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Abstract

This paper proposes a Bayesian approach to assess if the data support

candidate set-identifying restrictions for Vector Autoregressive models. The

researcher is uncertain about the validity of some sign restrictions that she

is contemplating to use. She therefore expresses her uncertainty with a prior

distribution that covers the parameter space both where the restrictions are

satisfied and where they are not satisfied. I show that the data determine

whether the probability mass in favour of the restrictions increases or not from

prior to posterior. Using two applications, I find support for the restrictions

used by Baumeister & Hamilton (2015a) in their two-equation model of labor

demand and supply, and I find support for the true data generating process in

a simulation exercise on the New Keynesian model.
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1 Introduction

Many research questions in Economics are addressed using Structural Vector Autore-

gressive models (SVARs). Yet the data only lead the researcher toward a reduced

form representation, and give a set of covariance restrictions to map the reduced

form model into the structural model. Since the covariance restrictions admit many

structural representations, researchers typically complement covariance restrictions

with identifying restrictions. For example, one can set-identify demand and supply

shocks using the generally accepted view that demand functions are negatively sloped

and supply functions are positively sloped.

This paper develops a Bayesian approach to assess whether the data support can-

didate set-identifying restrictions that the researcher is contemplating to use. The

restrictions considered are sign restrictions, which are assessed as follows. Divide

the structural parameter space A into two subsets, Avalid and Ainvalid, depending

on whether the parameter values satisfy the identifying restrictions or not. For ex-

ample, in the case of demand and supply functions, Ainvalid includes all structural

representations featuring two positively sloped or two negatively sloped equations.

The conventional approach is to dismiss Ainvalid, say, by attaching zero prior mass to

it. On the contrary, I develop the following preliminary step to the identification of

the model, in order to let the researcher assess the support that the data give to the

candidate identifying restrictions. The researcher expresses her uncertainty regarding

the validity of the restrictions using a prior distribution that attaches mass to both

Avalid and Ainvalid. She then compares the probability mass on Avalid from prior to

posterior. The more this probability mass increases, the more the researcher can sub-

jectively resolve her uncertainty in favour of the identifying restrictions and proceed

to structural analysis, for example following Baumeister & Hamilton (2015a,b).
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The key challenge faced in developing the above assessment is that the likelihood

function is equally high across all candidate structural representations of the VAR.

Hence the data support representations that satisfy the identifying restrictions just

as much as they support representations that do not satisfy the restrictions. Under

a frequentist approach, this implies that, as long as neither Avalid nor Ainvalid is

empty, no assessment of the validity of the restrictions can be developed, unless

using additional information external to the model (as for example in Lütkepohl &

Netšunajev 2014). On the contrary, the Bayesian approach offers a framework to

assess the (subjective) validity attached to the identifying restrictions by studying

the probability mass corresponding to Avalid. This is equivalent to comparing prior

and posterior odds associated with Avalid, relative to the full parameter space A.

The use of Bayesian model comparison through prior and posterior odds is well

established in the literature. However, to the best of my knowledge, it is not ap-

plied to SVAR models, because prior information regarding the relative validity of

two specific candidate structures (say the recursive structure and any rotation of it)

is not updated by the data, due to the indeterminacy of the model. This point is

uncontroversial and is well recognized in the literature since at least the contribu-

tions by Kadane (1974), Drèze (1974), Drèze & Richard (1983) and Poirier (1998).

However, I show that it holds only for point-identification, not for set-identification,

which was introduced to the literature at a later stage (Faust & Leeper 1997, Canova

& De Nicoló 2002, Uhlig 2005). By discussing this possibility, the paper aims to fill

a gap in the literature, considered the widespread use of set-identified SVAR models.

The reason why the data allow for an update of the prior mass on candidate

set-identifying restrictions is that the likelihood function is not flat in the structural

parameter space. It only features infinite modes – the infinite candidate structural

representations – whose distribution in the structural parameter space reflects the
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data covariance structure. Since the latter is identified, the data inform the researcher

as to where the candidate representations lay in the parameter space. The model

remains unidentified in the sense discussed by Kadane 1974, and no attempt is made

to generate a well-behaved posterior by dominating the likelihood with a prior that

favours one specific representation. The update occurs because the parameters of the

model are not variation-free, due to the constraints that the reduced form parameters

impose upon the structural ones. Accordingly, the marginal prior on unidentified

parameters can be updated by the data even without prior dependence. This point

is already discussed in the literature, but to the best of my knowledge it has not

been acknowledged as a tool for model comparison of SVAR models (see for example

Koop & Poirier 1997 for an application to switching regression models, and Canova

& Sala 2009 and Koop et al. 2013 for an application to DSGE models).

The intuition of the analysis is built using the example of a demand and a sup-

ply function for the labour market. The thought experiment is the following. A

researcher has data on employment and wages, and is willing to use the identify-

ing restriction that the labor supply function is positively sloped. However, she is

uncertain whether she should impose a negatively sloped labor demand function,

because economic theory also provides support for positively sloped demands (see

for example the efficiency wage literature, Shapiro & Stiglitz 1984 and Yellen 1984).

The researcher aims to develop a preliminary assessment of the proposition that,

conditioning on one of the equations of the model being positively sloped, the other

equation is negatively sloped. If in fact such candidate identifying restriction was not

satisfied by the (unknown) process that generated the data, sign restrictions would

be inappropriate to disentangle between demand and supply shocks.

I first show that, while being unidentified, the unrestricted model still favours

certain parts of the parameter space more than others, in a way summarized in the
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covariance structure of the reduced form model. In a bivariate set-up, the feature that

drives the update, namely the fact that structural and reduced form parameters are

not variation-free, can be isolated analytically through an appropriate reparametriza-

tion of the model, as shown. I then apply the analysis to the identification of labor

demand and labour supply shocks by Baumeister & Hamilton (2015a), and to a stan-

dard New Keynesian model. I find extensive support for the identifying restrictions

used by Baumeister & Hamilton (2015a), and I find that the update successfully

guides the researcher in the identification of the New Keynesian model.

Section 2 outlines the proposed Bayesian assessment of set-identifying restrictions

in a general framework. Section 3 develops the intuition analytically using the bi-

variate VAR model for the labour market. Section 4 shows the application to the

New Keynesian model. Section 5 concludes.

2 Assessing candidate set-identifying restrictions

The structural VAR model can be written as

Ayt = C1yt−1 + ...+ Cpyt−p + εt,

= Cxt + εt. (1)

Matrix A represents a k× k matrix capturing the contemporaneous relations among

variables, yt is a k × 1 vector of endogenous variables, C = [C1, ..., Cp] is a k × kp

matrix that includes the autoregressive parameters of the model, xt = (y′t−1, ..., y
′
t−p)

′

is a kp× 1 vector containing the p lags of the endogenous variables and εt is a k× 1

vector of serially uncorrelated structural shocks, with εt ∼ N(0, I). The reduced
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form model corresponding to (1) is

yt = Π1yt−1 + ...+ Πpyt−p + νt,

= Πxt + νt. (2)

Matrix Π = A−1C contains the reduced form autoregressive parameters of the model,

while νt = A−1εt are the reduced form shocks, or VAR innovations, with νt ∼ N(0,Ω),

Ω = A−1A′−1. Deterministic terms in models (1) and (2) are omitted to simplify

notation.

