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Auction-Based Allocation of Shared Electricity Storage
Resources through Physical Storage Rights*

Tom Brijsa,c, Daniel Huppmannb,c,e, Sauleh Siddiquic,d,e, Ronnie Belmansa

March 12, 2016

This article proposes a new electricity storage business model based on
multiple simultaneously considered revenue streams, which can be at-
tributed to different market activities and players. These players thus
share electricity storage resources and compete to obtain the right to use
them in a dynamic allocation mechanism. It is based on the design of a
new periodically organized auction to allocate shared storage resources
through physical storage rights between different market players and ac-
companying applications. Through such a flexibility platform owners of
flexible resources can commercialize their flexible capacity over different
applications, while market players looking for additional flexibility can
obtain this through a pay-per-use principle and thus not having to make
long-term investment commitments. As such, they can quickly adapt
their portfolio according to the market situation. Alternatively, through
such an allocation mechanism players can effectively share storage re-
sources. Players may be incentivized to participate as they can share
the investment cost, mitigate risk, exploit economies of scale, overcome
regulatory barriers, and merge time-varying and player-dependent flex-
ibility needs. The mechanism allocates the limited storage resources to
the most valuable application for each market-clearing, based on the com-
peting players’ willingness-to-pay. An illustrative case study is provided
in which three players share storage resources that are allocated through
a daily auction with hourly market-clearings.
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1 Introduction

The integration of variable renewable energy sources (RES) is a major challenge for
the operation of the power system. Their limited controllability and predictability
results in an increased need for power system flexibility, while flexible conventional
power plants currently experience decreasing profitability as a result of low electricity
prices and a limited number of operating hours [1]. Flexibility is the ability to provide
up- and downward power adjustments to deal with short-term imbalances between
generation and consumption of electric energy [2,3]. This flexibility can be provided by
flexible generation and consumption, and electricity storage, but can also be activated
in neighboring regions through interconnection capacity and the further integration of
adjacent markets (Fig. 1). Electricity storage has the ability to compensate temporary
power surpluses and shortages by decoupling the generation of electric energy from
its consumption over time. The extent of this compensation is limited by its storage
capacity.

Although there is a need for flexibility because of its increasing demand and de-
creasing supply, market participants are only incentivized to integrate new flexible
resources if the investment is profitable. In addition, the value of storage is often
underestimated due to the focus on operation strategies based on only a single ap-
plication, usually price arbitrage between off-peak and on-peak hours. However, de-
termining the true value of electricity storage will likely require the aggregation of
multiple applications while accounting for the interdependence between potential rev-
enue streams [4–6]. The value of individual applications cannot simply be added
together, but need to be co-optimized since different storage services can conflict with
each other [7].

Therefore, this article considers a new storage business model based on multiple
simultaneously considered revenue streams, which can be attributed to different ac-
tivities in the market and can thus be the focus of different market players. As such,
these market players share electricity storage resources and compete to use the shared
storage resources. The allocation is based on the design of a periodically organized
auction with sequential market-clearings, in which the right to use storage resources
is traded between different players.

1.1 Electricity storage applications

Historically, electricity storage plants were considered as an alternative for investing
in peak-load generation, by charging during off-peak and discharging during on-peak
moments. However, due to the liberalization of electricity markets and the integration
of RES, distinct valorization paths for different applications of storage emerged [8–11].
These can be categorized in energy, network, and reliability services.

Energy services include arbitrage and portfolio optimization of market partici-
pants. Arbitrage is based on price differences over time: electricity is bought and
stored when the price is low, and is sold and generated again when the price is higher.
Portfolio optimization is performed at different time scales, i.e., investment, schedul-
ing, and operation, and covers generation investment deferral, inter-temporal energy
shifting, and capacity firming, respectively. Through inter-temporal energy shifting
generators optimize the value of generation by decoupling generation and physical in-
jection, while consumers optimize the cost of consumption by decoupling consumption
and physical withdrawal. Capacity firming can indicate the ability to smoothen the
generation or consumption output, resulting in less volatile power profiles, or to follow
predetermined output schedules to reduce imbalanced positions in real-time. Network
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Figure 1: Overview of power system flexibility sources.

services include the provision of frequency control (i.e., primary, secondary, tertiary)1,
voltage support, congestion management, and black-start capabilities to the transmis-
sion system operator (TSO). In the future, some of these will likely be provided to the
distribution system operator (DSO) as well. Reliability services include the provision
of reliability on both the local and system level.

This multitude of applications makes electricity storage plants an interesting asset
for a wide range of market participants. However, operating a storage plant to provide
just one or a few of these services might not always result in a positive business case;
profitability may require the aggregation of multiple applications.

1.2 Motivation

Although some studies focus on the co-optimization of different storage applications
(e.g., [5,7,12]), most existing work focuses on only a single application or allocates the
available storage resources a-priori when considering multiple applications, instead of
applying a periodically performed optimization process. In addition, the sharing and
operation of storage resources by different players has only been studied to a limited
extent, except for the work done by [4]. As such, the contribution of the auction-based
allocation described in this article is that it does not a-priori define the applications
or even the market player that the storage resources will serve at a certain moment in
time. This can be accomplished by the development of a centralized platform where
periodical auctions with sequential market-clearings take place to allocate the right to
use (dis)charge power capacities and energy storage capacity. These auctions can serve
both settings where (1) multiple players share common storage plants and (2) multiple
suppliers of storage resources and prospective consumers meet to trade physical storage
rights. Whereas the presented allocation mechanism allows to simultaneously include
multiple resource suppliers and players competing for the right to use them, and to
simultaneously consider their offers, the method discussed in [4] considers a sequential
allocation to players which express their need for flexible resources at different time
scales. In addition, the presented allocation mechanism auctions physical (dis)charge
power rights and storage capacity rights, whereas the allocation in [4] is based on
actual utilization profiles.

