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Abstract

In this article I provide a (selective) review of the recent econometric literature on
networks. I start with a discussion of developments in the econometrics of group in-
teractions. I subsequently provide a description of statistical and econometric models
for network formation and approaches for the joint determination of networks and in-
teractions mediated through those networks. Finally, I give a very brief discussion of
measurement issues in both outcomes and networks. My focus is on identification and
computational issues, but estimation aspects are also discussed.
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1 Introduction

Networks are “vulgar.” By that I mean: they are commonplace, ordinary. Although mar-

kets are the usual forum where economic phenomena take place, many social and economic

behaviors are not mediated by prices. A great many studies have investigated the exis-

tence and quantification of spillover effects in education (e.g., Sacerdote (2010)), in the labor

market (e.g., Topa (2001)) and, more recently, on non-cognitive outcomes (e.g., Neidell and

Waldfogel (2010) and Lavy and Sand (2015)). Many other behaviors are mediated through

prices, but in a way that it matters how agents are in contact with each other. Production

and financial networks are natural examples (e.g., Atalay, Hortacsu, Roberts, and Syverson

(2011) for the first and Denbee, Julliard, Li, and Yuan (2014) or Bonaldi, Hortacsu, and

Kastl (2014) for the second). The main conduit in these examples is the intervening role of

“connections”: who is in direct or indirect contact with whom. This structure defines (and

is possibly defined by) how information, prices and quantities reverberate in a particular

social or economic system. This recognition has sparked a growing literature on various as-

pects of networks and their role in explaining various social and economic phenomena among

economic theorists, empirical researchers and, more recently, econometricians.

This article aims at providing a (selective) overview of some recent advances and out-

standing challenges in the applied econometric literature on this topic. I focus on both the

role of networks in aiding the measurement of outcomes determined on an underlying network

structure and on the formation of such structures. I also provide a brief discussion on mea-

surement issues related to both tasks. Given constraints in space and expertise, this article

is not exhaustive. In fact, the identification and measurement of network-related phenomena

has drawn increasing attention in fields as diverse as macroeconomics, industrial organisa-

tion, finance, and trade, which I do not discuss in this review. There are also subclasses of

network-related phenomena of empirical and econometric interest that I do not cover, such

as bargaining and matching in bipartite graphs. Some of the ideas below may prove useful

to developments in those areas nonetheless.

The article proceeds as follows. The following section provides a palette of basic def-

initions and terminology used recurrently throughout this paper. Because those are well

covered elsewhere, I am deliberately succint. Section 3 covers topics related to models where

particular outcomes of interest are mediated by predetermined networks. The subsequent

section focuses on econometric models for the determination of the networks themselves and

also discusses the joint determination of outcomes and networks. Section 5 provides a brief
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discussion of measurement issues related to networks and outcomes. The last section con-

cludes.

2 Some Basic Terminology and Concepts

Networks are typically represented by graphs. A graph g is a pair of sets (Ng, Eg) of nodes

(or vertices) Ng and edges (or links or ties) Eg. I will denote the cardinality of these sets

by |Ng| and |Eg|, respectively. For our purposes, vertices are economic agents: individuals,

households, firms or other entities of interest. The set of nodes is usually conceived as a fi-

nite set of elements, though in principle the node set can also be infinite (e.g., Berge (1962)).

An edge represents a link or connection between two nodes in Ng. A graph is undirected

when Eg is the set of unordered pairs with elements in Ng, say {i, j} with i, j ∈ Ng. (The

multiset {i, i} with i ∈ Ng is a possibility, but I abstract away from self-links here.) This

type of graph is appropriate in representing reciprocal relationships between two vertices.

An example are (reciprocal) informal risk-sharing networks based on kinship or friendship

(e.g., Fafchamps and Lund (2003)). To accomodate directional relationships, edges are best

modeled as ordered pairs, say (i, j) ∈ Ng × Ng. These graphs, known as directed graphs

(or digraphs), are more adequate for handling relatioships that do not require reciprocity

or for which direction carries a particular meaning, as in a supplier-client relationship in a

production network (e.g., Atalay, Hortacsu, Roberts, and Syverson (2011)). Further gener-

alizations allow for weighted links, perhaps representing distances between two individuals

or the intensity of a particular relationship. Such weights can be represented as a mapping

from the space of pairs (unordered or ordered) into the real line. Diebold and Yilmaz (2015),

for example, consider a (directed, weighted) graph obtained from the forecast-error variance

decomposition for a given class of economic variables of interest. The nodes in this case would

be seen as different entities, like stocks or firms, for example, and the weight of a directed

link from node i to node j gives the proportion of the forecast error variance in variable of

interest for node i (e.g., return or volatility if nodes represent stocks) explained by shocks to

node j.1

A common representation of a graph is through its |Ng| × |Ng| adjacency or incidence

matrix W , where each line represents a different node. The components of W mark whether

1They define a few measures based on this network representation to keep track of “connectedness” of a
particular economic system through time. Their total connectedness measure, for example, is given by the
total sum of the weights across edges divided by the number of nodes.
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an edge between nodes i and j (or from i to j in a digraph) is present or not and possibly

its weight (in weighted graphs). The adjacency matrix allows one to translate combinatorial

operations into linear algebraic ones and can be quite useful in several settings. For an

adjacency matrix W to a simple graph (i.e., no self-links and at most one link between any

pair of nodes), the ij element of matrix W k, k ∈ {1, . . . , N − 1}, for instance, produces the

number paths of length k between i and j. Two graphs are said to be isomorphic if their

adjacency matrices can be obtained from each other, through multiplication by a permutation

matrix, for example. This translates into a relabeling of the vertices in the corresponding

graphs.

2.1 Vertex Features

Various measures can then be defined to characterize a particular vertex in the graph, to

relate two or more vertices on a graph, or to represent a global feature of the graph at

hand. (Although some of the notions mentioned below apply to more general networks, in

what follows I focus on simple, unweighted graphs for ease of exposition.) An important

characteristic for a particular vertex i, for example, is the set of neighbors incident with

that vertex in a graph g, denoted by Ni(g). In an undirected graph g, this set is given by

{j : {i, j} ∈ Eg}, and a similar definition can be given for directed graphs. The cardinality

of this set is known as the “degree” of that node, and one can then talk about the relative

frequency of degrees in a given graph as a whole. (In directed graphs, one can further

distinguish “in-degrees” and “out-degrees” relating to inward and outward edges from and

to a given node.) A “dense” graph, for instance, is then one in which nodes display a lot

of connections, and a common measure of density is the average degree divided by |Ng| − 1,

which is the maximum number of possible links available to any given node. Given two nodes

i and j in an undirected graph, a sequence of nodes (i ≡ i1, . . . , iK−1, iK ≡ j) defines a “walk”

if every edge {ik, ik+1} ∈ Eg. A “cycle” is a walk where i1 = iK , and a tree is a graph without

cycles. A “path” is a walk where no vertex is visited more than once. (One can similarly

define paths and walks on directed graphs.) It is common to define the (geodesic) distance

between these two as the shortest path between those two nodes. A graph is then said to

be connected if the distance between any two vertices is finite (i.e., there is at least one

path between those nodes). A component of a graph is then a maximal connected subgraph,

where a subgraph is defined by a subset of nodes from Ng together with a subset of edges

from Eg between elements in the subset of nodes under consideration. (A maximal connected
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subgraph is not strictly contained in any other connected subgraph of g.) A quantity encoding

the connectedness of a network is given by the second smallest eigenvalue of the Laplacian

matrix, defined as L = diag(W1)−W , where diag(W1) is a diagonal matrix with the row-

sums of W along the diagonal. This value, known as the algebraic connectivity or the Fiedler

value of the graph, provides a measure of how easy it is to break the graph into disconnected

components by selectively eliminating a small number of edges (see Kolaczyk (2009)).

One can also define various measures to characterize the typical network structure in the

vicinity of a given vertex. For brevity, I only mention a basic taxonomy of such measures as

specific definitions are available in most introductory texts on the subject (see, for example,

the excellent overview in Jackson (2009)). An important network aspect of particular interest

in social settings is the degree of “clustering” in the system, intuitively summarized by the

propensity that two neighbors to a given node are also themselves directly linked and different

clustering metrics are available to quantify this feature in a network. Studying volunteer work

in the civil rights movement in the United States, for example, McAdam (1986) suggests that

“[a]lthough weak ties may be more effective as diffusion channels (Granovetter (1973)), strong

ties embody greater potential for influencing behavior. Having a close friend engage in some

behavior is likely to have more of an effect on someone than if a friend of a friend engages

in that same behavior. Apparently, the above was true of the Freedom Summer project”

(p.80).2 Theoretically, it may be easier for clustered individuals to coordinate on certain

collective actions since clustering may facilitate common knowledge (Chwe (2000)).

Another feature of potential interest in economic and social networks is the degree of

“centrality” of a given vertex, and various measures of centrality are also available. Those

aim at characterizing how important a given node is in comparison to the remaining nodes

in g. Aside from how connected a given vertex is (degree centrality) or how far on average a

vertex is from any other vertex in the network (closeness centrality), one can also compute

the betweenness centrality, illustrating how crucial a given node is in connecting individu-

als. Another family of popular centrality measures includes those based on features of the

adjacency matrix aimed at summarizing a node’s centrality in reference to its neighbors cen-

trality (more on this later). The simplest of these measures is the eigenvector centrality

(a.k.a. Gould’s index of accessibility), corresponding to the dominant eigenvector of the ad-

jacency matrix (Gould (1967), Bonacich (1972)).3 Among the most popular metrics in this

2To properly parse the effect of clustering, one would of course like to account for homophily among
those who would already be prone to activism. If those individuals tend to associate with other like-minded
individuals, this effect of “strong ties” will be confounded.

3The most profitable of these measures is perhaps Google’s PageRank index (Brin and Page (1998)).
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family were those proposed by Katz (1953) and Bonacich (1987). The Katz centrality of a

node i can be motivated by ascribing a value of β̃k > 0 to each connection reached by a walk

of length k. Since the (i, j) entry in W k counts the number of walks between i and j, if one

adds up the weights for each individual, one has a centrality measure for each individual given

by the components of the vector β̃W1 + β̃2W 21 + β̃3W 31 + . . . If β̃ is below the reciprocal

of W ’s largest eigenvalue, we can write the above as β̃(I − β̃W )−1W1, where β̃ is a small

enough positive number. The Bonacich centrality generalizes this formula to a two-parameter

index defined by the vector α(I− β̃W )−1W1. Recently, Banerjee, Chandrasekhar, Duflo, and

Jackson (2014) introduced another centrality measure, which they named diffusion centrality

and which subsumes the degree, eigenvector, and Katz-Bonacich centralities as special cases.

Such measures turn out to play an important role in the analysis of games and dissemination

on networks (e.g., Ballester, Calvó-Armengol, and Zenou (2006) and the survey by Zenou

(2015)).

2.2 Random Graphs

Having characterized the objects of interest here, one is then well-positioned to discuss data-

generating processes giving rise to potentially observable social and economic networks and

their sampling. Letting G be a particular set of graphs, one can define a probability space

(G, σ(G),P), where σ(G) is a σ-algebra of events in the sample space G and P is a probability

measure on the measurable space (G, σ(G)). These models can and usually are indexed

by features common to the graphs in G, like the number of vertices and/or other features.

One of the early models, for example, imposes a uniform probability on the class of graphs

with a given number of nodes, n = |Ng|, and a particular number of edges, e = |Eg|, for

g ∈ G (see Erdös and Rényi (1959) and Erdös and Rényi (1960)). Another basic, canonical

random graph model is one in which the edges between any two nodes follow an independent

Bernoulli distribution with equal probability, say p. For a large enough number of nodes

and sufficiently small probability of link formation p, the degree distribution approaches a

Poisson distribution, and the model is consequently known as the Poisson random-graph

model. This class of models appears in Gilbert (1959) and Erdös and Rényi (1960) and has

since been studied extensively. Nevertheless, they fail to reproduce important dependencies

observed in social and economic networks. One category of models that aims at a better

representation of the regularities usually encountered in social systems involves models where

nodes are incorporated into the graph sequentially and form ties more or less randomly. These
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models are able to reproduce features that the simple framework above is incapable of. For

example, whereas the models above deliver degree distributions with exponential tails, many

datasets appear to feature polynomial, Pareto tails. Models like the “preferential attachment”

model (Barabási and Albert (1999)), whereby the establishment of new links is more likely

for higher-degree existing nodes, produce Pareto tails (as well as other regularities usually

observed; see the presentation in Jackson (2009) or Kolaczyk (2009) for a more thorough

exposition).4

Another alternative is to rely on more general (static) random graph models that explic-

itly acknowledge the probabilistic dependencies in link formation. Such dependencies can

be approached using probabilistic graphical models as in Frank and Strauss (1986). Proba-

bilistic graphical models provide a (non-random) graphical representation of the probabilistic

dependencies among a set of random vectors (e.g., Koller and Friedman (2009)). In the con-

text of random (undirected) graphs with |Ng| = n vertices, those random variables are the

n(n − 1)/2 (random) edges potentially formed between the n nodes. To represent a given

stochastic dependence structure in the formation of edges, Frank and Strauss rely on a (non-

random) dependency graph having as vertices all the potential edges between the elements of

an original set of nodes of interest. In this dependency graph, links between two nodes (i.e.,

(random) edges in the random graph of interest) are present if these two random variables are

conditionally dependent given the remaining random variables (i.e., the remaining (random)

edges in the original random graph of interest). For example, since edges form independently

in the Poisson graph model, its dependency graph is an empty one, with no links among

its nodes (which are the random edges in the original Poisson network of interest). On the

other hand, if the probability that an edge between i and j depends on the existence of a link

between i and k given the remaining edges in the graph, the dependency graph will feature

a link between nodes that represent {i, j} and {i, k}. Applying results previously employed

in the spatial statistics literature (i.e., the Hammersley-Clifford Theorem, see Besag (1974)),

one has

P(G = g) ∝ exp

(∑
C⊂g

αC

)
,

where αC ∈ R and C indexes all completely connected subgraphs (i.e., “cliques”) of the

4It should be noted that, while polynomial tails characterize the degree distribution for many networks,
the evidence in favor of Pareto tails is less consensual that it might appear from a casual reading of the
literature. This is highlighted, for example, in Pennock, Flake, Lawrence, Glove, and Giles (2002), Jackson
and Rogers (2007) and Clauset, Shalizi, and Newman (2009), who find that many networks appear to be
better characterized by non-polynomial tails.
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(non-random) dependency graph representing the random graph model of interest.5

In general, the task of enumerating the set of cliques can be computationally complex.

This expression can nevertheless be simplified for many interesting specific dependency struc-

tures. Frank and Strauss (1986), for example, focus on (pairwise Markov) random graphs

where two (random) edges that do not share a vertex are conditionally independent given

the other remaining (random) edges (and hence are not linked in the dependency graph).