Call Y = [y−p+1, .., y0, y1, ..., yT ] a matrix containing the data. As shown for

example in Amisano & Giannini (2002), conditioning on the first p observations, the

likelihood function of the model can be written as

L(Π,Ω;Y ) = (2π)−
Tk
2 |Ω|−

T
2 e−

1
2

∑T
t=1(yt−Πxt)′Ω−1(yt−Πxt). (3)

To focus on identification, assume that Π is known (alternatively, suppose we have

an estimator for it, say the OLS estimator). The likelihood function can then be

written as

L(Ω; Ω̂) = (2π)−
Tk
2 |Ω|−

T
2 e−

T
2
trace

(
Ω−1Ω̂

)
, (4)

where the data now enter the likelihood through Ω̂ =
∑T

t=1(yt−Πxt)′(yt−Πxt)

T
. Ω̂ corre-

sponds to the OLS/MLE estimator of the unknown matrix Ω, and is a consistent

estimator for Ω. Last, to make the unidentification of the structural model explicit,

substitute out the unknown matrix Ω with A−1A′−1, obtaining

L(A; Ω̂) = (2π)−
Tk
2 |A|T e−

T
2
trace

(
A′AΩ̂

)
. (5)
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The unidentification of the structural model (1) can be seen from equation (5).

Define Ac the lower triangular decomposition of Ω̂, which implies A−1
c A′−1

c = Ω̂. The

maximum value of the likelihood function can be reached for A = Ac from equation

(5), or equivalently for Ω = Ω̂ from equation (4). Yet, the same maximum is reached

for A = QAc with Q any orthogonal matrix, i.e. Q′Q = I, as can be seen by trivial

substitutions into equation (5). Ω is identified, since the likelihood has a unique mode

in Ω (Hamilton 1994). However, A is not identified, since the likelihood has infinite

modes in A, corresponding to the infinite possible draws of the orthogonal matrix Q.

In this sense, any structural representation of the model is just as consistent with

the data, as long as the corresponding matrix A satisfies the covariance restrictions

A−1A′−1 = Ω̂. (6)

The literature already discusses the fact that prior information regarding the

validity of any specific structural representations is not updated by the data (see

Drèze & Richard 1983 for a discussion in the context of Simultaneous Equation

Systems). However, while this is true for point-identification, I argue that it is not

true for set-identification. To make this point explicit, call p(A) the prior belief that

the researcher expresses regarding the contemporaneous structural parameters of

the model. p(A) can be evaluated anywhere in the parameter space of A, including

in two candidate structural representations of the model, say Ac and QAc. The

corresponding prior odds are p(Ac)/p(QAc). Since L(Ac; Ω̂) = L(QAc; Ω̂), the Bayes

Factor L(Ac; Ω̂)/L(QAc; Ω̂) equals unity, leading to posterior odds equal to prior
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odds,

p(Ac|Ω̂)

p(QAc|Ω̂)
=

p(Ac)

p(QAc)
· L(Ac; Ω̂)

L(QAc; Ω̂)
,

=
p(Ac)

p(QAc)
. (7)

This inability to meaningfully compare candidate specific structural represen-

tations is uncontroversial. However, the fact that a unique mode in A cannot be

established does not imply that the data equally support A anywhere in the pa-

rameter space. In fact, the likelihood function is not flat along A, it only features

infinite modes, whose distribution in the parameter space of A is pinned down by

the covariance restrictions (6). Matrices A achieving the maximum likelihood can

be generated without loss of generality starting from Ac and computing A = QAc.

Ac is identified, given that Ω is identified and that the decomposition of Ω into Ac is

unique (under standard sign normalizations of the shocks). Once she identifies Ac,

the researcher indirectly learns where in the parameter space A can be, given that

Q cannot be any matrix but it is constrained to be orthogonal.

While the above point is indirectly exploited in several applications, for example

in the interpretation of acceptance ratios within frequentist applications of sign re-

strictions (see Section 3), to the best of my knowledge it is not outlined explicitly

as the point of departure for a Bayesian assessment of set-identifying restrictions.

To appreciate the relevance of this point, consider again the prior distribution p(A).

Call A the parameter space for A. Suppose the researcher wants to assess the data

support for Avalid, for example because Avalid implies impulse responses satisfying

certain sign, magnitude or shape restrictions. To avoid trivial situations, consider the

case in which there is at least one candidate structural representation in both Avalid

and Ainvalid, i.e., ∃Q s.t. QAc ∈ Avalid and ∃Q s.t. QAc ∈ Ainvalid. The researcher
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expresses her nondogmatic prior belief favouring Avalid with p(A ∈ Avalid) < 1. Con-

trary to point identification, the data can potentially speak in favour of or against

Avalid, because the posterior odds,

p(A ∈ Avalid|Ω̂)

p(A ∈ Ainvalid|Ω̂)
=

∫
Avalid p(A|Ω̂)dA∫
Ainvalid p(A|Ω̂)dA

,

=

∫
Avalid p(A)L(A, Ω̂)dA∫
Ainvalid p(A)L(A, Ω̂)dA

, (8)

do not necessarily equal prior odds p(A∈Avalid)
p(A∈Ainvalid)

, since L(A; Ω̂) is not flat in A. Indi-

rectly, the data speak in favour of or against Avalid by revealing the mass under the

likelihood in Avalid, which is converted into a posterior proper subjective probability

through Bayes’ rule, as long as the prior distribution P (A) is proper. Identification

uncertainty and estimation uncertainty are then conveniently summarized by the

posterior distribution. Note that as a special case, if Avalid ≡ Ac and Ainvalid ≡ QAc,

posterior and prior odds coincide, leading the researcher back to the case of point

identification from equation (7).

The above discussion outlines the possibility of updating beliefs on candidate set-

identifying restrictions by studying the position of the maxima of likelihood function

in the parameter space. While the data enter the likelihood function through matrix

Ω̂, analysing how Ω̂ can be used to assess the relative support for different parts of

the parameter space can be challenging, since covariance restrictions are nonlinear in

A. In the next section, I use a simple bivariate model to show a case in which such

assessment can be developed analytically. I use this simplified analysis, which builds

on the work by Baumeister & Hamilton (2015a), to relate the proposed approach

to the existing literature, and to build the intuition of how the unidentification of

the full model does not rule out the possibility of identifying at least some relevant
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features of the unknown structure of the data. Section 4 then shows a numerical

application to a simulation exercise.

3 Application to Baumeister & Hamilton (2015a)

Baumeister & Hamilton (2015a) argue that sign restrictions are best applied using

a Bayesian framework that explicitly acknowledges the prior distributions used on

the structural parameters of the model. They develop the intuition of their analysis

using a bivariate structural VAR model of labour demand and supply. The model is

written as

∆nt = α∆wt + c1 + C11(L)∆nt−1 + C12(L)∆wt−1 + ε1t , (9)

∆nt = β∆wt + c2 + C21(L)∆nt−1 + C22(L)∆wt−1 + ε2t . (10)

Rewrite the model in compact form as

Ayt = c+ C1yt−1 + ...+ Cpyt−p + εt, (11)

with yt = (∆nt,∆wt)
′ the vector of the growth rate of US total employment and of

the real compensation per hour,1 and

A =

−β 1

−α 1

 ; V (εt) = D =

d1 0

0 d2

 .