Market players can have multiple incentives to share, contract, or offer storage
resources by means of a periodically organized auction. First, this may allow them
to exploit economies of scale, i.e., increasing the plant size at a reduced cost per unit
of power and energy. Second, they can share the investment cost and associated risk,

1In the ENTSO-E synchronous zone operating reserves are categorized into Frequency Con-
tainment Reserves (FCR), Frequency Restoration Reserves (FRR), both automatic (aFRR)
and manual (mFRR), and Restoration Reserves (RR).
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especially when considering large-scale storage plants. Third, as flexibility needs vary
throughout the year and even throughout the day, and across market players, they
may have different (possibly complementary) storage utilization patterns, providing
an incentive to share resources.

From a system point of view, there are additional reasons to share storage re-
sources. First, as storage resources are usually limited due to geographical require-
ments, they should be allocated to the most valuable services at each point in time.
Second, due to the introduced competition to use storage resources strategic under-
or overusage [13] is likely to occur less frequently. Third, although pumped-hydro
storage is currently the most mature storage technology, rapidly decreasing costs and
technological advancements are making battery storage systems increasingly compet-
itive [14]. To overcome barriers for such small-scale storage resources to participate
in the market, the development of a centralized platform allows owners of these re-
sources to offer flexibility to market players that aggregate them. Finally, regulatory
barriers might prevent storage operators to provide certain services simultaneously. In
the United States storage plants can either provide market-based or regulated services
(e.g., congestion management to avoid grid upgrades), but they are not allowed to
combine both in a single business case [15]. An auction such as the one proposed in
this article can overcome this regulatory barrier by allocating storage rights to different
players to provide either market-based or regulated services.

This decoupling of the ownership of storage resources with its physical operation
has similar characteristics to the treatment of transmission capacity, as both have the
ability to move power, the former in time while the latter in space. In European
electricity markets cross-border transmission capacity is auctioned explicitely or im-
plicitely [16, 17]. The former indicates that market players can obtain the right to
use interconnector capacity, after which they can use these capacities to capture price
differences in neighboring markets. In the latter, these capacities are not auctioned to
market players but allocated to the power exchange to include in the market-clearing
algorithm to maximize social welfare. The allocation mechanism discussed in this
article is based on explicit auctioning, as first the right to use storage resources is
auctioned, after which players can use these resources in the electricity market. Fur-
thermore, [18,19] consider a situation where the surplus collected by the system oper-
ator or power exchange (i.e., storage congestion rent), following a central operation of
storage resources to maximize social welfare, is allocated to players holding financial
storage rights. These are based on the design of financial transmission rights [20, 21],
and thus remunerate storage investors by either the revenues of the auction of financial
storage rights or the value of the storage congestion rent itself. Similar to the proposed
auction-based allocation mechanism, this allows them to recover the investment cost
without participating in the electricity market themselves.

1.3 Contributions

The main contribution of this article is the presentation of an alternative approach
for electricity storage plants to aggregate multiple applications. This is based on a
new market for flexibility, namely a periodically organized auction to allocate shared
storage resources through physical storage rights between different market players and
accompanying applications. Through this allocation mechanism (1) market partici-
pants can share storage resources to exploit economies of scale, reduce the investment
cost, mitigate risk, match complementary flexibility needs, and overcome regulatory
barriers, and (2) owners of flexible resources can commercialize their flexible capacity
over different applications while market players looking for additional flexibility have
access to these resources on a short-term basis. As such, the latter do not have to
make long-term investment commitments and can adapt their portfolio according to
changing market situations.
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The article is structured as follows. Section 2 discusses (Generalized) Nash games,
Mixed Complementarity Problems, and the designed storage allocation mechanism in
more detail. Section 3 illustrates this auction-based allocation through a case study
in which three market players share storage resources, by providing the mathematical
formulation of the players’ individual optimization problems and resulting market
equilibrium problem. While Section 4 discusses the case study’s results, Section 5
provides the conclusions of this article.

2 Methodology

2.1 (Generalized) Nash Equilibrium Problems

The interaction between several market players, in which each player aims to optimize
the value of its objective function given the decisions by all rivals, can be mathemat-
ically formulated as an equilibrium problem. We first introduce Nash Equilibrium
Problems (NEP) [22] before discussing the concept of a Generalized Nash Equilibrium
Problem (GNEP) [23]. Assume a market with a finite amount of players, in which
each player i ∈ I faces the following optimization problem:

max
xi

fi(xi,x-i), (1a)

s.t. xi ∈ Xi. (1b)

Each player’s vector of decision variables xi, has to be chosen from its set of feasible
strategies Xi, while the vector of decision variables of its rivals x-i is considered as given.
A Nash Equilibrium x∗

i is then reached when the following condition holds:

fi(x
∗
i ,x

∗
-i) ≥ fi(yi,x

∗
-i) ∀ i ∈ I , ∀ yi ∈ Xi. (2)

This equilibrium means that given the decisions by all rivals, no player has an
incentive to deviate from its chosen strategy. An implicit assumption of the NEP is
that the strategies chosen by the competing players only affect the players’ objective
function and not their feasible set of strategies. In contrast, in a GNEP this assumption
is relaxed [23–27], as each player’s vector of decision variables xi has to be chosen
from a set of feasible strategies Xi(x-i) that is affected by the strategies chosen by
the competing players. A Generalized Nash Equilibrium x∗

i is then reached when the
following condition holds:

fi(x
∗
i ,x

∗
-i) ≥ fi(yi,x

∗
-i) ∀ i ∈ I , ∀ yi ∈ Xi(x

∗
-i). (3)

The general structure of both a NEP and GNEP, consisting of a set of interrelated
optimization problems, is illustrated in Fig. 2. In a GNEP, each player’s objective func-
tion may be subject to both individual and shared constraints. While each individual
optimization problem represents the decision process of one player, the equilibrium
problem represents the interactions in a market environment of multiple interrelated
players.

