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1 Introduction

In many economic settings with observable actions, individuals with limited information

about a payoff-relevant state of nature benefit from learning from the actions of other indi-

viduals. Such social-learning has been identified among others in financial and microloan

markets and with respect to consumption of experience goods like movies or restaurant

meals (Cipriani and Guarino, 2014; Zhang and Liu, 2012; Moretti, 2011; Cai et al., 2009).

Beginning with Bikhchandani et al. (1992) and Banerjee (1992), an extensive research

program has investigated rational social-learning. This literature assumes that individuals

are rational, form beliefs using Bayes’ rule, and possess common strategic and structural

knowledge meaning that Bayesian rationality and the structure of the social-learning

setting are commonly known. If the set of actions is discrete, rational social-learning leads

individuals to eventually herd on an action. As a consequence, information aggregation

fails spectacularly and the economic outcome is inefficient.1

Despite the many important insights it delivers, rational social-learning also reaches

some unsound conclusions. For instance, even in a long herd, individuals never (or only

very slowly) become extremely confident in the correctness of the chosen action. Moreover,

if an individual with very precise information goes against the herd, her decision overturns

it since her successors correctly infer the precise information (Smith and Sørensen, 2000).

Many of these conclusions hinge upon the models’ strong underlying assumptions.

Though (commonly known) rationality can be criticized on many grounds, the present

paper mainly investigates the implications of assuming that individuals possess structural

knowledge. In particular, I question the assumption that the information structure, i.e.

the distribution of private information, is commonly known. Common knowledge of the

information structure is innocuous only if a “physical” ex ante procedure generates private

information (Dekel and Gul, 1997). For example, if the state of nature is the amount of

oil in some tract and firms’ private information results from taking soil samples, published

experiments provide a thorough understanding of both the prior likelihood of oil and the

distribution of samples as a function of the oil in the tract (Hendricks and Kovenock, 1989).

On the other hand, fueled by the rapid diffusion of Internet technologies, there are many

important economic settings where interaction is anonymous and information sources

are wide and dispersed. For example, lenders in online peer-to-peer lending markets

successfully use “soft” information – such as written statements of borrowers about the

1Social-learning is efficient only if individuals choose from a continuum of actions and are rewarded
according to the proximity of their action to the most profitable one (Lee, 1993). If the set of actions is
discrete and private signals are of bounded strength, rational social-learning quickly stops, and individuals
herd on a wrong action with positive probability (Banerjee, 1992; Bikhchandani et al., 1992). With a
discrete set of actions and unbounded private signals, the correct action is chosen asymptotically, but
information aggregation is often extremely slow and long herds still emerge (Smith and Sørensen, 2000).
The results carry over to social-learning settings with general observation structures (Smith and Sørensen,
2008; Acemoglu et al., 2011) and settings with an informationally efficient price process and a sufficiently
rich information structure (Avery and Zemsky, 1998; Park and Sabourian, 2011).
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reasons for the loan application – to predict the creditworthiness of borrowers (Iyer et al.,

2015; Lin et al., 2013).2 Furthermore, some decision settings are characterized by an

abundance of diverging information (Heal and Millner, 2014).

In the absence of common knowledge of the information structure, individuals are

unable to deduce the informational content of the actions they observe. My main as-

sumption is that repeated interaction enables individuals to acquire an understanding of

the information conveyed by observed actions. Specifically, individuals repeatedly interact

in social-learning settings and they get feedback about the state of nature and the actions

of others after each repetition. They use this feedback to assess conditional probabilities

of a given history of actions, conditional on each possible state of nature. For a given

history and state, the conditional probability is assessed by the relative frequency with

which this history occurred across past repetitions in which the given state was realized.

I further assume that relative frequencies for each state are combined according to Bayes’

rule with private information, and that individuals pick the action which maximizes their

expected payoff in the current repetition. Accordingly, individuals are myopic because

they ignore repeated-game considerations.

The paper analyzes the long-run outcome of the above defined adaptive process. Yet, in

real-world environments individuals are unlikely to encounter exactly the same strategic

setting many times. I therefore assume that repeated interactions take place in several

different social-learning settings. I focus on settings which differ only with respect to the

information structure.

The first result of the paper establishes sufficient conditions under which long-run

behavior mimics rational social learning: First, individuals are able to distinguish settings

and second, the state of nature is revealed after each repetition (Proposition 1). The

subsequent analysis proves that these assumptions are also necessary. First, I analyze how

limited feedback regarding the state of nature affects adaptation. In particular, the state

may not be revealed unless a certain action is taken (e.g. a good is bought or an investment

is realized). As a consequence, individuals are likely to excessively imitate actions whose

payoffs cannot reveal the state (Proposition 2). Such imitation may be based on no

information at all. This explains why people are susceptible to following false prophets,

joining cults, or relying on anecdotal reasoning. Second, I study the long-run outcome

of adaptation across settings. Individuals adapt across settings if they use the feedback

from past repetitions regardless of the respective social-learning setting. This may stem

from an inability to distinguish settings or a desire to rely on a larger amount of feedback.

I show (in Proposition 3) that the long-run outcome of adaptation across settings is

captured by an analogy-based expectations equilibrium (Jehiel, 2005). In equilibrium,

individuals bundle the decision situations of others into analogy classes and have a correct

understanding of average behavior in each class. In the present setting, bundling leads

2See Oberlechner and Hocking (2004), Kulkarni et al. (2012) for further examples.
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to systematically biased inferences from observed actions. Therefore, long-run behavior

does not maximize individuals’ (ex ante) expected payoffs (Proposition 4), and herding

may spill-over from one social-learning setting to another. Moreover, adaptation across

settings renders Bayes’ rule payoff inferior compared to non-Bayesian belief updating rules:

Individuals with the most precise private information benefit from overweighting private

information relative to others’ actions. Conversely, individuals with the least precise

private information benefit from underweighting private information (Proposition 5).

The results of the paper provide several new insights: First, the results clarify when

and why the assumptions underlying rational social-learning are justified. Second, the

results suggest that belief updating rules are likely to be heterogeneous in the population

when individuals are unable to distinguish social-learning settings. This provides an ex-

planation for corresponding empirical findings (see e.g. Palfrey and Wang, 2012). Third,

the results straightforwardly lead to a behavioral model of social-learning with heteroge-

neous belief updating rules which is able to accommodate the experimental regularities

on social-learning. Numerous laboratory studies have established that herds emerge later

than predicted by rational social-learning and that the length and strength of herds are

positively correlated (e.g. Kübler and Weizsäcker, 2004, 2005; Goeree et al., 2007). In

particular, individuals become extremely confident even in wrong actions. Though the

experiments have stimulated an active behavioral literature (see below), none of the alter-

native theories organizes well the bulk of the experimental evidence. A behavioral model

of social-learning with flexible belief updating rules accommodates the experimental reg-

ularities and is also able to capture more recent evidence of a ‘social-confirmation’-bias

among participants in a social-learning experiment with a richer information structure

(March and Ziegelmeyer, 2015).

The paper relates to a growing literature on social-learning with bounded rationality.

It complements the analysis of Guarino and Jehiel (2013) who assume that individuals

only understand the relation between the aggregate distribution of actions and the state

of nature. This correct understanding is assumed to emerge from an adaptive process with

limited feedback. The two papers therefore characterize the long-run outcome of adapta-

tion under different feedback regimes. The present paper also suggests a re-interpretation

of Bohren (2015) who assumes that (i) a fraction of individuals are socially uninformed

and decide based only on their private signals, and (ii) other individuals misperceive

the exact proportion of uninformed predecessors. Based on the results presented here,

Bohren’s (2015) model may be re-interpreted as a social-learning model with (a specific

form of) heterogeneous belief updating rules and a non-common prior.3 Finally, the näıve

inference model of Eyster and Rabin (2010), in which individuals believe that the action

of each previous individual reveals that individual’s private information, can be seen as

3See also Bernardo and Welch (2001) and Kariv (2005)both of which introduce individuals who over-
weight their private information into the standard model of social-learning.

4



an alternative model of initial behavior.

A recurrent issue in the literature has been the emergence of extreme confidence in

wrong beliefs (Eyster and Rabin, 2010; Guarino and Jehiel, 2013). This confidence cannot

emerge in models of rational social-learning, but it has been repeatedly observed in the

laboratory and in the field. A social-learning model with belief updating heterogeneity

is able to predict extreme, false beliefs alongside a delayed formation of herds, which has

been consistently found in the lab as well.

The paper is structured as follows. Section 2 outlines the results of the paper with the

help of a simple example. Section 3 introduces the analytical framework, discusses rational

social-learning, and formalizes adaptation. Section 4 characterizes the long-run outcome

of adaptation under different assumptions regarding individuals’ feedback. Section 5

introduces a model of social learning based on heterogeneous belief updating and discusses

its relation to the adaptation results. Section 6 presents extensions of the model towards

heterogeneous preferences and an endogeneous timing of decisions. Section 7 concludes.

The appendix contains the proofs and some additional analyses.

2 A Simple Example

Consider the following social-learning game with two players: Anna and Bob decide in

sequence whether or not to invest. Anna decides first, and Bob decides after having

observed Anna’s decision. Payoffs from investing and, respectively, rejecting are identical

for both players. The investment payoff θ takes values 0 and 1 with equal probability, the

cost of an investment is c = 1/2, and the payoff from rejection is zero. Before deciding,

each player i ∈ {A,B} observes a symmetric, binary private signal si ∈ S = {0,1} where

Pr (si = 0 ∣ θ = 0) = Pr (si = 1 ∣ θ = 1) = qi ∈ (0.5,1) denotes the signal precision of player i.

Signals are independent conditional on the state θ.

I will assume throughout that Anna is Bayes-rational which implies that her dominant

strategy is to reject if sA = 0 and to invest if sA = 1.

2.1 Rational Social-Learning

In this example, the assumptions of rational social-learning entail that (i) not only Anna

but also Bob is Bayes-rational, (ii) Bob knows that Anna is Bayes-rational, i.e. he pos-

sesses strategic knowledge, and (iii) both Anna and Bob know the payoff function and

the signal precisions qA and qB, i.e. they possess structural knowledge. Bob’s knowl-

edge implies that he identifies Anna’s decision to invest (reject) with the signal sA = 1

(sA = 0). Accordingly, Bob’s likelihood ratio, i.e. the ratio of probabilities he assigns

to the investment payoff being 1 versus 0 given signal sB ∈ {0,1} and Anna’s action
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xA ∈ {invest, reject} is given by

λ (sB, xA) =
Pr (θ̃ = 1 ∣ sB, xA)
Pr (θ̃ = 0 ∣ sB, xA)

= Pr (sB ∣ θ = 1)
Pr (sB ∣ θ = 0)

⋅
⎧⎪⎪⎨⎪⎪⎩

qA
1−qA

if Anna invests
1−qA
qA

if Anna rejects
.

Bob invests (rejects) if λ (sB, xA) > (<)1. Therefore, Bob follows his private signal if it

confirms Anna’s decision (Anna invests and sB = 1, or Anna rejects and sB = 0). On the

other hand, if Anna’s decision contradicts his private signal, Bob follows his private signal

if qB > qA and imitates Anna’s decision if qB < qA.4

2.2 Adaptive Social-Learning

Contrary to rational social-learning, adaptive social-learning assumes that individuals

do not possess strategic or structural knowledge, but interact repeatedly. Since Bayes-

rational Anna has the dominant strategy to follow her private signal, only Bob’s behavior

differs between the two approaches. Concretely, I make the following assumptions: Anna

and Bob repeatedly play the social-learning game in rounds r = 1,2, . . .. In each round,

a new investment payoff is determined randomly and independently from the investment

payoff in previous rounds. Players learn the realized investment payoff at the end of

a round. This enables Bob to track the relationship between Anna’s decision and the

investment payoff, i.e. he keeps counts of how often Anna invests and rejects when the

investment payoff is 1 and when it is 0. Finally, both players are Bayes-rational and

myopically maximize their expected payoff in the current round.

The long-run outcome of the above defined adaptive process is easily derived: Myopic

Anna follows her private signal in each round. Therefore, the relative frequency with

which Anna invests when the investment payoff equals 1 (respectively 0) approaches qA

(respectively 1 − qA). As Bob tracks this relative frequency, he eventually infers the

same information from Anna’s decision as he could deduce when possessing strategic and

structural knowledge. Hence, Bob eventually plays his unique rationalizable strategy.

In summary, the adaptive social-learning outcome coincides with the rational social-

learning outcome.

2.3 Adaptive Social-Learning Across Games

Real-world social-learning is likely to take place in a multitude of settings and individuals

are unlikely to distinguish those settings in their finest details. I therefore investigate

whether adaptive social-learning also leads to rational social-learning when players must

simultaneously adapt to multiple games.

I assume the following: Anna and Bob repeatedly play two different social-learning

4I omit the case qA = qB for which rational social-learning makes no clear-cut prediction.
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games. The games differ only with respect to the private signal precisions. In game

k ∈ {H,L} the signal precision of player i ∈ {A,B} is qki ∈ (0.5,1) where qLA < qHA without

loss of generality. In each round, the game to be played is determined randomly and

independently of previous rounds; both games are equally likely. As before, Bob tracks

the relation between Anna’s decision and the realized investment payoff across rounds.

However, Bob does not distinguish the games, i.e. he keeps single counts of how often

Anna invests and rejects when the investment payoff is 1 and when it is 0, and he uses

them to learn from Anna’s decision in both games.

As before, Anna follows her private signal in each round and each game. Because each

game occurs on average in half of the rounds, the relative frequency with which Anna

invests when the investment payoff equals 1 (resp. 0) approaches qA = 1
2 (qLA + qHA ) (resp.

1− qA) across the two games. Since Bob does not distinguish the two games, this relative

frequency eventually guides his behavior. Accordingly, Bob eventually follows his private

signal in game k if qKB > qA, and he eventually imitates Anna’s decision if qkB < qA.

Obviously, Bob’s long-run behavior when he adapts across games is not optimal in game

L (resp. H) if qLA < qLB < qA (resp. qA < qHB < qHA ). Moreover, Bob’s long-run behavior may

not maximize his ex ante expected payoff from the randomly selected social-learning game.

Consider for instance two games such that signal precisions are low (high) in game L (H)

since information is scarce (abundant). If Bob’s signal precision is higher than Anna’s in

each game (qkB > qkA for each k), but Anna’s average signal precision is higher than Bob’s

signal precision in game L (qA > qLB), Bob suboptimally imitates Anna’s decision in game

L in the long-run. Equivalently, Bob suboptimally follows his private signal in game H

in the long-run, if qkB < qkA for each k and qHB > qA.

So far, I have assumed that players update beliefs according to Bayes’ rule. A more

general adaptive process allows players to also grope for the optimal response to beliefs. I

therefore extend the adaptive process by considering flexible belief updating rules where

Bob’s generalized likelihood ratio given signal sB and Anna’s decision xA is given by

λ̂ (sB, xA) = (Pr (sB ∣ θ = 1)
Pr (sB ∣ θ = 0)

)
βB

⋅
⎧⎪⎪⎨⎪⎪⎩

qA
1−qA

if Anna invests
1−qA
qA

if Anna rejects
.

βB > 0 denotes Bob’s private information weight. Bob is Bayesian for βB = 1, overweights

private information for βB > 1, and underweights private information for βB < 1.

If Bob has a higher signal precision than Anna in each game, adaptation across games

may lead him to eventually imitate Anna’s decision in setting L. Bob’s strategy will

therefore improve if he overweights his private signal. Equivalently, underweighting his

private signal improves Bob’s strategy, if adaptation across games leads him to subopti-

mally follow his private signal in game H. Figure 1 shows all possible combinations of

signal precisions (qLA, qHA , qLB, qHB ) ∈ (1
2 ,1)

4
for which over- or underweighting his private

signal improves Bob’s strategy. Settings with signal qualities in the blue (light blue) area
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Figure 1: Optimal Belief-Updating Rules in the Simple Example.

strictly (weakly) favor overweighting of private information, while settings with signal

qualities in the orange (light orange) area strictly (weakly) favor underweighting of pri-

vate information.5 The result indicates that optimal belief updating rules are likely to be

heterogeneous in the population.

2.4 Discussion

There are two main reasons for Bob to adapt across games. First, Bob may be unable to

distinguish games since he lacks or neglects relevant information. For instance, Anna’s

signal precision may not be known to Bob, and he may fail to recognize that his own and

Anna’s signal precision are correlated. Second, Bob’s experience is likely restricted to a

finite number of interactions in which case it may be optimal to adapt across games. Ap-

pendix B provides numerical results establishing that adaptation across games is optimal

for Bob even if it leads to systematically mistaken long-run beliefs as long as the number

of repetitions is not too large.

A second remark concerns the feedback Bob receives after each round. Indeed, the

investment payoff may not be revealed to Bob unless he invests. Assuming this changes the

long-run outcome of the adaptive process. After any finite number of rounds, Bob believes

with strictly positive probability that imitating Anna’s decision to reject regardless of his

private signal maximizes his expected payoff. At this point however, the investment payoff

is no longer revealed to Bob whenever Anna rejects. Bob is therefore unable to ever revise

his wrong inference from a rejection by Anna and he imitates this decision in the long-run.