Contrary to model (1), model (11) normalizes one column of matrix A rather than the

covariance matrix of the structural shocks.2 Baumeister & Hamilton (2015a) identify

1See footnotes 14 and 15 in the original paper for the description of the data.
2In the application in Section 4 I use a model that specifies the contemporaneous impact effect
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ε1t and ε2t using a Student t prior distribution for α truncated at zero and with 95%

mass in the support [0, 0.22], and a Student t prior distribution for β truncated at

zero and with 95% mass in the support [−2.2, 0]. Given these sign and magnitude

restrictions, they interpret ε1t as a supply shock and ε2t as a demand shock.

To build the intuition behind the assessment of set-identifying restrictions pro-

posed in this paper, I depart from their analysis and develop the following illustrative

thought experiment. Suppose the researcher trusts the identifying restriction that

the wage elasticity of labour supply is positive, i.e. α > 0. However, she is uncertain

regarding the sign of the elasticity of labour demand β, because economic theory

also lends support to positively rather than (more conventional) negatively sloped

labour demand functions. This is the case, for example, in the efficiency wage litera-

ture, which the literature uses to explain phenomena like involuntary unemployment

and dual labour markets (Shapiro & Stiglitz 1984, Yellen 1984).3 The researcher

legitimately expresses uncertainty on whether she should impose the restriction that

β < 0, and aims to assess whether the data support such candidate restriction.

More precisely, suppose for simplicity that the researcher is willing to exclude

of shocks rather than the contemporaneous relations among variables, i.e.

yt = A−1c+A−1C1yt−1 + ...+A−1Cpyt−p +A−1εt.

I also use the normalization on the covariance matrix of the structural shocks. In the application in
this section, the normalization of the elements in A rather than in D reduces from four to two the
dimensionality of the parameters that determine the validity of candidate identifying restrictions,
hence allowing for the use of graphs to develop the intuition behind the analysis.

3A simplified exposition of this theory is the following. A firm has access to a production
function y = l̃φ (with 0 < φ < 1). This production function is standard except for the fact that
l̃ = e(w)l = cwηl, with l̃ the labour inputs in terms of efficiency units, l the effective labour
input and η the elasticity of labour efficiency with respect to wages. The production function
formalizes the fact that workers’ productivity is increasing in the real wage w. In this example,
the firm is price taker on the wage market, but anticipates the incentive that the level of real
wages exerts on workers’. By solving for labour demand we obtain the wage elasticity of labour
demand εld,w = − 1−ηφ

1−φ . If η > 1/φ, the labour demand is positively sloped, because the elasticity
of labour efficiency with respect to the real wage is high enough to compensate the firm for the
decreasing returns to efficiency units of labour. Alternatively, one can consider negatively rather
than positively sloped labor supply functions, which emerge in a model in which the income effect
dominates the substitution effect.
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values considered extreme for α and β by using the following support for A:

Sα : 0 ≤ α ≤ αH , (12a)

Sβ : βL ≤ β ≤ βH , (12b)

The boundaries αH , βL and βH , whose relevance in the analysis is discussed below,

can be set using either economic theory (as at the end of this section) or reduced

form statistics (as in Section 4). The researcher aims to assess the data support

for the proposition that, conditioning on 0 ≤ α ≤ αH , A belongs to Avalid, with

Avalid = {A : 0 ≤ α ≤ αH , βL ≤ β ≤ βH}. For the moment, the actual prior

distribution P (A) is not specified other than for its support, nor we introduce p(D),

the prior on the variance of the structural shocks. This is done in order to emphasize

the role of the likelihood function in driving the update.

In Section 2, it was discussed that, while not allowing the researcher to identify

a unique matrix A, the information in Ω̂ potentially allows the researcher to update

her subjective belief on p(A ∈ Avalid). In this bivariate model, the main driver of

the update can be computed analytically, as is now discussed.

Call ω̂ij the i, j element of Ω̂. Define ρ as

ρ(Ω̂) =
ω̂12

ω̂11

≡ ω̂12√
ω̂11ω̂22

√
ω̂22√
ω̂11

. (13)

The covariance restrictions,

Ω̂ = A−1DA′−1, (14)

impose restrictions on α, β, d1, d2 given ω̂11, ω̂22, ω̂12. As shown in the appendix, the

system (14) implies that, given Ω̂, no solution exists in which α and β are on the

12



same side of ρ(Ω̂), i.e.

if α > ρ(Ω̂) → β < ρ(Ω̂), (15a)

if α < ρ(Ω̂) → β > ρ(Ω̂). (15b)

Not all combinations α, β that satisfy conditions (15) are candidate structural rep-

resentations of the data, they only are if there are values of the remaining structural

parameters d1 and d2 such that the covariance restrictions in (14) are met. How-

ever, no combination of α and β that fails to satisfy (15) can satisfy (14). Note

that ρ(Ω̂) bears an economic interpretation, as it equals the correlation in the VAR

innovations, scaled by a positive term. ρ(Ω̂) is identified, since it is a function of the

elements in Ω, which is identified. Asymptotically, ρ(Ω̂) converges to its population

value, as long as the support of ρ corresponding to p(A,D) is wide enough to include

such value. In finite sample, estimation uncertainty on ρ is inherited from estimation

uncertainty on Ω.4

Conditions (15) show that the reduced form parameters Ω and the structural

parameters α, β are not variation-free. This establishes the relation between reduced

form and structural parameters that allows for the update of the marginal distri-

bution of the latter given the update of the marginal distribution of the former.5

4Baumeister & Hamilton (2015a) discuss how the sign of the correlation between residuals (hence
also the sign of ρ(Ω)) allows interpreting sign restrictions on α and β as implicit restrictions on
the magnitude of the labour elasticities. In this paper I use their framework for model comparison
across candidate identifying restrictions, rather than to express identifying restrictions through
nondogmatic prior distributions. A related point is made by Paustian (2007), who discusses the
fact that if α > 0 is correctly imposed, then the frequentist researcher would always infer that
β < 0 if d2 is sufficiently bigger than d1, making the correlation (and hence) ρ(Ω) negative. I
further discuss the relationship of the analysis with the work by Paustian at the end of this section.

5As discussed for example in Poirier (1998), consider two parameters, ι and ν, with prior proba-
bilities p(ι) and p(ν). Suppose only ι is identified, i.e. the likelihood function is L(ι, ν; y) = L(ι; y).
The data potentially allow updating the belief on ι, i.e. p(ι|y) 6= p(ι). In addition, it holds that
p(ν|ι, y) = p(ν|ι), i.e. for given value of the identified parameter, beliefs about the unidentified
parameters cannot be updated by the data. However, the marginal belief on the unidentified pa-
rameter can potentially be updated, i.e. p(ν|y) 6= p(ν), as long as there is a relationship between ι
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Figure 1: Covariance restrictions and structural parameter space
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Notes: In Panel a), the light shaded area indicates the subset of the parameter space ruled out

through the sign restriction imposed on α. In the remaining panels, the dark shaded area indicates

the subset of the parameter space that cannot be reached by any structural representation of the

model, given the value of ρ implicit in the covariance structure of the data.