It reflects the intuition that ties are not independent of each other, but their dependency

arises only through those who are directly involved in the connections in question. This, and

a homogeneity assumption (i.e., that all graphs that are the same up to a permutation of

vertices have the same probability), delivers that

P(G = g) ∝ exp

(
α0t+

∑
k=1

αksk

)
,

where t is the number of triangles (completely connected triples of vertices) and sk is the

number of k-stars (tuples of k + 1 vertices where one of the vertices has degree k and the

remaining ones have degree one). (Notice that the Poisson model is a specific case of the

above model, where α0 = α2 = · · · = αk = 0.) This structure suggests a class of probabilistic

models that reproduce the exponential functional form above even in cases where the Markov

property used by Frank and Strauss does not hold. Those models are such that P(G =

g) ∝ exp (
∑p

k=1 αkSk(g)) , where Sk(g), k = 1, . . . , p enumerate certain features of the graph

g. These would be characteristics like the number of edges, the number of triangles and

possibly many others. These models are known as exponential random graph models (or

p∗ models in the social sciences literature, see Robins, Pattison, Kalish, and Lusher (2007))

and can be extended beyond undirected random graphs. The models above constitute an

exponential family of distribution over (random) graphs and exponential distributions (e.g.,

Bernoulli, Poisson) have well-known probabilistic and statistical properties. For example,

the vector (S1(g), . . . , Sp(g)) constitute a p-dimensional sufficient statistic for the parameters

(α1, . . . , αp). All the models above (and many others) are presented in detail elsewhere (e.g.,

Bollobás (2001), Jackson (2009), Kolaczyk (2009)) and I will selectively discuss features and

difficulties as they articulate with the literature reviewed here.

5This representation is sometimes expressed in terms of maximal cliques. Any representation based on
nonmaximal cliques can be converted into one based on maximal cliques by redefining αc for a maximal
clique as the sum of the αs on the subsets of that clique (Jordan and Wainwright (2008)).
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3 Outcomes on Networks

As pointed out in the introduction, many social and economic outcomes are mediated by

interactions among the entities involved (individuals, households, firms). In fact, the inter-

action structure can be instrumental in shaping the outcomes in various social and economic

settings. Although the very determination of the social links on which those outcomes are

resolved is plausibly informed by those outcomes or expectations about those outcomes in

many cases, we start by assuming here that the peer structure, i.e., the ties among the various

individuals involved, is determined independently.

3.1 Linear Models

The canonical representation for the joint determination of outcomes mediated by social

interactions builds on the linear specification presented in Manski (1993). This represen-

tation postulates that the individual outcome variable for individual i ∈ {1, . . . , N}, yi, is

determined according to

yi = α + β
N∑
j=1

Wijyj + ηxi + γ
N∑
j=1

Wijxj + εi, E(εi|x,W ) = 0 (1)

where j ∈ {1, . . . , N}, xi represents a covariate observed by the researcher (with x =

[x1 . . . xN ]>), εi represents a latent variable unobserved by the researcher, and Wij are entries

in the adjacency matrix that register the social network structure. For example, if yi is af-

fected by the average of all other individuals’ outcomes and covariates, Wij = (N − 1)−1 and

Wii = 0. (This model is a spatial auto-regressive model in spatial statistics.) I assume here

that x is scalar though the arguments hold more generally. Stacking the individual equations

above, one then obtains

yN×1 = α1N×1 + βWN×NyN×1 + ηxN×1 + γWN×NxN×1 + εN×1, E(ε|x,W ) = 0 (2)

with 1 as a vectors of 1s. Whereas I take this as the point of departure for my presentation

of (linear) social interaction models, I note that the specification above can be obtained from

more primitive foundations (e.g., Blume, Brock, Durlauf, and Jayaraman (2015)). Supposing

that 1/β is not an eigenvalue of W , the equations above produce the following reduced form
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system:

y = α(I− βW )−11 + (I− βW )−1(ηI + γW )x + (I− βW )−1ε, (3)

where I is an identity matrix of order N .

In his celebrated article, Manski examined the identification of the various parameters

above (although using a different representation, see below). In doing so, he distinguished

social influences between endogenous and exogenous (or contextual) effects. The latter repre-

sents any influence encoded by peer (observable) characteristics. The former translates into

the influence of peers’ outcomes on one’s own outcomes. Although related, those two have

different repercussions: endogenous effects act as conduits for the reverberation of shocks,

leading to a multiplier effect, which is absent if contextual effects are the main driving mech-

anism for social influences. The separation of these two parameters is made more difficult

by the possibility of correlation in unobservables, which Manski terms correlated effects. In

the model above, this is reflected in the potential for E(εiεj|x,W ) 6= 0 for i 6= j. (Notice

that the covariance structure for the error vector is left unrestricted above.) As illustrated in

that paper, if y represents school achievement, endogenous effects arise if one’s achievement

tends to vary with the average achievement in that person’s reference group. If achievement

is affected by the reference group’s socio-economic background, there is an exogenous or con-

textual effect. Correlated effects may arise because pupils are exposed to the same teacher or

have similar features that are relevant for achievement but are not observed by the researcher.

Because all of these may explain similarities in outcomes, it gives rise to what Manski calls

the “reflection problem.”

The reduced form in (3) arises rather naturally in interaction models for maximizing

agents endowed with quadratic payoffs. Blume, Brock, Durlauf, and Jayaraman (2015),

for instance, suggest that observed outcomes can be construed as Bayes-Nash equilibria of a

game with incomplete information. For a model of strategic complementarities in production,

payoffs are given by

Ui(y;W ) =

(
α + ηxi + γ

∑
j 6=i

Wijxj + zi

)
yi + β

∑
j 6=i

Wijyiyj −
1

2
y2i , (4)

where zi is private information to individual i. The first two terms reflect a production

function mapping effort into an outcome of interest where the second term reflects comple-

mentarity among individuals. The reduced form in (3) then corresponds to the equilibrium
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profile of the game where the unobservable error is a function of the private information zi.
6

Calvó-Armengol, Patacchini, and Zenou (2009) study a slightly different model of edu-

cational achievement. There, a pupil’s educational achievement yi is the sum of two effort

choices, an idiosyncratic effort level ei that is unaffected by peers’ choices, and a “peer effect”

effort level εi, which is potentially complemented by other individuals’ efforts. The payoff

function for a student is given by

Ui(ei, ε;W ) =

(
ηxi + γ

∑
j 6=i

Wijxj

)
ei −

1

2
e2i + (αWi1 + νi)εi −

1

2
ε2i + β̃

N∑
j=1

Wijεiεj,

where Wi is the ith row of W so that its multiplication by 1 produces the degree for individual

i and νi is an idiosyncratic taste shock. The Nash equilibrium of this model leads to a reduced

form econometric model given by7

yi = ηxi + γ
∑N

j=1Wijxj + εi

εi = αWi1 + β̃
∑N

j=1Wijεj + νi

⇒ y =
α

β̃
(I−β̃W )−1β̃W1+(ηI+γW )x+(I−β̃W )−1ν. (5)

Notice that, since both ei and εi are choice variables, endogenous effects are now encoded

into β̃. It is also noteworthy that the simultaneity is in the determination of the unobservable

error ε instead of the observable outcome variable y. Finally, I should also point out that

this special structure delivers a direct dependence of the outcome variable y on the Katz-

Bonacich centrality index for each individual at β̃, listed in the vector (I − β̃W )−1β̃W1

if the “peer effect” effort depends on the degree of the individual (i.e., α 6= 0).8 In their

study of bank liquidity holdings in the United Kingdom, Denbee, Julliard, Li, and Yuan

(2014) use a variation of this model and its connection with the Katz-Bonacich centrality to

define a network impulse-response function of total outcome. In their analysis, Wij is the

(predetermined) borrowing by bank i from bank j. The variable ei is interpreted as a bank’s

6Blume, Brock, Durlauf, and Jayaraman (2015) focus their analysis on a different payoff structure corre-
sponding to a narrative where individuals have preference for conformity. As they point out, the models are
observationally equivalent.

7To guarantee uniqueness and interiority of the equilibrium, the authors impose the restriction that β̃ is
less than the reciprocal of the largest eigenvalue of W . Whereas the estimates for the vast majority of the
networks analyzed in the study satisfy this condition, 9% (=18/199) of the networks do not. It would be
interesting to extend the analysis to incorporate the possibility of multiplicity and/or corner equilibria.

8If the rows of W add up to one, the intercept in the reduced form (3) is also given by a multiple of
the Katz-Bonacich centrality index. Cohen-Cole, Kirilenko, and Patacchini (2014) estimate the model (2)
on trading networks in financial futures markets and analyze the centrality indices for the traders in their
sample.

11



liquidity holdings when it is isolated, and the variable εi gives the liquidity holdings in a

banking network.

In spite of the apparent differences between the preceding model and the model repre-

sented by (2)-(3), much of the identification and estimation analysis of this model follows

along the same lines, and I will focus on the model given by (2)-(3) (unless explicitly stated).9

Earlier analyses of the model (2) focused on a peer structure given by a complete network

where
∑N

j=1Wij = 1, Wij = Wik for j 6= k and it is customary to assume that Wii = 0

(e.g., Moffitt (2001)).10 It is also commonplace to suppose that |β| < 1, which together with

row-sum normalization guarantees that I−βW is invertible and a well-defined reduced form

exists. Under this specification and no further restrictions, it can be formally demonstrated

that the structure represented by (α, β, η, γ) is not point-identified:

Proposition 1. If |β| < 1, ηβ + γ 6= 0, Wij = (N − 1)−1 if i 6= j and Wii = 0, (α, β, η, γ) is

not point-identified.

This result is originally indicated in Manski (1993) and demonstrated, for instance, as a

corollary to Proposition 1 in Bramoullé, Djebbari, and Fortin (2009). This negative result

is also examined, for example, by Kelejian, Prucha, and Yuzefovich (2006) in an estimation

context. The outlook on identification improves if one imposes further restrictions on the

model and/or the available data. To illustrate this, I focus on the related representation

originally considered in Manski (1993). Instead of specification (1), Manski studies a model

akin to

yi = α + βE(yj|w) + ηxi + γE(xj|w) + εi, E(εi|x, w) = δw,

where w stands for a (scalar) identifier of the group, and expected values are taken so that

the model is equilibrated and corresponds to a “social equilibrium.”11 The coefficients above

9Calvó-Armengol, Patacchini, and Zenou (2009) use a variation of Proposition 4 below. If there are no
correlated effects (i.e., correlation in νi), it might be possible to establish identification, as in Proposition 2
below.

10This weighting scheme amounts to collecting the endogenous and contextual covariates as the mean of
one’s peer group (sometimes termed the “exclusive mean”). As pointed out in Guryan, Kory, and Notowidigdo
(2009), this mechanically generates a correlation between xi and

∑
j 6=i xj/(N − 1) within the group even

when xi and xj are independent for all pairs, and a regression of the first on the second will lead to a biased
estimator. This can be seen by noting that the usual requirement for OLS unbiasedness (strict exogeneity)
is not satisfied, even though the covariance C(xi,

∑
j 6=i xj/(N − 1)) = 0 and the Best Linear Projection

slope coefficient is zero. This happens since xi shows up either as regressand or as regressor (as part of
the “exclusive mean”) in all observations within the group. Whereas the regression will produce a biased
estimator, the OLS estimators are still consistent (since contemporaneous exogeneity is preserved) and the
problem is attenuated for larger groups as pointed out by those authors.

11In the literature, this structure is sometimes emulated by assuming that
∑N

j=1Wijyj is an “inclusive
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retain the same interpretation as before, and δ 6= 0 when there are correlated effects. Using

this model, for example, a corollary to Proposition 2 in Manski is that, when δ = γ = 0,

the remaining parameters (α, β and η) are point identified if 1,E(xj|w) and xi are “linearly

independent in the population.” Allowing for γ 6= 0, but (although not explicitly stated)

otherwise under the same conditions (i.e., δ = 0 and the variation previously implied by

the linear independence condition), Angrist (2014) (see also Acemoglu and Angrist (2001)

and Boozer and Cacciola (2001)) demonstrates an analogous result that β is point identified,

drawing an interesting connection of this parameter to the population counterparts of the

regression coefficient of yi on xi and a regression of group averages of yi on group averages

of xi, which can be interpreted as the 2SLS estimator using group dummies as instruments

for xi. As pointed out by Manski (1993) and using my notation, “the ability to infer the

presence of social effects depends critically on the manner in which x varies with w” (p.535).

The non-identification result in Proposition 1 does not use this variation, whereas these

positive identification results explore the between-group variation of the regressor x, without

which the linear independence condition stated above fails and the variance V(E(xj|w)) = 0,

jeopardizing the results.

Alternative restrictions on the model (2) also allow us to achieve identification using

higher moments. If there are no correlated effects, for example, and the conditional variance

V(ε|x) = σ2I, we have

V(y|x) = σ2(I− βW )−2.

This is enough to identify β and, consequently, the remaining parameters, even when Wij =

(N − 1)−1 if i 6= j and Wii = 0. In the peer effects literature, this result is indicated

in Moffitt (2001) but is actually reminiscent of earlier results on covariance restrictions and

identification of simultaneous equation models (see Fisher (1966), Bekker and Pollock (1986),

Hausman, Newey, and Taylor (1987)). Below, I state it for the general case of N individuals,

and a direct demonstration is available in the appendix.12

Proposition 2. If |β| < 1, Wij = (N − 1)−1 if i 6= j,Wii = 0, and V(ε|x) = σ2I then

(α, β, η, γ) is point-identified.

mean,” where Wii 6= 0 and Wij = N−1 for any i and j. This “expectational” equation can also be explained
from more foundational models of behavior, as illustrated, for instance, in Blume, Brock, Durlauf, and
Jayaraman (2015). As indicated there, whereas the appearance of E(yj |w) or

∑N
j=1Wijyj may reflect different

informational assumptions on the microeconomic model under consideration, they are in fact econometrically
isomorphic.

12Covariance restrictions alone are not enough to identify the model without additional coefficient restric-
tions. The coefficient restrictions in the present model are different from those dealt with in the earlier works,
which appear to focus on exclusion restrictions across equations.
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Interestingly, the covariance restrictions above also imply a lower bound on the correlation

among observable outcomes, which is strictly greater than the lower bound for the pairwise

correlation of a collection of equi-correlated random variables when N ≥ 3. The reasoning

for this is as follows: If a person i’s outcome is increased and β is negative, this has a

downward direct influence on a given peer j. If a third individual k is also in the group,

that person’s outcome will also be negatively affected by the increase in i’s outcome. This

negative influence in k will, on the other hand, put upward pressure on j’s outcome and

the effect of the original increase in i’s outcome will tend to be attenuated. (Of course, this

indirect effect is not present if N = 2 and, accordingly, the lower bound there is exactly −1.

The bound in non-trivial when N > 2.)13 Although the restrictions contemplated here are

strong (no correlated effects and equal variance across individuals), Proposition 2 suggests

that covariance restrictions may not only be useful in identifying the parameters of interest,

but also in providing testable implications. This result is summarised below.

Proposition 3. If |β| < 1, Wij = (N − 1)−1 if i 6= j,Wii = 0, and V(ε|x) = σ2I then

C(yi, yj|x)

V(yi|x)
>

4− 3N

4N2 − 11N + 8
.

Since the presence of an additive common shock will tend to increase the correlation be-

tween two observable variables, I conjecture that a similar lower bound on correlations as in

Proposition 3 is possible in that case. When correlated effects manifest themselves through

an additive group effect (i.e, for a group l = 1, . . . , L, the intercept is a random, possibly

covariate dependent αl), Davezies, d’Haultfoeuille, and Fougére (2009) show that the covari-

ance restriction V(ε|x) = σ2I still provides identification if there are at least two groups of

different sizes (see their Proposition 3.2). Recently, Rose (2015) examines identifiability using

second moments under the (weaker) assumption that V(ε|x) = σ2I + σεε(W + W>). There,

identification is established under conditions on W that are reminiscent of (though stronger

than) the linear independence assumptions in Bramoullé, Djebbari, and Fortin (2009) (see

below).