5See Proposition A.1 in the appendix for a formal statement and the proof.
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Most importantly, this happens with strictly positive probability even if qB > qA, i.e. if it

is optimal for Bob to never imitate Anna’s decision, and if qA ≈ 0.5, i.e. if Anna does not

possess any valuable information.

3 General Analytic Framework

3.1 A Social-Learning Game

There is a finite sequence of players t = 1,2, . . . , T who each choose an action at from

the set A = {0,1}. The sequential order of players is exogeneously, randomly determined

and players are indexed according to their position. While payoff externalities are absent,

player t’s payoff from her action depends on the realization of the state of Nature (hence-

forth state) θ̃ ∈ Θ = {0,1}.6 Ex ante the two states are equally likely. More precisely,

player t’s payoff for each t = 1, . . . , T is determined by the vN-M payoff function

ut(at, θ) =
⎧⎪⎪⎨⎪⎪⎩

θ − 1
2 if at = 1

0 if at = 0
.

In the following, action a = 1 (a = 0) is sometimes referred to as “invest” (“reject”) and

the costs of the investment are set equal to 1
2 merely to simplify the exposition.7

Each player receives a private signal s̃t ∈ [0,1] about the state. Conditional on the

state, signals are independent and identically distributed. When the true state is θ,

the signal distribution is given by the cumulative distribution function Gθ. G0 and G1

are mutually absolutely continuous and have common support [b, b] ⊆ [0,1]. Therefore,

a positive, finite Radon-Nikodym derivative exists and satisfies f(s) = s
1−s (Smith and

Sørensen, 2000). To ensure that some signals are informative, I rule out f = 1 almost

surely. The assumptions imply that G0 first-order stochastically dominates G1 and that

st = Pr (θ̃ = 1 ∣ st). I assume that b > 0 and b < 1, i.e. private signals are bounded.

While player t only knows her own private signal, she observes additionally the complete

history of previous actions denoted by ht = (a1, . . . , at−1) ∈ Ht = At−1 (and h1 ≡ ∅).

Subsequently, H =
T

⋃
t=1
Ht denotes the complete set of histories, and HT+1 = AT denotes the

set of final histories with element hT+1 = (a1, . . . , aT ).
The social-learning game is summarized by the collection ⟨T,A,{ut}Tt=1,Θ, (Gθ)θ∈Θ⟩.

3.2 Rational Social-Learning

Rational social-learning relies on four main assumptions. First, players form beliefs about

the state of nature by combining all the available information using Bayes’ rule. Second,

6Throughout, tilded letters (θ̃) denote random variables and standard letters (θ) denote realizations.

7Similarly, the state and the action set are binary to simplify the exposition. The results extend to
any finite number of actions and states but at significant algebraic cost.
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players maximize their expected utility given these beliefs. I refer to the first two assump-

tions as Bayesian rationality of players. Third, Bayesian rationality is commonly known;

in other words players possess (common) strategic knowledge. Fourth, the social-learning

game is commonly known meaning that players also possess (common) structural knowl-

edge.8 The distinction between the two forms of common knowledge is important. Indeed,

the next section investigates which adaptive process generates long-run outcomes equiva-

lent to rational outcomes of social-learning when players possess strategic knowledge but

are deprived from structural knowledge.

Without loss of generality, I focus on behavioral strategies σt ∶ [b, b] × Ht → ∆ (A),
t = 1, . . . , T .9 In a slight abuse of notation, σt (st, ht) denotes player t’s probability of

investment given her private signal st and the history ht. Let Σt denote the strategy set

of player t, Σ = ⨉Tt=1 Σt the set of strategy profiles, and Σ−t = ⨉τ≠t Στ the set of profiles

of strategies for all players excluding t. The ex-ante expected payoff of player t following

strategy σt ∈ Σt for given σ−t ∈ Σ−t is given by

Ut (σt, σ−t) =
1

2
∑
θ∈Θ

∑
ht∈Ht

Pr (ht ∣ θ̃ = θ, σ)
b

∫
b

∑
a∈A

σt (a ∣ st, ht) u(a, θ)dGθ (st) . (1)

As shown by Tan and Werlang (1988), the assumptions above restrict players to iteratively

undominated strategies. Strategy σt ∈ Σt is strictly dominated if there exists σ′t ∈ Σt such

that Ut (σ′t, σ−t) > Ut (σt, σ−t) for every σ−t ∈ Σ−t. A strategy profile σ = (σt, . . . , σT ) is

iteratively undominated if each strategy σt survives the iterated elimination of strictly

dominated strategies. Lemma 1 characterizes all iteratively undominated strategies in

terms of sequential best responses to Bayesian consistent beliefs bt ∶ [b, b] ×Ht → [0,1]
where bt (st, ht) = Pr (θ̃ = 1 ∣ s̃t = st, h̃t = ht).

Lemma 1. To any iteratively undominated strategy profile σ there exists a belief system

{b∗t }
T
t=1 such that for each t = 1, . . . , T , each st ∈ [b, b], and each ht ∈Ht

(i) beliefs are formed according to Bayes’ rule, i.e.

b∗t (st, ht) =
⎡⎢⎢⎢⎢⎣
1 + 1 − st

st

Pr (ht ∣ θ̃ = 0, σ∗)
Pr (ht ∣ θ̃ = 1, σ∗)

⎤⎥⎥⎥⎥⎦

−1

if Pr (ht ∣ θ̃ = θ, σ∗) = ∏τ<t ∫
b

b σ
∗
τ (aτ ∣ sτ , hτ)dGθ(sτ) > 0 for each θ ∈ Θ where aτ =

ht(τ) and hτ ⊂ ht for each τ < t,

8See Brandenburger (1996) for a similar distinction between strategic and structural uncertainty.

9For a given set M , ∆(M) is the set of probability distributions over M .
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(ii) behavioral strategies are sequentially rational, i.e.

σ∗t (st, ht) =
⎧⎪⎪⎨⎪⎪⎩

1 if b∗t (st, ht) > 1
2

0 if b∗t (st, ht) < 1
2

.

The iteratively undominated outcome is almost always unique.10

In the following, σ∗ denotes the iteratively undominated strategy profile characterized

in the lemma. While iterated dominance does not restrict behavior in case of a tie

(b∗t (st, ht) = 1/2), ties occur with probability zero almost always. I therefore assume

henceforth that the social-learning game does not allow for ties which is why there is

no need to commit to a specific tie-breaking rule. Absent ties, iterated elimination of

dominated strategies yields a unique outcome which is also the unique (Perfect) Bayesian

equilibrium outcome.

Rational social-learning entails that players benefit individually from taking into ac-

count the information revealed by others’ actions. Collectively, however, rational social-

learning is self-defeating (Chamley, 2004b), because the more a player’s decision is influ-

enced by the actions of her predecessors (the more distinct are the probabilities Pr (ht ∣ θ, σ∗)
for θ ∈ Θ), the less new information it conveys to her successors (the more signals st ∈ S
yield the same sign of b∗t (st, ht) − 1/2). As a consequence, information aggregation slows

down or stops completely which is why the economic outcome is inefficient.

3.3 Adaptive Social-Learning

Consider a (finite) family of social-learning games ⟨T,A,u,Θ, (Gk
0,G

k
1)⟩, k ∈ K = {1, . . . ,K},

which differ only in the distribution of private signals, Gk
0 and Gk

1, with support [bk, bk].
Players are assumed not to know these distributions. They interact repeatedly over the

rounds r = 1,2, . . . where in each round one of the K games is played. Concretely, each

round r begins with the random draws of (i) the game kr where kr = k with probability

πk > 0, (ii) the state of nature θr where both states are equally likely in each round, (iii)

the sequence of private signals {srt}
T
t=1 where signals are independent across periods and

drawn according to Gkr

θr , and (iv) the order of players such that each player eventually

occupies any position in the sequence. Random draws are independent across rounds

which guarantees that learning about the state and learning about the structure of the

game and the strategies of other players are not confounded. At the end of each round,

payoffs are realized.

Adaptation through repeated interaction requires players to receive feedback after each

round. I suppose that private signals are never publicly revealed. Accordingly, for a given

player i (in an abuse of notation) the relevant outcome of the game after round r is given

10I.e. the set of parameters of the social-learning game for which there exist multiple iteratively
undominated outcomes is a null set.
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by the tuple ωri ≡ (kr, θr, tri , hrT+1) ∈ Ω ≡ K × Θ × {1, . . . , T} ×HT+1 where tri denotes the

position occupied by the player in round r.11 Following Esponda (2008), I formally capture

feedback via the functions yK ∶ Ω→ 2K, yΘ ∶ Ω→ 2Θ, and yH ∶ Ω→ 2H . When the outcome

of the game is ωr ∈ Ω, the player observes that the game kr belongs to the set yK (ωr).
Similarly, the player observes that the state θr belongs to the set yΘ (ωr) and that histories

hrt ∈ yH (ωr) where t ∈ {1, . . . , T} occurred. Let y (ωr) = (yK (ω)r , yΘ (ω)r , yH (ω)r). An

adaptation path for round r is given by ζr = (ω1, . . . , ωr−1) ∈ Ωr−1.

Since players do not know the information structure, they cannot derive the information

contained in a history ht ∈ Ht, i.e. the (game-specific) probabilities Pr (ht ∣ θ) for each

θ ∈ Θ from their knowledge. Instead, players are assumed to assess this information based

on their feedback from past interactions. Formally, for a given game k an assessment for

period t is a mapping ϕkt ∶ Θ → ∆ (Ht) assigning to each state θ ∈ Θ a probability

distribution ϕkt (ht ∣ θ) over histories ht ∈Ht.

Definition 1. Let η > 0. The adaptive process is given by a sequence of frequencies

κk,rt ∶Ht×Θ×Ωr−1 → N, a sequence of assessments ϕk,rt ∶ Θ×Ωr−1 →∆ (Ht), and a sequence

of strategic responses σk,rt ∶ [bk, bk]×Ht×Ωr−1 →∆(A) for each t = 1, . . . T and each k ∈ K,

such that

(i) for each r ≥ 1, ζr ∈ Ωr−1, k ∈ K, t = 1, . . . , T , ht ∈Ht, and θ ∈ Θ

κk,rt (ht, θ ∣ ζr) = ∣{1 ≤ ρ < r ∶ k ∈ yK (ωρ) ∧ ht ∈ yH (ωρ) ∧ θ ∈ yΘ (ωρ)}∣ , (2)

(ii) for each r ≥ 1, ζr ∈ Ωr−1, k ∈ K, t = 2, . . . , T , ht ∈Ht, and θ ∈ Θ

ϕk,rt (ht ∣ θ; ζr) =
κk,rt (ht, θ ∣ ζr) + η

∑
h′t∈Ht

[κk,rt (h′t, θ ∣ ζr) + η]
, (3)

(iii) for each r ≥ 1, ζr ∈ Ωr−1, k ∈ K, t = 1, . . . , T , ht ∈Ht, and st ∈ [bk, bk]

σk,rt (st, ht ∣ ζr) = 1 (0) if
st

1 − st
> (<) ϕ

k,r
t (ht ∣ 0; ζr)

ϕk,rt (ht ∣ 1; ζr)
. (4)

The adaptive process relies on two main assumptions:12 First, in a given round r,

period t, and game k, players form beliefs at history ht by replacing for each state θ ∈ Θ

the (unknown) conditional probability Pr (ht ∣ θ) with the relative frequency with which

history ht occurred across relevant past rounds in which the state was θ. The past rounds

used to calculate this relative frequency are determined by players’ feedback. For example,

11I assume that a player always remembers her position and I omit the subscript i henceforth.

12The adaptive process is based on the idea of fictitious play (Brown, 1951).
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players only rely on past rounds in which the same game was played if yK (ωr) = {kr}. In

contrast, players rely on past rounds regardless of the respective social-learning game if

yK (ωr) = K. Moreover, some past rounds may not be usable because the realized state

was not revealed (i.e. yΘ (ωρ) = ∅ for some ρ < r). Since the relative frequency is not

well defined if no past rounds are usable for a given couple (history,state), I assume that

players have arbitrarily small initial weights κk,1t (ht, θ ∣ ∅) = η > 0 for each k, t, ht, and θ

and I focus on the limit as η → 0. In the limit, players attach probability zero to histories

not observed previously and they believe that such histories are uninformative.

The second assumption is that players combine the relative frequencies according to

Bayes’ rule with their private signal, and that they rationally respond to the resulting

belief. This assumption entails that players are myopic, i.e. they do no engage in strategic

considerations of repeated play. In section 5, I relax the assumption that players are

Bayesian by allowing them to experiment with flexible updating rules.

One feature of the adaptive process deserves special emphasis: While a player assesses

the informational content of others’ actions using past experience, she is assumed to know

the informational content of her own private signal. The dichotomy relies on an inter-

pretation of social-learning as a process in which informed players (though imperfectly)

attempt to learn from others’ decisions. Accordingly, private information is the outcome

of an active process of information search and selection of the most credible source. In con-

trast, observed decisions are driven by unknown information sources and garbled through

others’ strategic thinking.

The adaptive process is very specific about how players form and respond to assess-

ments. More general models of adaptation stay agnostic about how players exactly reach

their decisions, allow for active experimentation, and focus on the asymptotic properties

of the adaptive process (Fudenberg and Levine, 1998). A generalization of the adaptive

process in this direction is discussed in Appendix C.

3.4 Convergence

To formalize convergence of the adaptive process I consider the following two metrics on,

respectively, the set of assessments and the strategy space:

Definition 2. Let ε > 0. For each k ∈ K and each t = 1, . . . , T

(i) assessments ϕkt , ϕ̂
k
t ∶ Θ → ∆ (Ht) are ε-close if ∣ϕkt (ht ∣ θ) − ϕ̂kt (ht ∣ θ)∣ < ε for each

ht ∈Ht and each θ ∈ Θ,

(ii) strategy σkt plays ε-like strategy σ̂kt at history ht ∈Ht if there exists Bε ⊆ [bk, bk] such

that Gk
θ (Bε) > 1 − ε for each θ ∈ Θ, and ∣σkt (st, ht) − σ̂kt (st, ht)∣ < ε for each st ∈ Bε

(Jackson and Kalai, 1997).

Lemma 2 establishes that the two distance functions are consistent meaning that ε-

closeness of assessments implies ε-like play of strategies and vice versa. To state the

13



result, call a strategy profile σk and a profile of assessments {ϕkt }
T

t=1 corresponding, if (i)

ϕkt (ht ∣ θ) = ∏
τ<t
∫
b
k

bk σ
k
t (at ∣ st, ht) dGk

θ (st) and (ii) σkt (st, ht) = 1 (0) if st
1−st

> (<) ϕ
k
t (ht∣0)

ϕkt (ht∣1)
for

each t = 1, . . . , T , each ht ∈Ht, and each st ∈ [bk, bk].

Lemma 2. Fix k ∈ K and consider the strategy profiles σk, σ̂k with corresponding assess-

ments {ϕkt }
T

t=1 and {ϕ̂kt }
T

t=1. For each t = 1, . . . , T and each ε > 0 there exists δ > 0 such

that

(i) σkt plays ε-like σ̂kt at each ht ∈ Ht satisfying ϕ̂kt (ht ∣ θ) > 0 for each θ ∈ Θ, if ϕkt is

δ-close to ϕ̂kt ,

(ii) ϕkt is ε-close to ϕ̂kt , if σkτ plays δ-like σ̂kτ for each τ < t at each hτ ∈ Hτ satisfying

ϕ̂kτ (hτ ∣ θ) > 0 for each θ ∈ Θ.

Based on Lemma 2, I will focus on convergence of strategies henceforth. All convergence

results are in probabilistic terms with respect to the distribution P of (infinite) adaptation

paths (ω1, ω2, . . .) ∈ Ω∞ induced by the objective distributions of the random variables

and the rules for the formation of assessments and strategies.

4 Long-run Outcomes of Adaptation

In this section I discuss the long-run outcomes of the adaptive process under different

feedback regimes. As a benchmark, I first characterize the long-run outcome if players

observe the complete sequence of actions and the state at the end of each round, and are

able to distinguish games (4.1). Second, I investigate the consequences of constraints on

the observation of actions or the state (4.2). Finally, I study the outcome of the adaptive

process under the assumption that players do not distinguish games (4.3). While for

the sake of clarity I assume mutual knowledge of the social-learning game, I refrain from

assuming any higher-order interactive knowledge.

4.1 Adaptation by Game

I first assume that players observe the outcome of the game after each round.

Proposition 1. Let y (ωr) = ({kr} ,{θr} ,{ht ⊂ hrT+1}) for each r ≥ 1 and each ωr ∈ Ω.

For each ε > 0, each k ∈ K, and each t = 1, . . . , T , the limit strategy lim
r→∞

σk,rt almost surely

plays ε-like a rationalizable strategy σk,∗t at all histories satisfying ϕk,∗t (ht ∣ θ) > 0 for each

θ ∈ Θ where ϕk,∗t (ht ∣ θ) are the assessments under rational social-learning.

