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Abstract

This paper proposes a bootstrap-based procedure to build confidence intervals for
single components of a partially identified parameter vector, and for smooth functions of
such components, in moment (in)equality models. The extreme points of our confidence
interval are obtained by maximizing/minimizing the value of the component (or function)
of interest subject to the sample analog of the moment (in)equality conditions properly
relaxed. The novelty is that the amount of relaxation, or critical level, is computed so
that the component (or function) of 6, instead of 6 itself, is uniformly asymptotically cov-
ered with prespecified probability. Calibration of the critical level is based on repeatedly
checking feasibility of linear programming problems, rendering it computationally attrac-
tive. Computation of the extreme points of the confidence interval is based on a novel
application of the response surface method for global optimization, which may prove of
independent interest also for applications of other methods of inference in the moment
(in)equalities literature.

The critical level is by construction smaller (in finite sample) than the one used if
projecting confidence regions designed to cover the entire parameter vector 6. Hence, our
confidence interval is weakly shorter than the projection of established confidence sets
(Andrews and Soares, 2010), if one holds the choice of tuning parameters constant. We
provide simple conditions under which the comparison is strict. Our inference method
controls asymptotic coverage uniformly over a large class of data generating processes.
Our assumptions and those used in the leading alternative approach (a profiling based
method) are not nested. We explain why we employ some restrictions that are not required
by other methods and provide examples of models for which our method is uniformly valid
but profiling based methods are not.

Keywords: Partial identification; Inference on projections; Moment inequalities; Uni-
form inference.
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1 Introduction

A growing body of literature in econometric theory focuses on estimation and inference in
partially identified models. For a given d-dimensional parameter vector 6 characterizing the
model, much work has been devoted to develop testing procedures and associated confidence
sets in R? that satisfy various desirable properties. These include coverage of each element of
the d-dimensional identification region, denoted Oj, or coverage of the entire set ©, with a
prespecified —possibly uniform— asymptotic probability. From the perspective of researchers
familiar with inference in point identified models, this effort is akin to building confidence
ellipsoids for the entire parameter vector 6. However, applied researchers are frequently
interested in conducting inference for each component of a partially identified vector, or for
linear combinations of components of the partially identified vector, similarly to what is
typically done in multiple linear regression.

The goal of this paper is to provide researchers with a novel procedure to conduct such
inference in partially identified models. Our method yields confidence intervals whose cov-
erage is uniformly correct in a sense made precise below. It is computationally relatively
attractive because to compute critical levels, we check feasibility of a set of linear constraints
rather than solving a linear or even nonlinear optimization problem.

Given the abundance of inference procedures for the entire parameter vector 6, one might
be tempted to just report the projection of one of them as confidence interval for the pro-
jections of O (e.g., for the bounds on each component of #). Such a confidence interval
is asymptotically valid but typically conservative. The extent of the conservatism increases
with the dimension of 6 and is easily appreciated in the case of a point identified parameter.
Consider, for example, a linear regression in R!?, and suppose for simplicity that the limiting
covariance matrix of the estimator is the identity matrix. Then a 95% confidence interval for
each component of 0 is obtained by adding and subtracting 1.96 to that component’s esti-
mate. In contrast, projection of a 95% Wald confidence ellipsoid on each component amounts
to adding and subtracting 4.28 to that component’s estimate. We refer to this problem as
projection conservatism.

The key observation behind our approach is that projection conservatism can be antic-
ipated. In the point identified case, this is straightforward. Returning to the example of
multiple linear regression, if we are interested in a confidence interval with a certain asymp-
totic coverage for a component of 8, we can determine the level of a confidence ellipsoid whose
projection yields just that confidence interval. When the limiting covariance matrix of the
estimator is the identity matrix and d = 2, projection of a confidence ellipsoid with asymp-
totic coverage of 85.4% yields an interval equal to the component’s estimate plus/minus 1.96,
and therefore asymptotic coverage of 95% for that component; when d = 5, the required

ellipsoid’s coverage is 42.8%; when d = 10, the required ellipsoid’s coverage is 4.6%."

!The fast decrease in the required coverage level can be explained observing that the volume of a ball of
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The main contribution of this paper is to show how this insight can be generalized to
models that are partially identified through moment (in)equalities, while preserving com-
putational feasibility and desirable coverage properties. The main alternative procedure in
the literature, introduced in Romano and Shaikh (2008) and significantly advanced in Bugni,
Canay, and Shi (2014, BCS henceforth), is based on profiling out a test statistic.? The classes
of data generating processes (DGPs) over which our procedure and profiling-based methods
are (pointwise or uniformly) valid are non-nested. The method proposed by Pakes, Porter,
Ho, and Ishii (2011, PPHI henceforth) is based on bootstrapping the sample distribution of
the projection.? This controls asymptotic coverage over a significantly smaller class of models
than our approach.

Our approach ensures that asymptotic approximations to coverage are uniformly valid
over a large class of models that we describe below. The importance of such uniformity in
settings of partial identification was first pointed out by Imbens and Manski (2004), further
clarified in Stoye (2009), and fully developed for moment (in)equalities models by Romano
and Shaikh (2008), Andrews and Guggenberger (2009) and Romano and Shaikh (2010).%
These authors show that poor finite sample properties may result otherwise. For example,
consider an interval identified (scalar) parameter whose upper and lower bounds can be
estimated. Then a confidence interval that expands each of the estimated bounds by a one-
sided critical value controls the asymptotic coverage probability pointwise for any DGP at
which the length of the identified set is positive. This is because the sampling variation
becomes asymptotically negligible relative to the (fixed) length of the interval, making the
inference problem essentially one-sided. However, this approximation is misleading in finite
sample settings where sampling variation and the length of the interval are of comparable
order. In such settings, coverage of the true parameter can fail when the true parameter
falls below the lower bound of the confidence interval or above its upper bound; hence, a
uniformly valid procedure must take into account the two-sided nature of the problem. More
generally, uniformly valid inference methods need to account for inequalities that are close to
be binding if not perfectly binding at the parameter of interest (Andrews and Guggenberger,
2009; Andrews and Soares, 2010; Bugni, 2009; Canay, 2010).

In our problem, uniformity is furthermore desirable along a novel dimension. Across

DGPs, there can be substantial variation in the shape of the parameter set formed by the

radius r in R? decreases geometrically in d.

2The profiling method provides uniformly valid confidence intervals also for nonlinear functions of §. The
corresponding extension of our method is addressed in Section 6 with our concluding remarks.

3This is the working paper version of Pakes, Porter, Ho, and Ishii (2015). We reference it because the
published version does not contain the inference part.

4Universal uniformity is obviously unattainable (Bahadur and Savage, 1956). Other example of recent
literatures where uniformity over broad, though not universal, classes of models is a point of emphasis include
inference close to unit roots (Mikusheva, 2007), weak identification (Andrews and Cheng, 2012), and post-
model selection inference (see Leeb and Potscher 2005 for a negative take). See also the discussion, with more
examples, in Andrews and Guggenberger (2009).



moment (in)equalities around each point in the identification region. Our analysis reveals
that validity of inference and degree of projection conservatism depend crucially on the shape
of the constraints in relation to the projection direction of interest, which we call the local
geometry of the identification region. This is a novel dimension of uniformity which does not
arise when one’s interest is in the entire vector. We address this challenge by developing an
inference method that is uniformly valid across various shapes formed by the constraints. To
our knowledge, this is the first such effort.

This is also useful for achieving another desirable uniformity property. That is, holding
one (reasonably well-behaved) model fixed, confidence regions should be equally valid for
different directions of projection. It is surprisingly easy to fail this criterion. For example, if
one does not properly account for flat faces which are orthogonal to the direction of projection,
the resulting confidence interval will not be valid uniformly over directions of projection if
the true identified set is a polyhedron. A polyhedron is not only a simple shape but also
practically relevant: It arises for best linear prediction (BLP) with interval outcome data
and discrete regressors, as shown in Beresteanu and Molinari (2008). In this example, a
method that does not apply at (or near) flat faces is not equally applicable to all linear
hypotheses that one might want to test. This stands in stark contrast to point identified
BLP estimation: Barring collinearity, an F-test is applicable uniformly over simple linear
hypotheses. Under this latter condition and some others, our method too applies uniformly
over linear hypotheses, while other methods do not (PPHI assume away all flat faces that are
near orthogonal to the direction of projection; BCS assume away many such cases).

Overview of the method. We consider models for which the identified set can be
written as the set of parameter values that satisfy a finite number of moment equalities and
inequalities, ©; = {6 : E(m(X;,0)) < 0}.> Here X; is a dx x 1 vector of random variables
with distribution P and m = (mq,...,my) : R x © — R’ is a known measurable function
of the finite dimensional parameter vector # € © C R?. We are interested in the projection

p'6 of §. We propose to report as confidence interval

CIn: inf ple’ sSup ple ’ H
leecn(én) 0€Cr(én) "

where
Cn(én) = {0 €e0:nt ij(Xi,H)/c}w(H) <én0), j=1,.. .,J} , (1.2)

where G, ; is a suitable estimator of the asymptotic standard deviation of n~1/2 >imj(X;,0).°

SWe write equalities as two opposing inequalities in what follows. See section 2.1 for further elaboration.

50ur confidence region is by construction an interval. Conceptually, our method is easily adapted so as
to capture gaps in the projection of the identified set. We recommend this only if one is genuinely interested
in those gaps. Also, CI,, can be empty. We briefly discuss both matters in Section 6 with our concluding
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Here, ¢,(0) is loosely analogous to a critical value, though the reader should keep in mind
that our confidence interval does not invert a hypothesis test. That said, one could use in
the above construction, e.g., critical values ¢SH7T(9) or ¢45(6) from the existing literature
(Chernozhukov, Hong, and Tamer, 2007; Andrews and Soares, 2010, respectively). These
are calibrated so that C, covers the entire vector  and therefore any linear projection of it.
Clearly, this is more than needed, and so projecting C,(c) with ¢ = ¢SHT(9) or ¢ = ¢19(0)
is conservative. As we show below, this conservatism is severe in relevant examples. We
(mostly) avoid it because we anticipate projection conservatism when calibrating ¢,(0). In
particular, for each candidate 6, we calibrate ¢,(0) so that across bootstrap repetitions, the
projection of 8 is covered with at least some pre-specified probability. Computationally, this
bootstrap is relatively attractive for two reasons: We linearize all constraints around 6, so
that coverage corresponds to the projection of a stochastic linear constraint set covering
zero.” We furthermore verify this coverage event without solving the linear program, but
simply checking that a properly constructed linear constraint set is feasible.

The end points of our confidence interval can be obtained by solving constrained opti-
mization problems for each direction of projection. The constraints of these problems involve
¢n(+), which in general is an unknown function of § and, therefore, gradients of constraints
are not available in closed form. When the dimension of the parameter is large, solving op-
timziation problems with such a component can be relatively expensive even if evaluating
¢n(+) at each point is computationally cheap. This is because commonly used optimization
algorithms repeatedly evaluate the constraints and their (numerical) gradients. To overcome
this challenge, we propose an algorithm that is a contribution to the moment (in)equalities
literature in its own right and should also be helpful for implementing other approaches. Our
algorithm is based on the response surface method (Jones, 2001) and computes the confi-
dence interval as follows. First, it evaluates ¢é,(+) on a coarse set of parameter values. Then,
it fits a flexible auxiliary model (response surface) to the map 6 — ¢,(0) to obtain surro-
gate constraint functions whose values and gradients are provided in closed form. Finally, it
solves the optimization problems using the surrogate constraints. The algorithm then iterates
these steps until the optimal values converge, while adding evaluation points to the set that
contains parameter values that nearly attain the maximum (or minimum) and refining the
surrogate constraints in each iteration. Computational savings come from the fact that the
proposed method controls the number of evaluation points and the optimization problems
only involve functions that are cheap to evaluate. Our Monte Carlo experiments show that
this algorithm performs well even in a model with a moderately high number of parameters.

DGPs for which the method is uniformly valid. We establish uniform asymptotic

validity of our procedure over a large class of DGPs that can be related to the existing

remarks.
"Previously, Pakes, Porter, Ho, and Ishii (2011) had also proposed local linear approximation to the moment
inequalities.



literature as follows. We start from the same assumptions as Andrews and Soares (2010,
AS henceforth), and similarly to the related literature, we ensure uniform validity in the
presence of drifting-to-binding inequalities by adopting Generalized Moment Selection (AS,
Bugni (2009), Canay (2010)). In addition, we impose some restrictions on the correlation
matrix of the sample moment (in)equalities. A simple sufficient condition is that this matrix
has eigenvalues uniformly bounded from below, an assumption that was considered in AS
(for a specific criterion function) but eliminated by Andrews and Barwick (2012). It can be
weakened substantially because we can allow for perfect or near perfect correlation of moment
inequalities that are known not to cross; this case is relevant as it naturally occurs with
missing-data bounds and static, simultaneous move, finite games with multiple equilibria.
That said, profiling-based methods do not require any such assumption. We also assume
that each individual constraint uniformly admits a local linear approximation that can be
uniformly consistently estimated.

However, and in contrast to the leading alternative approaches, we do not impose further
conditions that jointly restrict the inequality constraints, for example by restricting the local
geometry of ©7. This is important because such assumptions, which are akin to constraint
qualifications in nonlinear programming, can be extremely challenging to verify. Moreover,
and again in contrast to leading alternative approaches, we do not impose restrictions on the
limit distribution of a test statistic, e.g. continuity at the quantile of interest, which again
can be challenging to verify. Our ability to dispense with such assumptions comes at the price
of an additional, non-drifting tuning parameter. In Section 4, we explain why this additional
parameter is needed and provide a heuristic for choosing it.

Going back to AS, our method can be directly compared to projection of their confidence
region if one uses comparable tuning parameters. By construction, our confidence intervals
are (weakly) shorter in any finite sample. They are asymptotically strictly shorter whenever
at least one of the binding constraints is not locally orthogonal to the direction of projection.

Other related papers that explicitly consider inference on projections include Andrews,
Berry, and Jia (2004), Beresteanu and Molinari (2008), Bontemps, Magnac, and Maurin
(2012), Chen, Tamer, and Torgovitsky (2011), Kaido (2012), Kitagawa (2012), Kline and
Tamer (2015) and Wan (2013). However, some are Bayesian, as opposed to our frequentist
approach, and none of them establish uniform validity of confidence sets.

Structure of the paper. Section 2 sets up notation and describes our approach in detail,
including computational implementation. Section 3 lays out our assumptions and presents
our main theoretical results, namely uniform validity and a formal comparison to projection
of the AS confidence region. Section 4 discusses the challenges posed by the local geometry
of O for uniform inference and why we resolve them. In doing so, it further elucidates the
relation between our method and the existing literature. Section 5 reports the results of
Monte Carlo simulations. Section 6 offers concluding remarks and discusses a number of

extensions that are of interest in applications. All proofs are collected in the Appendix.
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2 Detailed Explanation of the Method

2.1 Setup and Definition of CI,

We start by introducing some basic notation. Let X; € X C R be a random vector
with distribution P, let © C R? denote the parameter space, and let m; : X x0 = R
for 7 =1,...,J1 + Jo denote measurable functions characterizing the model, known up to
parameter vector 8 € ©. The true parameter value 6 is assumed to satisfy the moment

inequality and equality restrictions:

EP[m](Xlae)] <0, .] =1, aJla
Ep[m](Xl,G)] =0,5=J1+1,---,J1 + Jo. (21)

The identification region ©1(P) is the set of parameter values in © that satisfy these moment
restrictions. In what follows, we simply write ©; whenever its dependence on P is obvious.
For a random sample {X;,i = 1,---,n} of observations drawn from P, we let m, ;(0) =
n~! S imi(X;,0),5 =1,---,Ji + Jo denote the sample moments. Also, the population
moment conditions have standard deviations op; with estimators (e.g., sample analogs) &y, ;.

A key tool for our inference procedure is the support function of a set. We denote the unit
sphere in R? by S~ = {p € R?: ||p|| = 1}, an inner product between two vectors z,y € R?

by z’y, and use the following standard definition of support function and support set:

DEFINITION 2.1: Given a closed set A C R?, its support function is
s(p, A) = sup{p'a, a € A}, p e ST°1,
and its support set s
H(p,A)={aeR?:pa=s(p,A)}NA, pesit

It is useful to think of p’a as a projection of a € R to a one-dimensional subspace spanned
by the direction p. For example, when p is a vector whose j-th coordinate is 1 and other
coordinates are 0s, p’'a = a; is the projection of a to the j-th coordinate. The support function
of a set A gives the supremum of the projections of points belonging to this set.

The support function of the set C,(¢,) in equation (1.2) is, then, the optimal value of the

following nonlinear program (NLP):

s(p,Cn(e,)) = sup p'o

0cO
s.t. /g (0)/6n;(0) < én(8), j=1,--,J, (2.2)
where J = J; 4+ 2J3 and we define the last Jo moments as my, j, 4+ 1,4%(0) = —m.j,4+%(0) for

[6]



k=1,---,Jo. That is, we split moment equality constraints into two opposing inequality
constraints relaxed by ¢é,(#) and impose them in addition to the first J; inequalities relaxed
by the same amount. For a simple analogy, consider the point identified model defined by the
single moment equality Ep(m1(X;,0)) = Ep(X;) — 60 = 0, where 6 is a scalar. In this case,
Cn(én) = X £ é,0,/+v/n. The upper endpoint of the confidence interval can be written as
supg {p'0 st. —é, < /n(X —0)/d, < é,}, with p = 1, and similarly for the lower endpoint.

Define the asymptotic size of the confidence interval by

liminf inf inf P(p' € CI,,), 2.
Wt ol 0 € CI) 23

with P a class of distributions that we specify below. Our two-sided confidence interval is

Cln = [=5(=p,Cn(Cn)), s(p; Cn(én))], (2.4)

and our goal is to calibrate ¢, so that (2.3) is at least equal to a prespecified level while
projection conservatism is anticipated. Unlike the simple adjustment of the confidence level
for the Wald ellipsoid proposed in the introduction, however, the calculation of such a critical
level in the moment (in)equalities setting is nontrivial, and it requires a careful analysis of
the local behavior of the moment restrictions at each point in the identification region. This
is because calibration of ¢, (#) depends on (i) the asymptotic behavior of the sample moments
entering the inequality restrictions, which can change discontinuously depending on whether
they bind at 6 or not; and (ii) the local geometry of the identification region at 6. Here, by
local geometry, we mean the shape of the constraint set formed by the moment restrictions
and its relation to the level set of the objective function p’f. These features can be quite
different at different points in ©(P), which in turn makes uniform inference for the projection
challenging. In particular, the second issue does not arise if one only considers inference for
the entire parameter vector, and hence this new challenge requires a new methodology. The
core innovation of this paper is to provide a novel and computationally attractive procedure
to construct a critical level that overcomes these challenges.
To build intuition, fix (0, P) s.t. § € ©(P), P € P. The projection of 6 is covered if

—8(=p,Cn(én)) < p'o< s(p,Cn(cn))

- infy p'v < Jp < supy p'v
stge®, Vi <o) vif =P snveo, il <o 9),v)

on,5(9) on,5(9)

ianp’/\ <0
= =
St E /(O —0), YamnilNVn) 6 g/ /m) Wi T

supy p'A (2.5)
stA e /n(O—0), % < én(04 N/ V/n), V) '

[7]



where the second equivalence follows from rewriting the problem which maximizes p’t with
respect to 9 localized as ¥ = 6 + \/y/n by another problem which maximizes the same objec-
tive function with respect to the localization parameter A. One could then control asymptotic
size by finding ¢, such that 0 asymptotically lies within the optimal values of the NLPs in
(2.5) with probability 1 — «.

To reduce the computational cost of calibrating ¢,,, we approximate the probability of the
event in equation (2.5) by taking a linear expansion in A of the constraint set. In particular,
for the j-th constraint, adding and subtracting Ep[m;(X;, 0+ A/\/n)] yields

Vi (0 + A/ v/n)
(0 +A/v/n)
_ o (mng(0+ A/ ) = Ep[m;(Xi, 0 + A/Vyn)]) | —Eplm;(Xi,0 + A/v/n)]
= n g 0+ M) e B A)
={Gn;(0 + X/Vn) + Dpi(0)A + V/ny1,p,(0) (1 + 1n,5(0n)), (2.6)

where Gy, j(-) = /n(mn ;(-)—Ep[m;j(Xi,-)])/op,(-) is a normalized empirical process indexed
by 8 € ©, Dp;(-) = Vo{Ep[m;(Xi,-)]/op;(-)} is the gradient of the normalized moment (a
1 x d vector), v1,p;(-) = Ep[m;(X;,-)]/op;(-) is the studentized population moment, and
Mn,j(-) = op;(-)/0n,j(-) — 1. The second equality follows from the mean value theorem, where
6 represents a mean value that lies componentwise between 6 and 6 + \/{/n.

Under suitable regularity conditions set forth in Section 3.1 (which include differentiability
of Ep[m;(X;,0)]/op;(0) in 0 for each j), we show that the probability that 0 asymptotically
lies within the optimal values of the NLPs in equation (2.5) is approximated by the prob-
ability that 0 asymptotically lies within the optimal values of a program linear in A. The
constraint set of this linear program is given by the sum of (i) an empirical process Gp;(6)
evaluated at 6 (that we can approximate using the bootstrap) (ii) a rescaled gradient times
A, Dp (@)X (that we can uniformly consistently estimate on compact sets), and (iii) the pa-
rameter v pj(f) that measures the extent to which each moment inequality is binding and
that we can conservatively estimate using insights from AS. This suggests a computationally
attractive bootstrap procedure based on linear programs. We further show that introduc-
ing an additional linear constraint allows us to simply check feasibility of a linear program,
without having to compute optimal values.

Our use of linearization to obtain a first-order approximation to the statistic of interest
can be related to standard techniques in the analysis of nonlinear models. In our setting, the
object of interest is the support function of the relaxed nonlinear constraint set. Calculating
this support function subject to the moment (in)equality constraints is similar to calculating
a nonlinear GMM estimator in the sense that both search for a particular parameter value
which “solves” a system of sample moment restrictions. The difference is that we search

for a parameter value satisfying suitably relaxed moment (in)equalities whose projection is
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maximal, whereas GMM searches for a parameter value that minimizes the norm of sample
moments, or necessarily a value that solves its first-order conditions. Hence, the solution
concepts are different. However, the methodology for obtaining approximations is common.
Recall that one may obtain an influence function of the GMM estimator by linearizing the
moment restrictions in the first-order conditions around the true parameter value and by
solving for the estimator. In analogy to this example, calculating the optimal value of the
linear program discussed above can be interpreted as applying a particular solution concept
(the maximum value of the linear projections) to a system of moment (in)equality constraints

linearized around the parameter value of interest.

