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Abstract

We provide general compactness results for many commonly used parameter spaces in non-
parametric estimation. We consider three kinds of functions: (1) functions with bounded do-
mains which satisfy standard norm bounds, (2) functions with bounded domains which do not
satisfy standard norm bounds, and (3) functions with unbounded domains. In all three cases we
provide two kinds of results, compact embedding and closedness, which together allow one to
show that parameter spaces defined by a || - ||s-norm bound are compact under a norm || -||.. We

apply these results to nonparametric mean regression and nonparametric instrumental variables
estimation.
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1 Introduction

Compactness is a widely used assumption in econometrics, for both finite and infinite dimensional
parameter spaces. It can ensure the existence of extremum estimators and is an important step in
many consistency proofs (e.g. Wald 1949). Even for noncompact parameter spaces, compactness
results are still often used en route to proving consistency. For finite dimensional parameter spaces,
the Heine-Borel theorem provides a simple characterization of which sets are compact. For infinite
dimensional parameter spaces the situation is more delicate. In finite dimensional spaces, all norms
are equivalent: convergence in any norm implies convergence in all norms. This is not true in
infinite dimensional spaces, and hence the choice of norm matters. Even worse, unlike in finite
dimensional spaces, closed balls in infinite dimensional spaces cannot be compact. Specifically, if
|| - |l is a norm on a function space .%, then a || - ||-ball is || - [|-compact if and only if .Z is finite
dimensional. This suggests that compactness and infinite dimensionality are mutually exclusive.
The solution to this problem is to use two norms—define the parameter space using one and obtain
compactness in the other one. This idea goes back to at least the 1930’s, and is a motivation for
the weak™ topology; see the Banach-Alaoglu theorem, which says that || - ||-balls are compact under
the weak™ topology (but not under || - ||, otherwise the space would be finite dimensional).

In econometrics, this idea has been used by Gallant and Nychka (1987) and subsequent authors
in the sieve estimation literature. There we define the parameter space as a ball with the norm || - |5
and obtain compactness under a norm || - ||.. This result can then be used to prove consistency of a
function estimator in the norm ||-||.. In the present paper, we gather all of these compactness results
together, along with several new ones. We organize our results into three main parts, depending
on the domain of the function of interest: bounded or unbounded. We first consider functions
on bounded Euclidean domains which satisfy a norm bound, such as having a bounded Sobolev
integral or sup-norm. Second, we consider functions defined on an unbounded Euclidean domain,
where we build on and extend the important work of Gallant and Nychka (1987). Finally, we
return to functions on a bounded Euclidean domain, but now suppose they do not directly satisfy
a norm bound. One example is the quantile function Qx : (0,1) — R for a random variable X with
full support. Since Qx(7) asymptotes to +0o as 7 approaches 0 or 1, the derivatives of Qx are
unbounded. Nonetheless, we show that compactness results may apply if we replace unweighted
norms with weighted norms.

In all of these cases, there are two steps to showing that a parameter space defined as a ball
under || - ||s is compact under || - ||.. First we prove a compact embedding result, which means that
the ||-||c-closure of the parameter space is || - ||.-compact. Second, we show that the parameter space
is actually || - ||c-closed, and hence equals its closure and hence is compact. We show that some
choices of the pair || - ||s and || - || satisfy the first step, but not the closedness step. Consequently,
if one nevertheless wants to use these choices, then one should allow for parameters in the closure.

For functions on unbounded Euclidean domains, we follow the approach of Gallant and Nychka
(1987) and introduce weighted norms. Gallant and Nychka (1987) showed how to extend compact

embedding proofs for bounded domains to unbounded domains. We review and extend their result



and show how it applies to a general class of weighting functions, as well as many choices of || - ||
and || - ||¢, such as Sobolev Ls norms, Sobolev sup-norms, and Holder norms. In particular, unlike
existing results, our result allows for many kinds of exponential weight functions. This allows, for
example, parameter spaces for regression functions which include polynomials of arbitrary degree.
We also discuss additional commonly used weighting functions, such as polynomial upweighting and
polynomial downweighting. We explain how the choice of weight function constrains the parameter
space. In a typical analysis, the choice of norm in which we prove consistency also has implications
on how strong other regularity conditions are, such as those for obtaining asymptotic normality,
and how easy these conditions are to check. Such considerations may also affect the choice of norms.

We illustrate these considerations with two applications. First, we consider estimation of mean
regression functions with full support regressors. We give low level conditions for consistency
of both a sieve least squares and a penalized sieve least squares estimator, and discuss how the
choice of norm is used in these results. We also show that weighted norms can be interpreted as
a generalization of trimming. Second, we discuss the nonparametric instrumental variables model.
We again give conditions for consistency of a sieve NPIV estimator and discuss the role of the norm
in this result.

We conclude this section with a brief review of the literature. All of our compact embedding
results for unweighted function spaces are well known in the mathematics literature (see, for exam-
ple, Adams and Fournier 2003). For weighted Sobolev spaces, Kufner (1980) was one of the earliest
studies. He focuses on functions with bounded domains, and proves several general embedding
theorems for a large class of weight functions. These are not, however, compact embedding results.
Schmeisser and Triebel (1987) also study weighted function spaces, but do not prove compact
embedding results. As discussed above, Gallant and Nychka (1987) prove an important compact
embedding result for functions with unbounded domains. Haroske and Triebel (1994a) prove a
general compact embedding result for a large class of weighted spaces. This result, as well as the
followup work by Triebel and coauthors, such as Haroske and Triebel (1994b) and Edmunds and
Triebel (1996), relies on assumptions which hold for polynomial weights, but not for exponential
weights (see pages 14 and 16 for details). Moreover, as we show, these results also do not apply
to functions with bounded domain. Hence, except in one particular case (see our discussion of
Brown and Opic 1992 below), our compact embedding results for functions on bounded domains
are the first that we are aware of. Likewise, except in one particular case (again see our Brown and
Opic 1992 discussion below), our compact embedding results for functions on unbounded domains
allow for a much larger class of weight functions than previously allowed. In particular, we allow
for exponential weight functions. Note, however, that the results by Triebel and coauthors allow
for more general function spaces, including Besov spaces and many others. We focus on Sobolev
spaces, Holder spaces, and spaces of continuously differentiable bounded functions because these
are by far the most commonly used function spaces in econometrics.

Brown and Opic (1992) give high level conditions on the weight functions for a compact em-
bedding result similar to that in Gallant and Nychka (1987), for both bounded and unbounded



domains. Similar to Gallant and Nychka (1987), this result is only for compact embeddings of a
Sobolev L, space into a space of bounded continuous functions. This result allows for many kinds
of exponential weights. In these cases, our results provide simpler lower level conditions on the
weight functions, although these conditions are less general. Importantly, we also provide seven
further compact embedding results that they do not consider. See pages 17 and 24 for more details.

Just seven years after Wald’s (1949) consistency proof, Kiefer and Wolfowitz (1956) extended
his ideas to apply to nonparametric maximum likelihood estimators.! Their results rely on the well-
known fact that the space of cdfs is compact under the weak convergence topology. In econometrics,
their results have been applied by Cosslett (1983), Heckman and Singer (1984), and Matzkin (1992).
More recently, Fox and Gandhi (2015) and Fox, Kim, and Yang (2015) have used similar ideas,
relying on this particular compactness result. This compactness result is certainly powerful when
the cdf is our object of interest. We are often interested in other functions, however, like pdfs or
regression functions. The results in this paper can be applied in these cases. Wong and Severini
(1991) extended the analysis of nonparametric MLE even further. They still make a compact
parameter space assumption, but do not restrict attention to cdfs.

Compactness results like those we review here are used throughout the sieve literature. For ex-
ample, see Elbadawi, Gallant, and Souza (1983), Gallant and Nychka (1987), Gallant and Tauchen
(1989), Fenton and Gallant (1996), Newey and Powell (2003), Ai and Chen (2003), Chen, Hong, and
Tamer (2005), Chen, Fan, and Tsyrennikov (2006), Brendstrup and Paarsch (2006), Chernozhukov,
Imbens, and Newey (2007), Hu and Schennach (2008), Chen, Hansen, and Scheinkman (2009a),
Santos (2012), and Khan (2013). Chen (2007) gives additional references to sieve estimation in the
literature. Appendix A in the supplement to Chen and Pouzo (2012) provides a brief overview of
some of the compactness results we discuss.

An alternative approach in the sieve literature to assuming a compact parameter space is to
use penalization methods. In this case, it is often assumed that the penalty function is lower
semicompact. For example, see Chen and Pouzo (2012) theorem 3.2 and Chen and Pouzo (2015)
assumption 3.2(iii). For the penalty function pen(-) = || - ||s and consistency norm || - ||, lower
semicompactness of pen(-) means that || - ||s-balls are || - || .-compact. This is precisely the conclusion
of a compact embedding and closedness result combined. Hence our results are useful even if one
does not want to assume the parameter space itself is compact.

Even when neither compactness nor penalization is necessary for consistency, such as in theorem
3.1 of Chen (2007), an ‘identifiable uniqueness’ or ‘well separated’ point of maximum assumption
is needed. Also see van der Vaart (2000) theorem 5.7, van der Vaart and Wellner (1996) lemma
3.2.1, and the discussion in section 2.6 of Newey and McFadden (1994). Compactness combined
with continuity of the population objective function provide simple sufficient conditions for this
assumption, as Chen (2007) discusses via her condition 3.1”.

The rest of this paper is organized as follows. In section 2 we review the definitions of the

'Wald (1949) did attempt to generalize his results to the infinite dimensional case in his final section. His
approach, however, is to assume that closed balls are compact (his assumption 9(iv)). As we've discussed, this
implies the parameter space is actually finite dimensional.



norms and function spaces used throughout the paper. Our main results are in sections 3, 4, and 5,
where we consider each of the three cases discussed above. In section 6 we discuss our applications.
Section 7 concludes. Definitions, statements of lemmas, and some proofs are in the appendix. All

other results and proofs are given in a supplemental appendix.

2 Norms for functions

Since the choice of norm for infinite dimensional function spaces matters, we begin with a brief
survey of the three kinds of norms most commonly used in econometrics: Sobolev sup-norms,
Sobolev integral norms, and H6lder norms. These norms are defined for functions f : D — R where
the domain D is an open subset of R% possibly the entire space R%, for an integer d, > 1.2 For

these functions, denote the differential operator by
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where A = (A1, ..., A\g, ) is a multi-index, a d,-tuple of non-negative integers, and |A| = Aj+- - -+ g, .
Note that VOf = f.

The first space we consider are continuously differentiable functions whose derivatives are uni-
formly bounded. Let m be a nonnegative integer. For an m-times differentiable function f : D — R,

define the weighted Sobolev sup-norm of f as

= max sup |V f(z ).
[/l = s sup [V (2 )

Here p1 : D — Ry is a continuous nonnegative weight function. Let || f||;m,00 denote the unweighted

Sobolev sup-norm; that is, the weighted Sobolev sup-norm with the identity weight p(x) = 1. For

the identity weight and m =0, || - |lm,c0,u is just the usual sup-norm. Relatedly, notice that
= v :
[ llm,00, Ogr?)\?%(m 1V Fllo,00,1

Let €,,(D) denote the space of m-times continuously differentiable functions f : D — R. Let
Gim.con(D) = {f € Cn(D) : || fllm.copu < o0}

The normed vector space (G, c0u(D), ||+ [lm,cop) 18 || [lm,c0 u-complete3, and hence it is a || - ||, 00,1~
Banach space.

The next space we consider replaces the sup-norm with an L, norm. Let p satisfy 1 < p < oo.

2Restricting ourselves to open subsets avoids the problem of defining derivatives at the boundary. For functions
with closed domains, our results can be extended under a continuity at the boundary assumption; see lemma S3 in
the supplemental appendix.

3Under assumption 6” below. For example, see theorem 5.1 of Rodriguez, Alvarez, Romera, and Pestana (2004).



For an m-times differentiable function f : D — R, define the weighted Sobolev L, norm of f as

1/p

T /D V(@) P i) da

0<A|<m

o is a weight function as above. We also call this a Sobolev integral norm. Let || f||,,, denote the
unweighted Sobolev L, norm. For the identity weight and m = 0, || - ||lmp, is just the usual Ly,

norm. Relatedly, notice that

A
Hf”lfn,p,u = Z ||v f”g,p,u'

0<A|<m
| - 1lo,p,u is called the weighted L, norm. Let £, ,(D) denote the space of functions f : D — R with
[[fllo.p, < o0
While the Sobolev sup-norm measures functions in terms of the pointwise largest values of the
function and its derivatives, the Sobolev L, norm measures functions in terms of the average values

of the function and its derivatives. The space

{f € Gn(D) : | fllmpu < o0}

equipped with the norm || - ||, is 70t || - |m p u-complete. For unweighted spaces, pu(z) = 1, we
instead consider the completion of this space, denoted by 74, ,1(D). An important result from
functional analysis known as the ‘H=W theorem’ states that this completion equals the Sobolev
space W p1 (D), which is the set of all £, 1(D) functions f which have weak derivatives and whose
weak partial derivatives V2 f are in %, 1(D) for all 0 < |A| < m.* For weighted spaces, the H=W
theorem does not necessarily hold; see Zhikov (1998).% For this reason, we follow the literature by
defining the weighted Sobolev space #;, ., as the set of all £, ,(D) functions f which have weak
derivatives and whose weak partial derivatives V*f are in %, (D) for all 0 < |A| < m. For both
of the weighted Sobolev norms, there is a less common alternative approach to incorporating the
weighting function, which we discuss in section 4.3.

The final space of functions we consider is similar to the space of functions with bounded

unweighted Sobolev sup-norms. Define the Hélder coefficient of a function f: D — R by

[f]y — sup ‘f(fl,’) — f(y)’

z,y€D,x#y H‘T - y”g

for some v € (0, 1], called the Hélder exponent, where || - || is the R%-Euclidean norm.® A function

“See theorem 3.17 in Adams and Fournier (2003).

5Similar results sometimes obtain, however. For example, see Kufner and Opic (1984) remark 4.8 and also the
discussion in Zhikov (1998). Also see remark 4.1 of Kufner and Opic (1984).

5y > 1 is excluded since [f], < oo for a v > 1 implies that f is constant.



with [f], < oo is Holder continuous since

[f(@) = fW) < [fl - lle =yl

holds for all z,y € D. Define the Hélder norm of f as

£ llm,00,1.0 = [l fllm,oc + max [VAf],
[A|l=m

VA f(z) -V
= max sup |V f(z)| + max  sup V() f()l
s veb M=moyepazy o=yl

)

where recall that || - ||, 00 is the unweighted Sobolev sup-norm. The Hélder coefficient generalizes

the supremum over the derivative; for differentiable functions f we have

[/l = sup [V f(z)].

z€D

The Holder exponent [f]1, however, is also defined for nondifferentiable functions f. Define the

Holder space with exponent v by

Cmoo1w(D) = {f € (D) : [ fllmoco,1,0 < 00}

The normed vector space (€, 00,1, (D), || - [lm,00,1,0) 18 || - |lm,00,1,,-complete. We discuss weighted
Holder spaces, along with an alternative approach to weighted Sobolev spaces, in section 4.3. For

all of these function spaces, we omit the domain D from the notation when it is understood.

3 Functions on bounded domains

Let (Z,] - ||s) and (¢,] - ||c) be Banach spaces with % C 4. These could be any of the spaces

mentioned in the previous section. Our main goal is to understand when the space

O={feF:|flls <B} (1)
is || - ||c-compact, for various choices of the two norms, where B > 0 is a finite constant. || - [|s
is called the strong norm, since it will be stronger than || - || in the sense that || - || < M| - ||s

for a finite constant M. Because we cannot obtain compactness of © in the strong norm without
reducing it to a finite dimensional set, we instead obtain compactness under || - ||., which is called
the consistency or compactness norm. In econometrics applications, we obtain consistency of our
function estimators in this latter norm (see section 6).

The general approach to obtaining | - ||.-compactness of © has two steps. First, we prove that ©
is relatively || - ||.-compact, meaning that the || - ||.-closure of © is || - ||.-compact. This is essentially
what it means for the space (.7, || - ||s) to be compactly embedded in the space (¥4, ]| - ||.), which is
denoted with % < 4. See appendix A for a precise definition. Next, we show that © is actually



|| - |lc-closed, and hence its || - ||.-closure is just © itself. Consequently, © itself is || - ||.-compact.

Thus our first result concerns compact embeddings.

Theorem 1 (Compact Embedding). Let D € R% be a bounded open set, where d, > 1 is some
integer. Let m, my > 0 be integers. Let v € (0, 1]. Then the following embeddings are compact:

L. Wtme2 = Gm.oo, if mo > dy/2 and D satisfies the cone condition.
2. Wntmo,2 = Wm,2, if mg > d;/2 and D satisfies the cone condition.

3. Crmt+mo,00 = €m0, if mg > 1 and D is convex.

4. Cmtmo,00 = Pm2, if mg > dy/2, and D satisfies the cone condition.
5. Cmtmo,00,1,0  Cm o0, for mg > 0.

As we cite in the proof, all of these results are well known in mathematics. Result 5 shows
that sets bounded under the Holder norm are relatively compact under the Sobolev sup-norm,
even with the same number of derivatives; the extra Holder coefficient piece is sufficient to yield
relative compactness. Result 3 shows that sets bounded under Sobolev sup-norms are compact
under Sobolev sup-norms using fewer derivatives. Result 2 shows that sets bounded under Sobolev
Ls norms are relatively compact under Sobolev Lo norms with fewer derivatives, where the number
of derivatives we have to drop depends on the dimension d, of the domain. Finally, results 1 and
5 show the relationship between the Sobolev sup-norm and the Sobolev Ls norm. Sets bounded
under one are relatively compact under the other with fewer derivatives, where again the number of
derivatives we must drop depends on d,. Results 1, 2, and 4 require D to satisfy the cone condition,
which is a geometric regularity condition on the shape of D. It is formally defined in appendix
A. When d, = 1, a sufficient condition for the cone condition is that D is a finite union of open
intervals. When d, > 1, a sufficient condition is that D is the product of such finite unions.

By combining cases 4 and 5 and applying lemma 4, we also obtain compact embedding of
Holder spaces into Sobolev Lo spaces. Here and throughout the paper, however, we focus only on
the function space combinations which are most commonly used in econometrics.

Theorem 1 only shows that sets bounded under the norm || - ||s on the left hand side of the —
are relatively compact under the norm || - || on the right hand side of the <. As mentioned earlier,
this means that their || - ||.-closure is || - ||.-compact. The following theorem shows that in some of

these cases, || - ||s-closed balls are || - ||.-closed as well.

Theorem 2 (Closedness). Let D C R% be a bounded open set, where d, > 1 is some integer. Let
m,mgy > 0 be integers. Let v € (0,1]. Let (%, |- ||s) and (¢, || - ||c) be Banach spaces with % C ¢,
where || f||s < oo for all f € .% and ||f||. < oo for all f € 4. Define O as in equation (1). Then the
results in table 1 hold. For cases (1) and (2) we also assume mg > d, /2 and D satisfies the cone
condition. For cases (3) and (4) we also assume mg > 1. For case (5) we also assume D satisfies

the cone condition.



- lls - Ile O is || - ||-closed?

(1) - lmtmo,2 Il - .00 Yes

(2) I+ llmtmo.2 |- llm.2 Yes

(3) M+ llmtmo,c0 Il - .00 No

(4) - llmtmo,00 [~ {lm,2 No

(5) M lmtmoc0nw - llmoo Yes
Table 1

Results 1, 2, and 5 of theorem 2 combined with results 1, 2, and 5 of theorem 1 give pairs of
strong and consistency norms such that the || - ||s-ball © defined in equation (1) is || - ||.-compact.
We illustrate how to apply these results in section 6. We also discuss additional implications of the
choice of norms in that section.

For results 3 and 4, however, we see that © is not || - ||.~closed. We could nonetheless proceed
by simply agreeing to just work with the || - ||.-closure © of © instead. Theorem 1 then ensures that
this || - [|-closure is || - ||.~-compact. Moreover, by the very definition of the closure, every element in
the closure can be approximated arbitrarily by an element in the original set. Hence, as is needed
in econometrics applications, we can construct sequences of approximations that still satisfy any
necessary rate conditions. In sieve estimation, the choice of sieve space in practice also will not be
affected by whether we use the closure or not. Working with the closure is precisely what Gallant
and Nychka (1987) did, until Santos’ (2012) lemma A.1 showed that their parameter space was
actually closed, thus proving result 2 in theorem 2 above.