The proposition establishes that rational social-learning may be justified as the outcome

of an adaptive process if players are able to distinguish games, receive ample feedback

after each round, and play each game infinitely often. It follows from the dominance-

solvability of the game (Milgrom and Roberts, 1991). In a nutshell, since players have

14



a dominant strategy in period 1, period 2-assessments will eventually be correct by the

law of large numbers if players distinguish games. Hence, strategies for period 2 (and by

induction strategies for later periods) are eventually rationalizable.13

4.2 Feedback Constraints

Proposition 1 relies on strong assumptions regarding players’ feedback. For instance,

though the state must be revealed through the payoffs for at least one of the available

actions, it may not be revealed for all of them. If a player rejects an investment opportu-

nity, she may never know what the outcome could have been. To take this possibility into

account, I now investigate the impact of feedback constraints on the state.14 Formally, I

assume that yΘ (ωr) = ∅ if artr = 0 and yΘ (ωr) = {θr} if artr = 1. I maintain the assumption

that players get rich feedback on the game and the history.

Proposition 2. Assume that for each r ≥ 1 and each ωr ∈ Ω, yK (ωr) = kr, yrH (ωr) =
{ht ⊂ hrT+1}, yΘ (ωr) = ∅ if artr = 0, and yΘ (ωr) = {θr} if artr = 1. For each k ∈ K such

that
Gk0(1/2)

Gk1(1/2)
< bk

1−bk
there exists ε > 0 and t > 1 such that with strictly positive probability

the limit strategy lim
r→∞

σk,rt does not play ε-like the rationalizable strategy σk,∗t at history

ht = h0
t ≡ (0, . . . ,0) for each 0 < ε < ε. Concretely, lim

r→∞
σk,rτ (sτ , hτ) = 0 for each τ ≥ t, each

hτ ⊇ h0
t , and each sτ ∈ [bk, bk].

The proposition shows that adaptive social-learning may differ from rational social-

learning if feedback on the state is conditional on a player’s decision. In particular,

players may in the long-run imitate the rejections of their predecessors although they

would not do so if they knew the true informational content of previous decisions. More

broadly, herds on an action that does not reveal the state through its payoffs are more

likely in the long-run of adaptive social-learning than under rational social-learning, and

more likely to be wrong.

The rationale behind the result is simple: After any finite number of rounds, players

are with strictly positive probability convinced that the evidence conveyed by a sequence

of rejections is sufficiently strong to swamp any private signal since private signals are

bounded. Players therefore imitate their predecessors and are no longer able to revise their

wrong assessments because of the constrained feedback. Formally, the limit outcome is a

self-confirming equilibrium (see e.g. Dekel et al., 2004). The condition Gk
0 (1/2) /Gk

1 (1/2) <

13Mutual knowledge of the social learning game is not necessary for the result. In the long-run any
possible state and any possible (open subset of) private signal(s) occurs infinitely often such that frequen-
tists may learn their own private signal distribution as long as its support is well-behaved. Moreover,
players are able to explore the (finite) action spaces of other players and their payoff function once a
small amount of experimentation is assumed.

14Another possibility is that a player does not get feedback on subsequent choices. Yet, since a player’s
position in the sequence is randomly determined in each round, each player acts in period T infinitely
often and observes the complete history of actions. Therefore, the result of Proposition 1 is robust with
respect to limited feedback on the history.
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bk/ (1 − bk) guarantees that it is not optimal to imitate the first rejection in game k. The

result is constrained to histories containing only rejections since players switch positions

in the social-learning game. Thus, players who invest before the herd starts would be able

to revise their assessments. The result could be strengthened by assuming, additionally,

that players receive no feedback about subsequent choices.

Proposition 2 continues to hold if the first players in the sequence are uninformed (and

uninformed players move early for ulterior motives) as long as this is not mutually known.

The proposition therefore helps explain why players sometimes follow others based on no

apparent reason. For example, in recent years a growing number of parents refuse to

vaccinate their children for fear of harmful side effects despite the extensive statistical

evidence to the contrary. One reason seems to be a strong reliance on anecdotal evidence

(see e.g. Moran et al., 2015). In the model considered here, players are forced to rely on

anecdotal reasoning since feedback constraints prevent them from collecting representative

statistical information.

4.3 Adaptation Across Multiple Social Learning Games

In the field, individuals rarely encounter exactly the same strategic situation a large

number of times. Therefore, they are likely to extrapolate experience across games they

deem similar (see e.g. Fudenberg, 2006). In this subsection, I investigate this idea by

assuming that players receive a coarse feedback yK (ωr) = K about the game.

There are several reasons why players adapt across games. First, absent common

knowledge of the information structure, players may be unable to distinguish games.

Grimm and Mengel (2012) show that experimental subjects extrapolate especially in

complex environments where information to distinguish games is scarce. Though a player

could assess the informational content of others’ actions conditional on her own private

signal,15 she may fail to account for the correlation between her private signal and the

actions of others (Esponda, 2008), or ignore the importance of this factor altogether (see

e.g. Ross, 1977). Second, players may hold a simplified representation of the world due

to limited cognitive abilities (see e.g. Samuelson, 2001; Mengel, 2012). Third, bundling

experiences can be optimal when experience with a collection of games is scarce because

the larger amount of available data overcompensates the loss in predictive accuracy (Al-

Najjar and Pai, 2014; Mohlin, 2014). Appendix B presents simulation results for simple

social-learning games which establish this principle for the setup of this paper.

The first result of the subsection shows that adaptation across games converges to

an analogy-based expectations equilibrium (Jehiel, 2005; Jehiel and Ettinger, 2010, ABEE

henceforth). In a general ABEE, each player partitions the decision nodes of other players

into analogy classes and has a correct understanding of average behavior in each class.

15This is not possible if games differ with respect to preferences; see Section 6.1.
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In the long-run ABEE considered here, players use a separate analogy class for each

history-state-pair (ht, θ) and their expectation about the (average) distribution of actions

at history ht if the state is θ is correct. However, each analogy-class bundles all decision

situations with the same history and state regardless of the game k and players’ private

signals. I therefore refer to the partition as the information-anonymous analogy partition.

The ABEE additionally assumes that players combine their analogy-based expectations

with their private signal using Bayes’ rule and best respond to the resulting beliefs.16

Proposition 3. Let y (ωr) = (K,{θr} ,{ht ⊂ hrT+1}) for each r ≥ 1 and each ωr ∈ Ω. For

each ε > 0, each k ∈ K, and each t = 1, . . . , T , the limit strategy lim
r→∞

σk,rt almost surely plays

ε-like an ABEE strategy σk,At at all histories satisfying ϕ̄t (ht ∣ θ) > 0 for each θ ∈ Θ.

As Proposition 1, Proposition 3 rests upon the dominance-solvability of the social-

learning game. The existence of a dominant strategy in period 1 implies that players

eventually correctly assess the average choice probabilities conditional on the state, where

the average is taken across games. Accordingly, by best responding to assessments, players

eventually play the ABEE strategy in period 2, and in later periods by induction.

Comparing analogy-based social-learning with rational social-learning yields two inter-

esting results. First, while the ABEE strategies coincide with the rationalizable strate-

gies in period 1, players will in general not make correct inferences in a given game in

later periods. The ABEE strategies may therefore be suboptimal in a given game. Sec-

ond, ABEE strategies do not discriminate between games. More precisely, σk,At (st, ht) =
σ`,At (st, ht) for any two games k, ` ∈ K, any period t and history ht ∈ Ht, and any

signal st ∈ [bk, bk] ∩ [bl, bl]. Among all strategies σt ∶ ⋃k [bk, b
k] × Ht → ∆(A) which

do not discriminate between games in this sense, the ABEE strategy need not maxi-

mize the ex ante expected payoff in the randomly selected social learning game given by

Ūt (σt,{σk,A−t }
k∈K

) = ∑k∈K πk U
k
t (σt, σk,A−t ) where Uk

t (σt, σ−t) is the expected payoff in game

k given in (1). The following proposition formalizes these two results. Following Smith

and Sørensen (2000), I call a property generic if it holds for an open and dense subset of

parameters.

Proposition 4. Generically,

1. there exists k ∈ K, t > 1, ht ∈ Ht and ε > 0 such that the ABEE strategy σk,At does

not play ε-like a rationalizable strategy σk,∗t at history ht for each 0 < ε < ε.

2. there exists t > 1 and σ̂t ∶ ⋃k [bk, b
k] ×Ht →∆(A) such that

Ūt (σ̂t,{σk,A−t }
k∈K

) > Ūt (σk,At ,{σk,A−t }
k∈K

) .

16See appendix A for a formal definition and a characterization of the ABEE. The assumption of
Bayesian updating is relaxed in section 5.
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Proposition 4 shows that long-run behavior is not optimal when players do not dis-

tinguish games while adapting. Accordingly, opportunities to improve upon long-run

behavior exist. Section 5 explores one such opportunity by assuming that players use

more flexible belief updating rules than Bayes’ rule. The proposition also provides an

explanation for unjustified contagion or spill-over between games. If a herd forms after

history ht in game k, players may conclude that following others at ht is also optimal

in game ` ≠ k even if this is not warranted by fundamentals. This problem may be

exacerbated when allowing for limited feedback on the state as in Proposition 2.

It is finally instructive to compare the approach to related literature. First, the

information-anonymous analogy partition is finer than the payoff-relevant analogy parti-

tion considered by Guarino and Jehiel (2013) since players distinguish behavior at different

histories.17 On the other hand, it is distinct from the private information analogy parti-

tion (Jehiel and Koessler, 2008).18 Second, players might adapt across games that differ

in other aspects such as payoffs.19 In the present game, the simple structure of payoffs,

the absence of payoff externalities, and the realization of payoffs at the end of each round

facilitate the identification of a player’s own payoff function. An extension of the model

where games also differ with respect to the distribution of preferences yields similar results

and is investigated in section 6.1.

5 Heterogeneous Belief Updating

Thus far, I have assumed that players form beliefs according to Bayes’ rule. A more

general adaptive process allows players to also adjust their responses to beliefs. As in

Section 2, I consider flexible belief updating rules where player t’s belief in game k given

history ht, signal st, and assessments ϕkt (ht ∣ θ) for each θ ∈ Θ is given by

bkt (st, ht) = [1 + (1 − st
st

)
βt ϕkt (ht ∣ 0)
ϕkt (h ∣ 1)

]
−1

. (5)

βt is player t’s private information weight. A player is Bayesian, if βt = 1, overweights pri-

vate information if βt > 1, and underweights private information if βt < 1 (see e.g. Grether,

1980; Hung and Plott, 2001; Palfrey and Wang, 2012). In the following, I assume that

players adjust their private information weight alongside their assessments. Concretely, in

the spirit of reinforcement learning, players pick the weight which yields a higher expected

payoff. I focus on the long-run. Accordingly, the selected long-run private information

weight must maximize the ex ante expected payoff given long-run assessments.

17Guarino and Jehiel (2013) do not consider multiple games.

18The coarsest common refinement is given by the analogy partition Âi = {α (ht, θ, si)} for which player
i assesses others’ behavior separately for each history, state, and realization of his private signal.

19See e.g. Steiner and Stewart (2008); Mengel (2012); Grimm and Mengel (2012).
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The simple example of Section 2 suggests that the long-run belief updating rule depends

on the family of social-learning games. I explore this possibility in an extension of the

model where the precision of private signals has a player-specific component. Formally,

in game k player i draws signals from {0,1} according to probabilities Pr (s̃ki = 1 ∣ θ̃ = 1) =
Pr (s̃ki = 0 ∣ θ̃ = 0) = qki where

qki =
1

2
+ 1

2

exp (ρ̄k + νi)
1 + exp (ρ̄k + νi)

.

ρ̄k determines the average signal precision in game k and is a measure for the ease with

which information can be collected in this game. By contrast, νi is a player-specific signal

precision component which measures the ease with which player i collects information.20

Player i is better informed the larger is νi. Let V denote the cumulative distribution

function of player-specific signal precision components.

I study the long-run outcome of adaptation across games when diversely informed

players are allowed to combine public and private information differently. The limit

outcome is an extended ABEE given by the mapping βA∶R → R+ such that (i) player i

with quality component νi invests (rejects) in period t of game k given history ht ∈ Ht

and signal ski ∈ [bk, bk] if

(
ski

1 − ski
)
βA(νi)

> (<) ϕ̄t (ht ∣ 0)
ϕ̄t (ht ∣ 1)

, (6)

and (ii) assessments ϕ̄t (ht ∣ θ) = ∑k πkϕ̄
k
t (ht ∣ θ) take into account the distribution of

player-specific signal precision components and the associated updating rules via

ϕ̄kt (ht ∣ θ) = ∏
τ<t
∫
ντ

∑
sτ

Prk (sτ ∣ θ, ντ) σk,β
A

τ (aτ ∣ sτ , hτ) dV (ντ)

where Prk (sτ ∣ θ, ντ) denotes the probability that the player in period τ who has signal

precision component ντ observes signal sτ in game k when the state is θ, and σk,β
A

τ are

the strategies determined by (6). Proposition 5 characterizes the equilibrium mapping βA

which maximizes the ex ante expected payoff for each ν ∈ supp(V ).

Proposition 5. There exist thresholds ν, ν ∈ R such that the extended ABEE βA that

maximizes the ex ante expected payoff for each ν ∈ supp(V ) satisfies βA (νt) ≥ 1 for each

νt > νi and βA (νt) ≤ 1 for each νt < ν.

Proposition 5 states that players with a high (low) signal precision benefit from over-

weighting (underweighting) private information. Figure 2 illustrates the result for two

equally likely social-learning games (K = 2, π1 = π2 = 1
2), and player-specific signal

20I abuse notation and index players with i to emphasize that the second component of signal precision
is player-specific rather than period-specific.
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Figure 2: Adaptation across games, heterogenous quality of information,
and optimal updating of beliefs.

precisions, qki , k = 1,2, distributed uniformly around average qualities qk, where qk ∈
{0.6,0.65, . . . ,0.9}, and qki ∈ {qk − 0.09, qk − 0.08, . . . , qk + 0.09}. In the figure, different

colors denote equilibrium values βA (νi) for different pairs (q1, q2).21 As one can see, es-

pecially players whose signal precision is slightly larger (smaller) than the average signal

precision deviate the most from Bayesian updating in equilibrium, since they are most

likely to suffer from distorted assessments.

It is noteworthy that exactly what constitutes a high or low precision of private in-

formation is context-dependent. This may be illustrated with the help of a simple story:

University students usually have diverse educational backgrounds. Some students attend

specific university-preparatory schools. In such an environment, a student may experience

that imitating others is a successful strategy even if she considers herself well informed.

This student may therefore develop a tendency to underweight her private information. In

contrast, other students come from more rural areas where schools have large catchment

areas and a correspondingly diverse student body. A top-of-the class student from such

a school may learn that imitation is rarely beneficial even if his own information is weak.

He may therefore come to overweight his private information. Though adaptive, these

tendencies to apply non-Bayesian updating rules show up as biases at the university.

The proposition suggests that heterogeneous updating rules will evolve. It therefore

provides a theoretical background for corresponding evidence (e.g. El-Gamal and Grether,

1995; Delavande, 2008; Palfrey and Wang, 2012). Moreover, it motivates a straightfor-

ward, behavioral extension of the standard model of social-learning in which players are as-

sumed to have private information weights drawn from a given distribution. The extension

21The equilibria have been calculated numerically. The results and the code are available from the
author upon request.
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is straightforward, since the equilibrium of the extended game in which the distribution

of private information weights is commonly known is equivalent to the Bayesian equilib-

rium of a standard game with a distorted distribution of private information (March and

Ziegelmeyer, 2009, Lemma 3.2). On the other hand, the new, behavioral model of social-

learning better captures the established experimental regularities under the assumption

that a sufficiently large proportion of the population overweights private information. In

this case, compared to the standard model cascades emerge later (since overweighters herd

later), beliefs become more extreme (since each action stems from an overweighter with

positive probability), and therefore the length and strength of cascades are correlated

(since more and more moderate overweighters enter the herd). Moreover, heterogeneous

updating rules improve economic efficiency. Indeed, if the support of the distribution of

private information weights is unbounded, social-learning is complete even with private

signals of bounded strength(March and Ziegelmeyer, 2009, Corollary 3.4). The behavioral

model also accommodates new findings such as the coexistence of the ‘overweighting-of-

private-information’ bias with a ‘social-confirmation’ bias (March and Ziegelmeyer, 2015).

Finally, its adaptive foundations distinguish the model from other suggested explanations

such as the level-k model or models based on a limited depth of reasoning.

6 Extensions

6.1 Preferences

I have assumed so far that players share the same utility function. More general social-

learning games allow for heterogeneous preferences and assume that the distribution of

preference types is commonly known (Smith and Sørensen, 2000). Obviously, this common

knowledge assumption is equally questionable, and it is likely that players adapt across

games which differ in the underlying distribution of preferences. I illustrate that similar

results obtain under this assumption with the help of the simple example of Section 2.

Accordingly, let Anna and Bob interact repeatedly in games k ∈ {H,L} which are equally

likely. To highlight the role of preferences, I assume that qHi = qLi = qi for each i ∈ {A,B} .

