this point backwards.
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Player T � 4 Let ρ̂T�3 p�2q � p0, 0q. Lemma A1 and σ̂T�3 imply

∆ ¥ 2 ∆ � 1 ∆ � 0 ∆ � �1 ∆ ¤ �2

ĈT�4 p∆,Bq � 4 q
�
6 � q � 5q2 � 2q3

�
qp3 � qq

�
1 � 2q � q2

�
q
�
1 � 2q � 3q2 � 2q3

�
0

ĈT�4 p∆,Oq � 0 q
�
1 � 2q � 3q2 � 2q3

�
q
�
2 � 4q � q2 � q3

�
q
�
6 � q � 5q2 � 2q3

�
4

The following equilibrium strategies may thus be identified

∆ ¥ 2 ∆ � 1 ∆ � 0 ∆ � �1 ∆ � �2 ∆ ¤ �3

ρ̂T�4 p∆q � p1, 1q P tp1, 0q, p1, 1qu P tp1, 0q, p0, 1qu p1, 0q P tp1, 0q, p0, 0qu p0, 0q

Notice first, that ρ̂T�4 p1q � p1, 0q is possible for each p, q, and α satisfying the assumptions we

made
�

1{2   p   2{3, 3p� 1   q   1, and 2p�1
q�p   α ¤ 1

	
, while ρ̂T�4 p1q � p1, 1q can only hold for

a more restricted set of values. Second, ρ̂T�4 p�2q � p1, 0q requires q�p
qp1�qqp4�5p�2q�3q2�2q3q

  α ¤ 1

in addition to our assumptions. Finally, while ρ̂T�4 p0q � p1, 0q is always possible under our

assumptions, ρ̂T�4 p0q � p0, 1q requires additionally

1

5q � q2 � 8q3 � 4q4
  α ¤ 1.

Figure 2 depicts the subset of pp, qq-values for which ρ̂T�4 p0q � p0, 1q is possible.

Note: The yellow and the red area capture the set of values such that player T � 4 reverses her
private information at ∆ � 0. The blue area is the set of values we have assumed throughout. For
values of p and q in the yellow area the condition on α is implied by p2p� 1q{pq � pq   α ¤ 1

Figure 2: pp, qq-values for which player T � 4 reverses her private information.
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B.2. Sequential Equilibria of the Laboratory Cascade Game

In this appendix we provide some details about the sequential equilibria of the cascade game we played in

the laboratory. The major difference between the observational learning setting considered so far and the

cascade game is the presence of two sequences of players, an observed and an unobserved sequence. In each

period t � 1, . . . , 7 one observed and one unobserved player simultaneously predict which of two options

has been randomly chosen. At the end of the period only the decision of the observed player is publicly

revealed. The predictions of the unobserved players remain private. There is one more unobserved player

since in the last decision period t � 8 only one unobserved player makes a prediction. The cascade game

features a binary state of nature and and binary private signals with parameters p � 11{20 and q � 2{3.

While it is clear that unobserved players – just like the last player in the standard game – follow the

unique equilibrium strategy of the standard observational learning game, the behavior of observed players

changes slightly due to the presence of the unobserved sequence. In particular given an observed strategy

profile σ̂ continuation values (for the observed) are given by

Ĉ7 p∆8,Bq �

$'&'%
1 if ∆8 ¥ 1

q if ∆8 P t�1, 0u

0 if ∆8 ¤ �2

, Ĉ7 p∆8,Oq �

$'&'%
0 if ∆8 ¥ 1

q if ∆8 P t�1, 0u

1 if ∆8 ¤ �2

,

and

Ĉt p∆t�1, θq �
¸

xt�1PX

Pr pxt�1 | ∆t�1, θq
�
π pxt�1, θq � Ĉt�1 p∆t�2 � z pxt�1,∆t�1, σ̂t�1q , θq

�
� Ĉ7 p∆t�1, θq

for each t � 1, . . . , 7 and each θ P Θ where Pr pxt�1 | ∆t�1, θq �
°
st�1PS

Pr pst�1 | θq σ̂t�1 pxt�1 | st�1,∆t�1q

and z pxt�1,∆t�1, σ̂t�1q � σ̂t�1 pxt�1 | b,∆t�1q � σ̂t�1 pxt�1 | o,∆t�1q, since the observed player deciding

in period t must also take into account her influence on the unobserved player deciding in period t� 1.

We focus on sequential equilibria where off-path choices are interpreted signal revealing and this is

commonly known. Table B1 presents sequential equilibria and equilibrium outcomes for small values of

the social preference parameter α. Only the strategies of the observed are presented as arrays where

columns capture periods, rows capture the difference between b and o signals inferred from the history,

and (partial) strategies are given by B pOq if the player picks action B (O) regardless of her signal, s if

the player follows private information, and s if the player reverses private information. Entries in curly

brackets denote off-path choices. If more than two (partial) strategies are given, each can be supported

in different equilibria.

As the table demonstrates even moderate social preferences may induce early players to follow private

information at more histories. On the other hand more complex equilibria involving e.g. reversing of

private information may also occur. Notice that due to the presence of the unobserved sequence, moderate

altruism looms larger than in the standard game with a single sequence of (observed) players. Our utility

function encompasses the case that players only care about the average monetary payoff of the others,

by assuming that α ¤ 1{14 � 0.071.

In general the number of equilibria and equilibrium outcomes grows with α, and it becomes extraor-

dinary large. Table B2 provides the complete partition of the parameter space pα P r0, 1sq together with

the number of (sequential) equilibria and equilibrium outcomes. As α Ñ 1 there are 11,781 distinct

equilibria and 742 equilibrium outcomes.
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TABLE B1
Sequential equilibria of the experimental social learning game for small values of α.

Range of α Equilibria

p0, 0.059q

�
�����������

�3 �2 �1 0 1 2�

1 s
2 s tsu B
3 O tsu s B tBu
4 tOu O s tsu B tBu
5 tOu O tsu s B tBu
6 tOu O s tsu B tBu
7 tOu O tsu s B tBu

�
����������

p0.059, 0.074q

�
�����������

�3 �2 �1 0 1 2 3�

1 s
2 s tsu s
3 O tsu s tBu B
4 tOu O s tsu B B tBu
5 tOu O tsu s B B tBu
6 tOu O s tsu B B tBu
7 tOu O tsu s B B tBu

�
����������

p0.074, 0.099q

�
�����������

�3 �2 �1 0 1 2 3�

1 s
2 s tsu s
3 O tsu s tsu B
4 tOu O s tsu B B tBu
5 tOu O tsu s B B tBu
6 tOu O s tsu B B tBu
7 tOu O tsu s B B tBu

�
����������

�
�����������

�3 �2 �1 0 1 2 3�

1 s
2 s tsu B
3 O tsu s s tBu
4 tOu O s s B B tBu
5 tOu O s s B B tBu
6 tOu O s s B B tBu
7 tOu O s s B B tBu

�
����������

p0.099, 0.116q

�
�����������

�3 �2 �1 0 1 2 3�

1 s
2 s tsu s
3 O tsu s tB, su B
4 tOu O s tsu s B tBu
5 tOu O tsu s tBu B tBu
6 tOu O s tsu B B tBu
7 tOu O tsu s B B tBu

�
����������

�
�����������

�3 �2 �1 0 1 2 3�

1 s
2 s tsu B
3 O tsu s B, s tBu
4 tOu O s s s B tBu
5 tOu O s s B B tBu
6 tOu O s s B B tBu
7 tOu O s s B B tBu

�
����������

Continued on next page
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Table B1 (ctd.)

Range of α Equilibria

. . .

p0.285, 0.308q

�
�����������

�3 �2 �1 0 1 2 3�

1 s
2 s ts, su s
3 s tsu s tsu B
4 O tOu s tsu B B tBu
5 O O tsu s s B tBu
6 O O s s s B tBu
7 O O s s B B tBu

�
����������

�
�����������

�3 �2 �1 0 1 2 3�

1 s
2 s ts, su s
3 s tsu s tB, su B
4 O tOu s tsu s B tBu
5 O O tsu s tB, su B tBu
6 O O s tsu s B tBu
7 O O tsu s tBu B tBu

�
����������

p0.308, 0.317q

�
�����������

�3 �2 �1 0 1 2 3�

1 s
2 s ts, su s
3 s tsu s tsu B
4 O tOu s tsu B B tBu
5 O O tsu s s B tBu
6 O O s s s B tBu
7 O O s s B B tBu

�
����������

�
�����������

�3 �2 �1 0 1 2 3�

1 s
2 s ts, su s
3 s tsu s tB, su B
4 O tOu s tsu s B tBu
5 O O tsu s tB, su B tBu
6 O O s tsu s B tBu
7 O O tsu s tBu B tBu

�
����������

p0.317, 0.326q

�
�����������

�3 �2 �1 0 1 2 3�

1 s
2 s ts, su s
3 s tsu s tsu B
4 O tOu s tsu B B tBu
5 O O tsu s s B tBu
6 O O s s s B tBu
7 O O s s B B tBu

�
����������

�
�����������

�3 �2 �1 0 1 2 3�

1 s
2 s ts, su s
3 s tsu s tB, su B
4 O tOu s tsu s B tBu
5 O O tsu s tB, su B tBu
6 O O s tsu s B tBu
7 O O tsu s tBu B tBu

�
����������

p0.326, 0.347q

�
�����������

�3 �2 �1 0 1 2 3�

1 s
2 s ts, su s
3 s tsu s tB, su B
4 O tOu s tsu s B tBu
5 O O tsu s tB, su B tBu
6 O O s tsu s B tBu
7 O O tsu s tBu B tBu

�
����������

Notes: Equilibrium strategies of the observed are presented as matrices where rows denote periods t, columns
denote the difference ∆ between the number of b and o signals inferred from the history (columns labeled ∆�

(resp. ∆�) denote differences “¤ ∆” (resp. “¥ ∆”), B (O) denotes choosing action B (O) regardless of the private
signal, and s (s) denotes following (reversing) private information. Entries in curly brackets are off the equilibrium
path. Multiple entries in a given cell of the array summarize various equilibria which differ in the given cell. Since
all situations such that ∆ ¤ �4 are off-path, and all players cascade on action O in those situations, we omit the
column ∆ � �4� to enhance readability.
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TABLE B2:
Number of Equilibria and Equilibrium Outcomes in the Experimental Social Learning Game.

Number of Number of Number of Number of
Range of α Equilibria Equilibrium Range of α Equilibria Equilibrium

Outcomes Outcomes
p0, 0.059qq 1 1 p0.726, 0.727q 616 98

p0.059, 0.074q 1 1 p0.727, 0.75q 617 99
p0.074, 0.099q 2 2 p0.75, 0.751q 1,628 218
p0.099, 0.116q 4 3 p0.751, 0.756q 1,629 219
p0.116, 0.148q 3 2 p0.756, 0.776q 1,839 224
p0.148, 0.228q 5 4 p0.776, 0.789q 1,857 225
p0.228, 0.231q 4 4 p0.789, 0.794q 2,964 284
p0.231, 0.236q 5 5 p0.794, 0.796q 5,018 473
p0.236, 0.243q 6 6 p0.796, 0.804q 4,940 469
p0.243, 0.258q 5 5 p0.804, 0.816q 4,930 468
p0.258, 0.269q 6 6 p0.816, 0.819q 4,924 467
p0.269, 0.278q 6 3 p0.819, 0.825q 4,926 467
p0.278, 0.285q 9 3 p0.825, 0.828q 4,959 475
p0.285, 0.285q 10 3 p0.828, 0.829q 6,088 539
p0.285, 0.308q 8 2 p0.829, 0.833q 6,109 539
p0.308, 0.317q 7 2 p0.833, 0.847q 5,995 525
p0.317, 0.326q 8 2 p0.847, 0.852q 5,996 525
p0.326, 0.347q 6 1 p0.852, 0.854q 7,438 535
p0.347, 0.371q 72 25 p0.854, 0.857q 7,439 535
p0.371, 0.382q 78 26 p0.857, 0.857q 7,440 535
p0.382, 0.388q 78 35 p0.857, 0.871q 4,522 372
p0.388, 0.42q 52 28 p0.871, 0.881q 4,835 383
p0.42, 0.424q 50 27 p0.881, 0.884q 4,838 383
p0.424, 0.447q 48 26 p0.884, 0.885q 4,844 383
p0.447, 0.469q 36 19 p0.885, 0.89q 4,874 386
p0.469, 0.473q 38 20 p0.89, 0.899q 4,880 387
p0.473, 0.475q 40 21 p0.899, 0.911q 4,884 388
p0.475, 0.493q 60 22 p0.911, 0.913q 6,525 471
p0.493, 0.496q 74 23 p0.913, 0.921q 6,528 472
p0.496, 0.535q 94 24 p0.921, 0.93q 6,530 473
p0.535, 0.564q 196 38 p0.93, 0.95q 8,194 547
p0.564, 0.58q 214 45 p0.95, 0.962q 8,197 547
p0.58, 0.593q 231 46 p0.962, 0.966q 8,200 547
p0.593, 0.602q 171 36 p0.966, 0.972q 8,206 547
p0.602, 0.606q 352 65 p0.972, 0.973q 8,209 547
p0.606, 0.617q 321 63 p0.973, 0.984q 8,205 546
p0.617, 0.625q 322 64 p0.984, 0.987q 10,150 676
p0.625, 0.633q 326 65 p0.987, 0.988q 10,253 678
p0.633, 0.637q 327 65 p0.988, 0.992q 11,875 753
p0.637, 0.647q 347 66 p0.992, 0.996q 11,921 753
p0.647, 0.657q 354 66 p0.996, 0.998q 11,903 751
p0.657, 0.705q 378 67 p0.998, 1.q 11,781 742
p0.705, 0.726q 618 99
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Appendix C. Quantal Response Equilibria

In this appendix, we investigate the logit quantal response equilibrium of the altruistic observational

learning game (McKelvey and Palfrey, 1995, 1998, LQRE henceforth). Section C.1 outlines the equi-

librium concept. Section C.2 provides a proof for Proposition 3. Finally, Section C.3 derives detailed

predictions based on numerical computations.

