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Summary 

This study investigates the price volatility of metals, using the GARCH and GJR models. First we 

examine the persistence of volatility and the leverage effect across metal markets taking into 

account the presence of outliers, and second we estimate the effects of oil price shocks on the price 

volatility of metals, allowing for the asymmetric responses. We use daily spot prices for the selected 

metals, including aluminum, copper, lead, nickel, tin, zinc, gold, silver, palladium and platinum. 

The main findings indicate that, returns show a high degree of volatility persistence before and after 

correcting outliers, outliers bias the parameters estimation of the GARCH-type models, and 

removing outliers improves the performance of models in capturing volatility. However in a 

comparison, Student-t distribution outperforms the approach of correcting outliers in capturing 

volatility. Moreover, we find the existence of inverse leverage effect for seven metals, the leverage 

effect for copper and no leverage effect for nickel and palladium. Finally, price volatility of metals 

differently reacts to oil price shocks and there is an asymmetric reaction of volatility to oil price 

shocks for seven metals. 
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1. Introduction 

Investigating volatility in metal markets  is an attractive subject for financial traders and 

manufacturers. Metal prices are generally subject to a lot of speculative trades (Moore and Cullen, 

1995), especially that in recent years increasing speculative activities in emerging economies lead to 

more uncertainty and volatility in these markets (Gil-Alana and Tripathy, 2014). Volatility can 

affect the decision of investors for portfolio allocation and Value at Risk management, as well as 

the industrial production of manufacturers and therefore the economic growth pattern of nations. As 

a result, the correct modeling of volatility in metal markets is a crucial issue, which on one side 

increases the ability to generate more accurate out-of-sample forecasting of prices for policymakers, 

and on another side facilitates the Value at Risk management strategies for financial traders. 

The topic of investigating volatility in non-energy commodity markets, metals and agricultures, are 

less considered in the literature comparing to stock and energy markets. In this context, Mckenzie et 

al. (2001) investigate the volatility of precious metal prices using the univariate power ARCH 

model and do not find an asymmetric effect in metal markets, Hammoudeh and Yuan (2008) apply 

the univariate GARCH-type models to examine the volatility of gold, silver and copper prices while 

controlling the shocks by including oil price and the US interest rate. They find an inverse leverage 

effect in the gold and silver markets and a leverage effect in the copper market, Hammoudeh et al. 

(2011) examine the volatility of precious metal prices using the GARCH-type models and develop 

the corresponding risk management effect. Morales and Bernadette (2011) investigate the volatility 

of precious metal prices before and after the global and the Asian financial crises, applying the 

GARCH and the EGARCH models. They show strong evidences for the volatility persistence in 

metal markets during the global financial crisis; however, this effect was very weak during the 

Asian financial crisis, Chkili et al. (2014) assess the asymmetry and long memory effects in 

modeling the volatility of crude oil, natural gas, gold and silver prices, employing the GARCH-type 
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models. They find a leverage effect in oil and natural gas markets and find an inverse leverage 

effect in gold and silver markets; furthermore, their results reveal that there is lower persistence for 

the gold and silver markets compared to those of oil and natural gas, Gil-Alana and Tripathy (2014) 

analyze the volatility persistence and the leverage effect for non-precious metal markets in India, 

using the GARCH-type models. They find a high degree of volatility persistence for all metals, the 

asymmetric effect is found for seven metals according to the TGARCH model and for ten metals 

according to the EGARCH model. Finally Todorova et al. (2014) examine volatility spillovers 

between non precious metals, applying the multivariate Heterogeneous Autoregressive (HAR) 

model. They reveal that the volatility of other industrial metals contain useful information for the 

future price volatility; however, the own dynamics of each metal are mostly sufficient to explain the 

future daily and weekly volatility. 

Another critical issue is the effect of oil price shocks on commodity markets, Ji and Fan (2012) state 

that in recent years the substitution of fossil fuels by biofuels as well as hedge strategies against 

inflation caused by higher oil prices have increased. These reasons surge the linkages between 

crude oil and non-energy markets, including agricultures and metals. In this context, some studies 

focus on volatility spillovers between metals and energy markets, using the bivariate or  

multivariate GARCH-type models (see e.g., Choi and Hammoudeh, 2010; Ji and Fan, 2012; Mensi 

et al., 2013; Ewing and Malik, 2013; Charlot and Marimoutou, 2014); some apply volatility indices 

to examine uncertainty transmission between oil, non-energy commodities and stocks using the 

cointegration and the Granger causality approaches (see e.g., Liu et al., 2013);  a number of studies 

examine the relation between oil and metal prices applying the cointegration and the Granger 

causality procedures (see e.g., Soytas et al., 2009; Zhang and Wei, 2010; Sari et al., 2010; Jain and 

Ghosh, 2013; Mensi et al., 2013); and finally a few studies apply the univariate GARCH-type 
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models to examine volatility of metals while including oil prices as the control variable to the mean 

and variance equations (see e.g., Hammoudeh and Yuan, 2008). 

However, none of the above mentioned studies take into account the role of exogenous events on 

volatility of metal prices. As Charles and Darné (2014a) state, financial markets are affected by 

specific incidents that can impact on modeling financial time series. These events, such as wars, 

natural disasters, political conflicts, etc., that are mostly unpredictable, are the so-called outliers. 

Outliers can affect identification and estimation of the GARCH-type models (Carnero et al., 2007 

and 2012); they can wrongly suggest conditional heteroscedasticity or hide true heteroscedasticity 

(see e.g., Balke and Fomby, 1994; Dijk et al., 1999; Franses and Ghijsels, 1999; Aggarwal et al., 

1999; Carnero et al., 2007); they can bias the GARCH parameters estimation (see e.g., Sakata and 

White, 1998; Mendes, 2000; Charles, 2008); and they can affect out-of-sample forecasts (see e.g., 

Franses and Ghijsels, 1999; Carnero et al., 2007; Charles, 2008). 

To solve the problem of outliers, Ané et al. (2008) examine the price volatility of  Asia-Pacific 

stock market after detecting outliers in a GARCH model, using their own proposed approach. 

Moreover, Charles and Darné (2014a and 2014b) estimate the price volatility of crude oil and Dow 

Jones industrial average index, respectively, after detecting and correcting outliers in the GARCH-

type models, applying the Laurent et al. (2013) outlier detection method. However, to the best of 

our knowledge, there is no study in the literature that takes into account the presence of outliers in 

volatility of non-energy commodity markets. 

The current study sought to achieve two main objectives. The first one is to examine the persistence 

of volatility and the leverage effects in four precious and six industrial metals, employing the 

GARCH and the GJR models, considering outliers. To achieve this goal we use two alternative 

approaches to capture outliers in the series, one is employing the widely used approach of Student-t 

distribution suggested by Bollerlev (1987), and the second one is identifying and correcting outliers 
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in the GARCH-type models applying the Doornik and Ooms (2005) outlier detection procedure. 

The second objective is to examine the effect of oil price shocks on the price volatility of metals, 

taking into account the presence of outliers; moreover, we allow for the asymmetric responses of 

price volatility to the changes of oil returns. These investigations provide two original contributions 

to the existing commodity markets literature: investigating the effect of extreme events on modeling 

of volatility, and estimating the asymmetric responses of volatility to the negative and positive oil 

price shocks in metal markets, which have not been investigated in the relevant studies.  

The rest of this paper is organized as follows. The methodology is given in section 2. Data 

description and summary statistics are provided in section 3. Section 4 describes the results. Finally 

section 5 concludes. 