2.2 Computation of Critical Level

For a given 0 € O, we calibrate ¢,(6) through a bootstrap procedure that iterates over linear

programs (LP). Define
Ab(O,p,c) = {N€pB G (0)+ Duj (0N + 0j(&nj(0) <c, j=1,...,0}, (2.7)

where Gfl’j(-) =n 230 (my(X2, ) — M ;(-))/6n;(-) is a normalized bootstrap empirical
process indexed by 0 € 6% Dnj() is a consistent estimator of Dp;(-), p > 0 is a constant
chosen by the researcher (see Section 4 for suggestions on how to choose it), B = {z € R?:

|zj| < 1,V4} is a unit box in R%, and fn,j is defined by

H;l\/ﬁmnd‘(@)/é’n,j(e) j=1,.. N
0 G=J 41,

£n;(0) = (2.8)

where K, is a user-specified thresholding sequence such that x,, — oo, and ¢ : R[]ioo] — R[ltoo]
is one of the generalized moment selection (GMS) functions proposed by AS, and where

Rt = RU{#00}. A common choice is given componentwise by

0 if >-1
pj(x) = _ (2.9)
-0 if z < —1.

Restrictions on ¢ and the rate at which x,, diverges are imposed in Assumption 3.2.

REMARK 2.1: For concreteness, in (2.9) we write out the “hard thresholding” GMS func-
tion; we also remark that this function simplifies computation as it completely removes non-

local-to-binding constraints. Under Assumption 3.3 below, our results apply to all but one

8Bugni, Canay, and Shi (2014) propose a different approximation to the stochastic process Gp ;, namely
nTV2S [(my (X, ) = 1n,5 (+) /G, ()]s with {xi ~ N(0,1)}7—; i.i.d. This approximation is equally valid in
our approach, and can be computationally faster as it avoids repeated evaluation of m; (Xf’, -) across bootstrap
replications.



of the GMS functions in AS, see Lemma B.3.° Under Assumption 3.3’, our method requires
the use of hard thresholding GMS.

Heuristically, the random set A% (6, p,c) in (2.7) is a local (to 6), linearized bootstrap
approximation to the random constraint set in (2.5). To see this, note first that the boot-
strapped empirical process and the estimator of the gradient approximate the first two terms
in the constraint in (2.5). Next, for 6 € ©;, the GMS function conservatively approximates
the local slackness parameter \/nyi p;(#). This is needed because \/ny1 pj(#) cannot be con-
sistently estimated due to its scaling. GMS resolves this by shrinking estimated intercepts
toward zero, thereby tightening constraints and hence increasing ¢,(6). As with other uses
of GMS, the resulting conservative distortion vanishes pointwise but not uniformly. Finally,
restricting A to the “p-box” pB? has a strong regularizing effect: It ensures uniform validity
in challenging situations, including several that are assumed away in most of the literature.
We discuss this point in detail in Section 4.

The critical level ¢,(0) to be used in (2.2) is the smallest value of ¢ that makes the

bootstrap probability of the event

in PASO<  max  pA 2.10
)‘eArgzl(lélaﬁvc) pA="= )\GI{I”;(;@C) P ( )

at least 1 — . Furthermore, Lemma C.1 in the Appendix establishes that

min = pPA<0<  max P <= AL(0,p,¢) N {p') =0} #0.
AGA%(G,p,C)p - AGA%(G,p,c)p nf:p:0) NP 7
The intuition for this is simple: A% (6, p, c) is a polyhedron, therefore it contains some A\ with
p’A > 0 but also some X with p’A < 0 if and only if it contains some X with p’A = 0. Our

bootstrap critical level is, therefore, defined as
én(0) = inf{c € Ry : P*(AL(0,p,c) N {p'A =0} #0) >1—a}, (2.11)

where P* denotes the probability distribution induced by the bootstrap sampling process.
For a given 6 € O, coverage increases in ¢, and so ¢,(#) can be quickly computed through a
bisection algorithm. To do so, let ¢,(#) be an upper bound on ¢é,(6). For example, the asymp-
totic Bonferroni bound ¢,(0) = ®~1(1 — «a/J) is trivial to compute and would be too small
only in very contrived cases which the algorithm would furthermore detect. Alternatively, in
view of Theorem 3.2 below, the critical value proposed by AS is a valid upper bound in finite
sample and typically much smaller, though harder to compute. By construction, ¢é,(6) > 0.

Hence, one can quickly find é,(0) by initially guessing ¢,(0)/2, checking coverage, and then

9These are p* —p* in AS, all of which depend on x;'/nimun, ;(0)/6n ;(0). We do not consider GMS function
¢° in AS, which depends also on the covariance matrix of the moment functions.
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moving up or down by &,(#)/2¢*! in the t’th step of the algorithm. More formally, define

do(c) = LA (0, p,c) N {p'A = 0} # 0), (2.12)

so that the bootstrap probability to be calibrated is P*(¢3(c) = 1). We propose the following
algorithm:

Step 0
Set Tol equal to a chosen tolerance value or fix the number of iterations T.
Initialize C'(0) =
Initialize t = 1.
Initialize ¢ = ¢,(0)/2.
Initialize ; (&, () =0, j=1,...,J.
Compute ¢;(€,;(6)), j=1,. J1.
Compute Dp,,(6).
Compute vaj(Q) forb=1,...,B.
Compute ¢y(c) for b=1,..., B.

Step 1
Compute C(t) =n~! Zle Up(c).

Step 2
IfCt)>1—a,set cc— Z’;Eﬁ) and recompute 1 (c) for each b such that ¢(c) =1
IfCt)<1l—a,setcc+ (_;’éfl) and recompute ¢(c) for each b such that ¢(c) = 0.

Step 3
If |C(t) — C(t —1)] > Tol, set t =t + 1 and return to Step 1.
If|C(t) —C(t—1)| <Tolort=T,set () = c and exit.

Execution of this is further simplified by the following observation: W..o.g. let p =
(1,0,...,0), implying that p’A = 0 if and only if A\ = 0. Evaluation of ,(c) thus entails
determining whether a constraint set comprised of J+2d—1 linear inequalities in d—1 variables
is feasible. This can be accomplished efficiently employing commonly used software.!? Also,
note that the B bootstrap draws remain fixed across iterations, and we know that for any
given bootstrap sample, coverage will obtain if and only if ¢ is above some threshold. Hence,
one needs to recompute ¥,(c) in Step 2 only for a subset of bootstrap draws that decreases

in t. Our algorithm reflects this insight.

10Examples of high-speed solvers for linear programs include CVXGEN, available from http://cvzgen. com,
and Gurobi, available from http://www.gurobi.com
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2.3 Computation of Outer Maximization Problem

The constrained optimization problem in (2.2) has nonlinear constraints involving a compo-
nent é,(6) which in general is an unknown function of §. Moreover, in all methods, including
ours and AS, the gradients of constraints are not available in closed form. When the dimen-
sion of the parameter is large, directly solving optimization problems with such a component
can be relatively expensive even if evaluating ¢é,(6) at each 6 is computationally cheap. This
is because commonly used optimization algorithms repeatedly evaluate the constraints and
their (numerical) gradients.

To mitigate the computational cost, we suggest an algorithm that is a contribution to the
moment (in)equalities literature in its own right and should also be helpful for implementing
other approaches. The algorithm consists of three steps called E, A, and M below, and is
based on the response surface method used in the optimization literature (see e.g. Jones,
2001; Jones, Schonlau, and Welch, 1998, and references therein). In what follows, we assume

that computing the sample moments is less expensive than computing ¢, (0).

E-step: (Evaluation) Evaluate ¢,(6) for £ =1,--- L. Set Y =¢,(0©), £ =1,--- L.
We suggest setting L = 20d+1, so L grows linearly with the dimensionality of parameter

space.

A-step: (Approximation) Approximate 6 — ¢&,(0) by a flexible auxiliary model. For

example, a Gaussian-process regression model (or kriging) is

YO = 409y, £=1,-- L, (2.13)

where €(+) is a mean-zero Gaussian process indexed by @ with a constant variance o2

whose correlation functional is Corr(e(6), €(6')) = exp(—4d(6,6")) for some distance mea-
sure 4, e.g. §(6,0") = Zgzl Br|Ok — 057, B > 0, € [1,2]. The unknown parameters
(11, 0%) can be estimated by running a GLS regression of X = (TM,... T@) on a
constant with the given correlation matrix. The unknown parameters in the correlation
matrix can be estimated by a (concentrated) MLE. The (best linear) predictor of the

critical value and its gradient at an arbitrary point are then given by

r(0)R7(Y — 1), (2.14)
Q)R (Y — ji1), (2.15)

where r(f) is a vector whose /-th component is Corr(e(6),e(#¥))) as given above with
estimated parameters, Q(0) = Vyr(0)’, and R is an L-by-L matrix whose (¢,¢') entry
is Corr(e(01)), e(0¢))) with estimated parameters. This approximation (or surrogate)
model has the property that its predictor satisfies éﬁ(Q(Z)) = én(ew)),ﬂ =1,---,L.

Hence, it provides an analytical interpolation to the evaluated critical values together
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with an analytical gradient.!

M-step: (Maximization or Minimization): Solve the optimization problem

. /9
max / min p
s.t. /i j(0)/6,5(0) < EX0), (2.16)

while using p and /nD,, j(0) — Veé(0),7 = 1,---,J as the gradients of the objec-
tive function and constraint functions respectively. This step can be implemented by

standard nonlinear optimization solvers (e.g. Matlab’s fmincon or KNITRO).

Once the optimal value from the M-step is obtained, draw L; additional points in a subset of
the parameter space that contains parameter values that nearly attain the maximum. Add
them to the previously used evaluation points and update the total number of evaluation
points as L + L;. Iterate the E-A-M-steps until the maximized value converges.'? Report
the maximum and minimum values of the optimization problem as the endpoints of the

confidence interval.

REMARK 2.2: The advantages of the proposed algorithm are twofold. First, we control
the number of points at which we evaluate ¢é,(-). Since the evaluation of the critical value is
the relatively expensive step, controlling the number of evaluations is important. One should
also note that this step can easily be parallelized. Second, the proposed algorithm makes
the maximization step computationally cheap by providing constraints and their gradients
in closed form. It is well known that gradient-based algorithms solve optimization problems
more efficiently than those that do not use gradients. The price to pay is the additional

approximation step. According to our numerical exercises, this additional step is not costly.

3 Asymptotic Validity of Inference

In this section, we justify our procedure by establishing uniform (over an interesting class of
DGPs) asymptotic validity. Subsection 3.1 states and motivates our assumptions; subsection
3.2 states and discusses our main results.

3.1 Assumptions

Our first assumption is on the parameter space and the criterion function. Below, ¢ and M

are used to denote generic constants which may be different in different appearances.

ASSUMPTION 3.1: © C R? is compact and conver with a nonempty interior.

1See details in Jones, Schonlau, and Welch (1998). We use the DACE Matlab kriging toolbox (http:
//www2.imm.dtu.dk/projects/dace/) for this step in the Monte Carlo experiments based on the entry game.
120ne can make the subset to which one adds evaluation points smaller as one iterates.
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Compactness is a standard assumption on © for extremum estimation. In addition, we
require convexity as we use mean value expansions of Ep[m;(X;, )] in 0 as shown in equation
(2.6).

The next assumption defines our moment (in)equalities model. It is based on AS, and

most of it is standard in the literature.'3

ASSUMPTION 3.2: The function ¢; is continuous at all x > 0 and ¢;(0) = 0; Kk, — 00

1,1/2

and K, — 00. The model P for P satisfies the following conditions:

(i) Ep[mj(Xi,e)] <0,j5=1,...,J1 and Ep[mj(Xi,Q)] =0,5j=J0+1,---,J1+ Jy for
some 0 € O;

(ii) {X;,i > 1} are i.i.d. under P;
20, 0}237].(9) € (0,00) for j=1,---,J for all § € O;

(i) For some & > 0 and M € (0,00) and for all j, Ep[supgee |m;j(X;,0)/op;(0)>T°] < M.

In what follows, for any sequence of random variables {X,,} and a positive sequence a,,
we write X,, = op(ay) if for any €, > 0, there is N € N such that suppcp P(| Xy /an| > €) <
n,Vn > N. We write X,, = Op(a,) if for any n > 0, there is a M € Ry and N € N such
that suppep P(|Xn/an| > M) < n,¥n > N. Given a square matrix A, we write eig(A) for
its smallest eigenvalue.

Next, and unlike some other papers in the literature, we restrict the correlation matrix of
the moment conditions. Because our method is based on replacing a nonlinear program with
a linear one, it is intuitive that a Karush-Kuhn-Tucker condition (with uniformly bounded
Lagrange multipliers) is needed. Imposing this condition directly, however, would yield an
assumption that can be very hard to verify in a given application — as constraint qualification

conditions often are.!*

On the other hand, we are able to show that restrictions on the
correlation matrix of the moments, together with imposition of the p-box constraints, yield
such constraint qualification conditions on the set A (0, p, c) defined in (2.7) with arbitrarily
high probability for n large enough. We provide additional details in Section 4.3, see in
particular footnote 27 for an illustration. Here we begin with an easy sufficient condition,
and then discuss an alternative condition that holds for some cases in which the first one

does not. For a reader interested in alternative assumptions, we note that Assumption 3.3

13The requirement that ¢; is continuous for z > 0 is restrictive only for GMS function ©® in AS. We also
remark that one specific result, namely Lemma C.2 below, requires ¢;(z) < 0 for all 2. To keep the treatment
general, we do not impose this restriction throughout, but we only recommend functions ¢; with this feature
anyway. It is easy to see that for any ¢; that can take strictly positive values, substituting min{¢;(z),0}
attains the same asymptotic size but generates Cls that are weakly shorter for all and strictly shorter for some
sample realizations.

1 Restrictions of this type are imposed both in PPHI and Chernozhukov, Hong, and Tamer (2007), as we
explain in Section 4
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(or Assumption 3.3" below) is used exclusively to obtain the conclusions of Lemma B.6 and

Lemma B.7, hence any alternative assumption that delivers such results can be used.
ASSUMPTION 3.3: The model P for P satisfies the following additional conditions:

(i) There is a positive constant € such that Or(P) C ©7¢ = {# € © : d(§,R%\ ©) > ¢},

where d denotes Fuclidean point-set distance.
(it) For all§ € ©, n,;(0) =0op;(0)/6n,;(0) —1 = o0p(kn/v/n).

(iii) Let m(X;,0) = (m1(X4,0),--- ,my,15,(Xi,0)). Let Qp(8) = Corrp(im(X;,0)). Then
infgco, (p) cig(Qp(0)) > w for some constant w > 0.

Assumption 3.3 (i) requires that the identified set is in an e-contraction of the parameter
space. This implies that the behavior of the support function of C,(¢é,) is determined only by
the moment restrictions asymptotically under any P € P. This assumption could be dropped
if the parameter space can be defined through a finite list of smooth nonstochastic inequality
constraints, e.g. if © = [0, 1]%.

Assumption 3.3 (ii) is a weak regularity condition requiring that each moment’s standard
deviation can be estimated at a rate faster than k,,/y/n.

The crucial part of Assumption 3.3 is (iii), which requires that the correlation matrix
of the sample moments has eigenvalues uniformly bounded from below. While it holds in
many applications of interest, we are aware of two examples in which it may fail. One are
missing data scenarios when the unconditional or some conditional proportion of missing data
vanishes. This is easiest to see for the scalar mean with missing data, where sample analogs of
upper and lower bound approach perfect correlation as the population probability of missing
data vanishes. The observation also applies to higher dimensional examples, e.g. best linear
prediction with missing outcome data. The other example is the Ciliberto and Tamer (2009)
entry game model when the solution concept is pure strategy Nash equilibrium, as illustrated

in the following example.

ExAaMPLE 3.1 (Two player entry game): Consider the simple case of a static two player
entry game of complete information with pure strategy Nash equilibrium as solution concept.
Suppose each player k = 1,2 in market ¢ = 1,...,n can choose to enter (X;; = 1) or to stay
out of the market (X;;, = 0). Let €;1, ;2 be two random variables representing unobservable
payoff shifters, and for simplicity assume they are distributed i.i.d. U(0,1). Let players’
payoffs be

i = Xip (0 Xiz—k +eix), k=12,

with € © = [0, 1]? the parameter vector of interest. Each player enters the game if and only
if ugp > 0. This game admits multiple equilibria, and one can show that ©;(P) is defined by
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the following (in)equalities:

Ep(m1(X;,0))
Ep(mQ(Xi, 9))
EP<7TL3(XZ‘ 0))

Ep[Xi1(1 — Xj2) — 02] <0,
Epl62(1 —601) — Xi1(1 — X42)] <0,
Ep[XilXiQ — (1 — 01)(1 — 92)] = 0.

Then moment functions 1 and 2 violate Assumption 3.3 (iii) because they are perfectly

correlated.!®

These examples and more complex ones are covered by our next assumption. If it is

invoked, our procedure requires the use of the specific GMS function in equation (2.9).

Assumption 3.3'. The function ¢ used to obtain ¢,(0) in (2.11) is given in equation (2.9);
kin = 0o(n'/*). The model P for P satisfies Assumption 3.3(i)-(ii), and in addition:

(iii-1) The first 2J11 moment functions, 0 < 2J11 < Ji, are related as follows:
mjtg, (X, 0) = —m;(X5,0) —t;(X5,0), 5=1,...,Jn
where for each 0 € © and j = 1,...,J11, t; : X x © = R is a measurable function
such that 0 < t;(X,0) <M a.s.,j=1,...,J11.

(i13-2) Let m(X;,8) be a Jii-vector that selects exactly one of each pair of moment functions
{mj(Xiv 0)’ M+ Jia (Xia 9)}7 J=1..J11. LetTNrL(X@', ‘9) = (m(le 9)7 m2J11+1(Xiv 9)7 ttty
my,+7,(X;,0)). Denote Qp(0) = Corrp(m(X;,0)). Then infgco, (p) cig(Qp(0) > w

for some constant w > 0, uniformly over all 2711 possible vectors m(X;, ).

(iii-3) infgeco,(pyop;(0) >a forj=1,...,J11.

(iii-4) For 6 € ©, limy_00 P (mﬂ'“w"(@) < _mw(@)) 1

Gty (0) —  Gn,;(0)

In words, Assumption 3.3" allows for (drifting to) perfect correlation among moment
inequalities that cannot cross. Again, the scalar mean with missing data is perhaps the
easiest example. In the generalization of this example in Imbens and Manski (2004) and
Stoye (2009), parts (iii-1)-(iii-2) of Assumption 3.3" are satisfied by construction, part (iii-3)
is directly assumed, and part (iii-4) can be verified to hold.

Regarding Ciliberto and Tamer (2009), inspection of Example 3.1 reveals that part (iii-1)
of the assumption is satisfied with ¢;(-,0) = ¢;() for each j = 1,...,J; in more general in-
stances of the model, this follows because any pair of moment conditions that involve the same
outcome of the game differ by model predicted probabilities of regions of multiplicity. Part (iii-
2) of the assumption holds in the example provided that |Corr(X;1(1— Xi2), Xij1Xi2)| < 1—¢

for some € > 0; in more general instances, it follows if the multinomial distribution of outcomes

'50One can show, however, that under a different solution concept, e.g. rationality of level 1, the resulting
moment inequalities would satisfy Assumption 3.3 (iii).
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of the game (reduced by one element) has a correlation matrix with eigenvalues uniformly
bounded away from zero.! To see that part (iii-3) of the assumption also holds, note that
Assumption 3.2 (iv) yields that P(X;; = 1, Xj2 = 0) is uniformly bounded away from 0 and 1,
thereby implying that o1 > ¢ > 0 and similarly for o; the same holds for P(X;; = 1, X;o = 1)
and so g3 > ¢ > 0. An analogous reasoning holds in more general instances of the Ciliberto
and Tamer model. Finally, part (iii-4) of the assumption requires that the studentized sam-
ple moments are ordered with probability approaching one. This condition is immediately
implied by condition (iii-1) in any model in which for each j = 1,...,J; + Jy the function
m;(X;,0) can be written as the sum of a function that depends on X; only, and a function
that depends on 6 only. General instances of the Ciliberto and Tamer (2009) model (and of
course Example 3.1) belong to this class of models.

In what follows, we refer to a pair of inequality constraints indexed by {j,7 + J11} as
described in Assumption 3.3" as “paired inequalities”. The presence of paired inequalities
requires that we modify our bootstrap procedure. All modifications are carried out within
Step 0 of the Algorithm in Section 2.2. If

Pj (émj (‘9>) =0=y; (én,j-i-Jn (9))7

WitAh @; as defined in (2.9), we replace G%}Hhhn(e) with —GZJ(Q), and DP7j+J117n<9) with
—D,, j(0), so that inequality

GII)D,j+J11,n(9) + Dpjtmn(@X <c
is replaced with
~Gb (0) — Dy j(O)N < ¢

in equation (2.7). In words, when hard threshold GMS indicates that both paired inequalities
bind, we pick one of them, treat it as an equality, and drop the other one. This tightens the
stochastic program because by Assumption 3.3/, each inequality if interpreted as equality
implies the other one. The rest of the procedure is unchanged.

Finally, we informally remark that if hard thresholding, i.e. expression (2.9), is used for
GMS, then two inequalities that are far from each other in the sense that GMS only picks at
most one of them at any given 6 may be arbitrarily correlated. This condition could be used

to further weaken Assumption 3.3 or 3.3' and is easy to pre-test for; we omit an elaboration.

We next lay out regularity conditions on the gradients of the moments.

ASSUMPTION 3.4: The model P for P satisfies the following additional conditions:

Tn the Ciliberto and Tamer (2009) framework there is a single vector of moment functions (X, 6) to
consider instead of 2711, If the game admits K possible outcome, the vector m(X;,#) includes one moment
function for each of K — 1 possible outcomes of the game.
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(i) For each j, there exist Dp;(-) = Vo{Ep[m;(X,-)]/op;(-)} and its estimator Do j(-)
such that supgee ][Dn](e) — Dpi(0)|| = op(1). Further, there exists M > 0 such that
|Dp;(0)|| < M forall € ©r and j=1,---,J;

(it) There exists M > 0 such that max;—i,.. s supygeg |1 Dp;(6) — Dp;(0)| < M6 — 6.

Assumption 3.4 requires that the normalized population moment is differentiable, that
its derivative is Lipschitz continuous, and that this derivative can be consistently estimated
uniformly in 8 and P. We require these conditions because we use a linear expansion of
the population moments to obtain a first-order approximation to the support function of C,
and our bootstrap procedure requires an estimator of the population gradient. We do not
assume that a criterion function that aggregates moment violations (e.g., T,,(6) in equation
(3.7) below) is bounded from below by a polynomial function of 6 outside a neighborhood
of the identification region. This is assumed in related work (see e.g. Chernozhukov, Hong,
and Tamer, 2007) but fails in relevant examples, e.g. when two moment inequalities form an
extremely acute corner of the identified set. We return to such examples in Section 4.

A final set of assumptions is on the normalized empirical process. For this, define the
variance semimetric op by

op(0,8) = H{Varp (05} 0)m; (X, 6) — o5k (B)m; (X, 6)) /)

J
j .

