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Abstract 
Traditional large appliances absorb a large share of residential electricity 

consumption and represent important targets of energy policy strategies aimed at 

achieving energy security. Despite being characterized by rather mature 

technologies, this group of appliances still offers large potential in terms of 

efficiency gains due to their pervasive diffusion. In this paper we analyse the 

electricity consumption of a set of four traditional ‘white goods’ in a panel of ten 

EU countries observed over 21 years (1990-2010), with the aim of disentangling 

the amount of technical efficiency from the overall energy saving. The technical 

efficiency trend is modelled through a set of technology components representing 

both the invention and adoption process by the means of specific patents weighted 

by production and bilateral import flows, which allows to overcome the rigid 

Stochastic Frontier framework in modelling the effect of technical change. Our 

results show that the derived energy demand and inefficiency trends are both 

related to changes in the amount of available technology embodied in energy 

efficient appliances. The effect is significant both in its domestic and international 

components and suggests an active role of innovation and trade policies for 

achieving efficiency targets which directly impact the amount of electricity 

consumed by households. 
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1 Introduction 

The reduction of primary energy consumption through energy efficiency (EE henceforth) 

represents a cornerstone of the transition towards a resource-efficient green economy in 

Europe and a possible strategy to achieve energy independence and security (EC, 2011). 

According to the new EU climate and energy strategy for 2030 agreed by EU leaders on the 

23
rd

 October 2014,1 in order to achieve a greenhouse gas emissions reduction target of 40% by 

2030 compared to 1990, it would be required an increased level of energy savings of 

approximately 25% by 2030 compared to 1990. 

In energy economics, EE is commonly interpreted as the relationship between the output 

produced by an economy and the energy consumed to produce it (Patterson, 1996 and Lovins, 

2004, among others). Thus, a general characteristic of EE is the use of less energy inputs for a 

larger or equivalent level of economic activity or service. In light of this, the achievement of 

higher EE performance intrinsically relies on technological innovation as a means for 

improving productivity of the energy input and reducing operating costs (Linares and 

Labandeira, 2010; Florax et al., 2011; Hartman, 1979). Most of the studies on EE focused on 

the industrial sector, leaving room for investigation on the analysis at residential level. 

Official statistics (EC, 2012a) show that this latter accounted in 2010 for roughly 30% of total 

final electricity consumption and such a share does not seem to be slowing down (IEA, 2012). 

Besides population growth, this is due to the modern lifestyle, which extensively depends on 

the availability of devices, systems and equipment powered by electricity. However, the role 

of domestic consumption appears relevant mostly for the widespread presence of traditional 

large appliances (freezers, refrigerators, washing machines and dishwashers), which are still 

responsible for 25% of households’ electricity consumption as opposed to other appliances 

such as information and communication devices whose energy needs are negligible with 

respect to the so called ''white goods’’ (Saidur et al., 2007)2. Moreover, since home appliances 

generally consume electricity instead of renewable fuels or direct combustion fuels, they carry 

a relevant carbon footprint in countries where electricity production is carbon intensive 

(Cabeza et al., 2014). Even though improving EE for relatively old technologies embodied in 

large appliances is likely to become increasingly costly (due to decreasing marginal returns of 

energy efficiency technologies), the potential contribution of EE to reduce energy 

consumption is still large if we consider the combined effect of little incremental inventions 

and the large diffusion of traditional electrical appliances. Being these latter crucial to fulfil 

primary needs, they are widespread among households' dwellings (IEA, 2009) and at the 

attention of policy makers who are implementing an increasing number of important 

regulatory actions such as the ‘Eco-design Directive’ for Energy-Using Products (EuP 

Directive 2005/32/EC), the introduction of energy labelling for electric devices (Directive 

92/75/ECC) or more recently, the Energy Efficiency Directive approved in 2012, which 

establishes a set of binding measures to help the EU reach ambitious energy efficiency targets 

(EC, 2012b). 

Recent studies have confirmed the cost-effectiveness of EE gains deriving from electrical 

appliances with respect to those deriving from other sectors (McKinsey, 2009) and identified 

important sources of energy saving in eco-design measures for household appliances (EC, 

2012a). In particular cooling appliances (freezers and refrigerators), washing machines and 

dishwashers seemed to be particularly responsive to energy efficiency policies and showed 

large impacts in terms of EE performances also in consequences of Corporate Social 

                                                 
1
 European Commission proposal (EC COM 2014-15). 

2
 The portfolio of energy services available for households massively increased in the last 40 years, with a strong 

penetration of new devices and appliances aimed at satisfying these services. See Burwell and Swezey (1990). 



3 
 

Responsibility strategies relying on voluntary agreements of manufactures3. In this context, 

the availability of new energy efficiency technologies developed by firms and progressively 

adopted by households represents a key driver to divert the increasing trend of residential 

electricity consumption. 

The literature has highlighted as available EE technologies are adopted at sub-optimal level, 

identifying barriers of different nature (Brown, 2004; Jaffe et al., 2004; Gillingham and 

Palmer, 2014). The phenomenon is known in the literature as the EE gap and can be defined 

as the perceived gap in uptake of existing energy efficient technologies despite these latter are 

characterized by positive net present values (Jaffe and Stavins, 1994). This translates into 

slower paces of EE technology adoption (demand side) and, consequently, in weaker market 

stimuli for firms to innovate (supply side). Broadly speaking, once a technology is invented 

and available on the market, its adoption rate, slow in the first phase, rapidly accelerates up to 

a saturation point in which the diffusion of the new technology reaches its maximum and 

declines in favour of new technologies introduced into the market (Griliches, 1957; Geroski 

2000). In the case of EE technologies, the typical S-shaped curve traced by the level of 

technology turnover has different explanations, such as the adopters' propensity, which in turn 

depends on the awareness level about energy saving potential and the access to technical 

information. The high level of heterogeneity among consumer preferences leads to differences 

in the expected returns to adoption, although these differences tend to be reduced over time as 

the cost of new technologies falls and information becomes increasingly available. 

Furthermore, the heterogeneity in the technology adoption rate changes according to the good 

considered (Jaffe et al., 2004; Fernandez, 2001), since the longer the expected lifetime of the 

appliance, the more the consumer faces long-term energy savings concerns, also considering 

the growing trend in energy prices occurred in the last decades (Popp, 2002). 

In this paper, we employ an original dataset to analyse the determinants of households’ 

electricity demand for a set of ‘white goods’, i.e. traditional large electrical appliances, for a 

panel of 10 EU countries observed over a period of 21 years. Differing from other studies, we 

focus on the role of innovation dynamics to explain the virtuous mechanism through which a 

large share of energy consumption has been reduced in the sector of residential electrical 

appliances. By relying on patents (in particular those related to appliance-specific energy 

efficiency), our electricity demand function incorporates the contribution of technology 

invention and diffusion processes as a source of efficiency-driven energy saving by 

controlling also for specific energy consumption drivers, such as per-capita income, dwelling 

size and type of appliance. In the second part of the analysis, we employ a stochastic frontier 

analysis (SFA) to disentangle the amount of energy saving observed in the demand estimation 

due to technical efficiency. In doing this, we use our technology measure for modelling the 

distribution of technical efficiency which is supposed to affect EE performances via technical 

change, thus leading to net gains in energy saving. 

The rest of the paper is structured as follows. Section 2 describes the relationship between 

energy consumption, EE and technological innovation. In Section 3 we present the dataset 

and the empirical strategy to estimate the standard electricity demand function and the 

associated stochastic frontier, while results and efficiency scores are discussed in Section 4. 

Section 5 concludes the paper with some policy implications. 

                                                 
3
 An example is the Conseil Européen de la construction d’appareils domestiques (CEDEC). 
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2 Energy efficiency and innovation 

2.1 The empirical evidence 

There is very scarce empirical evidence analysing the relationship between technical change 

and the level of energy consumption in the residential sector. Early empirical analysis mainly 

focused on a product-based approach in which the demand drivers play a key role through the 

well-known price-induced innovation hypothesis (Hicks, 1932). In this respect, Newell et al. 

(1999) test the hypothesis of policy-augmented price-induced innovation relying on sale data 

of room and central air conditioners as well as of gas water heaters in the 1958-1993 period. 