 

2. Methodology 

2.1. Persistence of volatility and leverage effect 

In order to estimate the volatility persistence in metal markets we apply the GARCH model 

developed by Bollerslev (1986): 

𝑦𝑡 = 𝛽´𝑥𝑡 + 𝜀𝑡  ;  𝜀𝑡=𝑧𝑡√ℎ𝑡;  𝜀𝑡~N(0, √ℎ𝑡 ); 𝑧𝑡~𝑖. 𝑖. 𝑑, 𝑁(0,1) (1) 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖

𝑝

𝑖=1

𝜀𝑡−𝑖
2 + ∑ 𝛽𝑖

𝑞

𝑖=1

ℎ𝑡−𝑗 

(2) 

 

Where 𝜀𝑡−𝑖
2  denotes the ARCH term and ℎ𝑡−𝑖 denotes the GARCH term. The parameters should 

satisfy 𝛼0 > 0, ∑ 𝛼𝑖
𝑝
𝑖=1 ≥ 0 and ∑ 𝛽𝑖

𝑞
𝑖=1 ≥0, to guarantee the non-negativity of the conditional 

variance. The necessary and sufficient conditions for the second order stationarity of the 
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GARCH(p,q) model is ∑ 𝛼𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑖

𝑞
𝑖=1 < 1. This condition is sufficient for the QMLE

1
 to be 

consistent and asymptotically normal. However, later Nelson (1990) obtains the necessary and 

sufficient conditions for strict stationarity, 𝐸(log (𝛼𝜂𝑡
2 + 𝛽) < 0 as the log-moment condition, 

which allows for 𝛼 + 𝛽 ≥ 1 if 𝐸𝜀𝑡
2=∞. 

In the next step, we apply the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model 

proposed by Glosten et al. (1993) to analyze the asymmetry and the leverage effects in the GARCH 

process: 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖
𝑝
𝑖=1 𝜀𝑡−𝑖

2 + ∑ 𝛽𝑖
𝑞
𝑖=1 ℎ𝑡−𝑗+∑ 𝛾𝑘

𝑟
𝑘=1 𝐼𝑡−𝑘𝜀𝑡−𝑘

2          where  𝐼𝑡−𝑘={
1    𝑖𝑓 𝜀𝑡−𝑘 < 0
0    𝑖𝑓 𝜀𝑡−𝑘 ≥ 0

 
(3) 

 

In this model, the parameters should satisfy 𝛼0 > 0, ∑ 𝛼𝑖
𝑝
𝑖=1 + ∑ 𝛾𝑘

𝑟
𝑘=1 /2 ≥ 0 and ∑ 𝛽𝑖

𝑞
𝑖=1 ≥0, to 

guarantee the non-negativity of the conditional variance. Moreover, the second order stationarity 

condition should be satisfied as ∑ 𝛼𝑖
𝑝
𝑖=1 + ∑ 𝛾𝑘

𝑘
𝑖=1 /2 + ∑ 𝛽𝑖

𝑞
𝑖=1 <1. Ling and McAleer (1999) 

develop the second order stationarity of the GJR(1,1) model as a sufficient condition for 

consistency and asymptotic normality of the QMLE. Nevertheless, later McAleer et al. (2002) 

obtain the necessary and sufficient condition for strict stationarity by extending the log-moment 

condition for the GJR(1,1) model, as 𝐸(log ((𝛼+𝛾𝐼(𝜂𝑡))𝜂𝑡
2 + 𝛽)) < 0, this allows for 𝛼 +

𝛾

2
+ 𝛽 ≥

1 if 𝐸𝜀𝑡
2=∞. 

2.2. Outlier detection  

The existing methodologies to detect outliers are divided into two categories: methods to detect 

outliers in linear models (see e.g., Tsay, 1986; Chang et al., 1988; Chen and Liu, 1993) and 

                                                           
1
 Quasi Maximum Likelihood.  
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methods to detect outliers in nonlinear models (see e.g., Sakata and White, 1998; Hotta and Tsay 

1999; Franses and Chijsels, 1999; Charles and Darné, 2005; Zhand and King, 2005; Doornik and 

Ooms, 2005; Laurent et al., 2013). In this study we apply the Doornik and Ooms (2005) procedure 

to detect the additive outliers in the GARCH-type models. Their proposed approach is inspired by 

Chen and Liu (1993) who develop an outlier detection procedure in a standard time series model. In 

the process of detecting additive outliers, it is important to distinguish between level outliers and 

volatility outliers. The additive level outliers affect the level of the series and the additive volatility 

outliers affect the future conditional variances, meaning that outliers in the series affect underlying 

conditional variances (see Sakata and White, 1998; Hotta and Tsay, 1998). In this context, Doornik 

and Ooms (2005) introduce a nesting model for generalized additive outliers (gao), which nests 

both the additive level and the additive volatility outliers in the GARCH process. Based on this 

approach the following five steps procedure is applied: 

The first step is to estimate a GARCH model to obtain the log likelihood 𝑙, residuals 𝜀𝑡 and 

volatility ℎ𝑡, and the largest standardized residuals in absolute value, 𝑚𝑎𝑥𝑡 |
𝜀𝑡

ℎ𝑡
|. The second step is 

to re-estimate a GARCH generalized additive outlier model with adding a single-observation 

dummy variable, 𝑑𝑡, in the mean equation as well as adding a single-observation lagged dummy 

variable, 𝑑𝑡−1, in the variance equation. The first dummy, 𝑑𝑡 , corresponds to the date of the largest 

standardized residuals, (𝑚𝑎𝑥𝑡 |
𝜀𝑡

ℎ𝑡
|), obtained from step one, in which 𝑑𝑡 equals one where t= 

𝑚𝑎𝑥𝑡|𝜀𝑡/ℎ𝑡| and zero otherwise, and the second dummy, 𝑑𝑡−1,  relates to the date of the largest 

standardized residuals(𝑚𝑎𝑥𝑡 |
𝜀𝑡

ℎ𝑡
|) with one period lag, in which 𝑑𝑡−1 equals one where 

t=(𝑚𝑎𝑥𝑡|𝜀𝑡/ℎ𝑡| )+1 and zero otherwise. The GARCH generalized additive outlier model can be 

written as: 
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𝑦𝑡 = 𝛽´𝑥𝑡 + 𝛾𝑑𝑡 + 𝜀𝑡   (4) 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖

𝑝

𝑖=1

𝜀𝑡−𝑖
2 + ∑ 𝛽𝑖

𝑞

𝑖=1

ℎ𝑡−𝑗 + 𝜏𝑑𝑡−1 

(5) 

 

The reason of adding the lagged dummy variable in the variance equation, is well described by 

Doornik and Ooms (2000). The authors show that in a GARCH(p,q) model with only a single-

observation dummy variable in the mean equation, maximum likelihood estimation can be 

problematic due to the potential for the bimodality in the likelihood function, while including the 

lagged dummy variable in the variance equation solves the problem. Doornik and Ooms (2000) 

prove that if the dummy variable enters to both the mean and variance equations without lag, 

bimodality remains a potential issue 
2
. In this model the dummy variable in the mean equation sets 

the corresponding residuals to zero when 𝛾 is estimated by maximum likelihood. 

The above described generalized additive outliers (gao) GARCH(p,q) model nests both the additive 

level and the additive volatility outliers without the problem of the bimodality of the log-likelihood. 

This gives estimates for the added parameters 𝛾 and �̂�, and a new log likelihood  𝑙𝑔𝑎𝑜. 

 

In the third step, we detect the potential outliers in the series. The null hypothesis is that the largest 

standardized residuals absolute value (𝑚𝑎𝑥𝑡 |
𝜀𝑡

ℎ𝑡
|) is an outlier date if 2(𝑙𝑔𝑎𝑜-𝑙)>𝐶𝑇

𝛼; however, the 

alternative hypothesis is that the date with (𝑚𝑎𝑥𝑡 |
𝜀𝑡

ℎ𝑡
|) is not corresponding to an outlier if  2(𝑙𝑔𝑎𝑜-

𝑙)<𝐶𝑇
𝛼 . Doornik and Ooms (2005) suggest an approximation of the asymptotic distribution of this 

test as 𝐶𝑇 ≈ 5,66+1,88 logT, where T indicates the sample size, at a significance α of 5%. If the null 

                                                           
2
 For more information about the mathematical proof of this assertion, please see the original article by Doornik and 

Ooms (2000). 
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hypothesis is confirmed and the first largest standardized residuals absolute value (𝑚𝑎𝑥𝑡 |
𝜀𝑡

ℎ𝑡
|) can 

be identified as an outlier, we correct it by replacing this value with a new one, which is the 

corrected value, in this study the new value is obtained by forecasting. This procedure is recursive, 

meaning that after identifying and correcting the first outlier, we re-estimate the GARCH model 

with the new dataset and we repeat the three above-described steps to identify the second outlier, 

the third one, and so on. This process will be repeated until the null hypothesis is rejected and no 

more outlier is identified, thus the procedure should be terminated. Consequently, we have a time 

series in which all dates containing outlier values are replaced by our forecasted values and we have 

a new time series that is so-called outlier corrected dataset. We extend this procedure to the 

GJR(p,q) as well as to the GARCH(p,q) models.  