Nonetheless, as with Santos’ (2012) result, it is informative to know when the closure can be
characterized. In case 3, a simple characterization is possible. Here the strong norm is the Sobolev
sup-norm. It turns out that the || - [|.-closure is precisely a Holder space with exponent v = 1, as
we show in the supplemental appendix H. Hence, there is no difference between working with the
|| - [|c-closure in case 3 or just using case 5 with v = 1 and one fewer derivative (the closure in case
3 will contain functions whose m + mg’'th derivatives do not exist). This is one reason why we
sometimes use the Holder norm rather than the conceptually simpler Sobolev sup-norm. We are

unaware of any simple characterizations of the closure in case 4.

4 Functions on unbounded domains

Gallant and Nychka (1987) extended the first compact embedding result from theorem 1 to spaces
of functions on D = R% . In this section, we show how to further extend their result in several
ways. In particular, our results allow for exponential weighting functions, as well as the standard
polynomial weighting functions used by Gallant and Nychka and subsequent authors. We also
extend results 2-4 of theorem 1 as well as the closedness results of theorem 2 to D = R%. All of
these results use weighted norms, as introduced in section 2. There are at least two reasons to use

weighted norms for functions on R%. The first is that many functions do not satisfy unweighted



norm bounds. For example, the linear function f(z) = « on R has || f]jp.c = 00. By sufficiently
downweighting the tails of f, however, the linear function can have a finite weighted sup-norm.
The second reason is that even when a function f satisfies an unweighted norm, we can upweight
the tails of f, which yields a stronger norm than the unweighted norm. This makes our concept of
convergence finer. As in Gallant and Nychka’s application, this is often the case with probability
density functions, since they must converge to zero in their tails.

A further subtly is that we actually use two different weighting functions—one for the strong
norm || - ||s, denoted by ps, and another for the consistency norm || - ||, denoted by p.. The reason
comes from the main step in Gallant and Nychka’s compact embedding argument. Their idea was
to truncate the domain D = R% by considering a ball centered at the origin and its complement.
Inside the ball, we can apply one of the results from theorem 1. The piece outside the ball, which
depends on tail values of the functions and their weights, is made small by swapping out one weight
function for another, and then using the properties of these two weight functions.

In the following subsection 4.1, we discuss the various classes of weight functions we will use. In
many cases, these weight functions are more general than those considered in Gallant and Nychka
(1987) and elsewhere in the literature. In subsection 4.2 we give the main compact embedding and

closedness results for functions on D = R% .

4.1 Weight functions

Throughout this section we let u, pie, s : D — R4 be nonnegative functions and m,mg > 0 be
integers. We first discuss some general properties of weight functions. We then examine several
specific examples. We conclude by discussing general assumptions on the classes of weight functions
we use in our main compact embedding and closedness results, and show that these hold for specific
examples.

Our first result is simple, but important.

Proposition 1. Suppose there are constants My and My such that
0 <M < p(z) <My < oo

for all z € D. Then
L || [lmyo0,u and || - |lm,co are equivalent norms.
2. || - lm2,. and || - [lm,2 are equivalent norms.

Proposition 1 says that weight functions which are bounded away from zero and infinity are
trivial in the sense that they do not actually generate a new topology. Consequently, any nontrivial
weight function must either diverge to infinity (upweighting) or converge to zero (downweighting)
for some sequence of points in D. These are the only two kinds of weight functions we must consider.

The next result shows that upweighting only allows for functions which go to zero in their tails.

10



Proposition 2. Let D = R%. Suppose u(x) — oo as ||z|. — co. Suppose that for some constant
B < o0, either (a) || f]lo,00,u < B or (b) || fllo,2,u < B holds. Then f(x) — 0 as ||z|le — occ.

This result implies that derivatives of f must go to zero in the tails when f is bounded in one
of the upweighted Sobolev norms || - |[m,00,u OF || - |lm,2,, With m > 0. Proposition 2 implies that the
choice between upweighting and downweighting will primarily depend on whether we want to study
spaces with functions f that do not go to zero at infinity. For example, for spaces of probability
density functions, we typically will choose upweighting as in Gallant and Nychka (1987). For spaces

of regression functions, we typically will choose downweighting.”

Polynomial weights

The most common weight function used in econometrics is the polynomial weighting function,

n(z) = (1+a'z)’
= (1+ ]2,

where § € R is a constant. If § > 0 then this function upweights for large values of x, while if § < 0

then this function downweights for large values of z. These possibilities are illustrated in figure 1.

5.

al

3

5.

s

3[

5.

al

3

L L L L L L L L
-4 -2 0 2 4 -4 -2 2 4 -4 -2 0 2 4

Figure 1: Polynomial weighting functions pu(z) = (1422)°. Top: Upweighting, with § = 0.5,1.5,2.5
from left to right. Bottom: Downweighting, with § = —0.5, —1.5, —2.5 from left to right.

One reason that polynomial weights are ubiquitous is that the well-known compact embedding
result of Gallant and Nychka (1987) applies specifically to polynomial weights. In our theorem 3

below, we restate this result and show how to generalize it to allow for additional classes of weight

"See, however, Newey and Powell (2003) page 1569, who use upweighting for spaces of regression functions, but
include a parametric component to their function spaces to allow for certain unbounded functions. We discuss this
further in section 6.
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functions. There, as in section 3, we want to understand when spaces of functions
©={fe7:|fls<B}

are || - ||c-compact, where (.Z,|| - ||s) is a Banach space and B < oo is a constant. To allow for the
space .Z to contain functions with domain D = R%, we will choose || - ||s and || - || to be weighted
norms, with corresponding weights us and p., respectively.

To understand what it means for a function to have a bounded weighted norm, consider the
Sobolev sup-norm case where || - [|s = || - |lm-tmo,c0us With polynomial weights ps(z) = (1 + 2'z)%.
Then f € © implies that

sup |V f(2)|(1+2'z) < B
z€Rd

for every 0 < |A\| < m + mg. Consider the upweighting case, s > 0. We have already pointed out
that upweighting implies the levels of f and its derivatives must go to zero in their tails. But here,
with the specific polynomial form on the weight function, we know the precise rate at which the

tails must go to zero:

VA ()] = O(us(x) ™) = O((1 + 2'z) %) (2)

as ||z|le = oo, for each 0 < |A| < m+myg. For example, with d, = 1 and d; = 1, | f(x)| can go to zero
at the same rate as us(z)™! = 1/(1 + 22) = O(z~2). But it cannot go to zero any slower, because
that would violate the norm bound. Recall that the ¢-distribution with one degree of freedom has
pdf C/(1 + 2?) where C is a normalizing constant. So the fattest tails |f(x)| can have are these
t-like tails.

Next consider the downweighting case, ds < 0. Then |f(z)| no longer has to converge to zero
in the tails. But it also cannot diverge too quickly. The norm bound tells us exactly how fast it
can diverge, which is given exactly as in equation (2). For example, with d, = 1 and d5 = —1,
|f(z)| can diverge at the rate us(z)™t = 1 + 22 = O(2?). This point implies that with polynomial
weights, the choice of d5 determines the maximum order polynomial that is in ©. In general, for
§s = —n where n is a natural number, ps(z)~t = O(2??) is the highest order polynomial allowed.

Similar analysis applies for the Sobolev Lo norm, for both downweighting and upweighting.

Exponential weights

An alternative to polynomial weighting are the exponential weights

plz) = [exp(z'z)]’
= exp(d]||2),

where § € R is a constant. § > 0 corresponds to upweighting, while § < 0 corresponds to down-
weighting. These possibilities have similar qualitative appearances to the polynomial weights in

figure 1.

12



As with polynomial weights, we want to understand what it means for a function to be in the
||-||s-ball ©, where [|-||5 is a weighted norm. Consider the Sobolev sup-norm case ||-|[s = ||*|lm+mo,00,us
with us(x) = exp[ds(a’z)]. Then f € O implies that

sup VA ()| expld, ('a)] < B

z€Rdz

for every 0 < |A\| < m + myg. Hence

VA f(2)] = O(us(x) ") = O(exp[—ds(a"2)))

as ||z||e = oo, for each 0 < |\| < m+myg. Consider the downweighting case s < 0. Then we see that
by using exponential weights we can allow for |V* f(z)| to diverge to infinity at an exponential rate.
In particular, |[V*f(z)| can diverge at any polynomial rate. More precisely, |V f(x)| proportional
to 2™ for any natural number n > 0 will satisfy the specified rate, regardless of the value of §5; < 0.
In contrast, using a polynomial downweighting function requires specifying a maximum order of
polynomial allowed.

Consider the upweighting case, §; > 0. We have already pointed out that upweighting implies
the levels of f and its derivatives must go to zero in their tails. But here, with the specific
polynomial form on the weight function, we know the precise rate at which the tails must go to
Z€ro: O( exp[—ds(2’ a:)]) In applications, this is likely to be very restrictive. For example, it rules
out t-distribution like tails. For this reason, we do not discuss exponential upweighting any further.
Similar analysis applies for the Sobolev Ls norm, for both downweighting and upweighting.

While we focus on the weights u(z) = exp(§||z||?) throughout this paper, one could consider
a wide variety of exponential weight functions, such as exp(d|z||f) where x € R is an additional
weight function parameter. Another possibility is to use a different finite dimensional norm, like

the ¢1-norm ||z||; = Zz’:l |z |. This yields the weight function exp(d||z||}).

Assumptions on weight functions

With these two main classes of weight functions in mind, we state our main results for the two
general weight functions ps; and p. used in defining the strong and consistency norms. We will,
however, make several assumptions on these weight functions. We then verify that these assump-
tions hold for either polynomial or exponential weights, or both. The first assumption states that
the consistency norm weight goes to zero faster than the strong norm weight as we go further out

in the tails.

Assumption 1.

as ||z]|c = oo (for D = R%) or as dist(x, Bd(D)) — 0 (for bounded D).

Here dist(x, Bd(D)) = min, cp 45 lz — ylle = 0 where Bd(D) denotes the boundary of the

13



closure of D. As discussed earlier, the key idea to prove compact embedding is to truncate the
domain R%, and then ensure that the norm outside the truncated region is small. Assumption 1

is one part of ensuring that this step works. Both polynomial weights
pe(z) = 1+ 2'z)% and  py(z) = (1+2'z)%
and exponential weights
fic(x) = expldc(z'z)] and  ps(z) = explds(a'z)]

have the form p(z)® where p(z) — 0o as ||z|| — oo. Hence for both kinds of weights the ratio is

N~—
I
2
&

prs (2

and so assumption 1 holds by choosing §. < ;.
The following assumption, which bounds the ratio for all x, not just x’s in the limit, plays a

similar role in the proof.

Assumption 2. There is a finite constant M5 > 0 such that

for all z € D.

As above, assumption 2 holds for both polynomial and exponential weights with §. < ds. The
next assumptions bounds the derivatives of the (square root) strong norm weight function by its

(square root) levels.

Assumption 3. There is a finite constant K > 0 such that
VA uy?(2)| < Kpy/?(x)

for all [A\| < m+ mg and for all z € D.

This assumption is precisely what Gallant and Nychka (1987) used in their analysis. This
assumption was also used by Schmeisser and Triebel (1987) page 246 equation 2, and followup
work including Haroske and Triebel (1994a,b) and Edmunds and Triebel (1996). Gallant and
Nychka’s lemma A.2 proves the following result.

Proposition 3. Let pg(z) = (1 + 2/z)% and D = R%. Then assumption 3 holds for any integers
m, mg > 0 and any J; € R.

Assumption 3 also holds for certain kinds of exponential weights. For example, for d, = 1 and
0s = —1 consider us(x) = exp(—|z|). Then the weak derivative of \/us(x) with respect to z is

14



—+/ps(x)sign(x), and hence

= | — sign(x 1.
——— = | —sign(o)] <

Assumption 3 does not allow for many other kinds of exponential weights, however. For example,

consider d; = 1 and J; = —1 again but now using the Euclidean norm for x:

ps(x) = exp(—a?).

Then

0
%v ps(x) = =2/ prs ()
and hence

s ()

The function |z| is unbounded on R and so assumption 3 fails. The function |z| is, however, bounded

= |x|.

for any compact subset of R. This motivates the following weaker version of assumption 3.

Assumption 4. For every compact subset C C D, there is a constant K¢ < oo such that
IV ul/?(z)] < Kepl/?(x)

for all [A\| < m + myp and for all z € C.

This relaxation of assumption 3 will also be important in section 5 when we consider weighted
norms for functions with bounded domains. The following proposition shows that exponential
weights using the Euclidean norm satisfy assumption 4. Also note that polynomial weights imme-

diately satisfy it since they satisfy the stronger assumption 3.

Proposition 4. Let y,(x) = exp[ds(2'x)] and D = R%. Then assumption 4 holds for any integers
m, mg > 0 and any J; € R.

Finally, for one of our results we use the following assumption.
Assumption 5. There is a function g(z) such that the following hold.
1. g(x) — o0 as ||z|e — oo (for D = R%) or as dist(x, Bd(D)) — 0 (for bounded D).

2. For ﬂi/Q(x) = g(x)ui/Q(x) there is a constant M < oo such that

V)\~1/2 <M 1/2
e [V )] < Mal ()

for all x € D.
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In the supplemental appendix G we give some intuitive discussion of assumption 5. The main
purpose of considering assumption 5 is similar to our motivation for assumption 4: it allows for
cases where assumption 3 does not hold. In particular, in the following proposition we show that

assumption 5 holds for exponential weights.

Proposition 5. Let u.(x) = exp[d.(2'z)], ps(x) = exp[ds(2'z)], and D = R% . Then assumption 5
holds for any ds, . € R such that 6. < Js.

Our final assumption on the weight functions ensures that the weighted spaces are complete.
See Kufner and Opic (1984) and more recently Rodriguez et al. (2004) for more details. This

assumption is a minor modification of the first part of assumption H in Brown and Opic (1992).%

Assumption 6. Let M = {x € D : p.(x) # 0}. Then for any bounded open subset O C M, (1)

fe is continuous on O and (2) p. is bounded above and below by positive constants on O.

For D = R%  assumption 6 rules out weights like u.(z) = (2'z)? since then () is not
bounded away from zero on (0, 1), for example. This assumption is satisfied by u.(z) = (1 +2'7)?,
however, and more generally for u.(z) = (1 + 2'z)%, . € R. It is also satisfied by the exponential
weights p.(z) = exp[d.(«’z)]. This assumption is also satisfied by indicator weight functions like
te(x) = 1(||z|le < M) for some constant M.

4.2 Compact embeddings and closedness results

As in the bounded domain case, we begin with a compact embedding result.

Theorem 3 (Compact Embedding). Let D = R% for some integer d, > 1. Let pi, ps : D — R, be
nonnegative, m -+ mg times continuously differentiable functions. m,mg > 0 are integers. Suppose

assumptions 1, 2, 4, and 6 hold. Then the following embeddings are compact:

L Wntmo2,us ‘fmm /25 if mp > d, /2 and either of assumption 3 or 5 holds.

)

2. Wm+m0727us — Wm,Q,Me? if mg > d$/2.
3. Cgm—&—mo,oo,us — Cgm,oo,uc; if mo > 1.

4. Crtmo,cops = W2 e, if mo > dy/2, ps is bounded away from zero for any compact subset

of R% and folle>J pe(z)/pu%(x) dz < oo for some J.

Using the stronger assumption 3, Gallant and Nychka (1987) showed case (1) in their lemma
A.4. Case (1) with polynomial weights was used, for example, by Newey and Powell (2003) and
Santos (2012).? Under the stronger assumption 3, Haroske and Triebel (1994a) show cases (1)—(4)

as special cases of their theorem on page 136. Haroske and Triebel furthermore assume via their

8 As discussed in the proof of theorem 3, assumption 6 could be weakened slightly to a local integrability assumption.
9Santos (2012) allowed for a general unbounded domain D rather than D = R% specifically. We restrict attention
to functions with full support merely for simplicity.
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definition 1(ii) on page 133 that the weight functions have at most polynomial growth. Their results
therefore do not allow for any exponential weights. For example, for d, = 1, they do not allow
for either u(z) = exp(d|x|) or u(z) = exp(dz?). Brown and Opic (1992) give high level conditions
for a compact embedding result similar to case (1), with mg = 1 and m = 0. They do not study
the other cases we consider. They do, however, allow for a large class of weight functions, which
includes the exponential weight functions we discussed earlier (for example, see their example 5.5
plus remark 5.2).

To our best knowledge, cases (2)—(4) with any kind of exponential weight function have not
been shown in the literature. The proof for these cases is similar to that for case (1), which is
a modification of Gallant and Nychka’s original proof. Our result for case (1) gives lower level
conditions on the weight functions compared to Brown and Opic (1992), although these conditions
are less general. Finally, note that the results by Triebel and coauthors allow for more general
function spaces, including Besov spaces and many others, although again, they restrict attention

to weight functions with at most polynomial growth.

Theorem 4 (Closedness). Let D = R% where d, > 1 is some integer. Let m,mg > 0 be integers.
Let (Z,| - ||s) and (¢,] - ||c) be Banach spaces with .# C ¢, where || f||s < oo for all f € .# and
I fllc < oo forall f €%. Define © as in equation (1). Suppose assumptions 1, 2, and 4 hold. Then
the results of table 2 hold. For cases (1) and (2) we also assume mg > d, /2 and that assumption 6

holds, and in case (1) also that assumption 5 holds. For cases (3) and (4) we also assume mg > 1.

|- 1ls |- lle © is || - [|-closed?
D - lemozin 11,0 Yes
2) M lmtmozws T 2, Yes
3) - Hm-i-mmoo,us [ - Hm,oo,uc No
(4) A lmtmo,ooms I N2, No
Table 2

Case (1) generalizes Santos (2012) lemma A.2, which only considered polynomial upweighting.
Case (2) was also shown in the proof of Santos (2012) lemma A.2, again only for polynomial
upweighting.

Just as in section 3, theorems 3 and 4 can be combined to show that the || - ||s-ball © is || - ||¢-
compact by choosing various combinations of strong and consistency norms given in table 2. All
of our remarks in that section apply here as well. The only new point is that in addition to the

choice of norm, one must also choose the weight functions us and p..
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4.3 Alternative approaches to defining weighted norms

Thus far we have defined weighted Sobolev and Holder norms by weighting each derivative piece

equally. For example, with m = 1 and d, = 1, the weighted Sobolev sup-norm is

100 = max {sup (o). sup \f’(m)lu(x)} |

zeD

The Sobolev integral norms were defined similarly, with each derivative using the same weight
function. Call this the equal weighting approach. While this is the most common approach to
defining weighting norms in econometrics, it is not the only reasonable way to define weighted
norms. The next most common alternative is to convert any unweighted norm || - || into a weighted

norm || - ||, by first weighting the function and then applying the unweighted norm:

1Al = N f1l-

Call this the product weighting approach. For example, suppose we start with the unweighted

Sobolev sup-norm, with m =1 and d, = 1. Assume p is differentiable. Then

11 oo = max{ggg @), sup |f @)ule) + f(w)u’(w)l}

zeD

< max {sup f@)luta),  sup | @uto).  sup f)n'(o) |
z€D z€D z€D
Here we see that, compared to equal weighting, product weighting picks up an extra term involving
the derivative of the weight function p/(z). Notice that when m = 0, the product and equal
weighting approaches to defining weighted Sobolev integral and sup-norms are equivalent.
The following result shows that, for a class of weight functions including polynomial weighting,
these two approaches to defining Sobolev norms are equivalent. Consequently, it is irrelevant which

one we use.

Proposition 6. Define the norms

I N2tz aie = 1672 llmz - and ] flmsogeare = 1 flmoo-

Suppose assumption 3 holds for . Then

I and || - ||m,2,, are equivalent norms.

m,2,ul/2 ALT
2. |- lm,o0,p,arr and || - [[m 00, are equivalent norms.

As discussed earlier, assumption 3 does not hold for all feasible weight functions. So these two
approaches to defining weighted norms are not necessarily equivalent for any given choice of weight

function. The theorem in section 5.1.4 of Schmeisser and Triebel (1987) gives a result related to
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proposition 6 for a large class of weighted function spaces.'?