In fact, the use of restrictions on unobservables and higher moments for identification has

been explored elsewhere in the literature for the identification and estimation of variations

of the peer effects model presented in (2) (see Glaeser, Sacerdote, and Scheinkman (1996)

13When N = 3, for example, the correlation implied by Proposition 3 is −0.45. For three equi-correlated
random variables, positive definiteness of the variance-covariance matrix implies a smaller lower bound of
−0.50.
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for an early example). Graham (2008), for instance, studies identification when outcomes

within a group l = 1, . . . , L are defined by

yl Nl×1 = γ̃Wl Nl×Nl
εl Nl×1 + αl1Nl×1 + εl Nl×1,

where Nl is the number of individuals in group l, Wij,l = (Nl − 1)−1 if i 6= j and Wii,l = 0,

and the group-specific intercept αl is allowed to vary across groups.14 (A similar model is

also contemplated in Glaeser, Sacercote, and Scheinkman (2003).) The unobservables are

separated into three components: an individual idiosyncratic component εi,l, the average

of that variable among a person’s peers
∑

j 6=i εj,l/(Nl − 1), and a group-specific shock αl.

The main identification target is γ̃, which is interpreted as a contextual effect parameter on

(unobservable) group characteristics.15 Since the contextual effects here are unobserved, the

difficulty lies is separating this unobservable component from the group-wide error αl, which

stand for the usual correlated effects.

Graham (2008) shows that γ̃ is identified if (i) two groups are available (L ≥ 2), (ii)

there is random assignment (⇒ E(εi,lεj,l) = E(αlεj,l) = 0 for any i, j, l; i.e., there is no

sorting or matching in group formation); (iii) the variance of αl does not differ across groups;

and (iv) there is difference in within-group variance of outcomes. Recently, Blume, Brock,

Durlauf, and Jayaraman (2015) demonstrate how this result can be generalized to allow for

identification of the model in (2) through higher moments (when there are no correlated

effects) (see their Theorem 5).

An interesting avenue for identification appears when the (observed) social network graph

is not complete in a way that introduces enough exclusion restrictions into the equation

system (2) to restablish the (necessary and sufficient) rank condition for point-identification.

This insight is formalized in Bramoullé, Djebbari, and Fortin (2009):

Proposition 4 (Bramoullé, Djebbari, and Fortin (2009)). If ηβ + γ 6= 0 and I,W,W 2 are

linearly independent, (α, β, η, γ) is point-identified.

If Wij = (N − 1)−1 if i 6= j and Wii = 0, W 2 = (N − 1)−1I + (N − 2)/(N − 1)W

and the linear independence condition fails. One way in which that condition is satisfied

is if W is block-diagonal with at least two blocks of different order. Suppose, for example,

that the social network is comprised of two complete subgraphs of size N1 and N2 such that

14Exogenous covariates xl and (observed) contextual effects on those can be accomodated (see Blume,
Brock, Durlauf, and Jayaraman (2015)), but are ommitted as in Graham (2008).

15Alternatively, it can be seen as an amalgam of contextual and endogenous effect parameters.
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N1 + N2 = N . In this case, W 2 = λ0I + λ1W . Whereas direct computation shows that W 2

has N1 diagonal elements equal to (N1− 1)−1 and N2 diagonal elements equal to (N2− 1)−1,

the diagonal elements of λ0I+λ1W all equal λ0. This produces λ0 = (N1−1)−1 = (N2−1)−1

if we focus on diagonal elements of W 2. Another way to see how identification comes about

in this case is to notice that the reduced form equation for individual i in group l = 1, 2

becomes

yi =
α

1− β
+

[
η +

β(ηβ + γ)

(1− β)(Nl − 1 + β)

]
xi +

ηβ + γ

(1− β)(1 + β
Nl−1

)
xi + νi,

where xi is the average covariate in group l, and νi is the corresponding reduced-form error.

The variation of the reduced-form coefficients across groups of different sizes then allows

one to identify the parameters of interest. Hence, if N1 6= N2, the linear independence

condition is satisfied and the model is identified. The use of groups with different sizes

to obtain identification is also employed in Lee (2007) and Davezies, d’Haultfoeuille, and

Fougére (2009).16

Identification is also made possible if there are vertices whose peers are linked to nodes

that are not themselves directly connected to the original nodes. This allows one to use

indirect peers to generate instrumental variables for the endogenous outcomes in the right-

hand side of equation (2). These are naturally encoded in the requirement that I,W , and W 2

be linearly independent. Suppose, for instance, that nodes 1, . . . , N are placed on a circle,

and links are directed from i to i+ 1 (and N to 1) as represented in Figure 1.

In this case, Wi,i+1 = WN,1 = 1, i = 1, . . . , N − 1, and all other entries are zero. Each

node i is affected directly by i − 1 and indirectly by every other vertex. The matrix W 2

is such that (W 2)N−1,1 = (W 2)N,2 = (W 2)i,i+2 = 1 and records nodes that can be reached

through a direct link. Since none of those is directly connected to the original vertices, they

provide leverage for the model to identify the structure. This insight is used empirically in

De Giorgi, Pellizari, and Redaelli (2010) and Bramoullé, Djebbari, and Fortin (2009). The

model above is essentially a spatial autoregressive model and estimation can be pursued using

spatial statistics methods (e.g., Kelejian and Prucha (2010), Lin and Lee (2010), Lee and Yu

(2010), or Lee, Liu, and Lin (2010)).17

A maintained assumption in the above identification result is that covariates are econo-

16Boucher, Bramoullé, Djebbari, and Fortin (2014) apply the estimator proposed in Lee (2007) to a study
of peer effects in educational achievement.

17The commad spreg in Stata, for example, implements maximum likelihood and GS2SLS estimators (see
Drukker, Egger, and Prucha (2013).

16



Figure 1: Directed Circle Network

metrically exogenous, which may be problematic as well. Bramoullé, Djebbari, and Fortin

(2009) also extend the theoretical analysis above to the possibility of network-specific “fixed

effects,” αl, potentially correlated with the covariates.18 Of course, if excluded instruments

are available, one may also employ them to identify the relevant parameters. It should be

noted that the econometric exogeneity of the network structure itself is usually a maintained

hypothesis. (Qu and Lee (2015) provide an intrumental variable estimator that allows for

endogeneity of W under certain conditions.)

Recently, Blume, Brock, Durlauf, and Jayaraman (2015) pointed out that, in fact, the

identifying assumption on I,W , and W 2 is the norm, rather than the exception! Indeed,

when W is such that
∑N

j=1Wij = 1 and Wii = 0 for any i ∈ {1, . . . , N}, the condition essen-

tially only fails for the case when the social network is made up of equally-sized components

with equal nonzero entries.19 This is indicated in Theorem A2 in that paper:

Proposition 5 (Blume, Brock, Durlauf, and Jayaraman (2015)). If W is such that
∑N

j=1Wij =

1 and Wii = 0 for any i ∈ {1, . . . , N} and I,W , and W 2 are linearly dependent, then W is

block diagonal with blocks of the same size, say Nl (≤ N), and any nonzero entry is given by

(Nl − 1)−1.

In fact, many social graphs appear to display a connection structure that greatly departs

18An uncorrelated “random effect” αl would still allow for identification under the conditions above.
Bramoullé, Djebbari, and Fortin (2009) difference away the “fixed effect,” which requires the linear inde-
pendence condition to be strengthened to the linear independence of I,W,W 2, and W 3.

19The row-sum normalization corresponds to what Liu, Patacchini, and Zenou (2014) call local average
interactions, as opposed to, say, local aggregate interactions, where entries in W would correspond to 0 or 1.

17



from the block diagonal and complete within each block. Figure (2), a pictorial represen-

tation for the adjacency matrix of a network of friendships among teenagers, displays such

an instance, with patterns that are much distinct from those obtained from a partition of

individuals into completely connected subnetworks leading block diagonality in the subplots

from Figure (2).

Figure 2: Adjacency Matrix: High School Friendships

Note: In 1957 and 1958, boys in a small high school in Illinois were asked the following: “What fellows here in
school do you go around with most often?” The data aggregates information from both years and appears in
Coleman (1964). The panels display nodes ordered by degree centrality, betweenness centrality, eigenvector
centrality, and modularity. The latter is a measure used to detect community structure in a graph.

The setup described up to this point presumes that researchers observe the social struc-

ture represented by W . Whereas connections are sometimes elicited in survey instruments

(e.g., the National Longitudinal Study of Adolescent to Adult Health, known as AddHealth),
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“[i]f researchers do not know how individuals form reference groups and perceive reference-

group outcomes, then it is reasonable to ask whether observed behavior can be used to infer

these unknowns” (Manski (1993), p.536). Although this is not possible with a complete

social graph, because observed outcomes are informative about the underlying social struc-

ture acting as conduit, one may still hope to retain identification under plausible additional

restrictions. Blume, Brock, Durlauf, and Jayaraman (2015), for example, demonstrate that

partial knowledge of W can be used to identify the relevant parameters. In particular, they

focus on a variation of the setup above, where the social structures mediating endogenous

and contextual effects may differ (i.e., yi = α + β
∑N

j=1Wij,yyj + ηxi + γ
∑N

j=1Wij,xxj + εi

with possibly distinct Wx and Wy). They show that when W x is known and two (known)

nodes are also known to not be connected, the parameters of the model can be identified

(Theorem 6 in that paper). An analogous result demonstrates that when there are enough

unconnected nodes for each of the graphs represented by Wx and Wy, and the identity of

those nodes is known, identification is also (generically) possible (Theorem 7 in that paper).

Observed outcomes can possibly offer further possibilities whenW is not directly observed.

As Manski (1993) suggests, “[i]f researchers do not know how individuals form reference

groups and perceive reference-group outcomes, then it is reasonable to ask whether observed

behavior can be used to infer these unknowns” (p.536). Such possibilities are investigated in

de Paula, Rasul, and Souza (2015).20 Letting Π denote the matrix of reduced-form coefficients

in the system (3), one has

Π = (I− βW )−1(ηI + γW ).

Under the assumption that |β| < 1, one obtains that W and Π in fact share eigenvectors and

Π’s eigenvalues are functions of W ’s eigenvalues and the parameters of interest. Among other

things, this indicates that the eigenvector centrality of W—corresponding to the dominant

eigenvector—can also be directly obtained from Π. Additional restrictions often employed

in the literature, such as ηβ + γ 6= 0, linear independence of I,W and W 2 and row-sum

normalization (which implies that the largest eigenvalue for W and W 2 is one) allow one to

provide a tight characterisation for the set of observationally equivalent parmeters. This and

other similar results are demonstrated in detail by de Paula, Rasul, and Souza (2015).

If Π can be estimated, an estimator for (at one element in the set of identified) parameters

20Blume, Brock, Durlauf, and Ioannides (2011) show local identification when there is a partial order on
individuals and W displays weights decaying exponentially in distance. Souza (2014) suggests a probabilistic
model for W and an integrated likelihood method for the estimation of the (identified set of) parameters in
model (2).
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of interest can be obtained (say, via indirect least squares). Since the number of parameters

(reduced or structural) is O(N2) though, to estimate those one would in practice need obtain

at least as many observations of (y,x) for a given social system (i.e., TN > N2). Whereas

this is empirically conceivable when N is small, it is less plausible for even moderately

sized networks.21 Estimation can nonetheless be possible with further, empirically credible

restrictions on the system. Many social and economic networks (though not all) tend to be

sparse, for instance. The density of the production networks examined in Atalay, Hortacsu,

Roberts, and Syverson (2011) for the United States, for example, amounts to less than 1% of

possible links.22 Also relying on United States data, Carvalho (2014) finds an edge density

of about 3%.23 If one defines an undirected network from reciprocal friendship nominations

in the AddHealth dataset, which elicits teenage friendships, the density is about 2%.

This, potentially coupled with additional restrictions, opens the possibility of applica-

tion of penalization methods well-suited to handle sparse models, like the Least Absolute

Shrinkage and Selection Operator (LASSO) (Tibshirani (1996), see Belloni, Chernozhukov,

and Hansen (2013) for a recent review focused on econometric applications), the Smoothly

Clipped Absolute Deviation (SCAD) penalty (Fan and Li (2001)), the Elastic Net (Zou and

Hastie (2005)), or the Minimax Concave Penalty (MCP) (Zhang (2010)). If T is the number

of observed instances of (y,x), applying those methods directly to the reduced form would

entail an estimator defined as

π̂i = argminπi
1

T

∑
t

(yit − π>i xt)2 + λ
∑
j

pT (πij),

for each i ∈ {1, . . . , N}, where πi is a column-vector corresponding to the ith row from Π, and

pT (·) is a sample-size-related penalty function that depends on the particular penalization

method used. (The adequate notion of sparsity here is that T be sufficiently large compared

to nonzero entries in the adjacency matrix.) This reduced form estimator (using the Elastic

Net penalty function) is applied by Bonaldi, Hortacsu, and Kastl (2014), for example, to

21There are, nevertheless, data environments, like financial systems, where information on outcomes is
collected frequently and reduced-form parameters can potentially be estimated without additional restrictions.

22Atalay, Hortacsu, Roberts, and Syverson (2011) used data from Compustat from 1979 to 2007 to study
supply networks. The average number of suppliers (indegrees) reported in the study was 3.67 over the sample
period. The number of firms in the sample varied between 631 (in 1979) and 1848 (in 2002). The total number
of possible links in the directed graph is N(N − 1), and the density of links, defined as the ratio of observed
links to potential links, is then given by the average (in)degree divided by N − 1. Assuming that the average
indegree is constant across years, the density is then between 0.2% (for N = 1848) and 0.6% (for N = 631).

23Carvalho (2014) uses input-output tables from the Bureau of Economic Analysis in 2002, defining 417
sectors as nodes in the network.
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study the evolution and interconnection of banks’ cost-of-funding inferred from bank bids

in the main refinancing operation (MRO) auctions by the European Central Bank. There,

yit gives bank i’s cost of funding, and covariates xt are lagged cost-of-funding measures for

all banks in the system. The authors use the estimated parameters to construct centrality

indices for the banks in their sample. This estimator is also pursued by Manresa (2013) in a

version of the model in (2) without endogenous effects (β = 0), in which case Π = ηI + γW

(using my notation), allowing on the other hand for time- and individual-fixed effects.24

The estimation strategy above relies on sparsity of the reduced-form coefficients. Since

Π = ηI + γW when β = 0 (as in Manresa (2013)), row-sum normalization of W (as required

previously) is unnecessary for identification (one can normalize γ = 1, and the entries in

each row can be heterogeneous). In this case, given that Π is a linear function of η and W ,

sparsity of W is clearly transferred to sparsity in Π. Nevertheless, because

Π = (I− βW )−1 (ηI + γW )⇔ W = (Π− ηI) (βΠ + γI)−1 ,

it is not immediate that sparsity of W translates into sparsity of the reduced-form coefficient

matrix Π. This will be the case when β is small (in which case Π ≈ ηI + γW and sparsity

in I and W carries over). Take, for example, the directed circle analyzed earlier, where

Wi,i+1 = WN,1 = 1, i = 1, . . . , N − 1, and all other entries are zero. Since there are N links

out of possibly N(N − 1) directed connections, the density of edges is given by 1/(N − 1).