They find positive relation between EE performances and the technology turnover. This latter 

is led by increasing energy prices or lower appliances' prices. The regulatory activity, taken 

into account by analysing government efficiency standards, is also effective for stimulating 

technological improvement, together with the introduction of energy labelling requirements. 

However, more recent contributions seem to be more prone in following a context-based 

approach, in which the energy saving performances are considered as a part of a more 

complex process mainly governed by the technology advances, this latter being often induced 

by a set of drivers such as policy-related and behavioural factors (van der Bergh et al., 2007; 

del Rio Gonzalez, 2009; Horbach, 2008). On the wake of the numerous studies on eco-

innovation, a further strand of empirical literature focused on the determinants of EE 

technologies and their diffusion mechanisms. In this respect, Jaffe and Stavins (1995) 

measure the impact of energy prices, adoption subsidies and building codes on the home EE 

level in the United States between 1979 and 1988, finding a stronger effect of government 

subsidies compared to that led by increasing energy prices on the average level of EE in 

buildings. Although energy taxes (captured by relatively high energy prices over the period) 

have a positive impact on technology adoption, the magnitude of the effect is relatively small. 

Moreover, technology standards seem to have no impact on the adoption of new EE 

technologies, suggesting that the building codes are often set too low to be effective. More 

recently, Verdolini and Galeotti (2011) analyse the supply and demand determinants on 

energy-efficient and environmental-friendly technologies also including spatial knowledge 

spillovers in a panel of 38 countries. Besides the positive impact of these latter, further stimuli 

to innovate derived from by the variability of energy prices via induced innovation hypothesis 

as well as from the technological opportunity, measured by country-specific knowledge 

absorptive capacity. The determinants of new EE technologies in the building sector is also 

investigated by Noailly (2012), who tests the impact of alternative environmental policy 

instruments (regulatory energy standards in building codes, energy prices and specific 

governmental energy R&D expenditures) on EE patent applications in eight technological 

building sectors as a proxy for firms' innovative effort. The panel covers seven European 

countries over the period 1989-2004 and finds that regulatory standards have a greater impact 

than energy prices and R&D support on innovation. The author argues that the insignificance 

of prices can be due to the specificity of the building sector, in which the principal-agent 

problem would play a limited role (Gillingham et al., 2009). A similar approach is followed in 

Costantini et al. (2014), using a panel of 23 high-income OECD countries over 21 years. By 

disaggregating the analysis in three sectors, namely lighting, buildings and large electrical 

appliances, the paper analyses the relationship between different innovation drivers, with a 

particular emphasis on the policy intervention. They test firms' innovative activity, measured 

by EE patents filed at the European Patent Office (EPO), when subject to a heterogeneous set 

of policy measures. The analysis confirms the important role of energy prices for stimulating 

EE technologies, but enlarges the framework to other important drivers that are effective in 

spurring EE innovative activity such as long-run energy strategies (abundance of electricity 
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generation from domestic sources), policy spillovers and the mix of in-force policy 

instruments. 

Nonetheless, to the best of our knowledge, there are no studies that directly relate the EE 

performances at residential level to the impact of new technologies, which are more and more 

widespread across the white goods. In light of this, the present paper takes advantages of the 

contribution of eco-innovation literature for identifying relevant EE technologies, in order to 

derive a measure of technical efficiency which is assumed to be directly governed by the 

innovation process. 

2.2 Measuring energy efficiency 

The measurement of EE at aggregate level, even focusing on a specific sector as we do in 

the present work, is not an easy task. The reasons of such a difficulty can be manifold. First, 

energy saving and EE are not completely overlapping terms, as EE is a sub-set of the energy 

saving (or energy conservation) domain. This latter is a broader concept since energy saving 

can be achieved through EE gains or simply by reducing the level of economic activity, which 

may also reveal a change in consumers’ behaviour. Patterson (1996) led the way to 

conceptualise EE in economic terms, proposing a set of indicators of different nature and 

laying out some methodological issues when different indicators are applied to real data. For 

instance, the commonly-used energy-GDP ratio or energy productivity index4, without 

specific calculations at margins, may suffer from bias when structural effects are not 

separated from technical efficiency. Indeed, when different countries or sectors are compared 

using the aggregated energy-GDP ratio, the specific composition of the economy is not taken 

into account and the results may lead to misleading conclusions. For instance, a country can 

efficiently produces energy-intensive goods and show a high energy/output ratio, while at the 

margin, this bias disappears. Bosseboeuf et al. (1997) highlighted other measurement 

difficulties such as the heterogeneity in data definition and the divergence of indexes 

interpretations, since the concept of energy efficiency is subject to heterogeneous definitions 

across countries. In this respect, many national energy agencies attempted in past to address 

the issue of harmonisation in EE data and related definitions (EPA, 1995; ENEA, 1996). In 

addition, climatic differences between countries, particularly important when comparing 

energy efficiency in space heating, play a role when the analysis extends over large latitudes. 

The lack of consensus for measuring EE has been also recently pointed out by Khademvatani 

and Gordon (2013), who departing from a marginal EE index, introduced a theoretical 

framework which incorporates the social value of externalities. These latter may bias the 

measure of efficiency, since ''firms can be privately efficient in energy use but not socially'' 

(pp. 154). Accordingly, the difference between the shadow value and the price of energy is 

identified as a measure of energy inefficiency and provides a profit incentive for the economic 

agent to alter the energy use.  

A further relevant difficulty for measuring EE at sector level is due to the fact that EE 

performances are strongly related to the technology employed in the ‘production process’. In 

our case we refer to the technological content embodied in each single appliance, which 

through the diffusion process, translates its marginal contribution in a large impact on the 

energy saving at aggregate level. This process takes place since each appliance’s contribution 

is multiplied by the number of appliances sold on the market and operating in the households’ 

dwellings. Unfortunately, such an effect is difficult to be captured given the lack of data on 

the stocks of devices as well as their different technological characteristics. 

                                                 
4
 Energy productivity is the reciprocal of energy-GDP ratio. See Sue Wing and Eckaus (2007) and Markandya et 

al. (2006), among others. 
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Regarding the analytical approaches developed to measure the level of technical efficiency, 

one of the most effective is represented by the Stochastic Frontier Analysis (SFA), a 

parametric empirical technique which allows to estimate both the level of theoretical and 

actual efficiency of a given production system in the well-known framework of the 

neoclassical production function (Aigner et al., 1977; Meeusen and van den Broeck, 1977)5. 

Although such a technique is not exempt from drawbacks, as for instance the imposition of a 

predetermined functional form, its use has been extensively exploited in the literature of 

energy economics (see Buck and Young, 2007; Boyd, 2008; Stern, 2012; Filippini and Hunt, 

2012, among others).  

In the specific case of residential sector, the empirical evidence remains spare, since only a 

limited number of studies have focused on this issue and, with few exceptions, no one focuses 

the analysis at the residential level. The study by Buck and Young (2007) uses cross-sectional 

data on energy use to derive efficiency scores for different types of commercial buildings. 

They find that Canadian buildings are fairly efficient, with significant differences between 

government-owned buildings and those owned by non-profit organisations, this latter being 

more efficient. However, the authors recognise that, due to data limitations, the effect of new 

technologies adoption is not fully captured by their model. The level of residential energy 

efficiency is also investigated by Filippini and Hunt (2012), who use a balanced panel 

deriving from the US-EIA database to analyse the energy consumption in 48 US States over 

the 1995-2007 period. They find inconsistency in several States between the standard energy 

intensity indicators and energy efficiency scores deriving from the stochastic frontier 

approach used in the analysis, suggesting further investigation on this direction. More 

recently, Filippini et al. (2014) focus on the impact of government policies aimed at 

improving energy efficiency in the residential sector. Although the large number of in-force 

policy instruments existing in the EU, they find room for efficiency gains and a high level of 

variability across countries, although not significant differences between new and old EU 

Member States have been detected.  

