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DUAL REGRESSION

RICHARD H. SPADY AND SAMI STOULI

Abstract. We propose an alternative (‘dual regression’) to the quantile regression process

for the global estimation of conditional distribution functions under minimal assumptions.

Dual regression provides all the interpretational power of the quantile regression process

while largely avoiding the need for ‘rearrangement’ to repair the intersecting conditional

quantile surfaces that quantile regression often produces in practice. Our approach relies on

a mathematical programming characterization of conditional distribution functions which,

in its simplest form, provides a simultaneous estimator of location and scale parameters in

a linear heteroscedastic model. The statistical properties of this estimator are derived.

1. Introduction

Let Y be a random variable with continuous support and X a random vector. Then the

conditional distribution function of Y given X, written U = FY |X(Y | X), has three prop-

erties: (1) U is standard uniform, (2) U is independent of X, and (3) FY |X(Y = y | X = x)

is strictly increasing in y for any value x of X. We will refer to these three properties as

“uniformity”, “independence” and “monotonicity”.

Supposing that we have a sample of n points {(xi, yi)}ni=1 drawn from the joint distribution

FY X(Y,X), how might we estimate the n values ui = FY |X(Y = yi | X = xi) using only the

requirement that the estimate displays uniformity, independence, and monotonicity? We

explore this question by formulating a sequence of mathematical programming problems

that embodies these requirements and that generalizes the dual formulation of the quantile

regression problem.
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The use of ‘dual’ is thus motivated by the general observation that the estimation problem

for a conditional distribution function FY |X indexed by a parameter θ is usually formulated

in terms of a procedure that obtains θ directly and FY |X as a byproduct that follows from a

calculation from the representation evaluated at a specific value of θ. Two leading examples

are the linear location shift model FY |X(Y = yi | X = xi) = F{(yi − β · xi)/σ}, for

some distribution function F , and the linear quantile regression model FY |X(Y = yi | X =

xi) =
´ 1

0 1{β(u) · xi ≤ yi}du, for which the parameters θ = (β, σ)T and θ(u) = β(u),

u ∈ (0, 1), respectively, need to be estimated in order to obtain the n values ui. Here we

turn that process around, obtaining ui, or a monotone transformation of ui, first (from e.g.

a mathematical programming problem) and ‘backing out’ θ afterwards, if at all.

Although this ‘generalized dual’ formulation seeks only to find the n values ui = FY |X(Y =

yi | X = xi), its dual - the primal, so to speak - shows that the assignment of these n

values admits a sequence of location-scale representations, the simplest element of which is

a linear heteroscedastic model. For the class of location-scale distributions, this simplest

representation, like the quantile regression process, provides a complete estimate of FY |X(Y |
X). Moreover, it is largely free of ‘quantile-crossing’ problems that the quantile regression

process sometimes encounters in practice.

In its simplest form, dual regression augments the conventional median regression dual

programming problem (Koenker & Bassett (1978)) with global second moment orthogonal-

ity constraints, and delivers a family of globally monotone location-scale representations,

thereby providing a simultaneous estimator of the location and scale parameters of a lin-

ear heteroscedastic model. Adding further global orthogonality constraints gives rise to

more flexible, generalized dual regression representations, which we introduce after having

established the computational and statistical properties of our basic method.

2. Basics

2.1. The dual regression problem. The dual problem of the (linear) 0 · 5 quantile re-

gression of y on X is (cf. Koenker (2005) p. 87, equation 3.12):

(2.1) max
u
{yTu | XT(u− 1n

2
) = 0, u ∈ [0, 1]n},

where y is an (n×1) vector of dependent variable values, X is an (n×k) matrix of explanatory

variable values that includes an intercept, i.e an (n× 1) vector of ones denoted 1n.
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The solution to problem (2.1) produces values of u that are largely 0 and 1, with k sample

points being assigned u values that are neither 0 nor 1. The points that are assigned 1 fall

above the median quantile regression; the points receiving 0’s fall below; and the remaining

points fall on the median quantile regression plane. One direction of extension of equation

(1) is to replace the “1/2” with values α that fall between 0 and 1 to obtain the α quantile

regression.

Another extension is to augment problem (2.1) by adding k more constraints:

(2.2) max
u
{yTu |

XT(u− 1n
2 ) = 0

XT(u2 − 1n
3 ) = 0

, u ∈ [0, 1]n}.

Apparently the solution to (2.1) does not satisfy (2.2): the variance of u (around 0) in the

solution to (2.1) is approximately 1/2, not 1/3. To satisfy program (2.2), the u’s have to

be moved off {0},{1}. Since X contains an intercept, the sample moments of u and u2 will

be 1/2 and 1/3; u and u2 will be orthogonal to the components of X, relations that are

necessary but not sufficient for uniformity and independence.

Both systems (2.1) and (2.2) impose monotonicity by maximally correlating y and u. It

is worth noting that a violation of monotonicity requires there to be two observations that

share the same X values but have different y values, with the lower of the two y values

having the (weakly) higher value of u. But a ‘solution’ characterized by such a violation

could be improved upon by exchanging the u assignments. In program (2.1), however, the

set of admissible exchanges in u assignments is overly restricted by the fact that program

(2.1) is dual to a linear program well-known to have solutions at which k observations

are interpolated when k parameters are being estimated, i.e. the hyperplanes obtained by

regression quantiles must interpolate k observations.

Some simplification (particularly in computation) is obtained by reformulating problem (2.2)

into a constrained optimization problem over Rn. This is feasible since the goal of assigning

a value ui to each observation such that uniformity, independence, and monotonicity is

achieved could equally well be achieved by assigning a value ei ∈ R to each observation,

where e = (e1, . . . , en)T obeys the independence and monotonicity requirements, but where

ei is given by F−1(ui) for some distribution function F . Such a e solution is transformed

into a corresponding u solution by taking ui = F (ei); without loss of generality we can

take F to correspond to a distribution with zero mean and unit variance. Doing this, the
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problem corresponding to (2.2) becomes:

(2.3) max
e∈Rn

{yTe |

XTe = 0

1
2X

T(e2 − 1n) = 0
,

where e can take on any real value (whereas u is restricted to [0, 1]n). It is then natural

to take ui = Fn(ei), the empirical cumulative distribution function of e, thereby imposing

uniformity to high precision even at small n.

2.2. Solving the dual problem. The solution to the problem in equation (2.3) is easily

found from the Lagrangian

L =
n∑
i=1

yiei − λ1

n∑
i=1

xiei −
1

2
λ2

n∑
i=1

xi(e
2
i − 1).

Differentiating with respect to ei, we obtain n first-order conditions:

∂L

∂ei
= yi − λ1 · xi − (λ2 · xi)ei = 0.

Keeping in mind that xi is a k component vector (and thus so are the Lagrange multipliers

λ1 and λ2) we obtain for each ei:

(2.4) ei =
yi − λ1 · xi
λ2 · xi

,

which is of the familiar location-scale form ei = {yi− µ(xi)}/σ(xi) with the functions µ(xi)

and σ(xi) being linear in xi.

Another view is obtained by writing the first-order conditions as

(2.5) yi = λ1 · xi + (λ2 · xi)ei,

a linear location-scale representation for Y given X, with corresponding quantile regression

representation

yi = (λ1 + λ2ei) · xi

= {λ1 + λ2F
−1
n (ui)} · xi

≡ β(ui) · xi.(2.6)

Thus, the dual regression program (2.3) provides a complete characterization of linear rep-

resentations (2.5) and (2.6), as they arise from its first-order conditions.
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The quantile regression representation of the first-order conditions of (2.3) sheds additional

light on the monotonicity property of dual regression solutions, when there are no repeated

X values. For u, u′ ∈ (0, 1), u′ > u, the no crossing property of conditional quantiles requires

that

β(u′) · xi − β(u) · xi > 0 (i = 1, . . . , n).

Replacing β(u) by its expression in (2.6), the condition is

λ2{F−1
n (u′)− F−1

n (u)} · xi > 0 (i = 1, . . . , n),

which holds under the simple condition that λ2 · xi be strictly positive for each i, and

coincides with the n second-order conditions of system (2.3):

∂2L

∂ei∂ei
= −(λ2 · xi) < 0 (i = 1, . . . , n).

Therefore, an optimal e solution that violates the monotonicity property is ruled out by the

requirement that for an observation with X value xi, the ordering of the counterfactual Y

values β(u′) · xi and β(u) · xi must correspond to the ordering of the u values. Hence the

correlation criterion of system (2.3) suffices to impose monotonicity.

2.3. Formal duality. By Lagrangian duality arguments (e.g. Boyd & Vandenberghe

(2004), Chapter 5), the objective function of the dual of problem (2.3), the primal dual

regression objective Qn(λ), is the convex conjugate, or Legendre transform, of the function∑n
i=1C(xi, ei, λ):

Qn(λ) = sup
e∈Rn

{
yTe−

n∑
i=1

C(xi, ei, λ)

}
,

where

C(xi, ei, λ) = (λ1 · xi)ei +
1

2
(λ2 · xi)(e2

i − 1).