A main reason to consider product weighting is that it easily applies when it is not clear how
to define an equally weighted norm. In particular, it allows us to define the weighted Holder norm
by

1 Mmoo, = Nl llm,00,1,0

for v € (0,1]. Let Cnoopur(D) = {f € En(D) : || fllm,ooup < 00} denote the weighted Holder
space with exponent v. The difficulty in defining an equally weighted Holder norm comes from the
Holder coefficient piece, which is a supremum over two different points in the domain, unlike the
sup-norm part.'’ The product weighted Hélder norm is commonly used in econometrics, as in Ai
and Chen (2003) example 2.1'2, Chen et al. (2005), Hu and Schennach (2008), and Khan (2013).
If D is bounded, then compact embedding and closedness results for product weighted norms
follow immediately from our results on bounded D with unweighted norms. For unbounded D, we

provide the following two results.

Theorem 5 (Compact Embedding). Let D = R% for some integer d, > 1. Let e, s : D — Ry
be nonnegative, m + mg times continuously differentiable functions. Define fi(z) = (1 + 2/x) ™ for

some ¢ > 0 and assume that p.(x) = ps(z)i(z). Then the following embeddings are compact:
L. Wrntmo 2, psavr = Cm.oopie,avrs if Mo > dg /2.
2. Wintmo,2,us st = W2 e avrs if mo > dy /2.
3. Cmtmo,c0,us,atr  Cmoo,arrs if Mo > 1.
4. Crgmo,00,us,w > Cmyoo,pe,arrs if mo > 0.

Under the stronger assumption 3, the product and equal weighted norms are equivalent, by
proposition 6. Schmeisser and Triebel (1987) showed this equivalence and Haroske and Triebel
(1994a) used it to to prove cases (1)—(4) of theorem 5 under assumption 3 and the further assumption
that the weight functions have at most polynomial growth (definition 1(ii) on page 133 of Haroske
and Triebel 1994a). Our result relaxes assumption 3 and does not impose a polynomial growth
bound on the weight functions. Our cases (1)—(4) of theorem 5 are therefore the first we are aware

of to allow for exponential weight functions when using product weighted norms.

0T his result is cited and applied in much of Triebel and coauthor’s followup work. In particular, as Haroske and
Triebel (1994a) show in the proof of their theorem 2.3 (page 145 step 1), this equivalence result can be used to prove
compact embedding results. This proof strategy does not apply when the norms are not equivalent, which is why we
rely on the more primitive approach of Gallant and Nychka (1987).

See, however, Brown and Opic (1992) equations (2.8) and (2.9), who suggest one way to define equally weighted
Holder norms.

1211 this example the parameter space is an unweighted Holder space for functions with unbounded domain, but
the consistency norm is a downweighted sup-norm. Hence this is an example of case 4 in theorems 5 and 6. Also,
as we discuss in section 6, this kind of unweighted parameter space assumption rules out linear functions. Note that
in other examples using an unweighted Holder space on R% is less restrictive, since the functions of interest are
naturally bounded. For example, Chen, Hu, and Lewbel (2009b) and Carroll, Chen, and Hu (2010) consider spaces
of pdfs while Blundell, Chen, and Kristensen (2007) (assumption 2(i)) consider spaces of Engel curves.
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We use our previous results in theorem 3 to prove cases (1)-(3). We adapt the proof of theorem

3 to prove case (4).

Theorem 6 (Closedness). Let D = R% where d, > 1 is some integer. Let m, mg > 0 be integers.
Let v € (0,1]. Let (Z, |- |ls) and (¢,] - ||c) be Banach spaces with .# C ¢, where ||f|s < oo for
all f € .Z and ||f||e < oo for all f € 4. Define © as in equation (1). Define fi(z) = (1 + 2'z)~?
for some ¢ > 0 and assume that p.(x) = ps(x)fi(x). Then the results of table 3 hold. For cases (1)

and (2) we also assume mqg > d /2.

|- 1ls |-l © is || - [|-closed?
(D) ssllmetmo .2 |+ trellm,oo Yes
(2) - psllmtmo,2 |- pellm,2 Yes
(3) |- tsllmtmo,00 | - tellm,o0 No
4) - psllmtmo,con I+ tellm,oo Yes
Table 3

As mentioned above, we do not impose assumption 3 on the strong norm in either theorem
5 or theorem 6. We also do not impose the weaker assumption 4. We do, however, strengthen
assumptions 1 and 2 by assuming a particular rate of convergence on the ratio p./us, namely, that
it is polynomial:
pe() 1

ps(z) (1 +a'z)d
for some 0 > 0. This assumption is satisfied when both u. and us are polynomial weight functions
themselves. This case has been used in the previous literature which chooses the weighted Holder
norm, such as in Chen et al. (2005). This assumption is also, however, satisfied by the choice

exp(Js||z||?

for > 0 and 05 < 0. Hence theorems 5 and 6 can still be applied if we want our parameter space ©
to contain for polynomial functions of all orders, as discussed earlier. Finally, note that a compact
embedding result under the norm pu. yields a compact embedding result under any weaker norm,
by lemma 4. For example, with m = 0, u. defined as the ratio of an exponential and polynomial
as above, and fi. = exp(d.||z[|?) for 8. < ds, || [|0,00,. is Weaker than || - [|o,00,u,. Theorem 5 part 4

then implies that 6y .., is compactly embedded in 6z, -

5 Weighted norms for bounded domains

In section 3 we showed that when the domain D is bounded, sets of functions f that satisfy a

norm bound || f||s < B are || - ||.-compact for three possible choices of norm pairs—see table 1. In
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this section we consider functions with a bounded domain, but which do not satisfy a norm bound
| - ||s < B for any of the choices in table 1.

Example 5.1 (Quantile function). Let X be a scalar random variable with full support on R and
absolutely continuous distribution with respect to the Lebesque measure. Let Qx : (0,1) — R denote
its quantile function. Since the derivative of Qx asymptotes to oo as ™ — 0 or 1, ||Qx||o,00 = 0.
Hence, although the domain D = (0,1) is bounded, Qx is not in any Sobolev sup-norm space or
Holder space. Indeed, Csorgo (1983, page 5) notes that

1Qx — Qxlloce — 00 a.s.

as n — oo where

@X(T) = inf{z : ﬁX(aﬁ) > T}

is the sample quantile function for an id sample {z1,...,z,}, and ﬁX is the empirical cdf. Also
see page 322 of van der Vaart (2000).

On the other hand, it is certainly possible for such a quantile function Qx to be bounded in a
weighted Sobolev sup-norm space or a weighted Holder space. In fact, by examining the Bahadur
representation of @\X it can be shown that @X converges in the weighted sup-norm over T € (0,1)

with weight function

fre(rg' (@) = 20|

Note that this weight function depends on how fast the quantile function diverges as 7 — 0 or

T — 1.

More generally, we may want to estimate quantile functions in settings more complicated than
simply taking a sample quantile. In such settings, the compact embedding and closedness results

developed in this section can be useful.

Example 5.2 (Transformation models). Consider the model
T(Y)=a+XB+U,  ULX.

where Y, X, and U are continuously distributed scalar random variables. T is an unknown strictly
increasing transformation function. Let Fyy and fy be the (unknown) cdf and pdf of U, respectively.

Suppose Y has compact support supp(Y') = [y, yu]. If we allow distributions of U to have full
support, like N'(0,1), then the transformation function T(y) must diverge to infinity as y — yy or
to negative infinity as y — yr,. We are again in a situation like the quantile function above, where
because the derivatives of T diverge, it is not in any unweighted Sobolev sup-norm or Hdélder space.

Horowitz (1996) constructs an estimator f(y) of T(y) and shows, among other results, that

sup [T (y) — T(y)| &0,
y€la,b]
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where a and b are such that T(y) and T'(y) are bounded on |a,b]. These bounds on T and T’
imply that [a,b] is a strict subset of supp(Y) when supp(Y') is compact and U has full support.
Chiappori, Komunjer, and Kristensen (2015) extend the arguments in Horowitz (1996) to allow for
a nonparametric regression function and endogenous regressors. Also see Chen and Shen (1998),
who study a transformation model assuming Y has bounded support in their example 3, and example
3 on page 618 of Wong and Severini (1991).

As with the quantile function, the compact embedding and closedness results developed in this
section may be useful for proving consistency of estimators of 1" in weighted norms uniformly over
its entire domain.

These examples show that sometimes our functions of interest do not satisfy standard un-
weighted norm bounds. Hence the compactness and closedness results theorems 1 and 2 do not
apply. In this section, we show that we can, however, recover compactness by using weighted norms.

As in section 4, we focus on equal weighting norms.!3

5.1 Weight functions

Proposition 1 applies for bounded domains, and hence again we see that only weight functions that
go to zero or infinity at the boundary are nontrivial. Since our main motivation for considering
weighted norms is to expand the set of functions which can have a bounded norm, we will restrict
attention to downweighting. For simplicity we will also focus on the one dimensional case d, = 1
with D = (0,1), as in the quantile function example. As before, there are two natural classes of

weight functions. First, we consider polynomial weights
wla) = [z(1 - 2)7)

fora,f >0and d e R. a« > 1, 8> 1, and § > 0 ensure that u(x) - 0 as x — 0 or x — 1. Next,

we consider exponential weights,
p(x) = exp[5z*(1 - z)”].

For example, with § = a =g = —1,

-1
e = i
If we had @ > 0 and 8 < 0 then this allows for asymmetric weights where the tail goes to zero at
one boundary point but not the other. Figure 2 illustrates some of these weight functions.
The interpretation of ||f||s < B for a weighted norm || - ||s with D bounded is similar to the
interpretation when D = R% discussed in section 4.1. This norm bound places restrictions on the

tail behavior of f(x) as x approaches the boundary of D. For example, let D = (0, 1) and consider

BCompactness and closedness results for product weighting norms with bounded domains follow immediately from
theorems 1 and 2 regarding unbounded domains.
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Figure 2: Top: Polynomial weighting functions u(z) = [z(1—x)]° for 6 = 1, 1.5, 2, from left to right.
Bottom: Exponential weighting functions u(z) = exp[dz~(1—2)71] with § = —1,-1.25, —1.5, from
left to right.

the Sobolev sup-norm || - ||s = || - |lm-tmo,cou. With polynomial weights jis(z) = [z(1 — z)]%, &5 > 0.
Then f € © ={f € Z :||f||s < B} implies that

sup [VA f(2)]a% (1 —2)* < B
zeD

for every 0 < |A| < m + myg. For example,
f(z)] = O(z™%)

as x — 0. That is, the function |f(z)| can diverge to co as z — 0, but it can’t do so faster than
the polynomial 1/ 2% diverges to oo as  — 0. A similar tail constraint holds as  — 1, and also
for the derivatives of f up to order m + myp. A similar interpretation of © applies when || - ||5 is the
weighted Sobolev Ly norm, like the discussion of section 4.1.

The analysis now proceeds similarly as in the unbounded domain case. One important difference
is that assumption 3 cannot hold for nontrivial weight functions on bounded domains, as the

following proposition shows.

Proposition 7. There does not exist a function p : (0,1) — Ry such that
1. u(x) > 0asz —0or x — 1.
2. | (z)| < Kp(x) for all z € (0,1).

The weaker assumption 4, however, can still hold. The following proposition verifies this for

both polynomial and exponential weights.
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Proposition 8. Assumption 4 holds for both p,(z) = [2(1—2)]% and ps(z) = exp[dsz— (1 —z)7 1,
for any d; € R.

The following result illustrates that assumption 5 can also hold for exponential weights. It can
be generalized to d, > 1, o, 8 # —1, and arbitrary bounded D.

Proposition 9. Let p.(z) = exp[der (1 — 2)7 1], ps(z) = exp[dsz—(1 — x)~1], and D = (0,1).
Then assumption 5 holds for any §s,d. € R such that §. < 5.

It can be shown that such exponential weight functions also satisfy the other weight function

assumptions discussed in section 4, for appropriate choices of . and J,.

5.2 Compact embeddings and closedness results

As in the previous cases, we begin with a compact embedding result.

Theorem 7 (Compact Embedding). Let D C R% be a bounded open set, where d, > 1 is some
integer. Let pc, us : D — R4 be nonnegative, m + mg times continuously differentiable functions.
m,mg > 0 are integers. Suppose assumptions 1, 2, 4, and 6 hold. Then the following embeddings

are compact:

1/2, if assumption 5 holds, mg > d,/2, and D satisfies the cone condi-

L Wtmo s = €, 1

tion.

2. Wintmo2,us — P20, if mo > d;/2 and D satisfies the cone condition.

)

3. Cmtmo,cous — Cmocoue, if mp > 1 and D is convex.

4. Crntmo,cous = Pm2pues if mo > dg/2, D satisfies the cone condition, ys is bounded away from
zero for any compact subset of D, and [ . pe(2)/p2(x) dz < oo for some open set A C D
with AN Bd(D) = 0.

Because of proposition 7, none of the results from Schmeisser and Triebel (1987) or the followup
work by Triebel and coauthors applies to weighted norms on bounded domains. As in the unbounded
domain case, however, Brown and Opic (1992) give high level conditions for a compact embedding
result similar to case (1) of theorem 7, with mo = 1 and m = 0. Again, they do not study the other
cases we consider, and they allow for a large class of weight functions which includes exponential
weights. Hence, to our best knowledge, cases (2)—(4) of theorem 7 are new. The proof is similar to
the proof of theorem 3, which in turn is a generalization of the proof of lemma A.4 in Gallant and

Nychka (1987). We end this section with a corresponding closedness result.

Theorem 8 (Closedness). Let D C R% be a bounded open set, where d, > 1 is some integer.
Let m,mo > 0 be integers. Let (%, ] - ||s) and (¢, || - ||c) be Banach spaces with .# C ¢, where
Iflls < oo for all f € % and ||f|l. < oo for all f € 4. Define © as in equation (1). Suppose
assumptions 1, 2 and 4 hold. Then the results of table 2 hold. For cases (1) and (2) we also assume
mo > dz/2, that D satisfies the cone condition, and that assumption 6 holds, and in case (1) also

that assumption 5 holds. For cases (3) and (4) we also assume mg > 1.
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- lls |- le © is || - ||-closed?

D 1 lovmozse 11,000 Vos

2) A lmtmozws 1 llm2,pe Yes

(3) || ) Hermo,OO,us || : ||m7007uc No

(4) - lntmosooms - lm,2,pe No
Table 4

6 Applications

In this section we illustrate how the compact embedding and closedness results discussed in this
paper are applied to nonparametric estimation problems in econometrics. We discuss how the choice
of norms affects the parameter space, the strength of the conclusions one obtains, and how other
assumptions like moment conditions depend on this choice. In the first example we consider mean
regression functions for full support regressors. We show that weighted norms can be interpreted
as a generalization of trimming. In the second example, we discuss nonparametric instrumental
variable estimation. In each example we focus on consistency of a sieve estimator of a function of
interest, but similar considerations arise for inference or alternative estimators.

We show consistency by verifying the conditions of a general consistency result stated below.
Denote the data by {Z;}?, where Z; € R%. Throughout this section we assume the data are
independent and identically distributed. The parameter of interest is y € ©, where © is the
parameter space. © may be finite or infinite dimensional. Let Q() be a population objective

function such that

0y = argmax Q(0).
0o

Let Oy, be a sieve space as described in the examples below. A sieve extremum estimator 0, of 6y
is defined by

0, = argmax @n(H)
Oeekn

@n is the sample objective function, which depends on the data. Our assumptions ensure that 6g
and 6, are well defined.!* Let d(-,-) be a pseudo-metric on ©. Typically d(6;,62) = |61 — 02]| for

some norm || - || on ©. We now have the following result.

Proposition 10 (Consistency of sieve extremum estimators). Suppose the following assumptions

hold.
1. © and Oy, are compact under d(-,-).

2. Q() and Q,(0) are continuous under d(-,-) on © and Oy, , respectively.

4 Alternatively, we can define 6, as any estimator that satisfies @n(gn) = SUPgeo, @n(G) + 0p(1). Assuming b,

exists, we would then not have to assume that Q is continuous or that ©y, is compact. We use the more restrictive
definition because in our examples below these assumptions are satisfied.
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3. Q(0) = Q() implies d(6,0;) = 0 for all € ©. Q(6y) > —oo.

4. O COpy1 C--- COforall k > 1. There exists a sequence 70y € Oy such that d(m00, 6) —
0 as k — oo.

5. kn — 00 as n — oo and supgcg, 1Q.(0) — Q(8)] & 0.

Then d(gn, 00) & 0 as n — oo.

Proposition 10 is a slight modification of lemma Al in Newey and Powell (2003). The as-
sumptions require a compact parameter space, which we can obtain by choosing a strong norm
|| - ||s and a consistency norm || - ||, letting d(61,62) = ||61 — 02||¢, and constructing the parameter
space as explained in sections 3, 4, and 5. The strong norm should be chosen such the parameter
space is large enough to contain 8y. The consistency norm not only needs be selected carefully to
ensure compactness, but it will also affect the remaining assumptions, such as conditions needed
for continuity of @ and @n (assumption 2). Similarly, a larger parameter space usually requires
stronger assumptions to ensure uniform convergence of the sample objective function (assumption
5). Assumption 3 is an identification condition, which allows Q(0) = Q(6p) for 6 # 0y as long as

d(0,6p) = 0. Assumption 4 is a standard approximation condition on the sieve space.

6.1 Mean regression functions and trimming

Let Y and X be scalar random variables and define go(z) = E(Y | X = z). Suppose gg € O,
where O is the parameter space defined below. Suppose X is continuously distributed with density
fx(x) >0 for all x € R. Hence supp(X) = R. Notice that

E((Y — g(X))*) = E((Y ~ g0(X))?) +E((g0(X) — 9(X))?)

The inequality is strict whenever E((g(X) — go(X))?) > 0, which holds unless g(x) = go(x) almost

everywhere. This result suggests the sieve least squares estimator

n

1
g(a) = argmax —» (¥ — g(X3))?,
rgmax ; 1 i

where Oy, is a sieve space for ©. For example, let p; : R — R be a sequence of basis functions for

©. Then we could choose the linear sieve space

kn
O, =L9€0:g(z) = ijpj(x) for some by,..., by, € R
j=1
Let || - || denote the consistency norm and let || - [|s be a strong norm. The parameter space © is
a || - ||s-ball as explained in sections 3, 4, and 5. Intuitively, the unweighted Lo or sup-norms on R
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are too strong to be a consistency norm because the data provides no information about go(x) for
x larger than the largest observation. In fact, to apply any of the compactness results with such
a choice of || - ||, we would have to use a strong norm with upweighting. By proposition 2, this
implies that we would have to assume that g(x) — 0 as |x| — co. Since this assumption would rule

out the linear regression model, we instead use the downweighted sup-norm
19lle = llgllo.coue = sup [g(@)lpe(x),
zeR

where p.(z) is nonnegative and p.(z) — 0 as |x| — co. As a parameter space we can then either
use a weighted Holder space (by theorems 5 and 6) or a weighted Sobolev space (by theorems 3 and
4). As an example, we choose a weighted Sobolev Ly parameter space, and give low level conditions

under which ||g — gol|¢ 2, 0 in the following proposition.
Proposition 11 (Consistency of sieve least squares). Suppose the following assumptions hold.

L Let || -le= -

l0,00,105 I+ ls = Il - [[1,2,6» and

O =19 €2 l9li2p < B}

The weight functions p,ps : R — Ry are nonnegative and continuously differentiable. 12

and p satisfy assumptions 1, 2, 4, 5, and 6'. . and u satisfy assumption 1. g is continuous.
2. E(1e(X)72) < o0 and E(Y?) < oo.

3. O is || - ||c-closed for all k. O C Opyq € --- C O for all k> 1. For any M > 0, there exists
gk € O such that sup,. ,1<psgk() — go(z)| — 0 as k — oo,

4. k, — 0o as n — oo.
Then |[§ — golle = 0 as n — oo.