Upon learning about ρ(Ω̂), the researcher can readjust the distribution of the mass

under her prior p(A) and revise the implicit support to the associated set-identifying

and ν that allows the marginal update on ι to yield information on ν. This occurs either through
prior dependence, i.e. p(ι, ν) 6= p(ι)p(ν), or if ν and ι are not variation-free. An example of the
latter is the case in which the support of one parameter depends on the other parameter. In the ap-
plication to SVARs, the covariance restrictions of the model imply A and Ω being not variation-free.
In the bivariate case considered, this constraint on the support of α and β given Ω is highlighted
in equations (15).
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restrictions. I discuss this graphically in Figure 1. Panel a depicts the assessment

that the researcher aims to develop, namely the support for βL ≤ β ≤ βH condi-

tioning on 0 ≤ α ≤ αH . The prior distribution p(A) implies a prior probability

favouring the restrictions equal to the mass in correspondence to the bottom right

quadrant of panel a. The remaining panels show the part of the parameter space

that knowledge of Ω̂ allows to dismiss (dark shaded area), given an implied value of

ρ. If ρ(Ω̂) = 0, panel b, no candidate representation consistent with Ω̂ contradicts

the candidate identifying restrictions. This implies P (A ∈ Avalid|Ω̂) > P (A ∈ Avalid)

for almost any prior distribution p(A), since the modes of the likelihood would be

in the bottom right quadrant of panel b. The case of ρ(Ω̂) = 0 is the only case in

which a frequentist approach is able to deliver an assessment of the validity of the

restrictions that β is negative, since Ainvalid would be empty.

Consider now the cases in which ρ(Ω̂) is positive and small, panel c, or relatively

large, panel d. As shown in the appendix, when ρ(Ω̂) > 0 one can always find a

structural representation in the top right quadrant of panel a (even at the cost of α

or β unrealistically diverging to infinity). Accordingly, a frequentist approach would

fail to develop an assessment of the candidate identifying restrictions, because any

representation in the top right quadrant would be just as likely as any representation

in the bottom right quadrant. The information of whether ρ(Ω̂) is small or big would

not be used. On the contrary, under a Bayesian perspective, the information on the

magnitude of ρ(Ω̂) can be used. In fact, the higher is ρ(Ω̂), the more the part of

the parameter space where the likelihood functions reaches its maxima (non shaded

area) overlaps with a region that contradicts the candidate identifying restrictions.

Hence, a statistical assessment can be derived by comparing P (A ∈ Avalid|Ω̂) and

P (A ∈ Avalid), or equivalently P (A∈Avalid|Ω̂)

P (A∈Ainvalid|Ω̂)
and P (A∈Avalid)

P (A∈Ainvalid)
.

The full set of observational equivalence is shown in Figure 2, which complements
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Figure 2: Set of observational equivalence
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Notes: The top graphs show the combinations of α, β, d1, d2 that yield the maximum value of the

likelihood function. The lower graphs show the likelihood function in 3D.

Figure 1 (see also the discussion in Baumeister & Hamilton 2015a and Figure 4 in

their paper). The top graphs show combinations of α, β (on the left) and d1, d2

(on the right) that achieve the maximum likelihood. All combinations along the

line are equally likely, as long as the other two parameters are selected from the

same candidate structural representation of the model (see the appendix for the

computation of this set). The squared symbol in the figure indicates the Cholesky
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decomposition Ac, which then allows for the exploration of the rest of the set of

observational equivalence using appropriate rotation and reflection matrices Q in

A = QAc. The lower figures display the likelihood function, normalized to 100 at its

maximum. The likelihood function has infinite modes, whose distribution along the

parameter space reflects the pattern of the covariance structure hidden in Ω̂. In the

illustrative case of figure 2, ρ is positive.

So far the prior distribution on A has been presented only with regard to its sup-

port. I now discuss the specification of p(A) in further detail. Ideally, the prior would

faithfully reflect the researcher’s uncertainty regarding the validity of the identifying

restriction to be assessed, and would leave the Bayesian update to the likelihood

function. In practice, under the normalization of A, the set of observational equiv-

alence goes until ±∞ in the parameter space, as clear from Figure 2. This implies

that a diffuse prior on A would leave the marginal likelihood undefined. Similarly,

standard distributions like t Student distributions for α and β would also be po-

tentially problematic for the purpose of this paper, because they would drive the

update toward the parameter space mostly favoured by the prior. On the contrary,

the analysis of this paper does not aim to overcome the intrinsic unidentification of

the model by means of a proper prior distribution that dominates the likelihood and

imposes curvature to the posterior (see the discussion in Kociecki 2013). For this

reason, I use independent uniform distributions for α, β and set the boundaries to

imply a sufficiently large support for the prior, in a sense discussed below. While in

this section the boundaries on the structural parameters rule out part of the set of

observational equivalence implied by the data, this does not occur under the normal-

ization on the covariance matrix of the structural shocks used in Section 4, making

the use of a uniform distribution less costly.

While being relatively uninformative, even a uniform prior inevitably implies
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unintended features, because, as a general note, any uniform distribution of a pa-

rameter τ1 implies a non-uniform distribution to parameter τ2 = f(τ1) whenever f(.)

is a nonlinear function. This nonlinearity indeed emerges in VAR models, where

impulse responses and other statistics of interest are nonlinear functions of the pa-

rameters of the model. The paper does not aim at deriving less informative priors,

but to discuss the ability of the data to still identify selected features of interest

regarding the unidentified parameters of a model. See Giacomini & Kitagawa (2015)

for a Bayesian robust approach to numerically approximate posteriors under a wide

range of prior distributions along a common support.

I conclude this section by applying the analysis to Baumeister & Hamilton (2015a).

As discussed at the beginning of this section, they use the identifying restrictions

that one equation of the model is positively sloped and the other equation negatively

sloped. The Bayesian update developed in this paper allows to subjectively assess

the validity of the identifying restrictions imposed.

Baumeister & Hamilton (2015a) report an estimated matrix Ω̂ equal to

Ω̂ =

0.5920 0.0250

0.0250 0.1014

 , (16)

for a dataset of T = 178 observations. The corresponding parameter ρ equals 0.0422,

i.e. a positive and small value, as can be inferred from Figure 4 in their paper. The

boundaries for the uniform distributions on α and β are set using economic theory.

The truncated prior distribution used by Baumeister & Hamilton (2015a) implies

95% prior mass on α in the support [0, 2.2], and 95% prior mass on β in the support

[−2.2, 0]. In the application of this paper I use the support [−5, 5] for α and β, which

is comparatively a very large support. When conditioning on positive values of α, the

support of α reduces to [0, 5]. I use uninformative Gamma priors for d1, d2 to avoid
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the update from being indirectly driven toward structural representations favoured

by the prior distribution on the variances of the structural shocks. The algorithm

used to draw from p(A|Ω̂) is the one proposed by Baumeister & Hamilton (2015a),

except that I use an initial grid to ensure that the algorithm explores the entire space

of the admissible set of observational equivalence, given the flatness of the posterior

coming from a uniform prior. The derivations of the posterior distribution p(A|Ω̂)

are summarized in the appendix, while for the discussion of the Metropolis-Hastings

algorithm used the reader is referred to Baumeister & Hamilton (2015a).

Table 1: Bayesian assessment for the bivariate VAR model

Hypotheses Corresponding Prior Posterior Prior Posterior
parameter space probability probability odds odds

I) D|S β < 0 | α > 0 0.5000 0.8650 1.0000 6.4069
II) S|S β > 0 | α > 0 0.5000 0.1350 1.0000 0.1560

III) DS α > 0 & β < 0 (or v.versa) 0.5000 0.8657 1.0000 6.4455
VI) DD α < 0 & β < 0 0.2500 0.0095 0.3600 0.0009
V) SS α > 0 & β > 0 0.2500 0.1334 0.3600 0.1539

Following the terminology by Zellner (1971), I use the algorithm to compare

alternative hypotheses regarding the validity of structural candidate representations.

