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Abstract 
 
In fiscal interaction, a policy is evolutionarily stable if, once adopted by all governments, 
jurisdictions that deviate from it fare worse than those that stick to it. Evolutionary stability is 
the appropriate solution concept for models of imitative learning (policy mimicking). We show 
that evolutionarily stable strategies implement identical allocations, regardless of whether 
jurisdictions use tax rates or expenditure levels as their strategy variable. This is in contrast to 
the observation that the allocations in the Nash equilibria of games played in tax rates or 
expenditure levels differ from one another. With evolutionary play, jurisdictions set taxes and 
expenditures competitively, i.e., they behave as if they were all negligibly small. 
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1 Introduction

In economically integrated settings, jurisdictions at the same tier of a federation are

strategically linked: with mobile people, goods or factors, policies implemented in one

jurisdiction affect the economic performance in other jurisdictions, giving rise to fiscal

games. It is well-known that the choice of policy variable matters for the outcomes of such

games: even in simple settings where public expenditures are financed through a single

tax on a mobile tax base, the Nash equilibria of games where governments use tax rates

as their policy variable generate different allocations than equilibria where governments

operate with expenditure levels. For example, if governments tax-finance local public

goods, competition in expenditures is sharper than in tax rates: the provision levels of

public goods are lower in expenditure competition than in tax competition (Wildasin,

1988, 1991). Similarly, if governments tax-finance inputs that increase productivity in

local production, the provision levels in Nash equilibrium differ between the tax game and

the expenditure game – though it is unclear which type of competition is fiercer (Bayindir-

Upmann, 1998). For decentralized redistribution with mobile beneficiaries, equilibria are

different when governments choose transfer payments to the poor and when tax rates on

the rich as their instruments (Koethenburger, 2014).

The non-equivalence of policy instruments is important in a number of issues in fiscal fed-

eralism: for the necessity and desirability of policy coordination (Zissimos and Wooders,

2008), for the potential superiority of a policy mix over a single policy instrument (Haupt-

meier et al., 2012), for the effects and design of fiscal equalization schemes (Hindricks et

al., 2008; Koethenbuerger, 2011), for commitment issues in fiscal competition etc.

The discussion so far refers to Nash equilibria of fiscal games. This solution concept

presupposes that policies are set as best responses to other governments’ policies, where

“best” is measured in terms of jurisdictions’ own payoffs. Nash play requires complete

knowledge of the game (at least of the mapping from policies to payoffs).

In this paper, we depart from Nash play and study (finite-player) evolutionary stability

in fiscal competition. A policy is an evolutionarily stable strategy (ESS) if, once adopted

by all players, it cannot be successfully invaded by a small number of deviations to a
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different policy (for a formal definition see Schaffer, 1988, or Section 3). The basic idea

of evolutionary stability in fiscal interactions is that more successful policies will, in quite

general dynamics, diffuse faster over time than not-so-successful policies and will eventu-

ally take over in the set of jurisdictions. Once achieved, an ESS is immune against rare

and single policy experiments (“mutations”) in the sense that mutant jurisdictions always

earn lower payoffs than the jurisdictions that stick with the ESS.

Evolutionary stability has recently been applied to games among governments (Sano,

2012; Wagener, 2013; Ania and Wagener, 2014; Philipowski, 2015). It can be motivated

in a variety of ways. First, evolutionary stability is the equilibrium prediction for games

played with the objective of maximizing relative payoffs. In models of fiscal interaction,

this captures yardstick competition, relative performance concerns, and policies motivated

by keeping up with other jurisdictions. Second and more importantly, evolutionary sta-

bility is a useful concept in models of imitative learning (see, e.g., Fudenberg and Imhof,

2006). Being an ESS is a necessary property for the rest points in a wide class of dynamic

processes that might arise in fiscal interaction: in finite-population games, the dynamics

of policy mimicry, imitate-the-best behavioral rules with occasional policy experimenta-

tion and various other types of learning, imitation, and diffusion will reach stability in

the long run only at evolutionarily stable strategies (for a survey, see Alòs-Ferrer and

Schlag, 2010).1 The empirical observation that jurisdictions often copy one another in

their policies and the Hayekian notion that federations are policy laboratories and fiscal

decentralization initiates discovery procedures for good policies anecdotally and theoreti-

cally suggest that fiscal interaction indeed works through imitation-and-experimentation

dynamics. In such cases, evolutionary approaches lend themselves to a belief-free analysis

of fiscal interaction, requiring from policy makers less than full rationality, understood as

payoff maximization with complete knowledge (and the use thereof) of the true economic

model, the mapping between policies and payoffs, and all other relevant information.

We compare the evolutionarily stable outcomes of fiscal competition when governments

1Evolutionary stability is necessary, but not sufficient for this dynamic property. For example, (only)

ESS that are strictly globally stable are the unique stable limit points of stochastic processes arising from

imitation and experimentation in finite-population games (Alós-Ferrer and Ania, 2005).
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have access to two policy variables. We use two workhorse models of fiscal competi-

tion originating from Zodrow and Mieszkowski (1986): governments finance, by taxes on

mobile capital, the provision of a consumption good (Section 2) or of an input factor

into production (Section 3). For both scenarios, the Nash equilibrium allocations differ

when government set tax rates or when they set expenditure levels differ (Wildasin, 1991;

Bayindir-Upmann, 1998). By contrast, the allocations in the ESS of tax and expenditure

games do coincide (Results 2 and 3) – the choice of the policy variable, thus, is irrelevant.