Even though these studies specifically focus on the measurement of EE at the residential 

level, they do not address the potential of innovation as a means for achieving EE gains. The 

technology is usually modelled EE as a latent variable and does not allow for explicit 

considerations regarding the dynamics of innovation process (Filippini et al., 2014, among 

others). Moreover, when investigating the relationships between energy consumption and 

efficiency gains, a further relevant issue is represented by the so-called ‘rebound effect’ 

(Khazzoom, 1980; Greening et al., 2000; Sorrell and Dimitropoulos, 2008). This refers to a 

situation where the energy saving obtained through EE lowers the price of the associated 

energy service and increases its demand (direct rebound) or the demand for other goods 

(indirect rebound). Such an issue seems to be absent in the literature of residential efficiency 

analysis, although several studies signal significant and relevant impacts of the rebound effect 

in reducing the energy saving deriving from efficiency gains6. Although deserving some 

precautionary attention, in our analysis the impact of rebound effect is supposed to be 

strongly mitigated, since the use of traditional electrical appliances is strictly devoted to fulfil 

primary needs, thus being characterised by low values of demand-price elasticity which imply 

limited levels of rebound effect (see Herring et al., 2007; Ek and Soderholm, 2010; van den 

Bergh, 2011; Chakravarty et al., 2013). However, the disaggregation that we propose between 

continuous and intermittent appliances represents a further strategy to address potential 

presence of rebound, relying on the hypothesis that those appliances that need to be 

                                                 
5
 Other possible approaches can be the Data Envelopment Analysis (DEA) (Thore et al., 1994) and the 

decomposition methods (Ang, 1995). 
6

 For some empirical evidence on the rebound effect in the residential sector see Greening et al. (2000), 

Saunders, 2013; Hilty et al., 2006 and Davis, 2008. 
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continuously in operation have minimum substitutability response and low saturation effect to 

possible changes in consumer behaviour due to efficiency gains (Lorentz and Woersdorfer, 

2009; Ouyang et al., 2010; Guertin et al., 2003). 

3 Empirical strategy 

Our empirical analysis begins by estimating a standard energy (derived) demand function. In 

order to provide a preliminary test on the significance of technological advances in domestic 

appliances, the estimation of electricity demand already includes the impact of innovation 

process. In the second part of the study, we disentangle the effect of technical efficiency from 

the overall gain in energy saving resulting from the energy demand estimates. In order to 

separate technical energy efficiency from general energy saving, we employ a technology-

augmented stochastic-frontier model, which accounts for both the role of domestic and 

foreign EE innovation in the national markets. 

3.1 Technology modelling 

As previously discussed, the level of technology can strongly affect EE performances and 

deserves specific attention. In light of this, we focus on the dynamics through which the 

technology evolves, providing an original methodology to include the innovation dynamics in 

the rigid constraints of stochastic frontier analysis. Following the conceptual contributions of 

innovation scholars (see Stoneman, 1993; 2001 among others), three main stages in the 

innovation process can be identified, namely invention (i.e the generation of new ideas), 

innovation (i.e. the development of new ideas into marketable products and processes) and 

adoption (or diffusion stage, in which the new products and processes spread across the 

potential market). Hence, in order to understand how the economy changes as new 

technologies are introduced and used, the stage of diffusion assumes a crucial aspect.  

In our case, a new EE technology has to be firstly developed and embodied in the appliance. 

Then, this latter has to be diffused and made easily accessible to consumers (both in terms of 

logistics as well as of economic affordability) and, finally, adopted (Karshenas and Stoneman, 

1993). In this respect, data and metrics for measuring both firms’ innovative performances as 

well as the level of technology diffusion is particularly important. Data on specific product 

characteristics would represent good sources of data for analysing the technological level of 

appliances, but they are difficult to be collected for long time series. On the other hand, 

technology-input measures, such as firms’ R&D expenditures are often not publicly available. 

Some studies aim at investigating the implications of consumers’ behaviour in response to EE 

gains deriving from the use of more efficient appliances by employing energy labels and 

codes as a measure of efficiency performance (Datta and Gulati, 2015, among others). 

Notwithstanding, such an approach provides a poor representation of the technology portfolio 

embodied in the appliances under scrutiny, with a raw distinction among the different 

technology advances implemented by the multitude of manufacturers of appliances. In this 

respect, the approach that we propose allows to model the technology as a continuous 

variable, without jumps occurring in technology shifts (i.e., EE classes) and thus producing a 

more realistic representation of the rate and direction of technical change. 

To this aim patents, despite some limitations, constitute a widespread data source in the 

economics of innovation (Hall et al., 2005; Jaffe and Trajtemberg, 2004; Malerba and 

Orsenigo, 1996; Oltra et al., 2010; Lanjouw et al., 1998; Lanjouw and Schankerman 2004; 

van Pottelsberghe et al., 2001), since they provide a wealth of information on the nature of the 

invention and the applicant for rather long time series. Patent data frequently represent the 

direct result of R&D processes, a further step toward the final output of innovation, that is 

useful knowledge through which firms are able to generate new profit sources. Nevertheless, 
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in the case of green technologies, standard international patent classifications only partially 

represent the whole range of sub-fields characterizing complex technological domains such as 

EE (Barbieri and Palma, 2015) or biofuels (Costantini et al., 2015b). In light of this, the 

patent database here adopted allows to integrating the Y02 Cooperative Patent Classification 

(CPC) based on patent classes for green technologies, which recently incorporates energy 

efficiency technologies for the residential sector, with the specific work carried by Costantini 

et al. (2015a) on specific sub-sector of electrical appliances. Table B1 in the appendix 

describes the CPC classes that were relevant for our study. As a result, we collect a total of 

9619 unique patent applications filed at the European Patent Office (EPO) and belonging to 

the four appliances, namely freezers and refrigerators, washing machines and dishwashers. 

Our patent sample has been ordered by application date and assigned to the applicant’s 

country. 

A possible limitation when patents are employed as a measure of innovation output is 

represented by the high heterogeneity in their value (Griliches, 1998 among others). It is thus 

necessary to control for patent quality. In this respect, it is worth noting that EPO applications 

are more expensive than applications to national patent offices and inventors typically apply 

to EPO if they have strong expectations in terms of economic exploitation of the invention. 

The difference in costs deriving from the decision to filling to EPO instead of national patent 

offices provides a “quality hurdle which eliminates applications for low-value inventions” 

(Johnstone et al., 2010, p. 139). 

In order to capture both past and recent innovative efforts, the domestic patent stock   has 

been calculated following Popp (2003): 

 

            
                   

 

   

 (1) 

 

where   indicates the patent count,    the rate of decay (set to 0.1) that captures the 

obsolescence of older patents,    the rate of diffusion (set to 0.25) that accounts for the delay 

in the diffusion of knowledge,   indexes countries and     index time. This modelling choice 

allows for treating the technology stock as a cumulative process, but at the same time it 

accounts for the obsolescence effect, as new technologies are available, older patents become 

less profitable (Evenson, 2002; Hall, 2007). 

Given that patents represent only the first stage of innovation process (i.e., invention), we 

derive a proxy of technological diffusion by considering both the domestic and foreign 

penetration of EE electrical appliances sold in the market. Our measure consists in a domestic 

innovation component and a foreign innovation component (    
         and     

       
, 

respectively). Technology embodied in electrical appliances enters the national markets 

through domestic production and foreign import flows, these latter expanding the internal 

supply of energy efficient appliances. Hence, in this stage new EE appliances are sold by 

firms to households and contribute to mitigate the energy consumption. In order to capture the 

impact of technology embodied in the appliances and actually sold in the market, each 

national patent stock is multiplied by the national production of appliances. Nevertheless, a 

relevant share of physical efficiency also depends by appliances purchased and used by 

households in the national territory and imported by foreign producers. As suggested by Shih 

and Chang (2009) and more recently by Costantini and Liberati (2014), well-established 

international market relationships represent a good means for testing the degree of embodied 

technology diffusion. Accordingly, patent stocks belonging to foreign firms are multiplied by 
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the corresponding appliance-specific bilateral import flow. Both the domestic and foreign 

technology stocks have been divided over the total amount of appliances circulating in a given 

country, calculated as the domestic production less the export share to which we summed the 

imported production from foreign countries.  