- (3.1)

For each 0,0 € © and P, let Qp(6,60) denote a J-by-J matrix whose (j, k)-th element is the
covariance between m;(X;,0)/op;(0) and my(X;,0))/ops(0) under P.

ASSUMPTION 3.5: (i) For every P € P, and j=1,---,J, {0;;(9)7@(-,9) X - R,0 €
©} is a measurable class of functions; (ii) The empirical process Gy with j-th component

Gn,; 1s asymptotically op-equicontinuous uniformly in P € P. That is, for any € > 0,

lim lim sup sup P* sup |G (8) — Gn(0)]| > € | = 0; (3.2)
610 n—oo PepP op(0,0)<5

(i1i) Qp satisfies
lim sup sup [|Qp(61,01) — Qp(6a,602)] = 0. (3.3)

[1(61,61)—(82,02)|| <5 PEP

Under this assumption, the class of normalized moment functions is uniformly Donsker
(Bugni, Canay, and Shi, 2015). This allows us to show that the first-order linear approxi-

mation to s(p,Cn(é,)) is valid and further establish the validity of our bootstrap procedure.



3.2 Theoretical Results

Result 1: Uniform asymptotic validity.
The following theorem establishes the asymptotic validity of the proposed confidence
interval CI,, = [—s(—p,Cn(¢n)), s(p,Cn(én))], where ¢, was defined in equation (2.11).

THEOREM 3.1: Suppose Assumptions 3.1, 3.2, 3.3 or 3.8, 3.4, and 3.5 hold. Let 0 <
a < 1/2. Then,

liminf inf inf Pp'0cCIL,) >1-a. 3.4

n—oo PEP 0cO;(P) (p n)Z (34)

Some brief remarks on proof strategy are as follows. Using equations (2.5) and (2.6)
and recalling that adding constraints can only make the coverage probability lower, we show
that asymptotic size control is ensured if we choose the function ¢ to (asymptotically and

uniformly over P and ©r(P)) guarantee that

P (AYE(0,p,c(0) N {PA=0} #£0) > 1 - a, (3.5)
where
AYE(0,p,c(0)) = {)\ € pB: (Gyj (0 + A/v/n) + Dpj(0;)A + vVryn,p(0)) (1 + m,5(0)) < 0(9)}

and éj lies component-wise between 6 and 6 + A/y/n. Our bootstrap procedure is based on

the feasible polyhedral set
NGO, p,e0(0)) = {X € pB: Gl j(0) + Dug (O + 5603 (6)) < (0}
yielding as a bootstrap analog of equation (3.5),
P (Ag(e, P en(0)) N {p'A = 0} # @) >1—a (3.6)

We do not establish that our bootstrap based critical level ¢, (6) consistently estimates an
oracle level ¢(f). Indeed, we allow that ¢,(f) might not (uniformly) converge anywhere.
This is why, unlike the related literature, we avoid assumptions on limit distributions of test
statistics. What we do show is that, for n large enough, the probability in (3.5) weakly exceeds
(up to op(1)) the one in (3.6) uniformly over arguments ¢ and therefore, in particular, for
én(0). Tt is also worth noting that the proof contains a novel (to the best of our knowledge)
use of a fixed point theorem in the moment (in)equalities literature. This occurs in our
argument that, if the linear program A® is feasible, then the nonlinear program AN’ is very
likely to be feasible as well. In the presence of equality constraints, showing this requires to

show that a certain nonlinear system of equations can be solved, which is where the fixed
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point theorem comes in.

REMARK 3.1: By replacing the constraint p’A = 0 with p’A > 0 in calibrating ¢é,:
6al0) = inflc € Ry : P(AL(0, p.c) M {PA > 0} £ 0) > 1 — o,

one obtains a critical level that yields a valid one-sided confidence interval (—oo, s(p,Cp(é,))]
(or [=s(=p,Cn(én)),o0) if one uses p’A < 0 in the calibration of é,). This differentiates
our method from profiling methods and also from projection of AS, where the analogous

adaptation is not obvious.

Result 2: Improvement over projection of AS.

Our second set of results establish that for each n € N, C1,, is a subset of a confidence
interval obtained by projecting an AS confidence set.!” Moreover, we derive simple conditions
under which our confidence interval is a proper subset of the projection of AS’s confidence
set. Below we let é;?s denote the critical value obtained applying AS with criterion function

7,(0) = max { o ilinas(0)/o0s Ok, max | Vil 0)/60,0) ). 67

, max
Jj=L,,J1 j=Ji+1,, i+
and with the same choice as for é, of GMS function ¢ and tuning parameter x,. We also

note that for given function ¢, one can express C,(c) in (1.2) as
Cn(c) ={0 €O :T,(00) <c0)}.

THEOREM 3.2: Suppose Assumptions 3.1, 3.2, 3.3 or 3.8, 3.4, and 3.5 hold. Let 0 <
a < 1/2. Then for eachn € N

CI, € [~5(=p,Ca(e9)), s(p, CalE1))]. (3.8)

The result in Theorem 3.2 is due to the following fact. Recall that AS’s confidence region
calibrates its critical value so that, at each 6, the following event occurs with probability at

least 1 — a:

max {Ggﬁjw) + @j(én,j(e))} <e. (3.9)

G=1,...J

On the other hand, we determine ¢, using the event (2.10). If ¢ satisfies (3.9), it also

satisfies (2.10) because in that case A = 0 is in the feasibility set A% (6, A, ¢) defined in (2.7).'8
AS

2>, and hence our

Therefore, by construction, our critical level é, is weakly dominated by ¢
C1, is a subset of the projection of AS’s confidence region that uses the same statistic and

GMS function.

170f course, AS designed their confidence set to uniformly cover each vector in ©; with prespecified asymp-
totic probability, a different inferential problem than the one considered here.
BIndeed, & can be seen as the special case of &, where p was set to 0.
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A natural question is, then, whether there are conditions under which C1, is strictly
shorter than the projection of AS’s confidence region. Heuristically, this is the case with
probability approaching 1 when ¢, () is strictly less than ¢2°(6) at each 6 that is relevant
for projection. For this, restrict ¢() to satisfy ¢j(x) < 0 for all , fix § and consider the
pointwise limit of (3.9):

Gp;(0) +Cp;i(0) <c, j=1,---,J, (3.10)
where {Gp;(#),7 = 1,---,J} follows a multivariate normal distribution, and (p;(f) =
(—00)1(y/my1,p;(8) < 0) is the pointwise limit of ¢;(&, ;(f)) (with the convention that

(—00)0 = 0). Under mild regularity conditions, ¢2() then converges in probability to a

critical value ¢ = ¢49(0) such that (3.10) holds with probability 1 —a. Similarly, the limiting

event that corresponds to our problem (2.10) is
A, p,c)N{p’A=0} #0, (3.11)
where the limiting feasibility set A(, p, ¢) is given by
A9, p,c) ={\ € pB?: Gpj(0) + Dpi (0N +Cpi(0) < c,j=1,---,J}. (3.12)

Note that if the gradient Dp ;(6) is a scalar multiple of p, i.e. Dp;(0)/|/Dp;(8)| € {p, —p}
for all j such that (p;(#) = 0, the two problems are equivalent because (3.10) implies (3.11)
(again by arguing that A = 0 is in A(6,p,c)), and for the converse implication, whenever
(3.11) holds, there is A such that Gp;(0) + Dp;(0)\ + (p () < ¢ and p’A = 0. Since
Dp (@)X = 0 for all j such that (p;(#) = 0, one has Gp;(0) + (p;(0) < c for all j.'9 In
this special case, the limits of the two critical values coincide asymptotically, but any other
case is characterized by projection conservatism. Lemma C.2 in the Appendix formalizes this
insight. Specifically, for fixed 6, the limit of ¢,(0) is strictly less than the limit of ¢2%(6) if
and only if there is a constraint that binds or is violated at 6 and has a gradient that is not
a scalar multiple of p.?°

The parameter values that are relevant for the lengths of the confidence intervals are the
ones whose projections are in a neighborhood of the projection of the identified set. Therefore,
a leading case in which our confidence interval is strictly shorter than the projection of AS
asymptotically is that in which at any # (in that neighborhood of the projection of the
identified set) at least one local-to-binding or violated constraint has a gradient that is not

parallel to p. We illustrate this case with an example based on Manski and Tamer (2002).

The gradients of the non-binding moment inequalities do not matter here because Gp () + (p,;(0) < ¢
holds due to (p,;(8) = —oo for such constraints.

29The condition that all binding moment inequalities have gradient collinear with p is not as exotic as one
might think. An important case where it obtains is the “smooth maximum,” i.e. the support set is a point of
differentiability of the boundary of ©O;.

[21]



EXAMPLE 3.2 (Linear regression with an interval valued outcome): Consider a linear

regression model:
ElY|Z] =270, (3.13)

where Y is an unobserved outcome variable, which takes values in the interval [Y7, Y| with
probability one, and Y7, Yy are observed. The vector Z collects regressors taking values in
a finite set Sz = {21, -+, 2K}, K € N. We then obtain the following conditional moment

inequalities:
EP[YL’Z = zj} S 2,’39 S EP[YU’Z = Zj], j = 1, A ,K, (314)
which can be converted into unconditional moment inequalities with J; = 2K and

j—K U _ZJ_K}/g(Zj—K) J = + 1, ) 3

(3.15)

where g denotes the marginal distribution of Z, which is assumed known for simplicity.
Consider making inference for the value of the regression function evaluated at a counter-
factual value Z ¢ Sz. Then, the projection of interest is z’#. Note that the identified
set is a polyhedron whose gradients are given by Dp;(0) = —z;/0j,7 = 1,---,K and
Dp;(0) = zj_k/oj—Kk,j = K+ 1,--- ,2K. This and Z ¢ Sz imply that for any 6 not in
the interior of the identified set, there exists a binding or violated constraint whose gradient
is not a scalar multiple of p. Hence, for all such 6, our critical value is strictly smaller than
c29(0) asymptotically. In this case, our confidence interval becomes strictly shorter than
that of AS asymptotically. We also note that the same argument applies even if the marginal
distribution of Z is unknown. In such a setting, one needs to work with a sample constraint
of the form n=t >0 | Y, 1{Z; = z;}/n ' S0 1{Z; = 2;} — 2;0 (and similarly for the upper
bound). This change only alters the (co)variance of the Gaussian process in our limiting

approximation but does not affect any other term.

We conclude this section with a numerical illustration. Assume that p = (d_l/ 2 dY He
R? and that there are d binding moment inequalities whose gradients are known and corre-
spond to rows of the identity matrix. Assume furthermore that G is known to be exactly
d-dimensional multivariate standard Normal. (Thus, ©; is the negative quadrant. Its un-
boundedness from below is strictly for simplicity.) Also ignore the p-box; if our heuristic for
choosing p were followed, the influence of the p-box in this example would remain small as d
gTOwWS.

Under these simplifying assumptions (which can, of course, be thought of as asymptotic
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Table 3.1: Conservatism from projection in a one-sided testing problem as a function of d

d 1 2 3 4 5 6 7 8 9 10 100 o
n 1.64 1.16 095 0.82 0.74 0.67 062 0.58 055 0.52 0.16 0
és 1.64 1.95 212 223 232 239 244 249 253 257 328 oo
l—a* 95 77 57 40 27 .18 11 .07 .04 .03 107*® 0

approximations), it is easy to calculate in closed form that

én = dV207(1—a),
S = gl ((1—a)1/d).

Furthermore, for any a < 1/2, one can compute o* s.t. applying ¢, with target coverage
(1—a) yields the same confidence interval as using ¢2° with target coverage (1 —a*).2! Some
numerical values are provided in Table 3.1 (with a = 0.05).

So, to cover p'f in R0 with probability 95%, it suffices to project an AS-confidence region
of size 3%. The example is designed to make a point; our Monte Carlo analyses below
showcase less extreme cases. We note, however, that the core defining feature of the example
— namely, the identified set has a thick interior, and the support set is the intersection of d
moment inequalities — frequently occurs in practice, and all such examples will qualitatively

resemble this one as d grows large.

4 Local Geometry of ©;(P) and Uniform Inference

As we discussed in the introduction, the main alternative to our method is based on a profiled
test statistic as introduced in Romano and Shaikh (2008) and significantly advanced in BCS.
We now explain in more detail how the class of DGPs over which our procedure and theirs
are asymptotically uniformly valid are non-nested. We also compare our method with that
of PPHI, which is based on directly bootstrapping the support function of a sample analog
of the identified set.

As explained in Section 3.1, our method imposes Assumption 3.3 (or 3.3’), which is not
imposed by either BCS nor PPHI, and uses an additional (non-drifting) tuning parameter
p. From this, we reap several important benefits. We are able to establish validity of our
method even when the local geometry of the set ©;(P) poses challenges to uniform inference

as described below, and without imposing restrictions on the limit distribution of a test

2'Equivalently, (1 — o) is the probability that C,(¢4%) contains {0}, the true support set in direction p
which furthermore, in this example, minimizes coverage within ©;(P). The closed-form expression is 1 —a* =
®(d~Y2®7 (1 — @))% AS prove validity of their method only for o < 1/2, but this is not important for the

point made here.



statistic, e.g. that it is continuous at the quantile of interest.

In particular, we allow for an extreme point of O in direction of projection to be (i) a
point of differentiability of the boundary of ©y, (ii) a point on a flat face that is orthogonal to
the direction of projection, or (iii) a point on a flat face that is drifting-to-orthogonal to the
direction of projection. Case (iii) is excluded by Romano and Shaikh (2008) and BCS, and all
three cases are excluded by PPHI. As already discussed in the introduction, drifting-to-flat
faces occur, for example, in best linear prediction with interval outcome data and discrete
regressors. They may also occur when O7y is drifting to be lower dimensional in the direction
of projection, i.e. when the component of interest is drifting to being point identified. Our
method remains valid also when O locally exhibits corners with extremely acute angles,
meaning that the interior of ©; locally vanishes and that the joint linear approximation of
constraints is not a good approximation to the local geometry of ©;. This case is again
excluded by PPHI and also by Chernozhukov, Hong, and Tamer (2007).

We further illustrate these observations through a sequence of examples illustrating some

key challenges faced by the existing alternative methods and how our approach handles them.

4.1 A Simple Example to Set the Stage

We begin with a one-sided testing problem similar to the one explored in Table 3.1.

EXAMPLE 4.1: Let © = [~ K, K]? for some K > 0 and moment functions be given by
mi(z,0) = 2N (0; —1)% + 0y — 2 (4.1)
ma(x,0) = 3 (0; +1)2 4 0y — 2, (4.2)
where we assume X [ =1, 4 are i.i.d. random variables with mean , > 0 and variance

02. The parameter of interest is f2. So, we let p = (0,1)’.

The projection of 8 € O is maximized at a unique point §* = 0. For simplicity, consider
constructing a one-sided confidence interval CI,, = (—o0, s(p,Cpn(én))], where s(p,Cp(é,)) is
defined as in (2.2) with J; = 2 inequality restrictions with the moment functions in (4.1)-(4.2)
and no equality restrictions. Then, 0* represents the least favorable case for coverage by this
one-sided confidence interval.

Now consider the linear program

sup p'\
AER?
s.t. Gp(6%) + Dp(6°)\ + Vny1,pa(0%) <, (4.3)
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Figure 4.1: Moment inequalities (left) and linearized constraints (right)

where

o (VX ‘2>/f
Eall) = (f(X @ 4 X))V o) #4)

. _2Mx/\/§ax 1/\/50'30
Npal0) = (0 0)/. (4.6)

This program is infeasible in the sense that it uses unknown population objects, in particular,
the knowledge that both population moment inequalities bind at 0*, hence v1 p,(6*) = (0,0)’.
Though infeasible, it gives useful insights. Figure 4.1 shows the original nonlinear constraints
and linearized constraints around 6* perturbed by G,. The key idea of our procedure is to
find ¢,(0*) such that the optimal value of the perturbed linear program in (4.3) is greater
than or equal to 0 with probability 1 — «, and use it in the original nonlinear problem upon
projecting Cy,(-).

In Example 4.1, the value of the linear program in (4.3) has a closed form, namely
P’ Dp'(fe o — Gy) = V20,(c — W,,), where W, = (Gy,.1 + Gy 2)/2 has a limiting distribution
N(0,1/2) (under a fixed (6*, P)). Therefore, by setting &,(6*) to 1.16, the 95%-quantile of
N(0,1/2), one can ensure the optimal value in (4.3) is nonnegative with probability 95%
asymptotically.?? This infeasible critical value is the baseline of our method. In practice, the
researcher does not know whether a given 6 is on the boundary of the identification region
nor the population objects: the distribution of G, (0) and (Dp(#),v1,p,n(#)). Our bootstrap

*

22This argument is based on a pointwise asymptotics, which fixes (6%, P) and sends n to co. This is done
only for illustration purposes to obtain a specific value for é,(6*). Our proof does not use this argument. Note
that the critical value calculated under this pointwise asymptotics depends on the covariance matrix of G,,.
For example, if corr(Gn,1, Gn,2)=-0.9, it suffices to set ¢,(0*) to 0.37.
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procedure therefore replaces them with suitable estimators.

In this extremely well-behaved example and when ignoring the p-box constraint, one can
show that leading alternative approaches (BCS, PPHI) asymptotically agree with each other
and with ours. Indeed, the support function here equals p’6* and is estimated by p’ é, where
6* is the intersection of two constraints and 6 is its sample analog. Under assumptions
maintained throughout the literature, 6 is asymptotically normal. Thus, if one knew a priori
that this situation obtains, one could use a one-sided t-statistic based (bootstrap or plug-
in asymptotic) confidence interval in this special case. Indeed, all of the aforementioned
approaches asymptotically recover this interval. They can be thought of as generalizing it in
different directions.

A caveat to this is that adding the p-box constraints conservatively distorts our confidence
interval. Our proposal, explained later, for selecting p is designed to make the distortion small
in well-behaved cases, but it is a distortion nonetheless.?3

The similarity breaks down if the example is changed to an “overidentified” corner, e.g. a
corner in R? at which 3 constraints intersect. Note that GMS with hard thresholding makes
such scenarios generic in the sense that their realization in sample is not knife-edge. Simula-
tion of the support function, as advocated in PPHI, now leads to (potentially much) longer
confidence intervals than our method. For a drastic but simple example, consider the mini-
mum of two means in R: We want to estimate min{uy, u2} and observe two signals [fi1, fi1]’
that have a bivariate Normal distribution with mean [, pu2)’, covariance equal to zero, and
variances, respectively, 1 and o2. Assume that p; = pe = 0; this setting could, of course, re-
flect recentering by a hard thresholding GMS procedure. Then the bootstrap sample support
function is min{ /1, fia}. If 0 > 1, the left tail of the distribution of min{/i, fi2} is essentially
determined by the distribution of fi2, and the PPHI confidence interval is approximately
(—oo, min{ /i1, 1o} + 1.6450]. (The approximation is favorable since tail probabilities of the
more precise signal were ignored.) In contrast, AS and our method agree (because there is
no projection in this example in R) and approximately recover Bonferroni, thus our interval
is similar to (—oo, min{f; + 1.96, iz + 1.960}]. (The approximation is unfavorable because
our method actually exploits independence of ji; and fiz.) For 0 = 10, numerical evaluation
without these approximations reveals that the upper bounds of the intervals have expected
values 12.4 and 1.8, respectively, to be compared with a true value min{u, 2} = 0 and an
expected value of the estimator F(min{/i1, fio}) = —4. The difference between the confidence

intervals can be made arbitrarily large by increasing o.

4.2 Flat Faces and Drifting-to-Flat Faces

Next, we consider a setting where the projection is maximized at multiple points. For this,

we add, to the constraints in Example 4.1, one more inequality restriction whose moment

23In the present example, we would recommend p ~ 2.8, with negligible effect on ¢ and on true coverage.
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Figure 4.2: Flat face (left) and a near flat face (right)

function is given by

ms(z,0) = 20, + 0y + z(©), (4.7)

where X®) and X(© are independent random variables independent from XM ... X®)

with mean Ep[X®)] =0, Ep[X©)] = p, and variance Varp(X®)) = Varp(X(©) = 2. (See
Figure 4.2, left panel.)

The projection of § € Oy is then maximized over the following set:
H(p,©)={0€0:0,c[1-V2,-1+V2],00 = —p,}. (4.8)

In other words, the identification region has a flat face toward direction p. At each 6 €
H(p,©7), one can study the infeasible linear program. For example, at 6* = (1 — /2, — ),
the first and third moment inequalities bind, but not the second one. Then, the approxi-
mating linear program in (4.3) holds with /ny1 pn(0*) = (0, —v/n(4 — 2v/2)p,,0). If the
magnitude of the second component of /nvy; p,,(6*) is large, or along any sequence (6, P,)
such that /nvy1,p, 2.n(0n) = —00, the second moment inequality becomes negligible. Solving
for the optimal value using the two remaining constraints then yields v/20,(c — W), where
W, = Gy 3(0*) approximately follows the standard normal distribution, which suggests that
¢n(0%) = 1.645, the usual one-sided critical value, can be used. However, if \/nvy1 p2n(0*)
is close to 0, the second constraint is also relevant. In such cases, GMS will asymptotically
replace /ny1 p2n(0*) with 0 and thus add the second inequality as an additional constraint.
Like any tightening of constraints, this will increases ¢&,(6*). The same argument applies to
every # in the support set. For example at § = (0, —p,), the third moment inequality is
the only one that binds, which again defines another approximating linear program with a

different local slackness parameter. Hence, the amount of relaxation needed to ensure the
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one-sided coverage differs across points in H(p, ©;) due to different values of the slackness
parameter.?* Furthermore, the analysis also extends to settings where the identification re-
gion has a face whose normal vector is nearly aligned with p as shown in Figure 4.2, right
panel. We come back to this case later in this section.

The presence of a flat face or more generally a non-singleton support set does not com-
plicate our inference procedure because we calibrate the level at each . On the other
hand, these features raise a nontrivial challenge for methods that use test statistics whose
limiting distributions depend on H(p,©j). For example, consider again the method that
constructs a confidence interval from the support function of the estimated identified set.
If the support set is not a singleton, the distribution of the normalized support function
Sy = v/n[s(p,Cn(0)) — s(p, ©1(P))] can be shown to be approximated by the supremum of
the optimal value in (4.3) over H(p,©y); see, e.g., Kaido (2012). Hence, the support set
becomes a nuisance parameter that affects the distribution of the statistic. Uniform size
control then becomes challenging. In particular, for a sequence of DGPs P, along which
the support sets are singletons (i.e. H(p,©;(P,)) = {6,} for all n) but non-singleton in
the limit, the limiting distribution of the statistic changes discontinuously. We call such a
setting “drifting-to-flat face”. In the present example, one can construct such a sequence P,
by letting Ep [X®)] > 0 for all n and letting it drift to 0 (see Figure 4.2, right panel). To
handle this issue, one must either assume away flat faces (toward direction p) or introduce a
conservative distortion. Beresteanu and Molinari (2008, Assumption 4.5), PPHI, and Kaido
and Santos (2014, Assumption 4.1) take the first approach, rendering them inapplicable to
some commonly studied examples.?”

