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Price-Based Unit Commitment Electricity Storage
Arbitrage with Piecewise Linear Price-Effects*

Tom Brijsa,b, Frederik Getha, Sauleh Siddiquib,d,e,

Benjamin F. Hobbsc, Ronnie Belmansa

March 24, 2016

Electricity storage plants can be used for many applications, with one of
the most studied applications being arbitrage in the day-ahead market.
Although the arbitrage value is related to the presence of price spreads,
it also depends on the effect of (dis)charge actions on prices, as arbitrage
generally reduces price spreads by increasing off-peak prices when charg-
ing and decreasing peak prices when discharging. As such, there are
two important assumptions in price-based unit commitment arbitrage
models: first, whether the storage operator is assumed to have perfect
knowledge of future prices, and second, whether they recognize that their
(dis)charge actions may affect those prices, i.e., the price-taking or price-
making assumption. This article proposes a comprehensive formulation
of the arbitrage problem including detailed operating constraints, and fo-
cuses on relaxing the price-taking assumption by considering real-world
price-effect data, published in the form of hourly piecewise linear rela-
tionships between quantity and price based on submitted bids, which are
referred to as “market resilience functions”. These can be used to (1)
evaluate the price-taking and price-making assumptions based on sim-
plified price-effects, and to (2) provide an upper limit to the arbitrage
value under the assumption that prices and price-effects are known at
the decision stage. In addition, a stepwise approximation to the piece-
wise linear functions is developed to reduce computation time, i.e., from
mixed-integer nonconvex quadratic programming to mixed-integer linear
programming, while providing lower- and upper bound approximations
to the arbitrage value. The developed models are applied to the Belgian
day-ahead market for 2014, and show that the price-effect has a strong
impact on the operation and arbitrage value of large-scale storage.

Keywords: electricity storage, arbitrage, day-ahead market, price-effect, piecewise
linear market resilience functions, price-based unit commitment.

* Submitted to the Journal of Energy Storage.

a Department of Electrical Engineering, University of Leuven (KU Leuven), Heverlee,
Belgium, and EnergyVille Research Institute, Genk, Belgium.

b Department of Civil Engineering, The Johns Hopkins University, Baltimore, MD, USA.

c Department of Geography and Environmental Engineering and the Environment, En-
ergy, Sustainability & Health Institute, The Johns Hopkins University, Baltimore, MD,
USA.

1



d Department of Applied Mathematics and Statistics, The Johns Hopkins University,
Baltimore, MD, USA.

e German Institute for Economic Research (DIW Berlin), Berlin, Germany.

E-mail: tom.brijs@esat.kuleuven.be, frederik.geth@esat.kuleuven.be, siddiqui@jhu.edu,

bhobbs@jhu.edu, ronnie.belmans@esat.kuleuven.be.

2



1 Introduction

1.1 Motivation

The storage of electricity represents a combination of three functions [1]: consuming
electricity, accumulating the energy in some form, and generating electricity. Only
part of the consumed electric energy is converted to energy stored in the buffer during
charging because of a charge efficiency 0 < ηc ≤ 1, while only part of the stored
energy is converted back into electric energy during discharging because of a discharge
efficiency 0 < ηd ≤ 1. The buffered energy may also increase and decrease independent
of the grid through exogenous power flows p+t ≥ 0 (addition) and p-t ≥ 0 (removal),
e.g., water inflow and evaporation in the upper reservoir for pumped-hydro storage
(PHS) plants. The general power balance of storage plants that consume electric
power pct ≥ 0 and generate electric power pdt ≥ 0, and store it in an energy buffer
et ≥ 0, is then:

det
dt︸︷︷︸

4 Energy buffer

= pct · ηc︸ ︷︷ ︸
Addition

− pdt /η
d︸ ︷︷ ︸

Removal︸ ︷︷ ︸
Electric origin

+ p+t︸︷︷︸
Addition

− p-t︸︷︷︸
Removal︸ ︷︷ ︸

Exogenous origin

. (1)

In recent years there has been a renewed interest in electricity storage due to the
liberalization of electricity markets and the integration of variable renewable energy
sources (RES). Their expected and unexpected variability results in an increased need
for flexibility, which is the ability to provide power adjustments to deal with short-term
variations [2,3]. Electricity storage plants can provide this flexibility by charging and
discharging through interaction with an energy buffer. However, flexibility can also be
provided by flexible generation and consumption, but also by the electric grid through
which flexible capacity in neighboring regions can be accessed (Fig. 1). Market par-
ticipants are only incentivized to integrate new flexible resources when the investment
is profitable. Although electricity storage plants can be used for many applications
(e.g., arbitrage, portfolio optimization, frequency control, voltage support, black-start
service [4, 5]) and maximizing the value of storage requires the aggregation of differ-
ent applications, one of the most studied and well-known applications is arbitraging
day-ahead (DA) market electricity prices [6, 7]. This article focuses on the arbitrage
application as the sole revenue source.

1.2 Scope and approach

Classic definitions of arbitrage denote making a riskless profit by simultaneously buying
and selling a similar commodity with net zero investment. However, in a broader
context any activity in which a player buys a commodity at a relatively low price and
sells a similar commodity, or commodity in which the former can be converted, at a
relatively high price for profit can be referred to as arbitrage. This broader definition
allows to include initial investments, does not require simultaneity of the purchase
and sale, and furthermore does not require a single commodity either (i.e., so-called
cross-commodity arbitrage) [8]. In the context of this article, arbitrage is defined as
the capturing of price spreads over time in a single market, being the DA market, by
means of electricity storage plants. Although the arbitrage value is directly related to
the presence of these price spreads, it also depends on the price-effect of (dis)charge
actions, as additional storage capacity generally reduces price spreads by increasing
off-peak prices when charging as well as decreasing on-peak prices when discharging.