C.1. Logit Quantal Response Equilibrium

LQRE assumes that each player i privately observes a random payoff disturbance εai for each action

a. In line with the bulk of the literature we consider payoff disturbances which are i.i.d. and follow

an extreme-value distribution. This implies that choice probabilities are determined by a logit quantal

response function, i.e. given expected utilities UB and UO of the two actions a player picks action B with

probability

fλ pUB � UOq �
1

1 � exp p�λ pUB � UOqq
.

The parameter λ ¡ 0 measures subjects’ payoff sensitivity. Choices become completely random as λÑ 0,

and approach sequentially rational choices as λ Ñ 8. LQRE assumes in addition that the distribution

of payoff disturbances and thus the quantal response function and the payoff sensitivity λ are commonly

known.

Consider a player acting in period t P t1, . . . , T u at history ht given signal st, and let µt pst,htq P r0, 1s

denote the belief of the player, i.e. the conditional probability she assigns to state B. Her expected utility

of action x P tB,Ou is given by

Ut pxt | st,htq � µt pst,htq�rπpxt,Bq � α � Ct ppht, xtq,Bqs� r1� µt pst,htqs�rπpxt,Oq � α � Ct ppht, xtq,Oqs

where πpB,Bq � πpO,Oq � 1, πpB,Oq � πpO,Bq � 0, and Ct ppht, xtq, θq denotes the continuation

value at history ht�1 � pht, xtq and state θ. The continuation value is the expected number of correct

decisions in subsequent periods, i.e. decisions xτ � B if θ � B or xτ � O if θ � O for τ ¡ t. By

convention, CT phT�1, θq � 0. Continuation values depend on the history ht�1 solely through the public

belief µt�1 pH,ht�1q where µ1pH,h1q � p and

µt�1 pH,ht�1q �

�
1 �

1� µt pH,htq

µt pH,htq
�
p1� qqσt pxt | st � b,htq � q σt pxt | st � o,htq

q σt pxt | st � b,htq � p1� qqσt pxt | st � o,htq

��1

.

For each period t and history ht, equilibrium action probabilities σQt pb,htq and σQt po,htq constitute a

fixed-point in the space r0, 1s2 as they are determined by expected utilities via the quantal response

function and expected utilities depend upon continuation values. More generally, an LQRE σQ is a

fixed-point in the space r0, 1s2
T�2. As the fixed-point problem may have multiple solutions, multiple

QRE may exist for any given λ ¡ 0 and α ¡ 0. Notice that the fixed-point problem is absent in period

T , i.e. σQT psT ,hT q � fλ p2µT psT ,hT q � 1q for each hT P HT and each sT P S.
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C.2. Proof of Proposition 3

For the sake of expositional brevity we employ the following notation. As continuation values Ct pht�1, θq

depend on the history ht�1 solely through the public belief µt�1 pH,ht�1q, we let Ct pµt�1, θq for each

t � 1, . . . , T denote the continuation value at state θ given public belief µt�1. Similarly, we denote by

σt pst, µtq the probability that player t picks action xt � B at public belief µt given signal st. Finally,

given public belief µt � µt pH,htq we let r pµt, sq � µt ps,htq denote the Bayesian posterior belief given

signal s P S, and we let r pµt, xq � µt�1 pH, pht, xqq denote the updated public belief in period t� 1 given

action x P X where

r pµt, xq

1� r pµt, xq
�

µt
1� µt

q σt px | b, µtq � p1� qqσt px | o, µtq

p1� qqσt px | b, µtq � q σt px | o, µtq
.

The proof is organized in a series of lemmas.

Lemma C1. For sufficiently small α ¡ 0 there exists a (logit) QRE satisfying for each t � 1, . . . , T

(i) BCtpµt�1,Bq
Bµt�1

¥ 0 and BCtpµt�1,Oq
Bµt�1

¤ 0 for each µt�1 P p0, 1q,

(ii) σQt pb, µtq ¡ σQt po, µtq for each µt P p0, 1q,

(iii)
BσQt ps,µtq

Bµt
¡ 0 for each µt P p0, 1q and each s P S.

Proof. The proof is by induction, starting in period T and proceeding backwards.

For period T (i) follows from CT pµT�1, θq � 0 for each µT�1 � r0, 1s and each θ P Θ. Furthermore,

σQT psT , µT q � fλ p2µT � 1q and f 1λpxq ¡ 0 jointly imply that (ii) is equivalent to µbT ¡ µoT , and (iii) is

equivalent to Brpµt,sq
Bµt

¡ 0 for each s P S which are both easily seen.

Consider period t   T and assume that (i)–(iii) are true for each period τ ¡ t.

Ad. (i): Continuation values in period t satisfy

Ct pµt�1,Bq � Pr pxt�1 � B | µt�1,Bq r1 � Ct�1 pr pµt�1, Bq ,Bq � Ct�1 pr pµt�1, Oq ,Bqs � Ct�1 pr pµt�1, Oq ,Bq ,

Ct pµt�1,Oq � Pr pxt�1 � O | µt�1,Oq r1 � Ct�1 pr pµt�1, Oq ,Oq � Ct�1 pr pµt�1, Bq ,Oqs � Ct�1 pr pµt�1, Bq ,Oq

where Pr pxt�1 � B | µt�1, θq � 1 � Pr pxt�1 � O | µt�1, θq �
°
sPS Pr ps | θq σQt�1 ps, µt�1q for θ P Θ.

Therefore,

BCt pµt�1,Bq
Bµt�1

�
BPr pxt�1 � B | µt�1,Bq

Bµt�1
r1� Ct�1 pr pµt�1, Bq ,Bq � Ct�1 pr pµt�1, Oq ,Bqs

� Pr pxt�1 � B | µt�1,Bq
BCt�1 pr pµt�1, Bq ,Bq

Bµt�2

Br pµt�1, Bq

Bµt�1

� Pr pxt�1 � O | µt�1,Bq
BCt�1 pr pµt�1, Oq ,Bq

Bµt�2

Br pµt�1, Oq

Bµt�1
.

By induction assumption, properties (i)–(iii) are true for period t�1. From (ii) it follows that r pµt�1, Bq ¡

r pµt�1, Oq. Applying (i) implies Ct�1 pr pµt�1, Bq ,Bq ¥ Ct�1 pr pµt�1, Oq ,Bq and BCt�1 pµt�2,Bq {Bµt�2 ¥

0 for each µt�2 P r0, 1s. Finally, BPrpxt�1�B|µt�1,Bq
Bµt�1

�
°
sPS Pr ps | Bq Bσ

Q
t�1ps,µt�1q

Bµt�1
¡ 0 by (iii). Hence,

BCtpµt�1,Bq
Bµt�1

¥ 0.
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Similarly,

BCt pµt�1,Oq
Bµt�1

�
BPr pxt�1 � O | µt�1,Oq

Bµt�1
r1� Ct�1 pr pµt�1, Oq ,Oq � Ct�1 pr pµt�1, Bq ,Oqs

� Pr pxt�1 � B | µt�1,Oq
BCt�1 pr pµt�1, Bq ,Oq

Br pµt�1, Bq

Br pµt�1, Bq

Bµt�1

� Pr pxt�1 � O | µt�1,Oq
BCt�1 pr pµt�1, Oq ,Oq

Br pµt�1, Oq

Br pµt�1, Oq

Bµt�1

is negative where BPrpxt�1�O|µt�1,Oq
Bµt�1

� �BPrpxt�1�B|µt�1,Bq
Bµt�1

  0 follows from (iii), BCt�1 pµt�2,Oq {Bµt�2 ¤

0 for each µt�2 P r0, 1s follows from (i), and Ct�1 pr pµt�1, Oq ,Oq ¥ Ct�1 pr pµt�1, Bq ,Oq follows from (i)

and (ii).

Ad. (ii): In equilibrium, σQt ps, µtq � fλ p∆Ut ps, µtqq where

∆Ut ps, µtq � r pµt, sq t1 � α rCt pr pµt, Bq ,Bq � Ct pr pµt, Oq ,Bqsu

� r1� r pµt, sqs t1 � α rCt pr pµt, Oq ,Oq � Ct pr pµt, Bq ,Oqsu .
(9)

Fix µt P p0, 1q and consider the function fλ�∆U p�, µtqmapping the set of choice probabilities pσt pb, µtq , σt po, µtqq

into itself. For a given pair of choice probabilities satisfying σt pb, µtq ¡ σt po, µtq it follows that r pµt, Bq ¡

r pµt, Oq, and by applying (i) Ct pr pµt, Bq ,Bq ¡ Ct pr pµt, Oq ,Bq and Ct pr pµt, Oq ,Oq ¡ Ct pr pµt, Bq ,Oq.
Equation (9) and r pµt, bq ¡ r pµt, oq thus imply ∆Ut pb, µtq ¡ ∆Ut po, µtq and therefore fλ p∆Ut pb, µtqq ¡

fλ p∆Ut po, µtqq. Hence, fλ � ∆U p�, µtq maps the halfspace Ψ �
 
px, yq P r0, 1s2 | y ¥ x

(
into itself.

Since Ψ is compact and convex and fλ � ∆U p�, µtq is continuous, there exists a fixed point ψQ P Ψ

by Brouwer’s fixed point theorem. Moreover, the fixed point lies in the interior since for a pair of choice

probabilities satisfying σt pb, µtq � σt po, µtq it follows that ∆Ut ps, µtq � 2µ ps, µtq � 1 and therefore

fλ p∆Ut pb, µtqq ¡ fλ p∆Ut po, µtqq as r pµt, bq ¡ r pµt, oq.

Ad. (iii): From f 1λpxq ¡ 0 it follows that σQt ps, µtq is increasing in µt if and only if ∆Ut ps, µtq is.

The derivative of the latter is given by

B∆Ut ps, µtq

Bµt
�

Br pµt, sq

Bµt
t1 � α rCt pr pµt, Bq ,Bq � Ct pr pµt, Oq ,Bqsu

�
Br pµt, sq

Bµt
t1 � α rCt pr pµt, Oq ,Oq � Ct pr pµt, Bq ,Oqsu

� α r pµt, sq

"
BCt pr pµt, Bq ,Bq

Br pµt, Bq

Br pµt, Bq

Bµt
�
BCt pr pµt, Oq ,Bq

Br pµt, Oq

Br pµt, Oq

Bµt

*
� α r1� r pµt, sqs

"
BCt pr pµt, Oq ,Oq

Br pµt, Oq

Br pµt, Oq

Bµt
�
BCt pr pµt, Bq ,Oq

Br pµt, Bq

Br pµt, Bq

Bµt

*
.

While the first two terms are clearly positive, the sign of the latter terms is not easily derived. However,

each continuation value is essentially a sum of products of logit choice probabilities. It is straightforward

to show that f 1λpxq ¤ λ{4. In addition, Brpµt,xq
Bµt

is bounded for each x P X. Therefore, the bracketed terms

on the last two lines are bounded and (iii) holds for α not too large.
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For each t   T let

Qt pµtq �
Ct pr pµt, Oq ,Oq � Ct pr pµt, Bq ,Oq
Ct pr pµt, Bq ,Bq � Ct pr pµt, Oq ,Bq

. (10)

Lemma C2. There exists a logit QRE such that Qtpµtq � 1{Qtp1 � µtq for each t   T , and each

µt P r0, 1s.