This approach has some advantages over the existing outlier detection methods. Doornik and Ooms 

(2005) suggest an appropriate procedure to compute the p-values for the test that does not need 

simulation. It is a likelihood-based test and the related tests are similar to the GARCH parameters. It 

is a nested test for the additive level and the additive volatility outliers. Finally, the procedure has 

the advantage of being extendable to the other types of the GARCH models, such as the EGARCH 

and the GJR, as well as being expandable to the higher orders of these types of models. 

2.3.The effects of oil price shocks on volatility 

In this section, we analyze the asymmetric effects of oil price shocks on the price volatility of 

metals by including oil price returns to the variance equation of the GJR model. We apply both the 

original and the outlier corrected data. The new variance equation is given by: 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖
𝑝
𝑖=1 𝜀𝑡−𝑖

2 + ∑ 𝛽𝑖
𝑞
𝑖=1 ℎ𝑡−𝑗 + ∑ 𝛾𝑘

𝑟
𝑘=1 𝐼𝑡−𝑘 𝜀𝑡−𝑘

2  +∅1𝑂𝑃𝑡
+ + ∅2𝑂𝑃𝑡

− (6) 
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where 𝑂𝑃𝑡
+ denotes the positive oil price returns and  𝑂𝑃𝑡

− denotes the negative oil price returns. 

We follow the Mork (1989) method to separate out the positive and negative shocks, as 𝑂𝑃𝑡
+ = 𝑂𝑃𝑡 

if  𝑂𝑃𝑡 > 0 otherwise 0 and 𝑂𝑃𝑡
− = 𝑂𝑃𝑡 is 𝑂𝑃𝑡 < 0 otherwise 0. To find the asymmetric reaction of 

metal prices to the oil price shocks, we apply the Wald test. The null hypothesis is 𝐻0: ∅1 = ∅2 

suggesting no asymmetric reaction and the alternative hypothesis is  𝐻1: ∅1 ≠ ∅2 confirming the 

asymmetric reaction of each metal price to the oil price shocks. 

3. Data description and summary statistics 

We use daily spot closing price series for six industrial metals, including aluminum, copper, lead, 

nickel, tin, zinc; and four precious metals, comprising gold, silver, palladium and platinum, traded 

on the LME (London Metal Exchange). Moreover, we apply daily spot closing price series for 

Brent crude oil, traded on ICE (Intercontinental Exchange). The time span is from July 1993 to 

January 2014,which has the advantage of covering the 1997 Asian financial crisis, the 2008 and the 

2012 oil price shocks, the 2008 global financial crisis and the 2008 stock market crash. The prices 

are converted to log returns by means of 𝑅𝑡 = log (
𝑃𝑡

𝑃𝑡−1
), where 𝑅𝑡 is the corresponding returns and 

𝑃𝑡 is the corresponding price series.  

All return series have the Kurtotis statistics greater than three representing the existence of fat tails, 

they have the negative skewness statistics suggesting the presence of  left fat tails, expect for nickel 

that shows a small right tail. Moreover, the Jarque-Bera statistics indicate non-linearity for all return 

series at the 1% level of significance. The  residual diagnostics tests suggest that there is an ARCH 

effect for all returns at the 1% level of significance, thus returns of metals suffer from 

heteroskedasticity, the results are shown for one lag. Furthermore, according to Ljung-Box Q-test 

for residuals there are enough evidences for presence of serial correlation up to 20 lags.                      

In order to check for stationarity properties of the series we apply the Augmented Dickey and Fuller 
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(1979) (ADF) and the Phillips and Perron (1988) (P-P) unit root tests. According to the both tests 

the level of metal prices contain unit roots and their returns are stationary; hence, they are suitable 

for subsequent tests in this study. The description of returns are shown in Table 1. 

 [TABLE 1 HERE] 

4. Results  

4.1. Outliers in metal markets 

Tables 2a and 2b report the date of detected outliers for each metal, using the Doornik and Ooms 

(2005) approach under the GARCH and the GJR models, respectively. We detect outliers applying 

both normal and Student-t distributions. 

The results indicate that under the GARCH model with normal distribution, for aluminum, copper, 

lead, nickel, zinc, gold, palladium and silver, the number of detected outliers are seven, nine, three, 

two, three, five, two and nine, respectively; however, under the GARCH model with Student-t 

distribution no outlier could be detected for lead, nickel and zinc, and only one outlier, which is the 

biggest one, is identified for aluminum, copper, gold, palladium and silver. Under the GJR model 

with normal distribution, for aluminum, copper, lead, nickel, zinc, gold, palladium and silver, the 

number of detected outliers are six, nine, three, two, two, three, one and six, respectively; while 

under the GJR model with Student-t distribution no outlier is identified for lead, nickel and 

platinum, one outlier is detected for aluminum, gold, palladium and silver, and three and two 

outliers are detected for copper and zinc, respectively, which are the biggest outliers. Moreover, 

under the GARCH and the GJR models with normal and Student-t distributions no outlier could be 

identified for tin and platinum. 

Among the corresponding events that occurred in the same or around the time of identified outliers 

and can have roles in arising of outliers, we can mention e.g., to the Schengen agreement; a fierce 
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attack by a hedge fund in June 1996 resulting in copper price falling; the 1997 Asian financial 

crisis; the 11 September 2001 terrorist attack; Cyprus, Czech Republic, Estonia, Hungary, Latvia, 

Lithuania, Malta, Poland, Slovakia, and Slovenia joined the EU in 2004; the 2005 South Asian 

tsunami; the 2007 tsunami warnings in the Pacific Ocean; the 2008 global crisis; the September 

2008 stock market crash; the 2008 and the 2012 crude oil price shocks; the 2010 Earthquake in 

China; the 2010 Mexican oil spill; and the start of the Wall Street protests in the United States in 

2011. 

[TABLES 2a-2b HERE] 

 

Next, we apply the GARCH and the GJR volatility models to examine the persistence of volatility 

(section 4.2) and the leverage effects (section 4.3) in metal markets using the "original data" and the 

"outlier corrected data". We compare the estimation of the models under four different conditions: 

(1) original data-normal distribution; (2) original data- Student-t distribution; (3) outlier corrected 

data-normal distribution; and (4) outlier corrected data- Student-t distribution. Then, we investigate 

the effects of oil returns on the price volatility of metals, allowing for the asymmetric responses to 

the negative and positive oil price shocks, using the original and the outlier corrected data (section 

4.4). 

4.2. Persistence of volatility  

4.2.1. Empirical results  

We apply the ARMA(p,q)-GARCH(2,2) model to estimate the persistence of volatility among 

metals. Selection of the appropriate models is based on the ARCH test and the Akaike  Information 

Criteria (AIC). For each metal the best model is shown in bold representing the lowest value of the  

AIC. Furthermore, the residual diagnostic tests results are informed to check for the fitting of the 

chosen volatility models. The results are reported in Tables 3a-3c. 
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The results indicate that for all metals the non-negativity conditions are observed. The moment 

conditions state that for aluminum, copper, nickel, platinum and silver the second moment condition 

is satisfied within every one of the estimated models, but for lead, tin, zinc, gold and palladium the 

second moment condition is violated for some of the models. However, the log-moment condition 

is satisfied for every one of the estimated models for all metals. Therefore, there are sufficient 

evidences in favor of consistency and asymptotic normality of the QMLE for all metals. 