In contrast to cost-based unit commitment (UC), which refers to the scheduling
of generation capacity to meet system load at minimum cost, the scheduling of units
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Figure 1: Overview of power system flexibility sources.

with the objective to maximize profit based on price signals is referred to as price-
based unit commitment (PBUC) [9]. The arbitrage application is widely discussed
in the literature, both from a system (e.g., [10–15]) and from an individual storage
plant’s PBUC perspective, the latter being the focus of this article. Generally, there
are two important assumptions in PBUC arbitrage models: the first is related to the
storage operator’s assumed knowledge of future prices, i.e., the (im)perfect price fore-
sight assumption, while the second is related to whether they recognize that their
(dis)charge actions may affect those prices, i.e., the price-taking or price-making as-
sumption [16,17]. A large share of the existing PBUC work assumes perfect foresight
of future prices and the storage plant to be small enough to be a price-taker in the
considered market (e.g., [18–23]). Although quite some studies discuss a relaxation
of the perfect price foresight assumption (e.g., [16, 24–30]), less attention has been
given to the relaxation of the price-taking assumption in PBUC arbitrage models.
However, either large-scale or multiple small-scale storage plants that are operated co-
operatively could benefit from considering the price-effect of (dis)charge actions. Even
when deciding on the (dis)charge schedule as a price-taker, considering the price-effect
in the ex-post calculation of the realized profit is important for owners of large storage
capacities as arbitrage may reduce effective price spreads.

First, [16, 31] introduce a method to account for this price-effect based on an ob-
served linear relationship between the system load and price. Second, [32] introduces
a constant so-called market resilience factor to represent the price-effect of (dis)charge
actions. Third, [33] and [34] propose methodologies to relax the price-taking assump-
tion by taking into account the residual inverse demand function. Although these
methodologies provide insight in the arbitrage value and operation of large storage
capacities, due to a lack of market data or a different research scope they are based
on rather conceptual and simplified price-effects and therefore result in (1) a subopti-
mal (dis)charge schedule and accompanying arbitrage value with respect to the actual
price-effect, and (2) an ex-post gap between the expected and realized profit.

Therefore, this article focuses on relaxing the price-taking assumption by including
real-world market resilience data, which illustrates the impact on the DA price of a
change in offer or demand volume for each hour, published by several European power
exchanges.1 This data represents the most detailed available price-effect data, as it
is obtained by the power exchange running the market-clearing algorithm again for
alternative scenarios, and thus takes into account (1) the hourly aggregated supply

1In contrast to the considered market resilience data, the price elasticity of demand refers
to the relative change in demand as a result from a relative change in the price, and is typically
negative as the demand for most commodities decreases as the price increases [35].
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and demand curves, (2) interaction with neigboring markets through market-coupling,
and (3) the presence of complex orders. This article focuses on the arbitrage value of
additional storage capacity in the DA market, but does not aim to provide bidding
strategies for storage plants (e.g., [36]). Instead, the storage operator is assumed to
self-schedule its (dis)charge actions against a set of DA prices and market resilience
functions that reflect how price reacts to changes in quantity.

1.3 Contributions

The main contributions of this article with respect to previous research on electric-
ity storage arbitrage is a comprehensive formulation of the electricity storage arbi-
trage problem including detailed operating constraints, and the presentation of a new
methodology to account for the price-effect of (dis)charge actions. Since the latter is
based on the implementation of real-world market resilience functions in the PBUC
arbitrage model, it includes the most detailed available price-effect data. As such,
this article presents a measure to (1) evaluate the performance of the price-taking
assumption and price-making assumptions based on more conceptual and simplified
price-effects, and to (2) provide an upper limit to the arbitrage value, given current
market conditions, if both the hourly prices and price-effects are assumed to be known
at the decision stage. The former is done for a storage operator that assumes to be a
price-taker in the market by using the price-effect data to ex-post calculate the real-
ized profit, as opposed to the expected profit based on prices that would occur in the
absence of (dis)charge actions. In addition, as the piecewise linear nature of the mar-
ket resilience data poses computational challenges, a stepwise approximation of the
piecewise linear functions is proposed which reduces computational effort significantly
while providing lower- and upper bound approximations to the piecewise linear results.
The analyses are executed for the Belgian DA market, and show that the price-effect
has a strong impact on the operation and arbitrage value of large-scale storage.

This article is structured as follows. Section 2 discusses the price-effect in PBUC
formulations of the storage arbitrage problem. Next, Section 3 provides a comprehen-
sive formulation of the arbitrage problem based on a price-taking assumption, while
Section 4 extends this formulation by including the price-effect through piecewise lin-
ear and stepwise approximated market resilience functions. Section 5 discusses the
results. Finally, Section 6 provides conclusions.