Proof. The proof is by induction. We note first that for each t   T , each µt P r0, 1s, each s P S, and

s̄ � s

r p1� µt, sq � 1� r pµt, s̄q . (11)

In period T � 1 continuation values satisfy

CT�1 pµT ,Bq � q σQT pb, µT q � p1� qqσQT po, µT q

and CT�1 pµT ,Oq � p1� qq
�
1� σQT pb, µT q

�
� q

�
1� σQT po, µT q

�
where σQT ps, µT q � fλ p2 r pµT , sq � 1q. By the symmetry of the logistic function and (11) σQT ps, µT q �

1� σQT ps̄, 1� µT q for each s P S and each µT P r0, 1s. Therefore,

CT�1 pµT ,Oq � p1� qq
�
σQT po, 1� µT q

�
� q

�
σQT pb, 1� µT q

�
� CT�1 p1� µT ,Bq .

Let t   T and assume that for each τ ¥ t

Cτ pµτ�1,Oq � Cτ p1� µτ�1,Bq .

Fix public belief µt P r0, 1s and consider the fixed point problem at public belief 1 � µt. Let σQt ps, µtq,

s P S, denote the equilibrium choice probabilities of action B at µt and let ∆UQt ps, µtq denote the

associated expected utility differences. We show that the choice probabilities

σQt ps, 1� µtq � 1� σQt ps̄, µtq (12)

for s P S and s̄ � s solve the fixed-point problem at 1� µt. Given these choice probabilities and

r pµt, Oq �

"
1�

1� µt
µt

q r1� σt po, µtqs � p1� qq r1� σt pb, µtqs

p1� qq r1� σt po, µtqs � q r1� σt pb, µtqs

*�1

,

1� r p1� µt, Bq �

"
1�

1� µt
µt

q σt pb, 1� µtq � p1� qqσt po, 1� µtq

p1� qqσt pb, 1� µtq � q σt po, 1� µtq

*�1

it follows that

r pµt, Oq � 1� r p1� µt, Bq . (13)

Therefore, the induction assumption and (11) jointly imply that expected utility differences at 1 � µt

satisfy ∆UQt ps, 1� µtq � �∆UQt ps̄, µtq for each s P S and s̄ � s. The fixed point problem at 1 � µt is

thus given by

σQt ps, 1� µtq � fλ

�
∆UQt ps, 1� µtq

	
ô 1� σQt ps̄, µtq � 1� fλ

�
�∆UQt ps̄, µtq
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for each s. Since the choice probabilities σQt ps, µtq, s P S, solve the fixed point problem at µt, the

choice probabilities 1 � σQt ps̄, µtq, s̄ P S, must solve the fixed point problem at 1 � µt. Therefore, (12)

and (13) hold for each µt P r0, 1s. Combining this with the induction assumption that Cτ pµτ�1,Oq �
Cτ p1� µτ�1,Bq for each τ ¥ t yields

Qt pµtq �
Ct pr pµt, Oq ,Oq � CT pr pµt, Bq ,Oq
Ct pr pµt, Bq ,Bq � Ct pr pµt, Oq ,Bq

�
Ct p1� r pµt, Oq ,Bq � Ct p1� r pµt, Bq ,Bq
Ct p1� r pµt, Bq ,Oq � Ct p1� r pµt, Oq ,Oq

�
Ct pr p1� µt, Bq ,Bq � Ct pr p1� µt, Oq ,Bq
Ct pr p1� µt, Oq ,Oq � Ct pr p1� µt, Bq ,Oq

� 1{Qt p1� µtq

as desired. Finally, Lemma A1 in Appendix A implies

Ct�1 pµt,Oq � Pr pxt � B | µt,Oq Ct pr pµt, Bq ,Oq � Pr pxt � O | µt,Oq r1� Ct pr pµt, Oq ,Oqs

By induction assumption and (13)

Ct pr pµt, Bq ,Oq � Ct p1� r pµt, Bq ,Bq � Ct pr p1� µt, Oq ,Bq ,

Ct pr pµt, Oq ,Oq � Ct p1� r pµt, Oq ,Bq � Ct pr p1� µt, Bq ,Bq .

Moreover for each x P X and x̄ � x

Pr pxt � x | µt,Oq �
¸
sPS

Pr ps | Oq σQt ps, µtq �
¸
sPS

Pr ps̄ | Bq
�
1� σQt ps̄, 1� µtq

�
� Pr pxt � x̄ | 1� µt,Bq

where the second equality follows from (12) and since Pr ps | Bq � Pr ps̄ | Oq for each s P S. It follows

that

Ct�1 pµt,Oq � Pr pxt � O | 1� µt,Bq Ct pr p1� µt, Oq ,Bq � Pr pxt � B | 1� µt,Bq r1� Ct pr p1� µt, Bq ,Bqs

� Ct�1 p1� µt,Bq .

which completes the inductive step and therefore the proof.

Lemma C3. For each t   T , Qt pµtq   p¡q 1 if µt   p¡q 1
2 .

Proof. The proof is by induction. Consider first period T � 1. CT�1 pµT ,Bq � Pr pxT � B | µT ,Bq and

CT�1 pµT ,Oq � Pr pxT � O | µT ,Oq jointly imply that

QT�1 pµT�1q �
p1 � qq

�
σQ
T pb, r pµT�1, Bqq � σQ

T pb, r pµT�1, Oqq
�
� q

�
σQ
T po, r pµT�1, Bqq � σQ

T po, r pµT�1, Oqq
�

q
�
σQ
T pb, r pµT�1, Bqq � σQ

T pb, r pµT�1, Oqq
�
� p1 � qq

�
σQ
T po, r pµT�1, Bqq � σQ

T po, r pµT�1, Oqq
�

Let ∆σT ps, µq � σT ps, r pµ,Bqq � σT ps, r pµ,Oqq for s P S. Then QT�1 pµT�1q   p¡q 1 if and only if
∆σT pb, µT�1q ¡ p q∆σT po, µT�1q. Using

r pr pµT�1, Bq , bq � r pr pµT�1, Oq , bq �
q p1 � qq pr pµT�1, Bq � r pµT�1, Oqq

rq r pµT�1, Bq � p1 � qq p1 � r pµT�1, Bqqs rq r pµT�1, Oq � p1 � qq p1 � r pµT�1, Oqqs
,

r pr pµT�1, Bq , oq � r pr pµT�1, Oq , oq �
q p1 � qq pr pµT�1, Bq � r pµT�1, Oqq

rp1 � qq r pµT�1, Bq � q p1 � r pµT�1, Bqqs rp1 � qq r pµT�1, Oq � q p1 � r pµT�1, Oqqs

it follows that r pr pµT�1, Bq , bq � r pr pµT�1, Oq , bq ¡ p q r pr pµT�1, Bq , oq � r pr pµT�1, Oq , oq iff 1 �

r pµT�1, Oq ¡ p q r pµT�1, Bq, or by symmetry iff µT�1   p¡q 1
2 . Since the logit function fλpxq is
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convex for 0 ¤ x   1
2 and concave for 1

2   x ¤ 1 it follows that ∆σT pb, µT�1q ¡ ∆σT po, µT�1q if

r pr pµT�1, Bq , bq  
1
2 , and ∆σT pb, µT�1q   ∆σT po, µT�1q if r pr pµT�1, Oq , oq ¡

1
2 . In addition, sym-

metry implies that ∆σT
�
b, 1

2

�
� ∆σT

�
o, 1

2

�
. However, decreasing (increasing) µT�1 below (above) 1

2 in-

creases (decreases) ∆σT pb, µT�1q and decreases (increases) ∆σT po, µT�1q. Accordingly, ∆σT pb, µT�1q ¡

p q∆σT po, µT�1q if µT�1   p¡q 1
2 .

Assume that the property holds for each τ ¡ t. Because of symmetry we only prove that Qt pµtq  
1
2

if µt  
1
2 . Define ∆Ct pµt,Bq � Ct pr pµt, Bq ,Bq�Ct pr pµt, Oq ,Bq and ∆Ct pµt,Oq � Ct pr pµt, Oq ,Oq �

Ct pr pµt, Bq ,Oq. By Lemma A1 in Appendix A differences in continuation values in period t may be

decomposed as follows:

∆Ct pµt,Oq � Pr pxt�1 � B | r pµt, Bq ,Oq ∆Ct�1 pr pµt, Bq ,Oq

� Pr pxt�1 � O | r pµt, Oq ,Oq ∆Ct�1 pr pµt, Oq ,Oq

� Pr pxt�1 � O | r pµt, Oq ,Oq � Pr pxt�1 � O | r pµt, Bq ,Oq

�Ct�1 pr pr pµt, Oq , Bq ,Oq � Ct�1 pr pr pµt, Bq , Oq ,Oq ,

and

∆Ct pµt,Bq � Pr pxt�1 � B | r pµt, Bq ,Bq ∆Ct�1 pr pµt, Bq ,Bq

� Pr pxt�1 � O | r pµt, Oq ,Bq ∆Ct�1 pr pµt, Oq ,Bq

� Pr pxt�1 � B | r pµt, Bq ,Bq � Pr pxt�1 � B | r pµt, Oq ,Bq

�Ct�1 pr pr pµt, Bq , Oq ,Bq � Ct�1 pr pr pµt, Oq , Bq ,Bq .

Consider the case r pµt, Bq  
1
2 . First, by induction assumption

∆Ct�1 pr pµt, Bq ,Oq   ∆Ct�1 pr pµt, Bq ,Bq and ∆Ct�1 pr pµt, Oq ,Oq   ∆Ct�1 pr pµt, Oq ,Bq .

Second, Prpxt�1�B|rpµt,Bq,Oq
Prpxt�1�B|rpµt,Bq,Bq P

�
1�q
q , 1

�
. Third, Prpxt�1�O|rpµt,Oq,Oq

Prpxt�1�O|rpµt,Oq,Bq � 1 since r pµt, Oq is small. Fourth,

Pr pxt�1 � O | r pµt, Oq ,Oq � Pr pxt�1 � O | r pµt, Bq ,Oq

� p1� qq rσt�1 pb, r pµt, Bqq � σt�1 pb, r pµt, Oqqs � q rσt�1 po, r pµt, Bqq � σt�1 po, r pµt, Oqqs

and Pr pxt�1 � B | r pµt, Bq ,Bq � Pr pxt�1 � B | r pµt, Oq ,Bq

� q rσt�1 pb, r pµt, Bqq � σt�1 pb, r pµt, Oqqs � p1� qq rσt�1 po, r pµt, Bqq � σt�1 po, r pµt, Oqqs .

Similar arguments as employed for t � T � 1 therefore imply that

Pr pxt�1 � O | r pµt, Oq ,Oq � Pr pxt�1 � O | r pµt, Bq ,Oq

  Pr pxt�1 � B | r pµt, Bq ,Bq � Pr pxt�1 � B | r pµt, Oq ,Bq .

For the last term there are two possibilities: If r pr pµt, Oq , Bq � r pr pµt, Bq , Oq or

Ct�1 pr pr pµt, Oq , Bq ,Oq � Ct�1 pr pr pµt, Bq , Oq ,Oq   Ct�1 pr pr pµt, Bq , Oq ,Bq � Ct�1 pr pr pµt, Oq , Bq ,Bq

it follows directly that Qt pµtq   1 whenever r pµt, Bq  
1
2 .
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Assume therefore that

Ct�1 pr pr pµt, Oq , Bq ,Oq � Ct�1 pr pr pµt, Bq , Oq ,Oq ¡ Ct�1 pr pr pµt, Bq , Oq ,Bq � Ct�1 pr pr pµt, Oq , Bq ,Bq .