2.2 Mixed Complementarity Problems

The NEP and GNEP can be solved by formulating the problem as a Mixed Com-
plementarity Problem (MCP). This is done by deriving the first-order optimality, or
Karush-Kuhn-Tucker (KKT), conditions of each player’s optimization problem and
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Figure 2: Illustration of (Generalized) Nash Equilibrium Problems.

solving them simultaneously. In the MCP formulation, the complementarity condi-
tions enforce that the inner product of an inequality constraint and the primal or
dual variable2 is zero, and the nonnegativity of both the inequality constraint and the
primal or dual variable. This means that either the inequality constraint holds as an
equality, i.e., is binding, or the primal or dual variable is zero. Mathematically, this is
expressed by using the perpendicular operator ⊥, which indicates complementarity.

An MCP is thus an array of equalities and inequalities which is obtained by aggre-
gating all players’ KKT conditions. However, when tackling a GNEP, aggregating the
individual players’ KKT conditions into an MCP results in a nonsquare system: the
shared constraints are identical for each player, while the associated dual variables of
each involved player may hold different values. This ‘squareness’ issue can be solved
by assigning an identical dual variable for each player to the shared constraint [23],
meaning that each player values the shared resource identically, which leads to a single
‘price’ for the shared resource [24,25].

This approach can be interpreted as an auctioneer allocating the shared resource
to the players according to the price they are willing to pay to obtain the right to
use it. Their willingness-to-pay directly relates to the improvement of their objective
value from a marginal relaxation of the shared resource.

2.3 Auction-based allocation of shared storage resources

The shared storage resources’ allocation problem can be formulated as both a NEP and
GNEP. In the former case, the suppliers of storage resources are modeled explicitly,
while the consumers and suppliers in the market for storage resources interact by
means of market-clearing conditions representing the auctioneer. This formulation
relates to the situation where multiple suppliers and consumers of storage resources
compete in a centralized market. In the latter case, the suppliers are not modeled
explicitly but are included implicitly through the storage resources’ shared constraints.
Through these shared constraints an auctioneer is assumed to allocate the storage
rights over the different players. This formulation is particularly useful to represent
the situation where multiple market players share the storage resources and allocate
them periodically among each other.

It is well known from [23] that a NEP where the auctioneer is modeled explicitly
yields the same solution as a GNEP where the dual variables of each player for the
shared constraints are assumed to be identical. If the solution is nonunique, the two
solutions may differ in terms of the primal variables (i.e., operation decisions), but the

2A constraint’s dual variable represents the incremental improvement of the player’s ob-
jective value when marginally relaxing the respective constraint, and can be interpreted as
the marginal price of the resource subject to the constraint.
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objective value (i.e., pay-off) for each player must be identical. In this article, we use
the GNEP formulation to a case study in Section 3 as it illustrates a case in which
three players share storage resources. For illustrative purposes, the remainder of the
discussion assumes a single storage plant.

In both formulations the auctioneer thus acts as a facilitator between the supply
of shared storage resources (i.e., charge power P c,max, discharge power P d,max, energy
storage capacity Emax)3 and a number of players |I| which compete to obtain the right
to use them. A periodical auction is organized, in which for each market period t ∈ T
the supplier of the storage resources submits supply bids sct , s

d
t , s

e
t and each market

player i ∈ I has the opportunity to submit demand bids dci,t, d
d
i,t, d

e
i,t for each storage

resource (Fig. 3, left). The supplier is assumed to provide a supply bid for each shared
resource equal to its maximum capacity, to be sold at any price defined by the market.
Each player i bids the maximum price he is willing to pay to obtain the right to use a
specified volume of each storage resource. This maximum price equals its incremental
pay-off. The auctioneer then aggregates the demand bids for each storage resource,
i.e., the demand curve, and matches them with each resource’s supply bid, i.e., the
supply curve, which results in a market-clearing for each timestep t (Fig. 3, right).
This yields a cleared volume for the charge power rights pc,max

i,t , discharge power rights

pd,max
i,t , and storage capacity rights emax

i,t for each player i, and uniform market-clearing

prices µc
t , µ

d
t , µ

e
t . In equilibrium, these prices equal the marginal willingness-to-pay

for each respective resource.
Similar to the case in current electricity markets, the allocation process may be

iterated at different timeframes (e.g., week-ahead, day-ahead, intra-day, real-time) to
allow players to adjust their obtained physical storage rights, based on updated market
information. In a first auction (e.g., day-ahead) the shared resources are allocated
to the different players according to their willingness-to-pay, which is dependent on
their market expectations and risk aversion, while in a consecutive allocation closer
to real-time (e.g., intra-day) players can trade and reallocate the obtained resources
among each other: players that contracted too much can offer part of their obtained
rights again to the platform, while players that contracted too little can bid to obtain
additional storage rights.

3 Case study

To illustrate the presented auction-based allocation mechanism, a case study is shown
for a daily auction with hourly market-clearings in which three market players com-
pete for constrained storage resources, i.e., I = {a, p, r}, with index a representing
a player arbitraging day-ahead market prices, index p a player focusing on portfolio
management, and index r a player that aims to use storage resources to capture im-
balance price differences in the real-time market. First, the individual optimization
problems are presented as if electricity storage resources would be readily available to
them. Second, we discuss which changes have to take place in order for the players
to share storage resources and compete in an auction-based allocation mechanism,
i.e., equilibrium problem. Third, the MCP formulation of the equilibrium problem is
discussed while it is provided in full in the appendix.

The model formulations of the provided case study include discretized hourly time
periods h ∈ H, with |H| = 24 and T h representing the length of one time period, i.e.,
one hour. Variables in parentheses denote the dual variables of the respective con-
straints. In addition, all players are assumed to be price-takers with perfect foresight
for the next optimization horizon, i.e., the next day in this case study. The storage

3Table 1 provides an overview of the symbols for sets, primal variables, dual variables, and
parameters used in this article. Formulas are provided assuming SI or base units, while input
data and results follow typical units in electrical engineering.
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Figure 3: Illustration of the market-clearing mechanism to allocate storage re-
sources.