We continue the discussion by comparing the GARCH models in terms of their information criteria 

to conclude which model shows the highest performance in capturing volatility for each metal. 

First, for all metals, removing outliers improves the performance of the GARCH model using 

original data with normal distribution, except for tin and platinum, for which no outlier is detected. 

Thus, for all metals the GARCH model using the outlier corrected data-normal distribution 

outperforms the GARCH model using the original data-normal distribution.   

Second, we go further to compare the ability of two solutions for capturing the fat tails in returns. 

One is using Student-t distribution; and another is using the outlier corrected data. Accordingly, the 

results suggest that, for seven metals, the model using original data-Student-t distribution 

outperforms the model using the outlier corrected data-normal distribution, except for aluminum 

that the model using the outlier corrected data-normal distribution outperforms the one using the 

original data-Student-t distribution; and that no outlier is detected for tin and platinum. 

Third, in the next step, we develop the performance of the GARCH models using the original data-

Student-t distribution by detecting and correcting the remaining outliers. We find that for 

aluminum, copper, palladium and silver some outliers can still be detected under the GARCH 

model with Student-t distribution, this means that Student-t distribution is not able to capture some 

big shocks in returns of the above-mentioned metals. The results show that the new GARCH model 
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using the outlier corrected data-Student-t distribution increases the performance of the GARCH 

model using the original data-Student-t distribution.  

In the variance equation, the ARCH term (𝛼1 + 𝛼2) captures the short-run persistence and the 

GARCH term (𝛽1 + 𝛽2) captures the contribution of the shocks to the long-run persistence; hence, 

if (𝛽1 + 𝛽2) is high, the shocks to volatility do not disappear rapidly. Moreover, ∑ 𝛼𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑖

𝑞
𝑖=1  

captures the volatility persistence, if its value is close to one, the volatility is persistence. 

Accordingly, we find that for all metals, either before or after removing outliers, this value is high. 

Moreover, for all metals, except palladium, under the GARCH model with normal distribution, 

when the data are cleaned up from outliers the values of the ARCH term decrease and the values of 

the GARCH term increase; however, the values of ∑ 𝛼𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑖

𝑞
𝑖=1  remain unchanged or change 

insignificantly. These results are in line with Franses and Ghijsels (1999) for stock markets and 

Charles and Darne (2014) for crude oil markets. 

[TABLES 3a-3c HERE] 

4.2.2. Discussion  

The empirical results achieved three main conclusions. The first one is that for all metals the effect 

of past volatility on the current volatility is much greater than the effect of past shocks on the 

current volatility. This indicates that the past volatility are better factors to use for the prediction of 

the future volatility among metals rather than the past shocks. The second conclusion is that for all 

metals either before or after removing outliers, the values of ∑ 𝛼𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑖

𝑞
𝑖=1  are high, indicating 

the high degree of persistence in volatility, and that their volatility converge to the long-run 

equilibrium slowly
3
. Furthermore, the third conclusion is that after removing outliers from the data, 

                                                           
3
 Among them, gold does not meet the second moment condition under any of the four estimated models and is 

excluded from this description.  
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the values of the ARCH term decrease and the value of the GARCH term increase, Carnero et al. 

(2001, 2007) explain these biases as a result of some big isolated outliers. This means that one 

isolated outlier at time t affects the estimation of the conditional variance at time t+1, then this 

variance will be used in the estimation of the conditional variance at time t+2 and so on. 

Consequently, an isolated outlier behaves as a patch of outliers for the estimation of the conditional 

variances and the GARCH parameters. This explains the different behavior of the QMLE estimator 

for the GARCH model with and without outliers. Within the time span of this study, the 11 

September 2001 terrorist attack, the 2010 China Earthquake, and the 2005 South Asian tsunami are 

some examples for big isolated outliers that can affect metal markets. Moreover, the biases in the 

GARCH parameters can be a result of some sequential outliers. This suggests that the area of 

outliers due to the uncertainty associated with an extreme event period such as wars have a 

successive effect on the parameters of the GARCH model (Carnero, 2001 and 2007; Charles and 

Darner, 2014). Although no war occurred during the time span of this study, we can still indicate 

the 1997 Asian and the 2008 world financial crisis and the 2008 and the 2012 crude oil price shocks 

as examples of sequential outliers in metal markets that affect the parameters estimations of the 

GARCH models. 

4.3. Leverage effects 

4.3.1. Empirical results  

We apply the ARMA(p,q)-GJR(2,2) model to estimate the existence of leverage effect among metal 

markets. The selection of appropriate models is based on the ARCH test and the Akaike  

Information Criteria (AIC). For each metal the best model is shown in bold, representing the lowest  
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value of the AIC. Furthermore, the residual diagnostic tests results are informed to check for the 

fitting of the chosen volatility models. The results are reported in Tables 4a-4c. 

We start with the assumptions that in a GJR model, if the 𝛾>0 there is a leverage effect. The 

leverage effect refers to the relationship between returns and volatility, indicating that volatility 

increases when the returns fall (bad news) as debt-to-equity ratio increases; and volatility decreases 

when the returns increase (good news). Moreover, 𝛼 indicates the effective coefficient linked to the 

positive shocks (good news) and 𝛼 + 𝛾 represents the effective coefficient related to the negative 

shocks (bad news) and if 𝛼 + 𝛾 > 𝛼 then there is an asymmetric effect. The asymmetry 

phenomenon declares that bad news increase volatility more than good news decrease it. In this 

section, the aim is to show if there is a leverage effect in metal markets while taking outliers into 

account. 

The results in Tables 4a-4c reveal that for all metals the non-negativity condition is observed. The 

second moment condition is satisfied for aluminum, copper, lead, nickel, platinum and silver under 

all estimated models, but it is violated for some estimated models of tin, zinc, gold and palladium. 

Nevertheless, the log-moment condition is satisfied for all metals. Consequently, there are sufficient 

evidences in favor of consistency and asymptotic normality of the QMLE for all metals under the 

ARMA(p,q)-GJR(2,2) model. 

In order to evaluate the existence of the leverage affect in metal markets, we compare the results 

under the four estimated models. First, under the GJR model using the original data-normal 

distribution, for eight metals the 𝛾 term  is statistically significant. However, for seven of them the 𝛾 

term is negative, including aluminum, lead, tin, zinc, gold, platinum and silver, indicating the 

existence of an inverse leverage effect. Conversely, for copper the 𝛾 term is positive suggesting the 

existence of a leverage effect. Moreover, for nickel and palladium the 𝛾 term is not statistically 

significant under this model. These findings are in line with Hammoudeh and Yuan (2008) who 
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suggest the leverage effect only for the copper market and the inverse leverage effect for the gold 

and silver markets, and in line with Chkili et al. (2014) who find an inverse leverage effect for the 

gold and silver markets. Accordingly the authors suggest that gold and silver can be good 

investments in prospect of bad news, In another study Carpantier (2010) finds the leverage effect 

for the stock markets and the inverse leverage effect for commodity markets, including metals and 

agricultures. Moreover, Engle (2011) provides evidences in favor of a negative sign of the 𝛾 term 

for gold, some exchange rates, some interest rates and some volatility index return series and 

interprets this as a hedge effect. Nonetheless, our results are in contrast with Gil-Alana and Tripathy 

(2014) who find the leverage effect in Indian non-precious metal markets, including aluminum, 

copper, lead, tin and zinc. The only exception is nickel, for which neither our study nor the study by 

Gil-Alana and Tripathy (2014) find any asymmetric behavior. These contradictory results lead us to 

the different behaviors of international exchange markets, meaning that the LME as a developed 

market, and the Indian commodity exchange market, as a less developed market, are not alike. 

Perhaps the Indian commodity exchange market still suffers from some imperfections such as 

governmental controlling and domestic traders with lack of sufficient trading experiences. 