(14)

Using the fact that Pr pO | r pµt, Oq , θq�Pr pB | r pµt, Bq , θq ¥ 1 for each θ P Θ differences in continuation

values may be rewritten as

∆Ct pµt,Oq � Pr pxt�1 � B | r pµt, Bq ,Oq rCt�1 pr pr pµt, Oq , Bq ,Oq � Ct�1 pr pr pµt, Bq , Bq ,Oqs

� Pr pxt�1 � O | r pµt, Oq ,Oq rCt�1 pr pr pµt, Oq , Oq ,Oq � Ct�1 pr pr pµt, Bq , Oq ,Oqs

� Pr pxt�1 � O | r pµt, Oq ,Oq � Pr pxt�1 � O | r pµt, Bq ,Oq

� rPr pxt�1 � B | r pµt, Bq ,Oq � Pr pxt�1 � O | r pµt, Oq ,Oq � 1s

� rCt�1 pr pr pµt, Bq , Oq ,Oq � Ct�1 pr pr pµt, Oq , Bq ,Oqs ,

and

∆Ct pµt,Bq � Pr pxt�1 � B | r pµt, Bq ,Bq rCt�1 pr pr pµt, Bq , Bq ,Bq � Ct�1 pr pr pµt, Oq , Bq ,Bqs

� Pr pxt�1 � O | r pµt, Oq ,Bq rCt�1 pr pr pµt, Bq , Oq ,Bq � Ct�1 pr pr pµt, Oq , Oq ,Bqs

� Pr pxt�1 � B | r pµt, Bq ,Bq � Pr pxt�1 � B | r pµt, Oq ,Bq

� rPr pxt�1 � B | r pµt, Bq ,Bq � Pr pxt�1 � O | r pµt, Oq ,Bq � 1s

� rCt�1 pr pr pµt, Oq , Bq ,Oq � Ct�1 pr pr pµt, Bq , Oq ,Oqs ,

respectively. Consider the function

Q̂t
�
µH , µL

�
�
Ct

�
µL,O

�
� Ct

�
µH ,O

�
Ct pµH ,Bq � Ct pµL,Bq

defined for each t   T and for beliefs 0 ¤ µL   µH ¤ 1. As Q̂t is a generalization of Qt for each t   T , it

may be shown inductively using the arguments put forward in this proof that Q̂t
�
µH , µL

�
  1 if µH   1

2 ,

and Q̂t
�
µH , µL

�
¡ 1 if µL ¡ 1

2 . Hence, for µt sufficiently small

Ct�1 pr pr pµt, Oq , Bq ,Oq � Ct�1 pr pr pµt, Bq , Bq ,Oq   Ct�1 pr pr pµt, Bq , Bq ,Bq � Ct�1 pr pr pµt, Oq , Bq ,Bq ,

Ct�1 pr pr pµt, Oq , Oq ,Oq � Ct�1 pr pr pµt, Bq , Oq ,Oq   Ct�1 pr pr pµt, Bq , Oq ,Bq � Ct�1 pr pr pµt, Oq , Oq ,Bq .

Moreover,

Pr pxt�1 � B | r pµt, Bq ,Oq � Pr pxt�1 � O | r pµt, Oq ,Oq

  Pr pxt�1 � B | r pµt, Bq ,Bq � Pr pxt�1 � O | r pµt, Oq ,Bq .

Jointly with assumption (14) this implies Qt pµtq   1 if r pµt, Bq  
1
2 .

As µt increases towards 1
2 (and thus r pµt, Bq grows larger than 1

2), Qt�1 pr pµt, Bqq becomes larger than

one and Prpxt�1�B|rpµt,Bq,Oq
Prpxt�1�B|rpµt,Bq,Bq increases towards one. In addition, Prpxt�1�O|rpµt,Oq,Oq

Prpxt�1�O|rpµt,Oq,Bq and
Prpxt�1�O|rpµt,Oq,Oq�Prpxt�1�O|rpµt,Bq,Oq
Prpxt�1�B|rpµt,Bq,Bq�Prpxt�1�B|rpµt,Oq,Bq increase. On the other hand Qt pr pµt, Oqq   1 since r pµt, Oq ¤

µt  
1
2 and r pr pµt, Oq , Bq Ñ r pr pµt, Bq , Oq. Hence, there exists µ̂t such that Qt pµtq ¡ 1 for µt ¡ µ̂t.

It follows from Lemma C2 that µ̂t �
1
2 .
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Remainder of the Proof

First, Lemma C1 shows that unless for α ¡ 0 not too large there exists a monotonic-within-periods LQRE

in which continuation values under state B (O) are increasing (decreasing) in the public belief.

Second, it follows from (9) that altruism increases the equilibrium probability to select action B (O)

in period t   T at public belief µt if and only if

Qt pµtq   p¡q
µt ps,htq

1� µt ps,htq
.

Lemmas C2 and C3 establish that for any t   T Qt p�q is smaller (larger) than 1 if µt pH,htq   p¡q 1
2 .

On the other hand rpµt,bq
1�rpµt,bq

� q
1�q

µt
1�µt

¡ 1 if µt ¡ 1 � q and
µot

1�µot
� 1�q

q
µt

1�µt
  1 if µt   q. This

completes the proof of the proposition.

l

Corollary. µ ¤ p1�qq2

q2�p1�qq2
and µ ¥ q2

q2�p1�qq2
for λ sufficiently large.

Proof. We first show by induction in t that for each t   T Qt pµtq ¤
1�q
q for p1�qq2

q2�p1�qq2
  µt   1� q and

Qt pµtq ¥
q

1�q for 1
2   µt  

q2

q2�p1�qq2
.

For period T � 1, p1�qq2

q2�p1�qq2
  µT�1   1� q implies that for each ε ¡ 0

r pr pµT�1, Oq , oq   r pr pµT�1, Bq , oq ¤ r pr pµT�1, Oq , bq  
1

2
� ε ¤ r pr pµT�1, Bq , bq

if λ is sufficiently large. Therefore for sufficiently large λ, σT po, r pµT�1, Oqq   σT po, r pµT�1, Bqq  

σT pb, r pµT�1, Oqq   ε whereas σT pb, r pµT�1, Bqq ¡
1
2 � ε which implies that QT�1 pµT�1q �

1�q
q . Be-

cause of symmetry q   µT�1  
q2

q2�p1�qq2
implies QT�1 pµT�1q �

q
1�q by similar arguments.

Let t   T �1 and assume that the property holds for each τ ¡ t. Consider a public belief p1�qq2

q2�p1�qq2
 

µt   1� q. For sufficiently large λ ¡ 0 it holds

(a) ∆Ct�1prpµt,Bq,Oq
∆Ct�1prpµt,Bq,Bq �

1�q
q since r pµt, Bq  

1
2 , and Prpxt�1�B|rpµt,Bq,Oq

Prpxt�1�B|rpµt,Bq,Bq   12;

(b) ∆Ct�1prpµt,Oq,Oq
∆Ct�1prpµt,Oq,Bq ¤

1�q
q , and Prpxt�1�O|rpµt,Oq,Oq

Prpxt�1�O|rpµt,Oq,Bq � 1;

(c) Prpxt�1�O|rpµt,Oq,Oq�Prpxt�1�O|rpµt,Bq,Oq
Prpxt�1�B|rpµt,Bq,Bq�Prpxt�1�B|rpµt,Oq,Bq �

1�q
q .

In addition, either r pr pµT�1, Bq , Oq � r pr pµT�1, Oq , Bq (if Pr pxt � O | µt, θq � Pr ps � o | θq for each
θ P Θ) which implies the desired property by (a)–(c), or r pr pµT�1, Bq , Oq � r pr pµT�1, Oq , Oq (if
Pr pxt � O | µt, θq � 1 for each θ P Θ) which implies that

Qt pµtq �
Pr pxt�1 � O | r pµt, Oq ,Oq � Pr pxt�1 � O | r pµt, Bq ,Oq � Pr pxt�1 � B | r pµt, Bq ,Oq ∆Ct�1 pr pµt, Bq ,Oq
Pr pxt�1 � B | r pµt, Bq ,Bq � Pr pxt�1 � B | r pµt, Oq ,Bq � Pr pxt�1 � B | r pµt, Bq ,Bq ∆Ct�1 pr pµt, Bq ,Bq

and the property follows by (a) and (c). The case q   µt  
q2

q2�p1�qq2
follows from similar arguments.

The result follows by noting that rpµt,bq
1�rpµt,bq

� q
1�q ¥

1�q
q if µt

1�µt
¥

�
1�q
q

	2
and

µot
1�µot

� 1�q
q ¤ q

1�q if

µt
1�µt

¤
�

q
1�q

	2
.

2In fact,
Prpxt�1�B|rpµt,Bq,Oq
Prpxt�1�B|rpµt,Bq,Bq

� 1�q
q

if µt   1 � q � δ for some small δ ¡ 0.
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C.3. LQRE Predictions in the Laboratory Cascade Game

To further characterize the logit QRE for α ¡ 0 we calculate the QRE numerically for the laboratory

cascade game for λ P t2.5, 5, 7.5u and α P t0, 0.125, 0.25, 0.5u.3 Recall that the cascade game is played

by two parallel sequences of players, observed and unobserved. Since guesses made by unobserved never

reveal any information to others unobserved follow the standard logit QRE strategy profile σQ0 for α � 0,

i.e. σQ0
t pst,htq � fλ p2µt pst,htq � 1q for each t, st, and ht. On the other hand observed take into account

the presence of unobserved. Continuation values (for observed) are thus given by

CT pµT , θq �
¸
sPS

Pr ps | θq fλ
�
2µsT�1 � 1

�
and Ct�1 pµt, θq �

¸
xPX

PrQt pxt � x | µt, θq
�
π px, θq � Ĉt pr pµt, xq , θq

�
�

¸
sPS

Pr ps | θq fλ p2 r pµt, sq � 1q

where T � 7, t � 2, . . . , T , θ P Θ, and PrQt pxt � x | µt, θq �
°
sPS Pr ps | θqσt ps, µtq. We focus on

monotonic QRE in which (i) for each t � 1, . . . , T , σt is increasing in the public belief, and (ii) for each

t   T and each public belief µt P r0, 1s, σt pb, µtq ¥ σt�1 pb, µtq and σt po, µtq ¤ σt�1 po, µtq.

Our numeric computations rely on the absence of the fixed-point problem for the strategies of the

unobserved. We first employ an algorithm to determine choice probabilities σt pst, µtq for each t � 1, . . . , T ,

each st P S, and each µt P r0, 1s. The algorithm repeats the following two steps for t � T, . . . , 1:

Step 1: For each µt�1 P r0, 1s and each θ P Θ the continuation values Ctpµt�1, θq are calculated from the

choice probabilities σt�1 pst�1, µt�1q, st�1 P S where σT�1 refers to the strategy of the unobserved

acting in period T � 1;

Step 2: For each µt P r0, 1s the vector of choice probabilities pσtpb, µtq, σtpo, µtqq is determined by solving

the fixed-point problem given the continuation values Ct pµt�1, θq.

Second, we calculate the QRE by calculating from period 1 on the public belief for each history, selecting

the corresponding action probabilities, and using the latter for the calculation of public beliefs in the

subsequent period.

In our numerical algorithm we discretize the space of public beliefs by calculating action probabilities

and continuation values for each public belief in the set G � t0.005, 0.010, . . . , 0.995u. Furthermore, for

each period and each public belief choice probabilities are calculated by conducting a grid search in the

space G2: For each vector pPb, Poq P G
2 we compute the updated public belief assuming that Ps, s P S,

are the choice probabilities, we use the continuation values at the closest grid point in G to calculate

expected utilities, and we calculate choice probabilities P̂s, s P S based on these expected utilities using

the logit quantal response function. Accordingly, we map each vector pPb, Poq P G
2 onto r0, 1s2. The

fixed-point of this mapping is then given by pP �
b , P

�
o q � arg minpPb,PoqPG2 maxsPS

���Ps � P̂s

���. For all results

reported below
���P �
s � P̂ �

s

���   0.005 for each s.

Our numerical results clearly establish that altruism affects behavior even if players make noisy

decisions. Yet, altruism does not always have a sufficient impact, as demonstrated by the results for

λ � 2.5. In the following we focus in our discussion on values of λ for which the impact of altruism is

non-negligible.

3The values of λ have been selected to match estimated values commonly found in the literature. For instance, Goeree,
Palfrey, Rogers, and McKelvey (2007) report an estimate of λ � 6.12 when treatments are pooled, and a value of λ � 6.36
for the data from Anderson and Holt (1997). Results for λ � 10 are available from the authors upon request.
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C.3.1 Response to the Expected Payoff of Contradicting Private Information

Figures 3, 4, and 5 plot the predicted probability to contradict private information (prob contradict)

against the expected payoff from contradicting (value contra PI) for λ � 2.5, λ � 5, and λ � 7.5,

respectively. In each of the figures the top (middle and bottom) panel presents the results for α � 0.125

(α � 0.25 and α � 0.5). Each marker in the scatterplots reflects one distinct decision situation in the

laboratory cascade game with x-value the expected payoff from contradicting the private signal and y-

value the predicted probability to contradict. Blue (red and green) markers indicate decision situations

in part 2 (part 3 and part 4) of the experiment where unobserved observe signals of medium (high and

low) quality. For comparison, black markers indicate the probability to contradict the private signal for

the unobserved (or selfish players). For the sake of clarity, we superimpose lines on each set of markers

although clearly some values of value contra PI are not reached.