Table 1: Table of symbols.

Type Symbol Quantity Unit (SI) Typical unit

Sets h ∈ H - - -
i ∈ I - - -
t ∈ T - - -

Primal variables ei,h Energy J MWh
emax
i ,emax

i,h ,emax
i,t Energy J MWh

pci,h Power W MW

pc,max
i ,pc,max

i,h ,pc,max
i,t Power W MW

pdi,h Power W MW

pd,max
i ,pd,max

i,h ,pd,max
i,t Power W MW

pgi,h Power W MW

pli,h Power W MW

βi Economic value/time e/s e/year
πi Economic value/time e/s e/year
πop
i Economic value/time e/s e/year

Dual variables µc
h,µ

c
i,h,µ

c
t Economic value/time/power e/s/W e/h/MW

µc Economic value/time/power e/s/W e/day/MW
µd
h,µ

d
i,h,µ

d
t Economic value/time/power e/s/W e/h/MW

µd Economic value/time/power e/s/W e/day/MW
µe
h,µ

e
i,h,µ

e
t Economic value/time/energy e/s/J e/h/MWh

µe Economic value/time/energy e/s/J e/day/MWh
γe
i,h Economic value/time/power e/s/W e/h/MW

γg
i,h Economic value/time/power e/s/W e/h/MW

γl
i,h Economic value/time/power e/s/W e/h/MW

τ ci,h Economic value/time/power e/s/W e/h/MW

τdi,h Economic value/time/power e/s/W e/h/MW

τ ei,h Economic value/time/energy e/s/J e/h/MWh

Parameters Emax Energy J MWh
Gp,h Power W MW
Lmax
r Power W MW

P c,max Power W MW
P d,max Power W MW
T h Time s h
ηc Percentage % %
ηd Percentage % %
λda
h Economic value/energy e/J e/MWh
λrt
h Economic value/energy e/J e/MWh

8



plant is assumed to have sufficiently fast ramp rates for the considered hourly time
resolution, with no restrictions regarding simultaneous charge and discharge actions,
and a sufficiently large cycle-life such that its impact on the operation is negligible.

3.1 Individual optimization problems

First a storage operator is considered that aims to capture price differences in the
day-ahead market. This player is indicated by index a, and its optimization problem,
in which the pay-off is maximized over a time horizon |H| · T h, reads as follows:

max
ea,h,pc

a,h
,pd

a,h

∑
h∈H

λda
h ·

[
T h · (pda,h − pca,h)

]
/(|H| · T h), (4a)

ea,h = ea,h-1 + T h · (pca,h · ηc − pda,h/η
d) (γe

a,h) ∀h ∈ H, (4b)

pca,h ≤ P c,max (µc
a,h) ∀h ∈ H, (4c)

pda,h ≤ P d,max (µd
a,h) ∀h ∈ H, (4d)

ea,h ≤ Emax (µe
a,h) ∀h ∈ H, (4e)

ea,h, p
c
a,h, p

d
a,h ∈ R+ , h ∈ N ∀h ∈ H,

with pca,h the charge power, pda,h the discharge power, ea,h the stored energy, λda
h the

day-ahead market price, ηc the charge efficiency, and ηd the discharge efficiency. Con-
straint (4b) expresses the intertemporal character of electricity storage, while (4c) - (4e)
represent capacity bounds on the electricity storage resources.

Next, a RES generator operating a portfolio of both wind and photovoltaic (PV)
capacity is considered. This player uses storage resources to increase the market value
of its RES generation. This can be done by either directly selling its RES power output
to the market or temporarily storing it during low price periods. This application of
electricity storage results from the fact that periods experiencing high RES generation
often coincide with lower price periods [1]. This player is indicated by index p, and its
optimization problem is:

max
ep,h,pcp,h,pdp,h,

p
g
p,h

,plp,h

∑
h∈H

λda
h ·

[
T h · (pgp,h + pdp,h)

]
/(|H| · T h), (5a)

pcp,h + pgp,h + plp,h = Gp,h (γg
p,h) ∀h ∈ H, (5b)

ep,h = ep,h-1 + T h · (pcp,h · ηc − pdp,h/η
d) (γe

p,h) ∀h ∈ H, (5c)

pcp,h ≤ P c,max (µc
p,h) ∀h ∈ H, (5d)

pdp,h ≤ P d,max (µd
p,h) ∀h ∈ H, (5e)

ep,h ≤ Emax (µe
p,h) ∀h ∈ H, (5f)

ep,h, p
c
p,h, p

d
p,h, p

g
p,h, p

l
p,h ∈ R+ , h ∈ N ∀h ∈ H,

with Gp,h the available RES power output, pgp,h the RES output directly sold to

the market, and plp,h the curtailed RES output. Constraint (5b) denotes that the RES
power output can either be stored, sold, or curtailed.

Unforeseen imbalances between generation and consumption are dealt with in real-
time on the balancing market, which is coordinated by the TSO. At the procurement
side of the balancing market the TSO contracts and activates reserve capacity to cover
system imbalances, while at the settlement side of the balancing market the TSO set-
tles individual imbalanced positions of market participants by means of an imbalance
price that is based on the activation cost of reserves [1]. The third considered player is
an arbitrageur that is active on the settlement side of the real-time balancing market

9



to capture imbalance price differences over time. As the real-time balancing market is
characterized by a small volume compared to the day-ahead market, the imbalanced
positions this player can take while not diminishing the expected price spreads are as-
sumed to be bounded by Lmax

r (6b). As such, the price-taking assumption assumed in
this illustrative case study holds. Although the balancing market is usually character-
ized by quarter-hourly or semi-hourly market periods, for illustrative purposes hourly
market periods are assumed. This player is indicated by index r, and its optimization
problem reads as follows:

max
er,h,pc

r,h
,pd

r,h

∑
h∈H

λrt
h ·

[
T h · (pdr,h − pcr,h)

]
/(|H| · T h), (6a)

pcr,h + pdr,h ≤ Lmax
r (γl

r,h) ∀h ∈ H, (6b)

er,h = er,h-1 + T h · (pcr,h · ηc − pdr,h/η
d) (γe

r,h) ∀h ∈ H, (6c)

pcr,h ≤ P c,max (µc
r,h) ∀h ∈ H, (6d)

pdr,h ≤ P d,max (µd
r,h) ∀h ∈ H, (6e)

er,h ≤ Emax (µe
r,h) ∀h ∈ H, (6f)

er,h, p
c
r,h, p

d
r,h ∈ R+ , h ∈ N ∀h ∈ H,

with λrt
h the real-time imbalance price.