When λ2 ·xi > 0, i = 1, . . . , n, C(xi, ei, λ) is itself a convex function that represents FY |X(yi |
xi) once a distribution for ei is given. Its Legendre transform therefore contains the same

information. We further define the domain of Qn(λ) as Λ0 = Λ1 × Λ2, with Λ1 = Rk and

Λ2 = {λ2 ∈ Rk : λ2 · xi > 0, i = 1, . . . , n}. Under Conditions 1 and 2 below, Qn(λ) is

strictly convex over Λ0 (cf Lemma 5 in the Appendix), and minimizing Qn(λ) over Λ0 is

equivalent to solving (2.3).

For λ2 ∈ Λ2, let Ωn = diag(λ2 · xi), an n×n diagonal matrix with diagonal elements λ2 · xi,
i = 1, . . . , n.
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Condition 1. Y is continuously distributed conditional on X, with conditional density

fY |X(y | X) bounded away from 0.

Condition 2. For all λ2 ∈ Λ2, XTΩ−1
n X = Mn, a finite positive definite matrix of rank k.

Let λn = (λ1n, λ2n)T be a minimizer of Qn(λ) over Λ0, and e∗ a feasible solution to program

(2.3). For clarity we also denote by λ∗ the value of the Lagrange multiplier vector of program

(2.3), corresponding to a solution e∗. Theorem 1 summarizes our results on formal duality;

its proof is given in the Appendix.

Theorem 1. Suppose that Conditions 1 and 2 hold. Then, for the dual regression problem

(D) max
e∈Rn

{yTe |

XTe = 0

1
2X

T(e2 − 1n) = 0
,

the following holds:

(i) (Primal problem) The dual of Problem (D) is

(P) min
λ∈Λ0

n∑
i=1

1

2

{(
yi − λ1 · xi
λ2 · xi

)2

+ 1

}
(λ2 · xi) ,

the primal dual regression problem.

(ii) (First-order conditions) Problem (D) admits the Method-of-Moments representation

XTe = 0

1

2
XT(e2 − 1n) = 0(2.7)

ei =
yi − λ1 · xi
λ2 · xi

(i = 1, . . . , n),

the first-order conditions of (P).

(iii) (a) (Uniqueness) The pair (λn, e
∗) uniquely solves the primal and dual problems (P)

and (D), and λn = λ∗; (b) (Strong duality) the value of (D) equals the value of (P).

Theorem 1 establishes formal duality of our initial assignment problem under orthogonality

constraints and the global M-estimation problem (P). To a unique assignment of e values

corresponds a unique linear representation of the form (2.5). The primal problem (P) of The-

orem 1 is a locally heteroscedastic generalization of a simultaneous location-scale estimator

proposed by Huber (1981) and further analyzed in Owen (2001). The linear heteroscedastic
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model of equation (2.5) has been previously encountered in the quantile regression litera-

ture: see Koenker & Zhao (1994); He (1997). The former considers the efficient estimation

of (2.5) via L-estimation while the latter develops a restricted quantile regression method

that prevents quantile crossing. Compared to these quantile-based methods, dual regres-

sion trades local estimation and the convenient linear programming formulation of quantile

regression for global estimation of location and scale parameters.

2.4. Existence, structural interpretation and statistical properties. If the data gen-

erating process (DGP) is of the linear heteroscedastic form

yi = β1 · xi + (β2 · xi)εi, β2 · xi > 0 (i = 1, . . . , n)

E(εi | xi) = 0 and E(ε2
i | xi) = 1,

then there exists a solution to the dual regression problem for n sufficiently large, it is unique,

and dual regression consistently estimates the parameter vector β = (β1, β2)T. Formally,

with X denoting the support of X, we impose the following conditions:

Condition 3. (i) {(yi, xi)}ni=1 are i.i.d.; (ii) E(Y 2), E ‖X‖4 and E(Y 2 ‖X‖2) are finite; (iii)

there exists a constant C such that infx∈X var(Y | X = x)1/2 ≥ 1/C > 0; (iv) for β ∈ Λ0,

E(Y | X) = β1 ·X and var(Y | X)1/2 = β2 ·X.

Condition 4. For all λ2 ∈ Λ2, lim n−1Mn = M , a finite positive definite matrix of rank k.

Condition 5. E(Y 4), E ‖X‖6 and E(Y 4 ‖X‖2) are finite.

Together Conditions 1-4 are sufficient conditions for existence and consistency, whereas the

additional Condition 5 is needed for asymptotic normality of dual regression estimates of

β. In view of part (iii) of Theorem 1, these properties are shared by λn and λ∗, which

we denote by λ̂ for notational simplicity. Similarly, given the functional form of a solution

e∗, we denote both e∗ and the vector of indirect estimates (yi − λ1n · xi)/(λ2n · xi), i =

1, . . . , n, constructed after solving (P), by ê, with empirical distribution function Fn(e) =

n−1
∑n

i=1 1(êi ≤ e), e ∈ R. Furthermore, part (ii) of Theorem 1 shows that while the

solution e∗ can be obtained directly by solving the mathematical program (D), knowledge

that the solution obeys equation (2.4) can be exploited to write estimating equations for λ̂

in the form of system (2.7). The computation of the asymptotic distribution of λ̂ follows

from this characterization.
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For e(yi, xi, λ) = (yi − λ1 · xi)/(λ2 · xi), define m1(yi, xi, λ) = xie(yi, xi, λ), m2(yi, xi, λ) =

xi{e(yi, xi, λ)2 − 1}/2, and m(yi, xi, λ) = (m1(yi, xi, λ),m2(yi, xi, λ))T, and let G =

E{∂m(yi, xi, λ)/∂λ}|λ=β and S = E{m(yi, xi, β)m(yi, xi, β)T}. The proof of Theorem 2

is given in the Supplementary Material.

Theorem 2. If Conditions 1-5 hold, then: (i) there exists λ̂ in Λ0 with probability approach-

ing one, (ii) λ̂→p β, and (iii) n1/2(λ̂− β)→d N(0, G−1SG−1).

Knowledge of the statistical properties of λ̂ can be used to establish the limiting behaviour

of the empirical distribution of ê. For Fε the cumulative distribution function of the random

variable εi = e(yi, xi, β), we define the empirical dual regression process Un(·):

Un(e) = n1/2{Fn(e)− Fε(e)}, e ∈ R.

With g(e) = E[fY |X{(β1 +β2e) ·xi | xi}(xi, xie)T], Theorem 3 establishes weak convergence

of the empirical distribution of ê and the limiting behaviour of Un(·), accounting for its

dependence on the distribution of n1/2(λ̂ − β); the proof is given in the Supplementary

Material.

Theorem 3. Suppose that Conditions 1-5 hold, and further assume that uniformly in x over

X , fY |X(y|x) is uniformly continuous in y, bounded and satisifies supy∈R |y|fY |X(y|x) <∞.

Then: the empirical dual regression process Un(·) converges weakly to a zero-mean Gaussian

process U(·) with covariance function E{ϕe(yi, xi, β)ϕe′(yi, xi, β)}, where

ϕe(yi, xi, β) = 1{e(yi, xi, β) ≤ e} − Fε(e)− g(e)>G−1m(yi, xi, β).

Theorem 3 establishes that the empirical distribution of dual regression estimates is a con-

sistent estimator of the distribution of εi. If in addition εi is independent of xi, then Fn(êi)

consistently estimates FY |X(yi | xi). Similarly, an estimate of the quantile regression coeffi-

cient vector β(u) can be constructed as λ̂1+λ̂2F
−1
n (u), exploiting the location-scale structure

of the conditional u-quantile function of yi given xi, and independence of εi and xi.

The third term in the expression for ϕe reflects the influence of imposing sample orthogonal-

ity constraints in (D) on the empirical distribution of e∗, or equivalently, of sample variability

of parameter estimates λn on the empirical distribution of e(yi, xi, λn), as expected from the

classical result of Durbin (1973). Methods for inference on parametric empirical processes

(see e.g. Koenker & Xiao (2002), Parker (2013)) provide a natural direction for future study

of inference on the empirical dual regression process.
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3. Generalization

3.1. Framework. Let E = [0, 1] or R, and for j = 1, . . . , J , let hj : E → E be a continuously

differentiable function and define, for all e ∈ E , h̃j(e) =
´ e
−∞ hj(s)ds and mj(e) = h̃j(e)−cj ,

an antiderivative of hj , for some cj ∈ R.

The two approaches in systems (2.2) and (2.3) share the common structure

(3.1) max
e∈En

yTe s.t.
n∑
i=1

xijmj(ei) = 0 (j = 1, . . . , J),

which gives rise to the first-order conditions

yi =

J∑
j=1

(λj · xij)hj(ei) (i = 1, . . . , n)(3.2)

n∑
i=1

xijmj(ei) = 0 (j = 1, . . . , J).

For J = 2 and h̃1(ei) = ei, h̃2(ei) = e2
i /2, systems (2.2) and (2.3) have the above structure

with (c1, c2) set to (1/2, 1/6) and (0, 1/2), and En = [0, 1]n and Rn, respectively.

The dual regression characterization of conditional distribution functions via the monotonic-

ity element (the objective) and the independence element (the constraints) can be exploited

to generate flexible representations for Y given X: for J > 2, Equation (3.2) already sug-

gests a representation of Y conditional on X which is more flexible than a location-scale

specification. The object of this section is to further analyze and specify conditions under

which (3.1) can serve the purpose of characterizing flexible representations for Y given X.