In formula, the two technology stocks are calculated as follows: 

 

 

    
           

           

              
 

 

   

 

    
       

   
            

              
 

 

   

 

(2a) 

 

(2b) 

 

in which     represents the total export,   the domestic production,        the import 

quantity entering from country   to country  ,   the patent stock,   indexes the technological 

domain to which the three group of appliances belong and   indexes time. Data on domestic 

production and bilateral trade flows, considered at eight digit level of detail and expressed in 

monetary values (Euro), derive, respectively, from PRODCOM and COMEXT database, both 

available from Eurostat (2013a, b). 7 

Figure 1 plots the dynamics of the two technology components (domestic and foreign) for 

each country and year, showing some preliminary and interesting insights. First, both the 

domestic and foreign patent stocks are steadily increasing over time, with the foreign 

component always predominant. Two exceptions are represented by Italy and, recently, 

Germany, in which the amount of EE-technical knowledge domestically developed is greater 

than the one imported from abroad. On the contrary, Slovenia is characterised only by 

imported innovation. This figure depicts a heterogeneous pattern in which some countries are 

leaders in both technology development and export, while some others are mainly 

characterised by technology adoption. The split between domestic and foreign market 

interconnections dynamics is crucial when EE is under scrutiny, since no a priori expectations 

in terms of EE trend can be drawn by observing only the domestic technology component (the 

national stock of technical knowledge weighted by the net domestic production). In fact, we 

may expect a relatively large improvement in technical efficiency also in technology-adopting 

countries, since EE performances are not affected by the level of national or international 

technological capacity, rather by the availability on the market of new energy efficient 

appliances, wherever the latter derive from. Although not directly investigated in this paper, it 

                                                 
7

 We selected the following CN8 (Combined Nomenclature 8-digit) codes for measuring bilateral trade flows 

in the COMEXT database: 8418 "Refrigerators, freezers and other refrigerating or freezing equipment, electric 

or other; heat pumps; parts thereof (excl. air conditioning machines of heading 8415)", 8422 "Dishwashing 

machines; machinery for cleaning or drying bottles or other containers; machinery for filling, closing, sealing or 

labelling bottles, cans, boxes, bags or other containers; machinery for capsuling bottles, jars, tubes and similar 

containers; other packing or wrapping machinery, incl. heat-shrink wrapping machinery; machinery for aerating 

beverages; parts thereof" and 8450 "Household or laundry-type washing machines, incl. machines which both 

wash and dry; parts thereof". We selected the following NACE (rev. 1.1) codes for measuring domestic 

production and total import and export of appliances: 29711110 "Combined refrigerators-freezers; with separate 

external doors", 29711133 "Household type refrigerators", 29711135 "Built-in refrigerators", 29711150 

"Freezers of the chest type; capacity =< 800 litres", 29711170 "Freezers of the upright type; capacity =< 900 

litres", 29711200 "Dishwashers", 29711330 "Fully-automatic washing machines; capacity =< 10 kg", 29711350 

"Non-automatic washing machines; capacity =< 10 kg". 
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is worth noting that the role of government regulation, in particular of those policies aimed at 

promoting energy saving, can strongly affect the innovative capacity of a country, and 

consequently, its EE performances. In this respect, Costantini et al. (2015a) provide fresh 

evidence that foreign countries characterized by great innovation capacity have larger 

incentive to export new EE appliances in those countries with higher policy stringency and a 

well-balanced mix of policy instruments. Such a policy-induced effect translates in larger 

markets for EE appliances and contributes to mitigate the level of energy consumption. 

Moreover, the invention capacity of a country is also a function of other indirect effects, such 

as knowledge spillovers able to enhance the capacity of knowledge absorption (Verdolini and 

Galeotti, 2011). 

 

Figure 1 – Trends of technology by country 

 
 

3.2 Energy demand model 

Our analysis considers a balanced panel of ten EU countries8 observed over the 1990-2010 

period. In the energy demand specification, households are assumed not to demand electricity 

per se, but for the need of energy services, such as washing or cooling, which are satisfied by 

using different electrical appliances (Linares and Labandeira, 2010). Income, electricity prices 

and technology constitute the inputs of the (derived) electricity demand that we estimate for 

two groups of home electrical appliances, namely cooling appliances (refrigerators and 

freezers) and washing appliances (dishwashers and washing machines). Data on appliance-

specific electricity consumption comes from the Odyssee database which has been developed 

                                                 
8 

Austria, Denmark, France, Germany, Greece, Italy, Netherlands, Slovenia, Sweden and the United 

Kingdom. 
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by Enerdata in collaboration with several national energy agencies, under the supervision of 

the European Commission. 

In addition to these inputs, we employ a set of additional controls. The first is the average 

size of households' dwellings (from Odyssee-Enerdata), since larger houses have been 

recognized in the literature as the most important socio-economic determinant of residential 

energy consumption and it is more likely to imply a higher number of appliances per 

dwelling; this allows us to control possible size-effects in the energy demand (Kaza, 2010; 

Kelly, 2011; ETCSCP, 2013). In addition, we consider the hypothesis that the electricity 

households’ demand can vary with the characteristics of the urban context. To this aim, we 

include the share of urban population over the total population (World Bank, 2015). 

Since the electrical appliances considered in the analysis are not responsive to changes in 

climate conditions, we do not control for average temperature or heating degree-days as in 

similar studies aimed at estimating energy demand (Stern, 2012; Filippini et al, 2012; 2014). 

Even though the set of considered countries belong to a homogeneous and limited 

geographical area (i.e. EU Member States), we employ a fixed-effects model to account for 

unobserved heterogeneity due to unobserved differences across national innovation systems, 

market and institutional settings and cultures. 

By defining      the annual level of total electricity consumption expressed in kWh and 

demanded by households for using the two groups of appliances, the panel fixed-effect 

demand equation is defined as follows: 

 

 
                               

   

   
 
   
                    

       
      
   

 
   
         

(3) 

 

where    and 
   

   
 represent, respectively, end-use electricity prices per KWh (International 

Energy Agency and Eurostat) and gross per-capita income (World Bank), both expressed in 

purchase-power parity (PPP) 2005 US dollars,         denotes the average household size in 

squared meters, 
      

   
 is the urban population as a share of total population,    indicates the 

set of time dummies with              ,    is the country fixed effect and      is the 

idiosyncratic error term. We calculated the natural logarithms of both dependent and 

independent variables, hence the estimation results represent demand elasticity changes with 

respect the input employed. Descriptive statistics for these variables are reported in Table A1 

of the Appendix. 

Given that our dataset allows to differentiating energy consumption by type of appliance, we 

provide also disaggregated results by separating intermittent (washing machines and 

dishwashers) and continuous (refrigerators and freezers) appliances. By doing so, we expect 

not only finer elasticity estimations in the demand function, but also an additional control in 

the stochastic frontier model which mitigates the bias deriving from those intermittent 

appliances more prone to be characterized by rebound effects, thus producing more reliable 

efficiency scores. The results of demand elasticity estimations are showed in Table 1 and 

Table 2. 
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3.3 Separating technical efficiency 

In order to derive a measure of EE performance, we assume the technical efficiency as a 

function of technology. Hence, the technology level drives the process of energy saving 

through the increasing development and market penetration of EE technologies. To this aim, 

we employ SFA technique, which here requires a well-defined input minimisation setting 

through the use of a cost function. In energy economics, several studies have successfully 

adjusted the production efficiency analysis using SFA to the framework of household’s 

energy demand. Accordingly, households purchase and combine inputs to benefit from the 

utility represented by a composite of energy commodities (Filippini, 1995; Filippini and 

Pachauri, 2004; Filippini and Hunt, 2012). More in detail, “the production of energy services 

can be represented with a production function and a set of input demand functions” (Filippini 

et al., 2014, p. 75). By this definition, the ‘production frontier’ provides the minimum energy 

input used by a household, for given level of output (i.e. energy services). Departing from this 

conceptual framework, the stochastic input-demand frontier cost function in a panel setting is 

given by: 

 

    
              

               

                                
 ) 

(4) 

(5) 

(6) 

 

where     
  represents the theoretical demand frontier,      the vector of inputs and controls and 

  the vector of unknown parameters to be estimated. The error term is composed by an 

inefficiency component,     , that follows here a generic distribution    with support defined 

over    (e.g., truncated normal or exponential) and scale parameter  , and an idiosyncratic 

component,     , that is normally distributed and represents measurement errors in 

consumption reporting and other random factors. Both the error components are assumed to 

be independent from  . Furthermore, by denoting      as a vector of exogenous variables 

(including a constant term) affecting the level of inefficiency and   a vector of unknown 

parameters to be estimated, it is possible to explicitly model the statistical distribution of the 

inefficiency term as follows: 

 

         
   (7) 

 

According to the stochastic frontier framework, the actual demand level      equals the 

theoretical frontier     
 , plus the one-sided error     , whose distribution depends on the vector 

of auxiliary variables     . In order to model a technology-driven technical efficiency, we 

include the two technology components as exogenous auxiliary variables. Besides the 

advantage of directly accounting for the effect of technology market penetration, such a 

choice allows to exploit a greater heterogeneity, over time and across countries, of the 

efficiency process which also facilitates the model convergence. 
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3.4 Estimation 

There is no unanimous consensus among the empirical scholars upon the best efficiency 

estimator in a panel stochastic frontier setting. Although Cornwell and Schmidt (1996) point 

out that repeated observations over time should allow for some advantage as more precise 

estimations of technical (in)efficiency, when dealing with panel data several issues have to be 

carefully considered. 