3.2 Generalized Nash Equilibrium Problem

When formulating the presented optimization problems as a GNEP, two changes
take place. First, as they compete for the shared electricity storage resources, the
constraints representing the limited charge power (4c), (5d), (6d), discharge power
(4d), (5e), (6e), and energy storage capacity (4e), (5f), (6f) are replaced by:

pci,h ≤ pc,max
i,h (τ c

i,h) ∀ i ∈ I,h ∈ H, (7a)

pdi,h ≤ pd,max
i,h (τd

i,h) ∀ i ∈ I,h ∈ H, (7b)

ei,h ≤ emax
i,h (τ e

i,h) ∀ i ∈ I,h ∈ H, (7c)

with pc,max
i,h , pd,max

i,h , and emax
i,h the allocated charge power rights, discharge power

rights, and storage capacity rights, respectively. These physical rights are bounded by
the supplied storage resources, which are assumed to equal the installed (dis)charge
power rating and energy storage capacity in this illustrative case study:

∑
i∈I

pc,max
i,h ≤ P c,max (µc

h) ∀h ∈ H, (8a)∑
i∈I

pd,max
i,h ≤ P d,max (µd

h) ∀h ∈ H, (8b)∑
i∈I

emax
i,h ≤ Emax (µe

h) ∀h ∈ H. (8c)

Alternatively, when considering a centralized market for storage resources rather
than a situation where players share them, the supply is characterized by index h
as well as it will be time-varying. Second, a cost term is subtracted ex-post from
each player’s objective value, since the right to use the limited storage resources is
now allocated through an auction instead of being readily available to them. The
uniform price of the shared resources µc

h (8a), µd
h (8b), µe

h (8c) at each hourly market-
clearing is determined by the willingness-to-pay of the players’ marginally cleared
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demand bid to obtain the right to use them. The ex-post calculation of the profit
πi as opposed to the operating profit πop

i is done by considering the objective value
resulting from (4a), (5a), (6a) and subtracting a cost term βi:

βi =
∑
h∈H

(pc,max
i,h · µc

h + pd,max
i,h · µd

h + emax
i,h · µe

h) ∀ i ∈ I, (9a)

πop
i − βi = πi ∀ i ∈ I. (9b)

The MCP comprised of each player’s KKT conditions and the shared constraints is
solved in GAMS using the PATH solver [28], and is provided in the appendix for both a
daily auction with hourly market-clearings, and a less dynamic periodically organized
(e.g., daily, weekly) auction including a single market-clearing, i.e., allocation, for each
of the shared resources for the entire period (e.g., day, week). Since the considered
optimization problems are convex and the players only face linear constraints, the KKT
conditions are both necessary (i.e., an optimal solution satisfies the KKT conditions)
and sufficient (i.e., each KKT point is an optimal solution) [27].

4 Results

The Belgian day-ahead market price [29], real-time imbalance price [30], and RES
generation profiles [30] for 2014 are used for the illustrative case study. The hourly
imbalance price λrt

h is calculated as the average of the four quarter-hourly imbalance
prices in hour h. The RES portfolio of player p is assumed to consist of both PV
systems and offshore wind turbines, both accounting for 50% of the portfolio. The
time-varying available RES power output Gp,h is determined by multiplying the hourly
availability of the respective sources by the installed capacity Gmax

p . The storage plant
characteristics used for the case study, along with other input data, are displayed in
Table 2.

Fig. 4 shows the individual operating profit πop
i and total operating profit

∑
i∈I π

op
i

for 2014 as a result of the use of storage resources4 for different allocations, either
fixed a-priori defined allocations (i.e., column 1 to 4) or allocations resulting from the
proposed allocation mechanism (i.e., column 5 and 6). In the first three columns,
πop
i is shown for the case where the players are each allocated 100% of the storage

resources. Column four indicates πop
i in case each player is awarded a fixed share equal

to one-third of the storage resources for the entire year. Since the players are assumed
to be price-takers in their respective markets (i.e., day-ahead electricity and real-time
balancing market), one may expect that πop

i is equal to one-third of πop
i following a

100% allocation to the respective player. Although this is the case for player a, this is
not the case for player p (42.5%) and player r (61.5%) as their actions are limited by
Gp,h and Lmax

r in the provided case study. Column five shows πop
i when assuming a

daily organized auction with a single market-clearing, i.e., daily allocated (dis)charge
power and storage capacity rights, while column six is based on a daily organized
auction with hourly market-clearings. Fig. 4 shows that the auction-based allocations
lead to a higher total realized operating profit

∑
i∈I π

op
i , with shorter time frames for

the market-clearings performing better. The latter ensures that the limited storage
resources are allocated to the most valuable services at each point in time.

Table 3 shows πop
i , βi, and πi for the different players. The revenue collected

through the auctioning of the (dis)charge power and storage capacity rights is indi-
cated by

∑
i∈I βi. The price of an auctioned right (i.e., µc

h, µ
d
h, µ

e
h for hourly alloca-

tions and µc, µd, µe for single allocations per auction) only takes on a nonzero value

4This means that for player p the value that would have been realized without use of the
storage resources due to the RES generation is subtracted.
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Table 2: Table of input parameters.