A directed circle with 100 nodes hence has an edge density of (approximately) 1%. Assume

then that γ = η = 1 for simplicity. Figure 3 plots the proportion of zeros in Π as a function

of β for a directed circle with N = 100.

Alternatively, note that (for |β| < 1) we can expand the inverse using a Neumann series

and obtain

Π = ηI + (βη + γ)
∞∑
k=1

βk−1W k.

Since βη+ γ 6= 0, πij = 0 if, and only if, there are no paths between i and j in W . The (i, j)

entry in W k is non-zero whenever there is a path of length k between i and j. If a pair is not

connected at any length, that entry is zero for every k. Therefore, Π is sparse if there is a

large number of (i, j) unconnected pairs in W . When that is the case, de Paula, Rasul, and

24Manresa suggests a computational procedure that alternates between the individual LASSO estimator
for individual specific parameters (individual fixed effects and individual row in W ), penalizing the L1 norm
of Wi, given the remaining parameters and a pooled ordinary least squares estimator for the remaining
parameters given individual specific parameters until convergence.
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Figure 3: Sparsity of Π for Directed Circle

Note: The dark lines in the first, second, and third panels show the proportion of entries in (I−βW )−1(I+W )
that are larger than 0.0001, 0.001 and 0.01, respectively, as a function of β. The matrix W is a 100 × 100
matrix (N = 100), such that Wii+1 = W100,1 = 1 for i = 1, . . . , 100 and zero, otherwise. The density
(proportion nonzero entries) of W is 1%, and the density of I +W , corresponding to β = 0, is 2%.

Souza (2015) say that W is “sparsely connected.” (Note that the circular graph used above

is sparse, but not sparsely connected.) A sparsely connected network, where many pairs are

not linked, will exhibit many components. A notion of approximate sparse connectedness can

then be envisioned where the (i, j) entry of W k is nonzero, but small. Because the number

of components in a network equals the multiplicity of the zero eigenvalue of the Laplacian

matrix (i.e., diag(W1)−W ) (see Kolaczyk (2009)), the spectrum of this matrix can be used

as a measure of sparse connectedness; the more eigenvalues there are in the vicinity of zero,

the closer the matrix is to a sparsely connected matrix. The directed circle above is not

approximately sparsely connected either.

I should note that there is a built-in tension between sparse connectedness and the linear

independence assumption used for the identification of the model. For a (row-)stochastic

matrix, for example, the nth smallest eigenvalue for the Laplacian matrix diag(W1) −W

corresponds to one minus the nth largest eigenvalue of W .25 Then, if the spectrum of the

Laplacian matrix is close to zero, the spectrum of the matrix W is close to a constant vector

(of ones) and I,W , and W 2 are linearly dependent. An alternative is to introduce the pe-

nalization directly on W , which may be more naturally expected to be sparse. In this case,

it should be pointed out that the identification condition that W be non-negative, row-sum

normalized to one implies that the L1-norm of W equals N . Hence, within this class of mod-

els, penalty schemes used in the LASSO or the Elastic Net might find difficulties discriminant

25This is because (diag(W1)−W )v = (I−W )v = λv implies that Wv = (1− λ)v.
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among adjacency matrices. Other penalization strategies using non-convex penalty functions

that also allow for sparse estimates, like the Smoothly Clipped Absolute Deviation (SCAD)

penalty (Fan and Li (2001)) or the Minimax Concave Penalty (Zhang (2010)), will not be

constant within the class of unit row-normalized, non-negative matrices and might be em-

ployed. On the other hand, I should note that sparsity of W itself can potentially provide

identification power per se, as it provokes a relatively large number of entries in W to be

zero. In this sense, unrestricted estimation is a possibility using the LASSO or Elastic Net.

(The relaxation of positivity and row-sum normalization could be regarded as allowing for

individual heterogeneity in the magnitude and sign of β.)

The penalization of W is pursued, for example, by Lam and Souza (2013), after dispensing

with the positivity and normalization assumption on W . They estimate the parameters of

the model by minimizing an objective function written directly in terms of the structural

system. In terms of our specific model and notation,

min(W,β,δ,γ)
1

T

∑
t

‖yt − α− βWyt − ηxt − γWxt‖22 + λ
∑
i 6=j

pT (Wij), (6)

where ‖ ·‖2 is the Euclidean norm and the penalty term depends on the L1 norm of W . Since

y is endogenous, it is expected that additional assumptions need to be imposed, and Lam and

Souza (2013) suppose that the variance of the structural errors εit vanishes asymptotically

(see their Assumption A2). (The asymptotics are in N and T .) Intuitively, this assumption

can be seen as a version of the Proximity Theorem: “[I]f the variance-covariance matrix

of the regressors is bounded away from singularity, the least-squares estimator approaches

consistency either as the variance of the disturbance approaches zero or as the probability

limits of the correlations between the disturbance and regressors approach zero” (see Theorem

3.9.1 in Fisher (1966)). The estimator, then, may be best suited for circumstances when error

variances are relatively small, but less suited when the variance of the structural errors is

comparatively large (see, e.g., Table 5 in Lam and Souza (2013) for Monte Carlo results when

error variances are comparatively large).26

In lieu of the above strategy, we can instead opt to minimize the following objective

26If the errors are normally distributed with a diagonal variance-covariance matrix, a full-information
maximum likelihood estimator based on the model 2 would involve a term on the (log)-L2 norm of W
(corresponding to the logarithm of the Jacobian term), and a penalized (quasi-)maximum likelihood estimator
could be employed.
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function:

min(W,β,δ,γ)
1
T

∑
t ‖yt − Πxt‖22 + λ

∑
i 6=j pT (Wij)

s.t. (I− βW )Π− (ηI + γW ) = 0

Absent the penalization term, this can be seen to correspond to an indirect least squares

estimator. This estimator nevertheless penalizes the adjacency matrix W directly (as opposed

to the previous estimator focusing on the reduced form). A potential complication is that

the objective function will no longer be convex since Π = (I−βW )−1(ηI+γW ).27 Of course,

if the row-sum normalization condition is imposed also, one would also likely have to resort

to a non-convex penalization scheme (like SCAD or MCP). The analysis and performance of

this estimator are subjects of ongoing research.28

Aside from its role in estimation, sparsity of W can also be useful in identification as

it essentially imposes exclusion restrictions on the different structural equations. Suppos-

ing enough sparsity, for example, Rose (2015) obtains identification results under additional

conditions on the reduced-form coefficient matrix Π. These conditions are rank restrictions

on sub-matrices of Π (whose verification is nevertheless computationally demanding). In-

tuitively, given two observationally equivalent systems, sparsity guarantees the existence of

pairs that are not connected in either. Since observationally equivalent systems are linked

via the reduced-form coefficient matrix, this pair allows one to identify certain parameters

in the model and, having identified those, one can then proceed to identify other aspects

of the structure. (This is related to the ideas in Theorem 6 of Blume, Brock, Durlauf, and

Jayaraman (2015) (see discussion above).)

3.2 Nonlinearities and Multiple Equilibria

One can enumerate various empirical circumstances where a linear model may not be ideal

(see, e.g., Kline and Tamer (2011)). Nonlinearities can occur through two possible, non

mutually exclusive, avenues: by nonlinearities in the “link” function through which the

(possibly weighted) average of peer outcomes determine an individual’s outcome (i.e., yi =

f
(∑N

j=1Wijyj, xi,
∑N

j=1Wijxj, εi

)
) or through nonlinear aggregation of peer outcomes (e.g.,

27Another possibility which may attenuate the computational issues is to minimize the above objective
function with respect to both Π and W . (I thank Lars Nesheim for this suggestion.)

28If instrumental variables are available for each of the endogenous variables, (penalized) IV estimators
could also provide an estimation avenue (see Gautier and Tsybakov (2014), Lam and Souza (2014)).
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minj:Wij 6=0 yj instead of
∑N

j=1Wijyj).

As noted by Manski (1993), even under nonlinearities, nonparametric versions of the so-

cial interactions system with global interactions analyzed earlier (i.e., Wij = 1/(N − 1), i 6= j

and Wii = 0, i, j = 1, . . . , N) are not identified. Brock and Durlauf (2001) show that

this is not the case in a (parametric) binary choice model with social interactions (without

correlated effects), and Brock and Durlauf (2007) extend the analysis to nonparametric bi-

nary choice models showing various point- and partial-identification results.29 Blume, Brock,

Durlauf, and Ioannides (2011) provide a comprehensive survey of social interactions in non-

linear models covering, for example, multiple discrete choice (Brock and Durlauf (2006)),

duration models (Sirakaya (2006), de Paula (2009), Honoré and de Paula (2010)). Recently,

Bramoullé, Kranton, and D’Amours (2014) investigated a class of game theoretic models on

general networks and suggested a Tobit-type social interactions econometric model (on this,

see Xu and Lee (forthcoming)).

Manski (1993) also points out that “social effects might be transmitted by distributional

features other than the mean” (p.534). Tao and Lee (2014) consider, for example, peer

effects defined by the minimum outcome among one’s peers. Also looking at a model where

individuals are affected by nonlinear functionals of their peers’ outcome distribution, Tincani

(2015) obtains testable implications and finds evidence of nonlinearities in education peer

effects in Chile using a recent earthquake and its differential impact on students at different

distances from its rupture. Whereas these models use a global interactions network structure,

more general network structures could prove useful in many respects.

One interesting aspect in such nonlinear models is the possibility for multiple equilibria.

In their study of social effects on fertility choices, for example, Manski and Mayshar (2003)

explore a utility-maximizing model where nonlinear child allowance schemes may lead to

multiple social equilibria. Whereas multiplicity can, at times, pose issues for identification,

this is not necessarily always the case. Once again, Manski (1993), for instance, suggested that

“[t]he prospects for identification may improve if [the model] is non-linear in a manner that

generates multiple social equilibria” (p.539). Indeed, identification is facilitated in certain

cases, as suggested by the analysis of a binary choice model (without correlated effects) in

de Paula and Tang (2012) (see de Paula (2013) for a general survey on econometric analysis

of interaction models with multiplicity).

Recently, Manski (2013) contemplated the analysis of potential outcomes in a social in-

29Bisin, Moro, and Topa (2011) and Menzel (2015) investigate alternatives for estimation of these models
(and others) for interaction systems with a large number of players.
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teractions context. Letting xi = {0, 1} denote a particular (binary) treatment for individual

i and x be a vector collecting treatments for the group as a whole, the potential outcome

for individual i when the group is faced with the treatment profile x is denoted by yi(x).

Manski enumerates a few circumstances where individual treatments may spill over to other

network members. The epidemiology of infectious diseases provides a salient example, where

vaccination of an individual presumably affects that person’s likelihood of infection, which

is additionally influenced by the infection status of others in the community (there is a well-

established epidemiology literature on network diffusion of infectious diseases). Using the

conditional cash transfer program Progresa in Mexico and using consumption as an out-

come, Angelucci and De Giorgi (2009) found evidence of spillovers operating mostly through

insurance and credit relationships. Dieye, Djebbari, and Barrera-Osorio (2014) investigate

the effects of a scholarship program in Colombia with possible spillovers. Using our notation,

we can represent the setup envisioned by Manski as

yi(x) = f (Wi,y−i(x),x, εi) ,

where yi(x) is the potential outcome for individual i when the network receives treatment

x.30 Manski provides characterizations on the set of identified distributions for the potential

outcomes y(x),x ∈ {0, 1}N when the above system has a single solution. As he points out, a

nonlinear system may lead to multiple solutions (or maybe no solution at all), complicating

the characterization of the identified set of potential outcome distributions. These ideas are

further investigated (theoretically and empirically) by Lazzati (2015), who further imposes

monotonicity restrictions on the treatment effects.

3.3 Other Considerations

Spillovers mediated through network structures are, of course, present in a myriad of eco-

nomic and social circumstances. Demand externalities arise naturally in goods and services

whose values depend on the topology and volume of the network of consumers and producers

involved. There is a enough literature in theoretical and applied industrial organization on

the topic to fill a completely separate survey article.

30Manski also mentions the possibility that the treatment vector may affect the reference group for each
individual, in which case Wi = Wi(x)). In fact, Comola and Prina (2014), studying the introduction of
a savings product in Nepal, found that insurance-motivated connections are likely to be rewired after the
intervention.
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More traditional industries are nevertheless also interconnected via input-output directed

relationships (see Kranton and Minehart (2001) for a theoretical analysis of buyer-seller net-

works). Carvalho, Nirei, and Saito (2014), for instance, examined supply chain disruptions

following the 2011 earthquake in Japan. Also using Japanese data, Bernard, Moxnes, and

Saito (2014) studied buyer-seller networks and firm performance using infra-structure devel-

opments (high-speed trains) for variation in travelling costs, leading to the creation of new

buyer-seller linkages. In fact, supplier-client networks present many of the same features de-

scribed earlier (e.g., clustering, sparsity, intransitivities) (e.g., Atalay, Hortacsu, Roberts, and

Syverson (2011) and Carvalho (2014)). It is conceivable that some of the ideas highlighted

in previous subsections (e.g., the use indirect peers’ outcomes or the output of suppliers of

one’s suppliers for identification) could be used in the identification of these relationships

and primitives of interest, like production or value-added functions (e.g., Gandhi, Navarro,

and Rivers (2013) for a recent article with a good overview on the econometric literature

about production and value-added functions). Production networks and their composition

have obvious connections to the macroeconomy (e.g., Acemoglu, Carvalho, Ozdaglar, and

Tahbaz-Salehi (2012)) and trade (e.g., Antras and Chor (2013)), and I refer the reader to

Carvalho (2014) and Acemoglu, Ozdaglar, and Tahbaz-Salehi (forthcoming)) for recent re-

views on the propagation of microeconomic shocks in production and financial systems.

Buyer-seller networks have repercussions in other dimensions as well. One interesting

dimension is in taxation chains. The collection of value-added taxes is usually done via

a credit mechanism, for example, whereby firms remit taxes on their revenues and claim

tax credits on their inputs. Theoretically, this binds compliance through the network and

is another channel through which individual firm decisions may reverberate through the

network (e.g., de Paula and Scheinkman (2010) and Pomeranz (forthcoming)).31 Again, the

insights described previously could prove useful here.

4 Network Formation

As seen above, the connection structure among networked agents can assist with the identi-

fication and estimation of models describing the resolution of economic and social outcomes

of interest. It is nevertheless apparent that, whereas in some cases the peer structure can be

taken as (econometrically) exogenous or predetermined, many times the very formation of a

31Network spillovers can also be present at the individual compliance level (e.g., Fortin, Lacroix, and
Villeval (2007), Galbiati and Zanella (2012) and Kopczuk, Alstadsaeter, and Telle (2014)).
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connection arises in response to incentives that may or may not articulate with the outcomes

to be determined using the networks as a conduit. Models of network formation are, then,

of interest on their own as well as in conjunction with the simultaneous equation models

covered in the previous section.