The empirical literature on stochastic frontier analysis has evolved in a variety of 

contributions9 mainly distinguishable in fixed and random effects model (FE and RE 

henceforth). FE specification models allow for capturing unobserved heterogeneity among 

units of analysis but in the specific case of SFA they are subject to some limitations. By 

intrinsic modelling construction, the standard FE model treats the unit-specific inefficiency 

levels as fixed, meaning that the inefficiency term captures all the heterogeneity with no 

possibility to distinguish between persistent actual inefficiency and time-invariant 

heterogeneity and with overestimation of the inefficiency component. Moreover, no 

distributional assumptions are made upon the inefficiency term (which remains constant over 

time) as well as on the correlation between inefficiency term, independent variables and 

idiosyncratic error term. Although some modelling alternatives have been proposed to 

overcome these limitations, as the Cornwell, Schmidt and Sickles' time-varying random-

quadratic trend model or the parametric extension by Lee and Schmidt (1993), simple FE 

formulations preclude the possibility to disentangle between actual inefficiency and unit-

specific heterogeneity.  

On the other hand, the random effect model as originally proposed by Pitt and Lee (1981) 

assumes unit-specific inefficiency, although remaining time-invariant in its basic formulation. 

In our case, this means that only the variation across countries would be explained. Further 

extensions introduced different distributional assumptions, heteroscedasticity in the 

inefficiency term (Kumbhakar and Lovell, 2000) and time-varying specification in order to 

overcome the rigid assumption of time-invariant inefficiency, in particular in panel data with 

long   (Battese and Coelli, 1992; 1995; Kumbhakar, 1990). 

An interesting class of models allows for explicitly separating the unobserved heterogeneity 

affecting the distribution of inefficiency term through variables able to explain the 

inefficiency level but not directly entering the production process. The distribution of 

inefficiency term   can be modelled as a function of a vector of auxiliary variables  . It is 

thus possible to model the mean (Kumbhakar et al., 1991; Battese and Coelli, 1995; Huang 

and Liu, 1994), the variance (Caudill and Ford, 1993; Caudill et al., 1995; Hadri, 1999) or 

both parameters of the distribution (Wang, 2002; Wang and Schmidt, 2002). For all of these 

combinations, it is important to point out that the assumption of non-correlation between the 

set of predictors and the auxiliary variables must hold. In this respect, Stern (2012) argues that 

if "a sufficient number of auxiliary variables that co-vary with the unobserved state of 

technology can be included in the model, the correlation between the remaining residual term 

and the regressors will be eliminated". In addition, the assumption of strict exogeneity when 

the   vector is included should facilitate the model convergence. 

A possible approach to estimate the inefficiency determinants by using auxiliary exogenous 

variables is the two-step procedure. This envisages the estimation of the standard production 

or cost function in the first step, while in the second step the efficiency scores are regressed 

over a set of auxiliary variables. Although relatively easy to be implemented, this approach 

can produce biased results both in the case of heteroscedasticity, i.e. when the vector of inputs 

  and the vector of auxiliary variables   are correlated, as well as when   is correlated with 

the idiosyncratic term   (Wang and Schmidt, 2002).  

                                                 
9
 For a review of SFA models see Murillo-Zamorano (2004). 
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Interesting solutions have been introduced for addressing the issue of unobserved 

heterogeneity in the True Fixed Effect and True Random Effect model (TFE and TRE) 

(Greene, 2005a,b), allowing to disentangle the time varying efficiency level from time 

invariant unobserved heterogeneity. Moreover, a valuable feature of the TFE and TRE model 

is that they are consistently and efficiently estimated by the means of maximum likelihood 

estimation (MLE) method, thus correcting the shortcomings deriving from the two-step 

procedure10. 

Nevertheless, the TFE model is not exempt from some limitations. In particular, some 

inconsistency may arise in small panel samples, especially when   is short (Greene, 2005a). 

In addition, the unit-specific intercepts can be inconsistently estimated in panel data 

characterised by large N and short observation periods, due to the incidental parameter 

problem (Neyman and Scott, 1948; Lancaster, 2002). In this respect, Belotti and Ilardi (2012) 

recently demonstrated that the inconsistency bias is negligible in samples with   longer than 

10 years, thus allowing the validation of our empirical strategy, which relies on the TFE 

model11. 

With respect to the possible modelling choice of the inefficiency term as a time variant or 

invariant process, considering that our dataset includes a rather long period of observations 

(    ), a time-varying specification seems to be the most plausible choice. Statistical 

support to this hypothesis is also signalled by the significance of time dummies in the 

electricity demand estimation and further confirmed by the preliminary specification of the 

stochastic frontier energy demand function à la Battese and Coelli (1992) (see Table 3). 

The issue of unobserved heterogeneity assumes relevant importance in cross-country 

comparisons, given that the variance distribution of the inefficiency term is directly governed 

by the technology dynamics. Accordingly, we can exploit the advantages of fixed effects 

estimator fruitfully employed in the empirical innovation literature for addressing different 

country-specific capabilities to innovate or other factors not explicitly included as explanatory 

variables, while minimising the above-mentioned shortcomings arising when the FE 

specification is used in the stochastic-frontier setting. At the same time, the specific effect of 

innovation process, here represented by the technology components calculated for the two 

groups of domestic appliances, is explicitly taken into account by introducing 

heteroschedasticity in the technical inefficiency component. In doing so, the variance of 

inefficiency term is expressed as a function of the covariates defined in the vector of auxiliary 

variables  , which map the dynamics of innovation process both in its national and 

international dimension. 

4 Results and discussion 

4.1 Energy-demand estimations 

Table 1 reports our baseline estimates of the (derived) demand for electricity based on a 

standard linear fixed effect model (eq. 3). At this stage we cannot claim causal relationship 

between our set of drivers and the demand for electricity as simultaneity between demand and 

prices and omitted variable bias are likely to give rise to endogeneity. Nevertheless, they 

                                                 
10

 In this respect, Farsi et al. (2005) argued that the TFE estimator can be also estimated by using the Least 

Square Dummy Variable estimator specifically adjusted with Mundlak's (1978) means, showing that both 

methods reduce the estimation bias by separating the time-invariant unobserved heterogeneity, captured by the 

Mundlak's group means, from technical inefficiency. Nevertheless, the authors found inconsistent results due to 

the different estimation methods, since the TFE model relies on the convergence of simulated maximum 

likelihood. 
11 

The stochastic frontier function has been estimated with Stata software v. 13.1 using the recent sfpanel 

command by Belotti et al. (2013). 
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represent useful descriptive tools to identify relationships between our variables of interest. 

We first estimate the demand function for total demand of electricity (columns 1 and 2) which 

is then split into the demand for electricity to operate washing appliances (washing machines 

and dishwashers, columns 3 and 4) and to operate cooling appliances (fridges and freezers, 

columns 5 and 6). For all categories, we proceed in two steps. First, we do not consider 

technology trends explicitly (columns 1, 3 and 5) but leave technical change to be explained 

by time-specific and country-invariant unobserved components captured by time dummies. 

Second, we introduce our measure of technology as defined in section 3.1 as additional 

covariate.  