2 The price-effect of storage actions

2.1 Literature review

Although a relaxation of the price-taking assumption (Fig. 2a) has been studied ex-
tensively in other frameworks (e.g., equilibrium models [37–39]), it has only been
studied to a limited extent in PBUC electricity storage arbitrage models. First, ref-
erences [16, 31] assume a monthly linear relationship between the price and system
load for the DA market in the United States’ PJM region, obtained by using ordinary
least squares regression. The slope associated with the OLS function is assumed to be
non-decreasing and to capture the price-effect of (dis)charge actions (Fig. 2b). Sec-
ond, [32] considers the Belgian DA market and defines a constant market resilience
factor as price-effect for all (dis)charge volumes for the entire year (Fig. 2b). This
factor is based on the DA market resilience data discussed in Section 1, but does not
consider its time-varying and piecewise linear nature. Third, two approaches include
the price-effect by considering residual inverse demand curves. In [33] the price-effect
is studied for the DA Iberian Electricity Market MIBEL, and is defined by a residual
inverse demand curve that depends on the slopes of the demand and supply curves,
and which is modeled through an approximated sigmoid function. Contrarily, [34]
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Figure 2: Overview of the price-taking vs. different price-making assumptions. The market
reference point (MRP) refers to the situation without participation of the additional storage
capacity, and is located at the origin.

studies the price-effect in the context of the Greek DA market. The demand curve
is assumed to be perfectly inelastic, while the mirrored image of the stepwise supply
curve from other generation is assumed to represent the residual inverse demand curve.
The resulting price is determined by the intersection of the stepwise supply curve and
the vertical demand curve, with the latter’s position depending on the storage plant’s
(dis)charge actions (Fig. 2c).

When considering generation capacity, a similar approach to [34] is applied in [40,
41] for a conventional hydro power plant. In addition, [42] discusses a methodology
for generation companies to provide hourly offers by considering a series of possible
residual inverse demand curves. These are selected from recent days similar to the
considered day in terms of hourly demand, and are thus based on historical offers
submitted by competing players.

Due to either a lack of available market data or the focus on a different research
scope, the existing approaches include simplified representations of the price-effect.
This may result in suboptimal (dis)charge schedules and resulting arbitrage value when
evaluating against the actual price-effect, and incorrect estimates of the realized profit.
When calculating the change in price, inaccuracies may originate from not considering
(1) the time-varying aggregated supply and demand curves, (2) the acceptance of new
block orders and rejection of currently cleared ones, and (3) changes in cross-border
flows due to the coupling of geographically adjacent markets.

2.2 Hourly piecewise linear market resilience functions

The degree to which additional demand and supply would affect the Belgian DA price
is captured by the market resilience data, published in the form of hourly piecewise
linear functions (Fig. 2d) by the Belpex power exchange [43].2 As stated before, this
data is obtained by rerunning the market-clearing algorithm for six different scenarios

2Such market resilience data is also published by the APX [44] and EPEX SPOT [45] power
exchanges for other European countries.
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(i.e., 50 MWh, 250 MWh, 500 MWh additional offer or demand volume at any price),
and takes into account the aggregated supply and demand curves, interaction with
neighboring markets through market-coupling, and presence of complex orders (e.g.,
block orders). Contrarily, only using the published aggregated offer curves from within
a single market omits changes in cross-border flows due to market-coupling as well as
the change in clearing of complex orders for the following reasons:

• The Belpex DA market is coupled with other European power exchanges. The
market-clearing algorithm combines the supply and demand bid information of
the different exchanges to optimize the utilization of the available interconnec-
tion capacity. In case of a price difference between geographical markets, electric
energy is exchanged until the price difference is eliminated or all available in-
terconnection capacity is used. Consequently the effect of a local increase in
offer or demand may not only affect the local market price but also the price
in the coupled markets.3 Since the price-effect in one market is a function of
the market resilience of the local market as well as of the coupled markets, and
the available interconnection capacity, merely considering the local power ex-
change’s aggregated curves results in an overestimation of the total price-effect,
including the impact of changed imports and exports.

• The standardized orders in DA markets are limit orders, i.e., hourly offered or
requested quantities with a certain price limit. Besides these hourly orders, most
exchanges also allow other, more complex, orders [46]. The most common one is
a block order, which consists of quantities that are offered or requested in mul-
tiple hours at an average price limit and which has to be accepted completely or
not at all. Due to their specific nature, such accepted sale and buy block orders
are introduced in the aggregated supply and demand curve at the minimum and
maximum price, respectively, thereby ignoring their price-sensitive character. If
the price-effect would be simulated by simply shifting aggregated supply and
demand curves, this would not capture the extent to which initially rejected
block orders may be accepted and accepted block orders may now be rejected.

Finally, it is important to note that PBUC formulations of the arbitrage problem
assume that other players will not change their behavior with participation of the
additional storage capacity. PBUC models considering a price that is determined
exogenously, i.e., independent of the considered storage plant’s (dis)charge actions,
assume a price-taking assumption and are useful to represent perfect competition
conditions. In contrast, PBUC models in which a storage operator maximizes profit
while considering its price-effect given the decisions of the competing players represent
so-called leader-in-price models [47, 48]. In more complex games other players might
react and change their behavior in response to entry of additional storage capacity.