I first study to what extent there is support for a demand shock (β < 0), given

the restriction of the other shock being a supply shock (α > 0). This hypothesis,

labeled as Hypothesis I in Table 1, is compared to the complementary Hypothesis II

in which the unconditioned shock is another supply shock, i.e. it satisfies the sign

pattern associated with supply shock (strict zero equality are omitted for simplicity).

Hypotheses I versus II represent the thought experiment introduced at the beginning

of this section to motivate the analysis. I then drop the restriction α > 0 and assess

the support for a demand and a supply shock jointly (i.e. α > 0 and β < 0 or α < 0

and β > 0). This hypothesis, labelled as Hypothesis III, is compared to the case of
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both shocks taking the sign pattern of demand shocks (α < 0, β < 0, Hypothesis VI )

and to the case of both shocks taking the sign pattern of supply shocks (α > 0, β > 0,

Hypothesis V ).

Figure 3: Identification of ρ and update of p(ρ)
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Notes: The parameter rho helps pinning down where the the maxima of the likelihood function are

in the parameter space. ρ is uniquely identified, since the likelihood has a single peak in ρ at its

OLS estimate.

Consider Hypothesis I. As reported in Table 1, the prior probability mass favour-

ing a demand shock given a supply shock equals 50%, and it is updated upwards to

86%, with prior odds of 1 increasing to posterior odds of 6.40. This suggests that

the data provide support for the hypothesis assessed, while Hypothesis II is largely

dismissed. Consider then Hypothesis III, which is the same as Hypothesis I except

that it does not condition on α > 0. The prior probability favouring these restric-

tions is again 50%, which increases to 87%, equivalent to an increase in odds from 1

to 7.12. There is instead limited support for the possibility that α and β are both
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negative or both positive. Support for such parts of the parameter space would be

problematic, given the impossibility of sign restrictions to disentangle shocks asso-

ciated with the same sign pattern of responses. Accordingly, the data seem to lend

support to the identifying restrictions used by Baumeister & Hamilton (2015a) to

identify the model.

Figure 3 completes the discussion of the results by showing the update of the pa-

rameter ρ. It has been discussed that it is the information recovered by the researcher

on this parameter that drives most of the update, since knowledge of this parameter

allows the researcher to decrease her subjective probability mass in large parts of the

parameter space delimited by ρ. The prior distributions used for α, β, d1, d2 imply

a prior uniform distribution for ρ in the support [min(αL, βL),max(αH , βH)] (see

the appendix), shown in the top graph of Figure 3. The bottom graph shows the

posterior. The posterior mode for ρ equals the value in correspondence to Ω̂, i.e.

0.0422. Most importantly, the value is uniquely identified, while the distribution of

ρ reflects estimation uncertainty regarding Ω. It is the relatively low but positive

value of ρ that drives the update in favour of Hypotheses I and III in Table 1.

I conclude this section with a few remarks. As can be inferred from Table 1

and Figure 3, the proposed assessment of candidate set-identifying restrictions only

provides the researcher with a probabilistic answer. Except for the special cases,

it will not rule out the researcher’s uncertainty on the validity of the restrictions,

leaving her with the choice of whether to rethink the identification strategy, or to

trust the identifying restrictions and proceed with structural analysis. Such degree

of arbitrariness could be disciplined by adopting a loss function, and would emerge

just as well under a frequentist approach in the choice of a significance level for the

test (Zellner 1971, Chapter X ).

In some frequentist applications of sign restrictions to VAR models, researchers
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report the acceptance ratio, i.e. the ratio of extractions that satisfy the sign restric-

tions relative to the total number of extractions (see for example Kilian & Murphy

2012 and Straub & Peersman 2006). While what drives the statistical assessment

developed in the paper is the same feature that drives the acceptance ratio, there are

three important differences between the two approaches. First, in a frequentist set-

ting one can draw inference on the validity of a candidate set of sign restrictions only

in the special cases in which the acceptance ratio equals either zero or one. Second,

the frequentist use of acceptance ratios does not compare it to the acceptance ratio

that is instead implicit in the prior beliefs by the researcher, making it harder to draw

conclusions from the results. Third, in its standard use, the acceptance ratio fails to

account for estimation uncertainty of the matrix Ω. The Bayesian approach, instead,

is not constrained to cases in which posterior probabilities equal 0 or 1, it explicitly

outlines the prior probability favouring the candidate identifying restrictions, and it

naturally combines estimation and identification uncertainty into a proper posterior

distribution, ultimately turning the acceptance ratio into a probability.

The difference between frequentist acceptance ratios and Bayesian model com-

parison allows also to relate the paper to Paustian (2007). Paustian studies to what

extent the correct imposition of sign restrictions to a subset of the parameter space

implies only representations that meet the correct sign of the unrestricted remaining

structural parameters. As in his work, it is the covariance structure of the model

that determines whether the candidate structural representations of the model will

be in one part or another of the parameter space. The Bayesian analysis pursued

in this paper extends his analysis to a probabilistic setting, which allows to draw

inference even when draws imply both structural representations with the correct

sign of the parameters and structural representations with the incorrect sign of the

parameters.
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4 Application to a New Keynesian model

Having developed the key intuition of the analysis using a bivariate model that allows

for analytical derivations of the main driver of the update, I now explore numerically

the potential of the Bayesian assessment discussed in Section 2 using a simulation

exercise on a standard new Keynesian model.

The model, which is used also in Koop et al. (2013) to study the identification of

DSGE models, consists of three equations:

Rt = ψπt + εMt , (17a)

xt = Et(xt+1)− σ(Rt − Et(πt+1)) + εDt , (17b)

πt = βEt(πt+1) + γxt + εSt . (17c)

Equation (17a) is a monetary policy rule determining the interest rate Rt. Equation

(17b) is an IS curve determining the output gap xt. Equation (17c) is a Phillips

curve determining inflation πt. The structural shocks in the model are a monetary

shock εM , a demand shock εD and a cost-push shock εS, or supply shock.

Rewriting model (17) in structural VAR form gives

Rt = ψπt + εMt , (18a)

xt = −σRt + εDt , (18b)

πt = γxt + εSt , (18c)

This, in turn, can be written as

Ayt = εt, (19)
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with

A =


1 0 −γ

σ 1 0

0 −ψ 1

 yt =


Rt

xt

πt

 εt =


εMt

εDt

εSt

 . (20)

I calibrate and simulate the model as in Koop et al. (2013). The values of the

structural parameters are σ = 0.4, γ = 0.75, ψ = 2. I then rewrite the model

in the specification that formalizes the contemporaneous impact effects of shocks

rather than the contemporaneous relationships among variables, since the former is

more common in the identification of this type of models. The true structural model

generating the data is then

yt = Bεt, (21)

with

B =


0.62 0.93 0.47

−0.25 0.62 −0.18

−0.50 1.25 0.62

 yt =


Rt

xt

πt

 εt =


εMt

εDt

εSt

 . (22)