In a nutshell, the intuition is as follows: in both models and for any number of jurisdic-

tions, evolutionary stability is tantamount to “competitive behavior”, i.e., to the Nash

equilibrium that would emerge if there were an infinite number of small, price-taking

jurisdictions.2 Then, the impact of any jurisdiction’s policy choice on the economy-wide

allocation and on other jurisdictions’ payoffs is negligible. Whether governments set tax

rates or expenditure levels is immaterial – and the policy outcomes are therefore identical.

This finding should be contrasted with the outcomes in standard Nash play. There, the

common root for the non-equivalences of equilibria with different policy variables is that

different policy instruments, though linked through budget constraints or other forms

of invertible mappings, affect interjurisdictionally mobile items in different ways. This

gives rise to different fiscal externalities between jurisdictions which affect the efficiency

of policy outcomes differently. With evolutionary play, jurisdictions play competitively,

i.e., as if there were no spillovers to other jurisdictions at all. From that perspective,

alternative policy instruments are indeed equivalent.

The rest of this paper is structured as follows: Sections 2 and 3 analyzes fiscal interaction

when taxes on mobile capital go to finance, respectively, a government-provided consump-

tion good or a production factor. In all scenarios, the allocations at the evolutionarily

stable strategies of expenditure and tax games coincide. Section 4 briefly concludes. All

proofs are in the Appendix.

2Competitive behaviour is a common feature of ESS in models of fiscal competition (as well as in

various other finite-player settings). It implies that tax competition has most inefficient outcomes, at

least in the class of models considered here.

3



2 Tax competition with public consumption goods

2.1 General description

We use the seminal framework of tax competition from Zodrow and Mieszkowski (1986,

Section 2), Hoyt (1991), and Wildasin (1988, 1991). In an economically integrated area

there is a finite number n > 1 of identical jurisdictions.3 Each jurisdiction i ∈ {1, . . . , n} is

inhabited by one representative immobile household who owns an unmodeled fixed factor

and a given amount of capital k̄ > 0. Capital is costlessly mobile and can be invested at

home or in any other jurisdiction.

Each jurisdiction produces a single output yi (which serves as the numéraire), employing

the fixed factor and the capital, ki, invested in i. Technology is represented by a production

function yi = f(ki), with f ′(k) > 0 > f ′′(k) for all k > 0. To avoid uninteresting corner

solutions, we assume that f satisfies the Inada conditions f ′(0)→∞ and f ′(∞)→ 0.

Local output yi can be transformed into consumption, ci, or a government-provided good,

zi, at a marginal rate of transformation of one. Local governments finance the provision of

the government good with a proportional tax on the capital invested in their jurisdiction.

Denoting the capital tax rate in jurisdiction i by ti, tax revenues in i amount to tiki.

Governments maintain balanced budgets; expenditures for the public good must equal

tax revenues:

zi = tiki.

Private consumption in jurisdiction i emerges as output minus local taxes plus the repa-

triated return on net capital exports:

ci = f(ki)− tiki + ρ(k̄ − ki).

Welfare in jurisdiction i = 1, . . . , n is represented by a utility function (of a representative

individual, say) and depends on the consumption levels of the private and of the publicly-

3Zodrow and Mieszkowski (1986) originally model a purely competitive setup; in this specification

follows Hoyt (1991) and Wildasin (1998). Wildasin (1998) assumes that capital owners reside outside the

system of jurisdictions. This gives rise to different values for private consumption than below – without

affecting any of the results to come.
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provided good:

ui = U(ci, zi).

Here, U is strictly monotonically increasing in both arguments and strictly quasi-concave.

Partial derivatives of U are denoted through subscripts. We assume that both c and z

are normal goods.4

As the marginal rate of transformation between c and z is one, an efficient allocation in

the economy requires that, in every jurisdiction,5

ki = k̄ and
Uz(ci, zi)

Uc(ci, zi)
= 1. (1)

Due to the perfect mobility of capital, the net-of-tax return on capital will be equalized

across jurisdictions in a capital market equilibrium. With tax rates t = (t1, . . . , tn), a

capital market equilibrium is a distribution of capital (k1(t), . . . , kn(t)) and an after-tax

return ρ(t) of capital such that:

n∑
i=1

ki(t) = n · k̄ and f ′(ki(t))− ti = ρ(t) for i = 1, . . . , n. (2)

The comparative statics of the capital market equilibrium are straighforward:6 higher

taxes in jurisdiction i lead to an outflow of capital from there (∂ki/∂ti < 0), to an inflow

of capital into other jurisdictions (∂kj/∂ti > 0), and to a drop in the equilibrium of return

(∂ρ/∂ti < 0).

4 Formally, UzzUc−UczUz < 0 and UccUz−UczUc < 0. This assumption ensures that ∂(Uz/Uc)/∂z < 0.
5An efficient outcome is obtained by solving, for any non-negative weights (λ1, . . . , λn),

max
ci,zi,ki

∑
i

λiu(ci, zi) s.t.
∑
i

ki = nk̄ and
∑
i

(f(ki)− zi − ci) ≥ 0.