3 Day-ahead electricity storage arbitrage

The continuous time dimension, represented by time index t, is discretized, with h
representing the discrete index, while the model formulations assume a fixed time step
length T h of one hour (Fig. 3). The storage operator uses electricity storage resources
to maximize the arbitrage value on a daily basis over an optimization horizon of 48
hourly time steps (∀h ∈ H). In order to ensure that energy stored at the end of each
24 hour optimization period has so-called carryover value [16], each optimization is
done with a 48 hour horizon to determine the dispatch of each 24 hour period. The

3Since a demand increase in a market would result in an increased local price, this leads
to an increased import (if interconnection capacity is available) which in turn increases the
price in the exporting market and (partially) offsets the price increase in the local market. A
similar reasoning holds for a supply increase.
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Figure 3: Illustration of the time dimension discretization and rolling optimization horizon.

storage operator is thus assumed to decide upon the charge power pch and discharge pdh
power based on short-term DA price differences throughout the day, and is assumed
to have a perfect knowledge of these prices for the upcoming optimization period.4

An electricity storage plant can typically be characterized by the minimum and
maximum charge power rating P c,min and P c,max, discharge power rating P d,min and
P d,max, and energy storage capacity Emin and Emax, the charge and discharge effi-
ciency ηc and ηd, and the down- and upward ramp rate in charge mode Rc,do and
Rc,up and in discharge mode Rd,do and Rd,up. In addition, storage plants have a lim-
ited lifetime, which is either determined by the calendar life Ncal in case of infrequent
use or by the cycle-life Ncyc in case of frequent use [49].5 The calendar life is the
maximum time that the storage plant can be used, independent from the use, while
the cycle-life takes into account the deterioration of the energy storage subsystem due
to use. The latter is particularly important when considering a battery energy storage
system (BESS) due to the partial nonreversibility of the chemical reactions. Although
there is no direct constraint on the number of cycles during each optimization period,
due to the limited cycle-life it is implied that the targeted cycling rate Ncyc/Ncal is
constant throughout the lifetime. If the cycling rate ncyc (9) is lower than or equal
to the targeted cycling rate, the depreciation cost resulting from cycling ccyc is zero,
otherwise ccyc > 0 (Fig. 4). This formulation to include the limited cycle-life and
resulting depreciation cost is derived from [49]. Contrary to BESS, for PHS plants
the cycle-life is sufficiently large such that ccyc is negligible. Furthermore, this article
assumes changes in the buffered energy due to exogenous power flows to be negligible
in the short-term.6

Since the storage operator is assumed to be a price-taker in this initial problem
formulation, the (dis)charge schedule is optimized not taking into account the impact
on the price without its participation λda,o

h . The resulting problem is a mixed-integer
linear program (MILP) which is solved in GAMS using the CPLEX solver [50]:

4The rolling optimization horizon restricts the perfect foresight to the next 48 hours.
5The cycle-life is usually defined as the number of cycles before the remaining usable

capacity falls below 80% of the initial storage capacity due to wear.
6Table 1 provides an overview of the symbols for sets, decision variables, and parameters.

While formulas are provided assuming SI units (or other base units), input data and results
are provided in commonly used units in electrical engineering, e.g., MWh instead of J.
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Figure 4: Illustration of the opportunity cost for wearing out the energy storage subsystem.

πop = max
bh,ccyc,eh,

ncyc,pch,pdh

∑
h∈H

λda,o
h ·

[
T h · (pdh − pch)

]
/(|H| · T h)− ccyc, (2)

s.t. eh = eh-1 + T h · (pch · ηc − pdh/η
d), ∀h ∈ H, (3)

−Rc,do · P c,max ≤ (pch − pch-1)/T
h ≤ Rc,up · P c,max, ∀h ∈ H, (4)

−Rd,do · P d,max ≤ (pdh − pdh-1)/T
h ≤ Rd,up · P d,max, ∀h ∈ H, (5)

0 ≤ P c,min · bh ≤ pch ≤ P c,max · bh, ∀h ∈ H, (6)

0 ≤ P d,min · (1− bh) ≤ pdh ≤ P d,max · (1− bh), ∀h ∈ H, (7)

0 ≤ Emin ≤ eh ≤ Emax, ∀h ∈ H, (8)

ncyc = ηc ·
∑
h∈H

pch/E
max, (9)

ccyc ≥ (Cfix,e · Emax) · (ncyc/Ncyc − 1/Ncal), (10)

ccyc, eh,n
cyc, pch, p

d
h ∈ R+ , bh ∈ {0, 1} , H ⊂ N, ∀h ∈ H. (11)

The objective value in (2) expresses the operating profit πop, which does not con-
sider the electricity storage plant’s investment cost. Constraint (3) expresses the in-
tertemporal character of electricity storage, while (4) and (5) limit the change in
(dis)charge power by the storage plant’s ramp rates. Constraints (6) - (8) represent
capacity bounds on the (dis)charge power and storage capacity, with binary variable
bh ensuring that the storage plant is operated with a strict separation of the electric-
ity consumption and generation phase, i.e., pch · pdh = 0 ∀h. If however simultaneous
charging and discharging is technically feasible (e.g., in certain pumped-hydro storage
(PHS) plants), it is profitable to ignore the nonsimultaneity constraint during negative
price periods.7 The nonnegativity of ccyc and (9) - (10) represent the convex relax-
ation8 of the max operator illustrated in Fig. 4, with Cfix,e the investment cost of the
energy-component of the storage plant. The intertemporal equation (3) indicates that
if the storage plant consumes pch electric power during T h then the stored energy level
eh increases by T h ·pch ·ηc, while if the storage plant generates pdh electric power during
T h then the stored energy level eh decreases by T h · pdh/ηd. When h = 1 in (3) - (5),
index h-1 indicates h = 24 of the previous daily optimization period, except for the

7During negative price periods the storage operator is paid to consume electric energy, and
will therefore attempt to fill the storage buffer as quickly as possible. When the upper limit
of the storage buffer is reached during these periods, it is profitable to charge and discharge
simultaneously, thereby being remunerated for the incurred efficiency losses.