Assume first that Anna occasionally does not care about the investment payoff and

invests or rejects regardless of her private signal. Concretely, each time game k is played

Anna picks her action regardless of her private signal with probability γkA where γLA < γHA
without loss of generality. I assume that Anna invests or rejects with equal probability

in this case. Conversely, in any given repetition of game k Anna follows her private

signal with probability 1 − γkA. The assumptions imply that the relative frequency with

which Anna invests (rejects) when the investment payoff is 1 (0) approaches q̂kA = 1
2 γ

k
A +

(1 − γkA) qA. If Bob distinguishes games, he eventually imitates Anna’s decision (follows

his private signal) if qB < (>) q̂kA. In contrast, if Bob adapts across games he eventually

imitates Anna’s decision (follows his private signal) if qB < (>) q̂A ≡ 1
2 γ̄A + (1 − γ̄A) qA
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where γ̄A = γLA+γ
H
A

2 . This strategy is not optimal for Bob in game L (H) if q̂A < qB < q̂LA
(q̂HA < qB < q̂A) and Bob benefits from underweighting (overweighting) his private signal.

An even stronger result obtains if Anna is assumed to have opposed preferences in the

two games. Assume for instance that Anna’s payoff function satisfies uLA (1, θ) = θ − 1
2 ,

uHA (1, θ) = 1
2 − θ, and ukA (0, θ) = 0 for each k ∈ {H,L} and each θ ∈ Θ. It follows that

Anna invests (rejects) given signal sA = 1 and rejects (invests) given signal sA = 0 in

game L (H). Accordingly, the relative frequency with which Anna invests (rejects) across

rounds where the investment payoff is 1 (0) approaches qA in game L, 1 − qA in game H,

and 1
2 across games. Therefore, Bob eventually follows his private signal in each game

when adapting across games. In contrast, it would be optimal for Bob to imitate Anna’s

decision in game L and to anti-imitate Anna’s decision in game H if qB < qA.22

It is straightforward to extend the results to the general social-learning game. Pref-

erence heterogeneity is therefore another hindrance to successful adaptation. Indeed,

since players cannot use their private signal realizations to distinguish games, adaptation

across games which differ with respect to preferences may be unavoidable. Accordingly,

preference heterogeneity strengthens the results.

6.2 Endogeneous Timing of Decisions

The analysis has focused on settings where the timing of decisions is given exogeneously.

With an endogeneous timing of decisions, players must foresee future social-learning op-

portunities in addition to interpreting the observed history of actions (see e.g. Chamley,

2004a). As shown below, the adaptive process need not converge to a Perfect Bayesian

equilibrium (PBE) when feedback constraints prevail.

Following Chamley (2004a), I extend the social-learning game as follows: First, each

player i = 1, . . . ,N has the option to make one irreversible investment in one of the periods

t = 1,2, . . .. Second, the payoff from investing in period t is given by δt−1 ⋅ (θ − c) where

0 < δ < 1 is the discount factor and the cost of investment satisfies b ≤ c < b. In any PBE of

this game, there exists a threshold s∗1 such that players with private signals s > s∗1 (s < s∗1)

invest in period 1 (delay investment for at least one period). Moreover, there exists at

least one PBE with c < s∗1 < b if b < c < b, there exists a PBE such that s∗1 = b if c = b, and

there may be multiple equilibria in both cases (Chamley, 2004a, Theorem 1).

Assume that the distribution of private information and the equilibrium strategies are

not commonly known. Accordingly, players must acquire the information necessary to

assess the option value of delay through repeated play of the social-learning game. I focus

on the case of a single game. Let ωri ≡ (θr, tri , hr) denote the outcome of the social-learning

game in repetition r where hr = (xr1, . . . , xrN) is the history of the number of investments

xrt in each period t = 1, . . . ,N and tri = ∞ if the player never invested (the game lasts

22Bob anti-imitates Anna’s decision if he chooses aB ≠ aA regardless of his private signal.
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at most N periods). Let yH (ωr) and yΘ (ωr) denote the feedback on respectively the

history and the state of nature given the outcome ωr. Below, I characterize the long-run

outcome of the adaptive process assuming that (i) yH (ωri ) = {ht ⊂ hr ∶ t < tri}, i.e. player

i who invests in period t in a given round does not receive feedback about the number of

investments in period t or later, and (ii) yΘ (ωri ) = θr if tri <∞ and yΘ (ωri ) = ∅ if tri =∞,

i.e. players only receive feedback about the realized state when they invest.

Proposition 6. Let yH (ωri ) = {ht ⊂ hr ∶ t < tri}, yΘ (ωri ) = θr if tri <∞, and yΘ (ωri ) = ∅ if

tri =∞. In the long-run of the adaptive process almost surely,

1. all players invest in period 1 if c = b,

2. players with si > c invest in period 1 and players with si < c never invest if b < c < b.

The proposition entails that players fail to assess the option value of delay. The reason

is simple (a formal proof is omitted): A priori, delay has no value and players invest

(in period 1) if and only if it is profitable, i.e. if si > c. Feedback constraints prevent

all players from acquiring information since players who invest in period 1 receive no

feedback about the number of investments in period 1 and players who never invest are

not informed about the state of nature.

7 Conclusion

The paper scrutinizes models of rational social-learning through the lens of adaptation.

Adaptation generates rational behavior in the long-run if and only if individuals are able

to distinguish social learning settings, receive ample feedback, and their experience with

each setting grows without bounds. Limited opportunities for adaptation lead to mistaken

inferences from others’ actions and render Bayes’ rule payoff inferior compared to non-

Bayesian belief updating rules.

The paper offers some new directions for experimental and theoretical research on

social-learning. First, to the best of my knowledge the existing experimental studies have

considered laboratory settings in line with standard economic models of social-learning.

These experimental settings were the obvious candidates for testing economic models of

social-learning, but they have a limited ecological validity.23 If subjects perceive the labo-

ratory setting as artificial, deviations from rational behavior might not come as a surprise

and do not constitute conclusive evidence against rational social-learning. Novel economic

experiments should test the rational view of social-learning in settings resembling those

23For an experimental study to possess ecological validity, the methods and the setting of the study
must approximate the real-life situation that is under investigation. Ecological validity is independent
from external validity which relates to the ability of a study’s results to generalize.
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encountered by human participants in the field with structural uncertainty and sufficient

opportunities to adapt.24

Second, the paper shows that a thorough investigation of the assumptions underlying

rational social-learning straightforwardly leads to a behavioral model of social-learning

with heterogeneous belief updating rules. This behavioral model of social-learning com-

plements recent attempts which have relaxed the assumptions of rational social-learning

by arguing for greater psychological realism. Indeed, some of the psychologically more

plausible assumptions would disappear when adaptation is considered.25 More generally,

the acknowledgment that individuals face limited opportunities for adaptation is likely to

deliver fruitful insights in other economic domains.
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Supplementary material for

Adaptive Social Learning

Christoph March

Appendix A contains the proofs and complementary theoretical results. Appendix B

reports simulation results for simple social-learning games which establish that adaptation

across games can be optimal when experiences are scarce. Finally, Appendix C discusses

generalizations of the adaptive process.
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Appendix A. Proofs

A.1. Non-Bayesian Updating in the Simple Example

Recall that in the simple example t ∈ {A,B} and st ∈ {0,1} where Pr (s̃t = 1 ∣ θ̃ = 1) =

Pr (s̃t = 0 ∣ θ̃ = 0) = qt ∈ (1
2 ,1). Let k ∈ {L,H} and denote by qkt the signal quality in game

k. Assume that qLA < qHA without loss of generality. Finally, π = πL = 1 − πH denotes the

likelihood to encounter game L.

Proposition A1. There exist thresholds β
B
, βB such that Bob’s optimal updating strategy

β∗B satisfies

(i) β∗B > βB > 1 if qLA < qLB < qA < qB < qHB ,

(ii) 1 < β
B
< β∗B < βB if qHB < qLB and qLA < qLB < qA,

(iii) β∗B > βB where βB ≤ 1 if qLA < qA ≤ qLB < qHB , or qLA < qHA < qHB < qLB,

(iv) β∗B < β
B

where β
B
< 1 if qLB < qB < qA < qHB < qHA ,

(v) β
B
< β∗B < βB < 1 if qHB < qLB and qA < qHB < qHA ,

(vi) β∗B < β
B

where β
B
≥ 1 if qLB < qB < qHB ≤ qA < qHA , or qHB < qLB < qLA < qHA ,

(vii) β
B
< β∗B < βB where β

B
< 1 < βB if qLB < qLA < qHA < qHB or qHB ≤ qA ≤ qLB.

Proof. In the long-run Bob’s assessments when adapting across games satisfy

ϕ̄B ((1) ∣ 1) = ϕ̄B ((0) ∣ 0) = qA. Accordingly, there exist three possibilities:

(S1) Bob follows private information at each history in each game, if (
qkB

1−qkB
)
βB

>
qA

1−qA
or

equivalently if

βB > log(
qA

1 − qA
) / log(

qkB
1 − qkB

)

for each k ∈ {L,H}. His expected payoff from this strategy is given by 1
4 (2 qB − 1).

(S2) Bob imitates Anna’s decision in each game, if (
qkB

1−qkB
)
βB

<
qA

1−qA
or equivalently if

βB < log(
qA

1 − qA
) / log(

qkB
1 − qkB

)

for each k ∈ {L,H}. His expected payoff from this strategy is given by 1
4 (2 qA − 1).

(S3) Bob follows private information at each history in game kmax and imitates Anna’s

decision in game kmin where qkminB < qkmaxB , if

log(
qA

1 − qA
) / log(

qkmaxB

1 − qkmaxB

) < βB < log(
qA

1 − qA
) / log(

qkminB

1 − qkminB

) .
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His expected payoff from this strategy is given by 1
4
[2 (πkmax q

kmax
B + πkmin q

kmin
A ) − 1].

Define

β
B
≡ log(

qA
1 − qA

) /max
k

log(
qkB

1 − qkB
) and βB ≡ log(

qA
1 − qA

) /min
k

log(
qkB

1 − qkB
) ,

and note that βB < βB.

Let qLB < qHB .

First, strategy (S1) outperforms strategy (S2) if qB > qA and it outperforms (S3) if qLB >

qLA. Hence, β∗B > βB under the two conditions. As βB > 1 if and only if qA > mink qkB = qLB,

(i) and the first case of (iii) follows.

Second, (S2) outperforms (S1) if qB < qA and it outperforms (S3) if qHB < qHA . Hence,

β∗B < β
B

under these two conditions. As β
B
< 1 if and only if qA < qHB , (iv) and the first

case of (vi) follows.

Finally, (S3) is optimal if qLB < qLA < qHA < qHB which implies qLB < qA < qHB . Therefore,

β
B
< β∗B < βBwhere β

B
< 1 < βH which yields the first case of (vii).

Let qLB > qHB .

First, (S1) is optimal if qHB > qHA which implies qB > qA and qHB > qA. Hence, β∗B > βB

where βB < 1 which yields the second case of (iii).

Second, (S2) is optimal if qLB < qLA which implies qB < qA and qLB < qA. Hence, β∗B < β
B

where β
B
> 1 which yields the second case of (vi).

Finally, (S3) is optimal if qHB < qHA and qLB > qLA. Moreover, β
B
> 1 if qLB < qA which yields

(ii) and βB < 1 if qHB > qA which yields (v) and conversely the second case of (vii).
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A.2. Proofs of Lemmas 1 and 2

A.2.1 Proof of Lemma 1

Using dG0(s)/dG1(s) = (1 − s)/s the ex ante expected payoff of individual t playing
strategy σt and given strategies σ−t can be written as

Ut (σt, σ−t) =
1

4
∑

ht∈Ht

b

∫

b

σt (st, ht) [st Pr (ht ∣ θ̃ = 1, σ−t) − (1 − st) Pr (ht ∣ θ̃ = 0, σ−t)]
1

st
dG1 (st) . (1)

with Pr (ht ∣ θ̃ = θ, σ−t) = ∏τ<t ∫
b

b στ (aτ ∣ sτ , hτ) dGθ (sτ) for each ht ∈ Ht and each θ ∈ Θ

where aτ = ht(τ) and hτ ⊂ ht for each τ < t. Since conditional probabilities of histories

in period t only depend upon strategies στ for τ < t, the optimal strategy can be derived

inductively.

In period 1, U1 (σ1, σ−1) = ∫s1 σ1 (s1,∅) (2 s1 − 1) dG1 (s1) / (4 s1) for each σ−1 ∈ Σ−1

since H1 = {∅} and Pr (∅ ∣ θ) = 1 for each θ ∈ Θ. Therefore, any undominated strategy σ∗1
satisfies σ∗1 (s1,∅) = 1 (0) if s1 > (<)1/2. A tie occurs if s1 = 1/2 (the expected payoff at

s1 = 1/2 is 0 for each a ∈ {0,1}) which is why any assignment σ∗1 (1
2 ,∅) ∈ [0,1] is feasible.

This only occurs if the private signal distribution has an atom at 1/2. The set of private

signal distributions with this property is a null set.

Consider period t ≥ 2 and assume that strategies σ∗τ for τ < t are iteratively undom-

inated and obey Bayes’ rule and sequential rationality at all histories occurring with

strictly positive probability. Assume furthermore that for any τ < t and any hτ ∈ Hτ

there is at most one private signal ŝτ (hτ) at which a tie occurs. Under this assumption,

ties have measure zero since they can be ruled out by shifting atoms of the private signal

distribution at a finite number of points by some ε > 0. It is then easily seen that any σ∗t
which is (iteratively) undominated under the two assumptions must also obey Bayes’ rule

and sequential rationality. Notice first that absent ties probabilities Pr (ht ∣ θ̃ = θ, σ∗−t) are

uniquely defined for each ht ∈ Ht and each θ ∈ Θ. If Pr (ht ∣ θ̃ = θ, σ∗−t) > 0 for each θ ∈ Θ

it follows from equation (1) that σ∗t must satisfy

σ∗t (st, ht) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if st Pr (ht ∣ 1, σ∗−t) > (1 − st)Pr (ht ∣ 0, σ∗−t)

1 if st Pr (ht ∣ 1, σ∗−t) < (1 − st)Pr (ht ∣ 0, σ∗−t)

or equivalently σ∗t (st, ht) = 1 (0) if b∗t (st, ht) > (<)1
2 where

b∗t (st, ht) =
st Pr (ht ∣ θ̃ = 1, σ∗−t)

st Pr (ht ∣ θ̃ = 1, σ∗−t) + (1 − st) Pr (ht ∣ θ̃ = 0, σ∗−t)
.

Furthermore, for such histories a tie may only occur at the unique private signal ŝt (ht)

defined via ŝt(ht)
1−ŝt(ht)

=
Pr(ht∣0,σ∗−t)

Pr(ht∣1,σ∗−t)
. If Pr (ht ∣ θ̃ = θ, σ∗−t) = 0 for each θ ∈ Θ, any σ∗t (st, ht) ∈

[0,1] is feasible and satisfies Bayes’ rule and sequential rationality. However, since
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Pr (h` ∣ θ̃ = θ, σ∗−`) = 0 for each ` > t, each h` ⊃ ht, each σ∗
−` ⊂ σ

∗
−t, and each θ ∈ Θ, the

choice of σ∗t (st, ht) at such histories does not affect the outcome of the game.
◻

A.2.2 Proof of Lemma 2

Fix game k ∈ K. For notational convenience, I omit the superscript k henceforth.

Ad. (i): Fix t and consider ht ∈ Ht such that ϕ̂t (ht ∣ θ) > 0 for each θ ∈ Θ. σt

plays ε-like σ̂t at ht if there exists Bε ⊆ [b, b] such that Gθ (Bε) > 1 − ε for each θ ∈ Θ,

and ∣σt (st, ht) − σ̂t (st, ht)∣ < ε for each st ∈ Bε. Since σt and σ̂t are cutoff strategies, i.e.

σt (st, ht) = 1 (0) if st > ct (ht) where

ct (ht) =
ϕt (ht ∣ 0)

ϕt (ht ∣ 1) + ϕt (ht ∣ 0)

and similarly for σ̂t, there exists ε1 > 0 such that σt plays ε-like σ̂t at ht if ∣ct (ht) − ĉt (ht)∣ <

ε1 (ties are ruled out). Let ∣ϕt (ht ∣ θ) − ϕ̂t (ht ∣ θ)∣ < δ < minθ ϕ̂t (ht ∣ θ) for each θ ∈ Θ.

Then ϕt (ht ∣ θ) > 0 for each θ ∈ Θ and

∣ct (ht) − ĉt (ht)∣ = ∣
ϕt (ht ∣ 0)

ϕt (ht ∣ 1) + ϕt (ht ∣ 0)
−

ϕ̂t (ht ∣ 0)

ϕ̂t (ht ∣ 1) + ϕ̂t (ht ∣ 0)
∣

≤
ϕt (ht ∣ 0) ∣ϕ̂t (ht ∣ 1) − ϕt (ht ∣ 1)∣ + ϕt (ht ∣ 1) ∣ϕt (ht ∣ 0) − ϕ̂t (ht ∣ 0)∣

[ϕt (ht ∣ 1) + ϕt (ht ∣ 0)] ∗ [ϕ̂t (ht ∣ 1) + ϕ̂t (ht ∣ 0)]

<
δ

ϕ̂t (ht ∣ 1) + ϕ̂t (ht ∣ 0)
.

Accordingly, since ϕ̂t (ht ∣ θ) > 0 for each θ ∈ Θ, σt plays ε-like σ̂t at ht if ϕt is δ-close to

ϕ̂t for some δ < min{ϕ̂t (ht ∣ 1) , ϕ̂t (ht ∣ 0) , ε1 ∗ [ϕ̂t (ht ∣ 1) + ϕ̂t (ht ∣ 0)]}.