Given a random sample {(yi, xi)}ni=1, suppose that the stochastic structure of Y given X

can be represented as

(3.3) yi = H(xi, eoi) ≡ Hxi(eoi) eoi|xi ∼ F,

for some cumulative distribution function F with support the real line, and where, for each

xi, Hxi(eoi) is strictly increasing in eoi. To the monotone function Hxi also corresponds a

convex function H̃xi defined as

(3.4) H̃xi(eoi) ≡
ˆ eoi

−∞
Hxi(s)ds, eoi ∈ R.

The monotonicity of Hxi(eoi) guarantees the convexity of H̃xi(eoi). At each value xi, H̃xi(eoi)

is a convex function of eoi; the slope of this function gives the value of Y corresponding to the
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value eoi at X = xi. Thus FY |X(Y | X) corresponds to a collection of convex functions, with

one element of this collection for each value of X, together with a single random variable

whose distribution is common to all the convex functions: given one random variable eoi with

a particular distribution F , we can always monotonically transform it to another random

variable and similarly transform the functions H̃xi so as to leave FY |X(Y | X) unchanged.

3.2. Infeasible generalized dual regression. Equipped with H̃xi , suppose we are tasked

with assigning a value ei to each observation in our sample {(yi, xi)}ni=1. Then, for Sn =∑n
i=1 H̃xi(eoi), solving the (infeasible) optimization problem:

(3.5) max
e∈Rn

yTe s.t.
n∑
i=1

H̃xi(ei) = Sn,

generates the correct ‘y − e’ assignment, as established in Theorem 4 below; the constraint

in (3.5) imposes that ei be independent of xi and specifies ei ∼ F , whereas the objective

imposes monotonicity. Writing the Lagrangian

L = yTe− Λ

{
n∑
i=1

H̃xi(ei)− Sn

}
,

the n associated first-order conditions are:

(3.6)
∂L

∂ei
= yi − ΛHxi(ei) = 0 (i = 1, . . . , n).

Strict convexity of H̃xi then guarantees that (Λ, e) = (1, eo) satisfies these conditions. This

demonstrates that maximizing yTe generally suffices to match e’s to y’s, regardless of the

form of H̃xi .

Theorem 4. Given a random sample {(yi, xi)}ni=1, suppose that representation (3.3) holds

with Hxi : R→ R a continuously differentiable, strictly increasing function for each xi ∈ X .

Then: for H̃xi(eoi) =
´ eoi
−∞Hxi(s)ds, (eoi, xi) ∈ R× X , solving the (infeasible) optimization

problem (3.5) with Sn =
∑n

i=1 H̃xi(eoi) generates the correct ‘y−e’ assignment, i.e. (Λ, e) =

(1, eo) uniquely solves the first-order conditions (3.6).

Theorem 4 shows that problem (3.5) fully characterizes the ‘y − e’ assignment problem:

given H̃xi , solving (3.5) assigns a value ei to each sample point (yi, xi) and this value is the

corresponding value FY |X(yi | xi) up to a specified transformation F . Knowledge of H̃xi

and Sn can thus be incorporated into a mathematical programming problem which delivers

the values of FY |X at the n sample points.
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3.3. Generalized dual regression representations. Problem (3.5) is infeasible because

neither H̃xi nor Sn is known. However, Theorem 4 motivates a feasible approach once Hxi

and F are specified. We adopt the following notation: define xi = (1, x̃i)
T , and let xij = xi if

j = 1, 2 and xij = x̃i if j > 2. If x̃i is centered, we write xci , i.e. we define the (k−1)-vectors

x̄ = n−1
∑n

i=1 x̃i and xci = x̃i − x̄. Define xcij analogously to xij , substituting xci to x̃i.

Without loss of generality, let x̃i be centered. We specify each of the strictly monotone

functions Hxi by a linear combination of J basis functions {hj : j = 1, 2, . . . , J}, such as

splines or orthogonal polynomials (DeVore (1977a,b)), the coefficients of which depend on

xi:

(3.7) Hxi(eoi) =

J∑
j=1

βj(xi)hj(eoi), eoi ∈ R,

and we assume that Hxi is linear in xi and set:

(3.8) βj(xi) = γj + λj · xci , xi ∈ X , (j = 1, . . . , J).

Finally, we specify F by letting h1(eoi) = 1, h2(eoi) = eoi in (3.7), imposing that
∑n

i=1 eoi = 0

and
∑n

i=1(e2
oi − 1)/2 = 0, and setting γj = 0 for j > 2 in (3.8). This is not the only

normalization possible; for instance, F can be fully specified to a known distribution by

specifying all basis functions and sample moments of eoi instead (cf problem (3.13) below).

Our normalization and (3.7)-(3.8) together yield the generalized dual regression representa-

tion

(3.9) yi = γ1 + γ2eoi + (λ1 · xci ) + (λ2 · xci )eoi +

J∑
j=3

(λj · xci )hj(eoi).

Equation (3.9) admits of the following interpretation. When xci = 0, yi = γ1 + γ2eoi and

eoi = (yi − γ1)/γ2, so that eoi is just a re-scaled version of the distribution of yi at xci = 0.

Since eoi is independent of xi, transformations of this ‘shape’ of eoi must suffice to produce

yi at other values of xi. The first two transformations - (λ1 · xci ) and (λ2 · xci )eoi - are

translations of location and scale which do not essentially affect the ‘shape’ of yi’s response

to changes in eoi at all. The additional terms (λj · xci )hj(eoi) achieve that end.

For h̃1(eoi) = eoi, h̃2(eoi) = e2
oi/2, applying definition (3.4) to Hxi , the corresponding convex

function H̃xi(eoi) is

(3.10) H̃xi(eoi) =

ˆ eoi

−∞
Hxi(s)ds =

J∑
j=1

(θj · xcij)h̃j(eoi), eoi ∈ R,

11



where θj = (γj , λj) for j = 1, 2 and θj = λj for j > 2. Thus, for θ = (θ1, . . . , θJ) and given

the form of H̃xi , the infeasible generalized dual regression problem becomes

max
e∈Rn

yTe s.t.
n∑
i=1

H̃xi(ei) = Sn.

with

Sn =
n∑
i=1

H̃xi(eoi) =
J∑
j=1

{
n∑
i=1

(θj · xcij) ·
n∑
i=1

h̃j(eoi)

}
,

where the specification of Sn follows from its definition in Theorem 4 and expansion (3.10),

and imposes independence of eoi and xi. Substituting in the expressions for H̃xi and Sn,

the Lagrangian for the ‘y − e’ assignment problem is

L = yTe− Λ

{
n∑
i=1

H̃xi(ei)− Sn

}

= yTe− Λ
n∑
i=1

 J∑
j=1

(θj · xcij)

{
h̃j(ei)−

n∑
i=1

h̃j(eoi)

}
= yTe− Λ

J∑
j=1

n∑
i=1

(θj · xcij)mj(ei),

with m1(ei) = ei, m2(ei) = (e2
i − 1)/2, and mj(ei) = h̃j(ei), for j > 2, since for cj =∑n

i=1 h̃j(eoi) the centering of xci implies
∑n

i=1{(θj · xcij)cj} = 0 for j > 2.

Recalling from Theorem 4 that Λ = 1, if we add θ to the choice variables of the optimization

problem, we obtain the dim(θ) additional constraints

∂L

∂θj
= −

n∑
i=1

xcijmj(ei) = 0 (j = 1, . . . , J).(3.11)

Equation (3.11) can be directly appended to the objective maxe y
Te to obtain an optimiza-

tion problem in which the Lagrange multiplier is θ:

(3.12) max
e∈Rn

yTe s.t.
n∑
i=1

xcijmj(ei) = 0 (j = 1, . . . , J).

Problem (3.12) gives a feasible formulation of the generalized ‘y − e’ assignment problem.

When the conditional quantile function of Y given X is linear in X, representation (3.9)

determines the form of H̃xi , a linear combination of basis functions generating an increasing

12



sequence of orthogonality conditions which, as J →∞, impose full independence between e

and X while specifying a distribution F with zero mean and unit variance for e.

If an alternative specification for F is chosen, then approximation (3.9) ought to be altered.

For instance if F is specified to be the standard uniform distribution, then the corresponding

feasible generalized dual regression problem is

(3.13) max
u∈[0,1]n

yTu s.t.
1

j

n∑
i=1

xi

(
uji −

1

j + 1

)
= 0 (j = 1, . . . , J).

On the other hand, the special case of ‘dual regression’ corresponds to J = 2 and m1(ei) = ei,

m2(ei) = (e2
i − 1)/2, where imposing

∑n
i=1mj(ei) = 0, for j = 1, 2, is a normalization. The

simple basis {ei, (e2
i −1)/2} is obviously ‘impoverished’ for the space of all convex functions,

although quite practical for many applications once the flexibility in the distribution of ei

is taken into account.

A further generalization is obtained by regarding X as elementary regressors and defining

W = W (X) as a vector formed by transformations of X, cf. Belloni et al. (2011) for a

detailed treatment of this series formulation in the context of quantile regression. Except in

the notation FY |X(Y | X), this type of series or sieve analysis in the foregoing is achieved

by simply substituting W and w for X and x throughout. The remainder of the discussion

is unaffected.