Drifting-to-flat faces are also assumed away in the recent work of BCS. They consider
testing the hypothesis Hg : p'6 = [y and constructing a confidence interval through a test in-
version. Their method is based on bootstrapping a profiled test statistic infg.,/9—g,} an@Qn (),
where @, is a sample criterion function which includes the use of GMS. A key role in profil-
ing is played by the subset of elements of ©;(P) that satisfy the null hypothesis Hy. When
Bo = s(p,©1(P)), this set coincides with the support set H(p,©r(P)). Although BCS’s
inference is valid over a class of distributions under which H(p, ©;(P)) is not necessarily
singleton-valued, they require that the population criterion function increases as a polyno-
mial function of the distance from 6 to H(p,O;(P)) when 6 deviates from this set along
the hyperplane {0 : p'0 = s(p,©;(P))}.26 This requirement, however, excludes DGPs that

24Tn this specific example, ¢, converges to 1.645 at all points in the support set because the constraint whose
gradient is orthogonal to p reduces the problem to a one-sided testing problem. Finite sample critical levels
will differ across H(p, ©r), though.

2For example, Beresteanu and Molinari (2008) show that the identification region for the best linear pre-
dictor of an interval-valued outcome variable with discrete covariates has flat faces. See also Freyberger and
Horowitz (2015) for a nonparametric IV example with discrete variables.

26Without this requirement, their estimator of H(p, ©;(P)) may include points at which population moment
(in)equalities are violated but by not much. At such points, the sample moment inequalities may even realize
as slack constraints, and hence replacing the (violated) population local slackness parameter with the GMS
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exhibit drifting-to-flat faces. For example, in the right panel of Figure 4.2, consider deviating
from 6* toward direction (—1,0). Because of the third constraint drifting to a flat face, one

can make the population criterion function increase arbitrarily slowly along such a deviation.

4.3 Role of the p-Box Constraint

We next discuss why we impose the additional constraint A € pB%. To do so, we return to
Example 4.1 (without the additional constraint (4.7)). Recall that

_2Nx/\/§Uz 1/\/§Ux>

Dp(6%) = (
and consider a sequence of DGPs such that p, — 0. As we saw before, under each DGP
with p, > 0, the infeasible linear program calibrates ¢,(0*) = 1.16. In the limit, however,

the moment inequalities reduce to

0y — Ep[X®)] <0 (4.10)
0 — Ep[X¥] <. (4.11)

In other words, #2’s upper bound is given by the minimum of the two means: Ep[X (2)]
and Ep[X¥)]. This structure is also known as “intersection bounds” (Hirano and Porter,
2012). The value of the linear program in (4.3) is then min{c — G, 1,¢c — G, 2}. To ensure
coverage, one needs a critical level of ¢,(0*) = 1.95 instead of 1.16 (the slight difference to
1.96 is because we exploit independence of error terms). This discontinuity presents another
challenge for uniform validity of inference. For any setting where the constraints are close
to the minimum of the two means, an inference method that does not take into account this
feature would have poor size control.

This type of example is the main reason why we restrict the localization parameter A into
the p-box. To see the benefit, consider Figure 4.3. The figure shows the DGP on the left
panel and a realization of a constraint in the bootstrap problem on the right panel. Due to
sampling variation, the estimated gradients lA)nJ and lA)mg differ slightly from the population
gradients. Without the p-box constraint, the maximum is attained at A*. Since the estimated
gradients are fixed across bootstrap replications, p’A\* behaves as approximately normal, and
by the previous argument we would end up with ¢,(0*) = 1.16. With the p-box, however,
the optimum is attained at A** whose projection is the minimum of the projections of two
points at which the two constraints intersect with the right boundary of pB?. Therefore,
our bootstrap procedure mimics the minimum of the two-means problem. This scenario is

very likely to occur in bootstrap samples whenever the population gradients are close to this

function does not necessarily provide conservative approximations. For details, we refer to discussions provided
in Bugni, Canay, and Shi (2015, page 265).
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Figure 4.3: Minimum of two means and a p-box

situation, and hence restricting A to the p-box is key to uniform validity of our procedure.?”

The drifting-to-flat face example in Figure 4.2, right panel, can be handled analogously.
For example, for some points such as 6**, the relevant constraint is the third constraint,
which is drifting-to-flat. A linearized problem around 6** then looks akin to the right panel
of Figure 4.3 without the dotted line. Calculating a bootstrap critical value then yields a
one-sided critical value ¢é,(6) = 1.645 as before.

In practice, the choice of p requires trading off how much conservative bias one is willing to
bear in well-behaved cases (e.g., Example 4.1) against how much finite-sample size distortion
one is willing to bear in ill-behaved cases such as the minimum of two means example just
described. We propose a heuristic approach to calibrate p focusing on conservative bias in
well behaved cases. In these cases, the optimal value is distributed asymptotically normal
as a linear combination of d binding inequalities. When in fact J; + Jo = d, constraining
A € pB? increases the coverage probability by at most 8 = 1—[1 —2®(—p)]¢. The parameter
p can therefore be calibrated to achieve a conservative bias of at most 8. When J; + Jo > d,

we propose to calibrate p using the benchmark
B=1-[1-28(—p)("a"),

again inferring p so as to achieve a target conservative bias (in well-behaved cases) of . A
few numerical examples with § = 0.01 yield, with J; + J2 = 10 and d = 3 a value of p = 4.2;
with J; + J2 = 100 and d = 10, p = 8.4.

2"This reasoning does not go through if the two constraints are perfectly correlated; their bootstrap resamples
might then always intersect inside the p-box despite the very acute angle formed. This is precisely why we
restrict the correlation matrix of moments, but also why we only need this restriction for moment conditions
whose boundaries may intersect.



Table 5.1: DGPs used in the Monte Carlo experiments 1-4

DGP Moment Conditions Projections of O Description
01+ 65 < Ep[Xl]
DGP-1 ~014 02 < BplXy) frel-11] Oy is a square.
01 — 0 < Ep[X3] +2 0y € [-2,0]
—01 — 0y < Ep[Xy] 42
01vn+0, < Ep[Xq] — 1+ 1/\/n
DGP-2 —01V/n+ 0> < Ep[Xo] — 1+ 1/vn brel-11 1 1 Oy is local to
O1vn — 0y < Ep[X3] +1+1/v/n 6re[-1— NG -1+ ﬁ] a thin face.
—61vn — 6, < Ep[Xy] +1+1/Vn
0140, < Ep[X1]+1/vn 1 1
DGP-3 —01+ 02 < Ep[Xo] +1/vn o€ [7%’ %] @I. is %ocal to
61 — 02 < Ep[X3] +1/v/n 0, c Pi’ L] point identification.
—0, — 0, < Ep[X4] +1/v/n Vn'/n
01 + 62 < Ep[Xs]
O+ 02 < BplX] 61 € [-1,1] The corners of O
bap-4 01— 0> < EplX7] +2 62 € [-2,0] are overidentified.
-0, — 0y < Ep[Xg] +2 ’
and the inequalities in DGP-1.

Table notes: (1) For each DGP, the projection of interest is defined by p'6 : 6 € ©; with p = (0,1)’
and 0 = (01,02); (2) X4, , Xs are i.i.d. Normal random variables, with Var(X;) =1, k=1,...,4
Var(Xs) =Var(X7) =4 and Var(Xs) = Var(Xs) =9.

)

5 Monte Carlo Simulations

We evaluate the performance of our confidence intervals in two sets of Monte Carlo experi-
ments. The first set examines linear restrictions in a two-dimensional parameter space. This
illustrates the performance of our procedure under DGPs that make inference for projections
nontrivial, but where our method is still easy to visualize. The second set of experiments is
about a two-player entry game commonly studied in the literature. With d = J; = Jo = 8§,
the DGPs considered there have interesting complexity.

Another important class of models are moment inequalities that arise from revealed pref-
erence considerations in games, as laid out in Pakes, Porter, Ho, and Ishii (2015). We refer
the reader to Mohapatra and Chatterjee (2015) for an empirical application of our method
in such a model with d =5, J; = 44, and J, = 0.

5.1 Linear Restrictions in R?

All DGPs in this subsection are parameterized by 6 = (61,6,) € R?. We take the second com-
ponent to be the projection of interest, thus p = (0,1)". Further details of the specifications
are listed in Table 5.1.

DGP-1 has a square-shaped identified set defined by four linear inequalities, with length
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Table 5.2: Simulation result for DGPs 1-4 with n = 3000, M C's = 1000.

1—a Average CI KMS Coverage  AS Coverage Average ¢ Excess Length
KMS AS Upper Lower Upper Lower KMS AS KMS AS
95%  [-2.021,0.021]  [-2.041,0.040] 94.5% 94.9% 100% 99.9% 1.161 1.955 0.042 0.071
90%  [-2.017,0.016] [-2.036,0.035] 89.6% 90.8% 99.8% 99.6% 0.906 1.634 0.033 0.059
DGP-1 | 8%  [-2.013,0.013] [-2.032,0.032] 84.4% 85.3% 99.5% 98.9% 0.732 1.419 0.026 0.052
80%  [-2.011,0.010]  [-2.029,0.029] 78.2% 79.7% 99.2% 98.0% 0.595 1.251 0.021 0.045
75%  [-2.009,0.008]  [-2.027,0.027] 74.0% 75.5% 98.6% 97.4% 0.476 1.108 0.017 0.040
95%  [-1.058,-0.942] [-1.059,-0.941] 100% 99.9% 100% 99.9% 2.175 2.236 0.079 0.081
90%  [-1.053,-0.948] [-1.054,-0.947] 99.7% 99.3% 99.8% 99.6% 1.888 1.945 0.069 0.071
DGP-2 | 85% [-1.049,-0.951] [-1.050,-0.950] 99.4% 98.6% 99.5% 98.9% 1.699 1.755 0.062 0.064
80%  [-1.047,-0.954] [-1.048,-0.953] 99.0% 97.8% 99.2% 98.0% 1.552 1.607 0.056 0.058
75%  [-1.044,-0.956] [-1.045,-0.955] 98.2% 96.8% 98.6% 97.4% 1.429 1.482 0.052 0.054
95%  [-0.042,0.041]  [-0.055,0.055] 98.4% 96.9% 100% 99.9% 1.305 2.074 0.047 0.073
90%  [-0.038,0.037]  [-0.050,0.049] 95.6% 94.7% 99.7% 99.5% 1.087 1.785 0.039  0.063
DGP-3 | 85%  [-0.035,0.035] [-0.046,0.046] 92.2% 93.0% 99.4% 98.4% 0.945 1.598 0.034 0.056
80%  [-0.033,0.033]  [-0.044,0.043] 89.4% 90.0% 98.6% 97.7% 0.831 1.452 0.030 0.050
75%  [-0.031,0.031]  [-0.041,0.041] 85.6% 87.6% 98.1% 96.9% 0.736 1.330 0.026 0.046
95%  [-2.024,0.024] [-2.038,0.038] 95.0% 94.2% 99.8% 99.5% 1.610 2.234 0.048 0.076
90%  [-2.019,0.018]  [-2.032,0.031] 89.0% 89.2% 98.7% 98.5% 1.373 1.940 0.037 0.063
DGP-4 | 85%  [-2.014,0.014] [-2.027,0.027] 83.5% 84.1% 97.3% 96.3% 1.211 1.746 0.029 0.055
80%  [-2.011,0.011]  [-2.024,0.024] 77.4% 79.7% 95.4% 93.9% 1.082 1.595 0.022 0.048
75%  [-2.008,0.008] [-2.021,0.021] 72.3% 74.6% 92.0% 91.8% 0.974 1.468 0.016 0.042

Table notes: (1) The projection of interest is 03 for (01,602) € ©r. (2) “Upper” coverage refers to
coverage of max{p'f : 6 € Or}, and similarly for “Lower”. (3) The excess length of a confidence
interval (CT) is computed as length of CT - length of population projection. (4) B = 2001 bootstrap
draws.

of the projection of interest equal to 2. DGP-2 is similar, but the slope of each constraint
—1/2 in absolute value so the length of projection is 2 /v/n. Therefore, as n grows, the
—1),(1,—1)}. This specification

is used to examine the performance of the confidence intervals when the identified set is local

equals n

identified set converges to the line segment spanned by {(—1,

to a thin face in the direction of projection. In particular, note that DGP-2 converges to
point identification of p’# but not of #. DGP-3 is again similar to DGP-1, but shrinks toward
the singleton {(0,—1)} as n grows, so that point identification of # is approached; length of
projection is again 2/y/n. Finally, DGP-4 adds four additional inequalities to DGP-1. These
have exactly the same form as the ones in DGP-1, hence the length of projection stays at
2, but differ in their variances. This specification is used to evaluate the performance of the
confidence interval when some of the boundary points of O are overidentified.

Table 5.2 reports the results of the Monte Carlo experiments under alternative nominal
coverage levels (95%, 90%, 85%, 80%, 75%). The DGPs are simple enough so that this table
can be computed using Matlab’s fmincon command as well as our E-A-M algorithm. We
did both, with identical results. We report separate coverage probabilities for the upper and
lower bound on p'6, average critical levels ¢, at the upper and lower support point of C,, and
average excess lengths of confidence intervals. By “excess length,” we mean the difference

between the length of the confidence interval and that of the projection of the identified set.
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For simplicity, we refer to “AS confidence intervals” below when we mean the projections of
AS confidence regions.

DGP-1 is the benchmark specification. In this setting, the coverage probabilities of our
confidence intervals are very close to nominal levels, while those of the AS confidence intervals
are much higher and close to 100% in most cases. This is also reflected in the higher critical
levels and larger excess lengths displayed in the table. The comparison of ¢, and éf}s also
provides an example of the theoretical result presented in Section 3.2, where we showed
that our critical level is strictly lower than AS’s unless all constraints are orthogonal to the
direction of projection. In this well-behaved example, the difference is large and would be even
larger if the example were extended to higher dimensions.?® Results are similar under DGP-
4, suggesting that our confidence interval performs well in the presence of overidentifying
moment restrictions.

A notable specification in which our CI and AS’s C'I perform similarly is DGP-2. Recall
that, in this setting, the identified set is local to a thin face in the direction of projection; at
our sample size of n = 3000, the numerical value of the slope is #.018. In the presence of
the p-box, this makes our linearization of the inference problem similar to an overidentified
two-sided test. Therefore, ¢, and ¢ are close to each other and also to Bonferroni correction
(not displayed). They also have similar coverage properties.?”

Under DGP-3, where the identified set is local to point identification, the coverage prob-
abilities of our C[ls are again strictly above the nominal levels. This conservatism reflects
GMS and is shared by both reported, and other uniformly valid, approaches. Projection of
AS incurs considerable additional conservatism.

In sum, these experiments confirm that our confidence interval controls size well under
various DGPs and is substantially less conservative than AS, except for the special case
where the DGP is statistically indistinguishable from one that does not involve projection

conservatism.

5.2 An Entry Game in R®

Consider the following variation on Example 3.1:

Yo =0 Yo=1
Y1 =0 0, 0 0, Zéﬂl + u2
Yi=1| Z{f1+u,0 | Z{(B1+ A1) + ur, Zy(B2 + Ag) + ug

28To get an idea, compare the average values of critical levels for 1 — o = 95% to the corresponding entries
for n = 2 in Table 3.1. This comparison also corroborates numerical accuracy of our simulations, as well as
minimal influence of the p-box constraints in well-behaved examples.

29They are conservative because, as long as inequalities are not exactly parallel, our &, for DGP-1 would
actually do, but this fact is not knowable to the researcher. Compare the discussion of Figure 4.3.



where Y, € {0,1}, Zi, and uy denote, respectively, player ks binary action, observed charac-
teristics, and unobserved characteristics. The strategic interaction effects Z; A < 0,k = 1,2
measure the impacts of the opponent’s entry into the market. In what follows, we let
X =W,Ys, 71, Z)) and 0 = (8], B, A, Al)'. We generate Z = (Z1, Z2) as an i.i.d. random
vector taking values in a finite set whose distribution p, = P(Z = z) is assumed known. We
then generate u = (uj,u2) as standard bivariate Normal random variables independent of
Z. The outcome Y = (Y7, Y2) is generated as a pure strategy Nash equilibrium of the game.
For some value of Z and wu, the model predicts monopoly outcomes ¥ = (0,1) and (1,0) as
multiple equilibria. When this is the case, we select Y by independent Bernoulli trials with
fixed parameter T € [0,1].

The model gives rise to the following moment equality and inequality restrictions (Tamer,
2003; Ciliberto and Tamer, 2009):

P((0,0)|2) = P(u; < —Z1 1, ug < —Z503s) (5.1)
P((1,1)|Z) = P(u1 > —Z{(B1 + A1), ug > —Z5(B2 + Ag)) (5.2)
P((0,1)]2) < P(u1 < —=Z1(B1 + A1), ug > —Z5039) (5.3)
P((0,1)|2) > P(u1 < =Z1(B1 + A1), ug > —Z5(B2 + Ag)) (5.4)

+ P(uy < =Z1B1, — Z5B2 <wug < —Zy(B2 + A)).

The inequality restrictions (5.3)-(5.4) bound the probability of an outcome that can be se-
lected from multiple equilibria. Using our specification, it is straightforward to rewrite the

restrictions as follows:

EO{Y = (0,0}1{Z = 2}] - (—2481)®(~f)p. = 0 (5.5)
BO{Y = (1,DI{Z = 2} — (1= ®(=2(B1 + A))(1 — B(=4(Bs+ A)))p- =0 (5.6)
EO{Y = (0, D}{Z = 2}] = &(=24(B1 + A1))(1 — D(—2482))p. < 0 (5.7)

- BE[{Y = (0, )}1{Z = z}]

+ | D(=21 (81 + A))(1 = B(—25(B2 + A2))) + P(—2181)(P(—25(B2 + A2)) — P(—2502))|p. <O,
(5.8)

where ® is the CDF of the standard normal distribution.

The complexity of this model depends on the support of Z. We work with a constant
and a player specific, binary covariate, so Z; € {(1,—1),(1,1)} and Zy € {(1,-1),(1,1)}.
Z therefore takes four different values, giving rise to 8 moment equalities and 8 moment
inequalities, i.e. J = 24 restrictions. The standard deviation of each moment takes the form
(E[{Y = y}1{Z = 2}](1 — E[I{Y = y}1{Z = 2}]))"/*, which we estimate by its sample
analog. The gradients of each moment can be computed analytically using (5.5)-(5.8). The
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Table 5.3: Simulation result for DGP-5 with n = 4000, M C's = 1000.

l—a Median CI Coverage Average CI Length
KMS AS KMS  AS  KMS AS
0.95 [0.344,0.763]  [0.125,0.941] 95.7% 100.0% 0.425 0.815
M =050 090 [0.368,0.723]  [0.169,0.903] 92.2% 100.0% 0.356 0.735
0.85  [0.381,0.698]  [0.194,0.880] 88.3%  99.7%  0.326 0.685
0.95 [0.098,0.367]  [-0.003,0.490] 96.6% 100.0% 0.275 0.508
Pl —025] 090 [0.117,0.349]  [0.021,0.465] 93.1% 99.8%  0.236 0.455
0.85  [0.128,0.340]  [0.035,0.449] 90.5% 99.6%  0.217 0.423
0.95 [-1.386-0.701] [-1.717,-0.292] 96.3% 100.0% 0.692 1.432
A= 11090 [1.327-0.744] [-1.654,0.367] 92.3% 100.0% 0.588 1.291
0.85 [-1.291-0.775] [-1.614,-0.412] 88.4%  99.9%  0.522 1.207
0.95 [-1.183-0.753] [-1.445-0.494] 96.6% 100.0% 0.438 0.955
A= 1] 090 [1.154,-0.787] [-1.400,-0.541] 93.1% 99.9% 0.375 0.862
0.85 [-1.134,-0.811] [-1.371,-0.570] 88.7%  99.9%  0.337 0.805

Table notes: (1) Population projection length is zero in this DGP. (2) B = 2001 bootstrap draws.

estimator of the normalized gradients can then be computed by dividing each gradient by
the corresponding estimated standard deviation.

In our DGP-5, we set $; = (.5,.25)" and A; = (—1,—1). DGP-6 differs by setting
Ay = (—1,-.75)". In both cases, (82, A2) = (1, A1) and the equilibrium selection probability
is 7 = 0.5; we only report results for (51, A1). Although parameter values are similar, there is
a qualitative difference: In DGP-5, parameters turn out to be point identified. In DGP-6, they
are not but the identified set is still not large compared to sampling uncertainty, specifically:
for BE], the projection of the identified set is [0.405, 0.589]; for B?], it is [0.236, 0.26]; for A[lll,
it is [—1.158, —0.832]; for A[f], it is [—0.790, —0.716]. We therefore expect all methods that
use GMS to be conservative in DGP-6. Finally, the marginal distribution of (ZF]7 Zg}) on
its support {(—1,—-1),(—1,1),(1,—1),(1,1)} is specified as (0.1,0.2,0.3,0.4).

An interesting feature of this model is that despite being (in general, and in one of our
specifications) partially identified, it is also testable because moment conditions are overiden-
tifying in some dimensions. More specifically, it can be verified that one of the four constraints
corresponding to (5.5), and similarly one of the four constraints in (5.6), can be expressed as
nonlinear function of the others. Indeed, this is one reason why DGP-6 is partially identified
despite the presence of 8 equalities in R®. The additional constraints do, however, restrict
the distribution of observables and therefore make the models testable.

“Supernumerary” or “partially overidentifying” moment conditions raise interesting ques-
tions. For one thing, their presence means that the sample analog of O7 is generically empty,
a frequent feature of empirical applications but one that makes consistent estimation of iden-
tified sets difficult. Also, in our framework, they increase ¢, because they act like implicit

specification tests: Their rejection will cause the confidence interval to be empty. Ceteris
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Table 5.4: Simulation result for DGP-6 with n = 4000, M C's = 1000.