Ad. (ii): Assume first that ϕ̂t (ht ∣ θ) > 0 for each θ ∈ Θ and therefore ϕ̂τ (hτ ∣ θ) > 0

for each θ ∈ Θ and each τ < t where hτ ⊂ ht. The proof is by induction. By definition

ϕ1 (h1 ∣ θ) = ϕ̂1 (h1 ∣ θ) = 1 for each θ ∈ Θ. Assume therefore that for each τ < t, στ plays

δ-like σ̂τ at each hτ ⊂ ht and ϕτ is ε
2 -close to ϕ̂τ . Let xτ = ∫

b

b στ (aτ ∣ sτ , hτ) dGθ (sτ) where

aτ ∈ ht and hτ ⊂ ht for each τ < t and define x̂τ accordingly. Hence,

∣ϕt (ht ∣ θ) − ϕ̂t (ht ∣ θ)∣ = ∣∏
τ<t

xτ −∏
τ<t

x̂τ ∣ ≤ xt−1 ∣ ∏
τ<t−1

xτ − ∏
τ<t−1

x̂τ ∣ + ∣xt−1 − x̂t−1∣ ∏
τ<t−1

x̂t.

By induction assumption, ∣ ∏
τ<t−1

xτ − ∏
τ<t−1

x̂τ ∣ <
ε
2 . Furthermore there exists 0 < δ′ < δ such

that

∣xt−1 − x̂t−1∣ ≤ δ
′Gθ (Bδ′) + δ

′ ≤ 2 δ′ <
ε

2

if σt−1 plays δ′-close to σ̂t−1 at ht−1 ⊂ ht. Since xτ , x̂τ < 1, ∣ϕt (ht ∣ θ) − ϕ̂t (ht ∣ θ)∣ < ε.
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On the other hand, ϕ̂t (ht ∣ θ) = 0 implies existence of a unique τ0 ≤ t such that

ϕ̂τ (hτ ∣ θ) > 0 for each τ < τ0 and ϕ̂τ0 (hτ0 ∣ θ) = 0 where hτ , hτ0 ⊂ ht. Therefore,

x̂τ0 = ∫
b

b
σ̂τ0 (aτ0 ∣ sτ0 , hτ0) dGθ (sτ0) = 0

which implies that σ̂τ0 (aτ0 ∣ sτ0 , hτ0) = 0 for almost any sτ0 ∈ [b, b]. Accordingly, if στ0

plays ε
2 -like σ̂τ0 at hτ0 ⊂ ht, xτ0 = ∫

b

b στ0 (aτ0 ∣ sτ0 , hτ0) dGθ (sτ0) <
ε
2 Gθ (Bε/2) +

ε
2 < ε and

therefore ϕt (ht ∣ θ) < ε.
◻

A.3. Proofs of Propositions 1 and 2

Proof of Proposition 1

Since games can be distinguished, it suffices to focus on a single game. The proof is by

induction: In period 1, there is no need to draw inferences from others’ actions. Therefore,

assessments are equal to rational assessments by definition and play of the dominant

strategy follows from the assumption of myopic Bayes-rational strategic responses. By the

strong law of large numbers for conditional expectations (e.g. Walk, 2008), assessments in

the second period eventually become vanishingly close to rational assessments. Lemma 2

thus implies that strategies eventually play ε-like any iteratively undominated strategy at

all period 2-histories occurring with strictly positive probability (recall that absent ties

iterated dominance uniquely defines probabilities of histories, and behavior at histories

occurring with strictly positive probability). This argument can be inductively extended

to all subsequent periods t > 2.
◻

Proof of Proposition 2

Fix k ∈ K such that Gk
0 (1/2) /Gk

1 (1/2) < bk/ (1 − bk). Assume that during the early

rounds in which game k is played the individual deciding in period 1 always rejects and

the realized state is 0 sufficiently often such that

ϕk,r2 (a1 = 0 ∣ 0; ζr)

ϕk,r2 (a1 = 0 ∣ 1; ζr)
>

b
k

1 − b
k
. (2)

Obviously, the set of corresponding adaptation paths has strictly positive probability.

Equation (2) implies that no individual will invest after h2 = (0) in any subsequent

round. Accordingly, the state is not revealed and individuals can never revise their wrong

assessments for this history. Similar adaptation paths may easily be constructed.
◻
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A.4. Definition of ABEE and Proofs of Propositions 3–5

A.4.1 Analogy-based Expectations Equilibrium

The long-run outcome of adaptation across games is captured by an analogy-based ex-

pectations equilibrium (Jehiel, 2005; Jehiel and Ettinger, 2010, ABEE henceforth). In an

ABEE, each player partitions the decision nodes of others into analogy classes and has a

correct understanding of average behavior in each class. For the family of social-learning

games, a decision node is a tuple (k, θ,{st}
T
t=1 , ht) ∈ K × Θ × [0,1]T ×H. I focus on the

specific analogy partition A = {α (ht, θ) ∶ ht ∈H ∧ θ ∈ Θ} where α (ht, θ) bundles all de-

cision nodes at which (ht, θ) appears and I refer to this as the information-anonymous

analogy partition. A player with information-anonymous analogy partition ignores the

dependence of behavior upon the distribution of private signals and the private signal re-

alizations when assessing the informational content of a history. Let At denote the subset

of analogy classes for period t. An analogy based expectation σ̄t∶At → ∆(A) assigns to

each analogy class αt ∈ At a probability distribution over actions. In equilibrium, players

sequentially best respond to analogy-based expectations and expectations are consistent

with behavior.

Definition A1. The strategies σk,At for k ∈ K and t = 1, . . . , T constitute an ABEE

with information-anonymous analogy partition if and only if there exist analogy-based

expectations σ̄ = {σ̄t}
T
t=1 such that for each t = 1, . . . , T

(A1) σk,At is a best response to σ̄ for each k ∈ K, i.e.

σk,At (skt , ht) = 1 (0) if
skt

1 − skt
> (<) ∏

τ<t

σ̄τ (aτ ∣ α (0, hτ))

σ̄τ (aτ ∣ α (1, hτ))

for each skt ∈ [bk, b
k
] and each ht ∈Ht where aτ = ht(τ) and hτ ⊂ ht for each τ < t,

(A2) σ̄ is consistent with {σk,At }, i.e. for each θ ∈ Θ and each ht ∈Ht,

σ̄t (ht, θ) ≡ σ̄t (α (ht, θ)) =
K

∑
k=1
∫

supp(Gk
θ
)
νA (k, dst ∣ ht, θ) σ

k,A
t (st, ht)

where νA is the distribution on tuples (k, st, ht, θ) induced by the strategies σk,At and

the fundamentals.

Lemma A1 characterizes the analogy-based assessments ϕ̄t (ht ∣ θ) and shows that the

ABEE derives from iterated elimination of dominated strategies when expected payoffs are

defined with respect to analogy-based expectations. Except for a null set of parameters,

the ABEE strategies σk,At are uniquely defined at histories satisfying ϕ̄t (ht ∣ θ) > 0 for

each θ ∈ Θ.
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Lemma A1. In any ABEE with information-anonymous analogy partition the analogy-

based assessments ϕ̄t (ht ∣ θ) ≡ ∏
τ<t
σ̄τ (aτ ∣ α (θ, hτ)) satisfy for each t = 1, . . . , T , each ht ∈

Ht, and each θ ∈ Θ

ϕ̄t (ht ∣ θ) =
K

∑
k=1

πk ϕ
k,A
t (ht ∣ θ) =

K

∑
k=1

πk ∏
τ<t
∫

b
k

bk
σk,Aτ (aτ ∣ sτ , hτ) dG

k
θ (sτ) (3)

where aτ = ht(τ) and hτ ⊂ ht for each τ < t. Furthermore, the set of ABEE is the set

of strategy profiles which are iteratively undominated with respect to the analogy-based

expectations and the ABEE outcome is almost always unique.

Proof. Let σk,At denote the ABEE strategies. I first establish that the analogy-based

assessments satisfy for each t = 1, . . . , T , each ht ∈Ht, and each θ ∈ Θ

ϕ̄t (ht ∣ θ) ≡∏
τ<t

σ̄τ (aτ ∣ α (θ, hτ)) =
K

∑
k=1

πk ϕ
k,A
t (ht ∣ θ) (4)

where for each k ∈ K, each t = 1, . . . , T , and each ht ∈Ht

ϕk,At (ht ∣ θ) =∏
τ<t

b
k

∫

bk

σk,Aτ (aτ ∣ skτ , hτ) dG
k
θ (s

k
τ)

with aτ = ht(τ) and hτ ⊂ ht for each τ < t. For each k ∈ K, each t = 1, . . . , T , each ht ∈ Ht,

and each θ ∈ Θ, ϕk,At (ht ∣ θ) is the equilibrium probability that history ht arises in game

k if the state is θ. Accordingly, νA (k, θ, skt , ht) =
1
2 πk ϕ

k,A
t (ht ∣ θ) dGk

θ (s
k
t ) and

νA (k, skt ∣ ht, θ) =
πk dGk

θ (s
k
t ) ϕ̄

k
t (ht ∣ θ)

K

∑
k′=1

πk′ ϕ̄k
′
t (ht ∣ θ)

b
k

∫
bk
dGk

θ(s)

=
πk ϕ̄kt (ht ∣ θ)

K

∑
k′=1

πk′ ϕ̄k
′
t (ht ∣ θ)

dGk
θ (s

k
t ) .

Therefore for each t = 1, . . . , T

σ̄t (ht, θ) =
K

∑
k=1

b
k

∫

bk

πk ϕ
k,A
t (ht ∣ θ)

K

∑
`=1
π`ϕ

`,A
t (ht ∣ θ)

dGk
θ (s

k
t ) σ

k,A
t (skt , ht) .

I proceed by induction. First, in period 1,

1 = ϕ̄1 (h1 ∣ θ) = ∑
K
k=1 πk ϕ

k,A
1 (h1 ∣ θ) = ∑

K
k=1 πk = 1.
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Assume (4) holds for all τ ≤ t. It follows for each ht ∈Ht, each at ∈ A, and each θ ∈ Θ

ϕ̄t+1 ((ht, at) ∣ θ) = ϕ̄t (ht ∣ θ) ∗ σ̄t (at ∣ ht, θ)

= [
K

∑
k=1

πk ϕ
k,A
t (ht ∣ θ)] ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K

∑
j=1

b
j

∫

bj

πj ϕ
j,A
t (ht ∣ θ)

K

∑
`=1
π`ϕ

`,A
t (ht ∣ θ)

dGj
θ (s

j
t) σ

j,A
t (at ∣ s

j
t , ht)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
K

∑
j=1

πj ϕ
j,A
t (ht ∣ θ)

b
j

∫

bj

σj,At (at ∣ s
j
t , ht) dG

j
θ (s

j
t) =

K

∑
j=1

πj ϕ̄
j
t+1 ((ht, at) ∣ θ)

where the second equality uses the induction assumption.

Second, I show that any ABEE is the outcome of iterated elimination of strategies

which are strictly dominated with respect to the analogy-based expectations. Given the

profile of analogy-based expectations σ̄, the ex-ante expected payoff of strategy σkt in

game k ∈ K is given by

Uk
t (σkt , σ̄) =

1

2
∑
ht∈Ht

b
k

∫

bk

σkt (s
k
t , ht) [skt ϕ̄t (ht ∣ 1) − (1 − skt ) ϕ̄t (ht ∣ 0)]

dGk
1 (skt )

skt
.

Therefore, σkt best responds to σ̄, if and only if

σkt (s
k
t , ht) = 1 (0) if

skt
1 − skt

> (<),
ϕ̄t (ht ∣ 0)

ϕ̄t (ht ∣ 1)
.

As the analogy-based assessments in period t only depend upon strategies σkτ for τ < t,

the ABEE can be derived inductively: There is a dominant strategy in period 1 (as

ϕ̄1 (h1 ∣ θ) = 1 for each θ ∈ Θ). Therefore, analogy-based assessments in period 2 are

uniquely determined, and there is a unique best response in period 2 etc. Moreover, for

each t = 1, . . . , T , each ht ∈ Ht and each k ∈ K there exists a unique private signal at

which a tie occurs. Therefore, the families of social-learning games in which a tie arises

constitue a null set.

A.4.2 Proof of Proposition 3

The proof is by induction, similar to the proof of Proposition 1. In period 1, for each

k ∈ K and each r ≥ 1, ϕ̂k,r1 (h1 ∣ θ) = 1 holds for each θ ∈ Θ and implies that σk,rt coincides

with the ABEE strategy.

Fix a period t and assume that for each δ > 0 there exists r∗ such that strategic responses

σk,rτ play δ-like the ABEE strategies σk,Aτ at each history hτ ∈ Hτ for each period τ < t,

each game k ∈ K, and each round r > r∗. For r sufficiently large, assessments for history
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ht ∈Ht and each game k ∈ K satisfy

ϕk,rt (ht ∣ θ; ζr) =

K

∑
k=1
κk,rt (ht, θ ∣ ζr)

∑h′t∈Ht
∑`∈K κ

`,r
t (h′t, θ ∣ ζr)

=
K

∑
k=1

κk,rt (ht, θ ∣ ζr)

∑`∈K ∑h′t∈Ht
κ`,rt (h′t, θ ∣ ζr)

∑h′t∈Ht
κk,rt (h′t, θ ∣ ζr)

∑h′t∈Ht
κk,rt (h′t, θ ∣ ζr)

=
K

∑
k=1

κk,rt (ht, θ ∣ ζr)

∑h′t∈Ht
κk,rt (h′t, θ ∣ ζr)

∑h′t∈Ht
κk,rt (h′t, θ ∣ ζr)

∑`∈K ∑h′t∈Ht
κ`,rt (h′t, θ ∣ ζr)

.

Using the induction assumption and applying the second part of Lemma 2 implies that

the assessment for game k
κk,rt (ht, θ ∣ ζr)

∑h′t
κk,rt (h′t, θ ∣ ζr)

is ε-close to ϕk,At (ht ∣ θ) provided r is sufficiently large. On the other hand,

∑h′t
κk,rt (h′t, θ ∣ ζr)

∑`∈K ∑h′t
κ`,rt (h′t, θ ∣ ζr)

converges to πk since the game and the state are drawn independently in each round. Thus,

by the strong law of large numbers for conditional expectations ϕ̂k,rt (ht ∣ θ; ζr) eventually

becomes ε-close to ϕ̄t (ht ∣ θ) = ∑k∈K πk ϕ
k,A
t (ht ∣ θ), the analogy-based assessments. By

the first part of Lemma 2, σk,rt eventually plays ε-like the ABEE strategy σk,At for each

game k and at each history ht that satisfies ϕ̄t (ht ∣ θ) > 0 for each θ ∈ Θ.
◻

A.4.3 Proof of Proposition 4

I give two generic examples for K = 2. Let π = π1 = 1 − π2 where 0 < π < 1.

Assume first that the distributions of private signals are continuous for each k = 1,2

and satisfy
G1

0 (
1
2
)

G1
1 (

1
2
)
<
G2

0 (
1
2
)

G2
1 (

1
2
)

. (5)

Consider history h2 = (0). ABEE assessments at h2 are given by ϕ̄2 (0 ∣ θ) = πG1
θ (

1
2
) +

(1 − π)G2
θ (

1
2
) and the ABEE strategies satisfy

σk,A2 (s2, h2) = 1 (0) if s2 > (<) cA2 (h2) ≡
πG1

0 (
1
2
) + (1 − π)G2

0 (
1
2
)

π [G1
1 (

1
2
) + G1

0 (
1
2
)] + (1 − π) [G2

1 (
1
2
) + G2

0 (
1
2
)]

for each game k ∈ {1,2}. On the other hand, game-specific assessments satisfy ϕk2 (0 ∣ θ) =
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Gk
θ (

1
2
) for k = 1,2 and the rational strategy for game k is given by

σk,∗2 (s2, h2) = 1 (0) if s2 > (<) ck2 (h2) ≡
Gk

0 (1
2
)

Gk
1 (1

2
) +Gk

0 (1
2
)
.

Assumption (5) implies c2
2 (h2) < cA2 (h2) < c1

2 (h2). Therefore, since private signal distri-

butions are continuous, individuals imitate the first player’s rejection too often in game

1 and too seldom in game 2.

Second, the ex ante expected payoff from the family of social learning games for strategy

σt that does not discriminate between games is given by

Ut (σt ∣ ϕ
1
t , . . . , ϕ

K
t ) =

1

4

K

∑

k=1

πk ∑
ht∈Ht

k

∫

bk

σt (st, ht) [ϕkt (ht ∣ 1) dGk1 (st) − ϕ
k
t (ht ∣ 0) dGk0 (st)]

=

1

4
∑

ht∈Ht

maxk k

∫

mink b
k

σt (st, ht)
K

∑

k=1

πk [ϕkt (ht ∣ 1) dGk1 (st) − ϕ
k
t (ht ∣ 0) dGk0 (st)] .