Second, under the GJR model using the outlier corrected data-normal distribution, for five metals, 

including copper, lead, zinc, gold and silver, the 𝛾 term still is statistically significant but for 

aluminum, detected outliers have been the sources of the leverage effect, as cleaning the data from 

outliers removes the asymmetry evidence. However, for tin and platinum no outlier is detected; 

therefore, the GJR model is not estimated for them. Finally, for palladium and nickel the results are 

the same as the first model and no leverage effect is detected for them.  

Third, under the GJR model using the original data-Student-t distribution, the results suggest that 

for five metals, including copper, tin, zinc, platinum and silver, the 𝛾 term is still statistically 

significant, and for lead, nickel and gold, it is no longer statistically significant. This indicates that 
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Student-t distribution is capturing the outliers that were leading to an asymmetric effect in these 

three metals.  

Fourth, under the GJR model using the outlier corrected data-Student-t distribution, the 𝛾 term is 

statistically significant only for copper, zinc and silver. This means that, correcting the data from 

outliers, as well as using Student-t distribution remove the sources of asymmetry in the rest of 

metals. 

[TABLES 4a-4c HERE] 

4.3.2. Discussion  

The results suggest the existence of inverse leverage effect for seven metals, including aluminum, 

lead, tin, zinc, gold, platinum and silver. As the existence of a leverage effect in stock markets is 

well known in the literature, evidences in favor of an inverse leverage effect is supported for 

commodity markets. This reflects that in commodity markets, volatility tends to be high when 

returns increase; in this case, supplies or inventory levels of commodities tend to be scarce. For 

instance, Carpantier (2010) explains that an increase in price potentially represents the decline of 

the commodities inventories, consequently the author suggests that this phenomenon can be called 

"inventory effect". Moreover, the results suggest the existence of  leverage effect and asymmetry in 

favor of bad news in the copper market, which emphasizes developing financialization and 

departing from the characteristics of a commodity market for copper.  

When comparing the results from the GJR and the GARCH models to capture the pattern of 

volatility, according to the Akaike Information Criteria, there are strong evidences in favor of 

priority of the GJR model over the GARCH model. This means that the price volatility of metals 

can be better explained by a model that contains the asymmetry features. 
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To check the validity of normal distribution, the results show that for all metals there are evidences 

for the existence of skewness and excess kurtosis, the Jarque-Bera tests are significant as well. 

These results confirm the findings of Bollerslev (1989) and Trasvirta (1996) who show that the 

GARCH models cannot fully capture excess kurtosis in high frequency financial data. However,  

after cleaning up the data from outliers, skewness, excess kurtosis and Jarque-Bera are substantially 

reduced, but still they are statistically significant
4
. This indicates that outliers can lead to excess 

kurtosis in the data (see Balke and Fomby, 1994; Fiorentini and Maravall, 1996; and Charles and 

Darne, 2005 and 2014). 

4.4.The effects of oil price shocks on volatility of metal markets 

4.4.1. Empirical results  

The results of the volatility estimations in previous section suggest that the GJR model outperforms  

the GARCH model to capture the pattern of volatility in metal markets. Hence, we use the ARMA-

GJR(2,2) model with normal distribution, using both the original and the outlier corrected data to 

estimate the effects of oil price shocks on the price volatility of metals. We allow for the 

asymmetric responses to the oil price changes by splitting up the oil price increases and decreases as 

the separate variables
5
. The results are reported in Table 5. 

We start by analyzing the effects of oil price shocks on the volatility of metals, using the original 

data. For aluminum, the sign of negative oil price shocks on volatility is negative, representing that 

they increase volatility. However, the positive oil price shocks do not impact on the volatility of 

aluminum. For copper, nickel and palladium, the sign of negative oil price shocks is negative and 

the sign of positive shocks is positive meaning that either the negative or the positive oil price 

                                                           
4
 These results are available upon request from the authors. 

5
 For robustness check we perform the same analysis using the GARCH model as well, which confirms the results of 

the GJR model for the majority of metals, the results are available upon request from the authors. 
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shocks increase their volatility. For lead, tin and platinum, the sign of negative and positive shocks 

on volatility is negative indicating that the negative oil price shocks increase volatility and the 

positive oil price shocks decrease it. For zinc and gold, the sign of negative oil price shocks on 

volatility is positive, specifying that the negative oil price shocks decrease volatility; however, the 

positive oil price shocks do not affect their volatility. Finally the negative shocks do not affect the 

volatility of silver, while the sign of positive oil price shocks on volatility is negative, meaning that 

these shocks decrease the price volatility of silver. However, even for metals with statistically 

significant oil shocks effect, the values of coefficients are insignificant, indicating a very small and 

negligible effect of oil price shocks on those volatilities. 

 Then, we go further to understand the existence of asymmetric reaction from  metal prices 

volatility to oil price shocks. We use the Wald test with the null hypothesis of 𝐻0: ∅1 = ∅2 

suggesting no asymmetric reaction and the alternative hypothesis of  𝐻1: ∅1 ≠ ∅2 conforming the 

asymmetric reaction. The results show that there are evidences of an asymmetric effect in favor of 

the positive shocks for lead, tin and silver, and in favor of the negative shocks for aluminum, zinc, 

gold and palladium. Moreover, no asymmetric reaction is identified for copper, nickel and platinum, 

The results are reported in Table 5. 

Next, we analyze the effects of oil price shocks on volatility, using outlier corrected data. The 

results reveal that for lead, zinc, gold and palladium the estimation using the outlier corrected data 

is equal to those using the original data, and for tin and platinum no outlier could be detected from 

the previous section. However, for aluminum and nickel the effects of oil price shocks are not 

statistically significant after removing outliers from the data; besides, for copper and silver only the 

effect of positive shocks remains significant after correcting the data from outliers. The results are 

reported in Table 5. 

[TABLE 5 HERE] 
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4.4.2. Discussion  

One main conclusion is that the negative oil price shocks increase volatility of seven metals, except 

gold, silver and zinc, and second, the positive oil price shocks decrease the volatility of lead, tin, 

platinum and silver, and increase the volatility of copper, nickel and palladium. This transmission 

can occur through two main channels. The first one is that the negative oil price shocks or bad news 

in the oil market push the traders away from oil toward other commodities, i.e. metals and 

agricultures. The second channel is that the negative oil price shocks are actually good news for the 

economy, it stimulates economic activities and industrial production in oil importing countries. This 

again boosts demand for metals with industrial application. Consequently, the negative oil price 

shocks increase the financial and the physical demands for metals with industrial application. This 

decreases their inventory levels and following the existence of inverse leverage effect in these 

markets, their price volatility increases.  

Nevertheless, gold and silver as the main precious metals are excluded from the above described 

transaction channels. Gold has less industrial application and it is mainly applied in jewelry 

industries. There is a general consensus that the prices of gold and oil are positively correlated, 

the main idea behind it is due to the inflationary effect of oil prices. Moreover, oil is a significant 

direct and indirect cost input to the gold production process; hence, the lower oil price helps the 

bottom lines of gold mining companies. These prove that the negative oil price shocks reduce the 

gold price, which is good news for the gold market as a commodity. Therefore, this good news 

calms the gold market and reduces the volatility of the gold price. However, silver as a precious 

metal has more industrial applications than gold, in fact  this metal is used in both the 

jewelry and industrial  sectors .  This can be the reason why the negative oil price shocks 

has less effect on the price volatility of silver; the shocks have a negative effect as they have on 

gold, but it is statistically insignificant. 
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On another side, the results show that explaining the effects of positive oil price shocks on 

metal markets is more complicated than explaining the negative ones. The positive oil price 

shocks do not affect the volatility of aluminum, gold and zinc. However, they decrease the 

volatility of lead, tin, platinum and silver. The first channel of this transmission is that good 

news in the oil market push the traders a w a y  from other commodity markets to oil. 

Moreover, the positive oil price shocks can be interpreted as a depreciation of the world 

economy. This leads to a reduction of industrial production and a  l o w e r  

c o n s u m p t i o n  of industrial metals. Finally their prices may d e c r e a s e  and according 

to the inverse leverage effect that exists in these markets, their volatility decrease as well. 