Production efficiency (f ′(ki) = f ′(kj)) then requires ki = kj = k̄. In an equal-treatment allocation, the

ci and zi in (1) would be equal across jurisdictions; (1) still allows for interjurisdictional transfers.
6They can be obtained from (2) via the Implicit Function Theorem. Specifically, for all i and j 6= i,

∂ki(t)

∂ti
=

1

f ′′(ki)
·
(

1− 1/f ′′(ki)∑n
h=1 1/f ′′(kh)

)
< 0,

∂kj(t)

∂ti
= − 1

f ′′(ki)f ′′(kj)
∑n
h=1 1/f ′′(kh)

> 0,

∂ρ(t)

∂ti
= − 1

f ′′(ki)
∑n
h=1 1/f ′′(kh)

< 0.
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2.2 Tax vs. expenditure game

Given t and attending capital allocation (k1(t), . . . , kn(t)), the tax revenues of jurisdiction

i at tax vector t are Ti(t) := tiki(t). In vector notation, governments’ budget constraints

can be written as:

z = T(t). (3)

We henceforth assume that the mapping T : t 7→ z is invertible at any t: for every

z, there exists tax vector τ (z) = (τ1(z), . . . , τn(z)) such that z = T(τ (z)). The partial

derivatives dτi/dzi and dτj/dzi measure the changes in tax rates that are necessary in,

respectively, jurisdictions i and j, to keep all budgets balanced when jurisdiction i changes

its expenditure level (see Appendix A.1 for details).

When choosing policies, governments care for the utility of their representative citizens and

take into account that capital relocates upon policy changes. With respect to government’s

strategy variable, we distinguish between tax games and expenditure games.

• Tax game: Each government chooses its tax rate ti, taking the tax rates t−i of the

other governments as given and taking into account that

ci = ci(t) = f(ki(t))− tiki(t) + ρ(t)(k̄ − ki(t)),

zi = tiki(t).

In a tax game, jurisdiction i’s payoff at taxes t and the attending capital market

equilibrium can be expressed as

πt(ti; t−i) = U
(
f(ki(t))− tiki(t) + ρ(t)(k̄ − ki(t)), tiki(t)

)
. (4)

• Expenditure game: Each government chooses its expenditure level zi, taking the

expenditure levels z−i of all other governments as given and taking into account

that

ci = ci(τ (z)) = f(ki(τ (z)))− τi(z)ki(τ (z)) + ρ(τ (z))(k̄ − ki(τ (z)),

zi = τi(z)ki(τ (z)).
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In an expenditure game, jurisdiction i’s (absolute) payoff at expenditure levels z

and the attending capital market equilibrium can be expressed as

πz(zi; z−i) = U
(
f(ki(τ (z)))− τi(z)ki(τ (z)) + ρ(τ (z))(k̄ − ki(τ (z)), zi

)
. (5)

With identical jurisdictions, payoff functions (4) and (5) are symmetric: payoffs do not de-

pend on a jurisdiction’s index and are invariant to permutations of the other jurisdictions’

strategies.

2.3 Solution concepts

As all games in this paper are symmetric, we focus on symmetric outcomes. Let us

recall the definitions of symmetric Nash equilibrium and (finite-population) evolutionarily

stable strategy (ESS) for a generic, symmetric n-player game with strategies x, individual

strategy sets X, and payoff functions πxi (x); in our application, “x” is meant to indicate

a tax game (x = t) or an expenditure game (x = z).

Definition 1 Suppose, a finite-player x-game is played (with x = t, z).

• A strategy xN ∈ X is played in a symmetric Nash equilibrium of if

πx(xN ;xN , . . . , xN) ≥ πx(x;xN , . . . , xN) for all x ∈ X.

• A strategy xE ∈ X is said to be an evolutionarily stable strategy (ESS) if

πx(xE;x, xE, . . . , xE) ≥ πx(x;xE, . . . , xE) for all x ∈ X.

In a Nash equilibrium no jurisdiction would earn a higher absolute payoff from a deviation,

given the policy choice of the other jurisdictions. At an evolutionarily stable profile no

jurisdiction can gain a strict relative advantage over the other jurisdictions by deviating;

the payoff comparison is between a (single) deviator, who chooses policy x, and the non-

deviators, who all stick to xE.

The ESS can be understood as the Nash equilibrium when governments care about their

relative performance (Schaffer, 1988). Formally, an ESS is a strategy xE such that

xE = arg max
x∈X

[
πx(x;xE, . . . , xE)− πx(xE;x, xE, . . . , xE)

]
. (6)
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A finite-population ESS generally is not a Nash equilibrium strategy of the “absolute”

game (for a discussion, see Hehenkamp et al., 2010). Deviating from a Nash equilibrium

may pay off in relative terms even if it goes along with a reduction in (absolute) payoffs.

Sano (2012), Wagener (2013) and Philipowski (2015) have shown that in tax rate compe-

tition (i.e., for the tax games discussed here and in Section 3) Nash equilibria and ESS

do indeed differ significantly, the latter leading to competitive behavior. Below we show

that the same holds for expenditure games, implying that, while Nash equilibria differ

between tax and expenditure games, the ESS are the same.