4.1 Statistical Models

We can posit a data-generating process summarized by the statistical model (G, σ(G),P),

where σ(G) is a σ-algebra of events in the sample space of graphs G, and P is a class

of probability distributions on the measurable space (G, σ(G)). In the Ërdos-Rényi model

defined on N vertices, for example, P would be the parametric class of models indexed by

the probability p ∈ (0, 1) that an undirected link is independently formed between any two

vertices under consideration, defining a probability distribution over the set of 2N(N−1)/2

possible graphs on the set of N nodes. (I will focus here on undirected networks, though

versions of many of the estimators below exist for more general graphical structures.) A great

many statistical models for network formation can be seen as enrichments of this simple model

(just as a probit or logit and mixture versions of those can be seen as generalizations of a

Bernoulli statistical model). For the statistical models listed in this subsection, the analyst

is assumed to have data on at least one network (but not necessarily more than one). (The

estimation of a classical Ërdos-Rényi model with only one network of N individuals, for

instance, would essentially amount to the estimation of Bernoulli parameter on N(N − 1)/2

observations.)

Zheng, Salganik, and Gelman (2006), for example, used a heterogeneous version of this

simple random graph model to obtain estimates for the total size of hard-to-count popula-

tions. In the Ërdos-Rényi model above, the expected degree for a given individual when there

are N nodes equals Np, and the proportion of total links involving individuals in group k

(e.g., incarcerated individuals) is given by Nk/N . The answer to the question of how many

individuals of group k an individual i knows is then well-approximated by a Poisson distri-

bution with parameter pNk (similar to the approximation of the degree distribution by a

Poisson distribution, as mentioned earlier). The authors show that a better model for the

data analyzed is one where not only individual “gregariousness” (i.e., the expected degree

of the individual) but also the individual propensity to know individuals in a given group k

are heterogeneous. The distribution of answer counts is then given by a mixture of Poisson

distributions (mixing over the heterogeneity in the relevant parameters), overdispersed rel-
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ative to a (homogeneous parameter) Poisson distribution. Using this statistical model and

Bayesian statistical methods, they were able to estimate the distribution of links (to any

other individual) in the wider population of interest. This model is adapted by Hong and

Xu (2014) to study local networks among fund managers using their portfolio allocation to

local investments, where they find similar evidence of heterogeneity. Many other estimation

strategies seek to characterize the degree distribution as a means to infer a well-suited prob-

abilistic data-generating model for the network (e.g., Ërdos-Rényi, preferential attachment,

etc.).

A well-known generalization of the Ërdos-Rényi model is the class of exponential random

graph models introduced earlier in this article. For those models,

P(G = g) = exp

(
p∑

k=1

αkSk(g)− A(α1, . . . , αk)

)
, (7)

where A(α1, . . . , αk) is a normalization constant ensuring that probabilities integrate to one

and Sk(g), k = 1, . . . , p enumerate certain features of the graph g. These would be character-

istics like the number of edges, the number of triangles, and possibly many others. (If only the

number of edges is considered, we obtain the Ërdos-Rényi model.) Since the probability mass

function is in the exponential class, the model shares some well-understood properties. For

example, the vector (Sk(g))pk=1 is a sufficient statistic for (αk)
p
k=1, which is called the natural

parameter for the exponential family, and A(α1, . . . , αk) = ln
[∑

g∈G exp (
∑p

k=1 αkSk(g))
]

is

its cumulant generating function or log partition function (i.e., the logarithm of its moment-

generating function). (The distribution (7) is sometimes referred to as the Gibbs measure

in the literature, given its connection to similar models in physics.) This model allows one

to define probabilities using prevalent features of observed networks such as triads, clusters,

and other topological characteristics.

In principle, it is also amenable to likelihood based inference just like any other exponen-

tial class distribution. The ensuing computational difficulties are nevertheless sizeable. This

relates to the fact that the normalization constant (i.e., exp(−A(α1, . . . , αk)) requires sum-

ming over all 2N(N−1)/2 graphs. If N = 24, the number of graphs (approximately 1.21×1083)

amounts to more than the estimated number of atoms in the observable universe. To circum-

vent this issue, considerable effort has been devoted to providing computational tools and

approximation results that allow one to estimate this constant and carry out inference. Two

main avenues are the use of variational principles and Markov chain Monte Carlo (MCMC)
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methods, both rooted in statistical mechanics.

Exploring properties of the cumulant function (e.g., convexity), one can use variational

methods to represent the constant as a solution to an optimization problem. Consider, for

instance, an Ërdos-Rényi graph on two nodes i and j. The (random) edge between these two

vertices can be written as a Bernoulli random variable Wij, and its probability mass function

can be parameterized as P(Wij = wij) = exp(αwij)/(1 + exp(α)) = exp(αwij − A(α)), wij =

0, 1. In this case, A(α) = ln(1 + exp(α)), and notice that A′′(α) = exp(α)/(1 + exp(α))2 > 0,

so A(α) is convex. Using results from convex analysis, one can express A(α) as

A(α) = sup
µ∈[0,1]

{αµ− A∗(µ)}, (8)

where A∗(µ) = supα∈R{µα − A(α)} = µ lnµ + (1 − µ) ln(1 − µ) (i.e., the convex conjugate

or Legendre-Fenchel transformation of A(α)). Note also that A∗(µ) equals the negative of

the solution to the problem: maxpH(p) subject to Ep(gij) = µ, where H(p) ≡ −p ln p− (1−
p) ln(1− p) is known as the Shannon entropy (for the Bernoulli distribution). The conjugate

dual A∗(µ) can be obtained using the entropy measure more generally. Having obtained

A∗(µ), if one then explicitly maximizes αµ − A∗(µ) = αµ − µ lnµ − (1 − µ) ln(1 − µ) over

µ ∈ [0, 1], it can be seen that the maximum is attained at A(α) defined above. The key here is

to use the fact that the necessary conjugate function is related to the entropy measure H and

represents the sum over possible networks A(α) as the solution to an optimization problem. In

practice, the computation of the dual function will involve calculation of the entropy measure

H, and the optimization (8) is performed over a space that is not always easily characterized

(in this case, it is {µ : 0 ≤ µ ≤ 1}). In high-dimensional problems, various approximations to

the constraint set and the dual A∗(µ) are then pursued to provide a computationally tractable

estimate of the cumulant function A(α) (see Section 3.3 in Jordan (2004) or Jordan and

Wainwright (2008) and Braun and McAuliffe (2010) for an application to high-dimensional

discrete choice models). Using variational methods, for example, Chatterjee and Diaconis

(2013) provide an approximation of the cumulant function for dense graphs when the number

of nodes goes to infinity32 and Chatterjee and Dembo (2014) provide error bounds for this

approximation when there is a small degree of sparsity.

Perhaps a more familiar class of techniques involves MCMC methods. Such procedures

have also been developed to produce maximum likelihood estimators and Bayesian posterior

32Their arguments are based on approximations to large, dense graphs.
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distributions for (α1, . . . , αk) in exponential network models. Different approaches are sum-

marized in Kolaczyk (2009).33 It should be noted that various issues may arise in simulating

ERGMs. The procedure can be very slow to converge to an invariant distribution. This is

highlighted, for instance, in the discussion by Chandrasekhar and Jackson (2014) and Mele

(2015) and formally demonstrated in Bhamidi, Bresler, and Sly (2011). In particular, for

certain regions of the parameter space (defined as “low temperature” regions, in analogy to

spin systems in physics), where the distribution (7) is multimodal, the mixing time for the

MCMC procedure, i.e., the time it takes for the MCMC procedure to be within e−1 in total

variation distance from the desired distribution, is exponential on the number of nodes (The-

orem 6 in that paper). In other regions (“high temperature” ones), where the distribution

(7) is unimodal, the mixing time is O(n2 lnn) (Theorem 5 in that article).

One recurrent related issue in the application of ERGMs is what the literature terms

degeneracy or near degeneracy, whereby “depending on the parameter values, the exponential

random graph distribution can have a bimodal shape in the sense that most of the probability

mass is distributed over two clearly separated subsets of the set of all digraphs, one subset

containing only low-density and the other subset containing only high-density digraphs. The

separation between these two subsets can be so extreme that (. . . ) stochastic updating steps

which change only a small number of arc variables (. . . ), have a negligible probability of taking

the Markov process from one to the other subset” (Snijders (2002), p.13). This again will lead

at times to very slow convergence of a Markov chain Monte Carlo procedure to an invariant

distribution. It is not uncommon either to observe abrupt changes on the class of probable

graphs as parameters change, and all of these “oddities” are characterized as degeneracy or

near degeneracy of the ERGM. In fact, this behavior is not at all unusual and is related to

the general properties of discrete exponential distribution families as investigated in Rinaldo,

Fienberg, and Zhou (2009) and Geyer (2009) (see Handcock (2003) for an earlier analysis).

In such models, when the observed sufficient statistics are at (or, for all practical purposes,

near) the boundary of their support, the MLE will not exist, and, even when it does, Markov

chain-ML estimators will tend to not behave well. For instance, the sample average is the

sufficient statistic for the natural parameter α of a Bernoulli random variable (as in the two-

node Ërdos-Rényi random graph above). When that sample average is one or zero, the ML

estimator for the natural parameter does not exist! As indicated by Rinaldo, Fienberg, and

Zhou (2009), “ERG modeling based on simple, low dimensional network statistics (. . . ) can

be rather coarse. In fact, those ERG models are invariant with respect to the relabeling of

33The software suite statnet offers a package for the analysis of ERGMs in R.
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the nodes and even to changes in the graph topologies, depending on the network statistics

themselves. As a result, they do not specify distributions over graphs per se, but rather

distributions over large classes of graphs having the same network statistics” (pp.459-460).

Hence, when the model is not sufficiently rich and/or observed networks are moderately

sparse, the sufficient statistics will act as a coarse classifier of networks, and one may well find

herself facing the issues highlighted above. The stark “discontinuities” in the distribution of

graphs generated by the model as parameters are varied are also investigated in Chatterjee

and Diaconis (2013) for dense, large networks. They also discuss the (troublesome) issue

that for certain regions of the parameter space—the “high temperature” ones, where the

distribution (7) is unimodal, graph draws from the model are very close to those of an Ërdos-

Rényi model with independent link formation (see their Theorem 4.2). A similar point is

made in Bhamidi, Bresler, and Sly (2011) (see their Theorem 7).34

An early alternative estimation strategy, adapted to ERGMs by Strauss and Ikeda (1990)

(but originally suggested by Besag (1975)), is to rely on the (log) pseudo-likelihood

∑
{i,j}

lnP(Wij = 1|W−ij = w−ij;α),

where P(Wij = 1|W−ij = w−ij;α) denotes the probability that the link Wij is formed condi-

tional on the remainder of the network, which I denote by W−ij. Upon inspection, it can be

seen that this does not correspond to the likelihood function for the model unless links form

independently. In fact, if the dependence is not sufficiently weak, this estimator is bound to

produce unreliable estimates (e.g., Robins, Snijders, Wang, Handcock, and Pattison (2007)).

If links are independently formed, the objective function is such that P(Wij = 1|W−ij =

w−ij;α) = P(Wij = 1;α). In this case, one can easily focus on dyads (i.e., pairs of vertices

and the existing links between them) and incorporate covariates. This dyadic model has often

been used in the social sciences to study network links (see Wasserman and Faust (1994)).

One well-known dyadic model is that of Holland and Leinhardt (1981), where the authors

focus on directed links. Their model, which they call the p1 model, postulates that:

P(Wij = Wji = 1) ∝ exp(αrec + 2α + αout
i + αin

i + αout
j + αin

j )

34These difficulties in distinguishing the model from an Ërdos-Rényi one also lead to identification issues
as pointed out in Mele (2015), which analyses an ERGM obtained from a network formation model (see
dicussion below). As he indicates, these identification challenges are less troublesome when multiple networks
are observed (as in Nakajima (2007)), but are germane when identification relies on a single network.
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and

P(Wij = 1,Wji = 0) ∝ exp(α + αout
i + αin

j ).

Here, the parameter αout
i encodes the tendency of node i to send out links irrespective of the

target (its “gregariousness”), and αin
j captures node j’s tendency to receive links regardless

of the sender’s identity (its “attractiveness”). The parameter αrec registers the tendency for

directed links to be reciprocated: large, positive values of αrec will increase the likelihood of

symmetric adjacency matrices. (Note that when αout
i = αin

i = αrec = 0 for all i, links form

independently with probability given by exp(α)/(1+exp(α)), and the model would correspond

to a logit.) It is straightforward to add dyad-specific covariates to the specification above.

Generalizations and special cases for this model have been suggested and extensively

analyzed. Hoff (2005), for example, considers an augmented model where multiplicative in-

teractions between individual unobserved factors are added to the probability specification

above (i.e., zi × zj, where zi is a vector of i-specific factors), and those plus the additive

“gregariousness” and “attractiveness” features defined previously (i.e., αout
i and αin

i ) are

modeled as random effects. Building on tools from the (large-N, T ) panel data literature

(Fernandez-Val and Weidner (2014)) and focusing on the additive structure above with pos-

sibly additional observed covariates, Dzemski (2014) on the other hand treats αout
i and αin

i

as fixed effects, hence allowing for an arbitrary correlation between those and with any ob-

served characteristic in the model.35 He provides a test of the model based on the prevalence

of transitive triads (i.e., vertex triples where links are transitive) and an application to the

microfinance-related networks collected and analyzed in Banerjee, Chandrasekhar, Duflo, and

Jackson (2014) (among other papers).36 Graham (2014) investigates a similar model (with

observed covariates), but for undirected networks (see also Charbonneau (2014)). There,

the undirected links are formed with a probability that is proportional to exp(α + αi + αj).

This is related to the Rasch model (Rasch (1960)) and can be seen as a pairwise stable

arrangement when direct transfers are possible (see Bloch and Jackson (2007)). In the ab-

sence of covariates, its MLE large sample properties (for dense networks) are analyzed by

Chatterjee, Diaconis, and Sly (2011) and Yan and Xu (2013), who call it the β-model. In

this case, the distinction between “sender productivity” and “receiver attractiveness” for a

given node disappears, but the parameters αi can be interpreted as the proclivity by node

35Hoff (2005) parameterized the correlation between αout
i and αin

i , whereas Dzemski (2014) can allow for
more general dependencies.

36Interestingly, the estimated distribution of “gregariousness” and “attractiveness” appear to cluster in a
few groups, suggesting group-level heterogeneity.
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i to establish connections. Those parameters are also treated as fixed effects. Aside from

providing large sample characterizations for the ML estimator, Graham (2014) also analyzes

the conditional ML estimator constructed using sufficient statistics for αi, allowing him to

“condition those parameters out” and circumvent the incidental parameters problem when

estimating the observable covariate coefficients.