8As ccyc is minized in (2), the convex relaxation leads to a result satisfying the original
max operator.
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Table 1: Table of symbols.

Type Symbol Quantity Unit (SI) Typical unit

Sets h ∈ H Time steps - -
k ∈ K Piecewise breakpoints - -
t ∈ T Time stamps - -
u ∈ U Stepwise steps - -

Variables bh Binary variable - -
ccyc Depreciation cost e/s e/year
eh, et Stored energy J MWh
ncyc Cycling rate s-1 year-1

pch, p
c
h,u, p

c
t Charge power W MW

pdh, p
d
h,u, p

d
t Discharge power W MW

p+t , p
-
t Exogenous power flows W MW

rh,k Binary variable - -
sh,u Binary variable - -
δh,k SOS2 variable - -
λda
h Day-ahead price e/J e/MWh

πop Operating profit e/s e/year

Parameters Cfix,e Energy-component investment cost e/J e/kWh
Emax,Emin Storage capacity bounds J MWh

N cal Calendar life s year
N cyc Cycle-life - -
N sw

h,k Number of steps - -

P c,max,P c,min Charge power rating bounds W MW
P d,max,P d,min Discharge power rating bounds W MW
Rc,do,Rd,do Downward ramp rate %/s %/min
Rc,up,Rd,up Upward ramp rate %/s %/min

Rdiv
h,k Remainder - -

Star Target step height e/J e/MWh

Supd
h,k Updated step height e/J e/MWh

T h Time step length s h

Xpw
k ,Xsw,lo

h,u ,Xsw,up
h,u (Dis)charge volume J MWh

Y pw
h,k ,Y

sw
h,u Day-ahead price e/J e/MWh

ηc, ηd (Dis)charge efficiency % %

λda,o
h Initial day-ahead price e/J e/MWh

10



first optimization period where index h-1 at h = 1 refers to starting values for the
(dis)charge power and stored energy.

Given the (dis)charge schedule decided upon by the storage operator that assumes
to be a price-taker in the market, the resulting DA prices after participation can be
calculated ex-post by interpolating the piecewise linear market resilience functions.
These prices are used to calculate the realized πop as opposed to the expected πop

following λda,o
h .

4 Relaxing the price-taking assumption

4.1 Including time-varying piecewise-linear market resilience func-
tions

Detailed price resilience data is provided by several European power exchanges in the
form of time-varying piecewise linear functions (Fig. 5), which may be nonconvex and
include both increasing and counterintuitive decreasing linear segments. Segments are
considered to be intuitive if the price decreases with additional supply and increases
with additional demand, while counterintuitive segments are the result of differences in
accepted block orders: additional supply can cause supply (demand) block orders that
are accepted (rejected) in the reference case to become rejected (accepted), while addi-
tional demand can cause demand (supply) block orders that are accepted (rejected) in
the reference case to become rejected (accepted). For the Belgian DA market in 2014,
70.5% of the segments include intuitive slopes, 19.5% include counterintuitive slopes,
and 10% of the segments are horizontal, i.e., no change in price due to a change in
quantity.

To include these piecewise linear functions in the arbitrage problem formulation,
a set k ∈ K of piecewise linear function breakpoints and a variable δh,k, which can be
considered as a Special Ordered Set of type two (SOS2) variable [51], are introduced.
For the Belgian DA market, the piecewise linear functions have seven fixed breakpoints
(i.e., |K| = 7) along the x-axis (i.e., (dis)charge volumes) indicated by Xpw

k , while the
corresponding time-dependent y-axis values (i.e., prices) are indicated by Y pw

h,k . The

MRP lies at breakpoint k = 4, with Xpw
4 = 0 and Y pw

h,4 = λda,o
h . For each breakpoint

k there is a nonnegative δh,k, which is bounded by 1 and which may be greater than
0 for at most two breakpoints. If there are two positive δh,k, they must correspond
to adjacent breakpoints and take on values between 0 and 1, depending the weighted
share of the corresponding breakpoints’ x-axis value and y-axis value in the calculation
of the chosen (dis)charge volume and resulting DA price:

δh,k =
|Xpw

k+1 − T h · (pdh − pch)|
|Xpw

k −Xpw
k+1|

=
|Y pw

h,k+1 − λda
h |

|Y pw
h,k − Y pw

h,k+1|
, (12)

δh,k+1 =
|Xpw

k − T h · (pdh − pch)|
|Xpw

k −Xpw
k+1|

=
|Y pw

h,k − λda
h |

|Y pw
h,k − Y pw

h,k+1|
. (13)

Alternatively, one δh,k might take on the value 1, which means that the storage op-
erator decides to be at one of the breakpoints. The adjacency condition is enforced by
incorporating additional binary variables rh,k, corresponding to the segments between
adjacent breakpoints.

The DA arbitrage objective function is now (14), which is still subject to (3) - (11),
and is now additionally subject to (15) - (20). The resulting problem is a mixed-integer
nonconvex quadratic program (nonconvex MIQP) which is solved in GAMS using the
SBB solver [52]:

11



X
pw
1 X

pw
2 X

pw
3 X

pw
5 X

pw
6 X

pw
7 pch · Th

[MWh]

pdh · Th

[MWh]

Y
pw
h,1

Y
pw
h,2

Y
pw
h,3

(0,λ
da,o
h

)

Y
pw
h,5

Y
pw
h,6

Y
pw
h,7

λda
h

[e/MWh]

rh,1 rh,2 rh,3 rh,4 rh,5 rh,6

0 1 0 0 0 0

Th · (pdh − pch)

λda
h

Figure 5: Illustration of piecewise linear market resilience functions.