4. Engel’s Data Revisited

4.1. Empirical illustration. The classical dataset collected by Engel consists of food ex-

penditure and income measurements for 235 households, and has been studied in depth by

Koenker (2005) by means of quantile regression methods. Koenker (2005) shows that the

dispersion of food expenditure increases with household income, so that a location-scale

model is particularly well-suited to the study of this data. We apply dual regression to

the estimation of the statistical relationship between food expenditure and income, with

household income as a single regressor and food expenditure as the outcome of interest.

All computational procedures are implemented in the software R (R Development Core

Team (2014)). For dual regression we use Ipopt (Interior Point Optimizer), an open source

software package for large-scale nonlinear optimization (Waechter & Biegler (2006)), and its
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Figure 4.1. Dual regression estimate of the distribution of food expenditure
conditional on income. Level sets (solid lines) are plotted for a grid of values
ranging from 0.1 to 0.9. The projected ‘shadow’ level sets yield the respective
conditional quantile functions appearing on the xy-plane.

R interface Ipoptr developed by Jelmer Ypma. Ipopt has proven to be an effective and easy-

to-use solver for the dual regression constrained optimization problem (2.3), and quantile

regression procedures in the package quantreg have been used to carry our comparisons.

Figure 4.1 illustrates our results and plots the estimated conditional distribution of food ex-

penditure given household income. The sequence of estimates {u∗i }ni=1, where u∗i = Fn(e∗i ), is

used in order to plot each observation in the xyu-space with predicted coordinates (xi, yi, u
∗
i ),

and the solid lines give the u-level sets for a grid of values {0.1, . . . , 0.9}. Although non-

standard, this representation can be related to standard quantile regression plots since the

levels of the distribution function give the conditional quantiles of food expenditure for each

value of income. These are the plotted ‘shadow’ solid lines corresponding for each u to the

dual regression estimates of the conditional quantile functions of food expenditure given

household income.

It is apparent from Fig. 4.1 that the predicted conditional distribution function obtained by

dual regression is indeed endowed with all desired properties. Of particular interest is the fact

that the estimated function satisfies the requirement of being monotone in food expenditure.

Also, our estimates satisfy some basic smoothness requirements across probability levels,
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Figure 4.2. Engel coefficient plots revisited. Dual (solid) and quantile
(dashes) regression estimates of the intercept (a) and income (b) coefficients
as a function of the quantile index. Least squares estimates are also shown
(dot-dash).

in the food expenditure values. This feature does not typically characterize estimates of

the conditional quantile process by quantile regression methods, as conditional quantile

functions are then estimated sequentially and independently of each other. The decreasing

slope of the distribution function across values of income provides evidence that the data

indeed follow a heteroscedastic generating process. This is the distributional counterpart of

quantile functions having increasing slope across probability levels, a feature characterizing

the conditional quantile functions on the xy plane and signalling increasing dispersion in

food expenditure across household income values.

Figure 4.2 compares our estimates of the functional intercept and covariate quantile re-

gression coefficients, with estimates obtained by quantile regression. Estimates of quantile

regression coefficients for Engel’s data are given in Koenker (2005). For interpretational

purposes, we follow Koenker (2005) and estimate the functional coefficients after having

recentered household income. This avoids having to interpret the intercept as food expen-

diture for households with zero income. After centering, the intercept coefficient can be

interpreted as the u-th quantile of food expenditure for households with mean income: this

is Tukey’s ‘centercept’. Fig. 4.2 shows the estimated quantile regression coefficients as a
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Figure 4.3. Scatterplots and dual (a) and quantile (c) regression estimates
of the conditional 0.1 to 0.9 quantile functions (solid lines) for Engel’s data,
and their rescaled counterparts ((b),(d)).

function of u. It illustrates the fact that the location-scale structure imposed by dual regres-

sion yields estimates that are indeed smoother than their quantile regression counterpart,

the latter having a somewhat erratic behaviour around the dual regression estimates.

Figure 4.3 gives the more familiar quantile regression plots. The plots presented show

scatterplots of Engel’s data as well as conditional quantile functions obtained by dual and
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quantile regression methods. The rescaled plots in the right panels of Fig. 4.3 highlight

some features of the two procedures. The fitted lines obtained from dual regression are not

subject to crossing in this example, whereas several of the fitted quantile regression lines

actually cross for small values of household income. Last, the more evenly spread dual

regression conditional quantile functions illustrate the effect of imposing a functional form

on the quantile regression coefficients.

4.2. Simulations. In this section we give results of several Monte Carlo simulations in

order to assess dual regression finite-sample properties. The data generating process is:

yi = β11 + β12xi + (β21 + β22xi)εi, εi ∼ N(0, 1),(4.1)

with parameter values calibrated to the Engel data empirical application. We first com-

pare dual regression estimates of the conditional distribution function values FY |X(yi|xi) to

those obtained applying the rearrangement procedure of (Chernozhukov et al. (2010)) as a

benchmark for dual regression estimates. The performance of dual regression in estimating

conditional quantile functions is also studied and compared to linear quantile regression es-

timation of the functional coefficients β1(u) = β11 +β21Φ−1(u) and β2(u) = β12 +β22Φ−1(u).

Implementation details and a description of the experiment are given in Appendix ??. In

Appendix E.2 we compare the empirical performance of dual regression to the noncrossing

quantile regression method of Bondell et al. (2010).

Table 1 reports a first set of results of our Monte Carlo simulations regarding the accuracy of

conditional distribution function estimates across simulations. It reports average estimation

errors of dual regression and rearranged quantile regression, respectively, and their ratio in

percentage terms. Average estimation errors are measured in Lp norms ‖·‖p, p = 1, 2, and

∞, where for f : R 7→ [0, 1], ‖f‖p =
{´

R |f(s)|p ds
}1/p

. For each simulation, the estima-

tion errors ‖u∗ − Φ(ε)‖p and
∥∥ûQR − Φ(ε)

∥∥
p

are computed, where ûQR are the rearranged

quantile regression estimates, and the errors are averaged across simulations for each sample

size. The results show that for this setup dual regression estimates systematically outper-

form rearranged quantile regression estimates, and that the spread in performance increases

with sample size. Whereas the reduction in average estimation error is between 7 and 17%,

depending on the norm, for n = 235, estimation error is reduced up to 30% when n = 1000.

Tables 2 and 3 summarize the results for three different sample sizes regarding the accuracy

of the functional intercept and covariate coefficients estimates across simulations. For each

coefficient, we compute the root mean absolute error (RMAE) of our estimates, obtained by
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Table 1. Lp estimation errors (×100) and ratios of Lp estimation
errors of dual and rearranged quantile regression estimates of the
conditional distribution function, for p = 1, 2 and ∞.

Sample size L1
DR L1

DR/L
1
QR L2

DR L2
DR/L

2
QR L∞

DR L∞
DR/L

∞
QR

n = 235 2.67 92.82 3.68 90.48 16.99 82.51
n = 500 1.84 91.87 2.53 88.43 13.06 74.82
n = 1000 1.31 91.59 1.81 87.63 10.16 69.64

Lp
DR and Lp

QR are the average Lperrors of the dual and rearranged quantile regression estimates.

Table 2. Summary results of the simulation study for the intercept
coefficient: RMAE across quantile indices and sample sizes.

Sample size Method RMAE

Quantile index

τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

n = 235 DR 3.31 2.98 2.85 3.02 3.34
QR 3.73 3.32 3.19 3.34 3.78

n = 500 DR 2.74 2.48 2.34 2.46 2.71
QR 3.09 2.73 2.64 2.73 3.06

n = 1000 DR 2.30 2.08 1.98 2.09 2.31
QR 2.57 2.32 2.20 2.30 2.55

RMAE, square root of mean absolute error across simulations; DR, dual regression; QR, quantile
regression.

Table 3. Summary results of the simulation study for the income
coefficient: RMAE across quantile indices and sample sizes.

Sample size Method RMAE

Quantile index

τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

n = 235 DR 0.13 0.12 0.11 0.12 0.13
QR 0.14 0.13 0.12 0.13 0.14

n = 500 DR 0.11 0.10 0.09 0.10 0.11
QR 0.12 0.11 0.10 0.10 0.12

n = 1000 DR 0.09 0.08 0.08 0.08 0.09
QR 0.10 0.09 0.09 0.09 0.10

RMAE, square root of mean absolute error across simulations; DR, dual regression; QR, quantile

regression.
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Figure 4.4. Simulation results for intercept (a) and covariate (b) coeffi-
cients: median estimates across simulations and 90% confidence intervals.
Solid lines are dual regression estimates and dashed lines are quantile re-
gression estimates. The truth (dot-dash) is covered by median estimates.

either method, by computing errors for quantile indices in {0.1, 0.25, 0.5, 0.75, 0.9} for each

replication and then computing the summary statistic. In all cases dual regression estimates

have lower RMAE, which corroborates results shown in Fig. 4.4.

Figure 4.4 illustrates the results of our simulations with n = 235, the number of observa-

tions in Engel’s data. For both dual and quantile regression, the solid line is the median

estimate of intercept and covariate coefficients β1(u) and β2(u) across simulations. The 90%

confidence bands are constructed pointwise by taking the 0.05 and 0.95 quantile estimates

across simulations. For both coefficients, a striking feature is that dual regression bands

follow the median estimates uniformly over the entire quantile process, whereas quantile

regression confidence bands tend to get wider at extreme values of the probability index u.