2.4 Symmetric situations

Let us introduce some special notation for symmetric situations. When all jurisdictions

set the same tax rate (i.e., if t = (t, . . . , t) for some t), then ki(t) = k̄ for all i. Attending

are levels of private consumption, c̄(t), and of public consumption, ḡ(t), that are identical

across jurisdictions, but that vary with t. They are given through

c̄(t) = f(k̄)− tk̄ and z̄(t) = tk̄. (7)

We denote by

MRS(t) :=
Uz(c̄(t), z̄(t))

Uc(c̄(t), z̄(t))
(8)

the marginal rate of substitution between private consumption and public good at a sym-

metric tax vector with rate t. Observe that MRS(t) only depends on t (and parametrically

on k̄), but not on n.

A symmetric expenditure vector (zi = z for all i) can be financed by symmetric tax rates:

ti = z/k̄ for all i. Given the invertibility of T, this solution is unique. Again, if all

jurisdictions provide the same level of z, they attract the same amount of capital, k̄. For

symmetric expenditure vectors z = (z, . . . , z) denote by τ(z) = z/k̄ the symmetric tax

rate that would finance z everywhere.

Starting from a symmetric tax vector, the changes in the capital market equilibrium if

one jurisdiction, say i, slightly changes its tax rate are given by

∂ki
∂ti

=
1

f ′′(k̄)
·
(

1− 1

n

)
< 0 and

∂kj
∂ti

= − 1

nf ′′(k̄)
> 0 (9)
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for all i 6= j. As shown in Appendix A.1, with symmetric expenditures a marginal change

in jurisdiction i’s provision level necessitates the following changes in tax rates to keep all

budgets balanced:

∂τi
∂zi

=
1 + 1

n
τ

k̄f ′′(k̄)

k̄
(

1 + τ
k̄f ′′(k̄)

) and
∂τj
∂zi

=

1
n

τ
k̄f ′′(k̄)

k̄
(

1 + τ
k̄f ′′(k̄)

) . (10)

We will henceforth assume that

−k̄f ′′(k̄) > τ

always holds. This ensures that ∂τi
∂zi

> 0 >
∂τj
∂zi

: if a jurisdiction wishes to raise its

expenditures it has to increase its tax rate – while other jurisdictions can lower their tax

rates (which appears plausible, given that they experience an inflow in capital).

2.5 Nash equilibria

As shown in Appendix A.2, symmetric Nash equilibria of tax and expenditure games

satisfy, respectively,

MRS(tN) =

(
1 +

tN

k̄f ′′(k̄)

(
1− 1

n

))−1

(11)

MRS(τ(zN)) =

(
1 +

τ(zN)

nk̄f ′′(k̄)

)
·
(

1 +
τ(zN)

k̄f ′′(k̄)

)−1

. (12)

Result 1 The Nash equilibria both of the tax and expenditure game involve under-provision

of the publicly provided good. This under-provision is more pronounced in the expenditure

game:

τ(zN) < tN and zN < z(tN). (13)

For additively separable utility functions, (13) has already been shown by Wildasin (1988).

Result 1 generalizes this to welfare functions where private and public consumption are

normal goods.

2.6 Evolutionary stability in tax and expenditure games

Or main result shows that the ESS in tax and expenditure games coincide and are inde-

pendent of how many jurisdictions there are:
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Result 2 For an ESS of both the tax and the expenditure game, it holds true that

MRS(tE) =

(
1 +

tE

k̄f ′′(k̄)

)−1

, (14)

independently of the number, n, of jurisdictions. Hence,

tE = τ(zE) and z(tE) = zE.

From Result 2, an ESS in fiscal competition has the following properties:

• Whether the game is played as a tax or an expenditure game, the allocations at an

ESS are the same. This should be contrasted with Result 1 which shows that with

Nash play the outcomes of tax and expenditure games differ.

• Observe that for n → ∞, conditions (11) and (12) are identical and coincide with

(14). The first observation – that for the “competitive” setting with a very large

number of jurisdictions the Nash equilibria of tax- and expenditure games are iden-

tical – can already be found in Wildasin (1998, p. 238). The second observation

conveys that ESS in fiscal games is identical to competitive behavior. The intuition

is as follows: if n gets large, jurisdictions can act as price-takers in Nash play, per-

ceiving themselves (correctly) as not having any impact on the equilibrium rate of

return, ρ. Likewise, with evolutionary play (= relative payoff maximization), effects

on ρ are irrelevant as they are common to all jurisdictions and do not alter relative

positions of jurisdictions; this holds regardless of the number of jurisdictions. Hence,

“competitive” Nash play and evolutionary play entail the same rationale.7

• Compared to Nash play (conditions (11) and (12)), evolutionary play severely ex-

acerbates the under-provision problem. This is can be intuitively understood by

recalling that finite-player ESS are Nash equilibria of games played with relative

performance concerns (see (6)). Such concerns involve a motive of spite: improving

one’s own relative standing can also be achieved by harming others – which happens

through tax or expenditure cuts (for details see Wagener, 2013).