The first column of B corresponds to the impulse vector to a monetary shock, the

second column to the impulse vector to a demand shock and the third column to

the impulse vector to a supply shock. As in Koop et al. (2013), the shocks are

all standard normal and independent of one another, and the artificial data are

generated for T = 100 observations. The estimated variance-covariance matrix of

the VAR innovations is

Ω̂ =


ω̂11 ω̂21 ω̂31

ω̂21 ω̂22 ω̂23

ω̂31 ω̂32 ω̂33

 =


1.48 0.34 1.15

0.34 0.48 0.79

1.15 0.79 2.20

 . (23)
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Rewrite matrix B from model (21) in the general form as

B =


β11 β12 β13

β21 β22 β23

β31 β32 β33

 . (24)

Since within this type of models shocks are at best identified up to sign convention, I

normalize β1,j, j = 1, 2, 3 to take positive values, which is achieved through the prior

distribution discussed below. Accordingly, each impulse vector j is associated with

only two elements whose sign is unrestricted, i.e. β2,j and β3,j. Each of the three

impulse vector can take one of the four sign patterns, summarized in Table 2 and

shortened with the letters M,D, S and O. Overall, there exist twenty unique combi-

nations of four elements (the four sign patterns M,D, S and O) gathered into groups

of three (the three columns of matrix B) when considering the order of the shocks as

irrelevant. The combinations are {M,D, S}, {M,M,S}, {M,D,O}, . . . . However,

sign restrictions could only detect four of such combinations (namely {M,D, S},

{O,D, S}, {M,D,O} and {M,O, S}), corresponding to the cases in which no sign

pattern for the impulse responses is ever repeated.

Table 2: Candidate sign patterns for the shocks

Interpretation: Monetary shock Demand shock Supply shock Other shock
Symbol: M D S O

Sign pattern:

(
−
−

) (
+
+

) (
−
+

) (
+
−

)

We know that the true pattern of shocks in the process generating the data

consists of one monetary shock, one demand shock and one supply shock, which is the

combination {M,D, S}. In real world applications this is of course not known to the

researcher, who might express uncertainty regarding the validity of such restrictions.
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This could happen, for example, because of economic theories that predict alternative

sign patterns for the shocks. For this reason, I develop the thought experiment

in which the researcher decides to assess the support by the data for these sign

restrictions, instead of immediately using them to run structural analysis.

Operationally, the researcher expresses her uncertainty regarding the validity of

some candidate set of sign restrictions through a prior distribution on B. Under the

normalization of the model to V (st) = I used here, each element bij of matrix B can

be interpreted as the impact effect on variable i of a one standard deviation increase

in shock j. A relatively uninformative way of expressing uncertainty on B is then

to set a prior support for bij in the interval [−4 · √ωii, 4 ·
√
ωii]. This implies that a

one standard deviation shock cannot impact variable i by more than four times as

much as the standard deviation of the innovation of the variable itself. Contrary to

the case in Section 3, these boundaries impose no constraint conditioning on a value

of Ω due to the normalization on the covariance matrix of the structural shocks.6

The entries of B are independently distributed, and as in Section 3, are uniformly

distributed. For entries b1,j, j = 1, 2, 3, the prior distribution is truncated to be

positive. The remaining entries imply positive probability mass to all of the twenty

combinations of the four candidate sign patterns summarized in Table 2.

The results of the analysis are summarized in Table 3. The alternative hypotheses

6In the general case of a k × k matrix B and under the normalization of the covariance of
the structural shock to the identity matrix, the covariance restrictions Ω̂ = BB′ imply k(k + 1)/2
restrictions. The restrictions corresponding to the diagonal elements of Ω̂ are ω̂ii = b2i1+b2i2+...+b2ik.
Since ω̂ii is nonnegative, no element on the right hand side can violate condition

−
√
ω̂ii ≤ bij ≤

√
ω̂ii for j = 1, 2, ..., k.

Hence, conditioning on a value of Ω̂, prior distributions for bij in the support [−µ
√
ω̂ii, µ

√
ω̂ii] with

µ > 1 include the entire set of observational equivalence. In a model with covariance restrictions

Ω̂ = A−1A′−1 the constrains on aij are −
√
ω̂Ijj ≤ aij ≤

√
ω̂Ijj , given ω̂Ijj the j, j entry of Ω̂−1. When

instead the normalization is applied on a row (in the B model) or a column (in the A model) rather
than on the covariance matrix of the structural shocks, the above constraints for the unrestricted
elements in the matrix B and A diverge to the entire real line.
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compared are the twenty candidate unique combinations listed on the second column

of the table. The line corresponding to the true combination of shocks is highlighted

in bold. The analysis is divided into two scenarios. Under Scenario 1, the researcher

addresses explicitly the possibility that sign patterns of shocks could be non-unique,

and that the model might feature shocks which could not be separately set-identified

using sign restrictions. Scenario 2, instead, conditions the analysis to the candidate

combinations of shocks that would be unique in terms of sign patterns. For sim-

plicity, the analysis departs from the same prior distribution and then readjusts the

probabilities under Scenario 2 using the rule of conditional probability.7 The results

are reported as in Table 1, comparing the prior and posterior probability mass in

favour of the hypothesis considered, and the corresponding prior and posterior odds.

Combinations are listed in descending order according to the posterior probability

mass in favour of the candidate hypothesis.

Consider Scenario 1. The prior probability mass corresponding to the prior distri-

bution on B is positive for each candidate combination of shocks, and equals between

approximately 0.02 and 0.09.8 From the posterior probability mass we see that the

researcher can confidently rule out 11 candidate combinations, which are the ones

to which the algorithm attaches posterior mass equal to zero. The true combination

of shocks features a probability mass that increases from 9% to 18%. While not

being the combination associated with the highest posterior probability, it ranges as

third, already indicating a relatively strong support for such sign pattern, relative to

7An alternative approach would be to specify the prior distributions on bij recursively, restricting
new shocks not to take the same pattern of the preceeding shocks.

8Under the uniform prior distribution used, each of the four candidate sign patterns of shocks has
a 0.25 probability of occurring. This implies a 0.25 · 0.25 · 0.25 = 0.015625 probability of drawing
a combination of shocks featuring the same sign pattern for all three shocks. The probability
mass attached to a combination featuring two equal sign patterns then increases to 3 · 0.015625 =
0.046875, given the three possible permutations of a combination of shocks featuring two identical
sign patterns. The probability instead increases to 6 · 0.015625 = 0.09375, given the six possible
permutations of a combination of shocks all featuring different sign patterns.
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competing patterns.

Table 3: Bayesian assessment for the New Keynesian model

Scenario 1 Scenario 2
Prior Post. Prior Post. Prior Post. Prior Post.

Hp. Shocks prob. prob. odds odds prob. prob. odds odds

1 DDM 0.05 0.25 0.05 0.34
2 DDS 0.05 0.23 0.05 0.30
3 MDS 0.09 0.18 0.10 0.22 0.25 0.57 0.33 1.30
4 DDD 0.02 0.09 0.02 0.10
5 ODS 0.09 0.08 0.10 0.08 0.25 0.24 0.33 0.31
6 DDO 0.05 0.06 0.05 0.07
7 MDO 0.09 0.06 0.10 0.07 0.25 0.20 0.33 0.24
8 MMD 0.05 0.02 0.05 0.02
9 SSD 0.05 0.02 0.05 0.02

10 MOS 0.09 0 0.10 0 0.25 0 0.33 0
11 OOS 0.05 0 0.05 0
12 OOD 0.05 0 0.05 0
13 OOM 0.05 0 0.05 0
14 SSO 0.05 0 0.05 0
15 SSM 0.05 0 0.05 0
16 MMO 0.05 0 0.05 0
17 MMS 0.05 0 0.05 0
18 OOO 0.02 0 0.02 0
19 SSS 0.02 0 0.02 0
20 MMM 0.02 0 0.02 0

Inspection of the results under Scenario 1 shows that the combinations that

the algorithm favours relative to the true pattern of shocks are combinations that

include two shocks associated with the sign pattern of demand shocks. However, the

researcher considering to use sign restrictions might find it suspicious to have two

demand shocks, and might be willing to impose the prior restriction that shocks with

the same pattern are not in place. This is indeed common practice when using sign

restrictions. Note that the problem emerges only with two demand shocks, while

any combination of two other shocks (i.e. containing MM , SS or OO) can be ruled

out by the researcher based on the unrestricted results from the Bayesian update.
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The results for such a conditioning thought experiment are shown under Scenario

2. Under this case, the probability mass favouring the true sign pattern of shocks

increases from 25% to 57%, and is associated with the highest posterior probability.