This is expected since dual regression is a global estimation method and is able to exploit

the location-scale structure of the model, thus delivering well-behaved and more precise

estimates than quantile regression in this example.
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5. Discussion

If we designate problems such as (2.3) and (3.1) as (already) ‘dual’, then their solutions

reveal a corresponding ‘primal’. Typically, the Lagrange multipliers of the dual appear as

parameters in the primal, and the primal has an interpretation as a DGP. So perhaps not

surprisingly the constraints on the construction of the stochastic elements have ‘shadow

values’ that are parameters of a data generating representation. In this way the relation

between identification and estimation is made perspicuous: a parameter of the DGP is the

Lagrange multiplier of a specific constraint on the construction of the stochastic element,

so to specify that some parameters are non-zero and others are zero is to say that some

constraints are (in the large-sample limit) binding and others are not.

Another way of expressing this is to say that when a primal corresponds to the DGP,

additional moment conditions are superfluous: they will (in the limit) attract Lagrange

multiplier values of zero and consequently not affect the value of the program (the objective

function) nor the solution. In a sense, this is obvious: the parameters of the primal can

typically be identified and estimated through an M–estimation problem that will generate k

equations to be solved for the k unknown parameters. Nonetheless, the recognition that the

only moment conditions that contribute to enforcing the independence requirement are those

whose imposition simultaneously reduces the objective function while providing multipliers

that are coefficients in the stochastic representation of Y suggests the futility of portmanteau

approaches (e.g. those based on characteristic functions) to imposing independence. The

dual formulation reveals that to specify the binding moment conditions is to specify a

(approximating) DGP representation, which then can be extrapolated to provide estimates

of objects of interest beyond the n explicitly estimated values of ui = FY |X(Y = yi | X = xi)

that characterize the sample and the definition of the mathematical program.

As is well understood in mathematical programming, dual solutions provide lower bounds

on the values obtained by primal problems. In the generic form of the problems we have

considered here there is no gap between the primal and dual values; hence in econometrics

these problems are said to display ‘point identification’. We conjecture that the problems

without point identification do have gaps between their dual and primal values, and that

this characterization will enhance our understanding.
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Appendix A. Proof of Theorem 1

A.1. Convexity Lemma.

Lemma 5. Suppose that Conditions 1 and 2 hold. Then, the Hessian matrix of Qn(λ), the

objective of the primal dual regression problem (P), is positive definite for all λ ∈ Λ0.

Proof. For e(yi, xi, λ) = (yi − λ1 · xi)/(λ2 · xi), using that

∂Qn
∂λ1

= −
n∑
i=1

[xie(yi, xi, λ)](A.1)

∂Qn
∂λ2

= −
n∑
i=1

1

2
[xi{e(yi, xi, λ)2 − 1}],(A.2)

the Hessian matrix Hn(λ) is

Hn(λ) =

n∑
i=1

[
xix
>
i

λ2·xi
xix
>
i

λ2·xi e(yi, xi, λ)
xix
>
i

λ2·xi e(yi, xi, λ)
xix
>
i

λ2·xi e(yi, xi, λ)2

]
.

Positive definiteness of Mn for all λ2 ∈ Λ2 under Condition 2 implies that Hn(λ) is positive

definite for all λ ∈ Λ0 if and only if the Schur complement of Mn in Hn(λ) is positive definite

(Boyd & Vandenberghe (2004), Appendix A.5.5) for all λ ∈ Λ0, i.e. if and only if

S(λ) =

(
n∑
i=1

xix
>
i

λ2 · xi
ei

2

)
−

(
n∑
i=1

xix
>
i

λ2 · xi
ei

)(
n∑
i=1

xix
>
i

λ2 · xi

)−1( n∑
i=1

xix
>
i

λ2 · xi
ei

)
,

with ei = e(yi, xi, λ), satisfies det{S(λ)} > 0, for all λ ∈ Λ0. Letting

Ξ(λ) =

(
n∑
i=1

xix
>
i

λ2 · xi
ei

)(
n∑
i=1

xix
>
i

λ2 · xi

)−1

,

for all λ ∈ Λ0, S(λ) is equal to

(A.3)
n∑
i=1

[{
xiei

(λ2 · xi)1/2
− Ξ(λ)

xi

(λ2 · xi)1/2

}{
xiei

(λ2 · xi)1/2
− Ξ(λ)

xi

(λ2 · xi)1/2

}>]
,

a finite positive k × k semidefinite matrix, and equal to zero if and only if

(A.4) xiei = Ξ(λ)xi (i = 1, . . . , n);

this is an application of the Cauchy-Schwarz inequality for matrices stated in Tripathi (1999).
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If system (A.4) holds, then, with Ξj(λ) denoting the jth row of Ξ(λ),

xijyi = (λ1 · xi)xij + Ξj(λ)xi, j = 1, . . . , k,

which implies that x2
ijvar(yi|xi) = 0, j = 1, . . . , k. These equalities cannot hold if var(yi|xi) >

0, which holds w.p.1. under Condition 1. �

A.2. Proof of Theorem 1. Proof of part (i). Define the Lagrange dual function (Boyd

& Vandenberghe (2004), Chapter 5) Qn(λ) ≡ supe∈Rn L (e, λ). In order to derive Qn(λ),

we first show that for λ ∈ Λ0 the maximum of the mapping e 7→ L (e, λ) is attained and is

unique, and then evaluate e 7→ L (e, λ) at this value. We then show that e 7→ L (e, λ) is

unbounded above for all λ /∈ Λ0.

Step 1. For λ ∈ Λ0 and c ∈ R, consider the level sets Bc(λ) = {e ∈ Rn : −L (e, λ) ≤ c}
of −L . These sets are compact. Consider a sequence (e(m)) in Rn such that ||e(m)|| → ∞
as m → ∞. Let z(m) =

e(m)

||e(m)||
, a bounded sequence with unit norm. By the Bolzano-

Weierstrass theorem there exists a convergent subsequence z(ml), ml → ∞ as l → ∞, with

limit zo, say. Then, using that λ2 · xi > 0, i = 1, . . . , n, for λ ∈ Λ0,

−L (e(ml), λ) = −||e(ml)||
n∑
i=1

[yi−(λ1·xi)]zi,(ml)+||e(ml)||
2

n∑
i=1

[
1

2
(λ2·xi)z2

i,(ml)
]+

1

2

n∑
i=1

(λ2·xi)→∞

as l→∞, since for λ ∈ Λ0

lim
l→∞
−L (e(ml), λ) =

(
lim
l→∞
||e(ml)||

2

)
1

2

n∑
i=1

(λ2 · xi)z2
i,o =∞.

Therefore −L (e, λ) grows unboundedly as ||e|| → ∞, and Bc(λ) is bounded. Since e 7→
−L (e, λ) is continuous over Rn, Bc(λ) is also closed. It then follows from the Weierstrass

theorem that there exists e(λ) ∈ arg mine∈Rn(−L (e, λ)) = arg maxe∈Rn L (e, λ).

Step 2. The Hessian matrix of the map e 7→ L (e, λ) is diagonal with diagonal elements

∂2L /∂ei∂ei = −(λ2 ·xi), i = 1, . . . , n, and is thus negative definite for all λ ∈ Λ0. Therefore,

e 7→ L (e, λ) is strictly concave with unique maximum e(λ), for all λ ∈ Λ0.

Step 3. For e(yi, xi, λ) = (yi−λ1 ·xi)/(λ2 ·xi), it follows from the n first-order conditions of

(D) that the maximum ei(λ) = e(yi, xi, λ), i = 1, . . . , n, for all λ ∈ Λ0. Define the function

L : X × R× R2×k → R as

(A.5) L(xi, yi, λ) =
1

2

{(
yi − λ1 · xi
λ2 · xi

)2

+ 1

}
(λ2 · xi).
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Then, evaluating L (e, λ) at e = e(λ) yields after some algebra: L (e(λ), λ) =
∑n

i=1 L(xi, yi, λ),

the maximum of the map e 7→ L (e, λ), for all λ ∈ Λ0.

Step 4. We next show that the domain of Qn(λ) is Λ0, i.e. we show that if λ2 · xi ≤ 0

for some i, then yT e −
∑n

i=1C(xi, ei, λ) is unbounded above. Define the sets I− = {i ∈
{1, . . . n} : λ2 · xi < 0}, I0 = {i ∈ {1, . . . n} : λ2 · xi = 0} and I = I− ∪ I0. Choose ek = t,

for each k ∈ I, and ei = 0, i 6= k, and write the value of the Lagrangian evaluated at the

chosen values of e:

L (λ) = [t
∑
i∈I−

(yi − λ1 · xi)− t2
∑
i∈I−

1

2
(λ2 · xi)−

1

2

∑
i∈I−

(λ2 · xi)] + t
∑
i∈I0

(yi − λ1 · xi).

The term in brackets is unbounded above since −t2
∑

i∈I−
1
2(λ2 ·xi)→∞ as t→∞, and also

as t→ −∞. Finally, if
∑

i∈I0(yi−λ1 ·xi) > 0 , then t
∑

i∈I0(yi−λ1 ·xi)→∞ as t→∞, and

L (λ) grows unboundedly as t→∞. If
∑

i∈I0(yi−λ1 ·xi) < 0 , then t
∑

i∈I0(yi−λ1 ·xi)→∞
as t → −∞, and L (λ) grows unboundedly as t → −∞. Therefore, L (e, λ) is unbounded

above for all λ /∈ Λ0.