The results can be summarized as follows: First, altruism distorts incentives towards following private

information as markers for the observed lie systematically below markers for the unobserved. Second, the

distortion is strongest when incentives to follow others are moderate. In particular, altruism strongly

reduces the probability to contradict private information for value contra PI around 0.5. Furthermore,

the value of value contra PI such that observed follow others with probability larger than one half

is strictly larger than 0.5. In contrast, differences between observed and unobserved are small when

incentives to follow others are low or high. Fourth, the effects are larger, the larger are α and λ. Finally,

altruism has a smaller effect on behavior of the observed when unobserved receive private signals of high

signal quality, and a slightly larger effect when unobserved receive signals of low signal quality.
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(c) α � 0.5

Figure 3: Expected Payoff and Probability to Contradict Private Information for λ � 2.5.
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(c) α � 0.5

Figure 4: Expected Payoff and Probability to Contradict Private Information for λ � 5.
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Figure 5: Expected Payoff and Probability to Contradict Private Information for λ � 7.5.
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C.3.2 Response to the Size of the Contrary Majority

Figures 6, 7, and 8 illustrate players’ responses to the size of the contrary majority for α � 0.25 and

λ � 2.5, λ � 5, and λ � 7.5, respectively. For a player with a blue (orange) signal, the size of the

contrary majority is given by the number of orange (blue) guesses less the number of blue (orange)

guesses in the history. If the size if the contrary majority is positive, the player’s private signal and the

majority of previous public guesses are conflicting pieces of information. In contrast, if the size of the

contrary majority is negative, the player faces a favoring majority, i.e. her private signal and the majority

of previous public guesses are concordant.

For each figure the left panel plots the probability to contradict private information against the size

of the contrary majority for unobserved (solid lines) and observed in part 2 (dashed lines). Grey lines

represent probabilities pooled across signals, while blue (orange) lines depict probabilities for a blue

(orange) signal. In addition, the right panel plots the differences between unobserved and observed for

both signals, and for each signal separately. Tables 2, 3, and 4 contain the probabilities to follow others

for λ � 2.5, λ � 5, and λ � 7.5, respectively, and all values of α.

The results can be summarized as follows: The probability to contradict private information is sys-

tematically smaller for observed than for unobserved. Differences are largest for a contrary majority of

size 1, decreasing in the size of the contrary majority, and increasing (decreasing) in λ for a contrary

(favoring) majority. In addition, the probability to contradict private information is larger with an orange

than with a blue signal for any value of α. For λ ¡ 2.5, differences are smaller for a blue than for an

orange signal at a contrary majority of size one, and larger with a blue than with an orange signal at any

larger contrary majority.
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Figure 6: Response to the Size of the Contrary Majority for λ � 2.5.
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Figure 7: Response to the Size of the Contrary Majority for λ � 5.
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Figure 8: Response to the Size of the Contrary Majority for λ � 7.5.

Contrary Unobserved Observed Part 2 Observed Part 3 Observed Part 4
Majority All s blue orange All s blue orange All s blue orange All s blue orange

α � 0.125
-6 to 0 0.245 0.217 0.280 0.211 0.184 0.245 0.227 0.200 0.261 0.205 0.179 0.239
1 0.382 0.338 0.420 0.346 0.299 0.387 0.352 0.307 0.391 0.347 0.298 0.389
2 0.450 0.409 0.481 0.421 0.375 0.456 0.420 0.377 0.453 0.423 0.377 0.459
3 0.517 0.479 0.543 0.496 0.453 0.525 0.491 0.447 0.521 0.503 0.457 0.533
4 to 6 0.589 0.557 0.608 0.581 0.546 0.601 0.568 0.531 0.589 0.584 0.548 0.606

α � 0.25
-6 to 0 0.237 0.211 0.271 0.168 0.146 0.195 0.200 0.176 0.231 0.158 0.137 0.185
1 0.396 0.351 0.435 0.315 0.263 0.360 0.333 0.287 0.373 0.311 0.257 0.359
2 0.471 0.433 0.501 0.403 0.355 0.439 0.407 0.364 0.439 0.410 0.359 0.449
3 0.542 0.508 0.565 0.498 0.452 0.529 0.483 0.443 0.511 0.507 0.460 0.538
4 to 6 0.612 0.585 0.628 0.590 0.555 0.611 0.567 0.529 0.589 0.601 0.568 0.622

α � 0.5
-6 to 0 0.223 0.197 0.254 0.089 0.079 0.102 0.146 0.128 0.168 0.077 0.068 0.088
1 0.430 0.383 0.473 0.232 0.176 0.282 0.274 0.230 0.313 0.228 0.164 0.285
2 0.520 0.484 0.548 0.359 0.299 0.406 0.364 0.316 0.401 0.372 0.315 0.417
3 0.592 0.566 0.612 0.494 0.443 0.530 0.459 0.414 0.491 0.509 0.463 0.542
4 to 6 0.654 0.635 0.667 0.606 0.570 0.630 0.560 0.521 0.584 0.622 0.588 0.646

Table 2: Probability to Contradict Private Information and Contrary Majority Size for λ � 2.5.
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Contrary Unobserved Observed Part 2 Observed Part 3 Observed Part 4
Majority All s blue orange All s blue orange All s blue orange All s blue orange

α � 0.125
-6 to 0 0.083 0.060 0.113 0.041 0.030 0.055 0.060 0.044 0.080 0.037 0.027 0.049
1 0.408 0.322 0.485 0.248 0.164 0.322 0.286 0.212 0.351 0.253 0.164 0.333
2 0.596 0.550 0.632 0.464 0.404 0.510 0.464 0.409 0.504 0.474 0.413 0.520
3 0.708 0.680 0.728 0.614 0.578 0.639 0.599 0.562 0.624 0.622 0.588 0.646
4 to 6 0.790 0.773 0.800 0.738 0.713 0.755 0.722 0.698 0.737 0.745 0.720 0.762

α � 0.25
-6 to 0 0.080 0.056 0.110 0.018 0.015 0.022 0.038 0.029 0.049 0.014 0.012 0.017
1 0.450 0.346 0.550 0.130 0.063 0.196 0.208 0.137 0.272 0.139 0.058 0.216
2 0.673 0.629 0.708 0.411 0.325 0.480 0.415 0.352 0.464 0.427 0.357 0.481
3 0.768 0.746 0.785 0.582 0.534 0.617 0.565 0.522 0.597 0.595 0.550 0.628
4 to 6 0.828 0.815 0.837 0.727 0.697 0.748 0.699 0.664 0.722 0.729 0.695 0.753

α � 0.5
-6 to 0 0.079 0.054 0.109 0.006 0.005 0.007 0.016 0.014 0.019 0.005 0.005 0.005
1 0.483 0.369 0.601 0.019 0.010 0.029 0.057 0.044 0.070 0.023 0.010 0.036
2 0.758 0.708 0.802 0.278 0.131 0.410 0.240 0.131 0.334 0.304 0.160 0.428
3 0.837 0.813 0.856 0.501 0.404 0.577 0.446 0.349 0.520 0.521 0.445 0.580
4 to 6 0.873 0.857 0.884 0.666 0.603 0.711 0.629 0.566 0.674 0.666 0.610 0.706

Table 3: Probability to Contradict Private Information and Contrary Majority Size for λ � 5.

Contrary Unobserved Observed Part 2 Observed Part 3 Observed Part 4
Majority All s blue orange All s blue orange All s blue orange All s blue orange

α � 0.125
-6 to 0 0.034 0.017 0.056 0.009 0.007 0.012 0.017 0.011 0.026 0.008 0.007 0.010
1 0.457 0.302 0.606 0.162 0.055 0.264 0.262 0.140 0.373 0.180 0.051 0.305
2 0.763 0.729 0.789 0.555 0.494 0.600 0.556 0.502 0.596 0.569 0.517 0.607
3 0.844 0.828 0.856 0.701 0.660 0.730 0.698 0.668 0.718 0.702 0.668 0.726
4 to 6 0.891 0.882 0.897 0.799 0.784 0.810 0.803 0.785 0.815 0.801 0.784 0.813

α � 0.25
-6 to 0 0.035 0.017 0.057 0.005 0.005 0.005 0.009 0.007 0.012 0.005 0.005 0.005
1 0.482 0.311 0.659 0.030 0.010 0.051 0.113 0.045 0.180 0.036 0.005 0.067
2 0.838 0.794 0.876 0.438 0.282 0.570 0.489 0.403 0.555 0.461 0.329 0.569
3 0.900 0.879 0.917 0.637 0.544 0.709 0.652 0.605 0.686 0.643 0.571 0.698
4 to 6 0.927 0.914 0.937 0.755 0.689 0.802 0.761 0.739 0.777 0.765 0.711 0.805

α � 0.5
-6 to 0 0.036 0.017 0.059 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
1 0.485 0.315 0.673 0.005 0.005 0.005 0.008 0.010 0.005 0.005 0.005 0.005
2 0.883 0.837 0.927 0.267 0.026 0.503 0.206 0.028 0.370 0.265 0.039 0.478
3 0.942 0.928 0.953 0.532 0.388 0.642 0.400 0.275 0.501 0.518 0.363 0.640
4 to 6 0.955 0.948 0.960 0.654 0.581 0.705 0.584 0.465 0.671 0.655 0.543 0.736

Table 4: Probability to Contradict Private Information and Contrary Majority Size for λ � 7.5.
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C.3.3 Information Aggregation and Fraction of Correct Guesses

We finally investigate how altruism affects the payoffs of players in the LQRE. Indeed, an increase in the

response to private information is potentially beneficial to players in both sequences. We first analyze the

amount of information accumulated in equilibrium. Second, we calculate the players’ expected earnings,

i.e. the expected fraction of correct guesses.

Since payoff-responsive decision errors imply that more information is aggregated in the standard

LQRE than in sequential equilibrium, there is a legitimate concern that altruism has a negligible impact

on information aggregation and players’ earnings in LQRE. In fact, it is not clear whether altruism

increases the relative frequency of correct guesses in the presence of decision errors. To account for this

possibility, we analyze the impact of altruism on information aggregation and players’ earnings for the

value of λ which maximizes information aggregation and earnings in the standard LQRE of the laboratory

cascade game.

We measure information aggregation by the average level of value contra PI at large majorities of

size 3, 4, 5, or 6. Indeed, the more information is aggregated the lower the level of value contra PI

at large favoring majorities and the higher the level of value contra PI at large contrary majorities.

We find that guesses aggregate the largest amount of information in the standard LQRE when λ � 7.5.

Table 5 reports the average levels of value contra PI in the LQRE for λ � 7.5 and α P t0, 0.125, 0.25, 0.5u

separately for large favoring majorities (contrary majorities of size -6, -5, -4, or -3), moderate majorities

(contrary majorities of size -2, -1, 0, 1, or 2), and large contrary majorities (of size 3, 4, 5, or 6). The

results demonstrate that altruism increases information aggregation considerably beyond the levels in

standard LQRE. The average level of value contra PI at large favoring (contrary) majorities is lower

(higher) for larger values of α. The signal quality in the unobserved sequence has a small impact. Finally,

there is no difference in the average level of value contra PI at moderate majorities. In fact, the average

level of value contra PI equals the average level in period 1 for all values of α and all signal qualities of

the unobserved.

α � 0.125 α � 0.25 α � 0.5
α � 0 Part 2 Part 3 Part 4 Part 2 Part 3 Part 4 Part 2 Part 3 Part 4

Large Favoring Majorities 0.146 0.126 0.134 0.128 0.111 0.123 0.113 0.096 0.103 0.099
Moderate Majorities 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333
Large Contrary Majorities 0.593 0.635 0.617 0.631 0.667 0.641 0.662 0.702 0.685 0.695

Table 5: Average Levels of value contra PI for λ � 7.5.

We finally analyze the earnings of players in the LQRE measured by the average fraction of correct

guesses. In the standard LQRE, this fraction is largest for λ � 60. Though less information is aggregated

for this value of λ, players do not seem to be able to fully reap the benefits of enhanced information

aggregation for smaller values of λ due to the larger likelihood of decision errors. Yet, differences in

earnings are negligible for sufficiently large values of λ. Indeed, players in the standard LQRE with

λ � 7.5 earn 97% of the average earnings in the standard LQRE with λ � 60. To facilitate the discussion

we therefore focus on λ � 7.5.

Table 6 reports the earnings for λ � 7.5 and different values of α. We note first that altruism improves

welfare, as average earnings of observed and unobserved are always higher than average earnings in the

standard LQRE. Second, unobserved are predicted to make the correct guess more often than observed

across all values of α. The difference is more pronounced the larger is α. Finally, compared to part

2 observed are predicted to earn less in part 3 where unobserved receive private signals of high signal
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quality, and they earn a similar amount in part 4 where unobserved receive private signals of low signal

quality.

Observed
Part 2 Part 3 Part 4 Unobserved

α � 0 0.686
α � 0.125 0.706 0.698 0.706 0.707
α � 0.25 0.709 0.704 0.709 0.719
α � 0.5 0.706 0.699 0.705 0.728

Table 6: Earnings as Fraction of the High Payoff for λ � 7.5.
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Appendix D. Complements to the Main Statistical Analysis

In this appendix we first detail the derivation of the empirical value of contradicting private information.

Then we report the regression results on the responses to value contra PI and the amounts of information

aggregated in Section D.2 and Section D.3, respectively.