1—a Median CI KMS Coverage AS Coverage Excess Length

KMS AS Lower Upper Lower Upper  KS AS
0.95 [0.218,0.819] [-0.009,1.002] 98.3% 98.2% 100.0% 100.0% 0.424 0.828
W—050 | 0.0 [0.253,0.787]  [0.039,0.968] 95.8% 95.8% 100.0% 100.0% 0.351 0.748
0.85 [0.272,0.762] [0.069,0.947)  92.3% 92.9% 100.0% 100.0% 0.308 0.697
0.95 [0.100,0.389]  [-0.003,0.524] 98.1% 98.2% 100.0% 100.0% 0.268 0.515
A% =025 | 090 [0.119,0.368]  [0.021,0.498] 95.1% 95.2% 99.8% 100.0% 0.229  0.460
0.85  [0.131,0.355] [0.035,0.481] 92.3% 91.2% 99.8%  99.7% 0.204 0.428
0.95 [-1.525,-0.470] [-1.867,-0.015] 98.3% 98.3% 100.0% 100.0% 0.730 1.501
Al = 1 | 090 [1.472,-0.520] [-1.803,-0.101] 95.9% 95.9% 100.0% 100.0% 0.616 1.374
0.85 [-1.436,-0.565] [-1.764,-0.156] 92.9% 92.1% 100.0% 100.0% 0.546 1.281
0.95 [-0.986,-0.490] [-1.277,-0.230] 98.0% 98.0% 100.0% 100.0% 0.430 0.981
AP = 075 | 090 [0.956-0.522] [-1.226-0.275] 95.9% 95.6% 100.0% 100.0% 0.368 0.884
0.85 [-0.937,-0.543] [-1.194,-0.304] 92.6% 92.4% 100.0% 100.0% 0.326 0.824

Table notes: (1) Population projections are as follows: for P], [0.405,0.589]; for BF], [0.236,0.26];

for A:[L”, [—1.158, —0.832]; for A[lz], [-0.790, —0.716]. (2) “Upper” coverage refers to coverage of
max{p'0 : § € O}, and similarly for “Lower”. (3) The excess length of a confidence interval (CT) is
computed as length of CT - length of population projection. (4) B = 2001 bootstrap draws.

paribus, this makes confidence intervals larger, but it has to be traded off against potentially
more efficient estimation. Unlike with the point identified case, the trade-off is not obvious,
and we leave its analysis for future research.

Tables 5.3-5.4 summarize our findings. DGP-5 is characterized by moderate, and DGP-6
by considerable, conservatism due to GMS contracting several constraints in most samples.3°
In both examples, we decisively outperform AS both in terms of finite sample size as well as
length of confidence interval. Last but not least, Tables 5.3-5.4 serve as proof of feasibility:
With 3 different coverage probabilities and 1000 MC replications, we computed the confidence
interval for each component and for each method (our own and AS) 3000 times. Our ability

to do so in a speedy manner critically relies on the E-A-M algorithm.

6 Conclusions

This paper introduces a bootstrap-based confidence interval for linear functions of parameter
vectors that are partially identified through finitely many moment (in)equalities. The extreme
points of our confidence interval are obtained by minimizing and maximizing p'6 subject to
the sample analog of the moment (in)equality conditions properly relaxed. This relaxation
amount, or critical level, is computed to insure that p’f, rather than 6 itself, is uniformly
asymptotically covered with a prespecified probability. Calibration of the critical levels is

computationally attractive because it is based on repeatedly checking feasibility of (bootstrap)

30This diagnosis is corroborated by: (i) closed-form analysis of simple high-dimensional models, which
indicates that GMS can have a strong effect; (ii) simulations with x, ~ 0, in which we encountered slight
undercoverage. Details are available from the authors.
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linear programming problems. Computation of the extreme points of the confidence intervals
is also computationally attractive thanks to an application, novel to this paper, of the response
surface method for global optimization that can be of independent interest in the partial
identification literature.

The class of DGPs over which we can establish validity of our procedure is non-nested with
the class over which the main alternative to our method (Romano and Shaikh, 2008; Bugni,
Canay, and Shi, 2014) is asymptotically valid. For example, our method yields asymptotically
uniformly valid confidence intervals for linear functions of best linear predictor parameters in
models with interval valued outcomes and discrete covariates, while profiling based methods
do not. The price to pay is the use of one additional (non-drifting) tuning parameter.

The confidence region that we propose is by construction an interval. As such, it does not
pick up gaps in the projection. To do so, one could replace our proposed confidence interval

with the mathematical projection of C,(¢é,), that is, with

Theorems 3.1 and 3.2 apply to this object, including if the projection of the AS confidence
region is defined analogously to the above (and therefore also captures gaps). However,
computation of this object is much harder, and so we recommend it only if possible gaps in
the identified set for p’f are genuinely interesting.

Also, and similarly to confidence regions proposed in AS, Stoye (2009), and elsewhere,
our confidence interval can be empty, namely if the sample analog of the identified set is
empty and if violations of moment inequalities exceed ¢,(6) at each 6. Emptiness of CI,
can be interpreted as rejection of maintained assumptions. See Stoye (2009) and especially
AS for further discussion and Bugni, Canay, and Shi (2015) for a paper that focuses on
this interpretation and improves on é;f}s for the purpose of specification testing. We leave a
detailed analysis of our implied specification test to future research.

In applications, a researcher might wish to obtain a confidence interval for a nonlinear
function f : © — R. Examples might include policy analysis and counterfactual estimation
in the presence of partial identification or demand extrapolation subject to rationality con-
straints. While our results are formally derived for the case that f is linear in 6, the extension
to uniformly continuously differentiable functions f is immediate. In particular, we propose

to calibrate ¢, as
én(0) =inf{c>0: P(A2(0,p,¢) N {Vof(OXN =0} #0) > 1 —a}, (6.1)

where Vg f(0) is the gradient of f(#). The lower and upper points of the confidence interval



are then obtained solving

Igéiél/l;leaé(f(e) s.b. V/nmy i(0)/6n,;(0) < én(0), j=1,---,J.

A related extension is inference on Ep(f(X;,0)) for some known function f. Note that,
while f is known, the expectation needs to be estimated even if 8 is known. To handle
this situation, we propose to apply our method to the augmented parameter vector =
(B(f(X;,0)),0") and direction of optimization p = (1,0, ...,0).3!

Another extension that is of interest in applications is one where the moment conditions
depend on a point identified parameter vector II for which a consistent and asymptotically
normal estimator ﬂn<90) exists when 6 is the true value of #. The sample moment functions
are then of the form 7y, ;(6) = Mn ;(6,1,(A)). As explained in AS, the estimator of the
asymptotic variance of /nmy, ;(6) needs to be adjusted to reflect that II is replaced by
an estimator. With this modification, and in line with AS, our results remain valid under
conditions provided by AS to guarantee that n=t> " mj(Xi,G,fIn(G)) is asymptotically
Normal.

Yet another extension considers projection in a direction p that is unknown but is y/n-
consistently estimated by $.3> Our method applies without modification, treating the es-
timator p as if it were the true direction p, by retilting the gradients of the constraints.
Combinations of each of these extensions are of course possible.

While our analysis is carried out with the criterion function in equation (3.7), it is also
easy to show that our method (including the bootstrap procedure described in Section 2.2)

applies similarly to a criterion function of the form

Tu(0) = Y Valmn(0)/5a,(0))+ + > Vi ;(0)/6n.5(0)], (6.2)

Jj=1,-,J1 j=Ji+1, Jit+J2

Criterion function T}, corresponds to criterion function S5 in AS; criterion function Tn is akin
to criterion function S in AS. In addition, AS consider a QLR based test statistic previously
proposed in Rosen (2008). This test statistic does not lend itself easily to linearization, and
as such we do not consider it in this paper.

Finally, our method employs generalized moment selection in order to conservatively
determine which inequalities bind at a given 6. Implementation of GMS requires the use of
a tuning parameter K, = o(nl/ 2), which can be difficult to choose in practice. An interesting
avenue for future research would combine the method proposed in this paper with the method
proposed by Romano, Shaikh, and Wolf (2014) for the choice of k.

31We thank Kei Hirano for suggesting this adaptation of our method.

32This case occurs in Gafarov and Montiel-Olea (2015), who study inference for maximum and minimum
responses to impulses in structural vector autoregression models. Bounds on treatment effects frequently
have this form as well: Demuynck (2015) rewrites numerous such bounds as values of a linear program with
estimated direction p and varying, estimated constraints.
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Table A.0: Important notation. Here p > 0 is fixed as described in Section 4, (P,,0,) € {(P,0)

Appendix A Proof of Main Results

This Appendix is organized as follows. Section A.1 provides in Table A.0 a summary of the notation

used throughout, and in Figure A.1 and Table A.1 a flow diagram and heuristic explanation of how

each lemma contributes to the proof of Theorem 3.1. Section A.2 contains proofs of our two main

results, Theorem 3.1 and Theorem 3.2. Section B contains the statements and proofs of the lemmas

used to establish Theorem 3.1. Section C contains the statements and proofs of two auxiliary lemmas

used in the main text (Sections 2.2 and 3.2). Throughout the Appendix we use the convention co0Q = 0.

A.1 Notation and Structure of Proofs

subsequence as defined in (A.3)-(A.4) below, 0!, € 0, + p//nB%, and X € R%.

. P e P,ocOP)isa

V(i ()—Ep(m;(X;,)))
op,;()

6n,5()

v =17

&:71—1 i=1,...,J
op;(-

Ep, (mj(Xir)) - _

Jpnf.j(‘) ,i=1....J

limp, 00 “;1 \/ﬁ“/L,Pn J (0r)

0, ifm,;=0,
—o0, if T < 0.

{ Ko V(1) /60 (), G =1,
0:
{Gy,j (0 + A/v/n) + Dp, "7-(9”)/\ + 7rfj}(l + M, (6n)

{)\ € pB:p'X = 0Ny 0, (A) <c, Vi=1,...

G, (01) + Dug (01X + 0;(6ni(61)

{/\Gde p)\—Oﬂvn]H/

G ;(04) + D j(O,)N + 7

{/\ € pBt:p'A = 0Ny e (A)<ec Vi=1,...

Gp;(0,) + Dpj(0n)A + 71

{AepBl:pA=0Nwp,(N\) <c, Vji=1,...,.

inf{c € Ry : P*(V¥(6,¢) # 0) >

infyc,pa én (6 + 25)

L i=1,...,

0
0
Vg(EP(m] ),j:l,...,J

N <e Vi=1,...

Sample empirical process.

Bootstrap empirical process.

Estimation error in sample moments’ asymptotic standard deviation.

Gradient of population moments w.r.t. 6, with estimator Dn,j(~).

Studentized population moments.

Limit of rescaled population moments, constant V6!, € 6,, + ﬁBd

by Lemma B.5.
“Oracle” GMS.

Rescaled studentized sample moments, set to 0 for equalities.

Mean value expansion of nonlinear constraints with sample empirical process
and “oracle” GMS, with ), componentwise between 6,, and 0,, + A\/\/n.

Feasible set for nonlinear sample problem intersected with p’A = 0.

Linearized constraints with bootstrap empirical process and sample GMS.

Feasible set for linearized bootstrap problem with sample GMS and p’\ = 0.

Linearized constraints with bootstrap empirical process and “oracle” GMS.

Feasible set for linearized bootstrap problem with “oracle” GMS and p’A = 0.

Linearized constraints with limit Gaussian process and “oracle” GMS.

Feasible set for linearized Gaussian problem with p’A = 0.

Bootstrap critical level.

Smallest value of the bootstrap critical level in a

%Bd neighborhood of 6.




Figure A.1: Structure of Lemmas used in the proof of Theorem 3.1.

Theorem 3.1

Lemma B.1

RN

> Lemma B.2 Lemma B.3
Lemma B.4 Lemma B.5
Lemma B.6

Lemma B.7 “— Lemma B.8 Lemma B.9

Table A.1: Heuristics for the role of each Lemma in the proof of Theorem 3.1. Notes: (i) Uniformity in Theorem 3.1 is enforced
arguing along subsequences; (ii) When needed, random variables are realized on the same probability space as shown in Lemma
B.1; (iii) Here (P, 0,) € {(P,0): P € P,0 € O;(P)} is a subsequence as defined in (A.3)-(A.4) below; (iv) All results hold for any
0., € 0, + p//nBe.

Theorem 3.1 P, (p'0, € CI) > P, (Up(0n,¢5(6,)) # 0) + op(1).
Coverage is conservatively estimated by the probability that U, is nonempty.
Lemma B.1 P, (Up(n,E5(0n)) #0) > 1 —a+ op(1).
Lemma B.2 - Py(U(n, ¢, (0n)) # 0, Vi (0r, €n(67,)) = 0) + Pu(U(0n, €,(0n)) = 0,V (07, 6n(0,)) # 0) = op(1).
Argued by comparing both U and V to their common limit W (after coupling).
Lemma B.3  P,(V,(0,,é.(0,)) #0) > 1 —a+op(1).
V,, differs from V; by substituting “oracle” GMS (m}) for sample GMS; any resulting distortion is conservative.
Lemma B.4  max {supyc,pi | max;(unjo,(A) — ¢;) — max;(wj g, (A) — én), supre,pa | max; wj, (A) — max; vy s, ()] } = op(1).
The criterion functions entering U, V', and W, converge to each other.

12 = op(k;Y)),

Lemma B.5  Local-to-binding constraints are selected by GMS uniformly over the p-box (intuition: pn~
and [|€.(6),)) — k' vrop! (00) Ep, [mi(Xi, 0,)][| = op(1).

Lemma B.6  Vn>035>0,NeN:P,({W(#,c)#0}n{W=2(0,,c)=0}) <n, ¥n> N, and similarly for V;,.
It is unlikely that these sets are nonempty but become empty upon slightly tightening stochastic constraints.

Lemma B.7  Intersections of constraints whose gradients are almost linearly dependent are unlikely to realize inside W.
Hence, we can ignore irregularities that occur as linear dependence is approached.

Lemma B.8  If there are weakly more equality constraints than parameters, then ¢ is uniformly bounded away from zero.
This simplifies some arguments.

Lemma B.9  If two paired inequalities are local to binding, then they are also asymptotically identical up to sign.
This justifies “merging” them.
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A.2 Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1
Following Andrews and Guggenberger (2009), we index distributions by a vector of nuisance

parameters relevant for the asymptotic size. For this, let vp = (v1,p,7V2,P,V3,p), Where 71 p =
(VP15 7,p,) With

Y1.p,§(0) = 055 (0)Bplm; (X, 0)], j =1, (A1)
va,p = (s(p, O1(P)),vech(Qp(0)),vec(Dp(h))), and v3,p = P. We proceed in steps.
Step 1. Let {P,,0,} € {(P,0) : P € P,0 € O;(P)} be a sequence such that

liminf inf inf P(p'0 € CI,) =liminf P,(p'0, € CI,,), A2
W A o8l PO € O =Bl Palo ) (A2)

with CI,, = [=s(=p,Cpn(én)), $(p,Crn(ér))]. We then let {l,} be a subsequence of {n} such that

liminf P, (p'0,, € CI,,) = lim P, (p'0,, € CI,,). (A.3)
n—oo

n—0o0

Then there is a further subsequence {a, } of {l,,} such that

lim rgt\/anop! (0a,)Ep,, [Mj(Xi00,)] =715 € Ria)s 4 =1,...,J. (A.4)

Ay, —>00

To avoid multiple subscripts, with some abuse of notation we write (P,,6,,) to refer to (P,,,0,,)
throughout this Appendix. We let

if 7y, =0
= 0 1 i ’ (A.5)
’ —oo if T, < 0.

The projection of 8, is covered when

- 5(7p7 Cn(én)) < plan < 5(177 Cn(én))

inf p’v g < sup p'd
<~ T n > T ~ .
st €O, Yol <6 (0),V5 ] ~ P std €, Yol <6 (9),v)

inf>\ p/)\ <0
= Ty
stAE V(O —0,), % <en(On+A/),Vi[ =

sup, p'A
{s.t.)\ € Vn(® —0,), Vel < ¢, (6, + A/\/ﬁ)ﬂj}
infy p' A
& st.A€vn(© —0,), <0
{Gunj(On + A/vV/1) + Dp, (00X + V/ny1,p, 5 (00) 1 + 10,3 (0n)) < a0 + A/ v/0), V)
sup) p'A
< s.t.A € /n(© —16,),
{Gunj (0 + X/ V1) + Dp, j(0n) A + V1y1,p, 5 (02) Y (1 + 110, (0n)) < 0 (0n + A/v/0), V)
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with n, ;j(-) = op;(-)/6n,;(-) — 1 and where we took a mean value expansion yielding Vj

Vi (0 + A/ V) , 3 } }
G (O + YND) ={Gn,j(0n + )‘/\/ﬁ) + Dp, j(0n)A + \/EVI,PMJ (00) } (1 + 10,5 (62))- (A7)
The event in (A.6) is implied by
ian p/)\
st A€ /n(© —0,)NpBY, <0
{Gj(0n + A1) + Dp, j(0n) A+ vV/1y1,p,, (0n) } (1 + 10,5 (0n)) < E(0n + A/V/0), Vi
sup, p'A
< st A€ /n(© —0,) N pBY,
{Gn,;(0n + AV/n) + DPn,j(gn))‘ + \/?Wl,Pn,7j(9n)}(1 + 1,5 (0n)) < En(On + A\/n), i

(A.8)
with B = {z e R?: |z;| < 1,i =1,...,d}.
Step 2. This step is used only when Assumption 3.3’ is invoked. For each j =1,...,Ji; such that

ﬂ-ikyj = Tq,j*h]n =0, (A9)

where 77 is defined in (A.5), let

~ { 1 if 717P711j(071) =0= V1, Pp,j+J11 (9n)’
’Yl,Pn,J'JrJn(

Hj = V1P g+ d11 (0n) (A0, 545, (0n)) :
9n)(1+77n,j+J11 (07))+71,Pp 5 (0n) (1470, (0n)) otherw1se,
(A.10)
p { 0 if 71,p,,5(0n) = 0="1P, j+5.(0n),
J+J11 = Y1, n."(en)(l""’]n,'(en)) 3
T i O i s @) Ert, g O (T 77 5 (07)) otherwise,
(A.11)
For each j =1,..., Ji1, replace the constraint indexed by j, that is
Vi (60 + AVR) _
— < Cp(0n + A/V/1), A2
GO+ N) = ( /Vn) (A12)
with the following weighted sum of the paired inequalities
- /My i (0, + A//n . nm; 20+ A1 .
,uj\/j -7.]( /f) _//('j-i-Ju\/t j+J11 ( /f) Scn(9n+)\/\/ﬁ)a (A13)
nj(On + A/V/n) Onjtdi (On + A/V/n)
and for each j = 1,..., Ji1, replace the constraint indexed by j + Ji1, that is
\/ﬁijrJn n(en + )‘/\/ﬁ) o
T, < (O + AV, (A.14)
On,j+J11 (9n + )‘/\/ﬁ)
with
Mo, (O + A T n(On + A .
_~,\/ﬁmn7]( n + /\/ﬁ) \/rﬁm]-i-e]lh ( n + /\/ﬁ) SC'rL(en"')\/\/ﬁ)a (A15)

p + g~
A VoY B N O )
It then follows from Assumption 3.3 (iii-4) that these replacements are conservative with probability

approaching one because

Mjt gy n(On +A/VR) (0 + A/ V)
b (&n,j“u(@n +A/v/n) = Gn,j(On + A1) ) b
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and therefore with probability approaching one, (A.13) implies (A.12) and (A.15) implies (A.14).

Step 3. Next, we make the following comparisons:

T ;=0=m; > vVnyp, i(0n), (A.16)

1, = =00 = vVnmn.p, ;(0n) = —00. (A.17)

For any constraint j for which 7 ; = 0, (A.16) yields that replacing v/nv1 p, ;(0n) in (A.8) with 77 ;
introduces a conservative distortion. Under Assumption 3.3'; for any j such that (A.9) holds, the
substitutions in (A.13) and (A.15) yield f&;vny1,p, . (0n) (141, (0n)) — Bjt gy VIV, Py 01, (On) (1 +
Nn,j+1 (0n)) = 0, and therefore replacing this term with «7 ; =0=x7 ;, ; is inconsequential.

For any j for which 7, = —oco, (A.17) yields that for n large enough, /n7y1,p, ;(0n) can be
replaced with 77 ;. To see this, note that by the Cauchy-Schwarz inequality, Assumption 3.4 (1)-(ii),
and \ € pBY, it follows that

Dp,j(6u)A < pVA(IIDp, ;(00) = D, 5 (0u)ll +1Dp, 5 (6u)ll) < pVd(M + pM//n), (A.18)

where M and M are as defined in Assumption 3.4-(i) and (ii) respectively, and we used that @, lies
component-wise between 6,, and 6, + A\/y/n. Using that G, ; is asymptotically tight by Assumption
3.5, we have that for any 7 > 0, there exists a T' > 0 and N; € N such that

P, < max {Gn,j(en + )\/\/ﬁ) + mej(én)A + \/ﬁ’h,pmj(en)}(l + nn,j(en)> <0, VA e de)

7T1J

> Pn< max {T—|—p(M+pM/f)+\f*yl Poi(0n) 1 4 155(00)) < 0N max Gnyj(ﬂn—l—)\/\/ﬁ) ST)

.7771_7_ JTrl]

=P, < max Gy (0, + N/vVn) < T> >1—7/2, Vn > Nj. (A.19)

Jimy j=—00
We therefore have that for n > Ny,

infy p'A

Pn< st.A € /n(© —0,)NpBY, <0
{Gnj(0n + A/v/n) + Dp, j(0n)X + v1v1,p, 5 (0n) (14105 (00)) < én(0n + X/y/1),Vj
supy p'A
< st € /n(O —0,)N pB, >
{Gn’j(en + )‘/\/ﬁ) + DPn,j(én))‘ + \/ﬁ’yl,Pn,j(en)}(]- + nn,j(en)) S én(en + )\/\/E),V]
(A.20)
inf>\p’/\
ZPn< st A€ /n(© —0,)NpBY, <0
{G 7](0 + )‘/\/>) =+ DP ( ))‘ + S J}(l + 77n,](9 )) < én(on + A/\/ﬁ)vvj
sup, p'A
< st € /(O —0,) N pBY, >7/2.
{G,; (0, + \//n) + Dp, (0 WA+ 77 L+ 10,5 (00)) < 60 + A/ /), Vi
(A.21)

Since the choice of 7 is arbitrary, the limit of the term in (A.20) is not smaller than the limit of the
first term in (A.21). Hence, we continue arguing for the event whose probability is evaluated in (A.21).
Finally, by definition ¢, () > 0 and therefore infy¢,pa ¢, (6 + A/1/n) exists. Therefore, the event
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whose probability is evaluated in (A.21) is implied by the event

infy p' A
s.t.\ € /(O —6,) N pB, <0
{G n,j (9 + A/\F) + Dp,, ( )>‘ + 7 ]}(1 + nn,j(gn)) < ianede én(en + )\/\/ﬁ),Vj
supy p'A
< st.A € /n(© —6,)N pBY,
{G n,j (9 + )‘/\f) + Dp,, ( n)A + 7 ]}(1 + nn,j(en)) < ianede n(0n + )‘/\/ﬁ)7vJ
(A.22)
For each A € R?, define

Un,j,6, (N) = {Gn,j(0n + /) + Dp, j(0n)X + 77 ;3 (1 + 15,5 (00)), (A.23)

where under Assumption 3.3" when 77 ; = 0 and 77 ;, ; = 0 the substitutions of equation (A.12)
with equation (A.13) and of equation (A.14) with equation (A.15) have been performed. Let

Un(On,c) = {1 € pBY N =00Nu, 9, (N\) <c, Vi=1,..., J}, (A.24)
and define
én(9) = Aér;]fgd én(0+A/Vn). (A.25)
Then by (A.22) and the definition of U,,, we obtain
Po(p'0n € Cl,,) > Py (Up (00, 65, (0,)) # 0), (A.26)

because whenever U, (0, ¢ (6,,)) # 0, the event in (A.22) attains. By Lemma B.1,

1i_>m P (U, (0,,6(0,) #0) > 1— . (A.27)
The conclusion of the theorem then follows from (A.2), (A.3), (A.26), and (A.27). O
Proof of Theorem 3.2
For given 6, the event
b .
max {Gh5(60) +0(60,5(0) } < c (A.28)
implies the event
max p'A>0>  min p'A, (A.29)
)\EAZ(O,p,c) AEAY (0,p,c)

with AY defined in (2.7). This is so because if max;—1 s {GZJ(G) + cpj(én,j(ﬁ))} <e, A=0is
feasible in both optimization problems in (A.29), hence the event in (A.29) is implied. In turn this
yields that for each n € N and 0 € ©,

cA5(0) > ¢,(0), (A.30)

and therefore the result follows. O
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Appendix B Main Lemmas

Throughout this Appendix, we maintain Assumptions 3.1, 3.2, 3.3 or 3.3/, 3.4, and 3.5.