Hence, the optimal strategy satisfies

σoptt (st, ht) = 1 (0) if
K

∑
k=1

πk ϕ
k
t (ht ∣ 1) dGk

1 (st) > (<)
K

∑
k=1

πk ϕ
k
t (ht ∣ 0) dGk

0 (st) .

Assume that private signals are continuously distributed on [1 − ak, ak] ⊂ [0,1] according

to densities gk0(s) = 2 (1 − s)/ (2ak − 1) and gk1(s) = 2 s/ (2ak − 1) for each k = 1,2 where

without loss of generality 1
2 < a1 < a2 ≤ 1. In this case, the optimal strategy can be written

as

σopt (st, ht) = 1 (0) if st > (<) c∗t (ht) ≡

2

∑
k=1

πk
2ak −1 ϕ

k
t (ht ∣ 0)

2

∑
k=1

πk
2ak −1 [ϕkt (ht ∣ 1) + ϕkt (ht ∣ 0)]

.

while the ABEE strategy is given by

σAt (st, ht) = 1 (0) if st > (<) cAt (ht) ≡
∑

2
k=1 πk ϕ

k
t (ht ∣ 0)

∑
2
k=1 πk [ϕkt (ht ∣ 1) + ϕkt (ht ∣ 0)]

.

Since the distribution of private signals is continuous, those strategies agree at ht if either

c∗t (ht) , c
A
t (ht) < 1−a2 < 1−a1, or c∗t (ht) , c

A
t (ht) > a2 > a1, or 1−a2 < c∗t (ht) = c

A
t (ht) < a2

where the latter is equivalent to

ϕ2
t (ht ∣ 1) ϕ1

t (ht ∣ 0) − ϕ1
t (ht ∣ 1) ϕ2

t (ht ∣ 0)

2a2 − 1
=

ϕ2
t (ht ∣ 1) ϕ1

t (ht ∣ 0) − ϕ1
t (ht ∣ 1) ϕ2

t (ht ∣ 0)

2a1 − 1

11



or ϕ2
t (ht ∣ 1) ⋅ϕ1

t (ht ∣ 0) = ϕ1
t (ht ∣ 1) ⋅ϕ2

t (ht ∣ 0) since a1 ≠ a2. Generically, neither of those

conditions is satisfied. For instance at h2 = (1) (similarly for h2 = (0))

ϕk2 ((2) ∣ θ) = 1 −Gk
θ(1/2) =

⎧⎪⎪
⎨
⎪⎪⎩

1
4 +

ak
2 if θ = 1

1
4 +

1−ak
2 if θ = 0

and therefore c∗t (ht) ≠ c
A
t (ht) if a2 ≠ a1. Furthermore 1−a2 < cAt (ht) <

1
2 since a2 > a1 >

1
2 .
◻

A.4.4 Proof of Proposition 5

Since T is finite, there exists for each game k = 1, . . . ,K a maximal amount of private

information that can be inferred from any history. Formally,

λkmax = max
t,ht,θ

ϕkt (ht ∣ θ)

ϕkt (ht ∣ 1 − θ)

is finite. Any individual with private signal quality qi/ (1 − qi) > λkmax or equivalently

individual quality component

νi > max
k∈K

νi ≡ log(
λkmax − 1

2
) − ρ̄k

finds it optimal to follow her private information at each history in each game. Since adap-

tation across games may prevent such an individual from following her optimal strategy,

it is weakly optimal for her to overweight private information, i.e. βA (νi) ≥ 1 for each

νi > ν.

On the other hand, there also exists a minimal amount of public information given by

λkmin = min
t,θ

min
ht∈Ĥt

ϕkt (ht ∣ θ)

ϕkt (ht ∣ 1 − θ)

where for each t the minimum is taken over histories ht ∈ Ĥt such that ϕkt (ht ∣ 1) ≠

ϕkt (ht ∣ 0). Therefore, ∣λkmin∣ is also finite. An individual with quality component

νi < ν ≡ min
k∈K

log ((λkmin − 1) /2) − ρ̄k

finds it optimal to follow the public information at each history. Since adaptation across

games may lead this individual to follow private information at some histories, it is weakly

optimal for her to underweight private information, i.e. βA (νi) ≤ 1 for each νi < ν.
◻

12



Appendix B. Adaptation Across Games and Scarce

Experiences

In this appendix, I discuss the results of a simulation study. The adaptive process is

simulated multiple times for simple social-learning games and a finite number of rounds.

The simulation is run twice assuming (i) that games are distinguished and (ii) that players

adapt across games and the resulting average payoffs across rounds are compared. The

results illustrate that adaptation across games can be optimal when the number of repe-

titions of any of the social-learning games is small. Section B.1. presents the simulation

framework. Section B.2. reports results for the simple example presented in Section 2

of the main text. Finally, Section B.3. presents results for social-learning games with

symmetric, binary private signals and more than two players.

B.1. Simulation Framework

The setup of the simulation closely follows the definition of the adaptive process (Def-

inition 1 in the main text). Denote by K the (finite) set of social-learning games with

(common) number of players T , and denote the (finite) number of rounds by R. Fur-

thermore, let ωr = (kr, θr, hrT+1) denote the outcome of the game in round r ∈ {1, . . . ,R}

and let ζr = (ω1, . . . , ωr−1) where ζ1 = ∅ by definition. I assume that yΘ (ωr) = {θr}

and yH (ωr) = {ht ⊂ hrT+1} for each r = 1, . . . ,R and each ωr ∈ Ω, i.e. feedback on the

state of nature and the history of actions is complete in each round. Furthermore,

yK (ωrt) ∈ {{kr} ,K}, i.e. players either fully distinguish games or they adapt across

all games.

A single simulation run proceeds as follows: First, history-state frequencies are initial-

ized as κk,1t (ht, θ ∣ ζ1) = η > 0 for each t = 1, . . . , T , each ht ∈ Ht, and each θ ∈ Θ ≡ {0,1}.

Second, for each round r = 1, . . . ,R

(i) the game kr, the state of nature θr, and the sequence of private signals {srt}
T
t=1 are

drawn according to the vector πK = (π1, . . . , πK), the uniform distribution on Θ, and

the cumulative distribution function Gkr

θr , respectively;

(ii) for each period t = 1, . . . , T

(a) assessments are calculated for each ht ∈Ht and each θ ∈ Θ according to

ϕk,rt (ht ∣ θ; ζ
r) =

κk,rt (ht, θ ∣ ζr)

∑
h′t∈Ht

κk,rt (h′t, θ ∣ ζr)
,

(b) the action art is determined as art = 1 (0) if
srt

1−srt
> (<)

ϕrt (h
r
t ∣0;ζr)

ϕrt (h
r
t ∣1;ζr)

where hr1 = ∅

and hrt = (ar1, . . . , a
r
t−1) for t > 1;

13



(iii) frequencies are updated by setting κk,r+1
t (hrt , θ

r ∣ ζr+1) = κk,rt (hrt , θ
r ∣ ζr) + 1 for each

t = 1, . . . , T and each k ∈ yK (kr, θr, hrT+1).

Given the complete adaptation path ζR+1 = (ω1, . . . , ωR) = (kr, θr, hrT+1)
R

r=1
, average

payoffs for period t ∈ {1, . . . , T} are given by

UyK
t (R) =

1

R

R

∑
r=1

ût (a
r
t , θ

r)

where I use the normalized payoff function

ût (at, θ) = ∣at − θ∣ =
u (at, θ) −mina∈A u(a, θ)

maxa∈A u(a, θ) −mina∈A u(a, θ)

to facilitate the interpretation of the results. Indeed, UyK
t (R) denotes the average fre-

quency with which players select the ex post optimal action in period t across the R

repetitions of the game. The superscript makes clear that the average payoffs depend on

the feedback about the game yK. Similarly, the average payoff across periods is given by

UyK (R) = ∑tU
yK
t (R) /T .

For a given family of social learning games, a simulation consists of N simulation runs

for each yK ∈ {{kr} ,K}, and all results rely on the mean average payoff ŪyK
t (R) where

the mean is taken across simulation runs. For all results reported below, N = 50,000,

η = 0.01, K = 2, πK = (1
2 ,

1
2
), and R ∈ {1, . . . ,400}.1

B.2. Results for the Simple Example

I first report results for the simple example discussed in section 2 of the main text. Hence,

T = 2, K = {L,H}, and signals in game k ∈ K are drawn from S = {0,1} according to

probabilities Pr (s̃t = 1 ∣ θ̃ = 1, k) = Pr (s̃t = 0 ∣ θ̃ = 0, k) = qkt .2

Recall that Anna always follow her private signal. Accordingly, mean average payoffs

for period 1 simply reflect the mean of a binomial distribution with success probability

(q1
t + q

2
t ) /2 regardless of the underlying feedback structure. I therefore focus on the mean

average payoffs for period 2, ŪyK
2 (R).

Figure 1 illustrates the fundamental structure of the results for qLA = 0.6, qHA = 0.8,

qLB = 0.55, and qHB = 0.75. The solid black (gray) line plots the mean average payoff ŪK2 (R)

(Ū
{kr}
2 (R)) for Bob when he adapts across games (by game). In addition, the dotted lines

indicate the long-run payoffs limR→∞ ŪK2 (R) and limR→∞ Ū
{kr}
2 (R), respectively. The

selected parameters imply that Bob will suboptimally follow his private signal in game

1The simulation has been programmed in Mathematica and is available from the author upon request.

2Apparently, this signal structure does not match the signal structure of the general social learning
game. This can be adjusted by identifying st = 1 with ŝt = q

k
t and st = 0 with ŝt = 1 − qkt in game k.
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Figure 1: Mean Average Payoffs of Bob for qLA = 0.6, qHA = 0.8, qLB = 0.55, qHB = 0.75

H in the long-run if he adapts across games since qA = 0.7 < qHB . Still, adaptation across

games is optimal for Bob if 7 ≤ R ≤ 126.

The figure isolates three distinct intervals for the number of repetitions. First, adap-

tation across games is a worse strategy than distinguishing games if experience with any

of the games is almost non-existent (R < 7). In this case, distinguishing games usually

implies that Bob has no relevant feedback for one of the games which is why he resorts

to the assumed default strategy of following his private signal. In contrast, Bob is for

sure able to rely on feedback in each game by adapting across games, but such feedback

can be grossly misleading. For instance, after as little as 5 or 6 repetitions there is a

non-negligible probability that Bob anti-imitates Anna’s decision, i.e. that he invests

when Anna rejects and vice versa regardless of his private signal. Of course, this strategy

yields a much lower expected payoff than the default strategy. Second, adaptation across

games is optimal if players have some experience with each game, but their experience is

restricted (7 ≤ R ≤ 126). By adapting across games, players can rely on a larger database

which strongly reduces the likelihood of being grossly misled. These benefits outweigh

the costs of adaptation across games which result from players’ inability to draw perfect

inferences. The larger database is also reflected in the faster convergence of the mean

average payoff to the long-run payoff for adaptation across games. Finally, adaptation

across games becomes suboptimal as players’ experience with each game grows sufficiently

large such that errors in inferences diminish even when players distinguish games.

Obviously, the size of the three intervals strongly depends on the parameters of the

social-learning games. In particular, some intervals may be empty. Figure 2 plots the

mean average payoffs for qLA = 0.6, qHA = 0.8, qLB = 0.55, and qHB = 0.6. In this case,

adaptation across games does not result in suboptimal behavior in the long-run which is

why long-run payoffs coincide. Therefore, the costs of adapting across games are strongly

15
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Figure 2: Mean Average Payoffs of Bob for qLA = 0.6, qHA = 0.8, qLB = 0.55, qHB = 0.6
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Figure 3: Mean Average Payoffs of Bob for qLA = 0.6, qHA = 0.8, qLB = 0.75, qHB = 0.75

reduced,3 and adaptation across games is optimal for any R > 4. On the other hand,

Figure 3 illustrates that adaptation across games is not necessarily optimal for some R.

In this case, qLA = 0.6, qHA = 0.8, and qLB = qHB = 0.75, and Bob suboptimally follows his

private signal in game H in the long-run. Though long-run payoffs are close, the fact

that qA is closer to qLB than qLA generates additional costs of adapting across games. After

any finite number of rounds, Bob is more likely to erroneously imitate Anna’s decision in

game L when he adapts across games than when he distinguishes games.

To give an impression of the prevalence of adaptation across games and the conditions

which facilitate it, Tables 1 to 4 report the intervals [R,R] = {R,R + 1, . . . ,R} of the

3The costs are not zero. Bob (implicitly) assesses Anna’s signal precision by qA = 0.7 in the long-run
when adapting across games. Since qA is closer to qHB than qHA , Bob is more likely to pick a wrong strategy
in game H after a finite number of repetitions when adapting across games.

16



number of repetitions for which adaptation across games results in a larger mean average

payoff than adaptation by game. I consider signal precisions qki ∈ {0.55,0.60, . . . ,0.85}

for i ∈ {A,B} and k ∈ {L,H} such that qHA − qHA ≥ 0.15. Stars indicate parameters

constellations for which adaptation across games induces suboptimal long-run behavior.

The results demonstrate that adaptation across games is often optimal when experi-

ences are scarce even if it results in suboptimal long-run behavior. This holds in particular

when games are sufficiently similar. In the simple example, similarity of games is captured

by the (absolute) difference qHA − qLA between Anna’s signal precisions in the two games.

Indeed, Tables 1 to 4 are sorted by this difference. As the difference increases, intervals

[R,R] shrink and parameter constellations for which [R,R] = ∅ become more frequent.
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qHB
qLB 0.55 0.60 0.65 0.70 0.75 0.80 0.85
0.55 [15, 400] [14, 73] [11, 102]∗ [11, 400] [10, 400] [9, 400] [9, 400]
0.60 ∅∗ [17, 28]∗ [14, 42]∗ [13, 76]∗ [10, 171]∗ [9, 171]∗ [9, 159]∗

0.65 [15, 32] [13, 30] [12, 38]∗ [11, 66] [10, 143] [9, 156] [9, 142]
0.70 ∅ [17, 30] [15, 33]∗ [14, 82] [12, 400] [11, 400] [10, 400]
0.75 [16, 34] [15, 32] [13, 47]∗ [12, 400] [11, 400] [10, 400] [10, 400]
0.80 [13, 60] [11, 53] [12, 62]∗ [11, 400] [10, 400] [10, 400] [10, 400]
0.85 [11, 82] [12, 61] [11, 80]∗ [11, 400] [10, 400] [9, 400] [9, 400]

(a) (qLA, q
H
A ) = (0.55,0.70)

qHB
qLB 0.55 0.60 0.65 0.70 0.75 0.80 0.85
0.55 [3, 400] [4, 400] [7, 154] [5, 160]∗ [7, 400] [7, 400] [7, 400]
0.60 [4, 400] [4, 95] [8, 58] [7, 71]∗ [7, 400] [7, 400] [7, 400]
0.65 [6, 53]∗ [9, 39]∗ [9, 34]∗ [8, 41]∗ [8, 69]∗ [8, 143]∗ [8, 150]∗

0.70 [12, 35] [14, 25] [16, 19] [13, 30]∗ [13, 43] [11, 109] [11, 123]
0.75 [12, 33] [13, 25] [13, 23] [12, 30]∗ [12, 59] [11, 400] [10, 400]
0.80 [10, 147] [11, 48] [11, 35] [11, 45]∗ [10, 400] [10, 400] [10, 400]
0.85 [11, 400] [12, 72] [11, 54] [10, 69]∗ [10, 400] [10, 400] [10, 400]

(b) (qLA, q
H
A ) = (0.60,0.75)

qHB
qLB 0.55 0.60 0.65 0.70 0.75 0.80 0.85
0.55 [1, 400] [1, 400] [3, 400] [3, 133] [3, 145]∗ [3, 400] [4, 400]
0.60 [1, 400] [3, 400] [3, 400] [3, 117] [4, 132]∗ [4, 400] [5, 400]
0.65 [3, 400] [3, 400] [4, 60] [4, 47] [5, 64]∗ [5, 400] [6, 400]
0.70 [3, 44]∗ [4, 35]∗ [11, 23]∗ [9, 26]∗ [10, 30]∗ [11, 42]∗ [10, 116]∗

0.75 [7, 38] [9, 27] [10, 20] [10, 22] [11, 24]∗ [11, 37] [9, 95]
0.80 [8, 66] [10, 38] [10, 25] [9, 26] [10, 31]∗ [10, 60] [10, 400]
0.85 [8, 400] [10, 400] [10, 49] [9, 42] [10, 49]∗ [10, 400] [10, 400]

(c) (qLA, q
H
A ) = (0.65,0.80)

qHB
qLB 0.55 0.60 0.65 0.70 0.75 0.80 0.85
0.55 [2, 400] [1, 400] [2, 400] [1, 400] [2, 106] [1, 112]∗ [3, 400]
0.60 [1, 400] [1, 400] [2, 400] [3, 400] [3, 118] [3, 122]∗ [3, 400]
0.65 [2, 400] [2, 400] [3, 400] [3, 400] [3, 92] [3, 111]∗ [4, 400]
0.70 [2, 400] [1, 400] [3, 75] [3, 46] [3, 35] [5, 35]∗ [7, 400]
0.75 [2, 55]∗ [3, 45]∗ [3, 30]∗ [4, 23]∗ [7, 21]∗ [8, 24]∗ [9, 37]∗