In the case of copper, nickel and palladium, the results are different from those of other metals, 

as both the negative or the positive oil price shocks increase their volatility. The interesting 

point is that the results from the previous section indicated that seven metals showed an 

inverse leverage effect; however, these three metals were excluded from this effect, as 

copper showed a leverage effect, while for nickel and palladium the asymmetry term was not 

statistically significant. One can conclude that the properties of the leverage effect as well as 

the effect of oil price shocks on these markets change over time. 

Furthermore, after correcting the data from outliers, we find that for aluminum and nickel the 

oil price shocks n o  l o n g e r  a f f e c t  their volatility, while only the positive shocks remain 

significant for copper and silver. This means that some  of the effects of oil price shocks on the 

volatility of these metals are removed after cleaning up the data from outliers. The reason is 

that some detected outliers in metal markets can be due to the shocks in the oil market, another 

reason is that volatility in both markets could be effected by the same events, some examples of 

these events are  the 1997 Asian and the 2008 world financial crisis; the 2008 and the 2012 oil 

price shocks; the 2010 Mexican oil spill, etc. 
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5. Conclusion  

The price volatility of metals is an interesting subject for financial traders and manufacturers. 

Volatility a ffect t he  decision of investors for portfolio allocation and Value at Risk 

management strategies, as well as the  industrial production of manufacturers and therefore the 

economic growth pattern of  nations. As a  result, t he  correct modeling of volatility in these 

markets is a crucial issue, which on one side increases the ability to generate an accurate out-

of-sample forecasting for policymakers, and on another side facilitates the Value at Risk 

management strategies for financial traders. 

In this study we have two main objectives: (i) the first one is to examine the persistence of 

volatility and the leverage effect, taking into account the exogenous shocks and sudden events 

as outliers in the data. To achieve this goal we use two alternative approaches to capture 

outliers. The first one is Student-t distribution; and the second one is identifying and correcting 

outliers in the GARCH and the GJR models applying the Doornik and Ooms (2005) procedure. 

Furthermore, (ii) the second one is to examine the effect of oil price shocks on t h e  price 

volatility in metal markets, using the GJR model while allowing for the asymmetric responses 

to the oil returns changes. 

The main findings are that: first, for all metals outliers bias the estimation of parameters of 

the GARCH model; second, for all metals removing outliers improves the performance of 

the models; third, for all metals, except for aluminum, t h e  model using the original data-

Student-t distribution outperforms the model using the outlier corrected data-normal 

distribution; fourth, for all metals either before or after correcting outliers returns show a high 

degree of persistence in volatility; fifth, there is evidence of the inverse leverage effect in seven 

metals, including aluminum, lead, tin, zinc, gold, platinum and silver and the leverage effect for 

copper; and sixth, metal markets react to oil price shocks in different ways and there are 
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evidences in favor of the asymmetric reaction of volatility to oil price shocks only in seven  

metals. These findings can be used in further research for Value at Risk estimation and the risk 

management purposes, as well as to improve the forecasting accuracy of out-of- sample 

estimation, which is useful for policymakers and financial traders. 
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Appendix 

Table 1       

  
 
             

Description of returns                     

 
    

    Unit root tests 

 
Data description  

 

Diagnostics ADF P-P ADF P-P 

 
Skewness Kurtosis J-R 

 

ARCH 
 Serial 

correlation 
Levels   Returns   

    
 

F-stat Qstat(lag20) t-stat   t-stat   

Aluminum -0,275 5,56 1426,43*** 

 

61,65*** 32,62** -2,34 -2,26 -72,22*** -72,26*** 

Copper -0,159 7,68 4567,98*** 

 

217,61*** 73,22*** -1,68 -1,60 -73,35*** -73,39*** 

Lead -0,129 6,49 2535,51*** 

 

222,02*** 56,71*** -2,08 -1,92 -66,91*** -66,86*** 

Nickel 0,003 7,80 4779,09*** 

 

206,39*** 49,43*** -1,88 -1,86 -69,66*** -69,66*** 

Tin -0,108 10,45 11493,80*** 

 

156,50*** 47,74*** -1,93 -1,90 -68,69*** -68,68*** 

Zinc -0,247 6,98 3329,96*** 

 

144,09*** 43,48*** -1,99 -1,91 -71,68*** -71,77*** 

Gold -0,209 9,56 8939,31*** 

 

153,52*** 39,61*** -1,91 -1,90 -71,28*** -71,28*** 

Palladium -0,158 8,86 7146,86*** 

 

140,26*** 42,33*** -1,83 -1,80 -67,44*** -67,40*** 

Platinum -0,707 13,07 21421,98*** 

 

182,11*** 25,18 -2,66 -2,59 -70,97*** -71,01*** 

Silver -0,454 12,23 17814,79***   438,00*** 75,49*** -2,23 -2,30 -76,53*** -76,53*** 

Notes: ***,**,* indicate statistical significance at 1%, 5% and 10% levels, respectively, 

     J-R denotes the Jarque-Bera test,  
     

     ADF denotes the Augmented Dickey Fuller unit root test, 
   

     P-P denotes the Phillips Perron unit root test. 
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Table 2a                     

Date of detected outliers within GACRH models                 

   
        

  

GARCH-normal 

     

GARCH-t 

Aluminum 

 

26/10/1993,28/11/1994,21/04/2004,13/10/2004,04/01/2005,27/04/2010,16/11/2010 

 

4/01/2005 

 Copper 

 

17/09/1993,17/05/1996,05/06/1996,07/06/1996,14/06/1996,13/10/2004,04/01/2005,16/08/2007,22/09/2011 17/09/1993 

 Lead 

 

24/07/1998,13/10/2003,14/10/2003 

    

na 

 Nickel 

 

30/05/2000,13/10/2004 

     

na 

 Tin 

 

na 

      

na 

 Zinc  

 

06/08/1993,29/07/1997,08/07/1999 

    

na 

 Gold 

 

31/03/1995,07/07/1997,21/05/2001,11/09/2001,15/04/2013 

  

15/04/2013 

 Palladium 

 

21/09/1995,28/08/2002 

     

28/08/2002 

 Platinum 

 

na 

      

na 

 Silver   21/09/1995,24/01/1997,10/12/1997,21/04/2006,20/03/2008,15/08/2008,18/09/2008,15/04/2013,20/06/2013 15/04/2013   
Note:  na denotes no outlier is detected. 
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Table 2b                     

Date of detected outliers within GJR models                 

   
        

  

GJR-normal 

     

GJR-t 

Aluminum 

 

26/10/1993,28/11/1994,13/10/2004,04/01/2005,27/04/2010,16/11/2010 

  

4/01/2005 

 Copper 

 

17/09/1993,17/05/1996,05/06/1996,07/06/1996,14/06/1996,13/10/2004,04/01/2005,16/08/2007,22/09/2011 17/09/1993,13/10/2004,04/01/2005 

Lead 

 

24/07/1998,13/10/2003,14/10/2003 

    

na 

 Nickel 

 

30/05/2000,13/10/2004 

     

na 

 Tin 

 

na 

      

na 

 Zinc  

 

06/08/1993,29/07/1997 

     

06/08/1993, 29/07/1997 

Gold 

 

07/07/1997,11/09/2001,15/04/2013 

    

15/04/2013 

 Palladium 

 

28/08/2002 

      

28/08/2002 

 Platinum 

 

na 

      

na 

 Silver   31/03/1995,21/04/2006,15/08/2008,18/09/2008,15/04/2013,20/06/2013     15/04/2013   
Note:  na denotes no outlier is detected. 
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Table 3a 

          ARMA(p,q)-GARCH(2,2) estimation results                 

 
Variance equation 

 
Moment conditions 

 
Information criteria Diagnostics  tests 

 
α1+α2 β1+β2 

 
S-M L-M 

 

AIC 

 

ARCH Serial correlation 

      
 

 
 

F-stat Q-stat 

Aluminum 
     

 
 