In all cases, the price elasticity of the demand for electricity is negative and significantly 

different from zero. The range of variation of point coefficients (between 0.144 and 0.225 

depending on the appliance and specification) is consistent with the existing literature 

(Alberini and Filippini, 2011 among others). The elasticity of energy consumption to energy 

prices is slightly higher for cooling appliances than for washing appliances although such a 

difference is not statistically significant. The price elasticity of the demand for electricity 

tends to be smaller once we include the stock of technology as the two variables are positively 

correlated12. The positive correlation is potentially due to the fact that higher energy prices 

induce consumers to increase the demand for more energy efficient appliances and induce 

producers of appliances to innovate in order to offer more energy efficient appliances. GDP 

per capita is generally negatively correlated with electricity consumption but the relationship 

is always insignificantly different from zero. Average dwelling size is an important driver of 

energy consumption, with an elasticity around one when considering all appliances, greater 

for washing appliances than for cooling appliances and significantly different from zero in all 

specifications. This strong result is in line with the discussion presented in section 3.2. It 

should be noted, however, that the average dwelling size is strongly correlated with affluence, 

as richer households may afford larger houses13. To understand whether the absence of a 

significant relationship between energy demand and GDP per capita is due to the inclusion of 

average dwelling size, that already captures the affluence of households, we estimate our 

derived demand equation excluding the average dwelling size from the set of predictors 

(Table 2). Even when we exclude average dwelling size, our measure of affluence does not 

influence energy consumption after controlling for time-invariant unobserved difference in 

GDP per capita (fixed effect), thus signalling a relevant inelasticity of household electricity 

demand for the set of appliances here considered. The share of urban population is not 

significantly related to energy demand, the effect being generally negative (with one 

exception) but always far from significance. This variable, however, turns out to be 

significant for total electricity demand and cooling appliances when we exclude average 

dwelling size from the set of covariates (Table 2). This is in line with the hypothesis that 

urbanized areas are characterized by smaller dwellings, thus resulting in lower electricity 

consumption. 

  

                                                 
12

 When regressing the log of the patent stock on the electricity price and a set of year and country dummies we 

obtain an elasticity of the patent stock to energy prices of about 0.32, significant at the 1 per cent level. 

13 The correlation between the two measures is 0.72. 
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Table 1 – Demand for electricity (baseline estimates) 
  (1) (2) (3) (4) (5) (6)  

Dep: log electr. consumption All appliances All appliances Washing appl Washing appl Cooling appl Cooling appl 

log(electr_price) -0.207*** -0.182*** -0.171** -0.144**  -0.225*** -0.204*** 

 
(-5.73) (-8.38) (-2.98) (-2.74)  (-4.89) (-5.61) 

log(GDP pc) -0.0555 -0.0829 -0.0841 -0.114  -0.0629 -0.0858 

 
(-0.39) (-0.90) (-0.63) (-1.28)  (-0.37) (-0.63) 

log(av size dwelling) 0.965** 0.917*** 1.202** 1.149*** 0.815** 0.774*** 

 
(2.70) (5.08) (2.39) (3.38)  (2.73) (4.61) 

Share urban population -0.230 -0.0689 -0.0746 0.102  -0.272 -0.136 

 
(-0.63) (-0.23) (-0.09) (0.13)  (-0.67) (-0.32) 

1991 (D) 0.0113 0.0361* 0.00518 0.0324*  0.0145 0.0353* 

 
(0.90) (2.25) (0.49) (2.24)  (0.95) (2.04) 

1992 (D) 0.00109 0.0438* -0.0103 0.0365*  0.00772 0.0436 

 
(0.07) (1.96) (-0.87) (1.92)  (0.38) (1.69) 

1993 (D) -0.0198 0.0381 -0.0351** 0.0282  -0.0104 0.0381 

 
(-1.18) (1.47) (-3.00) (1.27)  (-0.43) (1.28) 

1994 (D) -0.0337 0.0404 -0.0505*** 0.0306  -0.0238 0.0384 

 
(-1.71) (1.35) (-4.05) (1.25)  (-0.83) (1.10) 

1995 (D) -0.0587** 0.0304 -0.0751*** 0.0224  -0.0487 0.0261 

 
(-2.54) (0.91) (-4.87) (0.81)  (-1.49) (0.68) 

1996 (D) -0.0697** 0.0334 -0.0906*** 0.0223  -0.0565 0.0299 

 
(-2.61) (0.92) (-5.02) (0.75)  (-1.51) (0.70) 

1997 (D) -0.0748** 0.0378 -0.0984*** 0.0249  -0.0599 0.0346 

 
(-2.44) (0.95) (-4.33) (0.74)  (-1.42) (0.74) 

1998 (D) -0.0876** 0.0340 -0.113*** 0.0205  -0.0715 0.0304 

 
(-2.56) (0.80) (-4.38) (0.59)  (-1.53) (0.60) 

1999 (D) -0.113*** 0.0161 -0.141*** 0.0000907  -0.0945* 0.0136 

 
(-3.33) (0.40) (-5.13) (0.00)  (-2.00) (0.28) 

2000 (D) -0.129*** 0.00676 -0.153*** -0.00513  -0.113* 0.000808 

 
(-3.44) (0.17) (-4.78) (-0.15)  (-2.19) (0.02) 

2001 (D) -0.144*** -0.00215 -0.168*** -0.0127  -0.128** -0.00946 

 
(-3.86) (-0.05) (-5.00) (-0.35)  (-2.45) (-0.19) 

2002 (D) -0.166*** -0.0190 -0.193*** -0.0320  -0.149** -0.0255 

 
(-4.53) (-0.46) (-5.66) (-0.81)  (-2.80) (-0.51) 

2003 (D) -0.187*** -0.0357 -0.213*** -0.0476  -0.170** -0.0436 

 
(-4.74) (-0.78) (-5.89) (-1.08)  (-2.96) (-0.80) 

2004 (D) -0.203*** -0.0478 -0.230*** -0.0594  -0.186** -0.0559 

 
(-4.67) (-0.96) (-5.68) (-1.25)  (-2.93) (-0.94) 

2005 (D) -0.209*** -0.0497 -0.239*** -0.0642  -0.191** -0.0570 

 
(-4.28) (-0.91) (-5.04) (-1.16)  (-2.75) (-0.89) 

2006 (D) -0.214*** -0.0501 -0.238*** -0.0585  -0.198** -0.0603 

 
(-4.12) (-0.85) (-4.59) (-0.96)  (-2.64) (-0.88) 

2007 (D) -0.214*** -0.0442 -0.237*** -0.0513  -0.198** -0.0556 

 
(-3.77) (-0.70) (-4.22) (-0.77)  (-2.40) (-0.76) 

2008 (D) -0.229*** -0.0513 -0.263*** -0.0678  -0.209** -0.0593 

 
(-4.18) (-0.80) (-4.97) (-1.09)  (-2.49) (-0.77) 

2009 (D) -0.260*** -0.0763 -0.287*** -0.0862  -0.243** -0.0894 

 
(-4.96) (-1.26) (-5.59) (-1.41)  (-3.00) (-1.22) 

2010 (D) -0.270*** -0.0811 -0.297*** -0.0898  -0.254** -0.0953 

 
(-5.01) (-1.30) (-5.47) (-1.40)  (-3.06) (-1.26) 

log(technology) 
 

-0.0653*** 
 

-0.0715*** 
 

-0.0548** 

    (-4.06)   (-5.47)    (-2.28) 

N=200. Fixed effect model. Dependent variable: log of electricity consumption. t statistics based on robust standard errors in 

parenthesis. * p<0.1, ** p<0.05, *** p<0.01 
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Table 2 – Demand for electricity (excluding average dwelling size) 

 (1) (2) (3) 

 All 

appliances 

Washing 

appliances 

Cooling 

appliances 

log(electr_price) -0.220
***

 -0.166
**

 -0.248
***

 

 (-5.11) (-2.22) (-5.31) 

log(GDP pc) -0.0350 0.0628 -0.0636 

 (-0.68) (0.54) (-0.94) 

Share urban population -0.364
**

 -0.0493 -0.507
**

 

 (-2.21) (-0.06) (-2.32) 

Time dummies Yes Yes Yes 

N 200 200 200 

Fixed effect model. Dependent variable: log of electricity 

consumption. t statistics based on robust standard errors in 

parenthesis. * p<0.1, ** p<0.05, *** p<0.01 

 

In summary, we observe a strong decrease in energy consumption in all countries after 

controlling for our control variables and time-invariant unobserved differences across 

countries (time dummies in column 1, 3 and 5): electricity consumption to operate our 

selection of home appliances given income, electricity prices, average dwelling size and share 

of urban population decreased of about 27 percent over the period 1990-2010, with a slightly 

greater decrease for washing appliances than for cooling appliances. Time dummies in 

columns 1, 3 and 5 are strongly significant. Most importantly, when controlling for our 

variable of technology, time dummies (i.e. trends common to all countries) lose significance, 

while the technology variable (time- and country-specific) represents a good predictor of 

electricity saving. The elasticity is around 0.065, slightly greater for washing appliances than 

for cooling appliances, and strongly significant. This result highlights the relevance of 

technology as a means for reducing electricity consumption to satisfy a given demand for 

energy services. 