7This result is in line with observations in the literature on oligopoly. For example, the ESS in

Cournot games coincides with the Walrasian (= price-taking, competitive) outcome (see Vega-Redondo,

1997; Alòs-Ferrer and Ania, 2005).
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3 Tax competition with publicly provided inputs

So far, tax revenues went to finance the provision of a consumption good. Zodrow and

Mieszkowski (1986), Bayindir-Upmann (1998), or Dhillon et al. (2007) discuss scenarios

where tax revenues finance a publicly provided input. It is then unclear whether tax

competition triggers an under- or an overprovision of the public input. This makes fiscal

competition with public inputs an interesting object of study also for evolutionary play.

3.1 The model

As before, there are n > 1 identical jurisdictions, each inhabited by an immobile house-

hold who owns the fixed factor and some fixed amount of mobile capital k̄ > 0. The

numéraire output yi in each jurisdiction can, at a unit marginal rate of transformation,

be used either for consumption, ci, or as a publicly provided input into production, zi

(say, infrastructure). Technology is then represented by a strictly quasi-concave produc-

tion function yi = f(ki, zi) with positive, but decreasing marginal productivities of both

capital and the publicly provided input (fk(k, z), fz(k, z) > 0 and fkk(k, z), fzz(k, z) < 0).

The Inada conditions are assumed to hold.

As before, government expenditures are financed through a source tax on capital. Gov-

ernment i’s budget constraint requires tiki = zi. Consumption is given by

ci = yi − tiki + ρ(k̄ − ki),

and the no-arbitrage condition implicitly defines equilibrium rate of return on capital, ρ:

fk(ki, zi)− ti = ρ for all i. (15)

The representative household only cares for consumption. Benevolent governments, thus,

pursue the maximization of ci as their policy objective: πi = ci.
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An efficient allocation in this economy requires that, in every jurisdiction,8

ki = k̄ and zi = z∗, where z∗ solves fz(k̄, z
∗) = 1. (16)

3.2 Tax and expenditure games

We again distinguish between tax and expenditure game:

Tax game: Governments set tax rates, and financial resources for zi are determined by

balancing the budget. Replacing zi by tiki in (15) and obeying the requirement that all

capital be invested somewhere in the economic area (
∑
ki = n · k̄), the capital market

equilibrium can be expressed as a function of tax rates t = (t1, . . . , tn): ki = ki(t) and

ρ = ρ(t). Government payoffs in a tax game emerge as

πti = πt(ti; t−i) = f(ki(t), tiki(t))− tiki(t) + ρ(t) · (k̄ − ki(t)). (17)

For symmetric tax vectors t = (t, . . . , t), such that ki = k̄ everywhere, we define shortcuts

At(t) := fkk(k̄, tk̄) + t · fkz(k̄, tk̄) and Bt(t) := k̄ · fkz(k̄, tk̄)− 1.

For symmetric t, comparative statics under the condition that government budgets bal-

ance are given by:9

∂ki
∂ti

= −n− 1

n
· B

t(t)

At(t)
and

∂kj
∂ti

=
1

n
· B

t(t)

At(t)
. (18)

Higher taxes in a jurisdiction will decrease the amount of capital invested there and,

consequently, increase the amount of capital elsewhere if and only if Bt(t)/At(t) < 0.

8An efficient outcome solves

max
zi,ki

∑
i

ci =
∑
i

(f(ki, zi)− zi) s.t.
∑
i

ki = nk̄.

Production efficiency (f ′(ki) = f ′(kj)) then requires ki = kj = k̄.
9For arbitrary tax vectors, define shortcuts Ati := fkk(ki, tiki) + ti · fkz(ki, tiki) and Bti := ki ·

fkz(ki, tiki)− 1 for i = 1, . . . , n. Then comparative statics are as follows:

∂ki(t)

∂ti
= −

Bti
∑
h 6=i

1
At

h

Ati
∑n
h=1

1
At

h

and
∂ki(t)

∂tj
=

Btj

AtiA
t
j

∑n
h=1

1
At

h

(where i 6= j). The symmetric case follows easily.
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The reason why the effect is ambiguous is that higher taxes reduce the after-tax return on

capital but also allow for higher levels of public inputs, which might enhance the marginal

productivity of capital.

Expenditure game: Governments set expenditures zi, and the tax rates to finance zi

then emerge from the budget constraint as ti = zi/ki. Replacing this in (15), the capital

market equilibrium can be expressed as a function of expenditures z. Government payoffs

in a tax game, πzi = ci emerge as

πzi = πz(zi; z−i) = f(ki(z), zi)− zi + ρ(z) · (k̄ − ki(z)). (19)

We focus on symmetric policies (zi = z and ki = k̄ for all i) and define shortcuts

Az(z) := k̄fkk(k̄, z) +
z

k̄
and Bz(z) := k̄fkz(k̄, z)− 1.

For symmetric z = (z, . . . , z), comparative statics under the condition that government

budgets balance are given by:10

∂ki
∂zi

= −n− 1

n
· B

z(z)

Az(z)
and

∂kj
∂zi

=
1

n
· B

z(z)

Az(z)
. (20)

Higher expenditures in a jurisdiction will decrease the amount of capital invested there

and, consequently, increase the amount of capital elsewhere if and only if Az(z)/Bz(z) < 0.