 
  

Original data-normal 0,096 0,883 
 

0,980 -0,032 

 

-5,879 

 

0,12 2,86 

Outlier corrected data-normal 0,028 0,965 
 

0,990 -0,008 

 

-5,923 

 

0,02 2,72 

Original data-t  0,091 0,890 
 

0,980 -0,029 

 

-5,918 

 

0,01 0,04 

Outlier corrected data-t 0,093 0,887 
 

0,980 -0,030 
 

-5,924 
 

0,05 2,54 

Copper 
     

 
 

 
  

Original data-normal 0,096 0,881 
 

0,98 -0,030 

 

-5,511 

 

0,16 0,79 

Outlier corrected data-normal 0,080 0,893 
 

0,97 -0,030 

 

-5,570 

 

0,06 0,68 

Original data-t  0,087 0,898 
 

0,99 -0,030 

 

-5,571 

 

0,21 6,60 

Outlier corrected data-t 0,085 0,900 
 

0,99 -0,020 
 

-5,579 
 

0,98 7,09 

Lead 
          Original data-normal 0,020 0,977 

 
0,997 0,000 

 

-5,179 

 

1,30 1,05 

Outlier corrected data-normal 0,019 0,978 
 

0,998 0,000 

 

-5,1,95 

 

0,46 1,17 

Original data-t  0,022 0,977 
 

1,020 0,000 

 

-5,218 

 

2,17 4,36 

Outlier corrected data-t na na   na na   na   na na 

Notes:   ***, ** and * denote statistical significance at 1%, 5% and 10% levels, 

       L-M denotes log moment condition, 

          AIC denotes Akaike Information Criterion, 

       S-M denotes the second moment condition. 
         

          
       

   
 
 
 



34 

 

Table 3b 

          ARMA(p,q)-GARCH(2,2) estimation results(continued)               

 
Variance equation 

 
Moment conditions 

 
Information criteria Diagnostics tests 

 
α1+α2 β1+β2 

 
S-M L-M 

 

AIC 

 

ARCH Serial correlation 

      
 

 
 

F-stat Q-stat 

Nickel 
          

Original data-normal 0,015 0,980 
 

0,996 -0,005 

 

-4,866 

 

0,00 1,48 

Outlier corrected data-normal 0,014 0,982 
 

0,996 -0,004 

 

-4,883 

 

0,05 0,88 

Original data-t  0,014 0,983 
 

0,997 -0,003 

 

-4,920 

 

0,06 8,58 

Outlier corrected data-t na na 
 

na na 
 

na 
 

na na 

Tin 
          

Original data-normal 0,006 0,993 
 

0,999 -0,000 

 

-5,639 

 

0,03 4,99 

Outlier corrected data-normal na na 
 

na na 
 

na 
 

na na 

Original data-t  0,013 0,987 
 

1,000 0,000 

 

-5,776 

 

0,00 13,94 

Outlier corrected data-t na na 
 

na na 
 

na 
 

na na 

Zinc 
          

Original data-normal 0,012 0,987 
 

0,999 -0,001 

 

-5,482 

 

0,14 3,96 

Outlier corrected data-normal 0,007 0,992 
 

0,999 -0,001 

 

-5,502 

 

0,01 3,06 

Original data-t  0,008 0,991 
 

1,000 -0,001 

 

-5,533 

 

1,94 1,47 

Outlier corrected data-t na na   na na   na   na na 

Notes:   ***, ** and * denote statistical significance at 1%, 5% and 10% levels, 

       L-M denotes log moment condition, 

          AIC denotes Akaike Information Criterion, 

       S-M denotes the second moment condition. 
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Table 3c 

          ARMA(p,q)-GARCH(2,2) estimation results(continued)               

 
Variance equation 

 
Moment conditions 

 
Information criteria Diagnostics tests 

 
α1+α2 β1+β2 

 
S-M L-M 

 

AIC 

 

ARCH Serial correlation 

         
F-stat Q-stat 

Gold 
          

Original data-normal 0,005 0,993 
 

1,000 -0,002 

 

-6,546 

 

0,32 3,86 

Outlier corrected data-normal 0,004 0,995 
 

1,000 -0,001 

 

-6,611 

 

0,59 4,70 

Original data-t  0,087 0,919 
 

1,010 -0,006 

 

-6,649 

 

6,50** 10,36 

Outlier corrected data-t na na 
 

na na 
 

na 
 

na na 

Palladium 
          

Original data-normal 3,00E-04 0,999 
 

0,999 -0,060 

 

-5,094 

 

0,33 5,77 

Outlier corrected data-normal 4,00E-04 0,999 
 

1,000 -0,050 

 

-5,128 

 

0,05 3,84 

Original data-t  0,311 0,704 
 

1,010 -0,092 

 

-5,221 

 

0,09 12,48 

Outlier corrected data-t 0,006 0,993 
 

1,000 -0,001 
 

-5,229 
 

0,47 17,63 

Platinum 
          

Original data-normal 0,042 0,954 
 

0,997 -0,006 

 

-5,916 

 

0,03 2,64 

Outlier corrected data-normal na na 
 

na na 
 

na 
 

na na 

Original data-t  0,006 0,993 
 

0,999 -0,001 

 

-5,987 

 

2,64 2,74 

Outlier corrected data-t na na 
 

na na 
 

na 
 

na na 

Silver 
          

Original data-normal 0,079 0,918 
 

0,998 -0,012 

 

-5,233 

 

0,29 5,43 

Outlier corrected data-normal 0,036 0,962 
 

0,998 -0,003 

 

-5,299 

 

0,73 4,20 

Original data-t  0,023 0,975 
 

0,999 -0,025 

 

-5,320 

 

0,03 8,68 

Outlier corrected data-t 0,027 0,972   0,999  0,000   -5,326   0,63 8,18 

Notes:   ***, ** and * denote statistical significance at 1%, 5% and 10% levels, 

       L-M denotes log moment condition, 

          AIC denotes Akaike Information Criterion, 

       S-M denotes the second moment condition. 
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Table 4a 

          ARMA(p,q)-GJR(2,2) estimation results                   

 
Variance  equation Moment conditions 

 

Leverage effect Information criteria Diagnostics testS 

 
α1+α2+ϒ/2 β1+β2 S-M L-M 

 

ϒ 

 

AIC ARCH Serial correlation  

 
        

 

Coefficient(t-stat) 

 
 

F-stat Q-stat 

Aluminum 
    

 
 

 
   

Original data-normal 0,098 0,882 0,980 -0,032 

 

 -0,03(-3,48)*** 

 

-5,880 0,09 3,11 

Outlier corrected data-normal 0,030 0,963 0,994 -0,008 

 

-0,002(-0,57) 

 

-5,923 0,02 2,73 

Original data-t  0,105 0,887 0,981 -0,020 

 

-0,022(-1,55) 

 

-5,918 0,00 3,11 

Outlier corrected data-t 0,096 0,884 0,981 -0,030 

 

-0,018(-1,27) 
 

-5,924 0,02 2,64 

Copper 
    

 
     

Original data-normal 0,102 0,871 0,975 -0,041 

 

0,041(4,81)*** 

 

-5,513 0,05 3,58 

Outlier corrected data-normal 0,080 0,903 0,984 -0,024 

 

0,031(3,61)*** 

 

-5,571 0,01 0,64 

Original data-t  0,088 0,894 0,983 -0,028 

 

0,023(1,77)* 

 

-5,571 0,09 6,68 

Outlier corrected data-t 0,087 0,898 0,985 -0,025 

 

0,030(2,34)** 
 

-5,583 0,61 6,56 

Lead 
    

 
     

Original data-normal 0,018 0,979 0,998 -0,003 

 

-0,008 (-2,66)*** 

 

-5,180 1,38 0,95 

Outlier corrected data-normal 0,021 0,976 0,998 -0,005 

 

-0,01(-2,85)*** 

 

-5,196 0,39 1,06 

Original data-t  0,021 0,977 0,999 -0,003 

 

-0,008(-1,52) 