Emax 200MWh P d,max 50MW
Gmax

p 75MW + 75MW T h 1 h
Lmax
c 25MW ηc 86.6%

P c,max 50MW ηd 86.6%

Table 3: Yearly operating profit, cost to obtain storage rights, and profit, 2014.

Daily auctions with hourly allocations Daily auctions with daily allocations
Operating profit Cost Profit Operating profit Cost Profit

πop
i βi πi πop

i βi πi

[Me/year] [Me/year] [Me/year] [Me/year] [Me/year] [Me/year]

Player a 0.445 0.445 0 0.365 0.365 0
Player p 0.369 0.336 0.033 0.230 0.197 0.033
Player r 1.934 0.367 1.567 1.958 0.584 1.374∑

i∈I 2.748 1.148 1.600 2.553 1.146 1.407

when the inequality constraint representing the limited availability of the storage re-
source subject to the constraint is binding (i.e., (A.4a) - (A.4c) for hourly allocations
and (A.8a) - (A.8c) for single allocations per auction). In case the price is nonzero, it
takes on the willingness-to-pay of the demand bid of the marginally cleared player for
the respective resource. As such, the zero profit πd and close-to-zero profit πp indicate
that when these players’ bids to obtain storage rights are accepted they represent the
marginally cleared bids. This is similar to the situation in electricity markets, where
the player of the marginally cleared demand bid pays as much as he values the con-
sumption of electric power during that market period. Contrarily, the positive profit
πr shows that its bids to obtain storage rights not always represent the marginally
cleared bid. This can be explained by the large price spreads at the real-time market
compared to the day-ahead market, through which player r values the use of storage
resources higher, and because the inequality constraints are not binding when he is
the only player that contracts storage resources as its (dis)charge actions are limited
by Lmax

r . In the former case player r pays the lower willingness-to-pay of one of the
other cleared players, while in the latter case the price of the right of the storage
resource subject to the constraint is zero. Contrary to this illustrative case study, as
more players participate in such an auction, and the players each consider multiple
applications, these situations will occur less frequently. As such, the revenue collected
through the auctioning of storage rights will converge to the total captured value in
the electricity market more closely.

Fig. 5 illustrates the allocation of the auctioned (dis)charge power and storage
capacity rights for a daily auction with daily (Fig. 5a, Fig. 5c, Fig. 5e) and hourly
(Fig. 5b, Fig. 5d, Fig. 5f) market-clearings for 2014. As for price-taking players with
perfect foresight the overall daily value of storage resources are likely to be higher for
arbitraging real-time imbalance prices than arbitraging day-ahead electricity prices,
due to the larger and more frequent price spreads, player a and player p do not get
the opportunity to use more than 25MW in the daily allocation case. However, for
some hours of the day they might actually have a higher willingness-to-pay and thus
the storage resources would be valorized at a higher value. Therefore, when using
more frequent market-clearings (i.e., with shorter durations), the storage resources are
allocated more efficiently to the time-varying most valuable services, resulting in a
higher total storage value.
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Figure 4: Total and individual operating profit for different allocations of the
shared storage resources, 2014.

5 Conclusions

Electricity storage has the ability to compensate temporary power surpluses and short-
ages by decoupling the generation of electric energy from its consumption over time,
thereby meeting increased flexibility needs. However, market participants are only
incentivized to invest in new flexible resources when the investment is profitable. As
this may not be the case when only considering a single or a few storage services,
maximizing the value of electricity storage requires the aggregation of multiple value
streams in a single operating strategy.

As such, this article proposes a new storage business model based on multiple si-
multaneously considered revenue streams, in which the applications or even the player
that the storage resources will serve at a certain moment in time are not predefined.
This can be accomplished by the development of a platform where periodical auc-
tions with sequential market-clearings take place to allocate physical storage rights
to use (dis)charge power capacities and energy storage capacity. These auctions al-
low storage owners to commercialize their resources over different applications, while
players looking for additional flexibility can obtain this on a short-term basis. Alter-
natively, through such an allocation mechanism players can effectively share storage
resources. The mechanism allocates the resources to the most valuable application
for each market-clearing, based on the players’ willingness-to-pay, which directly re-
lates to the improvement of their objective value from a marginal improvement of the
respective storage resource.

Players may be incentivized to participate in such a mechanism to share the invest-
ment cost, mitigate the associated risk, exploit economies of scale, overcome regulatory
barriers, and merge time-varying and player-dependent flexibility needs. In addition,
this may include positive effects for the system as well, as limited storage resources
are allocated to the most valuable services at each point in time and the strategic
operation of storage resources is likely to occur less frequently due to the introduced
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(a) Daily allocation of charge power rights.
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(b) Hourly allocation of charge power rights.
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(c) Daily allocation of discharge power rights.
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(d) Hourly allocation of discharge power rights.
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(e) Daily allocation of storage capacity rights.

0 20 40 60 80 100
0

40

80

120

160

200

Duration [%]

O
b
ta
in
ed

st
or
ag

e
ca
p
ac
it
y
ri
gh

ts
[M

W
h
] Player a (day-ahead arbitrage)

Player p (portfolio management)

Player r (real-time arbitrage)

(f) Hourly allocation of storage capacity rights.