πop = max
bh,ccyc,eh,

ncyc,pch,pdh,

rh,k,λ
da
h ,δh,k

∑
h∈H

λda
h ·

[
T h · (pdh − pch)

]
/(|H| · T h)− ccyc, (14)

s.t. (3) - (11),

T h · (pdh − pch) =
∑
k∈K

δh,k ·Xpw
k , ∀h ∈ H, (15)

λda
h =

∑
k∈K

δh,k · Y pw
h,k , ∀h ∈ H, (16)∑

k∈K

δh,k = 1, ∀h ∈ H, (17)∑
k∈K\{|K|}

rh,k = 1, ∀h ∈ H, (18)

δh,k ≤ rh,k, ∀h ∈ H, k = 1,

δh,k ≤ rh,k-1 + rh,k, ∀h ∈ H, k ∈ K\{1, |K|},
δh,k ≤ rh,k-1, ∀h ∈ H, k = |K|, (19)

δh,k ∈ R+ , λda
h ∈ R , rh,k ∈ {0, 1} , K ⊂ N, ∀h ∈ H, k ∈ K. (20)

Since solving this nonconvex MIQP requires significant computation time, a step-
wise approximation of the piecewise linear functions is discussed in Section 4.2. This
approximation converts the problem into an easier to solve MILP, and furthermore
allows to determine lower- and upper bound approximations to the piecewise linear
outcome.

4.2 Stepwise approximation of time-varying piecewise linear func-
tions

This method approximates each linear segment of the piecewise linear market resilience
functions by a stepwise function with identical step heights. A target step height Star

is set for all linear segments, but is updated to Supd
h,k in (22) by (23) for each time

12



slot and linear segment individually if the divison’s remainder 0 ≤ Rdiv
h,k ≤ 1 in (21) is

greater than zero:

|Y pw
h,k − Y pw

h,k+1|
Star

= N sw
h,k +Rdiv

h,k, ∀h ∈ H, k ∈ K\{|K|}, (21)

N sw
h,k = N sw

h,k + 1 if Rdiv
h,k > 0, ∀h ∈ H, k ∈ K\{|K|}, (22)

Supd
h,k =

|Y pw
h,k − Y pw

h,k+1|
N sw

h,k

, ∀h ∈ H, k ∈ K\{|K|}, (23)

with N sw
h,k ∈ N0 the number of steps to approximate the linear segment between

breakpoints k and k+1. The resulting time-varying stepwise function’s total number
of steps

∑
k∈K\{|K|} N

sw
h,k, determined by Star, relates to the preferred trade-off between

computation time and approximation error.9

For each time slot, three stepwise functions are constructed. Two of them allow
to calculate a lower- and upper bound to πop following the piecewise linear market
resilience functions. The lower bound is calculated by considering a larger price-effect
compared to the piecewise linear price-effect, thereby underestimating πop, while the
upper bound is calculated by considering a smaller price-effect, thereby overestimating
πop. The former is based on a stepwise function that approximates the piecewise linear
function such that λda

h is identical or less favorable for all (dis)charge actions, while
the latter’s stepwise function approximates the piecewise linear function such that
λda
h is identical or more favorable (Fig. 6).10 Although this method provides lower-

and upper bounds when considering a single optimization period, this might not be
true for each individual optimization in a rolling horizon framework if the starting
value for the stored energy level, carried over from the previous optimization period,
differs. Therefore, they should be interpreted as lower- and upper bound approxima-
tions rather than true bounds when consecutively considering multiple optimization
problems. The third stepwise function is centered along the piecewise linear function
(Fig. 6), but does not provide information on whether the obtained result is an over-
or underestimation.

The objective function is (24), with u ∈ U the set of steps of the stepwise mar-
ket resilience function, and pch,u,p

d
h,u,Y

sw
h,u the charge power, discharge power, and DA

price that correspond to step u, respectively. The objective function is still subject
to (3) - (11) and (20), and now additionally subject to (25) - (30), with Xsw,lo

h,u and
Xsw,up

h,u being the lower and upper bound of the (dis)charge volume corresponding to
step u, respectively. The binary variables sh,u correspond to the steps of the stepwise
function, and can be considered as Special Ordered Set of type one (SOS1) vari-
ables [51]. The resulting problem is formulated as a MILP which is solved in GAMS
using the CPLEX solver:

9Alternatively, an iterative approach could be applied in which first a rather large step size
is used, after which it is successively refined in the neighborhood of the most recent solution.

10Less favorable indicates higher prices when charging and lower prices when discharging,
while more favorable indicates lower prices when charging and higher prices when discharging.
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Figure 6: Lower bound, upper bound, and centered stepwise approximation of the piecewise
linear market resilience functions.