Overall, judging whether the Bayesian assessment developed in the paper success-

fully guides the researcher in identifying the correct pattern of shocks is a subjective

matter, and should be explicitly done by setting and defending a full loss func-

tion rather than heuristically comparing prior and posterior probabilities. This loss

function could impose weights to discipline the choice of favouring a candidate set

of restrictions when the posterior probability favouring such restrictions is strictly

lower than one, or to discipline the decision between a candidate set of restrictions

and other restrictions apparently more favoured by the data but at odds with other

prior beliefs of the researcher. The purpose of the paper is not to investigate possi-

ble loss functions, but to show that the Bayesian update on candidate set-identifying

restrictions can take place, and that there is useful information that the researcher

gains from such an exercise.

5 Conclusions

Structural interpretations of reduced form vector autoregressive models are usually

achieved by combining the covariance restrictions given by the data with additional

identifying restrictions. This paper discussed the possibility of statistically assess-

ing set-identifying restrictions using the covariance restrictions of the model. The

analysis develops an approach that allows the data to speak in favour of or against

candidate set-identifying restrictions, before such restrictions are imposed upon the

data when actually identifying the model. The Bayesian model comparison is made

possible by the fact that the reduced form and the structural form parameters of the
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SVAR model are not variation free, as the two sets of parameters are linked through

the covariance restrictions. Since the former are identified, the researcher can update

her belief on the latter even without prior dependence between the two.

I first developed the intuition using a simple model in which a reparametrization

of the model allows isolating analytically an important driver of the update. I then

show the functioning of the proposed Bayesian assessment using two applications.

The first one is the bivariate model of the labour market by Baumeister & Hamilton

(2015a), the second one is a simulated New Keynesian model. I find extensive support

for the sign restrictions used in the identification of the labour market, and I find

that the algorithm points the researcher towards the true pattern of shocks driving

the New Keynesian model.

The paper mainly relates to the contribution by Baumeister & Hamilton (2015a).

Contrary to their work, this paper proposes an approach to achieve model comparison

across candidate set-identifying restrictions, rather than to model prior identifying

restrictions in a Bayesian way. Overall, the analysis suggests potential in the tool

developed, although much more research is required in order to learn how the con-

clusions drawn from the application discussed hold in a more general framework.
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Appendix A: Decomposition of the covariance re-

strictions in Section 2

The covariance restrictions of the model in Section 2 are

Ω = A−1DA′−1.

Define ωi,j the i, j entry of matrix Ω (or of Ω̂, if the analysis is in sample instead of in

population) and di the i, i entry of the diagonal matrix D. Under the normalization

to unity of the second column of A and the parametrization A =

−β 1

−α 1

, the

covariance restrictions are summarized by the following system of equations:

ω11 =
1

(α− β)2
[d1 + d2], (25a)

ω12 =
1

(α− β)2
[αd1 + βd2], (25b)

ω22 =
1

(α− β)2
[α2d1 + β2d2]. (25c)

This is a system of four unknowns (α, β, d1, d2) in three elements (ω11, ω12, ω22). Data

(if working in sample) or population moments (if working in population) enter the

restrictions through (ω11, ω12, ω22).

To solve for the structural form, obtain d1 = (α−β)(ω12−βω11) as a solution for

d1 in α, β from equations (25a) and (25b). Then obtain d1 = α−1(α−β)(ω22−βω12) as

a solution for d1 in α, β from equations (25b) and (25c). Equating these expressions

gives the solution for β for an arbitrary value of α:

β(α) =
ω22 − αω12

ω12 − αω11

. (26)
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Equation (26) coincides with equation (51) in Baumeister & Hamilton (2015a). Each

combination of α and β(α) is associated with a combination of d1 and d2 that ensures

that the covariance restrictions are met. d1 and d2 can be computed as

d1(α, β) = (α− β)(ω12 − βω11), (27)

d2(α, β) = (α− β)(αω11 − ω12). (28)

Equations (26), (27), (28) jointly provide the solution for the structural parameters

β, d1, d2 given an arbitrary choice of α.

Define

ρ =
ω12

ω11

. (29)

From equations (27) and (28) (or dividing (25b) by (25a) and rearranging) we obtain

δ(α, β) ≡ d1(α, β)

d1(α, β) + d2(α, β)
=
ρ− β
α− β

. (30)

Since the left-hand side is constrained to the interval [0, 1], ρ constrains α and β.

If α > β, then conditions δ > 0 and δ < 1 jointly imply β < ρ < α. If instead

α < β, then conditions δ > 0 and δ < 1 jointly imply α < ρ < β. Hence, no solution

exists in which α and β are on the same side of ρ. Equality between α and β would

lead δ(α, β) to diverge to infinity, or equivalently, to the singularity of matrix A.

Combining (26) with (29) and rearranging gives

β(α) =
ω22

ω11
− αρ

ρ− α
or α(β) =

ω22

ω11
− βρ

ρ− β
, (31)

which shows that β or α diverge when α and β approach ρ, yielding δ(α, β) to

approach 1 or 0, respectively. A solution can instead always be computed for α 6= ρ
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or β 6= ρ. To compute the implicit prior distribution on ρ given p(A,D), combine

equations (25a) and (25b) with (29), obtaining

ρ = α
d1

d1 + d2

+ β
d2

d1 + d2

. (32)

This shows that, given prior distributions α ∼ U [αL, αH ] and β ∼ [βL, βH ], the

support for p(ρ) is [min(αL, βL),max(αH , βH)]. The uniform behaviour of ρ in this

support under independent uninformative Γ distributions for d1 and d2 is checked

with simulations.

Appendix B: Derivations of the posterior distribu-

tion

In the general case in which the covariance matrix D of the structural shocks is not

normalized to the identity matrix, the likelihood function (5) from Section 2 rewrites

as9

L(A,D; Ω̂) = (2π)−
Tk
2 · |A|T · |D|

T
2 · e−

T
2
trace

(
AΩ̂A′D−1

)
. (33)

Call V (A) = AΩ̂A′, and Vi(A) the i, i entry of V (A). Since D−1 = diag(d−1
1 , ..., d−1

n )

and since the determinant of a diagonal is the product of its diagonal entries, the

9In Baumeister & Hamilton (2015a) the data do not enter via Ω̂ but via data {yt}t=1, as the
model also specifies a prior distribution on the autoregressive component of the SVAR. Since under
the normal prior distribution on the latter component of the model they show that the marginal
posterior distribution for A depends on the data only via Ω̂, it is without loss of generality to
develop the assessment in this paper starting from Ω rather than from the full specification of the
model.
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likelihood becomes

p(Ω̂|A,D−1) = (2π)−
Tk
2 · |A|T ·

( k∏
i=1

d−1
i

)T
2 · e−

T
2

∑k
i=1 Vi(A)·d−1

i ,

= (2π)−
Tk
2 · |A|T ·

k∏
i=1

(
(d−1
i )

T
2 · e−

T
2
Vi(A)·d−1

i

)
.