As mentioned earlier, we must use downweighting—/s(z) — 0 as |z| — co—in the strong norm
to allow gg to be linear. The faster us converges to 0, the larger is the parameter space. However,
allowing for a larger parameter space has several consequences. First, by our assumptions on
the relationship between ps and u., faster convergence of us to zero implies faster convergence
of pe to zero. This weakens the consistency norm. Consequently, both continuity and uniform
convergence are harder to verify. In proposition 11 we ensure these two assumptions hold by
requiring E(u.(X)~?) < co. But here we see that the faster u. converges to 0, the more moments
of X we assume exist. For example, suppose ps(z) = (1 + 22)7% and pc(z) = (1 + 22)~% with
6s > 0. The conditions on the weight functions require that d; < 2. and the moment condition
isE ((1 + X 2)2‘56) < 00. Thus larger §,’s yield larger parameter spaces, but imply J. must also be
larger, and hence we need more moments of X. Next suppose ps(x) = exp(—ds2?) and p.(z) =
exp(—8c2?) with 0 < §5 < 25.. Then the moment condition is E[exp(5.X?)] < oo. This is equivalent
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to requiring that the tails of X are sub-Gaussian, P(|X| > t) < C exp(—ct?) for constants C and c,
which in turn implies that all moments of X are finite.

The only remaining assumption is the condition on the sieve spaces. There are many choices of
sieve spaces which satisfy this last condition because it only requires that gg can be approximated

on any compact subset of R. See Chen (2007) for examples.

Weakening the assumptions and generalized trimming

The assumption E(u.(X)™2) < oo in proposition 11 rules out indicator weight functions, like
te(x) = 1(|z| < M). The need for this moment condition arises because while we weigh down large
values of X in the consistency norm, we do not weigh them explicitly in the objective function.
Assuming the existence of moments imposes the weight implicitly. It ensures that outliers of the
regressor, which can affect the estimator in regions where () is large, occur with small probability.
This discussion suggests that using a weighted objective function may lead to weaker assumptions.
That is, let

. 1 ¢
(@) = argmax — 3OV 9(X0) (X2
9€0k, i

Indeed, we obtain the following proposition.

Proposition 12 (Consistency of sieve least squares). Suppose the following assumptions hold.

L Let || -le= -

l0,00,105 I+ ls = Il * [[1,2,6» and

O =19 € o l9li2p < B}

The weight functions pi,ps : R — Ry are nonnegative and continuously differentiable. 1>
and pg satisfy assumptions 1, 2, 4, 5, and 6'. p. and pg satisfy assumptions 1 and 2. p.(x) > 0
implies P(pe(X) > 0| | X — 2| <€) > 0 for any € > 0. go is continuous.

2. E(Y?) < o0, E(YZ21.(X)?) < 00, and E((Y — go(X))?) < .

3. O is || - [|-closed for all k. © C Opq C--- C O for all k > 1. For any M > 0, there exists
gk € O such that sup,.i,<pslgk(2) — go(z)| — 0 as k — oo.

4. k, — oo as n — oo.
Then |[Gw — golle = 0 as n — oco.

We can interpret this proposition as a generalized version of trimming, where by trimming we
mean using the weight function p.(z) = 1(Jz| < M) for a fixed constant M. With this weight
function we only obtain convergence of g, (x) to go(z) uniformly over = in the compact subset
[-M, M] of the support of the regressor. Even with this weight function, however, if we omit
the weight from the objective function as in proposition 11, then outliers of X affect g(z) even

for v € [-M, M]. Trimming simply discards the outliers. The more general result proposition
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12 simply gives these observations less weight. The advantage of using a weight function such as
pre(x) = (14 22)7% rather than the trimming weight u.(x) = 1(Jz| < M) is that it implies uniform
convergence over any compact subset of R.

Finally, in related prior work, Chen and Christensen (2015b) derive sup-norm consistency rates
for a sieve least squares estimator when the regressors have full support by using a sequence of
trimming functions. They also discuss the possibility of using polynomial or exponential weights,
but do not derive any results for these weight functions. Also, their results apply to iid and non-iid

data and they develop inference results for functionals of the mean regression function.

Penalized sieve least squares

An alternative to assuming a compact parameter space as in proposition 12 is to add a penalty
term to the objective function. That is, suppose go € #12,,,, but we do not want to impose an a

priori known bound on ||gol|s = ||g0

1,2,u,- Instead, let

n

kn
Ok, =9 € Nopu, :9(x)= ijpj(:c) for some by,...,br, € R and ||g|ls < B,
j=1

for some sequence of constants B,, — oco. Define the penalized sieve least squares estimator
~ 1¢ 2 2
Ju(@) = argmax. — n Z(Yz = 9(Xi))"pe(X)™ + Anllglls ) -
9€O, i=1

An is a penalty parameter that converges to zero as the sample size grows. The following proposition

uses arguments from Chen and Pouzo (2012) to show that g, is consistent for gg.

Proposition 13 (Consistency of penalized sieve least squares). Suppose the following assumptions
hold.

L Let || -lc= -

0,00,05 | Ils = |l - I1,2,0» and

O={9€2u g

1,2,0s < OO}

The weight functions pi,ps : R — Ry are nonnegative and continuously differentiable. 12
and p satisfy assumptions 1, 2, 4, 5, and 6’. p. and pg satisfy assumptions 1 and 2. p.(x) >0
implies P(pe(X) > 0] | X — 2| <) > 0 for any € > 0. sup,cp fte(x) < 00. go is continuous.

2. E(Y?) < 00, E(Y2u.(X)?) < 0o, and E((Y — go(X))*) < .

3. O is || - ||-closed for all k. O C Opy1 C--- C O for all k > 1. For any M > 0, there exists
gk € Oy such that supg.|,<as [9k(7) — go(z)| — 0 as k — oo.

4. k, — oo asn — oo.
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5. Ap >0, Ay, = o(1) and max{1/y/n,||gr, — gollc} = O(A\n).
Then ||§w — gollc = 0 as n — oco.

Proposition 13 allows for a noncompact parameter space. The additional assumption needed
is assumption 5, which imposes an upper bound on the rate of convergence of A,. Assumption 3
implies that || gk, — go||c converges to 0 and assumption 5 then imposes that A, cannot converge at
a faster rate.

In propositions 11 and 12 we used the compact embedding and closedness results of sections
3, 4, and 5 directly to pick norms such that the compact parameter space assumption holds. In
proposition 13 this is no longer an issue because we do not need a compact parameter space.
However, the results of sections 3, 4, and 5 are still used in the proof, and hence the choice of norm
here is still important, as discussed in section 3.2.1 of Chen and Pouzo (2012). Essentially, our
proof of proposition 13 first uses lemma A.3 in Chen and Pouzo (2012) to show that for some finite
My >0

Gu €19 € Pz, : gl 2, < Mo}

with probability arbitrarily close to 1 for all large n. We then use the arguments from the proof of
proposition 12 to prove that ||Gw — gollc 2y 0. It’s at this step where the compact embedding and
closedness results help.

An alternative proof can be obtained by showing that our low level sufficient conditions imply
the assumptions of theorem 3.2 in Chen and Pouzo (2012), which is a general consistency theorem,
applies when X has compact support, and allows for both nonsmooth residuals and a noncompact
parameter space. One of the assumptions of theorem 3.2 is that the penalty function is lower
semicompact, which here means that || - ||s-balls are || - ||.-compact. This is precisely the kind of
result we have discussed throughout this paper.

Finally, we note that while both of these approaches—assuming a compact parameter space, or
using a penalty function—Ilead to easy-to-interpret sufficient conditions, one could also use theorem

3.1 in Chen (2007), which may avoid both compactness and penalty functions.

6.2 Nonparametric instrumental variables estimation

In this section we apply our results to the nonparametric instrumental variable model
Y =go(X)+ U, E(U | Z)=0,

where Y, X, and Z are continuously distributed scalar random variables and fx (z) > 0 for allz € R.
Assume gy € ©, where © is the parameter space defined below. Since E (IE(Y —g(X) | Z )2) =0,
Newey and Powell (2003) suggest estimating gp in two steps. First, for any g € O estimate
p(z,9) =E(Y — g(X) | Z = z) using a series estimator. Call this estimator p(z,g). Then let

-~ LQ~ iy 2
g(r) = argmax —— g 0(Zi,g)°.
90k, "o
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where before Oy, is a sieve space for function in ©, as before. See Newey and Powell (2003) for
more estimation details.

Define
0= {g € Wm+mo,2,us : ||9Hm+mo,2,us < B}7

where ps(z) = (1 +22)%, §s > 0, and m,mg > 0. Let a(z) € R% be a vector of known functions
of z. Newey and Powell (2003) define the parameter space by

Oxe = {a(-)'B+91(-) : '8 < Bg, g1 € o}.

Proposition 2 implies that for any g; € ©, it holds that |g1(z)| — 0 as |z| — co. The term a(z)'3
ensures that the tails of gy are not required to converge to 0, but it requires the tails of gy to be
modeled parametrically. As a consistency norm Newey and Powell (2003) use || - ||m,o00,u., Where fi.
upweights the tails of the functions as well. Also see Santos (2012) for a similar parameter space.

In this section we modify the arguments of Newey and Powell (2003) to allow for nonparametric
tails of the function gg. In particular, we let us(x) — 0 as |z| — oo. Consequently we allow for a
larger parameter space. The main cost of allowing for a larger parameter space is that we obtain
consistency in a weaker norm.

The population objective function is

Qg) = ~EEY - g(X) | 2)).

The generalization of trimming used in the previous section is generally not possible here because
although E(Y — go(X) | Z = z) = 0 for all z, usually E((Y — go(X))pe(X) | Z = 2z) # 0 for some
z. Instead we follow the approach of proposition 11.

The following proposition provides low level conditions under which |[§ — gollc = 0. As in the
previous subsection, || - ||, is a weighted sup-norm and the parameter space is a weighted Sobolev

15

Lo space.”® The arguments can easily be adapted to allow for higher order derivatives in the

consistency norm or a weighted Holder space as the parameter space.
Proposition 14 (Consistency of sieve NPIV estimator). Suppose the following assumptions hold.
1. Forallg € ©, E(Y —g(X) | Z = z) = 0 for almost all z implies g(z) = go(z) for almost all x.

2. Let [| - fle =1

‘O,OO,MCv - lls=1" 1,2, and

O =19 €2, l9li2p < B}

The weight functions pi,ps : R — Ry are nonnegative and continuously differentiable. 12
and ug satisfy assumptions 1, 2, 4, 5, and 6'. p. and u, satisfy assumptions 1 and 2. gg is

continuous.

15Chen and Christensen (2015a) derive the rate of convergence in the sup-norm when X has compact support.
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:1Eoﬂ)<a%waxy%<um@de(wmag—¢xgyz»ﬂ<<mﬁxauge@
4. For any b(z) with E[b(Z)?] < oo there is g € Oy with E[(b(Z) — gr(Z))?] — 0 as k — oc.

5. O is || - ||-closed for all k. O C Opy1 C--- C O for all k > 1. For any M > 0, there exists
gk € O such that supg.,<as [9k(7) — go(z)| = 0 as k — oo.

6. k, — oo as n — oo such that k,/n — 0 .
Then [[§ — golle 2 0.

Assumption 1 is the identification condition known as completeness. Besides this assumption
and compared to the regression model in proposition 11, the additional assumptions are assumption
4 and the last part of assumption 3. These two conditions ensure that the first stage regression is
sufficiently accurate and they are implied by assumption 3 of Newey and Powell (2003). We use
the same sieve space to approximate go(x) and b(z), but the arguments can easily be generalized
at the expense of additional notation. The last part of assumption 3 holds for example if either
E(Y*) < 00 and E(ue(X)™) < 0o or var(Y — g(X) | Z) < M for some M >0 and all g € ©.

We can use a penalty function instead of compact parameter space under some additional
assumptions very similar to those in proposition 13. Chen and Pouzo (2012) discuss convergence
in a weighted sup-norm of a penalized estimator in the NPIV model as an example of their general
consistency theorem. Chen and Christensen (2015a) derive many new and important results for the
NPIV model. Among others, they derive minimax optimal sup-norm convergence rates and they
describe an estimator which achieves those rates. Their results apply when X and Z have compact

support.

Rescaling the regressors

An alternative to proving consistency using the previous proposition is to first transform X to the
interval [0,1] and then apply consistency results for functions on compact support. For example,
let W = ®(X) where ® denotes the standard normal cdf, and let ho(w) = go(®~*(w)). Then

Y =ho(W)+U, EU]|Z)=0

and knowledge of hg implies knowledge of gy. Estimating hg might appear to be simpler because
W has support on [0,1]. However, notice that hy is unbounded if X has support on R and if go
is unbounded on R. Thus, for example, to allow gy to be linear we have to use weighted norms.
Specifically, notice that using the change of variables w = ®(z) the unweighted Sobolev Ly norm
of hg with m =1 is

o0

[holl1,2 = /0 (ho(w)? + hy(w)?) dw = / (90(2)* + gh(z)*d(x) %) p(x) du,

— 00
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where ¢ denotes the standard normal cdf. Therefore, ||ho||12 is unbounded unless |go(x)| — 0 as
|z| — co. Similarly, hg is generally not Holder continuous. Hence any parameter space assumptions
on hg must be imposed using weighted norms, such as those as discussed in section 5. Moreover,

notice that

sup |ho(w)| = sup [go(x)]
wel0,1] z€R

and as argued in the previous subsection, the unweighted sup-norm on R is too strong to be a

consistency norm unless we know that |gy(z)| — 0 as |z| — co. Finally, it holds that

1 0o
[[7ollo,2 :/0 ho(w)? dw =/ g0(x)*6(x) dx = |lgollo2.6

Therefore convergence of an estimator of hy in the unweighted Lo norm on [0, 1] is equivalent to

convergence of the corresponding estimator of gy in a weighted Lo norm on R.

7 Conclusion

In this paper we have gathered many previously known compact embedding results for convenient
reference. Furthermore, we have proved several new compact embedding results which generalize
the existing results and were not previously known. Unlike most previous results, our results
allow for exponential weight functions. Our new results also allow for weighted norms on bounded
domains, of which only one prior result existed, even for polynomial weights. We additionally
gave closedness results, some of which were known and some of which are apparently new to the
econometrics literature. Finally, we discussed the practical relevance of these results. We explained
how the choice of norm and weight function affect the functions allowed in the parameter space.
We also showed how to apply these results in two examples: nonparametric mean regression and
nonparametric instrumental variables estimation.

After showing consistency of an estimator, the next step is to consider rates of convergence
and inference. For these results, it is often helpful to have results on entropy numbers for the
function space of interest. For functions with bounded domain satisfying standard norm bounds,
many well known results exist. For example, van der Vaart and Wellner (1996) theorem 2.7.1 gives
covering number rates for Holder balls with the sup-norm as the consistency norm. Such results are
refinements of compact embedding results, since totally bounded parameter spaces are compact.
For functions with full support, fewer entropy number results exist. For example, lemma A.3 of
Santos (2012) generalizes van der Vaart and Wellner (1996) theorem 2.7.1 to the case where O is
a polynomial-upweighted Sobolev Lo ball and || - || is the Sobolev sup-norm. Note that a compact
embedding result is used as the first step in his proof. Haroske and Triebel (1994a,b) and Haroske
(1995) also provide similar results for a large class of weighted spaces, again restricting to a class
of weight functions satisfying assumption 3 and which have at most polynomial growth. Since our

results allow for more general weight functions, it would be useful to know whether these entropy
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number results generalize as well.

Finally, applying a result on sieve approximation rates is one step when deriving convergence
rates of sieve estimators. For example, see theorem 3.2 of Chen (2007) and the subsequent discus-
sion. Many approximation results for functions on the real line, such as those discussed in Mhaskar
(1986), are for exponentially weighted sup-norms. Therefore, our extension of the compact em-
bedding results to exponential weights should be useful when combined with these approximation

results to derive sieve estimator convergence rates.
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A Some formal definitions and useful lemmas

In this appendix we first state some formal definitions. These are primarily used as background
for the various compact embedding results. We then give some brief lemmas we use elsewhere. Let

(X, - lx) and (Y, || - |ly) be normed vector spaces. Then we use the following definitions.

e A C X is || - |[x-bounded if there is a scalar R > 0 such that ||z||x < R for all z € A.
Equivalently, if A is contained in a || - ||x-ball of radius R: A C {z € X : ||z||x < R}.

o AC X is | - ||x-relatively compact if its || - || x-closure is || - || x-compact.
o (X,|-|lx) is embedded in (Y, || - |ly) if

1. X is a vector subspace of Y, and

2. the identity operator I : X — Y defined by Iz = x for all x € X is continuous.

This is also sometimes called being continuously embedding, since the identity operator is
required to be continuous. Since I is linear, part (2) is equivalent to the existence of a
constant M such that

lzlly < M||z|x for all x € X.

Write X < Y to denote that (X, | - ||x) is embedded in (Y, || - |y).

o T: X — Y is a compact operator if it maps || - || x-bounded sets to || - ||y-relatively compact
sets. That is, T'(A) is || - ||y-relatively compact whenever A is || - || x-bounded.

o (X,|-llx) is compactly embedded in (Y, || - ||y) if it is embedded and if the identity operator

I is compact.

o A coneisaset C =C(v,a,h,k) ={v+zeR":0< |zl <h,Z(x,a) <0} This cone
is defined by four parameters: The cone’s vertex v € R", an axis direction vector a € R", a
height h € [0, 00], and an angle parameter § € (0,27]. Z(z,a) denotes the angle between x
and a (let Z(x,xz) = 0). 6 > 0 ensures that the cone has volume. If h < co then we say C' is

a finite cone.

o A set A satisfies the cone condition if there is some finite cone C such that for every x € A
the cone C can be moved by rigid motions to have z as its vertex; that is, there is a finite
cone C, with vertex at x which is congruent to C'. A sufficient condition for this is that A is

a product of intervals, or that A is a ball.

Lemma 1. If all || - || x-balls are || - ||y-relatively compact, then (X, || -||x) is compactly embedded
in (Y, [+ fly)-

Lemma 1 states that, for proving compact embeddedness, it suffices to show that any || - || x-ball

is || - ||y-relatively compact.
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Lemma 2. Let || - |x and || - ||y be norms on a vector space A. Suppose A is || - || x-closed and
II-[lx <CJ ||y for C < oo. Then A is || - ||y-closed.

Corollary 1. Let (ﬁj, | - HJ) be Banach spaces for all j € N such that ;1 C .%; and ||f||j <
Cjl| fllj+1 for all f € .%;41, where Cj < co. Let

0;={fecZ:fl; <C}.

Assume Oy, is || - ||1-closed. Then Oy is || - ||;-closed for all 1 < j < k.

Lemma 2 says that closedness in a weaker norm can always be converted to closedness in a
stronger norm. Lemma 3 is from Santos (2012) and gives conditions under which the reverse is
true: when we can take closedness in a stronger norm and convert that to closedness in a weaker

norm.

Lemma 3 (Lemma A.1 of Santos 2012). Let (H1,||-||1) and (Ha, ||-||2) be separable Hilbert spaces.
Suppose (Hi, || - |l1) is compactly embedded in (Ha, || - ||2). Let B < oo be a constant. Then the
| [l1-ball

Q= {heH: |, <B)

is || - ||2-closed.

Lemma 4. Let (X, |- ||x), (Y,] - |ly), and (Z, || - ||z) be Banach spaces. Suppose
1. (X, |- |lx) is compactly embedded in (Z, || - ||2).
2. (Z,| - llz) is embedded in (Y,| - ||y).

Then (X, || - ||x) is compactly embedded in (Y, || - ||y).

Note that assumption 2 implies

{9:1lgllz < oo} C{g:lglly < oo}

B Norm inequality lemmas

Lemma 5. Let ¢ : D — R4 be a nonnegative function. Let mg,m > 0 be integers. Suppose
assumption 4 holds for y = pug. Then for every compact subset C C D, there is a constant Mg < co
such that

172 Flltono 2,50 < Mellfllmsmo 2t

for all f such that these norms are defined. If the stronger assumption 3 holds, then this result
holds for C = D too.

Lemma 5 generalizes lemma A.1 part (a) of Gallant and Nychka (1987) to allow for more general
weight functions, as discussed in section 4.1. Note that Gallant and Nychka’s (1987) lemma A.1
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stated sup,cp p(2) < 0o as an additional assumption. This condition is not used in our proof, nor

was it used in their proof, which is fortunate since it is violated when p upweights.

Lemma 6. Let p : D — R4 be a nonnegative function. Let m > 0 be an integer. Suppose
assumption 4 holds for u = pus. Then for every compact subset C C D, there is a constant Mg < co
such that

1 o210 < Ml fllmoo, e

for all f such that these norms are defined. If the stronger assumption 3 holds, then this result
holds for C = D too.