D.1. The Empirical Value of Contradicting Private Information

Following the approach introduced by Weizsäcker (2010) and refined by Ziegelmeyer, March, and Krügel

(2013), we detail below the derivation of the empirical value of contradicting private information. In

period t P t1, . . . , T u and given history ht and signal st, value contra PI pst,htq equals
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where xPr pxτ | hτ , sτ , θq is the relative frequency with which action xτ is chosen in period τ   t across

all observed choices where the history is hτ � ht, the private signal is sτ P S, and the state of nature is

θ P Θ. In our laboratory cascade game, p � 11{20 and q � 2{3.

We derive the empirical value of contradicting private information separately in the different session

parts. Concretely, the empirical value of contradicting private information in a given part is derived from

the observed choices made only in that part. We take such a conservative approach as unobserved are

endowed with different signal qualities in the different parts and if observed care about the correctness

of unobserved actions then the informativeness of their own actions might vary across parts.

We would like to emphasize that value contra PI cannot be derived in every guessing situation.

Indeed, the derivation of value contra PI pst,htq is impossible whenever the relative action frequencies

cannot be computed for each couple (signal, state) at each sub-history hτ � ht. In Experiment 1, we

are able to calculate value contra PI for 268 out of the 504 distinct guessing situations encountered by

observed in parts 2 to 4 or unobserved in part 2.4 This covers 6,906 out of the 7,992 guesses meaning

that the omitted guessing situations occur rather infrequently. In Experiment 2, value contra PI can be

calculated for 227 out of the 437 guessing situations which covers 4,466 out of the 5,328 guesses.

More importantly, value contra PI is an imperfect measure of the true underlying incentives whose

precision depends on the number of observations from which the relative action probabilities are estimated.

We relate the precision of value contra PI pst,htq to the number of occurrences of the guessing situation

pst,htq and we denote this number by sitcountpst,htq. Note that sitcount is calculated separately for

observed and unobserved which ensures that bubble sizes in Figures 2 and 3 of the main text accurately

reflect the weight of each guessing situation in the two sequences of participants.

The fact that value contra PI imperfectly measures the true expected value of contradicting private

information could invalidate the inferences on observational learning behavior. We address this inference

problem in two (non-exclusive) ways. First, the statistical analysis is conducted on different subsets of

data with more and more stringent minimum thresholds for sitcount. Below we check that the analysis

reported in the main text is robust to variations in the minimum threshold for sitcount. The second

4We distinguish guessing situations according to whether they were encountered by observed or unobserved and in part
2, 3, or 4 of the session. Accordingly, a guessing situation is fully determined by the tuple (sequence, part, history, signal).
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approach uses an instrumental variable (IV) to correct for measurement error in statistical analyses where

value contra PI is an explanatory variable (see e.g. Cameron and Trivedi, 2005, Chapter 4, 6). A valid

instrument can be obtained by randomly splitting the dataset in two subsets of approximately equal size,

deriving value contra PI separately on each subset, and using one of the estimates as an instrument

for the other. Since the derivation of value contra PI pst,htq requires the calculation of relative action

frequencies for each triple phτ , sτ , θq where τ   t and hτ � ht, the two subsets are obtained by splitting

the set of repetitions of the cascade game for each part.5 However, a considerable efficiency loss occurs

because only half of the sample is used to derive the empirical value of contradicting private information

(Cameron and Trivedi, 2005, p.192). The efficiency loss takes two forms. First, value contra PI can

often not be derived in both subsets though it can be derived in the entire dataset. This results in a

smaller number of observations that can be used in IV regressions. Second, the split-sample method

increases the measurement error in monetary incentives as the control variable included in IV regressions

is value contra PI1, the empirical value of contradicting private information in the first subset. To

alleviate the efficiency loss, we repeat the random splitting 100 times and we select the split which

minimizes the loss of efficiency along the two dimensions just mentioned. First, the selected split permits

value contra PI to be derived in both subsets for 9,579 observations (across the 100 randomly generated

splits the number of available observations ranges from 7,866 to 9,861). Second, for each split we regress

value contra PI1 on value contra PI. The resulting R2 (roughly) assesses the additional measurement

error generated by the splitting. The R2 of the selected split equals 0.9801 (across the 100 splits R2

ranges from 0.8257 to 0.9833). Among the 4 splits which satisfy R2 ¡ 0.98, the selected split uses the

largest number of observations by far. For Experiment 1 we are able to calculate value contra PI in

both subsets for 125 guessing situations and 5,854 guesses in total. For Experiment 2 value contra PI

can be calculated in both subsets for 109 guessing situations and 3,725 guesses in total.6

Clustering

It is likely that subjects’ behavior is influenced by individual characteristics and session dynamics. We

therefore have a nested hierarchy of potential levels of clustering (across which residuals are likely to

be dependent). As is recommended in this case we rely on cluster-robust standard errors computed at

the most aggregated level of clustering, i.e. at the session level (see e.g. Cameron and Miller, 2010). A

potential problem in this case is that few clusters are available. In order to correct for the small number

of clusters, we apply a finite-cluster correction to the cluster-robust estimate of the variance matrix, and

we rely on the T(G-1)-distribution and the F(h,G-1)-distribution, respectively, to compute p-values of

one- and two-tailed hypothesis tests.

Demographics

During the experiment we collected information on subjects’ age, gender, field of studies, mother tongue,

and citizenship. Though not reported below, all results are robust to controlling for these demographic

variables. The results are available from the authors upon request.

5There are 54 (36) distinct repetitions of the game in each part of Experiment 1 (2).
6Note that value contra PI can be calculated for the entire dataset whenever it can be calculated in both subsets.
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D.2. Responses to value contra PI

Here we report the regression results discussed in Sections 4.2 and 5.2 of the main text along with

robustness checks. We regress the proportion to contradict private information against a cubic polynomial

in value contra PI fully interacted with indicator variables for unobserved and observed in part 3 and in

part 4, and all regressors are interacted with an indicator variable for Experiment 2. Table 7 reports the

regression results based on the IV specification for sitcount ¥ 10 (minimum threshold considered in the

main text) as well as for sitcount ¥ 1 and for sitcount ¥ 20.

We obtain the same qualitative results for each subset of data in the first experiment. On the other

hand, two qualitative findings in Experiment 2 are sensitive to the precision with which value contra PI is

measured. First, the hypothesis that the average unobserved systematically makes the money-maximizing

guess is only rejected for sitcount ¥ 10 and sitcount ¥ 20. Second, there is a significant increase in

the observed reluctance to contradict private information from part 2 to part 3 only for sitcount ¥ 1

and sitcount ¥ 10, and there is a significant increase in the observed reluctance to contradict private

information from part 3 to part 4 only for sitcount ¥ 20.

Table 8 reports the regression results based on the OLS specification for sitcount ¥ 10 (minimum

threshold considered in the main text) as well as for sitcount ¥ 20 and for sitcount ¥ 30. The OLS

regression results confirm those obtained with the IV specification except for the fact that in Experiment

1 the vertical distance between the unobserved fitted line and (0.5, 0.5) is insignificant for all sitcount

minimum thresholds.
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sitcount ¥ 1 sitcount ¥ 10 sitcount ¥ 20
Constant -0.895��� -1.173��� -1.291���

(0.173) (0.269) (0.255)

value contra PI1 11.013��� 14.055��� 15.291���
(1.813) (2.935) (2.742)

pvalue contra PI1q
2 -38.949��� -48.636��� -52.696���

(5.674) (9.348) (8.808)

pvalue contra PI1q
3 42.339��� 51.549��� 55.815���

(5.399) (8.907) (8.569)

Observed in part 3 0.809��� 1.058��� 1.092���
(0.180) (0.258) (0.266)

Observed in part 3 � value contra PI1 -9.370��� -12.095��� -12.377���
(1.910) (2.790) (2.876)

Observed in part 3 � pvalue contra PI1q
2 32.124��� 40.831��� 41.835���

(6.036) (8.788) (9.094)

Observed in part 3 � pvalue contra PI1q
3 -33.072��� -41.433��� -42.959���

(5.748) (8.264) (8.595)

Observed in part 4 0.462�� 0.710�� 0.925���
(0.183) (0.286) (0.271)

Observed in part 4 � value contra PI1 -5.791�� -8.471�� -10.847���
(1.988) (3.182) (2.960)

Observed in part 4 � pvalue contra PI1q
2 20.764��� 29.257�� 37.206���

(6.116) (10.014) (9.400)

Observed in part 4 � pvalue contra PI1q
3 -22.584��� -30.692��� -38.959���

(5.550) (9.291) (8.961)

Unobserved 0.378 0.656� 1.095���
(0.224) (0.345) (0.312)

Unobserved � value contra PI1 -4.424� -7.465� -12.366���
(2.458) (3.822) (3.350)

Unobserved � pvalue contra PI1q
2 14.996� 24.683� 40.544���

(7.990) (12.478) (10.909)

Unobserved � pvalue contra PI1q
3 -14.422� -23.633� -39.023�

(7.818) (12.207) (10.739)

Experiment 2 1.621��� 0.289 0.951���
(0.210) (0.288) (0.268)

Experiment 2 � value contra PI1 -17.850��� -3.037 -10.583���
(2.184) (3.106) (2.968)

Experiment 2 � pvalue contra PI1q
2 56.678��� 9.191 34.754���

(6.485) (9.961) (9.696)

Experiment 2 � pvalue contra PI1q
3 -52.933��� -8.064 -34.404���

(5.763) (9.633) (9.562)

Experiment 2 � Observed in part 3 -2.200��� -0.864�� -1.608���
(0.330) (0.384) (0.420)

Experiment 2 � Observed in part 3 � value contra PI1 24.623��� 9.824�� 17.668���
(3.766) (4.265) (4.511)

Experiment 2 � Observed in part 3 � pvalue contra PI1q
2 -79.785��� -32.498�� -57.968���

(11.973) (13.471) (13.980)

Experiment 2 � Observed in part 3 � pvalue contra PI1q
3 76.085��� 31.590�� 57.525���

(10.970) (12.556) (12.925)

Experiment 2 � Observed in part 4 -1.291��� 0.058 -0.803��
(0.223) (0.322) (0.305)

Experiment 2 � Observed in part 4 � value contra PI1 14.051��� -0.942 8.998��
(2.439) (3.617) (3.501)

Experiment 2 � Observed in part 4 � pvalue contra PI1q
2 -43.929��� 4.187 -29.461��

(7.445) (11.611) (11.416)

Experiment 2 � Observed in part 4 � pvalue contra PI1q
3 40.169��� -5.317 28.816��

(6.601) (10.976) (11.022)

Experiment 2 � Unobserved -0.573�� -0.055 -2.039���
(0.237) (0.393) (0.522)

Experiment 2 � Unobserved � value contra PI1 5.907�� 1.332 23.063���
(2.600) (4.321) (5.819)

Experiment 2 � Unobserved � pvalue contra PI1q
2 -18.308�� -6.562 -75.971���

(8.399) (13.859) (18.903)

Experiment 2 � Unobserved � pvalue contra PI1q
3 17.186� 8.135 74.739���

(8.053) (13.326) (18.188)

Observations 9,579 9,365 8,516
R2 0.404 0.399 0.428

Robust standard errors in parentheses, clustered at the session level.
� (10%); �� (5%); and ��� (1%) significance level.