(Pp,0,) € {(P,0): PeP,0 € ©;(P)} be a subsequence as defined in (A.3)-(A.4).

Fix p > 0 as discussed in Section 4 and ¢ > 0. For each A € R% and 6 € 6,, + 2= B?, let

/n
vnjo(N) = Gy 5(0) + Do g (0N + 77 5,
U)jﬁ()\) = prj(G) + Dp’j(g))\ + ’/Tij,

where 77 ; is defined in (A.5) and we used Lemma B.5. Under Assumption 3.3" if

* _ _ *
T =0 =T 40,

we replace the constraints

Gb,;(8) + Dy ()X < c,
Gp;(0)+ Dp ()X <c,
Gn j+J11(9) + D ,j+J11(0))‘ <gc,
GPJ+J11 (9) + DPJ+J11(0)>‘ <g

respectively with

G ;(0) + Dy s ()N} = 1145, {G sy, (0) + Dy (0)A} < c,
1i{Gp;(0) + Dpj(0)A} = tj4 0, {GPj+01,(0) + Dpja (0)A} < c,
—pi{G? ;(0) + Dy j(O)N} + p1j40,, {Gh ;1 1, (0) + Dy, (0)A} < c,
—1i{Gp;(0) + Dpj(0)A} + pjr,{Gp 1, (0) + Dpjs, ()N} < ¢
where

b — { . _‘1“ o if y1,p,.,5(0) =0 =.71,Pn,j+Ju(9)7

71,Pn,j+'J1";Z9)-|:in,Pn ~0 otherwise,
e = { . PO ° if y1,p,.,;(0) =0 = MPugtin (0),

ST (Té’)J+’y1,p",j(0) otherwise,

Let the level sets associated with the so defined functions v,, j¢(A) and w, () be

Vi(0,¢) = {X€pBL:p’A=0Nv,,0\) <ec, Vi=1,...,J},
={AepBt P A=0nwje(\) <c, Vji=1,...,J}

We let

Due to the substitutions in equations (B.8)-(B.11), the paired inequalities (i.e., inequalities for

which (B.3) holds under Assumption 3.3’) are now genuine equalities relaxed by c¢. With some abuse

of notation, we index them among the j = J; +1,...,J. With that convention, for given § € R, define

Vo0, ¢) = {A € pB: pPA=0Nv,,00) <c+6 Vj=1,....J,
Nonjo(A) <e, Vi=Ji+1,...,J}.

(B.16)



and
W(0,c) = {NepBYipA=0Nwg(\) <c+6, Vj=1,...,J1,
ﬂwj,g()\)gc, ijjl—‘rl,...,J}. (Bl?)
Define the (J + 2d + 2) x d matrix

[Dp; @) ]

[_DPJle (9)}3]:J1+J2+1

Kp(6) (B.18)

Given a square matrix A, we let eig(A) denote its smallest eigenvalue. In all Lemmas below, « is
assumed less than 1/2.

LEMMA B.1: For each 0 € ©1(P,), let ¢} (0) = inf\c,pa ¢, (0 + A/\/n). Then

lim P, (Uy(0n,¢(0,) #0) >1— . (B.19)

n—oo

Proof. For any € > 0, there exists A € pB? such that
en (0 + A//n) < Aingd én(0n + A/V/n) +e. (B.20)
€p

In what follows, let
0 =0, +\/V/n (B.21)

denote the value at which é, is evaluated in equation (B.20).

By simple addition and subtraction,
Po(Un(0n, 6,(00)) # 0) = P (Vi 65,,2(65)) # 0)

+

Po(Un (8, 1(6.)) 0) = P ( nw;,en(e;))#@)]

+

Po (W65, 60(05)) # 0) = Py (Va(65, “(92))#@)]. (B.22)

By passing to a further subsequence {n}, we may assume that
Dp (6,) = D (B.23)

for some J x d matrix D such that | D|| < M.

By Lemma D.1 in Bugni, Canay, and Shi (2015), G, A Gp in [°°(O) uniformly in P. Using
the same argument as in the proof of Theorem 3.2 with all moments binding, one can show that for
any sequence {0,} C O, &,(0,) and & (0,) are asymptotically bounded by the (1 — a/J) quantile
of the standard Normal distribution, and hence are asymptotically tight. Therefore, the sequence

{(Gp, én(05),¢5(0,))} is asymptotically tight. By Prohorov’s theorem and passing to a further sub-
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sequence, we may then assume that

rn

(G, e (0),65(0,)) > (G, ¢, ¢%). (B.24)

for some tight Borel random element (G, é,é*) € £°(0) x Ry x R;. Moreover, by Assumption 3.3-(ii)
(or Assumption 3.3'-(ii)) suppee |7, (0)|| 2 0 uniformly in P, so that

(G (02, 6065, &(6,)) % (G,0,¢,¢"). (B.25)

In what follows, using Lemma 1.10.4 in van der Vaart and Wellner (2000) we take (G}, 7k, ¢y, cl)
to be the almost sure representation of (Gpy M (0n), €0(05), &5 (0,,)) defined on some probability space
(Q, F,P) such that (G%, 0, cn, cl) “3 (G*,0, ¢, c*), where (G*, ¢, c*) < (G, ¢,¢%).

Similarly, again by Lemma D.2.8 in Bugni, Canay, and Shi (2015), G5 LS Gp in 1°°(©) uniformly
in P conditional on {X7,-- -, X,,}, and by Assumption 3.4 |D,,(65) — Dp, (6,,)] = 0. Hence, by (B.23)
and (B.24),

(GL, D (65), 2n(65),25(0,)) % (G, D, é,é). (B.26)
We take (GV*, D*, é,, ) to be the almost sure representation of (G2, D, (65), é,(05), ¢ (6,)) de-
fined on another probability space (€, F,P) such that (G%*, D%, é&,, &) “3 (G*, D, ¢, &), where
(G*,&,6) L (G, e,¢).
For each A\ € R%, we define analogs to the quantities in (A.23), (B.1) and (B.2) as

uy ;0. (N) = {G}, ;(0n + X/vV/n) + Dp, j(0)X + 77 ;}(1+ 15 5(0n)), (B.27)
vl s (A)z@b*(06)+p* A+, (B.28)
o (N) = G (05) + Dp, j(05)\ + 77 5, (B.29)
E(A) =G (05) + Dp, j(0 )X+ 75, (B.30)

where we used that by Lemma B.5 x,,*v/ny1,p,;(05,) — k, *v/ny1,p,;(6),) = o(1) uniformly over 6!, € 6,,+
p/v/nB® and therefore 7 ; 1s constant over this neighborhood, and we applied a similar replacement
as described in equations (B.4)-(B.11) for the case that 7 ; = 0 = a7 ;, ; . Similarly, we define
analogs to the sets in (A.24), (B.14) and (B.15) as
U;:(Qn,cn {NepB®: PA=00N1u, ;0 (N Vi=1,...,J}, ( )
Va5, en) ={AepBlip]A=0N0} 4. (N) <én, Vji=1,...,J}, (B.32)
W*(Hﬁmcn E{)\Gde:pA:0ﬁwj’9;( )< e, Vi=1,...,J}, ( )
W*(65,60) = {A € pBY i A= 0N} (A) <én, Vi=1,...,J}. (B.34)

It then follows that equation (B.22) can be rewritten as

Po (U0, E(00)) # 0) = P (Vi (05,6) #0) +

P(U;;(en,c;;) ) @) . P(W*(@;,cn) ” 0)

B (W (05,7) # 0}) = B(V;r(05,70) £ 0) | (B.35)




By the Skorokhod representation and by Lemma B.3,

Jim B (V7 (05.6) £ 0) = lim P ((Va(05,20(605) #0) = 1= a. (B.36)
We are left to show that the two terms in square brackets in (B.35) converge to zero as n — co. Define
J={j=1--,J:7m,; =0} (B.37)

Case 1. Suppose first that J* = 0, which implies J, = 0 and mj ; = —oo for all j. Then we have
Up(Onycp) = W05, cn) = W (0n,8,) = Vi (05, 60) = {A € pBT - p'A = 0}, (B.38)

with probability 1, and hence

P ({U; (62, 5) # 0} 0 {0 (85, c0) #0}) = 1. (B.39)

This in turn implies that

P(U;;(an,c;;) + @}) . P(W*(@;, cn) # @})| —0, (B.40)

where we used |P(A) —P(B)| < P(AAB) <1—-P(AN B) for any pair of events A and B. Hence, the
first term in square brackets in (B.35) is 0.

We now turn to the second term in square brackets in (B.35). By (B.38), the same argument
yielding to (B.39) applies, now for the sets W*(0,,, c*) and V* (65, &,), yielding

P (W (0 n) #0) = P (V1 (05,2) #0) | = (B.41)

Hence, the second term in square brackets in (B.35) is also 0. The claim of the Lemma then follows
by (B.36).

Case 2. Now consider the case that J* # (). We show that the terms in square brackets in (B.35)
converge to 0. To that end, note that for any events A, B,

P(A#0)~ P(B#£0)| < [P({A=0} 0 {B #0}) + P({A £ 0} 0 {B =0}) (B.42)

Hence, we aim to establish that for A = UZ(6,,¢:), B = W*(65,¢,), and for A = W*(65,¢,),
B = V*(65,¢n), the right hand side of equation (B.42) converges to zero. But this is guaranteed by
Lemma B.2. O

LEMMA B.2: Let (P,,0,) have the almost sure representations given in Lemma B.1, and let J*
be defined as in (B.37). Assume that J* # 0. Let 05 be as defined in (B.21). Then for any n > 0,
there exists N € N such that

B({W"(05,20) # 0} 0 {Vi (05, 6) = 0}) < /2, (B.43)
B({W"(05,20) = 0} 0 {V; (65, 60) # 0}) < /2, (B.44)
P ({Us(0n,c3) # 0} 0 {W* (05, c) = 0}) < /2, (B.45)
P ({Us(6n,c3) = 0} 0 {W" (6 )7&@}) < /2. (B.46)

for alln > N, where the sets in the above expressions are defined in equations (B.31), (B.32), (B.33),
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and (B.34)
Proof. We begin by observing that for j ¢ J*, 7} ; = —00, and therefore the corresponding inequalities
(G}, (On + A/V/) + Dp, j(0)X + 71 ;) (1 + 17, 5(02)) < e,
Gy 5(05) + Dy A+ 7 5 < o,
G;(07) + Dp, j(07)A + 71 5 < cn,
G5(65) + Dr, 5 (0N + 77 5 < G,

are satisfied with probability approaching one by similar arguments as in (A.19). Hence, we can

redefine the sets of interest as

Ui(On,c) ={A€pB : p'A=0Nu}, ;4 () < ¢, Vi €T}, (B.47)
Vi5,80) = {A € pBY:p' A= 0N} ;0. (N) <&, Vj €T, (B.48)
W* (65, c0) = {A € pBL:p'A=0Nw] 4 (A) <, Vi€ T}, (B.49)
W*(e;,an ={AepB P A =0N1je (N) <, VjeT ) (B.50)
We first show (B.43). For this, we start by defining the events
A, = *»F)\—~’75/\‘>6, B.51
{Aggd max | (v, 5,05 (A) = W) g (A)| = } (B.51)

with v, ; g (A) and @] 4. (A) as defined in equations (B.28) and (B.30), respectively. Then by Lemma
B.4, using the assumption that J* # (), for any n > 0 there exists N’ € N such that

P(A,) <n/2, ¥n > N'. (B.52)

Define the sets of As, W**9 and V,f"“‘s by relaxing the constraints shaping W* and V. by ¢:
Vit (0, c) ={A € pB A= 0N} 4. () <c+6, j €T, (B.53)
Wt (05, c) ={A € pB : PA=0Nw]4. (N) <c+6, j €T} (B.54)

Compared to the sets in equations (B.16) and (B.17), here we replace vy, ; o (A) for vn ;e (A) and
ﬁ);f,@;()\) for wj g (A), we retain only constraints in J*, and we relax all such constraints by ¢ > 0
instead of relaxing only those in {1,...,.J;}. Next, define the event L,, = {W*(65,&,) C V,*+%(0<,¢,)}
and note that AS C L,,.

We may then bound the left hand side of (B.43) as

P ({7 (05,2) # 0} 0 {Vi (05, 60) = 0}) < P ({77 (05, 2) £ 0} 0 Vi 0(05,2) = 0})
+ P (V005 6) # 0} 1 {V;2(05,0) = 0}),  (B55)

where we used P(AN B) < P(ANC) + P(BNC°) for any events A, B, and C. The first term on the
right hand side of (B.55) can further be bounded as

B ({W7(85,6) # 0} 0 (V005 60) = 0}) < P({W7(05,60) € Vi (0, 60)})
=P(LS) < P(A4,) <n/2, ¥n> N', (B.56)

where the penultimate inequality follows from AS C L, as argued above, and the last inequality
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follows from (B.52). For the second term on the left hand side of (B.55), by Lemma B.6, there exists
N" € N such that

B ({V2(65,2) # 03 0 (V5 (65,20) = 0}) < /2, ¥ > N”. (B.57)

Hence, (B.43) follows from (B.55), (B.56), and (B.57). The result in (B.44) follows similarly.
To establish (B.45), define

(w,ee (A) = n) = (ug, 56, (A) = €3)

B, = ¢ sup max
\epBd JjeET*

> (5} . (B.58)
Then by Lemma B.4, for any i > 0 there exists N’ € N such that
P(B,) <n/2, Vn > N'. (B.59)
Define
WH(6:,c) ={A € pB i P A =0Nwjy. (A\) <c+0, je T} (B.60)

Further define the event Ry, = {U}(0,,c) C W*T(65,¢,)}, and note that BS C Ry,,. The result
in equation (B.45) then follows using similar steps to (B.55)-(B.57).

To establish (B.46), we distinguish three cases.
Case 1. Suppose first that J; = 0 (recalling that under Assumption 3.3’ this means that there is no
J=1,...,Ju such that 77 ; =0 = 7TT7j+J11), and hence one has only moment inequalities. In this
case, by (B.47) and (B.49), one may write

Ui (On,c) ={N€pB:p'A=0nN uy, 0. (N) <¢, jeTY}, (B.61)
W05, ¢) = {A € pBY: p A =0Nwj, () <c—6, j €T}, (B.62)

where W*79 § > 0, is obtained by tightening the inequality constraints shaping W*. Define the

event
Ry, = {W*’_‘S(@;,cn) CUOn, i)}y (B.63)

and note that B C Ra,. The result in equation (B.46) then follows by Lemma B.6 using again similar
steps to (B.55)-(B.57).

Case 2. Next suppose that Jo > d. In this case, we define W* 9 to be the set obtained by tightening
by ¢ the inequality constraints as well as each of the two opposing inequalities obtained from the

equality constraints. That is,
W06, c) ={A € pBY : P A =0Nwiy () <c—46, je T, (B.64)

that is, the same set as in (B.112) with wj 4. (A) replacing wj g (A) and defining the set using only
inequalities in J*. Note that, by Lemma B.8, there exists N € N such that for all n > N é,(6)
is bounded from below by some ¢ > 0 with probability approaching one uniformly in P € P and
0 € ©7(P). This ensures the limit ¢ of ¢, is bounded from below by ¢ > 0. This in turn allows us
to construct a non-empty tightened constraint set with probability approaching 1. Namely, for § < ¢,
W;’_‘S(G,cn) is nonempty with probability approaching 1 by Lemma B.6, and hence its superset
W (0, cy) is also non-empty with probability approaching 1. However, note that BS C Rs,, where
Ry, is in (B.63) now defined using the tightened constraint set W ~%(8, ¢,,) being defined as in (B.64),
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and therefore the same argument as in the previous case applies.
Case 3. Finally, suppose that 1 < J, < d. Recall that
c= nl;rrgo Cns (B.65)
and note that by construction ¢ > 0. Consider first the case that ¢ > 0. Then, by taking é < ¢, the
argument in Case 2 applies.
Next consider the case that ¢ = 0. Observe that

P ({U; (60, 1) = 0} 0 {0 (85, c0) # 0}) < P({Us(0n, ;) = 0} 0 {0 7(65,0) # 0})
+ P ({W*0(8;,0) = 0} 1 {W*(65,0) £ 0})
+P({W7(85,0) = 0} 0 (W (85, 0) £0}),  (B.66)

with W*~=%(6¢,,0) defined as in (B.17) with ¢ = 0 and with wj g (A) replacing wj g (A).

By Lemma B.6, for any 1 > 0 there exists 6 > 0 and N € N such that
P({W*»—é(eg, 0) = 0} N {W*(65,0) # @}) <1/3VYn > N. (B.67)

Moreover, because ¢, “3 0, an easy adaptation of the proof of Lemma B.6 yields that, for any n > 0,
there exists 6 > 0 and N € N such that

P({W*(@;, 0) = 0} N {W* (65, ¢n) # @}) <1/3VYn > N. (B.68)

In particular, W*(65,0) relates to W*(05,c,,) by tightening each constraint j € J* and not only
constraints j € J*N{1,...,J1}. Consequently, 7 in the proof of Lemma B.6 must be defined to
have entries of 1 corresponding to all elements of J*, followed by 2d + 2 entries of 0. Then most
steps go through immediately. Case 2-(b) needs to be slightly modified: In that case, one now
has 320 7. V5P (0) = cnXjcinin, gyng- Vs and Xoic 7o ViT) = € dic( g1, gynag- Vys SO the
argument for case 1 applies. In sum, the last two terms on the right hand side of (B.66) are arbitrarily

small.
We now consider the first term on the right hand side of (B.66). Let gp, (65) be a J 4+ 2d + 2

vector with

76;(0;)7 lfjej*a

. o, if j=J4+1,...,J+2d,
gp,.;(0) = o (B.69)
0, ifj=J+2d+1,J+2d+2
0, otherwise,

where we used that 77 ; = 0 for j € J* and where the last assignment is without loss of generality
because of the considerations leading to the sets in (B.47)-(B.50). For a given set C' C {1,...,J +
2d + 2}, let the vector g§ (65) collect the entries of gp, (65) corresponding to indexes in C, and let
the matrix K an (05) collect the rows of Kp, (65) corresponding to indexes in C and Kp_ as defined in
(B.18) with P, replacing P.

Let C collect all size d subsets C of {1,...,J + 2d 4 2} ordered lexicographically by their smallest,
then second smallest, etc. elements. Let the random variable C(f) (dependence on many other
quantities is suppressed) equal the first element of C s.t. det K(0) # 0 and \C = (Kg(H))_l g5(0) €
W*=%(6,0) if such an element exists; else, let C(f) = {J + 1,...,J + d} and A\ = pl,, where
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1, denotes a d vector with each entry equal to 1. Recall that W* =% (6,0) is a (possibly empty)
measurable random polyhedron in a compact subset of R?, see, e.g., Molchanov (2005, Definition
1.1.1). Thus, if W*=° (6,0) # 0, then W*~° (,0) has extreme points, each of which is characterized as
the intersection of d (not necessarily unique) linearly independent constraints interpreted as equalities.
Therefore, W* =% (6,0) # ( implies that A’ € W*~9(9,0) and therefore also that C() C J*U{J +

.,J+2d+2}. Note that the associated random vector A\°(6) is a measurable selection of a random
closet set that equals W*’_‘S(Q,O) if W*’_5(9,0) # () and equals pB? otherwise, see, e.g., Molchanov
(2005, Definition 1.2.2).

Lemma B.7 establishes that for any 7 > 0, there exist a;,, > 0 and N s.t. n > N implies

P (W0 (65,0) £ 0,

which in turn, given our definition of C(65,), yields that there is M > 0 and N such that

C(0%) / pe
o) (oe,)

<ay) <n, (B.70)

(’dt( K& >(95)) ’gM)z1—n, Vn > N. (B.71)
For each n and \ € pB?, define the mapping ¢,, : pB¢ — R[ioo] by

0u() = (KEP (00, 3)) 3570, + A/v), (B.72)

where the notation (6, \) emphasizes that 6 depends on # and A because it lies component-wise
between 6 and 6 + \//n, and where the vector gﬁ("")(en + A/+/n) collects the entries corresponding
to indexes in C(65) of a J + 2d + 2 vector G, (6, + \/y/n) with

/(L 5) =G (0 +A/yn) if jeJr,

~ 0, ifj=J+1,...,J+2d,

0 _ B.73

i ( /V/n) 0, ifj=J+2d+1,J +2d+ 2, ( )
0, otherwise,

using again that 77 ; = 0 for j € J* and that the last assignment is without loss of generality.

We show that ¢,, is a contraction mapping and hence has a fixed point. To simplify notation, in
what follows we omit the dependence of C on 6.