Consider the prior distribution

p(A,D−1) = p(A) · p(D−1),

with some prior p(A) for A and d−1
i independently Gamma distributed with shape

and rate parameters ψs,i and ψr,i, respectively. The pdf of d−1
i is

p(d−1
i ) =

1

Γ(ψs,i)
ψ
ψs,i

r,i (d−1
i )ψs,i−1e−ψr,i·d−1

i ,

∝ (d−1
i )ψs,i−1e−ψr,i·d−1

i .

The joint posterior is then written as

p(A,D−1|Ω̂) =p(A) ·
k∏
i=1

( 1

Γ(ψs,i)
ψ
ψs,i

r,i · (d−1
i )ψs,i−1 · e−ψr,i·d−1

i

)
·

(2π)−
Tk
2 · |A|T ·

k∏
i=1

(
(d−1
i )

T
2 · e−

T
2
Vi(A)·d−1

i

)
· p(Ω̂)−1,

which can be simplified to

p(A,D−1|Ω̂) =p(A) · (2π)−
Tk
2 · |A|T · p(Ω̂)−1·

k∏
i=1

( 1

Γ(ψs,i)
· ψψs,i

r,i · (d−1
i )ψs,i−1+T

2 · e−[ψr,i+
T
2
Vi(A)](d−1

i )
)
.
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After substituting ψ∗s,i = ψs,i + T
2

and ψ∗r,i(A) = ψr,i + T
2
· Vi(A) and rearranging, we

get

p(A,D−1|Ω̂) =p(A) · (2π)−
Tk
2 · |A|T · p(Ω̂)−1 ·

k∏
i=1

( Γ(ψ∗s,i)

ψ∗r,i(A)ψ
∗
s,i
·
ψ
ψs,i

r,i

Γ(ψs,i)

)
·

k∏
i=1

( 1

Γ(ψ∗s,i)
· ψ∗r,i(A)ψ

∗
s,i · (d−1

i )ψ
∗
s,i−1 · e−ψ∗r,i(A)d−1

i︸ ︷︷ ︸
p(d−1

i |A,Ω̂)

)
. (34)

This implies

d−1
i |A, Ω̂ ∼ Γ(ψ∗s,i, ψ

∗
r,i(A)). (35)

From this result, since p(A,D−1|Ω̂) = p(A|Ω̂) · p(D−1|A, Ω̂), the solution for

p(A|Ω̂) coincides with the first part of the equation (34), i.e.

p(A|Ω̂) = p(A) · (2π)−
Tk
2 · |A|T · p(Ω̂)−1 ·

k∏
i=1

(Γ(ψ∗s,i)

Γ(ψs,i)
·

ψ
ψs,i

r,i

ψ∗r,i(A)ψ
∗
s,i

)
,

= p(Ω̂)−1 · (2π)−
Tk
2 ·

k∏
i=1

(Γ(ψ∗s,i)

Γ(ψs,i)
· ψψs,i

r,i

)
︸ ︷︷ ︸

κ

·p(A) · |A|T ·
k∏
i=1

( 1

ψ∗r,i(A)ψ
∗
s,i

)
,

= κ · p(A) · |A|T ·
k∏
i=1

( 1

ψ∗r,i(A)ψ
∗
s,i

)
,

= κ · p(A) · |A|T ·
k∏
i=1

( 1

[ψr,i + T
2
· Vi(A)]ψs,i+

T
2

)
.
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Under a non informative prior on d−1
i , ψs,i = ψr,i = 0, implying

p(A|Ω̂) = κ · p(A) · |A|T ·
k∏
i=1

( 1

[T
2
· Vi(A)]

T
2

)
,

= κ · 2k

T k︸ ︷︷ ︸
κ̃

·p(A) · |A|T ·
k∏
i=1

( 1

[Vi(A)]
T
2

)
,

= κ̃ · p(A) · |A|T · 1

|diag(AΩ̂A′)|T2
,

=
κ̃ · p(A) · |A|T

|diag(AΩ̂A′)|T2
.

where, again, we used the fact that the determinant of a diagonal matrix is the

product of its diagonal elements. This equation coincides with equation (22) in

Baumeister & Hamilton (2015a), after noting that |Ω̂| is not a function of A and

hence is included in the term κ̃.

For Section 4, the structural VAR model is written specifying the impact effect of

the structural shocks rather than the contemporaneous relationships among variables.

For this so-called B model yt = Π(L)yt−1 + Bεt (Lütkepohl 2007), the likelihood

function equals

L(B,D; Ω̂) = (2π)−
Tk
2 · |B|−T · |D|

T
2 · e−

T
2
trace

(
B−1Ω̂B′−1D−1

)
. (36)

Calling V (B) = B−1Ω̂B′−1, the same derivations above give

d−1
i |B, Ω̂ ∼ Γ(ψ∗s,i, ψ

∗
r,i(B)). (37)
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with ψ∗s,i = ψs,i + T
2
, and ψ∗r,i(B) = ψr,i + T

2
· Vi(B) and

p(B|Ω̂) = κ · p(B) · |B|−T ·
k∏
i=1

( 1

[ψr,i + T
2
· Vi(B)]ψs,i+

T
2

)
.

Under a noninformative prior for d−1
i , p(B|Ω̂) equals

p(A|Ω̂) =
κ̃ · p(B) · |B|−T

|diag(B−1Ω̂B′−1)|T2
.

Under the normalization D = I used in Section 3, the element in D drops from

equation (36) and the posterior distribution for B is derived as

p(B|Ω̂) = p(B)(2π)−
Tk
2 · |B|−T · e−

T
2
trace

(
B−1Ω̂B′−1

)
p(Ω̂)−1. (38)

Regarding posterior simulation, the marginal posterior densities p(A|Ω̂) and p(B|Ω̂)

derived above can be used in a Metropolis-Hastings algorithm to draw posterior

draws. To do so, I follow the algorithm by Baumeister & Hamilton (2015a), with

one important modification. In Baumeister & Hamilton (2015a), curvature to the

posterior is achieved through t Student priors, which ensure that the posterior is

unimodal. However, the use of a uniform prior in this paper implies that the poste-

rior has infinite modes, representing the underidentification of the model. To reduce

the risk of the algorithm exploring only part of the posterior, in Section 3 I do not

initialize the Metropolis-Hastings algoritm on a mode of the posterior, but rather

on 50 random grip points, computed numerically on Ω̂ to preliminary inspect where

the set of observational equivalence lays in the parameter space. I then run as many

Metropolis-Hastings algorithms as many grid points considered and store all the

extractions, ensuring that the acceptance rate is around 30% for all points consid-

ered. A diagnosis of the coverage of the set of observational equivalence is done
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by generating 500 random candidate decompositions of Ω̂ and by ensuring that the

Euclidean distance of each posterior extraction from each candidate decomposition

are all relatively small and comparable, i.e. that there are no clear outliers.
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