0.80 [2, 44] [3, 38] [7, 23] [5, 24] [10, 20] [11, 22]∗ [10, 33]
0.85 [3, 77] [7, 68] [10, 35] [7, 31] [10, 26] [11, 29]∗ [11, 57]

(d) (qLA, q
H
A ) = (0.70,0.85)

Table 1: Repetition Numbers Favoring Adaptation Across Games for Bob if qHA −q
L
A = 0.15.
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qHB
qLB 0.55 0.60 0.65 0.70 0.75 0.80 0.85
0.55 [33, 400] ∅ ∅∗ [13, 71]∗ [11, 400] [10, 400] [9, 400]
0.60 ∅∗ ∅∗ ∅∗ ∅∗ [12, 61]∗ [10, 128]∗ [10, 136]∗

0.65 ∅∗ ∅∗ ∅∗ [17, 21]∗ [12, 40]∗ [12, 76]∗ [10, 92]∗

0.70 ∅ ∅ ∅∗ ∅∗ [16, 32] [13, 96] [12, 111]
0.75 ∅ ∅ ∅∗ ∅∗ [14, 54] [12, 400] [11, 400]
0.80 [17, 24] [16, 22] [19, 20]∗ [13, 36]∗ [13, 400] [11, 400] [10, 400]
0.85 [14, 45] [14, 34] [14, 35]∗ [11, 52]∗ [11, 400] [11, 400] [10, 400]

(a) (qLA, q
H
A ) = (0.55,0.75)

qHB
qLB 0.55 0.60 0.65 0.70 0.75 0.80 0.85
0.55 [1,400] [5,400] [3,134] [4,79]∗ [7,126]∗ [6,400] [6,400]
0.60 [3,400] [3,85] [8,34] [6,37]∗ [5,56]∗ [8,400] [7,400]
0.65 [3,39]∗ [9,25]∗ [12,21]∗ [9,25]∗ [9,29]∗ [7,55]∗ [8,108]∗

0.70 ∅∗ ∅∗ ∅∗ ∅∗ ∅∗ [14,26]∗ [12,53]∗

0.75 ∅ ∅ ∅ ∅∗ ∅∗ [14,23] [11,65]
0.80 ∅ ∅ ∅ ∅∗ [17,20]∗ [12,41] [11,400]
0.85 [13,400] [13,33] [15,26] [12,29]∗ [11,38]∗ [11,400] [11,400]

(b) (qLA, q
H
A ) = (0.60,0.80)

qHB
qLB 0.55 0.60 0.65 0.70 0.75 0.80 0.85
0.55 [2, 400] [1, 400] [3, 400] [1, 126] [3, 79]∗ [3, 115]∗ [4, 400]
0.60 [1, 400] [1, 400] [3, 400] [3, 86] [4, 58]∗ [4, 93]∗ [4, 400]
0.65 [3, 400] [3, 400] [3, 39] [3, 34] [4, 33]∗ [5, 45]∗ [6, 400]
0.70 [2, 35]∗ [12, 18]∗ ∅∗ [9, 18]∗ ∅∗ [12, 19]∗ [12, 33]∗

0.75 [10, 20]∗ ∅ ∅∗ ∅∗ ∅∗ ∅∗ [13, 20]∗

0.80 [11, 22] ∅ ∅ [10, 15] ∅∗ ∅∗ [13, 24]
0.85 [11, 46] [14, 28] ∅ [12, 21] [13, 20]∗ [14, 23]∗ [12, 50]

(c) (qLA, q
H
A ) = (0.65,0.85)

Table 2: Repetition Numbers Favoring Adaptation Across Games for Bob if qHA −q
L
A = 0.20.
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qHB
qLB 0.55 0.60 0.65 0.70 0.75 0.80 0.85
0.55 [44, 400] ∅ ∅ ∅∗ [13, 56]∗ [12, 400] [11, 400]
0.60 ∅ ∅ ∅ ∅∗ ∅∗ [15, 47] [11, 104]
0.65 ∅∗ ∅∗ ∅∗ ∅∗ ∅∗ [16, 27]∗ [12, 53]∗

0.70 ∅∗ ∅∗ ∅∗ ∅∗ ∅∗ ∅∗ [16, 40]∗

0.75 ∅ ∅ ∅ ∅∗ ∅∗ ∅ [14, 73]
0.80 ∅ ∅ ∅ ∅∗ ∅∗ [15, 46] [12, 400]
0.85 ∅ ∅ ∅ [18, 21]∗ [15, 32]∗ [13, 400] [12, 400]

(a) (qLA, q
H
A ) = (0.55,0.80)

qHB
qLB 0.55 0.60 0.65 0.70 0.75 0.80 0.85
0.55 [1, 400] [8, 400] [3, 400] [4, 47] [4, 53]∗ [5, 102]∗ [7, 400]
0.60 [11, 400] [14, 36] ∅ [5, 18] [7, 26]∗ [8, 43]∗ [8, 400]
0.65 [14, 20]∗ ∅∗ ∅∗ ∅∗ [11, 13]∗ [12, 21]∗ [9, 42]∗

0.70 ∅∗ ∅∗ ∅∗ ∅∗ ∅∗ ∅∗ ∅∗

0.75 ∅ ∅ ∅ ∅ ∅∗ ∅∗ ∅

0.80 ∅ ∅ ∅ ∅ ∅∗ ∅∗ ∅

0.85 ∅ ∅ ∅ ∅ ∅∗ ∅∗ [14, 49]

(b) (qLA, q
H
A ) = (0.60,0.85)

Table 3: Repetition Numbers Favoring Adaptation Across Games for Bob if qHA −q
L
A = 0.25.

qHB
qLB 0.55 0.60 0.65 0.70 0.75 0.80 0.85
0.55 [41,400] [316,382] ∅ ∅∗ ∅∗ [22,35]∗ [11,400]
0.60 ∅∗ ∅∗ ∅∗ ∅∗ ∅∗ ∅∗ [16,36]∗

0.65 ∅∗ ∅∗ ∅∗ ∅∗ ∅∗ ∅∗ ∅∗

0.70 ∅∗ ∅∗ ∅∗ ∅∗ ∅∗ ∅∗ ∅∗

0.75 ∅ ∅ ∅ ∅∗ ∅∗ ∅∗ ∅

0.80 ∅ ∅ ∅ ∅∗ ∅∗ ∅∗ ∅

0.85 ∅ ∅ ∅ ∅∗ ∅∗ ∅∗ [216,226]

Table 4: Repetition Numbers Favoring Adaptation Across Games for Bob if qLA = 0.55 and
qHA = 0.85.
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B.3. Results with Symmetric, Binary Private Signals

There is a legitimate concern that advantages of adapting across games vanish in later

periods of the social-learning game. Indeed, with a finite number of private signals none

of which perfectly reveals the state, an information cascade quickly emerges in which

players ignore their private information and imitate the majority of previous decisions.

If the evidence in favor of imitation is strong meaning that beliefs are close to zero or

one, a small number of repetitions might suffice to induce optimal behavior with high

probability. On the other hand, information cascades are fragile which implies that the

evidence in favor of imitation is usually NOT very strong. In addition, predictions of

rational social-learning are likely to be similar across different games in late periods which

is why adaptation across games may not result in large deviations from optimal behavior

in the long-run.

To address this concern, I report simulation results for simple social-learning games

with more than two players and symmetric, binary private signals. Concretely, in each

game k ∈ K signals for each player t ∈ {1, . . . , T} are drawn from S = {0,1} according

to probabilities Pr (s̃t = 1 ∣ θ̃ = 1, k) = Pr (s̃t = 0 ∣ θ̃ = 0, k) = qk ∈ (1
2 ,1). I assume that

K = {L,H} where πL = πK = 1
2 and without loss of generality that qL < qH . Furthermore,

for computational reasons T ≤ 6.

I first characterize the long-run outcome of adaptation for the specific family of social-

learning games. If games are distinguished, the long-run outcome coincides in each game

with the Perfect Bayesian equilibrium derived in Bikhchandani, Hirshleifer, and Welch

(1992): A player follows her private signal (i) in period 1, (ii) if each action has been

chosen by the same number of predecessors, and (iii) if her private signal and the majority

of previous decision are concordant. In contrast, a player follows the majority of previous

actions regardless of her signal as soon as one action has been chosen by her predecessors

at least twice more than the other action. Finally, a player is indifferent between the two

actions if one of the actions has been chosen by her predecessors exactly once more than

the other action and her private signal conflicts with the majority action. In this case, the

player chooses each action with equal probability, as her long-run belief at such histories

is distributed symmetrically around the true belief. In the following, let σk,∗t denote the

long-run strategy of adaptation when games are distinguished.

Corollary B.1. characterizes the long-run outcome of adaptation across games, i.e. the

ABEE with information-anonymous analogy partition. Adaptation across games leads

players to follow any majority in game L. In contrast, players mimic the rational strategy

in game H (except in period 2, where players are not indifferent and follow their private

signal), if games are sufficiently similar, i.e. if qL ≈ qH . Finally, players deviate from the

rational strategy if differences between games are large by following their private signal

whenever all predecessors agree.
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Corollary B1. For any pair K = {L,H} of social-learning games with symmetric, binary

private signals of precision qL and qH , respectively, the long-run outcome of adaptation

across games, {σL,At , σH,At }
T

t=1
, satisfies

(i) Period 1: σk,A1 (s1,∅) = 1 (0) if s1 = 1 (0) for each k ∈ K;

(ii) Game L: σL,At (st, ht) = 1 (0) if a1 = ht(1) = 1 (0) for each t = 2, . . . , T ;

(iii) Game H – Impure Histories: σH,A2 (s2, h2) = 1 (0) if s2 = 1 (0) for each h2 ∈H2, and

σH,At (st, ht) = σ
H,∗
t (st, ht) for each t = 3, . . . , T and each ht ∈Ht∖{(0, . . . ,0) , (1, . . . ,1)};

(iv) Game H – Pure Histories: for each t = 3, . . . , T and each a ∈ A,

� σH,At (st, (a, . . . , a)) = 1 (0) if st = 1 (0), if qH−qL > δH ≡ qH (1 − qH) (2 qH − 1),

� σH,At (st, (a, . . . , a)) = 1 (0) if a = 1 (0), if qH − qL < δH .

Proof. By assumption, players follow their private signal in period 1 in each round and (i)

holds. Hence, period-2 assessments satisfy limR→∞ ϕ̄2 (h2 = (1) ∣ θ̃ = 1) = ϕ̄2 (h2 = (0) ∣ 0) =
qL+qH

2 . Since qL <
qL+qH

2 < qH , players imitate the first action in period 2 of game L, and

they follow their private signal in period 2 of game H. We therefore obtain for period 3:

h3 ϕL,A3 (h3 ∣ θ̃ = 1) ϕH,A3 (h3 ∣ θ̃ = 1) ϕ̄A3 (h3 ∣ θ̃ = 1)

(1,1) qL (qH)
2 1

2
[qL + (qH)

2
]

(1,0) 0 qH (1 − qH) 1
2 q

H (1 − qH)

(0,1) 0 qH (1 − qH) 1
2 q

H (1 − qH)

(0,0) 1 − qL (1 − qH)
2 1

2
[1 − qL + (1 − qH)

2
]

and ϕk,At (h3 ∣ θ̃ = 0) = ϕk,At (h̄3 ∣ θ̃ = 1) for each k ∈ K and each h3 = (a1, a2) ∈ H3 where

h̄3 = (1 − a1,1 − a2). It follows that players also imitate the first action in period 3 of game

L. In contrast, players follow their private signal in period 3 of game H at a pure history

h3 ∈ {(1,1), (0,0)} if and only if

qH

1 − qH
>

qL + (qH)
2

1 − qL + (1 − qH)
2 ⇔ qH − qL > δH ≡ qH (1 − qH) (2qH − 1).

Finally, players follow their private signal in period 3 of game H at any mixed history

h3 ∈ {(1,0), (0,1)} which corresponds to the rational strategy.

Ad (iv): Let t ≥ 3 and a ∈ A, and consider the pure history hat = (a, . . . , a) ∈ Ht.

Assume first that qH − qL < δH such that players who observe history ha3 in period 3 of

game H choose a for each private signal s3 ∈ S. Since players also choose a at history ha3
for each private signal in game L, assessments in period 4 satisfy ϕ̄A4 (ha4 ∣ θ) = ϕ̄A3 (ha3 ∣ θ)

for each θ ∈ Θ. Accordingly, players choose a for each private signal at history hat in each

period t > 3 of each game k ∈ K, if qH − qL < δH . Assume second that players follow their
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private signal at history haτ in each period τ < t of game H. Long-run assessments at the

pure history hat then satisfy

ϕ̄At (hat ∣ θ̃ = 1)

ϕ̄At (hat ∣ θ̃ = 0)
=

qL + (qH)
t−1

1 − qL + (1 − qH)
t−1

and players follow their private signal at this history in game H if and only if

qH

1 − qH
>

qL + (qH)
t−1

1 − qL + (1 − qH)
t−1 ⇔ qH − qL > qH (1 − qH) [(qH)

t−2
− (1 − qH)

t−2
] .

Since (qH)
t−2

− (1 − qH)
t−2

≤ (qH)
t−3

− (1 − qH)
t−3

≤ δH for each t ≥ 4, players follow their

private signal at history hat in each period t = 4, . . . , T of game H if they do so in period

3, i.e. iff qH − qL > δH .

Ad (ii): Property (iv) implies that for each period t ≥ 3 long-run assessments at the

pure history hat satisfy

ϕ̄At (ht ∣ θ̃ = 1)

ϕ̄At (ht ∣ θ̃ = 0)
=

qL + (qH)
j

1 − qL + (1 − qH)
j
>

qL

1 − qL

where j ∈ {2, t − 1}. Therefore, players choose action a ∈ A for each private signal at

history hat in each period t = 2, . . . , T of game L.

Ad (iii): From (ii) it follows that only pure histories arise with strictly positive prob-

ability in game L. Hence,

ϕ̄At (ht ∣ θ̃ = 1)

ϕ̄At (ht ∣ θ̃ = 0)
=
ϕH,At (ht ∣ θ̃ = 1)

ϕH,At (ht ∣ θ̃ = 0)

at any impure history ht ∈ Ht ∖ {h0
t , h

1
t}. Therefore, the ABEE strategy and the rational

strategy coincide in game H at such histories.
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Tables 5 collects the expected payoffs in the long-run of the two adaptive processes.

Period
t ∈ {1,2} t ∈ {3,4} t ∈ {5,6}

Game L
By Game qL qL + 1

2 δ
L qL + 1

2 δ
L [1 + qL (1 − qL)]

Across qL qL qL

Game H
By Game qH qH + 1

2 δ
H qH + 1

2 δ
H [1 + qH (1 − qH)]

Across if qH − qL < δH qH qH + δH qH + δH [1 + qH (1 − qH)]

Across if qH − qL > δH qH qH qH + 2 t−5
2 δH qH (1 − qH)

Table 5: Expected Payoffs in the Long-Run of the Adaptive Process

While players have a smaller expected payoff in game L when adapting across games,

they benefit from the improved information aggregation in game H which stems from the

absence of a tie in period 2. Overall, players may benefit in the long-run from adapting

across games. Figure 4 indicates the range of signal precisions for which this happens.

Players benefit from adapting across games (i) in periods 3 and 4 for signal precision pairs

(qL, qH) in the light-gray area indicated by A, (ii) in period 5 for signal precisions in the

(light-gray) areas A and B, and (iii) in period 6 for signal precisions in the areas A, B,

and C. The dark-gray area highlights the restriction qL < qH . The figure also shows the

grid of signal precisions considered in the simulation below.

A

B

C

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.

qL

qH

Figure 4: Signal Precisions of the Symmetric, Binary Signals for which Players Benefit
from Adapting Across Games
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Figure 5 illustrates the simulation results for qL = 0.6 and qH = 0.8. For these signal

precisions, adaptation across games leads to a lower long-run expected payoff for each

period t > 2. Still, for each period t > 1 there exists a range of the number of repetitions

R for which adaptation across games is optimal. In addition, payoff gains of adaptation

across games in the range where it is optimal are comparable across periods.
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Figure 5: Mean Average Payoffs for Symmetric, Binary Private Signals with Signal Pre-
cisions qL = 0.6 and qH = 0.8.

The figure also establishes how convergence of the adaptive processes depends on the

period. While mean average payoffs quickly approach long-run expected payoffs for the

early periods of the social-learning game, convergence is much slower in later periods.

This offers players the opportunity to benefit even in later periods from adapting across

games when experiences are scarce.

To verify the robustness of the example, Table 6 reports the intervals of the number
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of rounds R for which adaptation across games yields a larger mean average payoff than

adaptation with distinction of games. I focus on periods t ≥ 3. For each period t ≥ 3, the

table contains a distinct panel which states for each pair of signal precisions from the finite

set {(qL, qH) ∈ {0.55,0.60, . . . ,0.90} ∶ qL < qH} the interval [R,R]. A star indicates that

adaptation across games yields in the long-run a higher expected payoff than adaptation

with distinction of games.