Instead of zooming in on individual pairs and the links established between them, Chan-

drasekhar and Jackson (2014) proposed a framework focusing on additional classes of sub-

graphs, which they call subgraph generation model (SUGM). The model specifies a set of K

subgraphs, (Gl)
K
l=1, possibly involving a different number of nodes each and probabilities for

each one of those. For example, one could specify K = 2 and G1 to be the class of (undi-

rected) edges between two nodes, taking probabiliy p1, and G2 to be the class of (undirected)

triagles, to form with probability p2. (I focus on undirected graphs, but their analysis can also

be extended to directed ones.) A possible narrative for this specification could be that the es-

tablishment of certain connections only requires dyads (e.g., a tennis match), whereas others

elicit participation from triples (e.g., a proper rock’n’roll band). One version of their model

has subgraphs form at random and produce a graph realization defined by the union of edges

formed by the initial subgraph draws. Note that some edges drawn in the initial protocol will

be redundant. The edge {i, j} from the first class of subgraphs may form independently as

well as part of a triangle, say {i, j, k}, with probability p1×pt: Two bandmates in a trio may

also be tennis partners. (Chandrasekhar and Jackson (2014) also consider a protocol where

subgraphs are formed sequentially, avoiding redundancies.) Furthermore, realized isolated

edges, triagles, and more generally modeled subgraphs can possibly get “meshed” in the final

observed network. For instance, a triangle involving nodes i, j and k could be the outcome

of independently formed edges {i, j}, {j, k}, and {k, i} (which occurs with probability p31),

a genuine triangle {i, j, k} (happening with probability pt), or a combination of independent

edges and triangles involving those nodes (and possibly others). Disentangling the count of

subgraphs in the model that are genuinely formed or just happenstance from the composition

of other subgraphs can be done by noting that the count of each subgraph (Gl)
K
l=1 is a mixture

of both genuinely and incidentally formed subgraphs. This provides a system of equations

that can be solved for the parameters of interest. This system of equations also produces

a simple method of moments estimator for the desired quantities, and Chandrasekhar and

Jackson (2014) provide large sample characterizations for the estimator. The probabilities

for each subgraph can also be made to depend on covariates. Finally, the authors also relate

SUGM to mutual consent and search intensity network formation models. They provide an
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application to microfinance-related network data collected by the authors in several Indian

villages (e.g., Banerjee, Chandrasekhar, Duflo, and Jackson (2014)).

4.2 Strategic Network Formation

Most of the literature above relates to statistical models not (or at least not directly) related

to economic models of network formation. Here I consider econometric models where agents

purposefully form networks according to an explicit equilibrium notion and a payoff structure

whereby node i’s utility function Ui(g) depends on the network g and vertex and/or pairwise-

specific variables, observable and unobservable to the econometrician. (I omit observable

covariates below for simplicity). Though more general specifications are possible, one common

specification (for undirected networks) involves variations of

Ui(g) ≡
∑
j 6=i

Wij ×
(
u+ εij

)
+
∣∣∪j:Wij=1Nj(g)−Ni(g)− {i}

∣∣ ν +
∑
j

∑
k>j

WijWikWjkω, (9)

where Ni(g) denotes the set of nodes directly connected to node i and | · | is the cardinality

of a given set. The vector εi ≡ (εij)j 6=i enumerates link-specific payoff shifters. I also retain

the notation of using Wij ∈ {0, 1} to denote the establishment of a link from i to j. The

first term in this payoff function enumerates the utility of direct connections and is indexed

by the parameter u. The second term represents the payoff from indirect connections (one

link away), and ν is the payoff per such an indirect link. The last term expresses any

utility from mutual connections between vertices directly linked to node i. Whereas specific

implementations may differ, they typically involve terms relating to each of these three aspects

(direct connections, indirect connections, and mutual connections). Similar specifications

exist for directed networks. Finally, the analysis may also differ depending on whether utility

is transferable or not (see Jackson (2009) for a definition). Here I focus on non-transferable

utility models, although transferable utility models have also been examined (see Lee and

Fong (2011)).

One class of models focuses on an iterative network formation protocol and includes the

papers by Christakis, Fowler, Imbens, and Kalianaraman (2010), Mele (2015) and Badev

(2013). At each iteration of the meeting protocol, a pair of individuals and the relevant

unobservable errors are drawn and (myopically) determine the formation or dissolution of

an edge according to the payoff structure. This relates, for example, to earlier analyses on

stochastic best response dynamics by Blume (1993) (for non-cooperative games) and, in the
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context of network formation models, to Watts (2001) and Jackson and Watts (2002). A

meeting protocol is also employed in the precursor article by Currarini, Jackson, and Pin

(2009) (which focuses on direct links). (I mention in passing that, given the nature of the

myopic sequential optimization process, a structural interpretation of the unobserved taste

shocks and meeting protocol as a component of the data-generating process will be more

or less adequate, depending on the empirical context.) The first paper above considers

an undirected network. While Christakis, Fowler, Imbens, and Kalianaraman (2010) do

not explicitly consider an equilibrium notion, if unobservable preference shocks are absent

(or fixed) throughout the meeting protocol, the (undirected) network would converge to

a pairwise stable configuration if one exists (see below for definition) or cycle if one does

not exist (see Watts (2001)). In the models above, new unobservables are drawn at each

meeting, and one can view these “perturbations” as producing a version of the stochastic

stability analysis in Jackson and Watts (2002).

Mele (2015) and Badev (2013), on the other hand, study directed networks (Badev (2013)

extends Mele (2015) to model link formation and behavioral choices—smoking—simultaneously).

Under some conditions, Mele (2015) demonstrates the existence of a potential function to

characterize the Nash equilibria of the model absent the unobservable error. (Badev (2013),

who also relies on a potential function, on the other hand, introduces and focuses his analysis

of the unobservable-error-free model on the concept of k-Nash stability, building on previous

work by Bala and Goyal (2000).) Mele (2015) then shows that the meeting protocol and

myopic best response dynamic form an ergodic Markov chain on the space of networks and

converges to a unique invariant distribution (with modes at the maximands of the potential

function alluded to above). In fact, when the unobservables are assumed to be i.i.d. extreme

value distributed, the limiting distribution corresponds to that of an ERGM.37 Given the

practical difficulties in the estimation of ERGMs pointed out previously, I should mention

that Mele (2015) also proposes a modified MCMC procedure and analyzes the procedure for

this particular model along the lines of Bhamidi, Bresler, and Sly (2011), demonstrating that

the slow convergence regions in the parameter space are relatively small for parsimonious

parameterizations of the utility function where only direct links matter (see Mele (2015) for

further details). Intuitively, the most parsimonious parameterization of an ERGM would

correspond to an Ërdos-Rényi model, for which the parameter space would be in the “high

temperature” regime.

All three models above are fit to a network of friendships obtained from the AddHealth

37The connection between potential games and ERGMs was independently noticed by Butts (2009).
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data and use MCMC methods to produce Bayesian estimates of the parameters of interest.

Whereas Christakis, Fowler, Imbens, and Kalianaraman (2010) use data from one school

network, Mele (2015) estimates his model on three school networks, and Badev (2013) uses

data from 14 school networks. (The AddHealth data has a total of 16 schools for which

all information was collected.) The goodness of fit analysis provided by Christakis, Fowler,

Imbens, and Kalianaraman (2010) demonstrate that a model with utility functions extending

to indirect connections matches patterns of the observed networks well.

A different class of models focuses instead on a static framework. For undirected networks,

a common solution concept adopted in those papers is that of pairwise stability (see Jackson

and Wolinsky (1996)). A pairwise stable network is one for which:

{i, j} ∈ g ⇒ Ui(g) ≥ Ui(g − {i, j}) (10)

and

{i, j} /∈ g ⇒ Ui(g ∪ {i, j}) < Ui(g) or Uj(g ∪ {i, j}) < Uj(g). (11)

The notation g − {i, j} stands for the graph obtained by the deletion of the link {i, j} from

g, and g ∪ {i, j} denotes the graph obtained by adding the edge {i, j} to g. This solution

concept incorporates the idea that any link can be severed unilaterally, but the formation

of a link requires mutal consent. Other solution concepts exist for undirected networks and

related solution concepts can be employed for directed networks (Nash stability, for example)

and when transfers are possible (see Jackson (2009)). As pointed out above, pairwise stable

networks would be rest points for link formation sequences produced via a meeting protocol

if the payoff structure does not change at each new meeting. In that case, the realized

sequence of meetings could be seen as a selection among the possible stable networks which

the approaches described below try to be agnostic about. The articles described above

circumvent this issue by introducing noise in the meeting process (as unobservables are drawn

anew at each meeting opportunity). A (latent) meeting protocol would still need to be

specified.38 Furthermore, the multiplicity partly reappears as the MCMC procedures used in

the estimation tend to have the most difficulty in regions of the parameter space where the

distribution of networks is multimodal (i.e., the “low temperature” regions), which in turn

correspond to there being multiple (Nash or Nash stable) equilibria in the underlying game

38In the directed network case, Badev (2013) shows nevertheless that, under certain restrictions on the
class of meeting protocols, the invariant network distribution does not depend on the specification of the
meeting process.
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(without econometric errors).

Aside from the proliferation of possible networks as the number of nodes grows, an added

difficulty in the analysis of such models is the possible multiplicity of equilibria for given

realizations of the payoff-relevant variables. To illustrate this, consider a simple three-node

graph with payoffs given by

Ui(g) =
∑

j∈1,...,n,j 6=i

δd(i,j;g)−1 (1 + εij)− |Ni(g)|,

where δ ∈ (0, 1) and d(i, j; g) is the shortest distance between i and j in the graph g. This is

an econometric version of the connections game in Jackson and Wolinsky (1996) where player

i collects 1 + εij if directly connected to node j and δd(i,j;g)−1 (1 + εij) if indirectly connected

to j and any direct connection cost her one util. The set of possible links is {12, 13, 23}, and

there are eight possible networks (23). (To economize on notation, I use ij instead of {i, j}
to denote the edge between nodes i and j.) To visualize the multiplicity of solutions, I map

the possible pairwise stable networks for a realization of εs where εij = εji for any i, j in the

(ε12 × ε13)-space for 0 < ε23 < δ/(1− δ) (see appendix for a more detailed description).

To emulate the approach usually adopted in the empirical games literature (see de Paula

(2013)), one could generate bounds on the parameters of interest (i.e., δ in this model) by

noting that the model implies probability bounds for each (pairwise stable) network to be

observed. For example, the probability of observing the network {12, 13} is bounded below

by the probability that it arises as a unique equilibrium (e.g., the probability of the NE

corner of the figure) and bounded below by that quantity plus the probability that it is a

pairwise stable network (but not the only one) (e.g., the positive quadrant). The first bound

corresponds to the possibility that this network is never selected when other equilibrium

networks are possible and the upper bound corresponds to the opposite scenario where this

network is always selected. Such bounds would depend on the parameters of the model. If

one has access to a sample of networks, one could estimate the identified set of parameters

by collecting all those parameters for which the bounds contain the observed frequency of

networks. It should be apparent that this task becomes computationally quite complex as

the number of nodes increases: the dimensions of both the latent variable space and possible

networks to be checked for stability increase relatively quickly. (Remember that with 24

nodes, the number of graphs is more than the estimated number of atoms in the observed

universe.)
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Figure 4: Multiplicity of Pairwise Stable Networks
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Note: The figure shows the pairwise stable networks for different realization of ε12 and ε13,
assuming that 0 < ε23 < δ/(1− δ). A detailed description is given in Appendix B.

39



To ammeliorate the computational difficulties highlighted above, Sheng (2014) focuses in-

stead on subnetworks (i.e., subsets of vertices and the edges among them), checking whether

those subgraphs are consistent with pairwise stability (with or without transferable utility)

for undirected networks. A lower bound on the probability of observing a particular subgraph

to a pairwise stable network is the probability that this subgraph be the only one to satisfy

the pairwise stability conditions given any (potentially not pairwise stable) complementary

network (i.e., the network after deletion of the subgraph’s edges from the overall graph, in-

cluding the edges incident with the subgraph nodes). An upper bound is the probability

that this subgraph satisfies the pairwise stability condition given some (potentially not pair-

wise stable) complementary network. As explained by Sheng (2014), these bounds are not

sharp (even when considering subnetworks only) since the upper bound is larger than the

probability that the subgraph is part of a pairwise stable network, and the lower bound is

lower than the probability that it is a subgraph to a unique pairwise stable network given

the payoff structure. Consider, for instance, the game depicted in Figure (4), and take the

subgraph {12}. Because this link satisfies the pairwise stability condition when ε12 > 0,

given no links between 1 and 3 and between 2 and 3, the upper bound will be larger than

the region where {12} is a subgraph to any pairwise stable network (which would exclude

the triangle where {23} is the only pairwise stable network). Since the set of complementary

networks may still be sizeable, the author imposes additional restrictions (payoffs of a link

only depend on the remaining graph up to each player’s immediate neighborhood and a cap

on the number of links each node can form). Using these bounds, usual techniques in the

estimation of partially identified models can then be implemented, and the dimensionality

of the problem is reduced from the cardinality of the vertex set to the count of vertices in

the subgraphs analyzed. One possible issue is that the restrictions imposed may sacrifice

identification power when networks involve a large number of nodes and yield larger bounds.

The computational burden can also be alleviated by exploring particular features of the

model. Miyauchi (2014) studies a model with non-transferable utility, where payoffs are

supermodular, and pairwise stable networks consequently correspond to a fixed point of a

monotone mapping. The supermodularity condition requires that Ui(g) − Ui(g − {ij}) if

{ij} ∈ g and Ui(g∪{ij})−Ui(g) for {ij} /∈ g be increasing in the adjacency matrix for every

pair of nodes i and j. (The connections game depicted in Figure (4) does not satisfy this

condition.) Since the set of fixed points in this case possesses a minimal and maximal element

by Tarski’s fixed-point theorem, these can be used directly to formulate a computationally

tractable estimator for the identified set. Miyauchi (2014) provides Monte Carlo experiments
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and an empirical illustration using the AddHealth data. Boucher and Mourifié (2013) analyze

a very similar framework, assuming high-level conditions on pointwise identification through

a pseudo-likelihood objective function and (weak) dependence across agents in observed pair-

wise stable networks. Weak dependence and other conditions (e.g., homophily and diversity)

are further explored in Leung (2015a) to study large sample properties of estimators in a

network formation model where a link is formed whenever those involved receive a positive

“joint surplus” (which may depend on other edges in the network). The assumptions in his

model (which can also accomodate non-transferable utilities) deliver a sparse network as the

number of nodes grows, and he provides an application to a network of physician referrals.

Sheng (2014) and Miyauchi (2014) focus on a sample scheme where a number of networks

of (at most) moderate size are observed. An alternative empirical scenario is one in which one

has access to very few networks (perhaps only one) and many nodes. de Paula, Richards-

Shubik, and Tamer (2015) developed an algorithm to compute the identified set for the

preference parameters in the context of large (pairwise stable) networks (without transferable

utility). They approximate this large community by a continuum of nodes, where agents can

only form a finite number of links, and payoffs depend only on a finite number of direct and

indirect connections.39 A pairwise network will then be represented by a continuous graph

with bounded degrees (since nodes have a finite number of incident edges), corresponding to

a sparse network (see previous discussion about the empirical plausibility of such social and

economic graphs). Such mathematical objects, called graphings in the applied mathematics

literature, are sometimes used to approximate large networks as limits for large discrete

graphs under a well-defined convergence metric (e.g., Lovasz (2012) for a recent survey).40

To further reduce the dimensionality of the problem, they also assume that unobservable taste

shocks depend only on the covariates of putative connections and not on their identity. If

covariates have a finite support, individual nodes can be classified into a finite (albeit possibly

large) number of “network types,” which provide a description of an individual node’s local

network. In the example introduced above, for instance, if 1, 2, and 3 stand for possible

characteristics of a node (from a continuum of vertices) and individuals can only establish

39Formally, one needs to be careful in working with the continuum. Since unobservables are assumed
to be independently drawn across individual nodes, measurability complications need to be handled using
results such as those presented in, e.g., Uhlig (1996) or Sun (2006). Another issue that appears in working
in coalitional games on the continuum, when coalitions themselves can be a continuum, is avoided in this
framework by restricting individuals to form a finite number of links where only the characteristics on the
potential connection (and not her identity) matter.