Step 5. Summarizing the above, the primal dual regression problem is

min
λ∈R2×k

Qn(λ) =


∑n

i=1 L(xi, yi, λ) λ2 · xi > 0, i = 1, . . . , n

∞ otherwise.

This yields the equivalent problem minλ∈Λ0

∑n
i=1 L(xi, yi, λ). Therefore, (P) is the dual of

(D).

Proof of part (ii). The first-order conditions of (P) implied by (A.1) and (A.2) coincide

with system (2.7). From the n first-order conditions of (D), a feasible solution is of the form

ei = e(yi, xi, λ), i = 1, . . . n, and satisfies the constraints of (D). Substituting e(yi, xi, λ),

i = 1, . . . n, into the constraints yields the Method-of-Moments representation of (D).

Proof of part (iii). (a) Under Conditions 1 and 2, it follows from Lemma 5 that Qn(λ) is

strictly convex over Λ0. Therefore, λn is the unique minimum of Qn(λ) and uniquely solves

system (2.7). By part (ii), the Lagrange multiplier vector λ∗ associated with a solution to

problem (D) satisfies system (2.7). It follows that λ∗ = λn. Moreover, Step 2 in part (i)

implies that, for all λ ∈ Λ0, the map e 7→ L (e, λ) admits a unique maximizer e(λ). Thus

e(λ∗) is the unique maximizer of L (e, λ∗), and e∗ = e(λ∗), the unique feasible solution to

(D). Therefore, the pair (λn, e
∗) uniquely solves (P) and (D).
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(b) By direct substitution, using that
∑n

i=1(λ∗1 · xi)e∗i = 0 and
∑n

i=1(λ∗2 · xi)(e∗2i − 1) = 0,

at a solution the value of (D) is
∑n

i=1 yie
∗
i =

∑n
i=1(λ∗2 · xi). Using that

∑n
i=1(λ2n ·

xi){e(yi, xi, λn)2 − 1} = 0, the value of (P) is 1/2
∑n

i=1{e(yi, xi, λn)2 + 1}(λ2n · xi) =∑n
i=1(λ2n · xi). Strong duality then follows from λn = λ∗ established in part (a).

Appendix B. Proof of Theorem 2

Define Q0(λ), the population objective function of the primal dual regression problem as

Q0(λ) = E[L(xi, yi, λ)] where the function L(xi, yi, λ) is defined in (A.5). We use the

notation a ∨ b = max(a, b).

Lemma 6. Suppose that Conditions 1-4 hold. Then, for λ ∈ Λ0, Q0(λ) is continuously

differentiable and ∇λE[L(xi, yi, λ)] = E[∇λL(xi, yi, λ)].

Proof. We first show that E[|L(xi, yi, λ)|] < ∞ for all λ ∈ Λ0. For some positive constant

C such that 1
λ2·xi ≤ C <∞ for all λ2 ∈ Λ2,(

yi − λ1 · xi
λ2 · xi

)2

λ2 · xi ≤ C{2y2
i + 2(λ1 · xi)2}

≤ C(2y2
i + 2 sup

λ1∈Λ1

||λ1||2||xi||2),(B.1)

and therefore E[|L(xi, yi, λ)|] < ∞ for all λ ∈ Λ0 under Condition 3(ii). In addition, there

exists an integrable function κ(xi, yi) such that ||∇λL(xi, yi, λ)|| ≤ κ(xi, yi). There is

∇λ1L(xi, yi, λ) = −xie(yi, xi, λ)

∇λ2L(xi, yi, λ) = −1

2
xi(e(yi, xi, λ)2 − 1).

Since −1 ≤ e(yi, xi, λ)2 − 1, steps similar to those leading to (B.1) yield

||xi(e(yi, xi, λ)2 − 1)|| ≤ ||xi|| |e(yi, xi, λ)2 − 1|

≤ ||xi||{1 ∨ C2(2y2
i + 2 sup

λ1∈Λ1

||λ1||2||xi||2)}.

so that E[||xi(e(yi, xi, λ)2 − 1)||] < ∞ under Condition 3(ii). This and Holder’s inequality

then imply that E[||xie(yi, xi, λ)||] < ∞, therefore E[supλ∈Λ0
||∇λL(xi, yi, λ)||] < ∞ under

Condition 3. Lemma 3.6 in Newey & Mc Fadden (1994) then implies that Q0(λ) is con-

tinuously differentiable in λ, and that the order of differentiation and integration can be

interchanged. �
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First, both existence and consistency of λ̂ result from strict convexity of Q0(λ) over Λ0,

and pointwise convergence of Qn(λ) to Q0(λ). Strict convexity and pointwise convergence

then together imply uniform convergence, as in, for instance, Theorem 2.7 in Newey & Mc

Fadden (1994). The asymptotic distribution of λ̂ then follows from the Method-of-Moments

characterization of the estimates given in part (ii) of Theorem 1, verifying conditions of

Theorem 3.4 in Newey & Mc Fadden (1994).

Proof of parts (i) and (ii). We verify the conditions of Theorem 2.7 in Newey & Mc Fadden

(1994).

We first show identification. Under Conditions 1-4, Q0(λ) is continuously differentiable and

the order of differentiation and integration can be interchanged by Lemma 6. We then show

that ∇λQ0(λ) is differentiable for λ ∈ Λ. There is:

∇λλL(xi, yi, λ) =
xix
>
i

λ2 · xi

[
1 e(yi, xi, λ)

e(yi, xi, λ) e(yi, xi, λ)2

]
.

Applying steps similar to those leading to (B.1) in the proof of Lemma 6 yields the bound∥∥∥∥ xix>iλ2 · xi
e(yi, xi, λ)2

∥∥∥∥ ≤ C3||xi||2(2y2
i + 2 sup

λ1∈Λ1

||λ1||2||xi||2),

which has finite expectation under Condition 3(ii). This and Holder’s inequality then imply

that E[supλ∈Λ ||∇λλL(xi, yi, λ)||] < ∞. Lemma 3.6 in Newey & Mc Fadden (1994) then

implies that ∇λQ0(λ) is continuously differentiable, and that the Hessian matrix of Q0(λ)

is

H(λ) = E

[
xix
>
i

λ2·xi
xix
>
i

λ2·xi e(yi, xi, λ)
xix
>
i

λ2·xi e(yi, xi, λ)
xix
>
i

λ2·xi e(yi, xi, λ)2

]
,

which is a finite positive definite matrix under Conditions 1-4 and steps similar to the proof

of Lemma 5. Therefore, β ∈ Λ0 is the unique minimizer of Q0(λ), and the identification

condition (i) in Theorem 2.7 in Newey & Mc Fadden (1994) is thus verified.

Their condition (ii) follows by convexity of Λ0 and Condition 3(iii)-(iv), as well as strict con-

vexity of Qn(λ) established in Lemma 5. Finally, since the sample is i.i.d. under Condition

3, pointwise convergence of Qn(λ) to Q0(λ) follows from boundedness of Q0(λ) (established

in the proof of Lemma 6) and application of Khinchine’s law of large numbers. Hence, all

conditions of Newey and McFadden’s Theorem 2.7 are satisfied, and there exists λ̂ ∈ Λ0

with probability approaching one and λ̂→p β.
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Proof of part (iii). By part (ii) of Theorem 1, the Lagrange multiplier vector λ̂ solves the

2× k equations system

(B.2)
1

n

n∑
i=1

m(yi, xi, λ) = 0,

with m(yi, xi, λ) defined in Section 2.4. System (B.2) can be equivalently viewed as mini-

mizing

QMM
n (λ) =

[
1
n

∑n
i=1 xie(yi, xi, λ)

1
n

∑n
i=1 xi{e(yi, xi, λ)2 − 1}

]T [
1
n

∑n
i=1 xie(yi, xi, λ)

1
n

∑n
i=1 xi{e(yi, xi, λ)2 − 1}

]
.

Asymptotic normality of the Method-of-Moments estimator then follows after verifying con-

ditions of Theorem 3.4 in Newey & Mc Fadden (1994).

Under Condition 3, β ∈ Λ0 so that their condition (i) is satisfied. The mapping λ 7→
m(yi, xi, λ) is continuously differentiable in λ ∈ Λ0 by inspection, so that their condition

(ii) is satisfied. Since the properties of εi imply that E{m(yi, xi, β)} = 0, the first part of

their condition (iii) is satified. In addition, steps similar to the proof of Lemma 6 show

that E{||m(yi, xi, β)||2} and E{supλ∈Λo
||∇λm(yi, xi, λ)||} are finite under Conditions 3(ii)

and 5, and their conditions (iii)-(iv) are verified. Finally, their full rank condition on G =

E{∇λm(yi, xi, λ)}|λ=β is satisfied under Condition 4: the matrix G can be simplified by

noting that the off-diagonal elements

E

{
xix

T
i

β2 · xi

(
yi − β1 · xi
β2 · xi

)}
= 0k×k

and

E

{
xix

T
i

β2 · xi

(
yi − β1 · xi
β2 · xi

)2
}

= E

(
xix

T
i

β2 · xi

)
,

using that E(εi | xi) = 0 and E(ε2
i | xi) = 1. Thus, G is a block diagonal matrix with positive

definite diagonal elements under Condition 4. Therefore, n1/2(λ̂−β)
d→ N(0, G−1S(G−1)T).