In light of the previous results, as a preliminary step for conducting further analysis on 

technical efficiency we test the hypothesis of normally distributed residuals on the energy 

demand estimation and significantly reject the normality assumption14. This revealed the 

existence of inefficiency not only captured by the idiosyncratic error and allows us to enrich 

the analysis by widening the empirical framework to stochastic frontier models. 

4.2 Disentangling energy efficiency from energy saving 

In order to derive a reliable specification of the frontier model, we provide a first evidence 

by testing the existence of time-varying inefficiency. To this aim, we employ the model by 

Battese and Coelli (1992), which accounts for the inefficiency term to be varying over time. 

Accordingly, our stochastic frontier model is specified as follows: 

 

                               
   

   
 
   
                   

      
   

 
   

            
(8) 

 

                                                 
14

 We used the Shapiro-Wilk test. Results are available upon request. 
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where   , 
   

   
,         and 

      

   
 represent the demand drivers previously described,      is 

a non-negative random variable which is assumed to account for technical inefficiency and 

follows a truncated normal distribution, while               is a time-varying parameter to 

be estimated together to the vectors of   with           . These preliminary results 

(Table 3) show coherent and significant elasticity values for the appliance-specific electricity 

demand, the latter being negatively correlated with increases in prices. The relatively inelastic 

value of the price coefficient (20%) signals a low responsiveness of households to price 

changes, in line with the assumption that the use of large traditional electrical appliances is 

aimed at satisfying non-substitutable needs. This evidence is further supported by the 

insignificance of the income variable. A factor strongly affecting the appliance consumption 

is represented by the household size, since larger dwellings not only imply more space for 

appliances, but the term is also presumably associated to higher incomes and more 

sophisticated needs to be satisfied. Most importantly, our preliminary estimations show that 

the efficiency level is affected by time variation, the   parameter being strongly significant. 

This suggests the need of modelling the inefficiency term as a time-varying variable. 

 

Table 3 –Stochastic frontier estimates based on the Battese and Coelli (1992) model 

Dep. variable: 

log electr. consumption 

BC92 

log(electr_price) -0.205
***

 

 (-5.71) 

log(GDP pc) -0.0858 

 (-0.81) 

log(av. size dwelling) 0.853
**

 

 (2.52) 

Share of urban  -0.428 

population (-1.45) 

Intercept -1.824 

 (-0.53) 

Sigma -4.199
***

 

 (-7.78) 

Gamma 2.514
***

 

 (4.16) 

Mu 5.895
**

 

 (2.49) 

Eta 0.00222
***

 

 (3.24) 

Lambda 3.515 

N 200 

Battese and Coelli (1992) model. t 

statistics based on robust standard 

errors in parenthesis. * p<0.1, ** 

p<0.05, *** p<0.01.   (Signal-to-Noise 

ratio)        provides information on 

the relative contribution of     and     
on the decomposed error term     

 

In this respect, it has been argued that the contribution of technology in the framework of 

stochastic frontier can be indirectly captured by a number of factors, as for instance by the 

price and income effects (see Filippini and Hunt, 2012). More recently, Filippini et al. (2014) 

introduced a specific variable to control the amount of wasted energy due to households not 

using the best available technologies, although admitting the limitations of this approach, such 
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as the lack of data on consumers’ behaviour, heterogeneity in the level of electricity 

consumption and the fact that such a method is not able to disentangle the energy saving 

deriving from a more efficient use of inputs or from the adoption of energy saving 

technologies. 

In this respect, we overcome the limitations of the current literature which relies on the 

implicit modelling of technology, which is generally treated as a latent process. On the 

contrary, we assume that the technology level is strictly connected to the efficiency 

performance. By exploiting the advantages of the recent empirical literature, we model the 

variance distribution of the inefficiency term. As a result, our energy-input demand directly 

incorporates the appliance-specific technology level which governs the efficiency dynamics. 

In light of the previous considerations and consistently with our empirical strategy, the 

technology-augmented stochastic frontier model is specified using the TFE model as follows: 
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in which the technical inefficiency component   is assumed to be heteroscedastic and its 

variance is expressed as a function of  . 

 

Table 4 – Stochastic frontier analysis with TFE model 

  (1) (2)  

Dep variable: log electr 

consumption 

Truncated 

normal 
Exponential 

log(electr_price) -0.214*** -0.213*** 

 
(-3.59) (-10.27)  

log(GDP pc) -0.477*** -0.488*** 

 
(-5.83) (-12.99)  

log(av size dwelling) 0.623** 0.650*** 

 
(2.13) (4.39)  

Share urban population -1.297*** -1.329*** 

  (-5.22) (-7.27)  

Variance of the inefficiency component 

log(technology) -0.812* -1.025*** 

  (-1.71) (-3.38)  

Sigma U (average) 0.0429 0.0210 

Sigma V 0.0388 0.0393 

Lambda 1.106 0.534  

N 200 200  

True fixed effects model. t statistics based on robust 

standard errors in parenthesis. * p<0.1, ** p<0.05, *** 

p<0.01 
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Table 4 presents the estimation results including the total effect of technology, in which   

represents the sum of domestic and foreign technology components. The frontier coefficients 

are in line with those deriving from previous specifications, with the exception of per-capita 

income and urban population, which are both significant and negatively correlated to the 

electricity consumption. In particular, the income effect is also explained by the share of urban 

households, which are found to make a lower use of large traditional appliances, or 

alternatively, to employ more efficient appliances. This result is consistent with the empirical 

literature that put in relation the electricity consumption with the urban context. For instance, 

Brounen and Kok (2011) provided evidence that more densely populated areas positively affect 

the rate of energy-labelled dwellings in Netherlands, while Kaza (2010) found negative 

correlation between electricity consumption and urban areas when the latter are compared to 

rural ones. Relevant implications can be attributed to the role of innovation in explaining the 

energy saving performances. The market penetration of the total stock of new EE appliances 

produces significant reduction of households’ energy consumption via technology-driven 

technical efficiency. Results are robust to the choice of the distribution of the inefficiency 

component, either the truncated normal or the exponential distribution. 

 

Figure 2 – Efficiency scores by country – total electricity consumption 

 

 

Figure 2 shows the trends of efficiency scores by country for the truncated normal and 

exponential distribution15. Technical efficiency starts from very high values (close to unity, 

meaning full efficiency) in all countries. While in some countries it remains rather stable 

(Austria, France, Greece, Netherlands, Slovenia, Sweden and the UK), we observe a 

remarkable efficiency gain in Denmark and Germany and, to a lesser extent, in Italy.  

                                                 
15  

When statistically compared, the two distributions are consistent with significant correlation coefficient of 

0.966 and a Spearman correlation of 0.972. 
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Table 5 – Stochastic frontier analysis with TFE model (domestic vs foreign technology) 

Dep variable: log electr 

consumption 
(1) (2)  

log(electr_price) -0.215*** -0.217*** 

 
(-3.56) (-3.05)  

log(GDP pc) -0.477*** -0.533*** 

 
(-6.25) (-6.74)  

log(av size dwelling) 0.615** 0.708*** 

 
(2.31) (2.66)  

Share urban population -1.327*** -1.246*** 

  (-5.49) (-4.26)  

Variance of the inefficiency component 

log(foreign_tech) -1.208*   

 
(-1.85)   

log(domestic tech) 
 

-0.817**  

    (-2.43)  

Sigma U (average) 0.0223 0.0189  

Sigma V 0.0384 0.0409  

Lambda 0.581 0.462  

N 200 200  

True fixed effects model with exponential distribution. 

t statistics based on robust standard errors in 

parenthesis. * p<0.1, ** p<0.05, *** p<0.01 

 

As previously discussed, the import of new energy efficient appliances may assume relevant 

importance in countries where the innovative effort of domestic firms is negligible since it 

allows these countries to reach increasing levels of energy security and to significantly 

contribute to reducing polluting emissions deriving from fossil fuel energy generation. In 

order to disentangle the role of international market, we separate the   variable in two 

components, referring respectively to the domestic and foreign market penetration of new EE 

appliances. Results reported in Table 5 (assuming an exponential distribution for the 

inefficiency component) confirm the significant role of international technology diffusion. 