Figure 5: Allocation of physical storage rights in a daily auction with daily (a),
(c), (e), and hourly (b), (d), (f) market-clearings, 2014.
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competition.
Future work includes the comparison of the explicit auctioning of storage resources

through physical storage rights to a centralized operation of storage with implicit auc-
tioning and to financial storage rights. In addition, future research includes the anal-
ysis of different design parameters (e.g., lead times between the auction and physical
delivery, allocation horizon), as well as the accommodation of flexible consumption
processes in this flexibility platform because of the similarities with electricity storage
plants (e.g., limited duration).
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Appendix

First the MCP formulation for a periodically organized auction with hourly market-
clearings for the shared storage resources is presented. The KKT conditions of player
a are (A.1a) - (A.1j), while those of player p are (A.2a) - (A.2m), and finally the KKT
conditions of player r are (A.3a) - (A.3k). The shared constraints are represented
by (A.4a) - (A.4c) in the MCP formulation:

0 ≤ λda
h /|H|+ T h · γe

a,h · ηc + τ c
a,h ⊥ pca,h ≥ 0 ∀h ∈ H, (A.1a)

0 ≤ −λda
h /|H| − T h · γe

a,h/η
d + τd

a,h ⊥ pda,h ≥ 0 ∀h ∈ H, (A.1b)

0 ≤ −γe
a,h + γe

a,h+1 + τ e
a,h ⊥ ea,h ≥ 0 ∀h ∈ H, (A.1c)

0 ≤ −τ c
a,h + µc

h ⊥ pc,max
a,h ≥ 0 ∀h ∈ H, (A.1d)

0 ≤ −τd
a,h + µd

h ⊥ pd,max
a,h ≥ 0 ∀h ∈ H, (A.1e)

0 ≤ −τ e
a,h + µe

h ⊥ emax
a,h ≥ 0 ∀h ∈ H, (A.1f)

0 = −ea,h + ea,h-1 + T h · (pca,h · ηc − pda,h/η
d) , γe

a,h ∈ R ∀h ∈ H, (A.1g)

0 ≤ pc,max
a,h − pca,h ⊥ τ c

a,h ≥ 0 ∀h ∈ H, (A.1h)

0 ≤ pd,max
a,h − pda,h ⊥ τd

a,h ≥ 0 ∀h ∈ H, (A.1i)

0 ≤ emax
a,h − ea,h ⊥ τ e

a,h ≥ 0 ∀h ∈ H, (A.1j)

0 ≤ γg
p,h + T h · γe

p,h · ηc + τ c
p,h ⊥ pcp,h ≥ 0 ∀h ∈ H, (A.2a)

0 ≤ −λda
h /|H| − T h · γe

p,h/η
d + τd

p,h ⊥ pdp,h ≥ 0 ∀h ∈ H, (A.2b)

0 ≤ −γe
p,h + γe

p,h+1 + τ e
p,h ⊥ ep,h ≥ 0 ∀h ∈ H, (A.2c)

0 ≤ −λda
h /|H|+ γg

p,h ⊥ pgp,h ≥ 0 ∀h ∈ H, (A.2d)

0 ≤ γg
p,h ⊥ plp,h ≥ 0 ∀h ∈ H, (A.2e)

0 ≤ −τ c
p,h + µc

h ⊥ pc,max
p,h ≥ 0 ∀h ∈ H, (A.2f)

0 ≤ −τd
p,h + µd

h ⊥ pd,max
p,h ≥ 0 ∀h ∈ H, (A.2g)

0 ≤ −τ e
p,h + µe

h ⊥ emax
p,h ≥ 0 ∀h ∈ H, (A.2h)

0 = −Gp,h + pcp,h + pgp,h + plp,h , γg
p,h ∈ R ∀h ∈ H, (A.2i)
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0 = −ep,h + ep,h-1 + T h · (pcp,h · ηc − pdp,h/η
d) , γe

p,h ∈ R ∀h ∈ H, (A.2j)

0 ≤ pc,max
p,h − pcp,h ⊥ τ c

p,h ≥ 0 ∀h ∈ H, (A.2k)

0 ≤ pd,max
p,h − pdp,h ⊥ τd

p,h ≥ 0 ∀h ∈ H, (A.2l)

0 ≤ emax
p,h − ep,h ⊥ τ e

p,h ≥ 0 ∀h ∈ H, (A.2m)

0 ≤ λrt
h /|H|+ T h · γe

r,h · ηc + γl
r,h + τ c

r,h ⊥ pcr,h ≥ 0 ∀h ∈ H, (A.3a)

0 ≤ −λda
h /|H| − T h · γe

r,h/η
d + γl

r,h + τd
r,h ⊥ pdr,h ≥ 0 ∀h ∈ H, (A.3b)

0 ≤ −γe
r,h + γe

r,h+1 + τ e
r,h ⊥ er,h ≥ 0 ∀h ∈ H, (A.3c)

0 ≤ −τ c
r,h + µc

h ⊥ pc,max
r,h ≥ 0 ∀h ∈ H, (A.3d)

0 ≤ −τd
r,h + µd

h ⊥ pd,max
r,h ≥ 0 ∀h ∈ H, (A.3e)

0 ≤ −τ e
r,h + µe

h ⊥ emax
r,h ≥ 0 ∀h ∈ H, (A.3f)

0 ≤ Lmax
r − pcr,h − pdr,h ⊥ γl

r,h ≥ 0 ∀h ∈ H, (A.3g)

0 = −er,h + er,h-1 + T h · (pcr,h · ηc − pdr,h/η
d) , γe

r,h ∈ R ∀h ∈ H, (A.3h)

0 ≤ pc,max
r,h − pcr,h ⊥ τ c

r,h ≥ 0 ∀h ∈ H, (A.3i)

0 ≤ pd,max
r,h − pdr,h ⊥ τd

r,h ≥ 0 ∀h ∈ H, (A.3j)

0 ≤ emax
r,h − er,h ⊥ τ e

r,h ≥ 0 ∀h ∈ H, (A.3k)

0 ≤ P c,max − pc,max
a,h − pc,max

p,h − pc,max
r,h ⊥ µc

h ≥ 0 ∀h ∈ H, (A.4a)

0 ≤ P d,max − pd,max
a,h − pd,max

p,h − pd,max
r,h ⊥ µd

h ≥ 0 ∀h ∈ H, (A.4b)