Table 7: Frequency to contradict private information (IV)
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sitcount ¥ 10 sitcount ¥ 20 sitcount ¥ 30
Constant -0.334� -0.344 -0.488���

(0.176) (0.207) (0.158)

value contra PI 4.765�� 4.916�� 6.421���
(1.866) (2.138) (1.584)

pvalue contra PIq2 -19.455��� -19.926��� -24.801���
(5.971) (6.691) (4.990)

pvalue contra PIq3 25.155��� 25.489��� 30.368���
(5.649) (6.260) (4.892)

Observed in part 3 0.171 0.093 0.255��
(0.179) (0.166) (0.121)

Observed in part 3 � value contra PI -2.256 -1.342 -3.130��
(1.935) (1.632) (1.246)

Observed in part 3 � pvalue contra PIq2 9.389 6.581 12.826���
(6.284) (5.086) (4.108)

Observed in part 3 � pvalue contra PIq3 -12.053� -9.779� -16.673���
(5.930) (4.814) (4.189)

Observed in part 4 0.139 0.102 0.325�
(0.190) (0.198) (0.164)

Observed in part 4 � value contra PI -2.155 -1.777 -4.433��
(2.069) (2.046) (1.661)

Observed in part 4 � pvalue contra PIq2 9.648 8.570 17.753���
(6.770) (6.476) (5.278)

Observed in part 4 � pvalue contra PIq3 -13.512� -12.672� -22.243���
(6.455) (6.113) (5.222)

Unobserved 0.737��� 0.639��� 0.686���
(0.185) (0.173) (0.158)

Unobserved � value contra PI -8.693��� -7.534��� -7.882���
(2.059) (1.782) (1.605)

Unobserved � pvalue contra PIq2 29.671��� 25.486��� 26.405���
(6.785) (5.560) (5.409)

Unobserved � pvalue contra PIq3 -29.161��� -24.829��� -25.700���
(6.425) (5.119) (5.687)

Experiment 2 0.150 0.062 0.290
(0.182) (0.220) (0.205)

Experiment 2 � value contra PI -1.595 -0.769 -3.246
(2.011) (2.416) (2.299)

Experiment 2 � pvalue contra PIq2 5.676 3.431 11.450
(6.407) (7.855) (8.040)

Experiment 2 � pvalue contra PIq3 -6.669 -4.909 -12.857
(5.978) (7.652) (8.587)

Experiment 2 � Observed in part 3 0.015 -0.014 -0.510�
(0.212) (0.291) (0.265)

Experiment 2 � Observed in part 3 � value contra PI -0.188 0.260 5.740�
(2.388) (3.092) (2.928)

Experiment 2 � Observed in part 3 � pvalue contra PIq2 -0.851 -2.892 -20.983�
(7.824) (9.817) (9.942)

Experiment 2 � Observed in part 3 � pvalue contra PIq3 3.263 6.129 24.444��
(7.398) (9.319) (10.243)

Experiment 2 � Observed in part 4 0.021 0.012 -0.152
(0.198) (0.234) (0.218)

Experiment 2 � Observed in part 4 � value contra PI -0.490 0.115 1.712
(2.271) (2.726) (2.531)

Experiment 2 � Observed in part 4 � pvalue contra PIq2 1.567 -1.446 -5.881
(7.521) (9.156) (8.888)

Experiment 2 � Observed in part 4 � pvalue contra PIq3 -0.653 2.795 6.579
(7.180) (8.963) (9.438)

Experiment 2 � Unobserved -0.290 -0.521�� -0.635��
(0.192) (0.220) (0.257)

Experiment 2 � Unobserved � value contra PI 2.458 6.222�� 7.401��
(2.262) (2.567) (3.118)

Experiment 2 � Unobserved � pvalue contra PIq2 -6.214 -21.643�� -25.616��
(7.734) (8.580) (11.156)

Experiment 2 � Unobserved � pvalue contra PIq3 5.541 22.441�� 26.606��
(7.664) (8.317) (11.793)

Observations 10,315 9,041 7,982
R2 0.517 0.525 0.511

Robust standard errors in parentheses, clustered at the session level.
� (10%); �� (5%); and ��� (1%) significance level.

Table 8: Frequency to contradict private information (OLS)
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Previous Cascade Game Experiments

As explained in the main text, we compare the responses to value contra PI in the short (T ¤ 6) and

long cascade games contained in the meta-dataset of Ziegelmeyer, March, and Krügel (2013). The meta-

dataset includes 14 information cascade experiments which are variations of Anderson and Holt’s (1997)

seminal experiment. Using the split-sample IV method, we regress the proportion to contradict private

information against a cubic polynomial in value contra PI fully interacted with an indicator variable for

long sequences of participants in the cascade game. Robust standard errors are clustered at the group

level since several distinct groups of participants might play the cascade game in a given experimental

session. Table 9 reports the regression results for three different sitcount levels.

sitcount ¥ 1 sitcount ¥ 10 sitcount ¥ 20
Constant 0.059� 0.090��� 0.109���

(0.033) (0.017) (0.016)

value contra PI1 -0.917�� -1.000��� -1.271���
(0.379) (0.229) (0.203)

pvalue contra PI1q
2 3.651��� 3.447��� 4.367���

(1.108) (0.742) (0.612)

pvalue contra PI1q
3 -1.469� -0.994 -1.813���

(0.885) (0.627) (0.482)

Long sequences -0.010 -0.036 -0.068���
(0.037) (0.023) (0.020)

Long sequences � value contra PI1 -0.265 -0.131 0.523�
(0.499) (0.399) (0.318)

Long sequences � pvalue contra PI1q
2 0.481 0.432 -1.722�

(1.500) (1.265) (1.016)

Long sequences � pvalue contra PI1q
3 -0.602 -0.746 0.987

(1.152) (0.980) (0.793)

Observations 21,775 16,697 13,872
R2 0.214 0.325 0.342

Robust standard errors in parentheses, clustered at the group level.
� (10%); �� (5%); and ��� (1%) significance level.

Table 9: Frequency to contradict private information in prior cascade game experiments

The fitted line for short sequences of participants goes through (0.5, 0.329) and (0.597, 0.5) if

sitcount ¥ 1, it goes through (0.5, 0.328) and (0.592, 0.5) if sitcount ¥ 10, and it goes through (0.5, 0.339)

and (0.587, 0.5) if sitcount ¥ 20. For each sitcount level, the vertical distance between the fitted line and

(0.5, 0.5) is strongly significant which indicates that participants in short games are reluctant to contra-

dict their private information when monetary incentives to follow others are weak. Moreover, the fitted

line for long games goes through (0.5, 0.231) and (0.678, 0.5) if sitcount ¥ 1, it goes through (0.5, 0.241)

and (0.662, 0.5) if sitcount ¥ 10, and it goes through (0.5, 0.226) and (0.682, 0.5) if sitcount ¥ 20. And

the vertical distance between the fitted line for long games and (0.597, 0.5) (respectively (0.592, 0.5) and

(0.587, 0.5)) is strongly significant if sitcount ¥ 1 (respectively sitcount ¥ 10 and sitcount ¥ 20). Thus,

observational learning is significantly more informative in long than in short sequences of participants in

previous cascade experiments.
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D.3. Information Aggregation

In the main text we consider the case where the size of large majorities equals 3 or more and every

guessing situation for which value contra PI can be computed is included (i.e. sitcount ¥ 1). Table 10

reports the regression results discussed in the main text as well as robustness checks with sitcount ¥ 10

and sitcount ¥ 20. The restriction to subsets of data where value contra PI is measured more precisely

has the unfortunate consequence that guessing situations which generate large majorities are sometimes

missing in the second experiment.

sitcount ¥ 1 sitcount ¥ 10 sitcount ¥ 20

Constant 0.330��� 0.328��� 0.332���
(0.007) (0.007) (0.007)

Large Favoring Majorities -0.176��� -0.173��� -0.176���
(0.005) (0.007) (0.007)

Large Contrary Majorities 0.248��� 0.250��� 0.241���
(0.010) (0.008) (0.007)

Part 3 � Moderate Majorities 0.005 0.002 -0.001
(0.009) (0.009) (0.010)

Part 3 � Large Favoring Majorities -0.019� -0.038��� -0.045���
(0.011) (0.002) (0.001)

Part 3 � Large Contrary Majorities 0.039��� 0.063��� 0.094���
(0.008) (0.009) (0.001)

Part 4 � Moderate Majorities 0.011 0.011 0.004
(0.012) (0.010) (0.010)

Part 4 � Large Favoring Majorities -0.045��� -0.048��� -0.050���
(0.002) (0.002) (0.001)

Part 4 � Large Contrary Majorities 0.093��� 0.109��� 0.114���
(0.007) (0.003) (0.001)

Experiment 2 � Part 2 � Moderate Majorities -0.006 -0.007 -0.025��
(0.011) (0.010) (0.009)

Experiment 2 � Part 2 � Large Favoring Majorities -0.023��� -0.026��� -0.018���
(0.007) (0.007) (0.001)

Experiment 2 � Part 2 � Large Contrary Majorities 0.023 0.039��� —
(0.021) (0.002)

Experiment 2 � Part 3 � Moderate Majorities 0.005 0.012 0.011
(0.008) (0.009) (0.009)

Experiment 2 � Part 3 � Large Favoring Majorities -0.008 0.002 —
(0.011) (0.003)

Experiment 2 � Part 3 � Large Contrary Majorities 0.027� 0.004 -0.030���
(0.014) (0.010) (0.003)

Experiment 2 � Part 4 � Moderate Majorities -0.002 -0.003 -0.004
(0.010) (0.009) (0.010)

Experiment 2 � Part 4 � Large Favoring Majorities -0.026��� -0.026��� -0.039���
(0.007) (0.005) (0.000)

Experiment 2 � Part 4 � Large Contrary Majorities 0.069��� 0.076��� —
(0.020) (0.011)

Observations 7,068 6,224 5,288
Cluster 15 15 15

R2 0.428 0.447 0.320

Robust standard errors are clustered at the session level.
� (10%); �� (5%); and ��� (1%) significance level.

Table 10: The Empirical Value of Contradicting Private Information (size of large majorities is 3 or more)

The regression results show that, for each subset of data in the first experiment, large majorities

aggregate significantly more information in later parts of sessions whereas moderate majorities never

contain any valuable information on average. On the other hand, the level of sitcount slightly affects

the difference between the two experiments in the amount of information aggregated by large contrary
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majorities. Compared to part 2 in Experiment 1, large contrary majorities in part 2 of Experiment 2

aggregate non-significantly more information when sitcount ¥ 1 and they aggregate significantly more

information when sitcount ¥ 10 at the 1% level (there is no guessing situation which generates large

contrary majorities in part 2 of Experiment 2 when sitcount ¥ 20). Compared to part 3 in Experiment

1, large contrary majorities in part 3 of Experiment 2 aggregate significantly more information when

sitcount ¥ 1 at the 10% level, they aggregate non-significantly more information when sitcount ¥ 10,

and they aggregate significantly less information when sitcount ¥ 20 at the 1% level.

Table 11 reports robustness checks where the size of large majorities equals 4 or more. With a higher

threshold on the size of large majorities, even less guessing situations which generate large majorities are

available as value contra PI is measured more precisely.

sitcount ¥ 1 sitcount ¥ 10 sitcount ¥ 20

Constant 0.332��� 0.329��� 0.333���
(0.009) (0.009) (0.008)

Large Favoring Majorities -0.181��� -0.175��� -0.173���
(0.007) (0.009) (0.008)

Large Contrary Majorities 0.248��� 0.249��� 0.234���
(0.010) (0.010) (0.008)

Part 3 � Moderate Majorities 0.005 0.003 -0.001
(0.011) (0.012) (0.011)

Part 3 � Large Favoring Majorities -0.018� -0.039��� -0.047���
(0.010) (0.002) (0.000)

Part 3 � Large Contrary Majorities 0.042��� 0.062��� 0.094���
(0.006) (0.007) (0.000)

Part 4 � Moderate Majorities 0.013 0.014 0.008
(0.015) (0.013) (0.013)

Part 4 � Large Favoring Majorities -0.043��� -0.045��� -0.047���
(0.003) (0.002) (0.000)

Part 4 � Large Contrary Majorities 0.101��� 0.112��� 0.131���
(0.010) (0.007) (0.000)

Experiment 2 � Part 2 � Moderate Majorities -0.011 -0.016 -0.036���
(0.012) (0.011) (0.011)

Experiment 2 � Part 2 � Large Favoring Majorities -0.006 -0.009��� -0.018���
(0.004) (0.002) (0.000)

Experiment 2 � Part 2 � Large Contrary Majorities 0.011�� — —
(0.004)

Experiment 2 � Part 3 � Moderate Majorities 0.011 0.018 0.032���
(0.010) (0.012) (0.011)

Experiment 2 � Part 3 � Large Favoring Majorities -0.013 -0.003 —
(0.009) (0.003)

Experiment 2 � Part 3 � Large Contrary Majorities 0.034��� 0.014 —
(0.011) (0.009)

Experiment 2 � Part 4 � Moderate Majorities -0.005 -0.006 -0.019
(0.013) (0.012) (0.013)

Experiment 2 � Part 4 � Large Favoring Majorities -0.029��� -0.029��� —
(0.007) (0.007)

Experiment 2 � Part 4 � Large Contrary Majorities 0.072��� 0.121��� —
(0.023) (0.005)

Observations 7,068 6,224 5,288
Cluster 15 15 15

R2 0.227 0.214 0.102

Robust standard errors are clustered at the session level.
� (10%); �� (5%); and ��� (1%) significance level.

Table 11: The Empirical Value of Contradicting Private Information (size of large majorities is 4 or more)

Like in Table 10, the regression results in Table 11 show that, for each subset of data in the first

48



experiment, large majorities aggregate significantly more information in later parts of sessions whereas

moderate majorities never contain any valuable information on average. And in terms of differences

between the two experiments the results are also qualitatively similar for the two thresholds except that

for the higher threshold the difference is non-significant for large favoring majorities in part 2 when

sitcount ¥ 1 and it is significant for large contrary majorities in part 2 when sitcount ¥ 1.