40The corresponding approximation to dense graphs, known as graphons, is used, for example, by Chatterjee
and Diaconis (2013) in their asymptotic study of ERGMs.
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one connection, a given individual node would have three unobservable taste shocks: one for

each one of the possible neighbour covariates. (The payoff to being isolated is normalized to

zero.) In this example, a network type would describe the characteristic of a node (1, 2, or

3) and that of this neighbor (1, 2, 3 or whether the node has no neighbors).

The proportion of network types in an observed pairwise stable network is an equilibrium

outcome, potentially estimable even from incompletely observed networks. Hence, whereas

the number of vertices may be overly numerous, the cardinality of the set of network types

is controlled. This allows them to verify whether observed networks correspond to pairwise

stable networks for a given preference parameter vector using a computationally tractable

quadratic program! To do so, they first define a partition of the space of unobservable

variables. A set in this partition, called a “preference class,” corresponds to the set of

network types for which an individual agent with given realization for the unobservable

preference shocks would not be inclined to drop a connection from. In the running example

used here, those individuals for whom all the taste shocks are positive would prefer a link

to any individual (regardless of whether her covariate is 1, 2 ,or 3) to being isolated. Her

preference class would comprise network types connected to each of the three characterizing

labels and the isolated type (since there are no links to drop in that case). Then, one can

presumably allocate nodes to network types, and the proportion of nodes in a preference

class allocated to a specific network type is called by them an “allocation parameter”.

Given preference parameters, a pairwise stable network will correspond to allocation

parameters satisfying certain restrictions. The requirement that a link in a pairwise stable

network should be beneficial to both parties involved (i.e., (10)) is encoded in the definition of

preference classes (since by definition connections characterizing network types in a preference

class would not be dropped) and allocations from any preference class to network types not

in that class are set to zero. de Paula, Richards-Shubik, and Tamer (2015) also show that the

requirement that absent links be detrimental to at least one of the parties involved (i.e., (11))

implies that a quadratic form (on the vector of allocation parameters) be equal to zero. (This

necessary condition is also sufficient in certain models and can thus yield sharp identified

sets.) Using the restriction that the proportion of network types corresponds to observed

ones, which guarantees that the supply and demand of links are balanced, and positivity

constraints, the authors express the verification in terms of a quadratic program attaining a

minimand equal to zero. Hence, instead of checking for pairwise stability among all possible

networks involving a potentially large number of vertices and realizations of the unobservables

for a given parameter value, the verification task is reduced to the solution of a quadratic
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program defined on the vector allocation parameters and whether the attained minimum is

equal to zero and is computationally appealing. For example, de Paula, Richards-Shubik,

and Tamer (2015) present a simulation study on a model based on (9), where individuals can

form up to three connections on 500 nodes, and covariates take two values. The evaluation of

the quadratic program takes on average less than 30 seconds.41 It should also be pointed out

that the computations above rely on the estimated proportion of network types. This can be

regarded as an aggregate over observed pairwise stable networks with sampling variability

stemming from differently selected equilibrium networks or as an estimate of network-type

proportions from an incompletely observed network. As long as a distributional theory is

provided for these statistics, the distributional features of the structural parameters can be

obtained since the quadratic programming provides a mapping between the two.

The models above presume a complete information framework, where payoffs to all players

involved are known to each one. An alternative strand of models focuses on directed networks

and an incomplete information environment, whereby an individual node’s preference shocks

are unobservable, not only to the econometrician but also to other nodes. This is analyzed,

for example, in Gilleskie and Zhang (2009) and Leung (2015b). Both articles employ a multi-

step estimation strategy where equilibrium beliefs are estimated at a first step from linking

decisions and used in the estimation of payoffs in a second stage. The first step is made

possible because private information is independent across agents, and beliefs about other

agents’ linking decision do not depend on one’s private information. Analogous multi-stage

conditional choice probability-based strategies have been employed in the dynamic program-

ming discrete choice and empirical games literature under similar assumptions (e.g., de Paula

(2013)), and Gilleskie and Zhang (2009) use a related framework, so only direct neighbors

enter the utility function. Their main goal is to empirically study peer effects in smoking

behavior (as in Badev (2013)) while allowing for links to be formed purposefully by the agents

involved. As in previous studies, they employed the AddHealth data in their analysis. Leung

(2015b) offers a related estimator focusing on the network formation. Here, though, the pay-

off structure involves the usual graph theoretic configurations as in (9), and the statistical

analysis is performed for a small number of large networks instead of a large number of small

41Miyauchi (2014) considers a simulation study on a similar payoff structure (setting ν = 0) and covariates
taking four values (gender × race). The simulation studies are not directly comparable since they employ
different machines, and the model there is simpler in some dimensions (no preference for indirect connections,
other than for mutual connections), but more complex in others (dimension of covariate support). For 200
nodes (as opposed to 500 nodes in de Paula, Richards-Shubik, and Tamer (2015), the evaluation of the model
for a single parameter takes about 2286 seconds (≈ 38 minutes) for 100 sampled networks and using 100
simulations for the construction of his objective function.
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games (as in Bisin, Moro, and Topa (2011) and Menzel (2015)). An empirical illustration

using microfinance-related data from Banerjee, Chandrasekhar, Duflo, and Jackson (2014) is

also given. Both papers employ the assumption that a unique equilibrium is present in the

data (even if the payoff structure is amenable to multiple solutions), which is not uncommon

in the empirical games literature.

Finally, the models discussed previously are static or, at best, myopically dynamic models

of network formation. Whereas farsighted models of network formation exist in the theoret-

ical literature (e.g., Jackson (2009)), partly due to data (un)availability and/or the compu-

tational complexities even in static settings, they have not been very explored in the applied

econometric literature. Alternative models for network formation, based on non-cooperative

equilibrium concepts and exploring dynamics with forward-looking behavior, have neverthe-

less been proposed and could be used in data scenarios where network evolution is observable.

Lee and Fong (2011), for instance, propose a dynamic network formation model for bipartite

networks, where agents are split into two groups and across-group connections are established.

There, payoffs are transferable, and a link is interpreted as a negotiation channel entailing

a bargaining game over a contemporaneous surplus and quantifies the value of a particular

edge. Connections are established via a link announcement game, where negotiations are

open if two parties announce a putative link with each other. Because costs of establishing

a negotiation link depend on the previous state of the bargaining connections, the model

lends itself to dynamic incentives, and the authors focus on Markov perfect equilibria for

the network formation process. This brings them closer to the empirical dynamic games

literature and the estimation strategies suggested there (using methods developed after the

paper by Hotz and Miller (1993) for individual dynamic decisions and adapted to strategic

interactions by various authors in the 2000s). Lee and Fong (2011) provide an illustration on

insurer-provider contracting in health care through a series of simulations studies. Similar

ideas appear in Johnson (2012).

I end this subsection by pointing to surveys in statistics and econometrics that encompass

the class of network formation models in this and the previous subsections. Those surveys

are distinct in focus and serve as an adequate complement to the discussion provided above.

Those are Kolaczyk (2009), Goldenberg, Zheng, Fienberg, and Airoldi (2009), and Hunter,

Krivitsky, and Schweinberger (2012) (in statistics) and Graham (2015) and Chandrasekhar

(2015) (in econometrics).
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4.3 Network Formation and Outcomes

Whereas network formation may be of interest in its own right, the models discussed above

can be seen as a stepping stone for modeling outcomes discussed in the previous section, since

the decision to establish links may be informed by any outcomes determined via the ensuing

social structure. As mentioned earlier, for example, Gilleskie and Zhang (2009) and Badev

(2013) studied econometric models for simultaneous link formation and discrete behavior

(i.e., smoking behavior).

Goldsmith-Pinkham and Imbens (2013) model the joint determination of social networks

and a continuous outcome (high school grade) using a dyadic edge formation framework for

the former and a linear-in-means model for the latter using the AddHealth data. Because

the network is observed on two different occasions, they postulate that the links are formed

through pairwise stability based on a felicity function that depends solely on direct links (i.e.,

parameters ν and ω are set to zero in (9)), and the previously observed network as a state

variable.42 Link formation and outcomes are connected by the presence of individual specific

unobservables ξi and covariates (in this case, previous grade point average). Both ingredients

affect an individual’s outcome directly in the linear-in-means model, and links are formed

based on an affinity between the covariates and the individual specific unobservables for the

two parties involved in the putative link (which can be seen as a “latent position model”

as in Hoff, Raftery, and Handcock (2002)). The presence of this individual effect introduces

network endogeneity in the linear-in-means system as links are related to unobservables that

determine those very outcomes. In their empirical application, estimated using Bayesian

methods, the authors find that the individual specific unobservable driving both network

formation and grades determination improves the fit for the network formation model but

does not do so appreciably for the estimation of the linear-in-means model.

One natural approach to integrating network formation and outcome interactions takes

the payoffs from network formation as indirect utilities, subsuming the potential payoffs from

the economic system determining outcomes after the network is formed. One econometric

model that can be cast along those lines is Hsieh and Lee (2013) (who also applied their

model to the AddHealth, looking at smoking and grades as outcomes of interest). Link

formation is formed based on a joint surplus function that depends on the network in a

way similar to Mele (2015) and behaviors (as in Badev (2013)), producing an ERG model

at the network formation stage (as in the papers cited above). Outcomes are determined

42Since indirect edges are not payoff-relevant and there are no restrictions on the number of links formed,
there is a single pairwise stable network given realizations for the unobservable preference shocks.
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through a linear-in-means model (for grades) and a Tobit version of the linear-in-means

model (for smoking, measured as the frequency in the year preceding the survey). The

model is estimated using Bayesian methods, as in those other articles. Hsieh and Lee (2013)

found that behaviors appear significantly in link formation and that network interactions

matter for both outcomes.43

One important aspect affecting the joint econometric analysis of network formation and

interactions is the possibility of multiplicity in network formation and/or at the outcome

determination system. As seen earlier, this is a possibility depending on the solution concept

adopted and on other details of the framework at hand (e.g., whether utility is transferable

or not). In this case, partial identification in either stage — formation or interactions —

will likely be transmitted to other parameters of the model. For example, even if point

identification at the network interactions model is achieved along the lines highlighted pre-

viously, if the network formation protocol is subject to partial identification, parameters in

a linear-in-means model will possibly only be partially identified. An illustration of this is

given, for example, in Ciliberto, Murry, and Tamer (2015) in the context of an empirical

entry-exit games in industrial organization. Aside from joint modeling and estimation of

both network formation and interactions, another possibility is to consider instruments for

networks as suggested, for example, in Qu and Lee (2015). Of course, if network formation

is prone to multiplicity, the model is incomplete without an equilibrium selection rule (see

Tamer (2003)). New developments in the partial identification literature may nonetheless

prove useful here (e.g., Chesher and Rosen (2014)).

5 Measuring Networks and Outcomes

It should be noted that a few econometric models for network formation highlighted in the

previous section presume the availability of data on the complete network. Whereas some

strategies do not require observation of the whole network (e.g., in independent dyadic mod-

43Hsieh and Lee (2013), Goldsmith-Pinkham and Imbens (2013), and Badev (2013) use different subsets of
the AddHealth data. They also rely on different outcome measurements and covariates—Badev (2013) uses a
binary variable related to smoking behavior in the month prior to the survey, whereas Hsieh and Lee (2013)
use a multivalued measure for the past year; Badev (2013) incorporates the price of cigarettes, whereas Hsieh
and Lee (2013) do not. Furthermore, they all employ different models—Badev’s model for smoking does
not correspond to a binary model of the linear-in-means model, for instance, and Goldsmith-Pinkham and
Imbens (2013) use network data from two survey waves to construct their model. Hence the estimates across
these three models are hard to compare. From a practitioner’s viewpoint, it would be interesting to compare
these competing frameworks.
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els), others are more demanding. ERG models, for example, are typically not “projective,”

which implies that estimators based on subgraphs are not consistent (see Shalizi and Ri-

naldo (2013)). As indicated by those authors, if incomplete network information is available

and “an ERGM is postulated for the whole network, then inference for its parameters must

explicitly treat the unobserved portions of the network as missing data (perhaps through

an expectation-maximization algorithm), though of course there may be considerable uncer-

tainty about just how much data is missing” (p. 523). On this latter point, see, e.g., Handcock

and Gile (2010) or Koskinen, Robins, and Pattison (2010). When repeated outcomes are ob-

served for a given system, the methods suggested in Manresa (2013) and de Paula, Rasul,

and Souza (2015) may also be useful for network information retrieval.

For some of the econometric models described above, though, complete observation of

the network may not be necessary, and relevant features of the network can be estimated,

provided that a suitable sampling scheme is given. Kolaczyk (2009), for example, provides

estimators for various network features like the total number of edges or the total number of

triangles. These could presumably be used for the estimation of the SUG model proposed

by Chandrasekhar and Jackson (2014). The proportion of “network types” contemplated in

de Paula, Richards-Shubik, and Tamer (2015) could potentially be estimated along similar

lines. A review of available methods for the estimation of graph features from sampled

subnetworks is given in Kolaczyk (2009).

In the context of outcome interactions, Moffitt (2001) and Angrist (2014) aptly point out

that measurement issues may compromise any identification results assuming no mismea-

surement (see also Ammermueller and Pischke (2009)). When using between-group variation

in covariates to identify β though its connection to OLS and 2SLS coefficients, measurement

errors in covariates will typically produce attenuation in the first, though not the second.44

In the covariance restriction case studied by Moffitt (2001) (Proposition 2), if outcomes or

covariates are measured with error, measurement error variances will be confounded in the

variance of observed outcomes. These are indeed empirically relevant considerations that

researchers should be aware of. In his study of randomly assigned roommates, for example,

Sacerdote (2001) accounts for the possibility of mismeasured covariates by including classical

measurement error, which precludes him from using covariance restrictions as suggested in

Moffitt (2001). Ammermueller and Pischke (2009) carefully discuss the consequences of mea-

surement error in covariates in their analysis for peer effects in education. Under classical

44As pointed out by Angrist (2014), other considerations may also drive a wedge between those two, even
when there are no peer effects.
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measurement error in outcomes, a related strategy can nevertheless be employed to obtain

the endogenous effect. If classical measurement errors are independent across peers in a

given group, their covariance washes out as we consider observed outcome covariances, and

contrasts in those covariances across groups may still allow for point identification of the en-

dogenous effect. Below I demonstrate this for groups of size two and three (double and triple

rooms in Sacerdote’s context). In the proposition below, ỹi,g denotes the observed outcome

for individual i in group g, and vi,g denotes the measurement error.

Proposition 6. Suppose there are two groups g = 1, 2 such that N1 = 2 and N2 = 3. If

|β| < 1, Wij,g = (Ng − 1)−1 if i 6= j,Wii,g = 0, V(εg|xg) = σ2Ig and ỹi,g = yi,g + vi,g where

vi,g ⊥⊥ vj,h and vi,g ⊥⊥ yj,h for any i, j, g and h, then β is identified.