Lemma 6 generalizes lemma A.1 part (d) of Gallant and Nychka (1987) to allow for the weaker
assumption 4. Lemma 7 below is analogous to lemma 6, except now using the Sobolev Lo norm
instead of the Sobolev sup-norm. One difference, though, is that the norm on the left hand side

now has 1 instead of pt/2.

Lemma 7. Let u : D — R, be a nonnegative function. Let m > 0 be an integer. Suppose
assumption 4 holds for u = us. Then for every compact subset C C D, there is a constant Mg < oo
such that

£ lm2te < Melle? fllm,2,1c

for all f such that these norms are defined. If the stronger assumption 3 holds, then this result
holds for C = D too.

Lemma 8. Let p: D — R4 be a nonnegative function. Let m > 0 be an integer. Then there is a
constant M < oo such that

HNf”moo < M”meOOM

for all functions f such that these norms are defined.

C Proof of the compact embedding theorems 1 and 3

In this section we prove theorems 1 and 3. The general outline of the proof of theorem 3 follows
the proof of Gallant and Nychka’s (1987) lemma A.4, which is a proof of theorem 3 case (1) under

the stronger assumption 3.

Proof of theorem 1 (Compact embedding).

1. This follows by the Rellich-Kondrachov theorem (Adams and Fournier (2003) theorem 6.3
part II, equation 5), since mg is a positive integer, and since mgy > d, /2 and D satisfies the
cone condition. In applying the theorem, their j is our m. Their m is our mgy. Moreover, in

their notation, we set p =2 and k =n = d,.

2. This follows by the Rellich-Kondrachov theorem (Adams and Fournier (2003) theorem 6.3,

part II, equation 6), since mg is a positive integer, and since mgy > d,/2 and D satisfies the
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cone condition. In applying the theorem, as in the previous part above, their j is our m and

their m is our mg. We set also ¢ =p =2 and kK =n = d,.

3. This follows by Adams and Fournier (2003) theorem 1.34 equation 3, and their subsequent

remark at the end of that theorem statement.

4. This follows since || - |lm+mo,2 < M| - |lm-+mo,00 for some constant 0 < M < oo and hence
I| - lm-+mo,00 bounded sets are also || - ||ym+m,2 bounded sets. Then apply part (2), which shows

that these bounded sets are || - ||, 2-relatively compact.

5. This follows by applying the Ascoli-Arzela theorem; see Adams and Fournier (2003) theorem
1.34 equation 4.

O

Proof of theorem 3 (Compact embedding for unbounded domains with equal weighting). We split the

proof into several steps. For each of the cases, define the norms || - ||s and || - || as in table 5.
- Ils -l
D oz 11,0
@) Mmtmozins N+ [z e
(3) H ’ Hm-l-mmoo,us ” ) Hm,OO,uc
@) - lhntmocopms M- llm.2,pe
Table 5

1. Only look at balls. By lemma 1, it suffices to show that for any B > 0, the || - ||s-ball © of

radius B is || - ||c-relatively compact.

(Cases 1 and 2') 0= {f € Wm+mo,2,us(D) : Hf||m+mo,2,us < B}
(Cases 3 and 4.) © = {f € Crntmo,00,us (D) : | fllmtmo,c0us < B}

2. Stop worrying about the closure. We need to show that the || - ||.-closure of © is || - ||~
compact. Let {f,}52; be a sequence from the || - ||-closure of ©. It suffices to show that {f,}
has a convergent subsequence. By the definition of the closure, there exists a sequence {f,}
from © with

By the triangle inequality it suffices to show that {f,} has a convergent subsequence. The

space

(Case 1.) & 1/2

m7oo7u8

(Cases 2 and 4.) #;2,4.
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(Case 3.) Cmooue

is complete, so it suffices to show that {f,} has a Cauchy subsequence. The proof of com-
pleteness of these spaces is as follows. Recall that a function f : D — R on the Euclidean
domain D C R% is locally integrable if for every compact subset C C D, Jo lf(x)] dz < oo
Assumption 6 implies that both pu. 1/2 (as needed in cases 1, 2, and 4) and p_; ! (as needed in

case 3) are locally integrable on the support of p.. Next:

/2 and applying theorem 5.1 of Rodriguez

(Case 1) Follows by local integrability of . !
et al. (2004). To see this, using their notation, assumption 6’ ensures that Q; = --- =
Ok = R (defined in definition 4 on their page 277) and Q(®) = R (defined on their page
280), and hence by their remark on page 303, the conditions of theorem 5.1 hold. This
result is not specific to the one dimensional domain case; for example, see Brown and
Opic (1992). The reason we use the power —1/2 of . in assumption 6’ is by the p = oo

case in definition 2 on page 277 of Rodriguez et al. (2004).

(Cases 2 and 4.) Follows by local integrability of . 1 2, and theorem 1.11 of Kufner
and Opic (1984) and their remark 4.10 (which extends their theorem to allow for higher
order derivatives). The reason we use the power —1/2 of p. in assumption 6’ is by the
p = 2 < oo case in definition 2 on page 277 of Rodriguez et al. (2004), or equivalently,
equation (1.5) on page 538 of Kufner and Opic (1984).

(Case 3.) Follows by local integrability of x-! and then the same argument as case 1.
The reason we use the power —1 of j. in assumption 6 is by the p = 0o case in definition
2 on page 277 of Rodriguez et al. (2004).

This step is important because functions in the closure may not be differentiable, in which
case their norm might not be defined. Even when their norm is defined, functions in the
closure do not necessarily satisfy the norm bound. Also, note that if p. does not have full
support, such as p.(z) = 1(||z]le < M) for some constant M > 0, then we simply restrict the
domain to DN {x € R% : ||z||. < M} and then proceed as in the bounded support case.

. Truncate the domain. The key idea to deal with the unbounded domain is to partition

R% into the open Euclidean ball about the origin
Qy={zeR¥ : 2z < J} = {z € R% : |z| < J?}

and its complement 9. As we show in step 9 below, the norm on R% can be split into two
pieces: one on €); and another on its complement. We will then show that each of these
pieces is small. Restricting ourselves to 2, we will apply existing embedding theorems for
bounded domains. We then eventually pick J large enough so that the truncation error is

small, which is possible because our weight functions get small as ||z|| gets large.

Let 1o, (x) =1 if x € Q7 and equal zero otherwise.
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4. Switch to the unweighted norm so that we can apply an existing compact embedding
result for unweighted norms (on bounded domains). Since the f, are in ©, we know their
weighted norm || - ||s is bounded by B. We show that a modified version of the sequence is

bounded in an unweighted norm.

(Cases 1 and 2.) The unweighted norm we work with here is || - ||m+mg,2,1,- For all n,

7]19J

||H;/2fn||m+mo,2,]191 < MJ”anermo,?,us]an

< MJanHm+m0,2,us
< M;B.

The first inequality follows by lemma 5, which can be applied by using our assumed
bound
VAl2(@)] < Kepl/2(0)

for all x € C, where C is any compact subset of R%. Here and below we let M
denote the constant from lemma 5 corresponding to the compact set ;. The third
inequality follows since f,, € © and by the definition of ©. Thus, for each J, {,u;/ 2 fn}is
[ - ||m+m0,2,]19]—b0unded. Notice that in this step we picked up a power 1/2 of the weight

function.

(Case 3.) The unweighted norm we work with here is || - [[;m4mq,00,10,- For all n,

Hﬂsfn||m+mo,oo7llnj < M”anermo,OOwleQJ

< ManHm—i—mo,OO#s

< MB.

The first inequality follows by lemma 8. The third inequality follows since f, € © and
by the definition of ©. Thus, for each J, {15 fn} is || - [|m+mo,00,1, ,-Pounded.

(Case 4.) The unweighted norm we work with here is || - [[;m4mq,00,10,- For all n,

Hﬂiﬂfn“m-ﬁ-mo,oo,]lnj < M| fall

- M v V2(z)1
OSIAIII%%{eroaSclelg' fn(@ s () QJ(QE)

=M VA fo (@) s (@) g2 (2) 1
. gu?%%moiﬁ%i' Jn(@)|ps(@)pg ~=(2) Lo, ()

SM( max sup\V)‘fn(x)]uS(x)> sup ;2 (x)

0<|A[<mA4mo zeD [|z]|e>J2

1/2
m+m0,oo,us/ ]lQJ

22 osup py V()
[|z]|e>J?

= M| fa]l

1
m—+mg,00, s

< MBKj.
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The first inequality follows by lemma 8. The final inequality follows since f, € © and
by the definition of ©, as well as by assumption that us is bounded away from zero for

any compact subset of R%. Thus, for each .J, {,u;/ 2 fn} is || - llm+mo,00,10 ,-bounded.

5. Apply an embedding theorem for bounded domains.

(Case 1.) By theorem 1 part 1, Wm+m072,1m is compactly embedded in Cgm,oo,]ng- Thus,

since {u;ﬂfn} is || - Hm+m0,2,19(]—bounded, it is relatively compact in %m7oo7jlﬂj.

(Case 2.) By theorem 1 part 2, Wm+m0’27]19v, is compactly embedded in Wm727]19j. Thus,

since {,uiﬂfn} is || - Hm+m072,ﬂﬂj—bounded, it is relatively compact in ng’]lﬂ‘].

(Case 3.) By theorem 1 part 3, %mJFmU,OO,l“J is compactly embedded in ‘Km,wﬂw. Thus,

since {psfn} is || - ||m+m0,oo,]19']—bounded, it is relatively compact in Cfmm,ﬂﬂj.

(Case 4.) By theorem 1 part 4, €yqmg 00,10, is compactly embedded in #7215, - Thus,

since {,ui/an} is || - [lm-+mo,00,1¢ ,-bounded, it is relatively compact in #p 21, -

In cases 1, 2, and 4 we used that my > d, /2, and note that Q; satisfies the cone condition.

In case 3 we used that 2 is convex and mg > 1.
6. Extract a subsequence. Set J = 1. By the previous step, there is a subsequence

(Case 1.) {u;/Qf](l)}]‘?’;l and a 91 In € e01,,, such that

. 1
lim /2 — 1 flmoc,1a, = 0.
J—00

(Cases 2 and 4.) {u;/QfJ(U 321 and a ¢y in “//m7271101 such that

: 1
tim (|12 £ = |20, = 0.
Jj—00

(Case 3.) {usqul)}jﬁl and a 11 in ‘Km,oo,]lﬂl such that

]llglo H,usfj(l) - 1/11Hm,oo,]191 =0.

7. Do it for all J. Repeating this argument for all J, we have a bunch of nested subsequences

(Cases 1, 2, and 4.)

1 2
{222} o {2 f0) o (ul 2Py o

each with
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(Case 1.)
1/2 ¢(J)
/ J

lim (12 = 6 lmoea, = 0.
J—00 ‘

(Cases 2 and 4.)

: 1/2 () _ _
Jlggo s fj wJHm,Q,]lQJ =0.
(Case 3.)
1) (2) o
{Msfn} ) {NSfj } ) {MSfj } 2
each with

. J
lim iz f5" = 6 lmoe.a, = 0.
Jj—00 .
The reason we have to extract a further subsequence from

(Cases 1, 2, and 4.) {M;/Qfl(l)} is that {H;/2f1(1)}
(Case 3.) {,usfl(l)} is that {Hsffl)}

only converges in the norm with J = 1; it may not converge in the norm with J = 2. So we

extract a further subsequence which does converge in the norm with J = 2, and so on.

8. Define the main subsequence. Set f; = f;j ). Then {f;} is a subsequence of {f,}. Our
goal is to show that {f;} is || - ||.-Cauchy. Let ¢ > 0 be given. This is a kind of diagonalization

argument.

9. Split the consistency norm into two pieces.

(Cases 1 and 3.) For any weight . and any set 2, we have

1Fllm.coue = max —sup IV f (@) |pe(x) (Ta(@) + Tac(z))
<[ASm peRrde

:£%§%§&OVV@NWWWM@+‘ﬂﬂﬂm&ﬂMJ@)

< vA 1 + v 1oe
*ogrfi??mmi%%' f(@)|pe(z) Lo () OSIB\?;(mwSe%BI‘ f(@)|pe(z) Lae (2)

= Hf”m,oo,uclln + ”me,OQMc]IQC7

where Q¢ is the complement of ). Hence, for any J, and for any f; and f; in our main

subsequence {f;} we have

(Case 1.)

15 = fell 2 < f5 = Sl 12y, H I = fil

1 1/2 .
m,00, e m,00, e m,00, e 193

(Case 3.)

15 = Fillmoone < 1F5 = Fillm.oopera, + 1f; = frllm,oopcrqe -
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(Cases 2 and 4.) We want to show that

1F W2 e < 1 Fllmo2e1a, + 1 llm,2me1qe -

We have
1= 3 [ @ pele) do
0<|A|<m
> [ / (VS @) Prala) e (o) d [ (970 o) i o) o
0<|IAI<m
= Z /VA 12 e (2 z)lq,(x) dr + Z /V’\ (2)1qg () dx
0<[A|<m 0<|A|<m
= ||f||m,2,ucllQJ + HmeQMLIch'
Hence

1Fln e = /TR 2, + T2t

< N Fllm2pera, + 1 Fllm.2pme1qe

where the last line follows by va? + b2 < a + b for a,b > 0. Hence, for any J, and for

any f; and f in our main subsequence {f;} we have

1f5 = Fillmzpe < 15 = Fillmzpera, +1f; = frllm2perge
where recall that Q9 is the complement of €2;.

Now we just need to show that if j, k are sufficiently far out in the sequence, and J is large

enough, that both of these pieces on the right hand side are small.
10. Outside truncation piece is small.

(Case 1.) Since f; € © for all j, || fjllmtmo2u < B for all j. This combined with
assumption 5 let us apply lemma 9 to find a large enough J such that

€
for all j. By the triangle inequality,
€ 5
15 = Fell o 21, <23 = 3
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(Case 2.) For this case,

1 fillm2.pms10e < W fjllm.2,0,

< ||fme+mo,2,us
< B,

where the last line follows since f; € ©. Next, by assumption 1,

— 0 as 'z — oo.

So we can choose J large enough that

(1) < o

for all 2’z > J; i.e., for all z € QF. Next, we have

iy = > [ 19 @Pu) da
J

0<[A|<m

- ¥ [ Pekn@he) i

o<ATEm fs()

2
< Y [ 5@ g do

0<[A|<m

2
~pm 2 | V@) do

0<A|<m

&2
= 7”.]0]'”72712 1
4232 14y s Qf]
€ 2
= 42BQB
= E'
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(Case 4.) For this case,

15 aseres = 3 [ IV @PR) da
J

0<[A[<m

= X[ e

0<[A|<m ()

_ 9 Mc(x)
< Ol o | L)

Q4 Ms(x)

2

§727

)

where in the last step we choose J large enough so that'®

pre() g2
dx < .
s, it 2= wew

This is possible by our assumption that the integral on the left hand side is finite for

at least some J. That implies, by the monotone convergence theorem for sequences of
pointwise decreasing functions (e.g., Folland (1999) exercise 15 on page 52), that the

integral converges to zero as J — co.

(Cases 2 and 4). Take the square root of both sides to get

e
il 2, < -

By the triangle inequality,

9 9

15 = Fellmaetgs <25 ==

Here we see that we could weaken our assumption on the integral to merely that ch te(z)/ps(z) de < oo for
J

some J if we switched to using the weight u;/Q instead of us in defining the parameter space.
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(Case 3.) We have

s C pr— A C
151l 00,pe1, . $?§m§£|v fi(@)|pe(z) Lae (z)

_ A phe()
—0<Iﬁ?§m21€1plv fix )|Ms($)us(w)ﬂ < (z)

s( max sup [V (« )Ius(a:)> sup Hel®)

0<[A|<Sm zeD l|z|e>J2 s ()

~—

fre(z
= lfjllm,oous sup
TSk ||| >J2 ps ()

fre()
< W fillmtmo,0oms  sup
J llm~+myg,00,1 ]]o>2 Ms(l')

Hz||€>J2 ps ()

Bi
4B

The second to last line follows by choosing J large enough, and using assumption 1. By

the triangle inequality,

-
1f5 = Frllmoomerqe < 2,=5.

11. Inside truncation piece is small. In the previous step we chose a specific value of J,
so here we take J as fixed. {f;}2 2y = ={ f;J ) 2 (equality follows by definition of f;) is a
subsequence from { fj } This follows since the subsequences are nested:

(Cases 1, 2, and 4.) {ul/an} D {,ué/2 } D {,ul/Qf(Q)} BREEP
(Case 3.) {usfn} D {Ms Yy o {Ms Py o

(Case 1.) Since {u;/zf;‘])} converges in the norm || - [lm,co,14, it is also Cauchy in that

norm. Thus there is some K large enough (take K > .J) such that

1/2( €

12 — fi)lmoo,1q, <

for all k,j > K. Here M is the constant from applying lemma 6 to C = ;. Notice

that this constant is different from M ;, which comes from applying lemma 5.
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Hence

£ — fxll < M\ £y = fill

1/24
m,00, [Le moou

< My M|l (f; fk)||m wdq, by lemma6

< MMM
* o

Applying lemma 6 uses assumption 4. The first line follows since

171l = max sup |V f(2)|ue'*(2)1a, (2)

m.0o.pic! QJ 0<IAI<M peRda
A 1/2 fre(z) 12
= max sup |V f T 1o, (x
0<‘>\|<mm€REI| ( )MS ( ) (:LLS(:E)) QJ( )

< VA f 120,02 %1
o$?§mxi%81| f(@)| s (x) M5 " 1q, (x)

= M| £

moo,u JIQJ’

where we used our assumption 2 that

s ()
for all z € R,
(Cases 2 and 4.) Since {uiﬁf;‘])} converges in the norm || - [[;,2,1,, it is also Cauchy in

that norm. Thus there is a K large enough (take K > J) such that

2y, £

|1 = f)llm21q, <
T e

for all j,k > K. Here M/, is the constant from applying lemma 7 to C = ;. Applying

this lemma uses assumption 4. We need to show that this implies

15 = frllm2pncq,
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is small (< e/2) for all j,k > K. We have

1/2
1 llmzpete, = Zj/vﬂ (2)La, (z) dx
0<|N|<m
1/2
| T [ @@ 0, @) ds
0<|A|<m #s(2)
1/2
37
< | sup 3 / 9 (@) as () o, () da
remis 1s(7) 0<|A|<m
1/2
< M}? vA 1 d
3 (2)10, (x) da
0<|IAI<m

1/2
:mﬂmmmmﬁ

where the fourth line follows by assumption 2, which said that

for all x € Ry,. This shows us how to switch from weighting with . to weighting with
ts. By lemma 7,

1F 2 pete, < Millid> Fllmz1, -

Thus we are done since

1/2
1f5 = fillmzpera, < M1 = fillmzpta,

1/2
< MM |2 (f = fllm.ag,

1/2 €
< MMy ——
oMM,
_c
=5
(Case 3.) Since {usfj(‘])} converges in the norm || - [[;m 00,10, it is also Cauchy in that

norm. Thus there is some K large enough (take K > J) such that

€

k 1 F Y EY
H/’LS( f )HmOO SlJ 2M5M}

for all k,j > K. Here M is the constant from applying lemma 6 to C = ;. Notice

that this constant is different from M ;, which comes from applying lemma 5.
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Hence

1f5 = frllmcopera, < Ms|lfi = fillmoopsiq,

< MM |\ps(f5 — Ji)llm,oo1q, Dby lemma 6 applied with p = 2

9
< M5M‘/]72M5M,
J

£
5

Applying lemma 6 uses assumption 4. The first line follows since

= max sup |V f(z )l (x
Il e, = s sup [V (@) pe(z) L, ()

_ A pe(T)
= max sup V2 (@) ps () ES Lo, (x)

< v M1
< Jhax sup V2 f ()| ps(x) M5 1, (7)

= M5Hf||m,007#s]19(,’
where the third line follows by assumption 2.

12. Put previous two steps together. We now have

8_

3
”fj_kacﬁi‘F €

[\

for all k,j > K. The constants only depend on the choice of weight functions, not J or any

other variable that changes along the sequence. Thus we have shown that { f;} is || -||.-Cauchy.