3.3 Nash equilibria

It is well-known that the Nash equilibria of tax and expenditure games implement different

allocations. Specifically, symmetric Nash equilibria of tax game (ti = tN for all i) and

expenditure game (zi = zN for all i) satisfy, respectively,

fz(k̄, t
N k̄)− 1 =

tNfz(k̄, t
N k̄)

k̄
· n− 1

n
· B

t(tN)

At(tN)

=
Bt(tN)/At(tN)

n
n−1

k̄
tN
−Bt(tN)/At(tN)

, (21)

fz(k̄, z
N)− 1 =

zN

k̄
· n− 1

n
· B

z(zN)

Az(zN)
(22)

10For arbitrary, non-symmetric tax vectors, an analogous description as in the previous footnote applies.
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(also see Bayindir-Upmann, 1998, eqs. (12) and (18)). These conditions generically do

not coincide. Hence, in general

zN 6= tN · k̄. (23)

Depending on whether Bx/Ax is positive or negative, conditions (21) and (22) indicate

under- or over-provision of the publicly financed input in the tax game (x = t) or the

expenditure game (x = z); both outcomes can arise in either game (Bayindir-Upmann,

1998, Props. 4.1 and 4.2).

A knife-edge case where the Nash equilibria of tax and expenditure game coincide arises

if Bt(tN) = 0 or, which is the same, if Bz(zN) = 0. From (21) and (22), the alloctions in

these Nash equilibria are efficient: fz(k̄, z) = 1 (also see Appendix A.7).

3.4 Evolutionary stability

To derive the ESS, we proceed as in Section 2.6. In Appendix A.6 we show that the ESS

of the tax game, tE, and of the expenditure game, zE, satisfy, respectively,

fz(k̄, t
E k̄)− 1 =

Bt(tE)/At(tE)
k̄
tE
−Bt(tE)/At(tE)

, (24)

fz(k̄, z
E)− 1 =

zE

k̄
· B

z(zE)

Az(zE)
. (25)

These conditions convey a number of (by now familiar) messages:

• First, observe that conditions (24) and (25) do not depend on n: in either game,

the ESS is the same, regardless of the number of jurisdictions.

• Moreover, the ESS conditions equal the respective conditions (21) and (22) for Nash

equilibria if n→∞. I.e., evolutionary stability is, both in the tax and the expendi-

ture game, identical with playing “competitive” Nash equilibria. Compared to fiscal

competition with Nash play, inefficiencies are, thus, exacerbated. In contrast to the

framework in Section 2, inefficiency here may imply over-provison of government

goods (i.e., too high tax rates). Evolutionary play, thus, does not only accelerate

races-to-the-bottom, it also speeds up races-over-the-top.

14



• In the knife-edge case where Nash equilibria (of tax and expenditure game) lead to

efficiency, the ESS in either game coincides with the Nash equilibrium – and also

implements an efficient allocation.11

Most importantly in our context, conditions (24) and (25) are in fact equivalent:

Result 3 In fiscal games where tax revenues go to finance production factors, the alloca-

tions at the ESS for tax and expenditure games coincide:

tE = k̄ · zE.

For the tax-financed provision of production inputs, Result 3 and its contrast with (23)

convey the same message as Result 2 for the tax-financed provision of consumption goods.

4 Concluding remarks

In simple tax competition games the choice of the strategy variable does not matter in

evolutionary play. “Simple” refers to games where vectors of potential policy variables are

linked by a one-to-one mapping, in our examples reflected in the collection of government

budget constraints.

This observation is driven by the fact that evolutionary play leads to competitive, aggre-

gate-taking behavior in fiscal competition. From such a “small jurisdiction”-perspective,

no government perceives its policy to impact on other jurisdictions’ payoffs or the equi-

librium rate of return in capital markets. This renders all domestic policy instruments

equivalent. By consequence, with evolutionary play, all policy issues that arise from the

non-equivalence of Nash equilibria in interjurisdictional games played with different vari-

ables (see Section 1) cease to matter.

Our results clearly do not imply that the choice of the policy variable never matters in

evolutionary play for any type of fiscal interactions. We deliberately confined the analysis

to seminal workhorse models of tax competition. This basic framework has undergone

11If t solves (21) with Bt(t) = 0, the same t also solves (24). This reasoning analogously applies to

(22) and (25). Corollary 2 in Hehenkamp et al. (2010) proves that the property that the identity of Nash

equilibrium and ESS implies efficiency in fact holds generally in symmetric games.
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many interesting modifications and extensions. If and how the choice of strategy variable

matters in evolutionary in these variants is an open question for future research.
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Appendix

A.1 Derivation of (10)

For the invertibility of (3), we assume that the Jacobian determinant of T(t) is non-zero

for all t that we consider. Suppose that τ (z) is such that τi(z) · ki(τ (z)) = zi for all i. If

governments marginally change their provision level of z by dz, this requires tax rates to

change as follows

dτ = J−1
T (τ )dz, (26)

where JT(t) is the Jacobian matrix of T, evaluated at tax vector t:

JT =


∂T1
∂t1

. . . ∂T1
∂tn

...
. . .

...

∂Tn
∂t1

. . . ∂Tn
∂tn


where ∂Ti

∂ti
= ki + ti

∂ki
∂ti

and
∂Tj
∂ti

= tj
∂kj
∂ti

(where i 6= j). Evaluated at a symmetric t, JT

takes the form

JT =


a+ b b . . . b

b a+ b . . . b
...