In sum, we obtain the same qualitative results for each subset of data and the two minimum thresholds

of the large majority size in the first experiment. Similarly, large majorities in part 4 always aggregate

significantly more information in Experiment 2 than in Experiment 1. However, differences between the

two experiments in parts 2 and 3 are less robust to the minimum thresholds of the large majority size or

sitcount.
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Appendix E. Instructions

E.1. General Instructions

Welcome to the experiment!

Please do not touch the mouse and do not open the envelope until you are instructed to do so.

This is an experiment in decision-making and all your decisions will be treated in an anonymous way.

From now on, we ask you to remain seated quietly at your computer desk. Please do not talk, exclaim,

or try to communicate with other participants during the experiment. Participants who intentionally

violate this rule will be asked to leave the experiment without being financially compensated. If you have

any questions during the experiment, please raise your hand and wait for an experimenter to come to

you.

Your earnings will depend partly on your decisions and partly on chance. In addition to the earnings

from your decisions, you will receive 3 Euros. This payment is to compensate you for showing up on

time. At the end of the experiment the total amount of money that you have earned will be paid to you

privately in cash.

Setting of the experiment

In the experiment, there are two roles: observed and unobserved.

7 participants have been assigned randomly to the role of observed. All 8 remaining participants have

been assigned to the role of unobserved. Each participant remains in the same role for the entire duration

of the experiment.

The experiment consists of 4 parts. Instructions for the first part of the experiment will be distributed

in a few moments. We ask you to read the instructions for the first part of the experiment carefully, and

once each participant has done so an experimenter will read them aloud. After the instructions for the

first part of the experiment have been read aloud, you will be informed about the role you have been

assigned to, observed or unobserved. Instructions for the second, third, and fourth part of the experiment

will be made available before each of the respective parts begins.

50



E.2. Instructions for Part 1

Part 1 of the experiment consists of 3 independent rounds and each round is conducted in the same way.

A. How a round progresses

1. The assistant picks either BLUE or ORANGE at random.

Each round begins with the assistant picking either the color BLUE or the color ORANGE

at random. You and all other participants have just been instructed about the picking procedure which

is as follows:

1. An experimenter shuffles a deck of 20 cards and lays them down on a table with the back of the

cards facing the assistant. 11 cards have a blue front and 9 cards have an orange front.

2. The assistant picks 1 card out of the 20 cards.

• If the picked card has a blue front then the color picked at random is BLUE.

• If the picked card has an orange front then the color picked at random is ORANGE.

In each round your task, which is also the task of each of the other participants, is to guess which

color has been picked at random by the assistant.

2. The assistant selects the “OBSERVED” and “UNOBSERVED” urns

Once a color has been picked at random, the assistant selects an urn labeled “OBSERVED” and an

urn labeled “UNOBSERVED” from a collection of urns containing blue and orange balls.

The composition of the urn labeled “OBSERVED” depends only on the color which has been picked

at random by the assistant. The composition of the urn labeled “OBSERVED” is

In case the color BLUE has been picked, In case the color ORANGE has been picked,

the “OBSERVED” urn contains the “OBSERVED” urn contains

14 blue and 7 orange balls. 7 blue and 14 orange balls.

The composition of the urn labeled “UNOBSERVED” also depends only on the color picked at random

by the assistant. The composition of the urn labeled “UNOBSERVED” is

In case the color BLUE has been picked, In case the color ORANGE has been picked,

the “UNOBSERVED” urn contains the “UNOBSERVED” urn contains

14 blue balls and 7 orange balls. 7 blue balls and 14 orange balls.

3. Each participant learns the color of 1 ball

Once the “OBSERVED” and “UNOBSERVED” urns have been selected by the assistant, each ob-

served is informed about the color of a ball drawn from the “OBSERVED” urn whereas each unobserved

is informed about the color of a ball drawn from the “UNOBSERVED” urn. Concretely,

• one of the experimenters approaches each observed, one at a time, to draw a ball from the “OB-

SERVED” urn. Each observed draws a ball without being able to see the composition of the

“OBSERVED” urn. After each draw, the ball is returned to the urn before making the next draw.

Apart from the participant who draws the ball, no other participant sees its color. Thus, each

observed is informed about the color of 1 and only 1 ball drawn from the “OBSERVED” urn.
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• another experimenter approaches each unobserved, one at a time, to draw a ball from the “UNOB-

SERVED” urn. Each unobserved draws a ball without being able to see the composition of the “UN-

OBSERVED” urn. After each draw, the ball is returned to the urn before making the next draw.

Apart from the participant who draws the ball, no other participant sees its color. Thus, each

unobserved is informed about the color of 1 and only 1 ball drawn from the “UNOBSERVED” urn.

4. Each participant makes a guess

Each round consists of 8 guessing periods with one observed making a guess in each of the first seven

periods and one unobserved making a guess in each of the eight periods. Thus, each participant makes one

and exactly one guess in each round.

In each round the order in which observed make their guesses is randomly determined. If you have

been assigned to the role of an observed then, in a given round, you might be the first observed to make

a guess, or you might guess in any period from period 2 to period 6, or you might be the last observed

to make a guess.

Similarly, in each round the order in which unobserved make their guesses is randomly determined.

If you have been assigned to the role of an unobserved then, in a given round, you might be the first

unobserved to make a guess, or you might guess in any period from period 2 to period 7, or you might

be the last unobserved to make a guess.

First guessing period. In period 1, 1 observed and 1 unobserved are asked to guess which color

has been picked at random by the assistant. Once both guesses have been made, period 2 starts. The

observed and the unobserved who made a guess in period 1 do not make any further guess in the current

round.

Guessing period 2 to 7. In period 2 to 7, the guess made by the observed in the previous period is

made public meaning that all other observed as well as all unobserved are informed of that guess. After

that, 1 observed and 1 unobserved are asked to guess which color has been picked at random by the

assistant. Both participants do not make any further guess in the current round. Once both guesses have

been made, the next period starts.

Last guessing period. In period 8, the guess made by the observed in period 7 is made public

and only the unobserved who did not make a guess yet is asked to guess which color has been picked at

random by the assistant.

Please note that the guess made by each of the unobserved is kept private meaning that no other

unobserved and no observed is informed of the guess made by any of the unobserved.

Once each participant has made a guess, you and each of the other participants are informed of

the color that was actually picked at random by the assistant at the beginning of the round. Once all

participants have been informed, the round is over.

B. Earnings

In each of the 3 independent rounds, participants get paid for the guess they make. If the partici-

pant’s guess matches the color picked at random by the assistant, the participant earns 1 Euro. If the

participant’s guess does not match the color picked at random by the assistant, the participant earns

nothing.

Once the 3 independent rounds have been completed, participants are informed of the total amount

of euros they earned in the first part of the experiment.
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E.3. Instructions for Part 2

The second part of the experiment shares many similarities with the first part of the experiment. Still,

the two parts of the experiment differ in some respects.

Hereafter, we explain thoroughly the aspects of the second part of the experiment which were not

present in the first part of the experiment. On the other hand, the aspects of the second part of the

experiment which were already present in the first part of the experiment are merely mentioned without

much detail.

Part 2 of the experiment consists of 6 independent rounds and each round is conducted in the same

way.

A. How a round progresses

1. The assistant picks either BLUE or ORANGE at random

Each round begins with the assistant picking either the color BLUE or the color ORANGE

at random. The picking procedure used in part 2 of the experiment is identical to the picking procedure

used in part 1 of the experiment.

In each round your task, which is also the task of each of the other participants, is to guess which

color has been picked at random by the assistant.

2. Each participant learns the color of 1 ball

Once a color has been picked at random by the assistant, each observed is informed about the color

of a ball drawn from the “OBSERVED” virtual urn whereas each unobserved is informed about the color

of a ball drawn from the “UNOBSERVED” virtual urn.

Detailed explanations about the drawing of balls from virtual urns will be displayed on the screen of

your computer after all participants have finished reading these two pages.7

3. Each participant makes guesses

In each round, after having learned the color of 1 ball, each participant has to guess which color has

been picked at random by the assistant. Each round consists of 8 guessing periods.

• In each round, an observed makes between 1 and 7 guesses.

• In each round, each unobserved makes 8 guesses.

First guessing period. In period 1, all 7 observed and all 8 unobserved are asked to guess which

color has been picked at random by the assistant. Once all 15 guesses have been made, period 2 starts.

Guessing period 2. At the beginning of period 2, the guess made by 1 of the 7 observed in period

1 is selected at random and this guess is shown to all 15 participants. The observed whose guess is

randomly selected does not make any further guess in the current round. Therefore, only 6 observed

remain who can guess in period 2. Afterwards, all 6 remaining observed and all 8 unobserved are asked

to guess which color has been picked at random by the assistant. Once all 14 guesses have been made,

period 3 starts.

Guessing periods 3, 4, 5, and 6. At the beginning of the period, the guess made by 1 of the

observed in the previous period is selected at random and this guess is shown to all 15 participants.

The observed whose guess is randomly selected does not make any further guess in the current round.

7The short on-screen demonstration of the draws from the virtual urns is available from the authors upon request.
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Afterwards, all remaining observed and all 8 unobserved are asked to guess which color has been picked

at random by the assistant. Once all guesses have been made, the next period starts.

Guessing period 7. At the beginning of period 7, the guess made by 1 of the 2 observed in period 6

is selected at random and this guess is shown to all 15 participants. The observed whose guess is randomly

selected does not make any further guess in the current round. Therefore, only 1 observed remains who

can guess in period 7. Afterwards, the observed and all 8 unobserved are asked to guess which color has

been picked at random by the assistant. Once all 9 guesses have been made, period 8 starts.

Last guessing period. At the beginning of period 8, the guess made by the observed in period 7

is shown to all 15 participants. The observed who guessed in period 7 does not make a guess in period

8. Therefore, only the 8 unobserved are asked to guess which color has been picked at random by the

assistant.

Please note that the guesses made by each of the unobserved are kept private meaning that no other

unobserved and no observed is informed of the guesses made by any of the unobserved.

Once all participants have made all their guesses, you and each of the other participants are informed

of the color that was actually picked at random by the assistant at the beginning of the round. Once all

participants have been informed, the round is over.

B. Earnings

In each of the 6 independent rounds, each participant gets paid for 1 and only 1 of the guesses made. If

the participant’s guess matches the color picked at random by the assistant, the participant earns 1 Euro.

If the participant’s guess does not match the color picked at random by the assistant, the participant

earns nothing.

1. For each observed, only the last guess is paid.

Each observed gets paid only for the last guess he/she made in the round. Said differently, the

guess of an observed is paid only in case the guess is made public meaning that it is observed

by all 15 participants. Obviously, at the time a guess is made, an observed does not know whether

the guess is going to be made public or not. So, for each guess that an observed makes, there is a

chance that this guess is the one which is going to be paid.

2. For each unobserved, only the guess of the assigned period is paid.

In each of the 6 independent rounds, each unobserved makes a guess in each period for a total of

8 guesses. Once each of the unobserved has made 8 guesses, the round is over. As soon as the

round is over, each of the 8 unobserved is assigned a period number from 1 to 8. Concretely, one of

the unobserved is assigned to period 1, another unobserved is assigned to period 2, ..., and another

unobserved is assigned to period 8. The assignment is completely random meaning that the guesses

made by the unobserved do not influence the period numbers assigned to them. An unobserved gets

paid only for the guess made in the assigned period. Obviously, before having made all 8 guesses,

an unobserved does not know which period number is assigned to her/him. So, each guess that an

unobserved makes has an equal chance of being paid.

Once the 6 independent rounds have been completed, participants are informed of the total amount

of euros they earned in the second part of the experiment.
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E.4. Instructions for Part 3

Part 3 of the experiment consists of 6 independent rounds. Each round proceeds the same way as in part

2 except that

In case the color BLUE has been picked, In case the color ORANGE has been picked,

the “UNOBSERVED” urn contains the “UNOBSERVED” urn contains

18 blue balls and 3 orange balls. 3 blue balls and 18 orange balls.

Once the 6 independent rounds have been completed, participants are informed of the total amount

of euros they earned in the third part of the experiment.

E.5. Demographic Questionnaire

1. What is your field of study?

2. When were you born? (Month/Year)

3. Your gender: l Female l Male

To know our subject pool better, it would be helpful to learn about your cultural background. We

thus ask you to also answer the following questions.

4. What is your first language?

(By first language we mean the language you have mainly spoken during your childhood or at your

family home.)

5. What is your nationality?

E.6. Instructions for Part 4

Part 4 of the experiment consists of 6 independent rounds. Each round proceeds the same way as in part

3 except that

In case the color BLUE has been picked, In case the color ORANGE has been picked,

the “UNOBSERVED” urn contains the “UNOBSERVED” urn contains

12 blue balls and 9 orange balls. 9 blue balls and 12 orange balls.

Once the 6 independent rounds have been completed, participants are informed of the total amount

of euros they earned in the course of the experiment.
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