O]

Lemma 9. Let p., us : D — Ry be nonnegative functions. Let m, mg > 0 be integers. Let ; be
defined as in the proof of either theorem 3 or 5. Suppose assumption 5 holds and || f||m+me,2,u, < B.
Then there is a function K(J) such that

< K(J)

val

1/2
m,oo,uc/ ]19?]

where K(J) — 0 as J — oc.
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Proof of lemma 9. For all 0 < |A| < m,

A _ Af 1/2
19l 1 = 520 (VS @)
1
= sup |V f it/ (2) ——
sup (V@) o
1
< sup V)‘ u1/2 sup ——
erC‘ f)l (@ )erCJ g9(x)
= |@t/?v? . Sup ——
17229 oo, 30 2
< ||ze/*v? :
z€Q ,9(33)

By the Sobolev embedding theorem (Adams and Fournier 2003, theorem 4.12, part 1, case A,

equation 1) there is a constant Ms < oo such that

ll9llo,00 < Mal|gllmo,2
for all g in #;,,2 where mg > d; /2. This inequality implies

HMlﬂv)\fHO 0o < M2H/11/2v)\f”mo,2

< MMV flmo.2,,
= M3V fllmo 2.0

The second line follows by using assumption 5 in arguments as in the proof of lemma 5. Hence

1
VA f 1/2 < M3||V fllmo 2.0, SUP ——
IV oot L zeqts 9(2)
n 1
< Ms Z IV fllo,2, SUPC ﬁ
0<n[<IAl+mo e 9
1
< Mz Z Hmeero,Zus SUPC H
0< [ <[A[+mo ey 9
1
< Mj Z B | sup —
o< +mo ) +€%5 ()
1
< M;3 Z B sup —
opigmims ) 7€ 9(@)
=K(J)

The second line uses a% +---+a2 <a;+---+a, and the definition of the Sobolev Ly norm. The
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third line uses |a;| < \/a% + -+ a2 for i = 1,...,n. By the definition of Q;, and since g(x) — oo
as ||z]|c = oo (for D = R%) or as x approaches Bd(D) (for bounded D),

1
sup —— — 0.

z€Q9 g(.%')
Hence K(J) — 0 as J — oco. Finally,
_ A
Hme,oo,ui/z]lgg - Ogr?ﬁ%(m Hv fHO,OOnué/z]le]
< K(J).
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Supplemental Appendix to “Compactness of Infinite
Dimensional Parameter Spaces”

Joachim Freyberger* Matthew A. Masten®

December 23, 2015

Abstract

This supplemental appendix provides proofs for all results not already proven in the appendix
of the main paper. We also provide several additional results discussed in the main paper.

A Some useful lemmas: Proofs

Proof of lemma 1. Let A C X be || - || x-bounded. Then it is contained in a || - || x-ball. That ball
is || - ||y-relatively compact by assumption. So A is a subset of a || - ||y-relatively compact set.
Containment is preserved by taking closures of both sets, and hence the || - ||y-closure of A is a
subset of a || - ||y-compact set, and is also || - |[y-compact since it is a closed subset of a compact
set. Ul

Proof of lemma 2. Let {a,} be a sequence in A. Since A is || - || x-closed, any element a such that
|lan, — a|lx — 0 must be in A. Let a be such that ||a, — ally — 0. Then |a, — al]|x — 0 by our

norm inequality. Hence a € A. O
Proof of corollary 1. Follows by repeatedly applying lemma 2. O
Proof of lemma 3. This proof is given in lemma A.1 of Santos (2012) and we therefore omit it. [J

Proof of lemma 4. Since (X, |- ||x) is embedded in (Z, || - ||z), there exists a constant M; > 0 such
that
I llz < Ml -l x-

Likewise, by assumption 2, there is a constant constant M > 0 such that || - ||y < Ms||-||z. Hence
- lly < MMl - |x.

Thus (X, || - ||x) is embedded in (Y, || - ||y). Next we need to show that this embedding is compact.
Let A C X be ||-||x-bounded. Let {a,} be a sequence in A. By assumption 1 there is a subsequence

*Department of Economics, University of Wisconsin-Madison, jfreyberger@ssc.wisc.edu
"Department of Economics, Duke University, matt .masten@duke . edu



{an, } that || - || z-converges. But by assumption 2, || - ||z is a stronger norm than || - ||y and hence
this subsequence || - ||y-converges. Thus every sequence in A has a || - ||y-convergent subsequence

and so A is || - ||y-compact. O

B Norm inequality lemmas: Proofs

In the proof of lemma 5 and other lemmas, we use the following: The product rule tells us how to
differentiate functions like h(z)g(z). The generalization of this rule is called Leibniz’s formula or
the General Leibniz rule. For functions u and v that are |«| times continuously differentiable near

z, it is

Vewo)l@) = Y H VAu(z) Ve Pu(z).
(860}

Here 8 < o is interpreted as being component-wise: § < « if 3; < a; for 1 < j < d;, where d, is
the number of components in the multi-indices 8 and «, and is also equal to the dimension of the

argument x of the functions u and v. Also,

where

(O&j) . Oéj!
Bi)  Bila; — B;)!

is the binomial coefficient. For a reference on this formula, see Adams and Fournier (2003), page 2.
Proof of lemma 5. Applying Leibniz’s formula to the function u(x)/2f(z) we have
A
VA=) [ ] (VIR)(VAPutr),
{B:B<A} g
for |A| < m + myg. By the triangle inequality, this implies

02,1c < Z

{B:B<A}

A

IV (2 1)) IV 2ut VP fllogic




Using the bound on the derivatives of ;!/2 we have
1/2
VP29 fllg . = ( /C VP2 () VP () d:c)
_ ( [ 19 @ s da:)
C
1/2
< ( /C Ken @) [VP ()] dx>

= 52 ( [1910)Pute) a v

= KZ||V? fllo.2,u1c

< K(%Hmeero,Zuﬂcv

1/2

where the last line follows since m + mg > 0. Thus, for |A| < m + my,

A
IV 2 A)llogae < | D H K fllm+mo,2,utc-

{B:6<A} p
Next,
HMl/Qngneroz,nc = Z HV/\(Ml/Qf)H(QJ,z,ﬂc
0<|IA|[<m+mg
2
A
-y | H K3 s e
0<|A|[<m~+mg {B:B<7}
2
A
= 1 smozpne [KE D ) H
0<|A|[<m+mo \{B:B<A}
= Hf”?n—i—mo,Q,u]chCQ’
and hence

12 F o 226 < MellFlmmo 21

as desired. When assumption 3 holds, the same proof above applies, but the constants now hold
over all D. O



Proof of lemma 6. We use induction. The inequality holds for m = 0 with M¢ = 1 since

1fllo,00 1721, = sup |f (@) |1 (@) Le(2)

= sup |u'*(2) f (z)|Le ()
€D

= ||u'/?f

‘0700,110'
Suppose the inequality holds for m and let 0 < |A\| < m + 1. By Leibniz’s formula,

A

VAN = (PO 1

{B:B<X,B#N}

] (VP2 (VP ),
which implies that

(VORI < IV P+ > [A (VAPu2) (VP f)
{B:B<N,B#N} B

<@+ ke S |7

5 p2|vP f).
(B:8nsAA} L

The second line follows by assumption 4, assuming we only evaluate this inequality at © € C. Taking

the supremum over z in C and the maximum over |A\| < m + 1 gives

1 ot so 1210 < N2 fllmatoo,ie + KENF ooy /2100

by the definition of the norms, and since A isn’t included in the sum we get only m derivatives in
this last term on the right hand side. Moreover, we picked up an extra < since we moved the max

and supremum inside the summation in the second term, and then were left with the constant
, A
K, =K Z Z < Q.
[AI<m {B:8<X,B#A} b

By the induction hypothesis there is an M/, < oo such that

||f||m,oo“u1/2]lc S M(/ZHMI/Qme,OO»]lC‘
Moreover,
Hﬂl/Zme,oo,llc < Hﬂl/zf”m-&-l,ooJC'

Thus

Hf”m,oo,p,l/Qllc < M(l,’Hﬂl/QmeJrLooch-



Plugging this into our expression from earlier yields

1t 10007210 < 1872 Fllmato01e + KENF oo 21,
<2 fllmtt,00,10 + KEMENU2 fllmat.00,16
= (14 KM fllm 100,10
= Mel|pt"? £ llm+1,00,1¢

When assumption 3 holds, the same proof above applies, but the constants now hold over all D. [

Proof of lemma 7. We will modify the proof of lemma 6 as appropriate. As there, we use proof by

induction. For the base case, set m = 0. Then

||f||0,2,u11c = </C[f(x)]2,u(x) dx) 1/2

- ([wrewser dx)m

= |2 fllo2,1¢-

Thus the result holds for m = 0. Now suppose it holds for m. Let |A| be such that 0 < |A| < m+1.

Then, as in the proof of lemma 6, we have

A

5 (VAP ul2) (VP )

VAP = (Ve Y
{B:8<X,8#7}

by Leibniz’s formula. As in that proof, applying our bound on the derivative of the weight function,

we get

A

VA flul/2.
B

VAl < VAP h) + Ke >
{B:B<N\,B#N}




Now we square both sides and integrate over C to obtain
LIV @) Puta) do < [N do

N
+/CK3 2 2 H H' Uf(@)] - VO f ()| p(e) de

{B:B<, B£N} {B:BSNB#N}

+/2HVA(/~L”2f)]($)\Kc > H V2 f ()| () da
¢ (ppnprny P

= [ 62 i) ar

k2 Y 3 H H /c 98 f ()] - VP £ () ()

{B:B<NB#NY {B:B<A,B#A}

+2Ke Y H / VA2 ))(@)] - VP f @) | () dee
(aaapay LP1Je
=(1)+(2)+ (3).

In the third term, we can apply Leibniz’s formula again,

V7 f|ut

VO < ke S |7
{n:n<Bn#B} "

to get
_ A AL/ o8 1/2
CELCD Y / IV (2 F)) ()] - 199 F () |2 () da
{pssrpn L ¢
<ok | < / A2 )] ()] - [[9° (42 )] ()] dac
tasnseny O]\ /e

+Ke ) [5 /c ![Wulﬂfﬂ(m)-rv"f<x>|u1/2<x>dx).

{nm<Bn#6} 77

We can apply Leibniz’s formula again to eliminate the |V f(z)|u'/?(z) term. Continuing in this

manner, we get a sum solely of integrals of the form

LIS G201 197 2 )] e

Now replace one of the two absolute value terms in the integrand with whichever one is largest.



Suppose its the A piece. This yields

/[VA(MWJ“")](OJ)I~I[V6(ul/2f)}(ﬂc)df”S/\[Vk(umf)](%)l2 dz.
C C

Thus the third piece is now a sum of terms like this one, where the multi-index in the differential
operator can go as high as |A|. Summing (3) over |A| with 0 < |A] < m + 1 we obtain a sum of
many unweighted integrals over C with integrands of the form |[V*(u'/2f)](z)[>. Now all we have

to do is group all these integrals such that our entire expression (3) is a multiple of

3 /C [ U2 ))(@)[2 e = (2 2

0<|A[<m+1

If there are any ‘missing’ integrals, we can just add on the missing ones (which will give us another
inequality, but that’s ok since we only need an upper bound). Thus we see that, after summing
over 0 < |A| < m+ 1, the term (3) is bounded above by

OSvC||H1/2fH%L+1,2,]1C

for some constant Cs5 ¢ > 0.

Consider now the second piece. It is a sum of integrals of the form

/C V(@) VP f () ) .

Basically the same argument from third piece applies. We can replace one of the absolute values

here with whichever is the largest, thus obtaining an integral of the form

/C 1V (o) Ppz) d.

Now summing these terms over 0 < |A\| < m + 1 we see that after grouping all the integrals and

adding any missing terms, the entire expression (2) is a multiple of

S [I9@R do = 1

0<[A|<m

It is important here that the sum only goes up to m, not m + 1. This is because, in the term (2),
the 8 and B pieces are always strictly smaller than A, and A itself can only go up to m 4+ 1. Hence

8 and § can only go up to m. Thus we see that the term (2) is bounded above by

C2,C||f||$rb,2,]1¢

for some constant Cy ¢ > 0. Finally, consider the term (1). This term is easy because when we sum



over 0 < |A| < m + 1 this term exactly equals

||/~L1/2fH72n+1,2,]1c

without having to add any extra terms or mess with the integrands. Combining all these results,

we see (by also summing over the left hand side of our original inequality) that

”f”3n+1,2,u]1(; <1+ C3,C)||M1/2fH12n+1,2,]1c + C2,C||f||72n,2,]1c-

Now apply the induction hypothesis to the last term to get

||f||?n+1,2,;ﬂlc <(1+ 03,C)|’M1/2f||3n+1,2,]1¢ + 02,C”M1/2f||%1+1,2,]1c
=(1+Cs¢c+ CQ,C)H:U’I/2f||$n+1,2,]lc'

Finally, take the square root of both sides to get

£ llmr1201e < (14 Cse+ Co) 212 fllmsr21c

as desired. When assumption 3 holds, the same proof above applies, but the constants now hold
over all D. n

Proof of lemma 8. As in the proof of lemma 6, we have

A

5 (VAP (VP ).

VAP = (Ve Y
{B:B<X,B#N}

Hence

A
VAN < IO+ Y [ ] (V2 F)ut?].
{B:8<N,B#N} p

Take the sup over z and the max over |A\| < m + 1 to get
162 Fllmo0 < 1F 00,172 + K1 F oo 12
Since Hf”rn,oo,ul/2 < Hme—l—l,oo,ul/Q we get

112 f im0 < (14 K llmt1,00,01/2-

The result follows by evaluating this inequality with the weight p?. O



C Proofs of the compact embedding theorems 5 and 7

Proof of theorem 5 (Compact embedding for unbounded domains with product weighting). For cases
1-3, we apply lemma S1 below, which allows us to convert our previous compact embedding and
closedness results for equal weighting to results for product weighting. For case 4, we do not have
such a prior result because it’s not clear how to define equal weighted Holder norms, as discussed in
the main paper. Hence for this case we instead modify the proof of the previous compact embedding

and closedness results.

Cases 1-3: Theorem 3 (case 1: part 1 with the s weight equal to the constant 1 and the ¢
weight equal to i) (case 2: part 2 with the s weight equal to 1 and the ¢ weight equal to ji)
(case 3: part 3, with weights chosen as in case 2) implies that (cases 1 and 2: #,4m2,1) (case 3:
Cm+mo,00,1) is compactly embedded in (cases 1 and 3: €y 00,i) (case 2: #;,25). Note that both
the constant weight function, fi, and fi® satisfy the local integrability assumptions 6’ and 6” as well
as assumption 3.

By proposition 6, (cases 1 and 3: ||« ||;m,00,) (case 2: || ||m,2,4) and (cases 1 and 3: || - ||m,o00,fi,arr)
(case 2: || - |lm,2,4,a1r) are equivalent norms. Therefore (cases 1 and 2: #jniimg,2,1 = Pmtmo,2,1,a11)
(case 3: Gm+mo,00,1,aur) is compactly embedded in (cases 1 and 3: G o0 iarr) (Case 20 Wi 2 jiarr)-
Lemma S1 part 1 now implies that (cases 1 and 2: %, 4mo2,us,a0r) (€as€ 31 Crntmo,c0,us,aur) 18

compactly embedded in (cases 1 and 3: G, 00 ye,arr) (case 20 #r 2 0 avr)-

Case 4: The proof is similar to the proof of theorem 3. Since we have already given a detailed
proof of that theorem, here we only comment on the nontrivial modifications to that proof. The

numbers here refer to the steps in that proof.

L. 0= {f € %m—i-mo,oqusw : Husf||m+m070071ﬂ/ < B}‘

2. Completeness of the function spaces under product weighting follows by completeness of the

unweighted spaces.

4. This step is not necessary since, by definition of the product weighted norms, f, € © for all

n implies

{1sfn} is || - [lm+mo,00,1,0-bounded. In particular, this implies it is || - [[mtmo,00,10, 0

bounded for each .J, where here

ol soter o = lglmimoseta, + max  sup L@ V@
J 7 [A=m+mo z,yeQ s, z£y H$ - yHZ

Generally, in this proof indicators in the weight function placeholder denote the set over

which integration or suprema are taken.

5. Apply theorem 1 part 5. Since {5 fn} iS || * [lm+mo,00,10, »-bounded, it is || - [ln,00,10 -

relatively compact.



9. By identical calculations as before, we have

||f] - fk”m,oo,,uc,ALT < ||f] - fk:”m,oo,uC]lQJ,ALT + ||f_7 - fk”m,oo,,uc]lgc],ALT-

10. For f; € © we have

11.

Hfj”m,oowc]lncJ,ALT = H/’LijHm,OO,ﬂgs
= Hﬂsﬂfjnm,oqllgrj
< MHﬂsfj”m,oovﬂﬂncJ

=M %, 1 IV (e S @A)

<M max sup [Vus(x)f;(2))] sup i(x)
0<IAI<Sm zERw z€Q5

< M|’ll’l’5fj”m+m070071,l/ sup fi(z)
z€Qg

< MB sup fi(x).

z€Q5

The third line follows by lemma 8. The last line follows since f; € ©. Now since fi(z) =

(14 2'2)7%, § > 0, converges to zero in the tails, we can choose .J large enough such that

i(x) < —
sup f(x .
v AMB

Hence, by the triangle inequality,

| ™

Hfj - kam,OO“uc]lgcJ <

Since {pus fj(‘])} converges in the norm | - [|m,c0,1,, it is also Cauchy in that norm. Thus there

is some K large enough (take K > J) such that

9

lres(fs = fulllmoosta, < 557

10



for all k,7 > K, where M is a constant given below. Hence

15 = fellmooera, aue = [lte(fi = fi)llm,oo,1q,
= lusfi(fj = i) llm,oo,10,
< M|ps(fj = fi)llmoo,fing,
< M||ps(f = fi)llmooo1a,

3
< M—

oM
_&
2

The third line follows by lemma 8. The fourth line follows since ji(z) = (1 + 2/2)~% < 1 for

all z.

O

Lemma S1. Let (X, || - ||x) and (Y,| - ||y) be Banach spaces where || f||x < oo for all f € X and
Iflly < oo for all f € Y. Moreover, suppose that for all f € X

Ifllx = 11flls
and for all f €Y
Iflly = IfAlle
where || - ||s and || - || are norms and /i is a weight function. Let (X, |- 5) and (Y,]-|ly) be Banach

spaces where || f||z < oo for all f € X and ||f||s < oo for all f € Y. Moreover, suppose that for all
fex
I£llx = W Freslls

and for all f €Y
1f1ly = 1f sille

for some weight function .

1. (Compact embedding) Suppose (X, |- || x) is compactly embedded in (Y, | -||y). Then (X, ]| -
|| ¢) is compactly embedded in (Y, - lls)-

2. (Closedness) Suppose
Q={feX:|fllx < B}

is || - [[y-closed. Then
O={feX:|flg<B}

is || - ||s-closed.

Proof of lemma S1.
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1. Let f € X. By definition, | fll £ = | fuslls < oo. Define h = fus and notice that h € X. Since
(X, ||-|x) is compactly embedded in (Y, ||-|]y), X C Y and there exists a constant C' such that
|hlly < C||h|lx. First note that h € X implies [|h[|y < oo and hence ||hjic = || fusfillc < oo.
So f € Y and thus X C Y. Next, note that

& | fusille < ClLfpslls
< Iflly < Cllfllg-

[hlly < Cllhllx < [[hiille < C|[h]]s

Next let {f,} be a sequence in the || - ||g-closure of
Q={feX:|flg <BY={f€X:|fnsls < B}
Let h, = fous. Then by definition of the norms, h,, is a sequence in the || - ||y-closure of
Q={heX:|nlx < B}

Since (X, || ||x) is compactly embedded in (Y, |||y ), there exists a subsequence hy,; = fp, s,
which is || - [|y-Cauchy. That is, for any € > 0, there exists an N such that ||h,; — hy,|ly <€
for all j,k > N. But

1Py = T Iy = [[(hny = g ) fille = ([(Fny = Fri)masiille = 1 fny = Fill -

Therefore, f,, is a subsequence of f, which is || - [|;-Cauchy. Since (Y,| - ly) is Banach, f;
converges to a point in Y. Hence (X, || - || ¢) is compactly embedded in v, - %)

2. Let f,, be a sequence in Q such that for some f € X, ||fn — flly = 0asn — oco. Since f, € Q
we have || fops|ls = ||fll g < B. Let hy = faps and h = fu,. Since

[hallx = [[halls = [ fapslls = [ fllx < B
we have h,, € Q. Moreover,
[hn = hlly = [[(hn — B)Alle = I fn = flly — 0.
Since Q@ = {f € X : ||f|lx < B} is | - ||y-closed, h € Q. That is, fus € Q, which implies that

1l = Ifusllx < B.