...
. . .

...

b b . . . a+ b


with a := k̄ + t

(
∂ki(t)
∂ti
− ∂ki(t)

∂tj

)
and b := t∂ki(t)

∂tj
. Verify that (direct calculation can be

done by using Sherman-Morrison formula):

J−1
T =

1

a(a+ nb)


a+ (n− 1)b −b . . . −b

−b a+ (n− 1)b . . . −b
...

...
. . .

...

−b −b . . . a+ (n− 1)b


Using (9) we obtain:

∂τi
∂zi

= J−1
T (i, i) =

a+ (n− 1)b

a(a+ nb)
=

k̄ + t
f ′′(k̄)n

k̄(k̄ + t
f ′′(k̄)

)

∂τj
∂zi

= J−1
T (j, i) = − b

a(a+ nb)
=

t
f ′′(k̄)n

k̄(k̄ + t
f ′′(k̄)

)
,

resulting in (10). �
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A.2 Derivation of (11) and (12)

Tax game: Jurisdiction i’s best response in a t-game is implicitly given by

∂πt(ti; t−i)

∂ti
= −Uc

(
ki −

∂ρ

∂ti
· (k̄ − ki)

)
+ Uz

(
ti ·

∂ki
∂ti

+ ki

)
= 0,

where all functions are evaluated at t. With symmetry (ti = tN and, consequently, ki = k̄

for all i), rearranging terms leads to (11).

Jurisdiction i’s best response in a z-game is implicitly given by

∂πz(zi; z−i)

∂zi
= −Uc

(
ki −

∂ρ

∂ti
· (k̄ − ki)

)
· ∂τi
∂zi

+ Uz = 0,

where all functions are evaluated at τ (z). With symmetry, rearranging terms leads to

(12). �

A.3 Proof of Result 1

For t, define

a(t) :=
1

1 + t
k̄f ′′(k̄)

(
1− 1

n

) and b(t) :=
1 + 1

n
t

k̄f ′′(k̄)

1 + t
k̄f ′′(k̄)

.

Observe that a(t) increases in t:

a′(t) = −a(t)2 · 1

k̄f ′′(k̄)

(
1− 1

n

)
> 0,

Moreover, observe that

a(t) > b(t) ⇐⇒
(

1 +
1

n

t

k̄f ′′(k̄)

)
>

(
1 +

t

k̄f ′′(k̄)

)(
1 +

t

k̄f ′′(k̄)

(
1− 1

n

))
⇐⇒ 1

n
·
(

t

k̄f ′′(k̄)

)2

·
(

1− 1

n

)
> 0

— which always holds.

Nash equilibria of tax and expenditure game satisfy, respectively, MRS(tN) = a(tN) and

MRS(τN) = b(τN). Observe that

dMRS(t)

dt
=

k̄

U2
c

(UcUzz − UcUcz + UzUcc − UzUcz) < 0,

where the derivatives of U are evaluated at c̄(t) and z = tk̄. To obtain the above expression

we used (7). The sign follows from the normality of both goods (cf. footnote 4).
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We prove the proposition proper by contraposition. Suppose that tN ≤ τN . Then:

b(τN) = MRS(τN) ≤MRS(tN) = a(tN) < a(τN)

— which violates the fact that a(t) > b(t) for all t. Hence, a contradiction. Consequently,

tN > τN must hold.

To prove inefficiency, recall that an efficient provision level z∗ satisfies MRS = 1. In a

symmetric Nash equilibrium we have MRS(tN) > 1. Normality of c and z then implies

z(tN) < z∗. �

A.4 Proof of Result 2

For the tax game, Result 2 in Wagener (2013) shows that an ESS satisfies (14). We

therefore confine ourselves to the ESS in the expenditure game. Recalling (6), the payoff

difference between a jurisdiction that deviates from a common strategy and a jurisdiction

that sticks with it in an expenditure game amounts to

ψ(z, z′) := πz(z1[z, z′])− πz(z2[z, z′]),

where, given z, z′ ∈ Z, we define vectors

z1[z, z′] = (z; z′, . . . , z′) and z2[z, z′] = (z′; z, z′, . . . , z′).

Following Tanaka (2000), a strategy zE is an ESS if and only if it solves the problem

max
z∈Z

ψ(z, z′).

for z′ = zE, i.e., iff zE = arg maxz∈Z ψ(z, zE). For the expenditure game,we get

ψ(z, z′) = U
(
f(k1(τ (z1))− τ1(z1)k1(τ (z1)) + ρ(τ (z1))(k̄ − k1(τ (z1)), z

)
−U

(
f(k2(τ (z2))− τ2(z2)k2(τ (z2)) + ρ(τ (z1))(k̄ − k2(τ (z2)), z′

)
. (27)

21



Observe that ρ(τ (z1)) = ρ(τ (z2)). To find the maximum of (27), we partially differentiate

ψ with respect to z. Using the Envelope Theorem, we obtain:12

∂ψ(z, z′)

∂z
= U1

z − U1
c

(
k1 −

∂ρ(τ (z1))

∂t1
· (k̄ − k1)

)
· dτ1(z1)

dz1

+U2
c

(f ′(k2)− t2 − ρ)︸ ︷︷ ︸
=0

·∂k2

∂t2
− k2 +

∂ρ(τ (z2))

∂t2
· (k̄ − k2)

 · dτ2(z2)

dz1

.