For any A, \' € pB? write

() = én(X)]
|| (K, (800, 0)) 735 (00 + A/v/R) = (KE, (06, X)) 55 (00 + X /v/0)|
SIS AU I W CACESWOR ACERYNGD

+ || (K5, 060, 2)) 1—<K£n<é<emx>>)*HOp 300+ N V),

(B.74)

where || - ||o, denotes the operator norm.
By Assumption 3.5 (i), for any n > 0, k > 0, there is N € N such that

P ([[35(0n + A/v/n) = G500 + X /v/m)|| < klIA = X]])
= P(IG(0n + A/ V1) = (00 + N /Vn)| S KA = N[) 2 1= n, Vn = N. (B.75)



Moreover, by arguing as in equation (A.19), for any 7 there exist 0 < L < co and N € N such that

P( sup ||35(0n+N/Vn)|[[<L)>1—n, Vn>N. (B.76)
N epBd
For any invertible matrix K, ||K~!|,, < |det(K)||ladj(K)|op. Hence, by Assumption 3.4-(i) and
equation (B.71), for any n > 0, there exist 0 < L < oo and N € N such that

P(||(K§ (65)) || < L) > P(|det (K& (65)) 7 |b(M + pM/v/n) <L) >1—n, ¥n> N, (B.77)

where b > 0 is a constant that depends only on d, M is defined in Assumption 3.4-(i) and M is defined
in Assumption 3.4-(ii). By Horn and Johnson (1985, ch. 5.8), for any invertible matrices K, K such
that [|K—1 (K — K)|lop < 1,

1K~ (K~ K)lop

K~ = K Yop < - -
1= [|[K~Y(EK = K)|op

1K™ lop- (B.78)

By (B.78), | K op < |det(K)~1|[|adi(K)||op, and the triangle inequality, for any n > 0, there exist
0 < L <ooand N € N such that
1
P( Sup ||(KP (0”’)\))) ||op S 2L)
AepB
ey —1 e\ —
>P(|[(KE,05) |, + u, 1K, (00, 2) " = KE,(07) " lop < 2L)

> P(|| (K5, 65)]],, < L

> P(|| (K5, 65)'|],, < L (KS, (05)) " [b(3 + pM/\/ﬁ)pM/\/ﬁ <L)>1-2n, ¥n> N,

(B.79)

where the last inequality follows from [[K§ (0(6,, ) — K& (65)]lop < [|1D(B(0n, ) — D(05)|lop <
Mp/+/n by Assumption 3.4 (ii), (B.71) and (B.77). Again by applying (B.78), for any k& > 0, there
exists N € N such that

P(|[(KS, (860, 0)) " = (K§, (000, N)) ||, < klIA= 1)
>P( sup [|(KF, 9<9n,A>>) HOPMW s A) = 00, N S KA =N) 21 -9, ¥a > N, (B.80)

AEpB
where the first inequality follows from ||chgn (0(6,,\) fKICDW (000, N lop < M|0(01, A) —0(0, V|| <
M/+\/n||]A = N| by Assumption 3.4 (ii), and the last inequality follows from (B.79).
By (B.74)-(B.76) and (B.79)-(B.80), it then follows that there exists 5 € [0,1) such that for any
7 > 0, there exists N € N such that

P (|pn(X) — ¢n(N)| < BIXA =N, VAN € pBY) >1—1, ¥n > N. (B.81)

This implies that with probability approaching 1, each ¢, (-) is a contraction, and therefore by the
Contraction Mapping Theorem it has a fixed point (e.g., Pata (2014, Theorem 1.3)). This in turn
implies that for any n > 0 there exists a NV € N such that

P (3 M =6u(N)) =1 -7, Va > N. (B.82)

(KS (65)) " (M + pM/+/n) s IKS, (0(00,N) — K§ (05)]0p <



Next, define the mapping
-1
Ua(N) = (K5, (67)) g, (65)- (B.83)
This map is constant in A and hence is uniformly continuous and a contraction with Lipschitz constant

equal to zero. It therefore has AC as its fixed point. Moreover, by (B.72) and (B.83) arguing as in
(B.74), it follows that for any \ € pBY,

463 = 60N <|| (K, 06, 2) 7| [laf, 05) — 350 + 1/ Vi)

+ 5, 000) 7 = (8, 00.,00) 7 [0, 0)

. (B.84)
By (B.69) and (B.73)

195, 05) = 356 + A/ V)| < max
" jeT*

= Gj(0) — /(L +m5) + Gy 5 (6n + A/v/n)

G;(67,) — Gy, (0 + A/Vn)| + max |c;, /(1 +my, ;)] (B.85)
’ JET* ’

< max
JjET*

We note that when Assumption 3.3' is used, for each 7 = 1,...,J;; such that T, =0= ﬂ;"jJrJu
we have that |fi; — ;| = op(1) because supycg |7;(0)] = op(1), where fi; and p; were defined in
(A.10)-(A.11) and (B.12)-(B.13) respectively. Moreover, Assumption 3.5 (ii) implies G* “¥ G* in
[*°(©) and (B.65) implies ¢}, — 0, so that we have

sup |lgp, (67,) = G5 (0 + A/v/n)|| =5 0. (B.86)
AepBd

Further, by (B.78) and Assumption 3.4-(ii),

(KS (05)) " = (K, (0(6., 1) "

<M sup ”é(anv)\) -0l < Mp/\/?l (B.87)
op AepBd

sup
AEpBd

In sum, by (B.76), (B.79), and (B.85)-(B.87), for any n,v > 0, there exists N > N such that
P < sup |[on(A) — @n(N)]| < V) >1-—mn, Yn>N. (B.88)
AepBd
Hence, for a specific choice of v = k(1 — ), where § is defined in equation (B.81), we have that
supye,ppd [Pn(A) — on(N)[| < k(1 — B) implies
IAG = Ml = ln(AS) = én (Al
< [n(A%) = Sn DI+ 60 (A7) = du(M)]
< k(L= B) +BIAL = M (B.89)

Rearranging terms, we obtain ||\ — A\/|| < k. Note that by Assumptions 3.4 (i) and 3.5 (i), for any
6 > 0, there exists k5 > 0 and N € N such that

P( sup |up g (N) —upjp (M) <0)>1—n, ¥n >N, (B.90)
IA=NI<ks

For A¢ € W*~9(6¢,0), one has

wige (AS) +6 <0, je{l, .-, i}nJ" (B.91)



Hence, by (B.59), (B.65), and (B.90)-(B.91), [|AS — AL|| < k44, for each j € {1,---,J1} N JT* we have
0y, ) = G(00) < w50, O) — a0 + 64 <l O) +3/2<0.  (B92)

n,5,0n \"'n

For j e {J1+1,---,2J5} N J*, the inequalities hold by construction given the definition of C.
In sum, for any 1 > 0 there exists 6 > 0 and N € N such that for all n > N we have

P ({05 (0n,c5) = 0} 0 (00 (65,0) £ 0}) < P(AN] € U3 (6, 2), XS € W2(65,0))

AepBd

<P ({ sup [l () = dn (V] < rs(1— B)N Bn} ) <n/3, (B.93)

where A° denotes the complement of the set A, and the last inequality follows from (B.59) and (B.88).
Combining equations (B.67), (B.68), and (B.93) yields the desired result for Case 3. O

LEMMA B.3: Let 05 be as defined in (B.21). Then
lim P} (V,(05,6,(05)) #0) > 1 —a. (B.94)
n—oo

Proof. Let

Vi(0,c)={X€pB?: G ,(0) + Do i(ON+ (€ j(0) <c, j=1,....J}n{p'A =0}
= AL (0,p,¢) N {p'A =0}, (B.95)

with A% (6, p, c) defined in (2.7). By construction, see (2.11), for all 6 € ©,
n p
P ({V,f(Q, én(0)) # (Z)) >1—a. (B.96)

Inspection of equations (2.7) and (B.14) shows that V.>(0,¢) and V,,(0,¢) differ exclusively in that
the first set features sample GMS, ¢; (£, (%)), in the stochastic inequalities, whereas the second set

features 77 ;. Observe that

Py (Va0 60(05)) # 0) = Py (V205 60(05)) # 0) — P (V2 (05,2n(65)) # 0} 0 {Va (05, 0(65)) = 0}),
(B.97)
where we used that given any two events A, B,
P(A#0) > P(B#0) ~ PUB # 0} n{A=0})
We now establish that the last term in (B.97) is op(1). We have
Py (V205 60(0)) # 0} 0 (V2 (65, 0(65)) = 0})
< Py ({V(05,60(05)) # 03 N {V 005, 60 (05)) = 0})
+ Py (V005 a(05)) # 01 0 (Va0 6(05)) = 0}). (B.98)
By Lemma B.6, for any 1 > 0 there exists 6 > 0 and N € N such that
Py (V205 en(03)) # 0} N {VE (6, 0(65)) = 0}) < /2, Vn = N. (B.99)

Consider first the case that Assumption 3.3 holds. The result then follows from (B.99) and the
fact that by Lemma B.5, if 77 = 0 then énj(ﬁfl) = op(1), so that for n large enough, with probability
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at least 1 — 7/2, by Assumption 3.2 |;(£,.;(65))| < . Observing that 77 € {0, —o0}, we have that
for all n > 0 there is § > 0 and N € N such that

Py (V=005 60(65)) € Va6, n(05))) = 1= /2, Vo > N, (B.100)

yielding the result.
Consider next the case that Assumption 3.3’ holds. In this case, the set V,?(6¢, ) is defined with
hard threshold GMS as in equation (2.9). The same argument of proof as just provided applies. The

only case that might create concern is one in which

my,; = —00, and w5 =0,

@j(é”hj (951) =0, and Pi+J11 (én7j+J11 (92) =0,
so that in the set V,*(6<, ¢) inequality j + J11, which is
Ghje gy (05) + Doy (05)X < ¢

is replaced with inequality

~Gy,;(6;) = Dy (65)1 < c,
as explained in Section 3.1. For this case, Lemma B.9 establishes that

1G4y (05) + Drjisns (05) + G, 5(05) + D (O5)A]l = 0p(1). (B.101)

Note that (B.96) continues to hold if inequality

G} ;(05) + D s (0)1 < c,

is dropped from the set V(¢ c), because the program is thereby relaxed. We can then define set
V,i”_‘s (0, ¢) with inequality j dropped, and including a delta contraction of the inequality that replaces
inequality j + Ji1, namely

~GY ;(05) — D j(05)N < ¢ — 6.

Therefore, using (B.101) the same argument of proof applies as for the case that Assumption 3.3
holds. O

LEMMA B.4: Let (P,,0,) have the almost sure representations given in Lemma B.1, let J* be
defined as in (B.37), and assume that J* # 0. Let 05, be as defined in (B.21). Then, for any e,n > 0,
there ezists N' € N and N” € N such that

P sup max (uy, ;o (A) —c) — max (wjge(A) —cp)| > | <m, (B.102)
AEPBANYR(O—0,) [7=1 0] J=lesd "
for alln > N’ and
P sup max Wiy (A) — max vy o ()\)‘ >e | <n, (B.103)
AEPBANY(O-0,) [I=10d T j=t g 00

for all n > N", where the functions u*,v*,w*,w* are defined in equations (B.27),(B.28),(B.29) and
(B.30).



Proof. We first establish (B.102). By definition, 77 ; = —oo for all j ¢ J*, and therefore

P( sup | max (uy, ;4. (A) —c,) — max (wjg. (A) —cn)| =€)
AEpBINy/n(0—0,) I=1rJ J=1,,J "
“P( swp max(ul,e, () —h) - max(wie (A) — )| > 2). (B.104)
AEpBINYR(O—0,) jeg* 5J:Un jET* 2,05
Hence, for the conclusion of the lemma, it suffices to show
lim P( sup  |max(u. () — ) — max(whg (A) — )] = 2) = 0,
n—o00 )\Edeﬂ\/ﬁ(@fen) JET* »J:Un JET* 2,9y

For each A € R?, define r, j 9, (\) = (un, .0, (A) =) = (W] ge (A) —¢n). Using the fact that 7§ ; =0
for j € J*, and the triangle and Cauchy-Schwarz inequalities, for any A € pB? N \/n(© — 6,,) and

j € J*, we have

70,5,0, M| < |Gy (0n +A/vn) = G5 (07)] + || Dp,,(0n) — Dp, 5 (07, [[[|A]
+ |G:L,j(9n + A/\/ﬁ) + DPn,j(én)Mnn,j(on + A/\/ﬁ) + |C:L - Cn‘
<G (00 +A/Vn) = G} (07,)| + op(1) + {Op(1) + O(1)})op(1) + op(1),  (B.105)

where the last inequality follows using the fact that ||6,, — 65| = O(1/y/n) together with the Lipschitz
continuity of Dp; (Assumption 3.4-(ii)) and 6,, being a mean value between 6, and 6, + \/\/n,
N < p, IGn (0 + N/ n)|| = Op(1), |Dp;(0)] being uniformly bounded (Assumption 3.4-(i)),
SUPgee |Mn,;(0)| = op(kn/+/n) by Assumption 3.3-(ii) (or Assumption 3.3'-(ii)), and equation (B.20).
We note that when Assumption 3.3" is used, for each 7 = 1,...,J7; such that i, =0="7,15
we have that |fi; — ;| = op(1) because supycg |7;(0)] = op(1), where fi; and p; were defined in
(A.10)-(A.11) and (B.12)-(B.13) respectively.

By (B.105) and the uniform stochastic equicontinuity of {G,, ;} (Assumption 3.5) inherited by its

almost sure representation, and the fact that j € J*, we have

sup | max (uf o (A) = ) — max(w?o () — ¢)|
AEpBINYT(©—0,) €T ™I n) T g s n

< sup max

o A Bd f(o 0 )JGJ* Tnvjvan (A)| = 077(1) (BIOG)
€pBNy/n(©—-0,

The conclusion of the lemma then follows from (B.104) and (B.106).

The result in (B.103) follows from similar arguments. O

LEMMA B.5: Given a sequence {Qn,9,} € {(P,0) : P € P,0 € O1(P)} such thatlim,_ ki, v/nv1,0, . (9n)
exists for each j =1,...,J, let x;({Qn,9n}) be a function of the sequence {Qn, Yy} defined as

0,  if limp oo kip ' VYL@ (V)

=0
o ) ! (B.107)
—o0, if limy,_ e £y, v171.0,.5(0n) <O0.

Xj({anﬁn}) = {
Then for any 0,, € 0, + ﬁBd for all n, one has: (i) k;, \/ny p, ;(0n) — k5 /v e, 5 (00) = o(1);
(i1) X({Pa, 0n}) = X({P0, 04}) = 5 5 and (iii) it Vommaiad — ot Bl RaBl — o (1),

O Pp.j (Q;L)



Proof. For (i), the mean value theorem yields

sup sup VnEp(m;(X,0)) nEp(m;(X,0))
PeP gcO[(P),0€6+p//nBd KnUP,j(G) H'ILO-PJ(G/)

Dp;(0)]|]|6" — 6
S sup sup \/ﬁ” P»]( )”” ” — 0(1), (B108)
P€EP 6cO;(P),0'cO+p//nB? Kn

where 6 represents a mean value that lies componentwise between 6 and 6’ and where we used the
fact that Dp ;(¢) is Lipschitz continuous and sup pep Supgeg, (p) |Dp,;(0)[ < M.

Result (ii) then follows immediately from (B.107).

For (iii), note that

sup o1 \/ﬁmn,j/(%) I VnEp, [mj(fﬁ',%)]’

9! €O, +p) /B n,5(07,) op,.j(0r)
_yv/n(my ;(0)) — Ep, [m;(X;,0., 1 VnEp [m;(X;,0/,
< sup ‘V‘:nl \/>( 7]( ) ; [ J( )])(1+nnj(9%))+ﬂn1f P/[ ‘](9/ )]nm](e%)
0!, €0, +p//nB on,;(07,) op,.;(0)
nEp [m;(X;, 0,
< GO 0+ | IR, ) on ), (B109)
0!, €0, +p//nB4 knop,,;(0)

where the last equality follows from supgeg |Gn(6)] = Op(1) due to asymptotic tightness of {G,}
(uniformly in P) by Lemma D.1 in Bugni, Canay, and Shi (2015), Theorem 3.6.1 and Lemma 1.3.8
in van der Vaart and Wellner (2000), and supgeg |7n,;(0)] = op(kn/y/n) by Assumption 3.3 (ii)
respectively 3.3" (ii). O
LEMMA B.6: For any 0], € 0,, + ﬁBd,
(i) For any n > 0, there exist 6 >0 and N € N such that

sup P,({W(0.,,¢) # 0y N {W=°(0,,¢) = 0}) <n, ¥n > N. (B.110)

Moreover, for any n > 0, there exist 6 > 0 and N € N such that

sup PF({V, (0, ¢) # 0y N {V.7°(#.,,¢c) =0}) <7, Vn > N. (B.111)
c>0

(it) Fiz ¢ > 0 and redefine
W0, c)={repB :pA=0Nwje (\)<c—0,Vji=1,...,J}, (B.112)
and
V, (0, c) ={N€pBY i pPA=0Nwn 0 (\) <c—08,Vj=1,...,J}. (B.113)
Then for any n > 0, there exist § > 0 and N € N such that

sup P,({W (0, ¢) # 0} n{W=2(0,,¢) = 0}) <n, Vn > N, (B.114)

c>c

with W=9(0!,, ¢) defined in (B.112). Moreover, for anyn > 0, there exist § > 0 and N € N such



that

sup Py ({Vi (07, ¢) # 0} N {V,7°(0),,¢) = 0}) <n, ¥n > N, (B.115)

c>c
with V,7%(0!,,¢) defined in (B.113).

Proof. We first show (B.110). If J* = 0, with J* as defined in (B.37), then the result is immediate.
Assume then that J* # (. Any inequality indexed by j ¢ J* is satisfied with probability approaching
one by similar arguments as in (A.19) (both with ¢ and with ¢ — J). Hence, one could argue for sets
W (0, c), W=9(0!,, c) defined as in equations (B.15) and (B.17) but with j € J*. To keep the notation
simple, below we argue as if all j =1,...,J belong to J*.

Let ¢ > 0 be given. Let gp, (6],) be a J + 2d + 2 vector with entries

C_Gpvuj(e;z)_ﬂ-ij? jzla"'ajv
9P, i(0,) = { P j=J+1,...,J+2d, (B.116)
0, j=J+2d+1,J +2d+2,

recalling that 77 ; = 0 for j = J1 +1,---,J. Let 7 be a (J + 2d + 2) vector with entries

1 i=1,...,J
R A (B.117)
0, j=h+1,....J+2d+2.
Then we can express the sets of interest as
W (0, ¢) = {X: Kp, (0,)\ < gp, (0)}, (B.118)
W=2(0r,,¢) = {\: Kp, (0,)) < gp,(0;,) — 67} (B.119)

By Farkas’ Lemma, e.g. Rockafellar (1970, Theorem 22.1), a solution to the system of linear in-
equalities in (B.118) exists if and only if for all u € R{™%"2 such that 4/'Kp, (0,,) = 0, one has
wgp, (0)) > 0. Similarly, a solution to the system of linear inequalities in (B.119) exists if and only if
for all u € R7T24+2 such that /' Kp, (0!,) = 0, one has i/ (gp, (A,) — 67) > 0. Define

M(0;) = {p € RETPPH2 W/ Kp, (67,) = 0} (B.120)
Then, one may write

Pu({W(8;,,¢) # 0} N {W (0}, ¢) = 0})
=P.({#'gp,(0;,) > 0,9 € M(0,,)} N {4 (gp, (07,) — 07) < 0,3 € M(0,,)})
=P.({#'gp,(0;,) > 0,9 € M(0,,)} N {1 gp, (07,) < op'r, 3 € M(6,)}). (B.121)

Note that the set M(6)) is a non-stochastic polyhedral cone. Hence, by Minkowski-Weyl’s theorem
(see, e.g. Rockafellar and Wets (2005, Theorem 3.52)), there exist {v* € M(0)),t =1,--- T}, with
T < oo a constant that depends only on J and d, such that any pu € M(6.,) can be represented as

T
= bZatVt, (B.122)
t=1

where b >0and a; >0, t =1,...,T, 23:1 a; = 1. Hence, if p € M(0),) satisfies p'gp, (6],) < op'T,



denoting v* the transpose of vector v?, we have

T T
Z avgp, (0)) < & Z at'r. (B.123)
t=1 t=1

However, due to a; > 0,Vt and v* € M(#),), this means v*gp (0],) < ov'’r for some t € {1,...,T}.
Furthermore, since v* € M(6.,), we have 0 < v¥gp (0.). Therefore,

Po({i'gp, (65,) = 0,9 € M(07)} N {1/ gp, (6,,) < op'7, I € M(6,,)})

< P,(0<vgp (0),) < ov¥r,3t € {1, Z (0<v'gp,(0,) <ov''r). (B.124)

Case 1. Consider first any ¢ = 1,...,T such that v assigns positive weight only to constraints in
{J+1,...,J+2d+2}. Then

J+2d

Vap,(0,) =p D v,

j=J+1
J+2d+2

vt =4 Z vit; =0,
j=J+1
where the last equality follows by (B.117). Therefore P, (0 < v¥gp (6]) < dv¥'7) = 0.
Case 2. Consider now any ¢ = 1,...,T such that ! assigns positive weight also to constraints
in {1,...,J}. Recall that indexes j = J; + 1,...,J; + 2J5 correspond to moment equalities, each
of which is written as two moment inequalities, therefore yielding a total of 2.Js inequalities with
Dp, j+4,(0)) =—Dp, ;(0,) for j =J1+1,...,J1 + Jo, and:

c—Gp. (0 Ny TS TR AT A
9p,.(0,,) = Pusi(n) 7T bz (B.125)
c+Gp, j—50,) j=li+Jl+1,...,J
For each v, (B.125) implies
J1+2J2 J1+2J2 Ji+J2
> vigp ) =c Y Vit > (W —vii,)Gr,(0)). (B.126)
j=J1+1 j=Ji+1 j=Ji+1
For each j =1,---,J; + Js, define
vt j=1,---,J
gt={" J ! . (B.127)
V;f—l/jtv_i_(]2 j:J1+1,'~~,J1+J2‘
We then let o = (9,--- , 7%, ;,)" and have
J1+J2 J+2d
VWap, (0,) = Y 7Gp, ;(0 +CZV +ZV T Y v (B.128)
j=1 j=J+1

tr ’
Case 2-a. Suppose 7' # 0. Then, by (B.128), %,}T(%) is a normal random variable with variance
(7V'1) 720" Qp, (0,,)7t. By Assumption 3.3 (or Assumption 3.3"), there exists a constant w > 0 that

does not depend on 6/, such that the smallest eigenvalue of Qp, (6.,) is bounded from below by w for



all 0/,. Hence, letting || - ||, denote the p-norm in R7¥24+2 e have

7' Qp, (6,)0" 2 L
¥z T (J+2d+2)?||pt)3 T (J+2d+2)%

(B.129)

Therefore, the variance of the normal random variable in (B.124) is uniformly bounded away from 0,
which in turn allows one to find § > 0 such that P, (0 < W%/P,%W <) <n/T.

Case 2-b. Next, consider the case 7* = 0. Because we are in the case that v assigns positive weight
also to constraints in {1,...,J}, this must be because v} = 0 for all j = 1,---,J; and v = V§+J2
forall j = Jy +1,---,J1 + Jo, while V; # 0 for some j = J; +1,---,J; + Jo. Then we have
ijl vigp, j(0,,) > 0, and ijl vitj = 0 because 7; = 0 for each j = Jy +1,...,J. Hence, the
argument for the case that v! assigns positive weight only to constraints in {J +1,...,J + 2d + 2}
applies and again P, (0 < v¥gp, (0,) < 6v¥’7) = 0. This establishes equation (B.110).