πop = max
bh,ccyc,eh,

ncyc,pch,pch,u,

pdh,pdh,u,sh,u

∑
h∈H

∑
u∈U

[
Y sw
h,u ·

[
T h · (pdh,u − pch,u)

]]
/(|H| · T h)− ccyc, (24)

s.t. (3) - (11), (20),∑
u∈U

pch,u = pch, ∀h ∈ H, (25)∑
u∈U

pdh,u = pdh, ∀h ∈ H, (26)

sh,u ·Xsw,lo
h,u ≤ T h · (pdh,u − pch,u) ≤ sh,u ·Xsw,up

h,u , ∀h ∈ H,u ∈ U, (27)∑
u∈U

sh,u = 1, ∀h ∈ H, (28)

pch,u, p
d
h,u ∈ R+ , sh,u ∈ {0, 1} , ∀h ∈ H,u ∈ U, (29)

U = {1, 2, ...,
∑

k∈K\{|K|}

N sw
h,k}, ∀h ∈ H. (30)

5 Results

Unless specified otherwise, the used storage plant characteristics, along with other
input data, are displayed in Table 2, and serve to model typical PHS plants. In
addition, Fig. 7 provides information on the average market resilience curve slope up
to 500MWh additional supply and 500MWh additional demand.

5.1 Computational performance and accuracy of the stepwise ap-
proximation

Table 3 validates the use of the stepwise approximations for the piecewise linear market
resilience functions, in order to move from a nonconvex MIQP to a MILP. Both the
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Table 2: Table of input parameters.

Cfix,e 50e/MWh N cyc 100 000 P d,min 0MW Rd,up 50%/min
Emax 2000MWh P c,max 500MW Rc,do 50%/min ηc 86.6%
Emin 0MWh P c,min 0MW Rc,up 50%/min ηd 86.6%
N cal 50 years P d,max 500MW Rd,do 50%/min

|H| 48 |K| 7 Star 1.0e/MWh T h 1 h
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Figure 7: Average market resilience curve slope [e/MWh2] up to 500MWh additional demand
(upward slope from the MRP) and up to 500MWh additional supply (downward slope from
the MRP), Belgium, 2014. Positive values indicate intuitive price-effects, while negative values
indicate counterintuitive price-effects.

operating profit πop and computation time11 following the stepwise approximation are
expressed in relative terms compared to the piecewise linear values (i.e., the values
for the MIQP represent 100%). This is done for twelve separate optimization periods
of 12 time steps each, as for longer periods (e.g., 24 time steps) multiple hours of
computation time did not suffice to solve the nonconvex MIQP to optimality.

Table 3 shows that πop following the stepwise approximation effectively provides
tight lower- and upper bounds to πop following the piecewise linear functions, while
only requiring a fraction of the computation time. In addition, these bounds become
more accurate as Star is set to a smaller value while only incurring a slight increase in
computation time, with the Star = 0.1e/MWh bounds to πop located in between the
Star = 1.0e/MWh bounds. Although the centered stepwise approximation provides
accurate estimations of πop as well, these might be both under- or overestimations.

5.2 Operating profit as a function of storage size

Fig. 8 shows πop for 2014 for increasing storage power rating sizes assuming a fixed
discharge energy-to-power ratio Emax/P d,max of 4 h. Fig. 8a displays πop in absolute
values, while Fig. 8b illustrates πop relative to the expected operating profit when
assuming to be a price-taker in the market. When the storage operator assumes to be
a price-taker and thus not considers the price-effect when deciding on the (dis)charge
schedule, the expected πop increases linearly with the storage size, as price spreads
remain constant. However, when ex-post calculating the resulting DA price using the
market resilience data, the realized πop given the (dis)charge schedule decided upon by
the price-taking storage operator is lower, with the gap between expected and realized

11The computation time is defined as the time used by the solver, given by the GAMS
parameter “resusd”, while all models are solved to optimality by setting the GAMS option
“optcr” to zero.
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Table 3: Validation of the stepwise approximation’s lower- and upper bound to πop following
piecewise linear price-effects, as well as of the centered stepwise approximation, Belgium, 2014.
The MILP values are shown relative to the MIQP values, which represent 100%.

Optimization Star = 0.1e/MWh Star = 1.0e/MWh
Optimization Lower bound Upper bound Centered Lower bound Upper bound Centered

period πop Time πop Time πop Time πop Time πop Time πop Time
Hour Date [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

1 - 12 Jan 1 99.92 1.69 100.60 1.82 100.26 1.67 99.92 0.15 102.46 0.17 101.18 0.19
1 - 12 Feb 1 99.98 0.03 100.13 0.03 100.06 0.03 99.96 0.01 101.16 0.01 100.56 0.01
1 - 12 Mar 1 99.92 0.27 100.05 0.26 99.97 0.24 99.67 0.02 100.46 0.03 100.04 0.02
1 - 12 Apr 1 99.95 18.43 101.16 17.75 100.55 19.78 99.89 1.80 105.91 1.57 102.89 1.80
1 - 12 May 1 99.93 0.38 100.16 0.43 100.04 0.42 99.72 0.04 100.90 0.03 100.31 0.04
1 - 12 Jun 1 99.90 0.76 100.06 0.89 99.98 0.85 99.16 0.05 100.16 0.05 99.66 0.05
1 - 12 Jul 1 99.94 0.39 100.15 0.42 100.05 0.40 98.78 0.01 100.55 0.02 99.67 0.01
1 - 12 Aug 1 99.99 0.91 100.53 1.00 100.26 0.99 99.67 0.08 103.71 0.10 101.49 0.12
1 - 12 Sep 1 99.97 5.61 100.33 6.51 100.15 6.58 98.84 0.49 101.92 0.49 100.30 0.69
1 - 12 Oct 1 100.00 0.05 100.36 0.04 100.18 0.05 99.93 0.01 102.68 0.01 101.27 0.01
1 - 12 Nov 1 99.86 0.61 100.15 0.58 100.01 0.62 98.78 0.07 100.92 0.05 99.85 0.05
1 - 12 Dec 1 99.70 0.18 100.20 0.18 99.95 0.29 98.34 0.01 101.27 0.01 99.66 0.01
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Figure 8: Expected and realized πop when not considering the price-effect, and a lower- and
upper bound, as well as a centered, stepwise approximation to πop when considering the
piecewise linear price-effect, Belgium, 2014.