At a symmetric profile (with z = z′), we have z1 = z2 and k1 = k2 = k̄. Moreover,

c1 = c2 = f(k̄) − z′ and the marginal utilities U2
c and U1

c coincide as they are both

evaluated at (f(k̄)− z′, z′). Hence,

∂ψ(z′, z′)

∂z
= Uz − Uc · k̄ ·

(
dτ1

dz1

− dτ2

dz1

)
= Uz − Uc ·

k̄

k̄
(

1 + τ
k̄f ′′(k̄)

) ,
where we used (10). Equating this to zero, gives (14) – as in the ESS of a tax game.

Moreover, observe that n does not show up on either side of (14). �

A.5 Derivation of (21) and (22)

First consider the tax game. Best responses are characterized by:

0 =
∂πti
∂ti

= (fk − ti − ρ)
∂ki
∂ti
− ki +

∂ρ

∂ti
(k̄ − ki) + fz

(
ki + ti

∂ki
∂ti

)
= −ki +

∂ρ

∂ti
(k̄ − ki) + fz

(
ki + ti

∂ki
∂ti

)
.

In a symmetric Nash equilibrium (ti = tN for all i), this condition holds at ki = k̄. Using

(18) gives (21).

Next consider the expenditure game. Best responses are implicitly defined through:

0 =
∂πzi
∂zi

= fz + fk
∂ki
∂zi
− 1 +

∂ρ

∂zi
(k̄ − ki)− ρ

∂ki
∂zi

= fz − 1 +
zi
ki

∂ki
∂ti

+
∂ρ

∂zi
(k̄ − ki).

In a symmetric Nash equilibrium (zi = zN for all i), this condition holds at ki = k̄. Using

(20) gives (22). �

12We write ∂ρ(τ (z1))
∂t1

and ∂ρ(τ (z2))
∂t2

as the derivatives of ρ with respect to, respectively, the first com-

ponent of τ (z1) and the second component of τ (z2). The numerical values of these derivatives are, of

course, the same since ρ(τ (z2) = ρ(τ (z1).
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A.6 Derivation of (24) and (25)

The proof of (24) can be found in Wagener (2013). Therefore let us briefly sketch the

proof of (25). We proceed as in Section A.4 and use the same notational conventions.

Define payoff differentials between a mutant and a non-mutant jurisdiction as

ψz(z, z′) = f(k1(z1), z)− z − f(k2(z2), z′) + z′ + ρ(z1) · (k2(z2)− k1(z1))

(recall that ρ(z1) = ρ(z2)). Partial differentiation with respect to z yields:

∂ψz(z, z′)

∂z
= −1 + fz(k1(z1), z) +

∂ρ(z1)

∂z
· (k2 − k1)

+(fk(k1(z1), z)− ρ(z1)) · ∂k1

∂z
+ +(fk(k2(z2), z′)− ρ(z1)) · ∂k2

∂z
.

At a symmetric profile (z = z′), we have z1 = z2, k1 = k2 = k̄, and t1 = t2 = z/k̄. Since

an ESS zE maximizes ψz(z, zE), it satisfies

−1 + fz(k̄, z
E) +

zE

k̄
·
(
∂k1

∂z
− ∂k2

∂z

)
= 0.

With (20), this yields (25). �

A.7 Proof of Result 3

The strategy of the proof is to derive conditions such that the allocations in the symmetric

Nash equilibria of tax and expenditure game coincide (recall that the ESS is a Nash

equilibrium for n→∞). Suppose that zN = tN k̄ in the solutions of (21) and (22). Then,

the expressions on the LHS of (21) and (22) coincide – and the expressions on the RHS

must be equal, too. Moreover, Bz(tk̄) = Bt(t) for all t with tk̄ = z. Hence,

tN k̄ = zN ⇐⇒ zN

k̄
· n− 1

n
· 1

Az(tN k̄)
=

1/At(tN)
n
n−1

k̄
tN
−Bt(tN)/At(tN)

⇐⇒ n

n− 1

k̄

tN
At(tN)−Bt(tN) =

n

n− 1

k̄

tN k̄
Az(tN k̄)

⇐⇒ n

n− 1

k̄

tN
(
fkk + tNfkz

)
− k̄fkz + 1 =

n

n− 1

1

tN

(
kfkk +

zN

k̄

)
⇐⇒ 1

n− 1
·
(
k̄fkz(k̄, z

N)− 1
)

= 0. (28)
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Here, all derivatives of f are evaluated at (k̄, zN). Condition (28) generally does not hold

(confirming the generic non-equivalence of Nash equilibria in tax and expenditure games).

However, there are precisely two cases where it holds:

(i) n → ∞: This is the competitive scenario which, from Result 2, coincides with the

ESS. Hence, tE k̄ = zE, as claimed in Result 3.

(ii) k̄fkz(k̄, z
N) = 1 or, equivalently, Bz(zN) = Bt(tN) = 0: In this scenario, the Nash

equilibria both of the tax and the expenditure game are efficient. This validates

the remarks on the “knife-edge case” in Sections 3.3 and 3.4. Here Nash equilibria,

ESS and efficient solutions are identical.
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