To see why equation (B.111) holds, observe that the bootstrap distribution is conditional on
X1,...,X,, and therefore Kn can be treated as non-stochastic, where K,, is the matrix in equation
(B.18) with D,, replacing Dp, . This implies that the set M., (6/,) can also be treated as non-stochastic,
where M,, is the set in equation (B.120) with K, replacing Kp, . The result then follows because by
Lemma D.2.8 in Bugni, Canay, and Shi (2015), G? A Gp, in [°°(©) uniformly in P conditional on
(X1, X}

The results in (B.114)-(B.115) follow by similar arguments, with proper redefinition of 7 in equa-
tion (B.117). n

LEMMA B.7: Let (P,,0,) have the almost sure representations given in Lemma B.1, let J* be
defined as in (B.37), and assume that J* # 0. Let C collect all size d subsets C of {1, ..., J + 2d + 2}
ordered lexicographically by their smallest, then second smallest, etc. elements. Let 0F, be as defined
in (B.21). Let the random variable C(65) equal the first element of C s.t. det (KS(65)) # 0 and
P (Kg(@;))_l g5(05) € W*=2(65,0) if such an element exists; else, let C(05) = {J+1,..., J+d}.
Here K§(05), g5(05) and W*=9 (65,,0) are as defined in Lemma B.2. Then for anyn > 0, there exist
an >0 and N s.t. n > N implies

P {W*ﬂ? (65,0) # 0, |det K& (65)

< ozn} <. (B.130)

Proof. We establish (B.130) as corollary of the following statement: For each n > 0, there exist o;, > 0
and N s.t. n > N implies

P {W*’*‘S (60,,0) # 0, |det K (1)

San}én

for all 0, € 0,, + ﬁBd. To show this, write

P {0 (6,0) £ 0, [det K" (67)

< an}

< P{5C €% € pB? [det KT (0,)] < ay }
< > P (\“ € pBY).

C€5:|det Kgn (9;)|San

Here, the first inequality holds because W* =9 (8/,,0) C pB¢ and so the event in the first probability

implies the event in the next one; the second inequality is Boolean algebra. Noting that C has (J+2dd+2)
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elements, it suffices to show that

_n_
(722

|det K§ (0,)] <y = P (A\“ € pB?) <7j =

Thus, fix 0], € 6,,+ ﬁBd and C € C. To simplify expressions, omit dependence on !, in the remainder
of this proof. Let ¢© denote the eigenvector associated with the smallest eigenvalue of Kg” Kg,i and
recall that because K§ K& i

“"Kp, K5 d°| < oy = P((Kp,) g5, € pBY) < 7. (B.131)

Now, if |qC’Kgn Kg;qc\ < oy and (Kgn)*lggn € pB?, then the Cauchy-Schwarz inequality yields

|9 g5, | = ‘qC’KP (K§) ‘ < py/day,, (B.132)
hence
P((KF,) g5, € pBY) < P(1g%"gf, | < p\/da). (B.133)

If ¢© assigns non-zero weight only to non-stochastic constraints, then the result follows immediately.
Hence, suppose that ¢© assigns non-zero weight also to stochastic constraints. Assumptions 3.3 (iii)
(or 3.3’ (iii)) and 3.5 (iii) yield that there exists N € N and w > 0 such that for all n > N and
0, €0, + ﬁBd,

cig(Q2p,) 2 w
— Varp(qC’ggn) >w

— P (l¢%g5,| < pyay) = P (—pyay < ¢“gh, < py/ay) < % (B.134)

where the result in (B.134) uses that the density of a normal r.v. is maximized at the expected value.

The result follows by choosing

Ofn:

LEmMMA B.8: If Jo > d, then 3¢ > 0 s.t. liminf, , infpep infopce, (p) P(¢n(0) > ¢) = 1.

Proof. Fix any ¢ > 0 and restrict attention to constraints {J;+1, ..., J1+d, J1+Jo+1, ..., J1+Jo+d}, i.e.
the inequalities that jointly correspond to the first d equalities. We separately analyze the case when
(i) the corresponding estimated gradients {ﬁnJ(G) :j=Ji+1,...,J1 +d} are linearly independent
and (ii) they are not. If {D,, ;(0) : j = J1 +1,..., J; +d} converge to linearly independent limits, then
only the former case occurs infinitely often; else, both may occur infinitely often, and we conduct the
argument along two separate subsequences if necessary.

For the remainder of this proof, because the sequence {6, } is fixed and plays no direct role in the
proof, we suppress dependence of Dn’j(g) and Gz’j(g) on 6. Also, if C is an index set picking certain
constraints, then ﬁg is the matrix collecting the corresponding estimated gradients, and similarly for
GO

Suppose now case (i), then there exists an index set C' C {Jy+1, ..., Ji+d, Jy+Jo+1,..., Ji+Jo+d}
picking one direction of each constraint s.t. p is a positive linear combination of the rows of ﬁg (This
choice ensures that a Karush-Kuhn-Tucker condition holds, justifying the step from (B.136) to (B.137)
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below.) Then the bootstrap coverage probability induced by c is asymptotically bounded above by

P* (sup {p’)\ : lA)n’j)\ <c-— Gz’j,j € J*} > 0) (B.135)
< p* (sup {p/)\ Dy A<c—Gh e C} > o) (B.136)
- p* (sup {p’A Dy A=c—Ghje é} > 0) (B.137)
= P* (p/(DE) Y (c1y — G2C) > o) (B.138)
ACy—1 _ b,C
_pr [ 2 Dn )7 (cla A@i’" ) > (B.139)
VP (DD)108(Dg) !
"C _ rb,C
— p* p adj( 7)7(61d Gn 7) >0 (B140)
VP (adi(D)9Gadi(DS)p
L ad]f ek — | +0p(1) (B.141)
\/p (adj(DS)2Gadj (DS )p
o (dw‘l/Qc) +op(1). (B.142)

Here, (B.136) removes constraints and hence enlarges the feasible set; (B.137) uses that by construc-
tion, the remaining problem is solved at the intersection of its constraints; (B.138) solves in closed
form; (B.139) divides through by a positive scalar; (B.140) eliminates the determinant of DC, using
that rows of 15,? can always be rearranged so that the determinant is positive; (B.141) follows by
Assumption 3.5, using that the term multiplying Gi’;é is Op(1); and (B.142) uses that by Assumption
3.3 (iii) (or Assumption 3.3" (iii-2)), there exists a constant w > 0 that does not depend on 6 such
that the smallest eigenvalue of Qp is bounded from below by w. The result follows for any choice of
€ (0,711 — ) x w'/2/d).

In case (ii), there exists an index set C C {J; +2,...,J1 +d, J; + Jo +2,..., J; + Jo + d} collecting
d — 1 or fewer linearly independent constraints s.t. ﬁn Ji+1 1s a positive linear combination of the
rows of ﬁg. (Note that C' cannot contain J; + 1 or J; + J5 + 1.) One can then write

P <sup {p/)\ Dy A<e—Gh i e QUL+ + 1}} > o) (B.143)

< p* (axzb,%jx ~G . eOU{J1+J2+1}) (B.144)
SP* (Sup{Dn)J1+1)\ZDn,j)\§C—ij,]EC} >1nf{ nJ1+1)\ Dn J1+J2+1)\<C nJhLJZJrl

(B.145)

= P* (Das 1 DS (DE D) M (edg = GHO) 2 e+ Gl gy sy ) - (B.146)

Here, the reasoning from (B.143) to (B.145) holds because we evaluate the probability of increasingly
larger events; in particular, if the event in (B.145) fails, then the constraint sets corresponding to the
sup and inf can be separated by a hyperplane with gradient ﬁn J,+1 and so cannot intersect. The last
step solves the optimization problems in closed form, using (for the sup) that a Karush-Kuhn-Tucker
condition again holds by construction and (for the inf) that Dn JitJatl = —ﬁn’ Ji+1. Expression
(B.146) resembles (B.139), and the argument can be concluded in analogy to (B.140)-(B.142). O

LeEMMA B.9: Suppose that both 71 ; and w1 j+,, are finite, with w4, 7 = 1,...,J, defined in
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(A.4). Then for any 0, € 6, + ﬁBd,
(1) o, ;(0.)/0%, ji0, (07) =1 forj =1, Ju.
(2) Corrp, (m;(X;,00,),mjt5,(X;,0,,)) = =1 for j=1,---,Ji1.
(3) G;(0,,) + Gy 5, (67) — 0 almost surely.
(4) IIDp, j+.,(07) + Dp, ;(07)]| — 0.

;1%%“ = 7,5, and hence the condition that
n,J\"n

1,5, T1,j+J,, are finite is inherited by the limit of the corresponding sequences &, 1VnEr, [m; (Xi,0,)]

Proof. By Lemma B.5, for each 7, lim, . &

O Pp,j (91/1)
—1VnEp, [mj4711(X:,6,,)]
and i, o)
We first establish Claims 1 and 2. We consider two cases.
Case 1.
. Rn o
Jm —=op, ;(0,) >0, (B.147)

which implies that op, ;(6],) — co at rate \/n/ky or faster. Claim 1 then holds because

0, a0 op ;(0,) + Varp, (t;(Xi,0),)) + 2Covp, (m;(X;, 07,), (X5, 60,,))

- —1, (B.148)
of,.5(0n) op,.5(0n)
where the convergence follows because Varp, (t;(X;,6),)) is bounded due to Assumption 3.3’ (iii-1),

|Covp, (m;(X;,0,),t;(X:,0,,)) /op, ;(00)] < (Varp, (t;(X;,0,)))'/?/op, ;(0,),

and the fact that op, ;(6],) — co. A similar argument yields Claim 2.
Case 2.

) =0. (B.149)

) /
W Yn

In this case, w1 ; being finite implies that Ep,m;(X ) — 0. Again using the upper bound on

t;(X;,0;,) similarly to (B.148), it also follows that

15 Yn

. R
lim —

oo \/ﬁo-ij-i-Ju(G;L) =0, (B150)

and hence that Ep, (t;(X;,0;)) — 0. We then have, using Assumption 3.3’ (iii-1) again,
Vare, (45X 8,)) = [ t:(0,0,%dP, (o) = B 155, 6,
< M/tj(x, 6. )dP, (x) — B, [t;(X,0.)]2 — 0. (B.151)

Hence,

0, v, (0n)  ap ;(0,) + Varp, (t;(Xi,0,,)) + 2Covp, (m;(Xi, 07,), (X5, 07,))

U%’n,j(eﬁ) Ufpmj(ejl)
- op, j(0,) + Varp, (t;(Xi,6),)) N 2(Varp, (tj(X;,0,)))/?
B op, ;(0) op,,;(07)
1, (B.152)

and the first claim follows.



To obtain claim 2, note that

~0h, 5 (04) = Cov, (m;(Xi, 0,), 45X, 6,))

17 Yn 1 Yn

Corrp, (m;(X;,0,,), mj1,(X;,0,,)) =

Y n Y n

OP,,j (en)apijrJu (an)
— —1, (B.153)

where the result follows from (B.151) and (B.152).
To establish Claim 3, consider G,, below. Note that, for j =1,--- , Ji1,

G (6
mi "), (B.154)
GnJJrJu (en)
X (my (X000~ (Ea)L[mAm )
= Lz?ﬂ(wxme}f By (X0 000+ e 0 65 (X0s0)— B, [t (X,00)D) | - (B.155)
_\/ﬁ O Py, J+J11(0 )

Under the conditions of Case 1 above, we immediately obtain

(G, (61,) + Gy (67,)] = 0. (B.156)
Under the conditions in Case 2 above, %Z? 1(t(X5,00) — Ep, [t(X;,0),)] = op(1) due to the

variance of this term being equal to Varp, (t;(X;,6;,)) — 0 and Chebyshev s inequality. Therefore,
(B.156) obtains again.
Note that G,, has an asymptotic almost sure representation such that G “3 G* in ¢>°(©). This

therefore implies
G5 (05,) + Gy, (00)] < 1G5 (07) — Gy, ;(67,)]
+1Gy;(00) + Gy i, (O +1G] 4, (07) = G, iy, (6,)] = 0, (B.157)
with probability 1 (under P) where the convergence is due to G 3" G* and |G GO)+Gy o (0,)] —

0 with probability 1 implied by (B.156) and G 4 G,.

To establish Claim 4, finiteness of 71 ; and 7y j4,, implies that

m;(X,0,) m, X, 0! "
o (i + ) = 0 R (B158)
Suppose by contradiction that
Dp, j+5.(0,) + Dp, (0,) = ¢ #0. (B.159)
Write
7= arg nax g, (B.160)
yielding g7 > 0. Let
T = Thp v/ (B.161)

Using a mean value expansion (where 6,, and 6,, in the expressions below are two potentially different



vectors that lie component-wise between 6/, and 6/, + r,,) we obtain

<mj(X7 9;1 +rn) mj+J11(X7 9;1 +rn)>
OP,,j (9% + 7‘n) OP,,j+J11 (9% + 7‘”)

m;(X,0)  mig, (X 9’)> - ~
=E I ond g Il ) 4 (Dp (0,) + Dp, g (00)) T
P <0Pn7j(9%) op, g+ (0) ( Proi(Bn) + D ))

Ep

n

Kn

:O'p(\/ﬁ) + (Dp, ;(0,) + Dp, j+0.,(0,,)) o + (Dp, 5(0n) — Dp, 5(0,,)) rn + (DPn,j+J11 (6n) — DPn,j+Ju(9§l)) Tn
Kn K2 KE

It then follows that there exists N € N such that for all n > N, the right hand side in (B.162) is
strictly greater than zero.
Next, observe that

P (mj(X7 0”” +T7L) mj+J11(X7 0»/,1 +Tn)>
"\op, 0, +10) 0P, g, (0 +TR)
—Ep (mﬂ‘ (X0 +7n) | My, (X0 + m) - (apn,wu(e; + ) 1) Ep, (M40, (X, 05 + 7))

op,j(0, + 1) op,j(0, + 1) op,.j(0, + 1) P, gt (O +10)
=FEp <mj(X7 0,/” +T7L> mj+J11(X7 0”” +Tn)> —Ofp(ﬁ)- (B163)
" O-Pnﬂ(a’il +Tn) O-Pnnj(a’il +/rn) \/ﬁ

Here, the last step is established as follows. First, using that op, ;(6], + ry) is bounded away from

zero for n large enough by the continuity of o(-) and Assumption 3.3/, we have

o-ij+J11(9'/n + T’ﬂ) O’PrL).j+J11(9;’L)
—1= —14o0p(1) =0p(1), B.164
op, (0, + 1) op,,i(0) P(1) = or(l) ( )

where we used Claim 1. Second, using Assumption 3.4, we have that
Ep, (mj10, (X, 0, + 1)) _ Ep,(mj4s,(X,67)) = Fon K2
u n = n n + D s en T =o0p(—=) + Op(—2).
O—Pn,,j+J11(0;L +T7L) O-Pn,j"rc]ll(a?/l) P,HJJFJH( ) p(\/ﬁ) P(\/ﬁ)
(B.165)

The product of (B.164) and (B.165) is therefore OP(%) and (B.163) follows.

To conclude the argument, note that for n large enough, mjy 5, (X, 8], +1,) < —m;(X, 0, +ry,)

rvn

a.s. because for any ¢/, € O7(P,) + p//nB?% by Assumption 3.3 (i) for n large enough, ¢/, +r, € ©
and Assumption 3.3’ (iii-1) applies. Therefore, there exists N € N such that for all n > N, the left
hand side in (B.162) is strictly less than the right hand side, yielding a contradiction. O

Appendix C Auxiliary Lemmas

LEmMA C.1: The event
max p'A>0> min p'A
AEAL (0,p,¢) AEAL (6,p,¢)

with AL (0, p,c) defined in equation (2.7), is equivalent to the event
A% (6,9, ) N /A = 0} £0. (1)

Proof. “If” is immediate. To see “only if,” note that if the first event obtains, then there exist
M€ Ab(0,p,c) with p’XA > 0 > p/A. If either p’A = 0 or p’A = 0, the result follows. Consider the
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case that both are different from zero. As A (6, p,c) is convex, it follows that

'A< P//_\ b
PA— p’A)\ " PA— p’AA € An6:p.c)

and hence the claim. O

LEMMA C.2: Fiz # € ©, P € P and p. Suppose Assumptions 3.1, 3.2, 3.3 or 3.8, 3.4 and 3.5
hold and also that ;(x) < 0 for allx and j. Let 0 < § < p. With a modification of notation, explicitly
highlight ¢,(0)’s dependence on p through the notation é,(0,p). Then

if and only if Dp;(0)/||Dp;(0)| € {p, —p} for all j € T*(0) = {j : Ep[m;(X;,0)] > 0}.

REMARK C.1: The lemma applies to any increase or decrease of p. The claims about ¢25(6) are

implied because in the lemma’s notation, ¢2%(6) = &,(6,0).

REMARK C.2: For 6 such that J*(0) = (), we have &,(0,p) = 0 but also ¢25(0) % 0. This is

consistent with Lemma C.2 because the condition on gradients vacuously holds in this case.

Proof. Recall that § and P are fixed, i.e. we assume a pointwise perspective. Then

én(0,p) L inf{c>0: P({\ € pB?:Gp;(0) + Dp,;(ON<c,j € T*O)}N{pPA=0} #0) >1—a}.
(C.3)

Here, we used convergence of G(0) to Gp;(f) and of D;(6) to Dp;(#), boundedness of gradients,
and the fact that
_ - 0 if jeJ%(0)
0 (ky 'nm;(X;,0)/op;(0) 5 _ (C4)
—oo0 otherwise,
where the first of those cases uses nonpositivity of ;. It therefore suffices to show that the right hand
side of C.3 strictly decreases in p if and only if the conditions of the Lemma hold.
To simplify notation, henceforth omit dependence of Gp;(6), Dp(#), and J*(f) on P and 6.
Define the J vector e to have elements e; = ¢ — G;, j = 1,...,J. Suppose for simplicity that J*
contains the first J* inequality constraints. Let el'*/"] denote the subvector of e that only contains

elements corresponding to j € J*, define D/" correspondingly, and write

g ellid”] 0.1,

1a p-1q 14

K = _Id R g frd p . 1d R T = ]-d

i 0

-7 0 0
where I; denotes the d x d identity matrix. By Farkas’ Lemma (Rockafellar, 1970, Theorem 22.1),

the linear system K\ < g has a solution if and only if for all y € Rf“d”,

WK =0= pu'g>0. (C.5)

To further simplify expressions, fix p=1[10 ... 0]. Let M ={p € R_J:H‘HQ : 'K =0}
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Step 1. This step shows that
P{N€pB?:Gp,;+DpA<c,je T In{pA=0}#10)
> P{N€(p—0)B*:Gp;+DpA<c,j €T In{pA=0}#0) (C.6)
if and only if the condition on gradients holds. This is done by showing that
P{p'g>0Vue MyN{yg—dr<03ueM})>0. (C.7)
under that same condition. The event {y/g > 0 Vi € M} obtains if and only if

. N >
MER?Igd+2 {v'g: ' K=0}>0 (C.8)
and analogously for p/' (g9 —é7) > 0. The values of these programs are not affected by adding a
constraint as follows:
min wg: WK=0 pearg min (ig: g =pM K =0) (C.9)
}LERi*+2d+2 ’ [LER;]:JJ‘H? ’ ’
That is, we can restrict attention to a concentrated out subset of vectors u, where the last (2d + 2)
components of any x4 minimize the objective function among all vectors that agree with p in the first
J* components. The inner minimization problem in equation (C.9) can be written as

fye41 = fgegdi1 + [y 42d+1 — LI 42d42
J*+2d

Pge42 — Ly 4d+2 o
min pasal Z ftj st ) — _M[lJ I plg=:
ﬂ[.] +1:J -%—2{1-%—2]6]1%+ j=J*+1 :
fs+d — s +2d
(C.10)
Thus, the solution of the problem is uniquely pinned down as
~ 0 _
_ [D[lzJ*,Q:d]/‘u[lzJ*] AO - 1d—1}
pl? LT 2] 0 : (C.11)

DRTm2:d)r [T\ gL 1,y
(DI g
D[l:J*,l]/‘u[lzJ*] V0

where DI1+772:d) ), [1:771y/0.1,_; indicates a component-wise comparison. Now we consider the following
case distinction:

Case (i). If D,;/||D;|| € {p,—p} for all j € J*, then p/ VD = (u7" VD71 0, .. 0) and
therefore all but the last two entries of pl/"+1:/"+2d+2] equal zero. One can, therefore, restrict attention
to vectors p with pl/"t1:7"+2d — 0. But for these vectors, x/7 = 0 and so the programs we compare

necessarily have the same value. The probability in equation (C.7) is therefore zero.

Case (ii). Suppose that at least one row of D, say its first row (though it can be one direction of an
equality constraint), is not collinear with p, so that || D24l £ 0.
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Let

1
0-1y1
0
_ [1,2:d)/ 1
oo |l 3A 0 L] (C.12)
(D[l,Q:d]/) V0141
_ [(D[Lll) A 0]
i (D) vo

and note that wl/ 17" +2d] £ 0 hence w'r > 0.

As in the proof of Lemma B.6, the set M can be expressed as positive span of a finite, nonstochastic
set of affinely independent vectors v* € Rik+2d+2 that are determined only up to multiplication by a
positive scalar. All of these vectors have the “concentrated out structure” in equation (C.11). But then
@ must be one of them because it is the unique concentrated out vector with w(t/"] = (1,0,...,0),
and (1,0,...,0) cannot be spanned by nonnegative J*-vectors other than positive multiples of itself.

We now establish positive probability of the event

vWg > 0, all vt
vW(g—61) < 0, some v’

by observing that if we define
X, D] ]
kE-15_4
"= prla , (C.13)
p-lq
0
0

then we have

0=wy, = mtin v

Any other spanning vector v* will not have w!®7’] = 0 and so for any such vector, v*y;, strictly
increases in k. As there are finitely many spanning vectors, all of them have strictly positive inner
product with ¢ if k£ is chosen large enough.

A realization of g = 1 would, therefore, yield

W >0 e M, and @ (g — 67) < —e, (C.14)
for some € > 0. Let
Tp={t:t=1x+¢€/2b, ||b]] <1and @b > 0}. (C.15)
Then
VWi >0Vt e M, and @' (1 — 87) < —€/2, Vi € T (C.16)

The probability in equation (C.7) is therefore strictly positive.
Step 2. Next, we argue that

P({N€pB?: Gj+DjA<c,je T In{pPA=0}#0) (C.17)
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strictly continuously increases in ¢. The rigorous argument is very similar to the use of Farkas’ Lemma
in step 1 and in Lemma B.6. We leave it at an intuition: As ¢ increases, the set of vectors g fulfilling
the right hand side of (C.5) strictly increases, hence the set of realizations of G, that render the
program feasible strictly increases, and G; has full support.

Step 3. Steps 1 and 2 imply that

igg{P({)\Ede:Gj+Dj)\§c,j eTIN{PA=0}#0)>1—a}
> inf{P({re (o OB :Gj+ D <c,j € T IN{pPA=0}#0) >1—a} (C.18)

and hence the result. O
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