0 ≤ Emax − emax
a,h − emax

p,h − emax
r,h ⊥ µe

h ≥ 0 ∀h ∈ H. (A.4c)

Second the MCP formulation for a less dynamic periodically organized auction
(e.g., daily, weekly, monthly) including a single market-clearing, i.e., allocation, for
each of the shared resources for the entire period (e.g., day, week, month) is pre-
sented. In this case the KKT conditions of player a are (A.5a) - (A.5j), of player p
are (A.6a) - (A.6m), and finally of player r are (A.7a) - (A.7k). The shared constraints
are included through (A.8a) - (A.8c) in the MCP formulation:

0 ≤ λda
h /|H|+ T h · γe

a,h · ηc + τ c
a,h ⊥ pca,h ≥ 0 ∀h ∈ H, (A.5a)

0 ≤ −λda
h /|H| − T h · γe

a,h/η
d + τd

a,h ⊥ pda,h ≥ 0 ∀h ∈ H, (A.5b)

0 ≤ −γe
a,h + γe

a,h+1 + τ e
a,h ⊥ ea,h ≥ 0 ∀h ∈ H, (A.5c)

0 ≤
∑
h∈H

(−τ c
a,h) + µc ⊥ pc,max

a ≥ 0, (A.5d)

0 ≤
∑
h∈H

(−τd
a,h) + µd ⊥ pd,max

a ≥ 0, (A.5e)

0 ≤
∑
h∈H

(−τ e
a,h) + µe ⊥ emax

a ≥ 0, (A.5f)

0 = −ea,h + ea,h-1 + T h · (pca,h · ηc − pda,h/η
d) , γe

a,h ∈ R ∀h ∈ H, (A.5g)

0 ≤ pc,max
a − pca,h ⊥ τ c

a,h ≥ 0 ∀h ∈ H, (A.5h)

0 ≤ pd,max
a − pda,h ⊥ τd

a,h ≥ 0 ∀h ∈ H, (A.5i)

0 ≤ emax
a − ea,h ⊥ τ e

a,h ≥ 0 ∀h ∈ H, (A.5j)
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0 ≤ γg
p,h + T h · γe

p,h · ηc + τ c
p,h ⊥ pcp,h ≥ 0 ∀h ∈ H, (A.6a)

0 ≤ −λda
h /|H| − T h · γe

p,h/η
d + τd

p,h ⊥ pdp,h ≥ 0 ∀h ∈ H, (A.6b)

0 ≤ −γe
p,h + γe

p,h+1 + τ e
p,h ⊥ ep,h ≥ 0 ∀h ∈ H, (A.6c)

0 ≤ −λda
h /|H|+ γg

p,h ⊥ pgp,h ≥ 0 ∀h ∈ H, (A.6d)

0 ≤ γg
p,h ⊥ plp,h ≥ 0 ∀h ∈ H, (A.6e)

0 ≤
∑
h∈H

(−τ c
p,h) + µc ⊥ pc,max

p ≥ 0, (A.6f)

0 ≤
∑
h∈H

(−τd
p,h) + µd ⊥ pd,max

p ≥ 0, (A.6g)

0 ≤
∑
h∈H

(−τ e
p,h) + µe ⊥ emax

p ≥ 0, (A.6h)

0 = −Gp,h + pcp,h + pgp,h + plp,h , γg
p,h ∈ R ∀h ∈ H, (A.6i)

0 = −ep,h + ep,h-1 + T h · (pcp,h · ηc − pdp,h/η
d) , γe

p,h ∈ R ∀h ∈ H, (A.6j)

0 ≤ pc,max
p − pcp,h ⊥ τ c

p,h ≥ 0 ∀h ∈ H, (A.6k)

0 ≤ pd,max
p − pdp,h ⊥ τd

p,h ≥ 0 ∀h ∈ H, (A.6l)

0 ≤ emax
p − ep,h ⊥ τ e

p,h ≥ 0 ∀h ∈ H, (A.6m)

0 ≤ λrt
h /|H|+ T h · γe

r,h · ηc + γl
r,h + τ c

r,h ⊥ pcr,h ≥ 0 ∀h ∈ H, (A.7a)

0 ≤ −λrt
h /|H| − T h · γe

r,h/η
d + γl

r,h + τd
r,h ⊥ pdr,h ≥ 0 ∀h ∈ H, (A.7b)

0 ≤ −γe
r,h + γe

r,h+1 + τ e
r,h ⊥ er,h ≥ 0 ∀h ∈ H, (A.7c)

0 ≤
∑
h∈H

(−τ c
r,h) + µc ⊥ pc,max

r ≥ 0, (A.7d)

0 ≤
∑
h∈H

(−τd
r,h) + µd ⊥ pd,max

r ≥ 0, (A.7e)

0 ≤
∑
h∈H

(−τ e
r,h) + µe ⊥ emax

r ≥ 0, (A.7f)

0 ≤ Lmax
r − pcr,h − pdr,h ⊥ γl

r,h ≥ 0 ∀h ∈ H, (A.7g)

0 = −er,h + er,h-1 + T h · (pcr,h · ηc − pdr,h/η
d) , γe

r,h ∈ R ∀h ∈ H, (A.7h)

0 ≤ pc,max
r − pcr,h ⊥ τ c

r,h ≥ 0 ∀h ∈ H, (A.7i)

0 ≤ pd,max
r − pdr,h ⊥ τd

r,h ≥ 0 ∀h ∈ H, (A.7j)

0 ≤ emax
r − er,h ⊥ τ e

r,h ≥ 0 ∀h ∈ H, (A.7k)

0 ≤ P c,max − pc,max
a − pc,max

p − pc,max
r ⊥ µc ≥ 0, (A.8a)

0 ≤ P d,max − pd,max
a − pd,max

p − pd,max
r ⊥ µd ≥ 0, (A.8b)

0 ≤ Emax − emax
a − emax

p − emax
r ⊥ µe ≥ 0. (A.8c)
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