The results clearly establish that adaptation across games can be optimal even for later

periods of the social-learning game. Indeed, later periods may favor adaptation across

games since convergence of the adaptive process is slower. As for the simple example,

the number of repetitions for which adaptation across games is optimal largely depends

on the similarity of the games. It is measured here by the difference between the signal

precisions qH − qL. The larger this difference is, the smaller the interval [R,R].
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qH

qL 0.60 0.65 0.70 0.75 0.80 0.85 0.90
0.55 [14, 400] [14, 400] [18, 240] [18, 137] [18, 108] [26, 98] [24, 123]
0.60 [9, 400]∗ [11, 310] [10, 155] [9, 113] [9, 95] [8, 99]
0.65 [7, 400]∗ [6, 226] [6, 116] [6, 88] [7, 81]
0.70 [6, 400]∗ [5, 172] [5, 90] [5, 67]
0.75 [5, 400]∗ [5, 135] [5, 74]
0.80 [4, 400] [5, 103]
0.85 [4, 300]

(a) Period 3

qH

qL 0.60 0.65 0.70 0.75 0.80 0.85 0.90
0.55 [19, 400] [16, 400] [24, 281] [33, 126] [46, 63] ∅ [2, 136]
0.60 [11, 400]∗ [12, 398] [10, 193] [9, 132] [10, 110] [1, 141]
0.65 [8, 400]∗ [7, 289] [7, 137] [6, 103] [1, 105]
0.70 [6, 400]∗ [5, 200] [5, 103] [1, 89]
0.75 [5, 400]∗ [5, 146] [2, 92]
0.80 [5, 400] [1, 122]
0.85 [1, 334]

(b) Period 4

qH

qL 0.60 0.65 0.70 0.75 0.80 0.85 0.90
0.55 [24, 400] [16, 400] [30, 400] [43, 335] [50, 66] [2, 166] [31, 328]
0.60 [8, 400]∗ [11, 400] [9, 298] [8, 189] [1, 182] [7, 219]
0.65 [7, 400]∗ [6, 392] [6, 177] [2, 147] [5, 138]
0.70 [6, 400]∗ [6, 240] [2, 134] [3, 104]
0.75 [5, 400]∗ [1, 177] [3, 104]
0.80 [1, 400] [4, 131]
0.85 [2, 360]

(c) Period 5

qH

qL 0.60 0.65 0.70 0.75 0.80 0.85 0.90
0.55 [28, 400] [18, 400] [15, 400] [2, 400] [1, 400] [45, 400] [36, 400]
0.60 [10, 400]∗ [8, 400] [1, 400] [1, 400] [9, 325] [8, 357]
0.65 [6, 400]∗ [1, 400] [1, 241] [7, 188] [6, 181]
0.70 [2, 400]∗ [1, 287] [5, 149] [4, 120]
0.75 [2, 400]∗ [1, 198] [2, 117]
0.80 [2, 400] [2, 147]
0.85 [1, 359]

(d) Period 6

Table 6: Repetition Numbers Favoring Adaptation Across Games For Symmetric, Binary
Private Signals
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Appendix C. Generalization of the Adaptive Process

This appendix discusses generalizations of the adaptive process. First, I establish the

connection with Milgrom and Roberts (1991) who focus on the asymptotic properties of

an adaptive process. Second, I extend the adaptive process by allowing for more sophis-

ticated individuals and active experimentation following Fudenberg and Kreps (1995, FK

henceforth). Throughout, I focus on a single social learning game (K = 1) and I assume

that feedback is not restricted (i.e. the realized state of nature and the entire history of

actions are revealed at the end of each round).

C.1. Relation to Milgrom and Roberts (1991)

Following Milgrom and Roberts (1991), an adaptive process is consistent with adaptive

learning if each individual eventually (ε-)best responds to strategies which are played

infinitely often. The Lemma below establishes that this property is shared by the adaptive

process defined in the main text. Any adaptive process consistent with adaptive learning

converges to the unique iteratively undominated strategy profile in dominance-solvable

(normal-form) games (Milgrom and Roberts, 1991, Theorem 7). This result is reflected

in Proposition 1.

Lemma C1. If K = 1, yH (ωr) = {ht ⊂ hrT+1}, and yΘ (ωr) = {θr}, the adaptive process is

almost surely consistent with adaptive learning.

Proof. Define for each t = 1, . . . , T the set of ε-best reponses to a subset Σ̂−t ⊆ Σ−t via

Σε
t (Σ̂−t) = {σt ∈ Σt ∶ ∀σ

′
t ∈ Σt ∃σ−t ∈ Σ̂−t s.t. Ut (σt, σ−t) + ε > Ut (σ

′
t, σ−t)}

where

Ut (σt, σ−t) =
1

4
∑
ht∈Ht

b

∫

b

σt (st, ht) [Pr (ht ∣ θ̃ = 1, σ−t) −
1 − st
st

Pr (ht ∣ θ̃ = 0, σ−t)] dG1 (st) .

An adaptive process is consistent with adaptive learning if for each ε > 0 and each R > 0

there exists R̂ > R such that for each r > R̂ and each t = 1, . . . , T , σrt ∈ Σε
t (Σ

>R
−t ) where

Σ>R
−t = {⨉τ≠t σ

ρ
τ ∶ ρ ≥ R} is the set of profiles of strategies σρτ , τ ≠ t, chosen in rounds later

than R. The proof will establish that this property holds along almost any adaptation

path ζ∞ = (ω1, ω2, . . .).

Consider an adaptation path ζr, r = 1,2, . . .. Fix ε > 0 and 0 < R <∞ and suppose by

way of contradiction that there exists t ∈ {1, . . . , T}, a sub-sequence of rounds r1, r2, . . . >

R, and a sequence of (alternative) strategies ςr1t , ς
r2
t , . . . such that for each r = r1, r2, . . .

and each σ−t ∈ Σ>R
−t

Ut (σ
r
t , σ−t) + ε < Ut (ς

r
t , σ−t) .
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I focus on rounds along the sub-sequence henceforth. Let κ (σ−t ∣ ζr) = ∣{1 ≤ ρ < r ∶ σr−t = σ−t}∣

denote the number of rounds before t in which strategy profile σ−t was chosen. Similarly,

let κ (ht, θ, σ−t ∣ ζr) = ∣{1 ≤ ρ < r ∶ θr = θ ∧ h⊂hrT+1 ∧ σ
r
−t = σ−t}∣ denote the number of rounds

before r in which σ−t was chosen, the realized state was θ, and history ht occurred in

period t. Clearly, for each σ−t ∉ Σ>R
−t , κ (σ−t ∣ ζr) /r → 0. Hence, there exists r∗1 such that

for r > r∗1

∑
σ−t∈Σ−t

κ (σ−t ∣ ζr)

r
Ut (ς

r
t , σ−t) > ∑

σ−t∈Σ−t

κ (σ−t ∣ ζr)

r
Ut (σ

r
t (ζ

r) , σ−t) (6)

In addition, for each ht ∈Ht and each θ ∈ Θ,

κ (ht, θ, σ−t ∣ ζr)

∑
h′t∈Ht

κ (h′t, θ, σ−t ∣ ζ
r)
→ Pr (ht ∣ θ, σ−t)

as r →∞ by the strong law of large numbers for conditional expectation (SSLNCE) (see

e.g. Walk, 2008).4 Therefore, for each δ > 0 there exists r∗1 such that for each r > r∗1

RRRRRRRRRRRRRRR

κ (ht, θ, σ−t ∣ ζr)

∑
h′t∈Ht

κ (h′t, θ, σ−t ∣ ζ
r)
−Pr (ht ∣ θ, σ−t)

RRRRRRRRRRRRRRR

<
δ

3
.

Hence, there exists r∗2 > r
∗
1 such that for r > r∗2

∑

σ−t∈Σ−t

κ (σ−t ∣ ζ
r
)

r
Ut (σ

r
t (ζ

r
) , σ−t) > ∑

ht∈Ht

b

∫

b

dG1 (st)

4 st
σrt (st, ht ∣ ζ

r
) [Ut (st, ht ∣ ζ

r
) −

δ

3
] + ε

(7)

where

Ut (st, ht ∣ ζ
r) =st ∑

σ−t∈Σ−t

κ (σ−t ∣ ζr)

r

κ (ht,1, σ−t ∣ ζr)

∑
h′t∈Ht

κ (h′t,1, σ−t ∣ ζ
r)

− (1 − st) ∑
σ−t∈Σ−t

κ (σ−t ∣ ζr)

r

κ (ht,0, σ−t ∣ ζr)

∑
h′t∈Ht

κ (h′t,0, σ−t ∣ ζ
r)
.

For sufficiently large r, (i) κ (σ−t ∣ ζr) /r ≈ κ (θ, σ−t ∣ ζr) /κ (θ ∣ ζr) for each θ ∈ Θ and each

σ−t ∈ Σ>R
−t since the strategies and the realized private signals are independent in each

round, and (ii) ∑h′t∈Ht
κ (h′t, θ, σ−t ∣ ζ

r) ≈ κ (θ, σ−t ∣ ζr). Therefore, there exists r∗3 > r
∗
2 such

4This crucially relies on non-correlation of strategies with the state of Nature or the private belief in
the current repetition.
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that for each r > r∗3

Ut (st, ht ∣ ζ
r) >st ∑

σ−t∈Σ−t

κ (1, σ−t ∣ ζr)

κ (1 ∣ ζr)

κ (ht,1, σ−t ∣ ζr)

κ (1, σ−t ∣ ζr)

− (1 − st) ∑
σ−t∈Σ−t

κ (0, σ−t ∣ ζr)

κ (0 ∣ ζr)

κ (ht,0, σ−t ∣ ζr)

κ (0, σ−t ∣ ζr)
−
δ

3
.

In addition, for sufficiently large r (iii) ∑σ−t∈Σ−t κ (ht, θ, σ−t ∣ ζr) ≈ κ (ht, θ ∣ ζr), and (iv)

ϕrt (ht ∣ θ; ζ
r) ≈ κ (ht, θ ∣ ζr) /∑h′t∈Ht

κ (h′t, θ ∣ ζr). Hence, there exists r∗4 > r∗3 such that for

each r > r∗4

Ut (st, ht ∣ ζ
r) > stϕ

r
t (ht ∣ 1; ζr) − (1 − st) ϕ

r
t (ht ∣ 0; ζr) −

2

3
δ.

Accordingly, for each r > r∗4 the RHS of (7) is strictly larger than

∑
ht∈Ht

b

∫

b

dG1 (st)

4 st
σrt (st, ht ∣ ζ

r) [stϕ
r
t (ht ∣ 1; ζr) − (1 − st) ϕ

r
t (ht ∣ 0; ζr) − δ] + ε (8)

Finally, since σrt best responds to ϕrt for each (st, ht) occurring a non-vanishing fraction

of the time,

1

4
∑
ht∈Ht

b

∫

b

dG1 (st)

st
σrt (st, ht ∣ ζ

r) [stϕ
r
t (ht ∣ 1; ζr) − (1 − st) ϕ

r
t (ht ∣ 0; ζr) − δ] + ε

>
1

4
∑
ht∈Ht

b

∫

b

dG1 (st)

st
ςrt (st, ht) [stϕ

r
t (ht ∣ 1; ζr) − (1 − st) ϕ

r
t (ht ∣ 0; ζr) − δ] + ε

(9)

for r > r∗4 . Combining equations (6), (7), (8), and (9) and noting that δ > 0 has been

chosen arbitrarily yields the desired contradiction.
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C.2. Extension Following Fudenberg and Kreps (1995)

In the simple adaptive process, each individual updates a single collection of assessments

ϕrt(ζ
r) over time. The general adaptive process allows individuals to assign positive prob-

ability to various alternative interpretations of the observed history. A general assessment

rule γr ∶ Ωr−1 →∆ (Φ) assigns to each adaptation path ζr in round r a probability distri-

bution on the set of possible assessments Φ = {{ϕt}
T
t=1 ∣ ϕt∶Θ→∆ (Ht) for each t}. The

updating of assessments over time is not modeled explicitly, instead restrictions are placed

upon the long-run relationship between assessments and feedback. The general process

therefore encompasses various models such as Bayesian learning (FK, Section 3.2).

Definition C1. The general assessment rules γr, r = 1,2, . . . are asymptotically em-

pirical if for each ε > 0, each ζr, each θ ∈ Θ, each t = 1, . . . , T , and each ht ∈Ht such that

lim inf
r→∞

κrt (ht, θ ∣ ζr) /r > 0,

lim
r→∞

γr (ζr)({{ϕt}
T
t=1 ∶ ∥ϕt (ht ∣ θ) −

κrt (ht, θ ∣ ζr)

∑h′t∈Ht
κrt (h

′
t, θ ∣ ζr)

∥ < ε}) = 1

The general adaptive process is also less restrictive with regard to the strategic re-

sponses to assessments. In particular, individuals are allowed to experiment with subop-

timal strategies, which is important to rule out unstable self-confirming equilibria. Given

general assessment γr let

Ut (σt ∣ γ
r) = ∑

ht∈Ht
∫

b

b
σt (st, ht) Ut (st, ht ∣ γ

r)

for each t = 1, . . . , T where

Ut (st, ht ∣ γ
r) = ∫

ϕt∈Φt
[ϕt (ht ∣ 1) dG1 (st) − ϕt (ht ∣ 0) dG0 (st)] γ(dϕ).

The strategic responses σrt are asymptotically myopic with regard to γr, if there exists

a sequence {εr}
∞

r=1 such that εr > 0 for each r, lim
r→∞

εr = 0, and

Ut (σ
r
t (ζ

r) ∣ γr (ζr)) + εr ≥ max
σt∈Σt

Ut (σt ∣ γ
r (ζr)) .

for each r = 1,2, . . ., each ζr, and each t = 1, . . . , T . Asymptotic myopia permits individuals

to choose suboptimal strategies where the suboptimality vanishes over time. Yet, while

players may consciously experiment with suboptimal strategies in early rounds, they must

eventually confine themselves to random experimentation with decreasing overall proba-

bility. FK therefore introduce the following more general idea.
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Definition C2. The strategic responses σrt are asymptotically myopic with calendar-

time limitations on experimentation with respect to γr if

σrt (st, ht ∣ ζ
r) = αrt (ζr, ht) ⋅ σ̂

r
t (st, ht ∣ ζ

r) + [1 − αrt (ζr, ht)] ⋅ ς
r
t (st, ht ∣ ζ

r) .

where (i) σ̂rt is asymptotically myopic for each t and r, and (ii) there exists a non-

decreasing positive sequence δr with lim
r→∞

δr/r = 0 such that for each r, t, ζr, and ht,

αrt (ζr, ht) < 1 only if κrt (a, ht ∣ ζ
r) < δr for some a ∈ A, and for each st and a,

ςrt (a ∣ st, ht; ζr) > 0 if and only if κrt (a, ht ∣ ζ
r) < δr where κrt (a, ht ∣ ζ

r) is the number

of times action a has been chosen at history ht along ζr by the same individual.

Hence, individuals are allowed to actively experiment as long as they confine their ex-

perimentation to actions that have been taken infrequently relative to calendar time. An

individual learning model is an array of general assessment rules and strategic responses,

one each for each indiviual. It is conforming, if assessment rules are asymptotically em-

pirical and strategic responses are asymptotically myopic with calendar-time limitations

on experimentation with respect to the assessment rules.

Definition C3. A strategy profile σ∗∗ is locally stable, if there exists some individ-

ual learning model with asymptotically empirical general assessment rules and strategic

responses that are asymptotically myopic with calendar-time limitations on experimenta-

tion, such that P (limr→∞ σ̂rt (ζ
r) = σ∗∗t ) > 0 for each t = 1, . . . , T .

Proposition C1. For a (single) social learning game, a strategy profile is locally stable

if and only if it is iteratively undominated.

Proof. As for the simple adaptive process, the proof is by induction: In period 1, assess-

ments coincide with rational assessments by definition, and the strategy σr1 eventually

plays arbitrarily close to the iteratively undominated strategy σ∗1 , once experimentation

has vanished sufficiently. Since assessments are asymptotically empirical, eventually only

assessments which are arbitrarily close to rational assessments in period 2 can be assigned

strictly positive probability. This argumentation can be extended to all periods t > 2.

Finally, it may be shown that any iteratively undominated strategy profile can be

locally stable (notice that besides in non-generic settings these strategies differ only at

histories reached with probability zero) by explicitly constructing for a given profile an

asymptotically empirical assessment rule and an associated myopic strategic response (see

Fudenberg and Kreps, 1995, Proposition 6.3).

According to the Proposition, any iteratively undominated strategy profile might arise

as the long-run outcome of the general adaptive process. Indeed, selection of a unique

strategy profile in the long-run seems to be challenging since even refined equilibrium

concepts (perfect, sequential) do not restrict the set of strategy profiles significantly.
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However, under mild additional conditions a unique strategy profile is selected in the

limit (as payoff disturbances approach zero) of a sequence of regular quantal response

equilibria (Goeree, Holt, and Palfrey, 2005). I conjecture that this strategy profile may

be selected by an adaptive process satisfying some mild additional conditions. Notice

that any selection must uniquely define behavior at histories reached with probability

zero. Such histories may occur either because players best respond to mistaken beliefs or

because players experiment. Yet, a suboptimal decision is least costly if it is favored by

an individual’s private information. Hence, choices which occur with probability zero in

the limit may reveal a player’s private signal in the medium run. This is the property of

the limit of quantal response equilibria.
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