Even though the coefficient associated to the domestic market is larger than the one referring 

to the import component, the latter shows stronger significance, meaning that, in a well-

established market relationship, the invention and diffusion efforts of foreign innovative firms 

are significant substitutes to those carried out by domestic firms. 

As a further step, we split total electricity consumption into consumption to operate 

cooling appliances and consumption to operate washing appliances (Table 6). By this 

separation, we expect relatively lower influence of the rebound effect in cooling appliances, 

which are characterized by continuous operation and do not allow households to vary the 

amount of energy consumed. In both cases we observe similar results for the input of the 

stochastic frontier function and a significant effect of the technology variable, slightly bigger 

in magnitude for washing appliances than for cooling appliances.  

Figure 3 shows efficiency scores for the two categories of home appliances as well as the 

efficiency scores estimated for total electricity consumption. We observe that technical 

efficiency of washing appliances is generally lower than the one of cooling appliances but it is 

increasing at faster pace. 
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Table 6 – Stochastic frontier analysis with TFE model (by appliance) 

  (1) (2)  

Dep variable: log electr 

consumption 

Washing 

appliances 

Cooling 

appliances 

log(electr_price) -0.184*** -0.204*** 

 
(-7.85) (-8.14)  

log(GDP pc) -0.557*** -0.466*** 

 
(-12.86) (-11.88)  

log(av size dwelling) 0.870*** 0.535*** 

 
(5.14) (3.54)  

Share urban population -1.217*** -1.423*** 

  (-5.77) (-7.77)  

Variance of the inefficiency component 

log(technology) -0.881*** -0.691*** 

 
(-2.68) (-2.79)  

Sigma U (average) 0.0215 0.0398  

Sigma V 0.0453 0.0316  

Lambda 0.474 1.260  

N 200 200  

True fixed effects model with exponential distribution. 

t statistics based on robust standard errors in 

parenthesis. * p<0.1, ** p<0.05, *** p<0.01 

 

Figure 3 – Efficiency scores by country – by type of appliance 
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5 Conclusions 

The present study presents an original methodology to account for the role of innovation 

process when investigating the level of efficiency processes by means of stochastic frontier 

analysis, a well-known parametric technique able to disentangle the technical efficiency as a 

measure of distance between the observed and the maximum theoretically efficient frontier.  

In order to test the effectiveness of the methodology here proposed, we analyse the 

efficiency trend in two groups of traditional home appliances in the period 1990-2010 and in 

ten European countries. The choice of using domestic appliances aimed at fulfilling primary 

needs such as cooling or washing which show low behavioural consumer’s responsiveness to 

changes in energy prices, allows us to minimise the share of energy saved due to potential 

rebound effect and to better identify the impact of technology in reducing energy 

consumption. 

To this aim, in line with the growing empirical literature on eco-innovation, an ad hoc 

patents selection is employed in order to consider specific EE technologies embodied in the 

set of considered appliances, namely freezers and refrigerators, washing machines and 

dishwashers.  

In considering the innovation process as a whole, we model the technology invention and 

diffusion process by combining patent information and data on both import and domestic 

production, these latter approximating the level of market penetration of new energy efficient 

appliances. In order to derive energy efficiency scores, we take advantage of the existing 

literature on the derived households’ energy demand in order to fruitfully employ a 

technology-augmented specification of stochastic frontier function. 

Consistently with the existing literature, our results show that the most important drivers of 

electricity consumption for the set of appliances under scrutiny are represented by the 

electricity price and the size of dwelling, while affluence and urbanization only enter 

significantly the demand function for electricity in the stochastic frontier specification. 

The significance of the set of time dummies in the basic demand regression model signals a 

latent important effect, which disappears when the technology enters as a covariate. This 

provides a first important evidence of the relevant role assumed by the innovation process in 

driving the energy reduction pattern and deserves further investigation that we address in the 

second part of the analysis by employing a stochastic frontier analysis. In such a setting, the 

variance distribution of the inefficiency term is explicitly modelled through two technology 

components which incorporate, respectively, the effect of domestic and foreign market 

penetration of new energy efficient appliances. Given the fine disaggregation of our data, we 

are able to test the effects of both total and domestic vs. foreign market penetration and in 

different types of appliances. This part of analysis shows that the diffusion of energy efficient 

appliances is a good predictor of efficiency scores and contributes substantially to 

improvements in technical efficiency. We also observe that both the domestic and the foreign 

component are relevant in explaining improvements in technical efficiency. 

Regarding the efficiency performance, our estimations show that the efficiency level range 

from about 85 per cent to almost 100 per cent, depending on the type of appliance considered 

in the analysis. This evidence suggests that households are highly efficient in combining 

‘energy inputs’ at the minimum cost in order to obtain energy services such as cooling and 

washing. Nevertheless, the values obtained may appear very high with respect to other studies 

employing similar methodologies. On the one hand, this may depend on the methodology we 

use (i.e. a true fixed effect model) that tends to underestimate cross-country differences in 

technical efficiency and is more prone to provide higher efficiency levels. On the other hand, 

a possible reason explaining such a difference can be the fact that our analysis focuses on 

appliances classified as ‘traditional’. These latter constituted a class of devices that benefited 
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from a persistent effect of technology improvements over time, with the effect of significantly 

saturating their efficiency potential in terms of electricity employed. 

Our study suggests relevant policy implications. State-of-the-art technology improvements 

of appliance manufacturers translate into relevant improvements in technical efficiency for 

what concerns the appliances under scrutiny. The efficiency gain, which implies significant 

degrees of energy saving in favour of the households, is led both by domestic and foreign 

blueprints. This observation has implications for both innovation policies (i.e. targeted R&D 

subsidies and enforcement of IPRs) and trade policies (i.e. barriers to trade may limit further 

improvements of energy efficiency). 
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Appendix A – Descriptive statistics 

 

Table A1 – Summary statistics and sources of data employed in the analysis. 

Variable Unit of measure Mean N Min Max SD Source 

log(elec. consumption) kWh 7.276 200 6.809 7.539 0.16 

Odyssee-Enerdata 

log(elec. cons. cooling appl) kWh 6.792 200 6.248 7.29 0.266 

log(elec. cons. washing appl.) kWh 6.258 200 5.627 6.695 0.277 

log(elec. cons. freezers) kWh 6.199 200 5.611 6.541 0.233 

log(elec. cons. refrigerators) kWh 5.967 200 5.282 6.65 0.364 

log(elec. cons. washing machines) kWh 5.478 200 4.927 6.011 0.25 

log(elec. cons. dishwashers) kWh 5.628 200 4.942 6.192 0.347 

log(end-use electricity price) 
2005 PPP US 

dollars/kWh 
-2.071 200 -2.92 -1.416 0.32 IEA-Eurostat 

log(per-capita income) 2005 PPP US dollars 10.181 200 9.235 10.548 0.251 Word Bank 

log(dwelling size) sq. meters 4.514 200 4.244 4.714 0.111 Odyssee-Enerdata 

Share of urban_pop percentage 0.726 200 0.548 0.868 0.095 Word Bank 

log(foreign tech.) patents 2.844 200 0.076 4.825 1.164 OECD REGPAT, 

Eurostat PRODCOM, 

Eurostat Comext log(domestic tech.) patents 1.545 200 0 4.426 1.298 
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Appendix B – Selection of appliance-specific energy efficiency patents 

 

Table B1 - CPC Energy Efficiency Classes (Y02B) 

Y02B 40 - ''Climate Change Mitigation 

Technologies'' 

Y02B 

40/30 

Refrigerators or freezers 

Y02B 40/32 

Y02B 40/34 

Y02B 

40/40 

Dishwashers 

Y02B 40/42 

Y02B 40/44 

Y02B 

40/50 

Washing machines 

Y02B 40/52 

Y02B 40/54 

Y02B 40/56 

Y02B 40/58 
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