Hence f € Q. So Q is || - ||y-closed.

12



Proof of theorem 7 (Compact embedding for weighted norms on bounded domains). The proof is sim-
ilar to the proof of theorem 3. Since we have already given a detailed proof of that theorem, here
we only comment on the nontrivial modifications to that proof. The numbers here refer to the

steps in that proof.

2. For case 1, Q) = --- = Q) = D and Q© = D when applying Rodriguez, Alvarez, Romera,
and Pestana (2004).

3. We use the following more general domain truncation: Let {€2;} be a sequence of open subsets
of D such that

(a) Q5 CQyyq for any J,
(b) U7L, Qs =D, and
(¢) The closure of Q; does not contain the boundary of the closure of D for any J. That is,

Boundary(D) N Q; = ) for all J.

Roughly speaking, the sets €1 are converging to D from the inside. They do this in such a
way that for any .J, the boundary points of D are well separated from 2.

The rest of the steps go through with very minor modifications. O

D Proofs of closedness theorems

Proof of theorem 2 (Closedness for bounded domains). For this proof we let d, = 1 to simplify the

notation. All arguments generalize to d, > 1.

1. We want to show that the || - ||s = || - ||m+mo,2-ball © is || - [lc = || - |lm,00-closed. (#mtmo,2: | -
lm-+mo,2) is compactly embedded in (#,2, | - ||m,2) by part 2 of theorem 1, which applies
since we assumed D satisfies the cone condition and mg > d; /2. Lemma A.1 in Santos (2012)

(reproduced in the main paper’s appendix on page 38 for convenience) then implies that that

the || - [[m4mo,2-ball © is || - ||;m,2-closed, because the Sobolev Lo spaces are separable Hilbert
spaces (theorem 3.6 of Adams and Fournier 2003). Finally, since || - [[;m,2 < || - ||m,c0 corollary
1 implies that © is || - [|;m,c0-closed.

2. We want to show that the || - ||s = || - ||m4mo,2-ball © is || - [[c = || - [|m,2-closed. We already

showed this in the proof of part 1.

3. We want to show that the || - [|s = || - ||m+mo,00-ball © is not || - ||c = || - ||m,c0-closed. Consider
the case m = 0 and mg = 1, so that © is the set of continuously differentiable functions whose
levels and first derivatives are uniformly bounded by B. We will show that this set is not

closed in the ordinary sup-norm || - ||o,cc-

Suppose D = (—1,1). Define

ge(z) = Va2 +1/k.

13



for integers k > 1. These are smooth approximations to the absolute value function: For each

z €D, gp(x) = Va2 = |z] as k — 00. gy is continuous and differentiable, with first derivative

1
g(z) = 5(362 + 1/1@)_1/2 -2

X

Vaz+1/k

So
2 _

for all k. Also,

lgk(@)| = Va2 +1/k <1+ 1/k<VI+1=V2

for all k. Hence g € © = {f € €1(D) : ||f|l1,00 < B} for each k, where B = 1 + /2. But,
letting f(z) = |z,
gk — f|

0,00 = sup |gx(z) — f(z)] = 0
€D

as k — oco. Since f is not differentiable at 0, f ¢ ©. This implies that © is not closed under

I+ llo,co-

. We want to show that the || - |[s = || - [[m+mo,00-ball © is not || - ||c = || - |[m,2-closed. The
same counterexample from part 4 applies here as well. Letting m = 0 and mg = 1, we will
show that the || - ||1,0-ball © is not closed in the ordinary Ls norm || - ||o,2. From part 4, we

constructed a sequence g in © such that

g% = flloee =0
as k — oo, for f ¢ ©. Convergence in || - [|o,cc implies convergence in || - [o,2 and hence
gk = fllo2 — 0

as k — 0o. Therefore O is not closed under || f||o 2.

. We want to show that || - ||;m+mg,00,1,0-balls are || - ||, 00-closed, where mg > 0. Since || [|p,00 <

| - |lm,c0, corollary 1 shows that it is sufficient to prove the result for m = 0. That is, it is

sufficient to prove that the || - ||;ng,00,1,,-ball

Omo = {f € Cnoooiw : || fllmo,00,1,0 < B}

is || - ||lo,00-closed, for all mg > 0. We proceed by induction on my.

Step 1 (Base Case): Let mg = 0. We want to show that Og is || - ||o,c0-closed, so we will
show that its complement ©f = 6y \ O¢ is || - |lo,.0-0pen. That is, for any f € Of there

14



exists an € > 0 such that

{9 € Go0 : IIf — glloco <} C 6.

So take an arbitrary f € Of. Since f is outside the Holder ball Oy, its Hélder norm is larger
than B,

sup | f(z)| + sup M

» > B.
zeD x1,22€D,x1#T2 |IL‘1 - l'2|

Hence there exist points T, Z1, T2 in the Euclidean closure of D with Z; # Z2 such that

|f(Z1) — f(Z2)]

)|+ ———— > B.
)+ I
Define - -
5= u@HM—Bm.
|1 — 2o
Our goal is find a || - ||p,co-ball around f with some positive radius e such that all functions g

in that ball are also not in the Holder ball ©g. So we need these functions g to have a large

Hoélder norm (larger than B). Let’s examine that. For all g € € o,

|g(x1) —9(932)\
lgllo,co,10 =suplg(x)|+  sup ==

z€D z1,22€D,x1#£T2 |3§'1 - l‘2|y
_ l9(z1) — g(z2)]
> gz)| + ——
ota)| + 2

> 1£@)] - 1£(x) - g(o)] + 17 =02
= @] - 1f(@) — 9(z)]
n |f(5i1) —f(f2)| _ |f(53_1) —;f(fzﬂ i |9(3_3_1) —fl(f2)|
|71 — T |71 — T |71 — T
> |f(@)| - [f(Z) — g(2)]
L @) = @) [(F@) —9@) — (F(@2) — 9(@2)) |

|Z1 — Za|” |Z1 — Ta|"

—B+6— <|f(3‘c) — (@) + | (f(z1) = 9(71)) — (f(Z2) — 9(T2)) |> ‘

|Z1 — Ta|"

The third and fifth lines follow by the reverse triangle inequality. The last line follows by the

definition of . If we can make this last piece in parentheses small enough, we’ll be done. For

any € > 0,
9€{9€ %000 |If —9lloco <}
implies B B B B )
1@ - g(a)] + S 9(7;1)— g-ﬁgf‘ix?) 9@l _ R
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by the triangle inequality. So suppose we choose ¢ so that

. 2¢ < 0

e+ —m—- < —.

’.f1 — .fg"’ -2

Note that this choice of € depends on the particular f € Of chosen at the beginning, via o
and Z; and Zy. Then for all g € €0« with || f — gllo,00c < € we have

5
lolose.s > B+5 -5
o
=B+ -
+ 2
> B.
Hence g € ©f for all such g. Thus ©f is || - ||o,cc-open and hence Oy is || - ||o,00-closed.
Step 2 (Induction Step): Next we suppose that ©,,, is || - |lo,co-closed for some integer

mo > 0. We will show that this implies Oy, 11 is || - ||o,00-closed.

Since Oy is || - [|lo,c0-closed, we have that for all f in ©f, = 60,00 \ Om, there exists an e > 0
such that for all g € €y with

Hf - gHO,OO S g,

it holds that g € Oy, . As in the base case, we will show that ©f, ., is [ - [lo,cc-open. So take
an arbitrary f € ©F, 1. We will show that there exists an € > 0 such that for all g € €
with [|f — gllo,cc < € we have g € ©f, ;. We have to consider several cases, depending on
the properties of the f we’re given. First, ©,,,+1 € O, implies
@gno g— @fno-i-l'

So it might be the case that f € ©f, . This is case (a) below. Moreover, it is possible
that f € ©f,, .1 but f ¢ ©7, . This case could occur for several reasons. It might be that
[ € Cmo+1,00,1,05 S0 || fllmo+1,00,1,0 < D for some constant D < oo, but that this norm, while
finite, is still too big:

”f”mo-l-l,oo,]l,l/ > B.

This is case (b) below. Another possibility is that f ¢ €ngt1,00,1,0- But f & O5, , f € Oy
and hence its mg’th derivative exists and is Holder continuous. So there are three reasons
why f & Cmg+1,00,1,» could occur: Either the (mg + 1)’th derivative does not exist (case (c)
below), the (mg+ 1)’th derivative exists but is not || - ||p,.c-bounded (i.e., the first piece of the
Hoélder norm || f||mg+1,00,1,» i infinite) (case (d) below), or the (mg + 1)’th derivative exists
and is || - [|o,co-bounded, but is not Hélder continuous (i.e., the first piece of the Holder norm

|| flmo+1,00,1, is finite, but the second piece is infinite) (case (e) below).

(a) Suppose f € ©Of, . But we already know from the induction assumption that O, is
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open. Hence there exists an € > 0 such that for all g € €p.o With ||f — gllo,cc < € it
holds that g € ©F, C O, 1.

=

(b) Suppose f ¢ ©5, and f € Cgi1,00,1,, With
B <|[flmo+1,0010 <D

for some constant D < oo. Since f ¢ O, , f € O, and hence

£ llmo00,1,0 < B-

Let g € 60,00 be such that || f — g|lo.cc < e. Remember that our goal is to find an € > 0
such that all of these g are in ©F, ;. Regardless of the value of ¢, if g & €ng+1,00,10
(in which case g ¢ Opy41 and so g € O5, 1) or if ||gllmg+1,00,1,, > C for some finite
constant C' > B, then g € ©F, .. So suppose that g € €n41,00,1,» and

HgHmO-f—LOOJl’V S C

We will show that although this norm is smaller than C, it is still larger than B. For
each € D and § > 0 with 46 € D,! the mean value theorem implies that there exists
an x4 € [z, z + 0] such that

§(zy) = g(z +90) —g(z)

and hence

g'(x) =g'(xg) + (¢'(x) — g'(xg))

= SN ZIE) () — g (o).

Note that g is differentiable because g € €p,041,00,1,,- Likewise, there exists an z; €
[z, z + §] such that

fiay = XD IO iy gy,

'The cone condition implies that there exists a single § > 0 such that, for all € D, at least one of x + 6 € D or
x — 6 € D holds.
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It follows that

17~ gloss

= sup |f(z) = g'(x)

= sup | (LEO=IE 4 10y = pag ) = (P50 ) - ) )|
= sup RO SO () = )+ 6/0) - (2)

< ilelg <|f(55 + 5) ; g(.’L‘ +5)‘ 4 ’f(x) g g(:c)| + \f’(az) . f/(HTf)‘ 4 ’g/(m) B g’(%)!)

2
§§+D5”+05”

The fourth line follows by the triangle inequality. The last line by || f — gllo,0c < €,
xy € [z, 4 0], g € [r,2 4 0], and since f’ and ¢’ are both Holder continuous with
Hoélder constants D and C, respectively (which follows because || f||mg+1,00,1,, < D and
19llmo+1,00,1,0 < C).

Let £ > 0 be arbitrary. Choose § > 0 such that Dé¥ < €1/3 and C§” < £1/3. After

choosing 9, choose ¢ such that 2¢/§ < ¢e1/3. Thus

1 =4

0,00 < €1.

We have shown that if the first derivatives of f and g are Holder continuous, we can

make the derivatives for all g with || f — g||0,co < € arbitrarily close to the derivative of f

by choosing ¢ small enough. An analogous argument shows that if || f' — ¢'[|o..c < €1 and
if the second derivatives are Holder continuous, then we can make the second derivatives
arbitrarily close. Applying this argument recursively to higher order derivative shows
that for any €,,,4+1 > 0, we can pick an ¢ > 0 such that for all g with ||g||my+1,001,, < C
and || f = gllo,.0 < ¢,

[Vt f— V0 g0 00 < Emgt1-

Our argument from the base case (step 1) now implies that if €,,,41 is small enough,
then ||glmg+1,00,1,, > B for all g € € o with [|f — gllo,.c < &. Hence g € ©F, .. Note

that we use || f|lmg+1,00,1,» > B when applying the base case argument.

Suppose that for some z € D, V™01 f(z) does not exist. Then f & €ny41.00,1,0- But

since f ¢ ©f, , we know that the mg’th derivative of f exists and is Hélder continuous.

As in case (b), take g € € o such that || f —g|l0,c0 < € and suppose that g € Gg41,00,1,
lgllmo+1,001,, < C for C > B (remember from part (b) that otherwise we know g €
©5,,41 already). Since the mg’th derivative of f exists and is Hélder continuous, we
know that the only way for the derivative V™! f(Z) to not exist is if it has a kink—its

right hand side derivative does not exist, its left hand side derivative does not exist, or
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both exist but are not equal. So we consider each of these three cases separately.
i. Suppose the right hand side derivative of V™ f at & does not exist. That is,

lim V™o f(z + h) — V™ f(Z)
h\0 h

does not exist. Then there exists a § > 0 such that for any n > 0 we can find an h
with 0 < h <7 and

Vo f(E + h) — V™ £ (2)
h

— vmotlg(@)] > 6.

If such a ¢ did not exists, then

i VS @ ) = V™ f ()
R\0 h

= V"ot (z)
by definition of the limit. For such a fixed h, we have

5 < — vmotly(z)

Vo f(E + h) — V™ f(2)
h

V™Mo f(z 4+ h) — V™g(Z + h) + V™0g(z) — V™ f(T)

<
- h
mo 7 _ mo T
< V™o f(z 4+ h) — V™g(z + h) + V™0g(z) — V™ f(Z)
- h

+[Vmetlg(z) - Vmetlg(z))|
V™ f(@+h) —V™g(x +h) + V™g(T) - V™ f(Z)
h

< +Ch.

The second line follows by the triangle inequality. The third line by the mean value
theorem, since V™™g is differentiable, and here Z € [z, Z+ h]. The fourth line follows
since V™o+lg is Holder continuous with constant C, and since Z € [, Z + h] so that
|z — z|| < h. Now choose h small enough such that Ch” < §/2. For this fixed h,

pick € small enough such that

oh
|97 = Vgl < &

Then
VIO f(Z + h) — VT £(3)

/ - vmtlg(a)| <5

o<

a contraction.
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ii.

iii.

Suppose the left hand side derivative of V™0 f at & does not exist. That is,

i YOS @) = VO (@~ 1)
h\0 h

does not exist. This case proceeds analogously to the previous case.

Both the left hand and right hand side derivatives of V™0 f at T exist, but they are

not equal:

. VMf(@+h)-VMf(z) . VTOf(z) - V™ f(T —h)
AV h 7 Jim, h '

Considering the distance between the right hand side and left hand side secant lines,
for any h > 0 such that [z — h,Z + h| C D, we obtain

Vo f(z+h) = V™ f(z)\  (VTf(Z) - V™ [f(Z - h)
‘ ( < 48% +h (Vmog(x +>hi)l (VmOQ(x)) h<Vm°g(w) >Zmog(w - h)> ‘

= AT (VI (@) = VT g(3))|

< 45’;0 +C(2h)".

For the first line, we used the triangle inequality plus the fact that for any &,,, > 0,
there exists an € > 0 not depending on g such that ||f — g/0,coc < € implies

V™0 f — VMg

0,00 < Emg-

This follows from our argument in part (b), since V™ f and V™0g are Holder
continuous.

In the second line, we used the mean value theorem, since g € €ny+1,00,1,0, Where
Z1 € [z, + h] and Ty € [T — h,Z]. In the third line we used Hélder continuity of
Vot g since | gllmo+1,001,0 < C, plus the fact that |2 — Z2| < 2h.

Since

an YL@ D) = VTOf(@) | VTOf(E) = VT f (@~ )
h\0 h h\0 h

there exists a § > 0 such that for an arbitrarily small h

‘(VmOf(ﬂHh})l—Vmof(x)) _ (Vmof(ﬂf) —Vmof(x—h)>’ )

h

Choose h such that C'(2h)” < §/2. Then for this fixed h, pick € small enough such
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that 4e.,,/h < /2. Then

| (Tt S (T - T | g

a contraction.

In all three cases where V0T f(z) does not exist, we have derived a contradiction.

implies that for all g € 65,00 With [[f — gllo,cc < € it holds that g € ©F, ;.

Hence there does not exist a g € 60,00 With ||g|lmg+1,00,1,» < C and || f — gllo,00 < €. This

Suppose V™01 f(z) exists for all € D but

sup [V f(z)] = oo,
zeD

For example, this happens with f(z) = \/z when D = (0,1) and mo = 0. Then there
exists a T € D such that
C < |[V™Tlf(z)]| < 0o

for some constant C' > B. Thus, for all ||g||my+1,00,1,0 < C,

]VmOHg(f)\ > |Vm°+1f(a?)! o ‘Vm0+1g(f) o Vm0+1f(i‘)‘
VMo g(z 4+ h) — V™g(z)

_ . . VMo f(z+h) - V™ f(2)

_ mo+1 _ _

= IVETR@)] i h M h

— |Vm°+1f(f)] — lim vmog(j + h) - vmof(:E + h) - vmog(j) - vmof(j)
h—0 h h '

The first line follows by the reverse triangle inequality. Since the limit in the last line
exists and is finite, for any § > 0, we can find an A > 0 with [Z,Z + h] C D such that
the difference between the limit and the term we’re taking the limit of evaluated at h is

smaller than 6. Hence

Vrg(a+F) V(@ +h)  V™g(a) - VS (@)
h h
V(@ +h) V() - VS (@)
h

-0

T g()] > [V f()] - \

>C—-6—

~l|

’ V™g(z + h)

As in part (b), for any &,,, > 0, there is an € > 0 such that || f — ¢

0,00 < € implies
V™0 f = V™gllo,00 < Empg-

Let €, such that

Vrog(a+h) = Vf@+R) | VTgE) = VL) |
h h -
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Then

Vmotlg(@)| > C - 28
> B

where the last line follows if we choose § > 0 such that C—26 > B, that is, 6 < (C—B)/2,
which is possible since C' > B. We have shown that the first piece of the Holder norm
lg]lmo+1,00,1,» is larger than B, and so the entire norm is larger than B and hence
9 €Ot

Finally, suppose

sup [V f(z)| < D < o0
z€D

but V™0 f is not Holder continuous:

Vot f (1) = V7O f ()]
sup = 00
21,22€D,x1#x2 ‘1'1 - x2|y

Again take g € 6 oo such that || f — gljo,.c < € and suppose that ||g||mg+1,00,1,0 < C for
C > B. Since V™1 f is not Hélder continuous, there exist 1 and x5 in D, z; # x9,
such that

‘Vm()“f(fﬂl) — Vot f(xg) S~ B4C
|21 — 22
Moreover, by the triangle inequality,
’Vm“lf(xl) — Vot f(xg)
|21 — 22
< 'V%“g(m) - Vrotlg(as)
- |21 — @2|”
mo _ mo _ mo _ mo
i [T (@ + 1) = Vg (@0)) — (V7 flay + 1) V™ fa)) /,ml_x2|y|
h—0 h
mo _ mo _ mo _ mo
g |70l 1) = V7glan) - (V7 f o ) = V7S ) /,xl_x2|y|'
o

As in part (b), for any €,,, > 0, there is an € > 0 such that || f — g||0,c0 < € implies

IV f = V™gllo.c0 < €mo-

Returning to our previous inequality, we see that since the limits on the right hand side

are finite and since V™0*1g is Holder continuous, for any ¢ > 0 there is an h > 0 which
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does not depend on g such that

‘Vmo“f(ifl) — Vot f ()

|1 — @2]V

IN

’ Vmotlg(zy) — Vmotlg(z,)
|21 — 2|”

N (Vmog(fcl +h) — Vmog(:vl))

|1 — w2]”

> |

(V7o f(xy + h) — V™ f (1)) /

vmo h) — VMo — (vmo h) — V™o
| (g + h) — Vog(2) h( f(w2 +h) = V™ f(x2) /m_w s
<Oy My
h|l‘1—l’2|l’

This is the same argument we used in part (d). In the last line we used ||g||mg+1,00,1,0 <
C, the triangle inequality, and [[V™0f — V™0g[lg o < €4, Choose 6 = B/2. Then

choose ¢,,, small enough so that

460 B
< 5

B‘Il — x2|V
Combining our results, we have shown

Vot fay) — VMo f(ag)

C+B<
w1 — wa]”

<C+ B,

a contradiction.