Exploiting the block diagonal structure of G, the variance-covariance matrix is G−1SG−1

and can be characterized explicitly. Partitioning G and S,

G =

[
G11 0k×k

0k×k G22

]
, S =

[
S11 S12

S21 S22

]
,

a bit of algebra yields

G−1SG−1 =

[
G−1

11 S11G
−1
11 G−1

11 S12G
−1
22

G−1
22 S21G

−1
11 G−1

22 S22G
−1
22

]
.
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Appendix C. Proof of Theorem 3

We let, for di = (yi, xi), i = 1. . . . , n, Enf = Enf(di) = n−1
∑n

i=1 f(di) and Gnf =

Gn{f(di)} = n−1/2
∑n

i=1[f(di)− E{f(di)}].

Define the class of functions

F = {1{e(yi, xi, λ) ≤ e}, λ ∈ Λ0, e ∈ R} .

Following van der Vaart & Wellner (2007), the empirical dual regression process Un(e) =

n1/2(Enfe,λ̂ − Efe,β) admits the following decomposition:

(C.1) n1/2(Enfe,λ̂ − Efe,β) = Gn(fe,λ̂ − fe,β) + Gnfe,β +
√
nE(fe,λ̂ − fe,β).

The proof thus proceeds by (i) establishing that the first term on the right in (C.1) converges

in probability to zero, (ii) using the fact that the second term converges in distribution to

a mean zero Gaussian process, and (iii) expanding the last term uniformly in e ∈ R.

Step 1. (Stochastic equicontinuity) By Theorem 2.1 in van der Vaart & Wellner (2007),

since Pr(λ̂ ∈ Λ0)→ 1 by part (i) of Theorem 1, supe∈R ||Gn(fe,λ̂ − fe,β)|| →p 0 holds if the

class of functions F is Donsker and if the pseudometric ρ{(e′, λ′), (e′′, λ′′)}2 ≡ E[{fe′,λ′(di)−
fe′′,λ′′(di)}2] satisfies δn ≡ supe∈R ρ{(e, λ̂), (e, β)}2 →p 0.

We first show that the class of functions F is Donsker. Define the parametric class of

functions F̃ = {e(yi, xi, λ), λ ∈ Λ0}. For all λ′, λ′′ ∈ Λ0, a mean-value expansion and

Cauchy-Schwarz inequality yield

|e(yi, xi, λ′)− e(yi, xi, λ′′)| ≤ ||∇λe(yi, xi, λ)|λ=λ̄|| ||λ′ − λ′′||,

where λ̄ is on the line joining λ′ and λ′′. Steps similar to those in the proof of Theorem

2 show that E[||∇λe(yi, xi, λ)|λ=λ̄||2] is bounded under Condition 3, so that F̃ is Donsker

by Example 19.7 in van der Vaart (1998). Therefore, F is Donsker, by monotonicity of the

indicator function, with unit envelope.

We now show that δn →p 0. Let f̄ denote the upper bound for |y|fY |X(y|x), and set λ(e) =

λ1 +λ2e and β(e) = β1 +β2e, e ∈ R. Upon using that 1{e(yi, xi, λ) ≤ e} = 1{yi ≤ λ(e) ·xi}
for all λ ∈ Λ0, the law of iterated expectations, a mean-value expansion and Cauchy-Schwarz
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inequality yield:

sup
e∈R

ρ((e, λ̂), (e, β))2 = sup
e∈R

E[|1{yi ≤ λ̂(e) · xi} − 1{yi ≤ β(e) · xi}|]

= sup
e∈R

E(|(λ̂− β)>[fY |X{λ̄(e) · xi|xi}(xi, xie)>]|)

≤ ||λ̂− β||f̄E||xi||,

where λ̄ is on the line joining λ̂ and β. Thus δn = op(1) by Condition 3(ii) and consistency

of λ̂.

Step 2. (Expansion) We show that the following expansion is valid uniformly in e ∈ R:

E{fe,λ̂(di)− fe,β(di)} = (λ̂− β)>{g(e) + oP (1)}.(C.2)

Upon using that 1{e(yi, xi, λ) ≤ e} = 1{yi ≤ λ(e) · xi} for all λ ∈ Λ0, the law of iterated

expectations and a mean-value expansion yield:

E{fe,λ̂(di)− fe,β(di)} = (λ̂− β)>E[∇λFY |X{λ(e) · xi|xi}|λ=λ̄],

where λ̄ is on the line joining λ̂ and β.

Using that ∇λFY |X{λ(e) · xi|xi} = fY |X{λ(e) · xi|xi}(xi, xie)> for all λ ∈ Λ0, we obtain

E[fY |X{λ̄(e) · xi|xi}(xi, xie)>] = E[fY |X{β(e) · xi|xi}(xi, xie)>] + op(1),

uniformly in e ∈ R, by uniform continuity of the mapping y 7→ fY |X(y|x), uniformly in x

over X , uniform consistency of λ̂(e) implied by consistency of λ̂ and linearity of λ̂(e) in e,

and since supe∈R |e|fY |X(β(e) ·X|X) ≤ f̄ and E[||xi||] <∞ by Condition 3(ii). Hence (C.2)

holds by definition of g(e), uniformly in e ∈ R.

Finally, the Method-of-Moments representation of dual regression implies that the dual

regression estimator λ̂ is asymptotically linear with influence function

(C.3) ψ(yi, xi, β) = −G−1m(yi, xi, β).

Thus (C.1)-(C.3) together imply that uniformly in e ∈ Ē

Un(e) = Gn(fe,λ̂ − fe,β) + Gnfe,β + n1/2(λ̂− β)>{g(e) + oP (1)}

= oP (1) + Gnfe,β + g(e)>n−1/2
n∑
i=1

ψ(yi, xi, β) + oP (1)

= n−1/2
n∑
i=1

ϕe(yi, xi, β) + oP (1).
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Hence the empirical dual regression process Un(·) weakly converges to the zero-mean Gauss-

ian process U(·) in `∞(R), the set of uniformly bounded real functions on R, and where U(·)
has covariance function E{ϕe(yi, xi, β)ϕe′(yi, xi, β)}.

Appendix D. Proof of Theorem 4

Lemma 7. Suppose that Hxi : R → R is a continuously differentiable, strictly increasing

function for each xi ∈ X . Then, Λ = 1 is the unique solution to the equation

(D.1)

n∑
i=1

H̃xi

{
H−1
xi

(yi
Λ

)}
− Sn = 0

such that Λ > 0.

Proof. Equation (D.1) is the first-order condition of the minimization problem

min
Λ>0

qn(Λ) ≡
n∑
i=1

yiH
−1
xi

(yi
Λ

)
− Λ

[
n∑
i=1

H̃xi

{
H−1
xi

(yi
Λ

)}
− Sn

]
,

where, for L IGDR(e,Λ) = y>e− Λ{
∑n

i=1 H̃xi(ei)− Sn}, qn(Λ) = supe∈Rn L IGDR(e,Λ) for

all Λ > 0 such that L IGDR(e,Λ) < ∞. The function qn(Λ) is strictly convex over (0,∞):

since Hxi(eoi) is continuously differentiable in eoi for all xi ∈ X by assumption, by the

inverse function theorem H−1
xi (yi) is continuously differentiable in yi for all xi ∈ X and there

are the following derivatives:

∂H−1
xi

(yi
Λ

)
∂Λ

= − 1

H ′xi
{
H−1
xi

(yi
Λ

)} yi
Λ2

(D.2)

∂H̃xi

{
H−1
xi

(yi
Λ

)}
∂Λ

= −yi
Λ

1

H ′xi
{
H−1
xi

(yi
Λ

)} yi
Λ2
,(D.3)

for all (xi, yi) ∈ X × Y. Upon using (D.2) and (D.3), qn(Λ) has first derivative

∂qn
∂Λ

= −

[
n∑
i=1

H̃xi

{
H−1
xi

(yi
Λ

)}
− Sn

]
and second derivative

∂2qn
∂Λ∂Λ

=
1

Λ

n∑
i=1

1

H ′xi
{
H−1
xi

(yi
Λ

)} (yi
Λ

)2
> 0,

since strict monotonicity and continuous differentiability of Hxi imply that H ′xi > 0 and

is bounded over its entire domain, for each xi ∈ X . Therefore, qn(Λ) is strictly convex
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over (0,∞) and admits at most one minimum. Since H−1
xi (yi/Λ) = eoi for Λ = 1 and

Sn =
∑n

i=1 H̃xi(eoi) by definition, Λ = 1 solves the equation ∂qn/∂Λ = 0. The result

follows. �

Proof of Theorem 4. In order to show that the pair (Λ, e) = (1, eo) uniquely solves the first-

order conditions (3.6), write the Lagrangian: L IGDR(e,Λ) = y>e−Λ{
∑n

i=1 H̃xi(ei)− Sn}.
By assumption, Hxi is continuously differentiable and strictly increasing, and by application

of the fundamental theorem of calculus, H̃xi is differentiable with derivative H ′xi such that

H ′xi > 0 for all xi ∈ X , and the inverse function of Hxi , denoted H−1
xi , is well-defined. The

n first-order conditions of problem (3.5) are

(D.4)
∂L IGDR

∂ei
= yi − ΛHxi(ei) = 0 (i = 1, . . . , n),

so that ei = H−1
xi (yi/Λ). The n second-order conditions are

(D.5)
∂2L IGDR

∂ei∂ei
= −ΛH ′xi(ei) < 0 (i = 1, . . . , n),

which are satisfied if and only if Λ > 0, since H ′xi is strictly positive over its entire domain.