Of course, that measurement errors be classical is in itself a strong assumption, and

Proposition 6 above should be interpreted with that in mind. It also assumes that covariates

are not measured with error, which was the focus of the above-mentioned concerns. The

result nevertheless demonstrates that network interaction models may themselves provide

additional structure to be explored in the estimation of measurement error-ridden models.

6 Conclusion

This article provided a (selective) review of recent works on networks and outcomes mediated

through networks. This is an area of active research, but much remains to be learned.

Regarding models of network effects on outcomes, I should mention that heterogeneity

is an important issue that I have not explicitly discussed in this work. As pointed out by

Sacerdote (2010) in his review of peer effects studies in education, a “linear-in-means model

masks considerable heterogeneity in the effects experienced by different types of students.”

Nonlinear and heterogeneous effects models could prove useful. Tincani (2015) provides an

interesting empirical examination of nonlinearities in social interactions. Of course, should

nonlinearities be relevant, multiple social equilibria are a possibility. Some of the ideas men-

tioned in this article allow for heterogeneous peer coefficients (e.g., de Paula, Rasul, and

Souza (2015), if adequate data is available) and Masten (2015) is a recent contribution in

the development of random coefficient versions to the models considered here. Measurement

issues present important practical difficulties. As indicated by Ammermueller and Pischke

(2009), more attention to measurement issues could bring in important rewards. As far as

network formation models are concerned, econometric methodologies that take into account
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sampling and measurement peculiarities are also important in practice. Computational and

identification difficulties are also a primary concern, and integrated models of network for-

mation and interactions will typically inherit those.

In both cases, most models examined are static. Dynamic, forward-looking models may

be adequate for many applications (e.g., industrial organization and banking), especially

as more detailed and abundant data on the evolution of networks and outcomes becomes

available.
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Boucher, V., Y. Bramoullé, H. Djebbari, and B. Fortin (2014): “Do Peers Affect
Student Achievement? Evidence From Canada Using Group Size Variation,” Journal of
Applied Econometrics, 29(1), 91–109.
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Davezies, L., d’Haultfoeuille, and D. Fougére (2009): “Identification of Peer Effects
Using Group Size Variation,” Econometrics Journal, 12(3), 397–413.

De Giorgi, G., M. Pellizari, and S. Redaelli (2010): “Identification of Social Interac-
tions through Partially Overlapping Peer Groups,” American Economic Journal: Applied
Economics, 2(2), 241–275.

52



de Paula, A. (2009): “Inference in a Synchronization Game with Social Interactions,”
Journal of Econometrics, 148, 56–71.

(2013): “Econometric Analysis of Games with Multiple Equilibria,” Annual Review
of Economics, 5, 107–131.

de Paula, A., I. Rasul, and P. C. Souza (2015): “Identifying and Estimating Social
Connections from Outcome Data,” UCL and PUC-Rio Working Paper.

de Paula, A., S. Richards-Shubik, and E. Tamer (2015): “Identification of Preferences
in Network Formation Games,” UCL Working Paper.

de Paula, A., and J. A. Scheinkman (2010): “Value Added Taxes, Chain Effects and
Informality,” American Economic Journal: Macroeconomics, 2, 195–221.

de Paula, A., and X. Tang (2012): “Inference of Signs of Interaction Effects in Simulta-
neous Games with Incomplete Information,” Econometrica, 80(1), 143–172.

Denbee, E., C. Julliard, Y. Li, and K. Yuan (2014): “Network Risk and Key Players:
A Structural Analysis of Interbank Liquidity,” LSE Working Paper.

Diebold, F. X., and K. Yilmaz (2015): Financial and Macroeconomic Connectedness: A
Network Approach to Measurement and Monitoring. Oxford University Press.

Dieye, R., H. Djebbari, and F. Barrera-Osorio (2014): “Accounting for Peer Effects
in Treatment Response,” IZA Discussion Paper 2014.

Drukker, D., P. Egger, and I. Prucha (2013): “On Two-Step Estimation of a Spa-
tial Autoregressive Model with Autoregressive Disturbances and Endogenous Regressors,”
Econometric Reviews, 32(5-6), 686–733.

Dzemski, A. (2014): “An Empirical Model of Dyadic Link Formation in a Network with
Unobserved Heterogeneity,” University of Manheim Working Paper.
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A Proofs

A.1 Proof of Proposition 2

If V(ε|x) = σ2I, then V(y|x) = σ2(I − βW )−2. Since |β| < 1 and W is (row-)stochastic, we

obtain

(I− βW )−1 = I + βW + β2W 2 + . . .

It can be verified that W k, k = 1, 2, . . . is symmetric with diagonal elements (W k)ii = ak−1

and off-diagonal entries (W k)ij = ak, i 6= j, where

a0 = 0, a−1 = 1 and ak = (ak−2 + ak−1(N − 2))/(N − 1).

Let S =
∑∞

k=1 β
kW k. Then,

Sii =
∞∑
k=1

βkak−1 =
∞∑
k̃=0

β k̃+1ak̃ =
∞∑
k̃=1

β k̃+1(ak̃−2 + ak̃−1(N − 2))/(N − 1)

=
β2

N − 1

1 +
∞∑
k̃=2

β k̃−1ak̃−2

+
N − 2

N − 1
β

∞∑
k̃=1

β k̃ak̃−1

=
β2

N − 1

1 +
∞∑
k=1

βkak−1

+
N − 2

N − 1
β
∞∑
k̃=1

β k̃ak̃−1

=
β2

N − 1
(1 + Sii) +

N − 2

N − 1
βSii
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where the second and fifth equalities set k̃ = k − 1 and k = k̃ − 1 respectively, the third

equality acknowledges that a0 = 0 and uses the definition of ak above, and the last equality

uses the definition of Sii. This implies that

Sii =
β2

(N − 1)− (N − 2)β − β2
.

(The denominator is non-zero as long as |β| < 1.) On the other hand, Sij =
∑∞

k=1 β
kak =

β−1Sii (for i 6= j).

Since (I−βW )−1 = I+βW +β2W 2 + · · · = I+S, its diagonal elements are then given by

1 + Sii = [(N − 1)− (N − 2)β] /C, and its off-diagonal entries are given by β−1Sii = β/C,

where C = (N − 1)− (N − 2)β − β2.

Using then the fact that V(y|x) = σ2(I + S)2, the ratio between covariance and variance

among observable outcome variables is given by

κ(β,N) ≡ C(yi, yj|x)

V(yi|x)
=

2β(N − 1)− (N − 2)β2

((N − 1)− (N − 2)β)2 + (N − 1)β2
. (12)

Notice that β = 0 ⇒ C(yi, yj|x) = 0, and the Cauchy-Schwarz inequality implies that

|κ(β,N)| ≤ 1. Furthermore, the denominator above is always positive and sgn(κ(β,N)) =

sgn(2β(N−1)−(N−2)β2). If N = 2, the right-hand side in (12) becomes 2β/(1+β2), which

is increasing in β and the equation above has a unique solution. I will thus focus on N > 2.

In this case, the numerator is a quadratic, concave polynomial with two roots: β1 = 0 and

β2 = 1 + N/(N − 2) > 1. It is then negative for β ∈ (−∞, β1) ∪ (β2,∞) and positive for

β ∈ (β1, β2). Since |β| < 1, it is then straightforward to see that

β ≥ 0⇔ κ(β,N) ≥ 0.

Let κ be the observed covariance-variance ratio among outcome variables. The parameter

β is then a solution to the quadratic equation p(b;κ,N) = 0 obtained from (12), where

p(b;κ,N) is given by

{
κ
[
(N − 2)2 + (N − 1)

]
+ (N − 2)

}
b2 − 2(N − 1) [1 + κ(N − 2)] b+ κ(N − 1)2.

By the Fundamental Theorem of Algebra, there are at most two solutions to the equation
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above. As noted earlier, sgn(κ) = sgn(β). There are then three cases to consider:

i ) If κ = 0, then β = 0 and the model is identified since the remaining parameters can

then be obtained from the reduced-form coefficients.

ii ) If κ > 0, then β > 0, and the coefficient on the quadratic term in the equation above is

positive and the polynomial p(b;κ,N) is convex in b. Furthermore, p(0;κ,N) = κ(N−1)2 > 0

(since κ > 0) and p(1;κ,N) = N(κ− 1) ≤ 0 (since κ ≤ 1, see above). Together, these imply

that both roots are greater than zero, that one of roots is greater than one and the other is

less then one. Hence, only one root is positive and below one, and the model is identified as

the remaining parameters again can be obtained from the reduced-form coefficients.

iii ) If κ < 0, then β < 0. Notice that the linear coefficient in p(b;κ,N) is negative when

N = 2. For N > 2, it is positive if, and only if,

κ <
1

2−N
< 0.

Since κ is bounded below by κ(−1, N) (see Proposition 3) and

κ(−1, N)− 1

2−N
=

N(N − 1)

{[(N − 1) + (N − 2)]2 + (N − 1)}(N − 2)
> 0,

the linear coefficient in p(b;κ,N) is always negative.

On the other hand, the quadratic coefficient in p(b;κ,N) is positive if, and only if,

κ >
−(N − 2)

(N − 2)2 + (N − 1)
.

For N ≥ 4, it can be seen that

κ(−1, N) >
−(N − 2)

(N − 2)2 + (N − 1)
.

In this case, the quadratic polynomial is convex, and its minimizer is positive (since the linear

coefficient is negative, and the quadratic coefficient is positive). This implies that only one

of its roots can be negative and the model is then identified.
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If N = 3, the roots to p(b;κ, 3) are given by 2 ± 2/
√

1 + κ. (The lower bound on κ is

κ(−1, 3) = −5/11 > −1, so the denominator will always be non-zero.) Since −1 < κ < 0,

2− 2/
√

1 + κ < 0 < 2 + 2/
√

1 + κ, and only one root is admissible. The model is identified

as before. �

A.2 Proof of Proposition 3

The derivative of κ(β,N) defined in (12) with respect to β is given by

∂κ(β,N)

∂β
=

(N − 1)2(N − 1− β2 − β(N − 2)){
((N − 1)− (N − 2)β)2 + (N − 1)β2

}2
>

(N − 1)2(N − 2)(1− β){
((N − 1)− (N − 2)β)2 + (N − 1)β2

}2
≥ 0,

where both inequalities use the assumption that |β| < 1. Hence, a lower bound for κ(β,N) ≡
C(yi, yj|x)/V(yi|x) is given by κ(−1, N) = (4− 3N)/(4N2 − 11N + 8). �

A.3 Proof of Proposition 6

Because the measurement error is classical and independent across individuals,

C(ỹi,g, ỹj,g|xg) = C(yi,g, yj,g|xg).

From the proof of Proposition 2, we obtain

C(yi,1, yj,1|x1) = 2βσ2/(1− β2)2

for the group with two individuals and

C(yi,2, yj,2|x1) = β(4− β)σ2/[(1− β) + (1− β2)]2
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for the group with three individuals. Then,

ψ(β) =
C(yi,1, yj,1|x1)

C(yi,2, yj,2|x1)
=

8 + 8β + 2β2

4 + 7β + 2β2 − β3
.

It can be checked that ψ′(β) < 0 for |β| < 1 and consequently ψ(β) > ψ(1) = 1.5.

Let ψ be the observed covariance ratio among outcome variables. The parameter β is

then a solution to a cubic equation q(b;ψ) = 0 obtained from the expression above, where

q(b;ψ) ≡ −ψβ3+2(ψ−1)β2+(7ψ−8)β+4(ψ−2). To show that only one root to this equation

is below 1 in absolute value, I make use of Rouché’s theorem (see Rudin (1987), pp. 225 and

229). The result is stated for general complex-valued functions. In our context, it establishes

that, if the functions f and g are continuous on a compact set C and differentiable on its

interior with |g(x)| < |f(x)| on the boundary of C, then f and f + g have the same number

of zeros in the interior of C, where each zero is counted as many times as its multiplicity.

Taking f(x) = a1x (so that f(x) = 0 ⇒ x = 0) and g(x) = a0 + a2x
2 + · · · + aKx

K and

C = [−1, 1], one obtains the following corollary:

If |a1| > |a0| + |a2| + · · · + |aK |, then there is exactly one root for the polynomial a0 +

a1x+ · · ·+ aKx
K with absolute value less than 1.

When ψ ≥ 2, 7ψ − 8 > | − ψ| + |2(ψ − 1)| + |4(ψ − 2)| = 7ψ − 10. When ψ < 2,

we have that | − ψ| + |2(ψ − 1)| + |4(ψ − 2)| = 6 − ψ. Then, 7ψ − 8 > 6 − ψ ⇔ ψ > 14/8,

which is true since ψ > 1.5. This implies that there is only one solution with absolute value

below one (i.e., β) and completes the proof. �

B Connections Game

Here I examine the three-player connections game where ui(g) =
∑

j∈1,...,n,j 6=i δ
d(i,j;g)−1 (1 + εij)−

|Ni(g)|. The set of possible links is {12, 13, 23}, and there are 8 possible networks (23). How-

ever, there are only four distinct topologies, which can be characterized by the number of

links (0 to 3). These networks and respective payoffs are characterized below:

( i ) One network with 0 links (g = ∅): ui = 0 for each player. For this network to be

pairwise stable, one needs εij < 0 or εji < 0 for every pair ij.
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( ii ) Three networks with 1 link (g = {ij}): ui = εij and uj = εji for the two con-

nected players, uk = 0 for the isolated player (3 possible networks with distinct isolated

players). For this network to be pairwise stable, one needs εij ≥ 0 and εji ≥ 0 (for the ij

link); εik < 0 or εki < 0 (for the absent ik link); and εjk < 0 or εkj < 0 (for the absent jk link).

( iii ) Three networks with 2 links (g = {ij, jk}): ui = εij + δ(1 + εik), uk = εkj + δ(1 + εki)

and uj = εji + εjk (3 possible networks with different middle players). For this network to be

pairwise stable, one needs εij + δ(1 + εik) ≥ 0 and εji ≥ 0 (for the ij link); εkj + δ(1 + εki) ≥ 0

and εjk ≥ 0 (for the kj link); and εik < δ(1 + εik) or εki < δ(1 + εki) (for the absent ik link).

( iv ) One network with 3 links (g = {12, 13, 23}): ui = εij + εik and similar expressions

for the other players. For this network to be pairwise stable, one needs εij ≥ δ(1 + εij) and

εji ≥ δ(1 + εji) for every ij pair.

If 0 < ε23 < δ/(1 − δ) and εij = εji for every pair, we can establish the conditions on

ε12 and ε13 for each of the 23 possible graphs to be pairwise stable:

∅ : not pairwise stable

{12} : ε12 ≥ 0; ε13 ≤ 0; ε13 < ε23/δ − 1

{13} : ε13 ≥ 0; ε12 ≤ 0; ε12 < ε23/δ − 1

{23} : ε12 < 0, ε13 < 0

{12, 13} : ε12, ε13 ≥ −δ(1 + ε23); ε13, ε12 > 0; ε23 < δ/(1− δ)

{12, 23} : ε12, ε23 ≥ −δ(1 + ε13); ε12, ε23 > 0; ε13 < δ/(1− δ)

{13, 23} : ε13, ε23 ≥ −δ(1 + ε12); ε13, ε23 > 0; ε12 < δ/(1− δ)

{12, 13, 23} : not pairwise stable
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