πop being negligible for small storage plants but increasing with the storage size.
Contrarily, in order to retrieve the upper limit to πop of additional storage capacity,
the price-effect is already considered at the decision stage. The results show both
a lower- and upper bound approximation to πop following the piecewise linear price-
effect, as well as an approximation based on a centered stepwise function. Nevertheless,
as more capacity is used for arbitrage the incremental πop decreases both in the price-
taker and price-maker approach due to the price-effect, resulting in a trade-off between
the capacity used and the average profit per unit.

5.3 (Dis)charge schedule and price profile

A duration curve of the (dis)charge actions for 2014 is displayed in Fig. 9, for both a
storage operator which is assumed to be a price-taker in the market and a storage op-
erator that takes into account its price-effect. In the former case the (dis)charge power
rating will always be used to its full capacity when (dis)charging, unless bounded by
the limited energy storage capacity. Contrarily, in the latter case fewer full load hours
(19% vs. 31.6%) are observed when taking into account the price-effect of (dis)charge
actions to keep price spreads from diminishing a lot. Although (dis)charge actions are
partially shifted to neighboring hours, observed through the increased number of op-
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Figure 9: Considering the price-effect leads to fewer full load hours, more operational hours,
and less (dis)charged energy in total, Belgium, 2014. The illustrated (dis)charge actions for
when considering the price-effect are those of the lower bound approximation.

erational hours of the storage plant (47.3% vs. 39.6%), in total less energy is charged
(733.2GWh vs. 893.3GWh) and discharged (549.9GWh vs. 670GWh).

Fig. 10 shows an example of a daily price profile and (dis)charge schedule. It shows
that when not considering the price-effect the storage operator (dis)charges at full
power rating, while when considering the price-effect a trade-off occurs between used
capacity and remaining price-spread. The charge action is partly shifted to market
period 4, which is not just characterized by a smaller price-effect compared to market
periods 5 to 8, but by a counterintuitive one as the price decreases when charging.
The resilience function for market period 4 shows a slightly decreasing slope up to
250 MWh additional demand, after which the slope increases, hence a charge action
of 250 MW during hour 4.

5.4 Discussion: yearly arbitrage value compared to annualized in-
vestment cost

To provide some perspective on the order of magnitude of the obtained DA arbi-
trage value for Belgium for 2014, it is compared to the annualized investment cost
of the considered PHS plant. While the available literature provides a wide range of
investment cost estimations (e.g., [53]), this article assumes a cost of 50e/kWh for
the energy-component and 750e/kW for the power-component. Given an assumed
weighted average cost of capital of 5%, the annualized investment cost is 2.7e/kWh
and 41.1e/kW. For a storage plant with the characteristics displayed in Table 2, the
total annualized investment cost is 25.95Me. Even when considering the upper limit
to πop, i.e., assuming perfect foresight of both prices and price-effects, in 2014 DA ar-
bitrage only accounts for 30.9% (lower bound approximation) to 33.5% (upper bound
approximation) of the annualized investment cost.

6 Conclusions

Although the value of electricity storage arbitrage is directly related to the frequency
and size of price spreads, it is also a function of the price-effect of (dis)charge actions.
The price-effect represents the degree to which additional demand increases off-peak
prices and additional supply decreases on-peak prices, and is, ceteris paribus, inversely
correlated to the arbitrage value. While the impact of the price-effect is negligible for
small storage volumes, it reduces the arbitrage value significantly for large storage
volumes. In this article the price-effect is taken into account by considering real-world
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Figure 10: Illustration of the price profile and the (dis)charge schedule. When not con-
sidering the price-effect the storage operator (dis)charges at full power rating, while when
considering the price-effect a trade-off emerges between used (dis)charge power and remaining
price-spread, Belgium, May 10 2014. The illustrated price profile and (dis)charge schedule for
when considering the price-effect are those of the lower bound approximation.

market resilience data, available in the form of hourly piecewise linear functions, and
published by multiple European power exchanges. Since this data is only available ex-
post, their application mainly lies in estimating the upper limit to the arbitrage value
of additional storage capacity in a certain market given current market conditions, and
the evaluation of the performance of the price-taking assumption and price-making as-
sumptions based on more conceptual and simplified price-effects. The former assumes
that the price-effect is already taken into account at the (dis)charge decision stage,
while the latter can be done by ex-post calculating the realized profit as opposed to
the anticipated profit.

Future work includes three topics. First, the analysis of the price-effect in the
settlement side of the real-time balancing market, as in this market price spreads are
much larger compared to the DA market, but the price-effect is significantly larger
as well because of the smaller market size. Second, the estimation of a lower limit
to the arbitrage value under uncertainty in addition to the upper limit, which will
allow to provide an operating profit range under imperfect foresight. Third, since the
results show that using more capacity to arbitrage price spreads decreases the value
per unit, maximizing the value of storage will likely require the aggregation of multiple
applications. The value of individual applications cannot simply be added as use for
one application may interfere with another, therefore it is necessary to co-optimize the
applications.
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