 

-5,218 2,26 4,37 

Outlier corrected data-t na na na na   na   na na na 

Notes:   ***, ** and * denote statistical significance at 1%, 5% and 10% levels,  

       L-M denotes log moment condition, 

          AIC denotes Akaike Information Criterion, 

       S-M denotes the second moment condition. 
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Table 4b 

          ARMA(p,q)-GJR(2,2) estimation results(continued)                 

 

Variance  

equation 
Moment conditions 

 

Leverage effect Information criteria 
Diagnostics  

testS 

 
α1+α2+ϒ/2 β1+β2 S-M L-M 

 

ϒ 

 

AIC ARCH Serial correlation  

 
        

 

Coefficient(t-stat) 

 
 

F-stat Q-stat 

Nickel 
    

 
     

Original data-normal 0,015 0,980 0,996 -0,004 

 

-0,003(-1,31) 

 

-4,866 0,00 1,54 

Outlier corrected data-normal 0,014 0,981 0,996 -0,004 

 

-3E-04(-0,13) 

 

-4,882 0,06 1,83 

Original data-t  0,013 0,982 0,997 -0,004 

 

7E-04(0,20) 

 

-4,918 0,09 9,27 

Outlier corrected data-t na na na na 

 

na 
 

na na na 

Tin 
    

 
     

Original data-normal 0,007 0,992 0,999 -0,001 

 

-0,006(-6,41)*** 

 

-5,643 0,13 5,00 

Outlier corrected data-normal na na na na 

 

na 
 

na na na 

Original data-t  0,012 0,988 1,00 -0,000 

 

-0,006(-1,96)** 

 

-5,777 0,03 13,75 

Outlier corrected data-t na na na na 

 

na 
 

na na na 

Zinc 
    

 
     

Original data-normal 0,009 0,989 0,999 -0,000 

 

-0,007(-3,96)*** 

 

-5,484 0,06 4,45 

Outlier corrected data-normal 0,010 0,988 0,999 -0,000 

 

-0,007(-3,61)*** 

 

-5,491 0,10 4,11 

Original data-t  0,052 0,948 1,000 -0,003 

 

-0,02(-2,48)** 

 

-5,531 0,44 4,99 

Outlier corrected data-t 0,008 0,990 0,999 -0,003   -0,004(-2,31)**   -5,537 0,60 4,75 

Notes:   ***, ** and * denote statistical significance at 1%, 5% and 10% levels,  

       L-M denotes log moment condition, 

          AIC denotes Akaike Information Criterion, 

       S-M denotes the second moment condition. 
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Table 4c 

          ARMA(p,q)-GJR(2,2) estimation results(continued)                 

 
Variance equation Moment conditions 

 

Leverage effect Information criteria Diagnostics test 

 
α1+α2+ϒ/2 β1+β2 S-M L-M 

 

ϒ 

 

AIC ARCH Serial correlation  

 
        

 

Coefficient(t-stat) 

 
 

F-stat Q-stat 

Gold 
    

 
     

Original data-normal 0,007 0,992 1,000 -0,007 

 

-0,002(-3,76)*** 

 

-6,544 0,37 2,26 

Outlier corrected data-normal 0,018 0,982 1,000 -0,020 

 

-0,01(-3,01)*** 

 

-6,613 1,10 5,63 

Original data-t  0,044 0,958 1,000 -0,001 

 

-0,02(-1,03) 

 

-6,651 6,50** 10,06 

Outlier corrected data-t 0,048 0,954 1,000 -0,001 

 

-0,02(-1,17) 
 

-6,654 3,64* 8,50 

Palladium 
    

 
     

Original data-normal 0,0005 0,999 0,999 -0,000 

 

3E-05(0,83) 

 

-5,092 0,10 20,02 

Outlier corrected data-normal 0,001 0,998 0,999 -0,000 

 

-2E-04(-1,11) 

 

-5,110 0,00 24,87 

Original data-t  0,309 0,706 1,015 -0,080 

 

-5E-05(-0,41) 

 

-5,218 0,07 22,68 

Outlier corrected data-t 0,298 0,716 1,010 -0,080 

 

-0,002(-0,15) 
 

-5,226 0,02 18,75 

Platinum 
    

 
     

Original data-normal 0,069 0,944 0,997 -0,007 

 

-0,03(-4,40)*** 

 

-5,921 0,02 2,85 

Outlier corrected data-normal na na na na 

 

na 
 

na na na 

Original data-t  0,015 0,988 0,999 -0,080 

 

-0,09(-2,53)** 

 

-5,9907 1,50 2,95 

Outlier corrected data-t na na na na 

 

na 
 

na na na 

Silver 
    

 
     

Original data-normal 0,087 0,929 0,998 -0,009 

 

-0,03(-6,70)*** 

 

-5,236 0,06 6,38 

Outlier corrected data-normal 0,046 0,967 0,998 -0,002 

 

-0,03 (-5,97)*** 

 

-5,295 0,62 4,93 

Original data-t  0,047 0,970 0,999 -0,002 

 

-0,03 (-3,35)*** 

 

-5,329 0,00 9,25 

Outlier corrected data-t 0,047 0,969 0,999 -0,003   -0,03 (-3,27)***   -5,333 0,35 9,38 

Notes:   ***, ** and * denote statistical significance at 1%, 5% and 10% levels, 

       L-M denotes log moment condition, 

          AIC denotes Akaike Information Criterion, 

       S-M denotes the second moment condition. 
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Table 5         
 The effects of oil price shocks on volatility of metal markets               
 

 
 

ARMA-GJR(2,2)-original data 

 

Asymmetric effects 

  

ARMA-GJR(2,2)-outlier 

corrected data 

 
 

  

 

Wald test-Fstat 

   

  

 Aluminum 

 

-6,E-06 -1,E-04 

 

5,47** 

   

1,E-04 -1,E-05 

 
 

 

(-0,08) (-3,49)* 

 
 

   

1,44 -0,17 

 Copper 

 

2,E-04 -3,E-04 

 

0,07 

   

1,E-04 -8,E-05 

 
 

 

( 2,19)** (-3,91)* 

 
 

   

( 1,73)* (-0,96) 

 Lead 

 

-1,E-04 -5,E-05 

 

4,18** 

   

-1,E-04 -1,E-04 

 
 

 

(-3,68)*** (-1,68)* 

 
 

   

(-3,61)*** (1,87)* 

 Nickel 

 

4,E-04 -5,E-04 

 

0,17 

   

2,E-05 -4,E-05 

 
 

 

 (2,44)** (-3,36)*** 

 
 

   

(0,39) (-0,83) 

 Tin  

 

-2,E-05 1,E-05 

 

28,24*** 

   

-2,E-05 1,E-05 

 
 

 

(-2,52) (1,71)* 

 
 

   

(-2,52) (1,71)* 

 Zinc 

 

-6,E-05 1,E-04 

 

740,46*** 

   

4,E-06 1,E-05 

 
 

 

(-1,22)  (2,73)*** 

 
 

   

(-0,33) (1,80)*** 

 Gold 

 

6,E-06 1,E-05 

 

135,92*** 

   

4,E-06 1,E-05 

 
 

 

(0,75) (1,83)* 

 
 

   

(1,00) (2,57)** 

 Palladium 

 

4,E-04 -0,002 

 

61,73*** 

   

8,E-04 -0,001 

 
 

 

 (2,99)*** (8,61)*** 

 
 

   

5,60*** -7,29*** 

 Platinum 

 

-1,E-04 -1,E-04 

 

2,77 

   

-1,E-04 -1,E-04 

 
 

 

(-4,70)*** (3,78)*** 

 
 

   

(-4,70)*** (3,78)*** 

 Silver 

 

-8,E-05 1,E-09 

 

101,61*** 

   

-1,E-04 2,E-06 

     (-8,59)*** (0,0005)    
   

(-3,37)*** (0,084) 

 Notes: ***, ** and * denote statistical significance at 1%, 5% and 10% levels. The values in parentheses are t-statistics. 