For Λ ≤ 0, (D.5) implies that L IGDR is unbounded above since e 7→ L IGDR(e,Λ) is then

convex. Therefore we need only consider a pair (Λ, e) solving the first-order conditions (D.4)

and satisfying the constraint of problem (3.5) with Λ > 0. For Λ̃ 6= 1 and ẽi = H−1
xi (yi/Λ̃),

i = 1, . . . , n, let (Λ̃, ẽ) be such a pair.

Substituting ei = ẽi into the constraint of problem (3.5) yields

(D.6)

n∑
i=1

H̃xi

{
H−1
xi

(
yi

Λ̃

)}
− Sn = 0.

By Lemma 7, Λ̃ = 1 is the only solution to (D.6) such that Λ̃ > 0, a contradiction. Therefore,

(1, eo) is the unique pair that solves the first-order conditions (D.4).

Appendix E. Numerical Simulations

E.1. Design and implementation of the numerical simulations. Data is generated

according to the location-scale model (4.1) calibrated to Engel’s data. The value of β is set

to the value of estimates obtained by the method suggested in Koenker & Xiao (2002): for a

grid of R = 235 quantile indices {u1, . . . , uR}, (β̂QR1 (ur), β̂
QR
2 (ur)) are estimated by quantile

regression, and β1 and β2 are set equal to the estimates obtained from linear regression of

(β̂QR1 (ur), β̂
QR
2 (ur)) on {(1,Φ−1(ur)) : 1, . . . , R}, where Φ−1 is the inverse standard normal

30



distribution. We set β1 = (86 · 56,−22 · 17) and β2 = (0 · 55, 0 · 12). Therefore, the quantile

regression parameters are β1(u) = β11 + β12Φ−1(u) and β2(u) = β21 + β22Φ−1(u), and the

conditional distribution function is FY |X(y | x) = Φ{(y − β1 · x)/(β2 · x)}. x̃i is a scalar

random variable drawn from a left-truncated normal distribution with truncation point

equal to min(income) − 100 = 277. Two alternative designs were considered with values

of x̃i fixed to sample values of income across simulations for n = 235 or sampling from

values of income for n = (100, 500, 1000), and with x̃i ∼ U(min(income),max(income));

results are similar to the truncated normal design and are omitted, but are available upon

request. The number of replications is 4999. The dual regression Lagrange multipliers

yield estimated functional coefficients β̂j(u) = λ∗1j + λ∗2jF
−1
n (u), j = 1, 2, where F−1

n is the

inverse empirical distribution function of e∗. As a benchmark, the conditional distribution

function is also estimated by rearranged quantile regression (Chernozhukov et al. (2010)),

as ûQRi = ε+
´ 1−ε
ε 1{β̂QR1 (u) + β̂QR2 (u)x̃i ≤ yi}du, with ε = 0 · 001.

E.2. Additional Simulations. We provide additional simulations comparing dual regres-

sion to the noncrossing quantile regression method introduced by Bondell et al. (2010),

replicating the experiments they propose. In their simulation study they consider three

examples which are special cases of the linear heteroscedastic model

yi = γ1 + β1 · x̃i + (γ2 + β2 · x̃i)εi, x̃ij ∼ U(0, 1), εi ∼ N(0, 1),

with γ1 = γ2 = 1. Their method imposes noncrossing constraints on the quantile regressions

estimated, and they show that it outperforms both linear quantile regression and the method

of He (1997). The three examples are:

Example 1. dim(x̃i) = 4, β1 = (1, 1, 1, 1)T, and β2 = (0 · 1, 0 · 1, 0 · 1, 0 · 1)T.

Example 2. dim(x̃i) = 10, β1 = (1, 1, 1, 1, 0T)T, and β2 = (0 · 1, 0 · 1, 0 · 1, 0 · 1, 0T)T.

Example 3. dim(x̃i) = 7, β1 = (1, 1, 1, 1, 1, 1, 1)T, and β2 = (1, 1, 1, 0, 0, 0, 0)T.

For each example, 500 datasets of size 100, 200 and 500 are simulated. For the method of

Bondell et al. (2010), six quantile curves are fitted to the data for each example, u = {0 ·1, 0 ·
3, 0 · 5, 0 · 7, 0 · 9, 0 · 99}. We also implemented the noncrossing quantile regression method

by fitting eleven quantile curves for the larger sequence u = {0 · 01, 0 · 1, 0.2, . . . , 0 · 9, 0 · 99},
the results are similar and are thus omitted.

Table 4 shows the average root mean integrated squared errors over the 500 datasets along

with their estimated standard errors, for each sample size, and for each of u = {0 · 5, 0 · 9, 0 ·
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99}. For each simulation, the empirical root mean integrated squared error is calculated

as RMISE = [n−1
∑n

i=1{β̂(u) · xi − β(u) · xi}2]1/2, where β̂(u) and β(u) are the estimated

and true vector of quantile regression coefficients, respectively. The results for the other

quantiles are similar, and are thus omitted.

In all three examples dual regression significantly outperforms the noncrossing quantiles

method for all quantiles and all sample sizes, except for n = 100 and τ = 0 · 9 in Example

2. The good relative performance of dual regression results from the imposed location-scale

structure, which adds further smoothness and stability across quantile curves, beyond the

noncrossing constraints imposed by noncrossing quantile regression. Since the DGP is a

linear heteroscedastic model, it is expected that dual regression would perform better. This

improvement is greater in the tails, as the location and scale parameters are estimated glob-

ally whereas the local nature of quantile regression affects estimation of extreme quantiles.
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Example 1
τ = 0 · 5 τ = 0 · 9 τ = 0 · 99

n = 100
DR 26 · 55 (0 · 41) 37 · 43 (0 · 54) 58 · 38 (0 · 88)

NCRQ 30 · 74 (0 · 44) 41 · 39 (0 · 57) 71 · 11 (0 · 90)
Ratio×100 86 · 36 90 · 44 82 · 10

n = 200
DR 18 · 93 (0 · 27) 25 · 72 (0 · 37) 41 · 14 (0 · 65)

NCRQ 21 · 93 (0 · 33) 30 · 02 (0 · 45) 56 · 39 (0 · 75)
Ratio×100 86 · 29 85 · 66 72 · 97

n = 500
DR 12 · 01 (0 · 17) 16 · 36 (0 · 23) 26 · 22 (0 · 43)

NCRQ 14 · 01 (0 · 21) 19 · 30 (0 · 27) 40 · 41 (0 · 57)
Ratio×100 85 · 74 84 · 75 64 · 89

Example 2
τ = 0 · 5 τ = 0 · 9 τ = 0 · 99

n = 100
DR 40 · 89 (0 · 40) 57 · 50 (0 · 58) 89 · 09 (0 · 87)

NCRQ 43 · 76 (0 · 43) 53 · 94 (0 · 51) 91 · 14 (0 · 90)
Ratio×100 93 · 44 106 · 61 97 · 74

n = 200
DR 28 · 74 (0 · 28) 39 · 05 (0 · 37) 59 · 85 (0 · 60)

NCRQ 32 · 03 (0 · 30) 39 · 65 (0 · 38) 65 · 35 (0 · 63)
Ratio×100 89 · 75 98 · 48 91 · 58

n = 500
DR 17 · 93 (0 · 17) 24 · 19 (0 · 24) 37 · 33 (0 · 42)

NCRQ 21 · 04 (0 · 19) 27 · 52 (0 · 26) 47 · 56 (0 · 45)
Ratio×100 85 · 24 87 · 90 78 · 48

Example 3
τ = 0 · 5 τ = 0 · 9 τ = 0 · 99

n = 100
DR 70 · 33 (0 · 83) 97 · 96 (1 · 18) 153 · 28 (1 · 75)

NCRQ 76 · 78 (0 · 91) 100 · 86 (1 · 21) 176 · 85 (1 · 96)
Ratio×100 91 · 60 97 · 13 86 · 67

n = 200
DR 50 · 00 (0 · 58) 68 · 22 (0 · 85) 106 · 47 (1 · 36)

NCRQ 56 · 49 (0 · 65) 74 · 25 (0 · 91) 134 · 98 (1 · 54)
Ratio×100 88 · 51 91 · 87 78 · 88

n = 500
DR 30 · 51 (0 · 36) 41 · 64 (0 · 50) 66 · 72 (0 · 90)

NCRQ 35 · 64 (0 · 42) 47 · 84 (0 · 57) 94 · 45 (1 · 09)
Ratio×100 85 · 59 87 · 04 70 · 64

DR, dual regression; NCRQ, noncrossing quantile regression method of Bondell et al. (2010).

Table 4. Replication of Bondell et al. (2010) experiments 1-3: average root
mean integrated squared error (×100) over 500 simulations, with standard
error in parentheses. 33
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