Proof of theorem 4 (Closedness under equal weightings).

1. We want to show that the || - [|s = || - [lm+mo,2u,-Pall © is [[ - fle =[] - || =

of our compact embedding result theorem 3 says that %, m.2,., is compactly embedded in

L s2-closed. Part 1

Cgm,oowiﬂ' Now consider the space (#/n2,u0, || - [|m,2,u.) Where piq is such that
/ Ma(l') dx S Cl.
Rdz Mc($)
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Then for any f € € 1/2,

m,00, e
1= > [ VM@ Pua(e) do
0<| N <m Y R%
X
= > [ @R
0<| N <m Y R?
<CliE e [, 28
mooue’? Jpas pre(x)
<COilfl,, . e
Hence
%moouincyﬂ”ua

But we also know that #7,1mg2,, is compactly embedding in %mooul/g. Therefore, by
lemma. 4, #};4m,2,u, 15 compactly embedded in %, 2 ,,,. Both of these are separable Hilbert
spaces by arguments as in the proof of theorem 3.6 in Kufner (1980), which is analogous to

Adams and Fournier (2003) theorem 3.6. Hence lemma A.1 of Santos (2012) implies that ©

is || - [|m.2,uq-closed. But now lemma 2 and the inequality || - [|m 2., < (CC1)Y2||- ”moo,f/?
imply that © is || - Hm’oo’#i/z—closed.
2. We want to show that the || - ||s = || - [|m+mo,2,u-ball © is || - ||c = || - [|m,2,u.-closed. Part 2

of our compact embedding result theorem 3 says that %, .2, is compactly embedded in
Win,2.u.- Both of these are separable Hilbert spaces, as discussed in the previous part. Hence
lemma A.1. of Santos (2012) implies that © is || - ||;,2,.-closed.

3. We want to show that the || - ||s = || - ||m+mo,00,us-Pall © is not || - ||c = || - [[m,00,u.-closed. The
same counterexample from the proof of part 3 of theorem 2 can be adapted here as well, by

smoothly extending its domain definition to D = R.

4. We want to show that the || - [[s = || - ||;m+mo,00,us-ball © is not || - [|c = || - |lm,2,u.-closed. As in

the previous part, this can be shown by extending the same counterexample from theorem 2.

O]

Proof of theorem 6 (Closedness under product weightings). Cases 1 and 2. This follows exactly
as in the proof of theorem 5, except we apply theorem 4 and then lemma S1 part 2

Case 3. As in theorem 4, we can adapt the counterexample from theorem 2 by smoothly
extending its domain to D = R.

Case 4. Assume d, = 1 for simplicity. This proof is a close modification to the corresponding
proof of theorem 2 for bounded domains. As in that proof, it suffices to prove the result for m = 0.

For any g € €ng,00,us.v define gs(x) = ps(x)g(x) and g.(z) = pe(z)g(x). We want to prove that

Omo = {9 € Cmpcopsw * 19llmo,copew < B}
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is || - [[mo,00,u.-closed, for all mg > 0. We proceed by induction on my.
Step 1 (Base Case): Let mo = 0. We want to show that ©g is || - ||0,00,u.-closed, so we will
show that its complement ©f = 60 c0,u. \ O0 is || - |0,00,u.-0PeN. So take an arbitrary f € ©F. We

will show that there exists an € > 0 such that

{g€ 60,0010 If— 9||0,oo,uc <e} C O

Since f is outside the weighted Holder ball O, its weighted Holder norm is larger than B,

‘fs(xl) — fs(x2)|

sup [ fs(z)| + sup ——>B.
z€R r1,a2€R |21 — 22
Hence there exist points Z, Z1, Zo € R with 1 # Zs such that
|f (;Z‘)| + ’fs(:z'l) — fS(i'Q)‘ >~ B
S — — .
|21 — Zo|”
Define - -
§ = ’f (j)‘ + ’fs('rl) — fs(‘TQ)‘ —B>0
=|fs .

|Z1 — Ta|"

Next, for all g € 60 00,

‘gs(jl) _gs(i2)|
|T1 — Z2|”
> [fs(@)| = 1fs(Z) — gs(2)]
N [fs(@) = fs(@2)|  |(fs(@1) — g5(T1)) — (fs(22) — g5(Z2))]
|Z1 — Za|¥ |Z1 — Za|”

= 5= (100 - (o) W) =00~ (o) o))

|Z1 — Za]¥

191l0,00,5. = 195(Z)] +

—

po(@) | Uel®) — gelE) G — (el@) — gel2)) i)

=B+d— | |fc(T) — g.(T)| 11c(Z) |z — i’Q’y

For all g € 60,00, With
Hf - gH(LOO,Hc = ch - chO,oo <e

we have

2 | (fel@1) = ge(@1)) 2220 (fo(To) — go(To))Lel22) L es(@) | s(E2)
o) —gel@) ) o) pe@)| M) | Eel@) T pelaa)

pe(T) |Z1 — Za]V T pe(?) |T1 — T2V

by the triangle inequality. So suppose we choose £ small enough that the right hand side is < §/2.
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Then for all g € 60 00,4, With |[f — gll0,00,u. < € We have

J
lollososns > B+
> B.
Hence g € ©f for all such g. Thus ©F is || - [|0,m,u.~open and hence Oq is || - ||0,m,u.-closed.

Step 2 (Induction Step): This step follows the same arguments as those with bounded

support. As in step 1, the main idea is simply to replace g with either g. or gs, as appropriate. [

Proof of theorem 8 (Closedness for weighted norms on bounded domains). This proof is identical
to the proof of theorem 6, except that now we use the compact embedding results of theorem

7 when necessary. O

E Proofs of propositions from section 4

Proof of proposition 1. This proof is straightforward and we therefore omit it. O
Proof of proposition 2. This proof is straightforward and we therefore omit it. O

Proof of proposition 3. This proof is given in Gallant and Nychka (1987) as lemma A.2, and hence

we omit it. O

Proof of proposition 4. This proof is similar to the proof of proposition 3, which was shown in
lemma A.2 of Gallant and Nychka (1987). Let C C D be compact. We prove the proposition by
induction on m (letting mo = 0, since it is irrelevant for the present result). For the base case,
m = 0, the result holds trivially by letting K¢ = 1. Next suppose it holds for m — 1. Choose A
such that |A| = m and let V* = VAV where |a| = 1 and |3| = m — 1. The result holds trivially if
0s =0, so let d5 # 0. Then

V)] = 9 e () )|
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In the fourth line we used Leibniz’s formula. Next,

dy
(VA= (2 z) Z (x2 4 2|zi| +2)
=1

<41 +2'z).
Hence
O
V@) < S 1 9@+ ot
v<p L7
B
< 200l 3 |°| Kepmorpl2(@) -1+ o'
v<s L7
< 2| Z ’ KC,m—lM;m(w) - Me
v<B 7]
= pi?(x) [ 206: D [ ] Kem—1 - Mc
v<B

Here M¢ = sup,cc |1 + 2’x|, which is finite since C is compact. The second line follows by the

induction hypothesis. O

Proof of proposition 5. Pick g(x) = 1+ 2'z. Notice that g(x) — oo as [|z|le — co. We prove the
result by showing that for any 0 < || < my,

Vo) = e | a0 ma(o) 0

for some polynomial py(x). Consequently, dividing by u;/ 2 (z) yields

Vi 2 (z) {56 5,
———2 =exp (x x)] -pa().
s (x) 2
Since 0. < ds,
VA it 2 (z)
s (@)

converges to zero as ||z|e — oco. This implies there is a J such that for all z with ||z||e > J, this
ratio is smaller than M;. For all x with ||z||. < J, this ratio is a continuous function (the product
of an exponential and a polynomial) on a compact set, and hence achieves a maximum M. Let
M = max{Mj, My}. Thus the ratio is bounded by M for all z € R%.
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So it suffices to show equation (x). We proceed by induction. For the base case, |A| = 0,

VOal/?(z) = explde(2'z) /2] - g()
= exp[c(a'z) /2] - (1 + 27).

So the base case holds with po(z) = g(z) = 1+ 2. Next, suppose it holds for |\| = m — 1. Choose
A such that [A| = m and let V* = VAV® where |a| = 1 and |3| = m — 1. Then

V()] = Ve[V * ()]
= Vexp[dc(z'x) /2] - ps()]
= exp[dc(2'2/2)](0c/2)ps(x) V* (2'x) + exp[de(2'x) 2]V ps ()
= exp|0e(2'2) /2] ((0c/2)pp(2)V* (2'z) + Vps(z)) .

Since the derivative of a polynomial is a polynomial, we’re done. O
Proof of proposition 6.

1. This follows immediately from lemmas 5 and 7:
112 fllmz < Mi| fllmzge < MM 2 £ llm,2-

2. This follows immediately from lemmas 6 and 8.

F Proofs of propositions from section 5

Proof of proposition 7. Suppose such a function p existed. Define g : (0,1) — R by g(z) = log u(z).
Then (1) implies that g(z) — —oo as x — 0. (2) implies that

1
/ /
gz)=——p(x) <K
Hence |¢/(z)| < K for all € (0,1). This is a contradiction to g(z) = —o0 as x — 0. O

Proof of proposition 8. First consider the polynomial weight case, pus(2) = [#(1 — 2)]%. The proof
is similar to the proof of propositions 3. We proceed by induction. For the base case m = 0, the
result holds trivially by letting K¢ = 1. Next suppose it holds for m — 1. If §; = 0 the result holds
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trivially, so let 65 # 0. We have

V@) = 9 (21 - 2))/2)
= vV (21 - 2))?)

) m—1
el

ds m—1
iy

y<m—1L 7

V7 ([w(1 = @)]P/27) VD1 - )]

& (u;/;(x)) V7 z(1 — x)].

Here 6 = 0, — 1/2. V"[x(1 — )] is either # — 22 for n = 0, 1 — 2z for n = 1, —=2 for n = 2, and 0

for n > 2. Hence

Me = sup [V [(1 — )]

zeC
< 00
since D is bounded. So for all x € C,
my, 1/2 |95 m—1 w1, 1/2 m—ry
VP (@)]] = = (Vw5 @] VT (1 — )]
y<m—-1L 7 7
s m—1
< ‘2’ [ ] KC,m—lMi/;( )+ Mc
y<m-1L 7 ’
1/2 |95 ] m—1
- 5,3( )( 2 Z [ 7 KC,mflMC
y<m—1
-1
_ [l’(l )]65/2—1 (65 Z [m ] Ke mlMc)
2 ol
y<m—1
1 |0s] m—1
_ 172 s
= Mg (:E) Z [ ] KC,m—lMC
z(1—x) ( 2 S5 ol
-1
< ()M (5 > [m ] K mlMc) .
2 ol ’
y<m—1

The second line follows by our M bound from above, and by the induction hypothesis with constant
K¢ m—1. The last line follows since C C (0, 1) is compact, and hence z is bounded away from zero
and one. So )
M/ =sup ——— < 00.
¢ zeC x(l - l’)
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Next consider the exponential weight case, jus(z) = exp[dsz (1 — z)~!]. The proof for this case is
similar to the proofs of propositions 3 and 4. Let C C D be compact. We prove the proposition
by induction on m (letting my = 0, since it is irrelevant for the present result). For the base case,
m = 0, the result holds trivially by letting K¢ = 1. Next suppose it holds for m — 1. The result
holds trivially if §s = 0, so let §5 # 0. Then

V[l ()] = v [exp (53 1)]

2 z(1—x)

-7 (e (S
:Vm1<%@{<2xl—x> Vl( 1—@))
55 [ e (‘Zx )] ()

4 e (o)

<m

In the fourth line we used Leibniz’s formula. Next, for any natural number n,

(]_ —x ]_ —x ]+1xn+1 -J°

Hence
13| m — 1] N (-yn
V™ 2 (2)]] < 25 Z IV b2 ()] - H!Z 1= 2)Hignis
y<m—1 L 7] =0
1) _m—l_
<1 V()] - M
y<m-—1 L v |
1) _m—l_
< |2S’ > Kem-1p8/?(x) - Mc
y<m-—1 L v _
) m—1
e (12 s [ ]Km e
y<m—1L 7
Here
| -J
—gnz ﬁwﬂw

which is finite since C C (0,1) is compact, and hence z is bounded away from zero and one. The

third line follows by the induction hypothesis. ]

Proof of proposition 9. Let g(z) = 271(1 — x)~!. Then g(x) — oo as * — 0 or x — 1. Note that
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Bd(D) = {0,1}. The rest of the proof is similar to that of proposition 5. It suffices to show that
for any 0 < |A| < my,

Vi (@) = pel) - (@) (%)
for some rational function r). Dividing (x) by ;L;/ 2(:1:) yields
Ve (x)

s ()

Since . < 5, the absolute value of this expression converges to zero as x — 0 or 1. This proves part

= exp[(dc = 05)g(x)] - A ().

2 of assumption 5. The proof of equation (x) is as in the proof of 5: The base case holds immediately
with ro(z) = g(x). The induction step follows since the derivative of a rational function is still

rational. ]

G Discussion of assumption 5

To get some intuition for assumption 5, consider the one dimensional case d, = 1. In this case, we

can usually take mg = 1, since mg > d,/2 is then satisfied (see theorem 3 below). Then

VO (@) |V’ (2)g(w)]
n*(z) (@)

()"

and
V@) |V e >g<x>]‘
s (z) i (@)
Ve ? () *(2)
- | )+ et

1 1/2 2\ 12
< s (5) e

So when d; = 1 with mg = 1, a sufficient condition for 5 is that there is a function g that diverges

to infinity in the tails, but whose levels diverge slow enough that

)] 12 11/2 -1
|g<x>|=o<[“c( )} ) and  |g(a)| = 0 [W]
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and whose first derivative also satisfies

!

For further intuition, suppose assumption 3 held for y.. Then for all z € R% and any 0 < |A| < mo,

VA ()] < Kpe? ()

- (55) e

and hence

VA ()| pe(z)\ '/
,ui/z(a:) =h <M3(IL‘)>

Now suppose assumption 1 holds. Then the right hand side converges to zero as ||z||¢ — oo. Thus,
in this special case, a sufficient condition for assumption 5 is that |g(z)| and its derivative |Vig(x)|

do not diverge faster than +/p.(x)/us(xz) converges to zero.

H Closure of differentiable functions

The following lemma shows that the Sobolev sup-norm closure of a Sobolev sup-norm (with more
derivatives) ball is a Holder space with exponent 1. We assume d, = 1 for notational simplicity,
but the result can be extended to d, > 1.

Lemma S2. Let D be a convex open subset of R. Let m, mg > 0 be integers. Define

Op ={f € Cntmo+1(D) : |flm+mo+1,00 < B}

and
O = {f € (gm+mo(p) : ||f||m+m0,oo,]1,1 < B}

Let ©p be the || - ||m.co-closure of ©p. Then Op = O,
Proof. We prove equality by showing that ©p C O, and O, C Op.

1. (Bp COy). Let f € Op. We will show that f € ©. By the definition of the || - || co-closure,

there exists a sequence f, € ©p such that

an - f”m,oo — 0.

Since f, € Op,

= max sup |V, (2)| < B.
an||m+mo+1,oo OSIA\§m+mo+1meg| fn( )| >
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Also notice that for all z,y € D,

m4+mo _ m+mo
‘V fn(:L’) \Y% fn(y)‘ < ’vm-i-mo-i-lfn(i')’ < sup ‘Vm+m0+1fn(x>‘
|x _ y| z€D

where I is between x and y, by the mean value theorem and convexity of D. It follows that

VA (@) = VA fu(y)]

max  sup |V)\fn($)| -+  max sup < ||anm+mo+LOO <B
[A[<mA4mo xeD [N=m+mo & yeD, x#y ‘:B - y’
and therefore f,, € ©7. But from part 5 of Theorem 2 we know that Oy, is || - ||, c0-closed

and since || fp, — f|lm,00 — 0 it follows that f € ©p.

. (01 € Op) Let f € ©. We will show that f € ©p. Specifically, we will show how to

|| - |lm,co-approximate f by a sequence of functions fp in ©p. Define

VA () = VA (y)]

M, = max sup < 00
[IN<m+mo g yeD, x4y |.CE - y|
e o () — T £(y)
My = sup < 0.
z,yeD,zy |z —y|

If D # R, then since V™0 f is Lipschitz, the Kirszbraun theorem (e.g., theorem 6.1.1 on
page 189 of Dudley 2002) allows us to extend V™0 f to a function “V"*™0 F” on R with the
same Lipschitz constant. Define F' to be the m 4+ mq times antiderivative of V"0 F. Then
F is (m + my)-times differentiable, V"t™0 F" is Lipschitz with constant My, and F|p = f. In

particular, for this extension I,

[VAF(z) — VAF(y)]

max sup = M
[A|[<m+mg z,yeR,x#£y ‘(L’ - y‘
and Vm+m0F Vm+m0F
sup | (z) — Wl _ .
z,yER x#y |.I - y|

From here on we let f(z) = F(z) denote the value of this extension of f if z ¢ D. The main
issue is that f is only (m-+my)-times differentiable, but we want to approximate it by functions
that are just a little bit smoother—functions that are (m + mg + 1)-times differentiable. To

do this, we convolve f with a smoother function:

ful) = [F + 2, )(@) = [ flo+ )it dy.
Here * denotes convolution. ¢, is a sequence with €, — 0 as n — 00. 1), is an approximation

to the identity: a function 1., (u) = ¢(u/ey)/en where ¢ : R — R is a (m + mg + 1)-times
continuously differentiable function such that ¢ (y) > 0 for all y € R, ¢(y) = 0 if |y| > 1, and
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f_ll Y(y) dy = 1. For example,

P(y) = Bi(1—y*)F1(ly| < 1).

where k > m 4+ mg + 1 and By is such that the function integrates to 1. Note that f, is
(m + mg + 1)-times differentiable.

For all A < m + my,
[VAfal(@) = [VAf * 9, ) ()

~ [P e -z () -
= /_1 [V fl(z — eny)t(y) dy.

1

The last line follows by a change of variables and since 9 is zero outside [—1, 1]. Hence

1
IV o) — VA ()] < / V@ =) = VI @l) dy

1
Mie,, d
s/1| Leny(y) dy

1
= e, My / Ivlota) dy

On

for all A < m+myg. The first line follows since v integrates to 1. Since §,, — 0, it follows that
an - f”m-&-mo,oo — 0.

Moreover,

[V £ (1) — VO £ (2)] < /|Vm+m°f(m1 —eny) = VT f (22 — eny)|1h(y) dy

< Mslzy — z2.

Since fy, is (m + mo + 1)-times continuously differentiable,

et ) — g (9l 4 B) T ()

< M.
h—0 h =2

for each x € R. Recall that

m~+mo __ \ym+mo
Mae ap TS - ()]
z,y€D,x#y ‘x - y’
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This implies that

| frllmtmo+1,00 < an||m+mo7oo + Slelg ’varmOJrlfn(x)’
X

< [ fllmamo,o0 + I1fn = fllmtmo,o0 + sup [Vl f, (2)]
xe

< || fllme+mo,o0 + 8n + sup [VTHMOFLf ()]
zeD

s@mmmm+ sup

z,y€D,zy |z —y|

< B+ 6.

\WHMﬂ@—wmmﬂw>+%

The last line follows since f € Op. Thus f, is almost in ©p, but not quite. But we can just

rescale f,, to put it inside ©p: Let

5 B

fu(x) = mfn(x)-

Then anHermoJrl,oo < B and so fn € O©p. Moreover,

||fn - f”m,oo < ||fn - f||m+mo,oo
< ||fn - fn”m—&-mo,oo + an - f”m—&-mm

v (B Bt >) - V()

max sup
O<|)\\<m+m0 €D

B
B+ S, L fnllmamo,oo + I1fn = fllmtmo,oo
On
B + 5 ||anm+mo,oo + ||fn - me-i-mo,oo

Since || follm-+mo,co < | fallmtmot1,00 < B+ n,

On,

B+6 ||anm+mo7OO — 0.

We also know that || f, — fllm+mg,cc — 0. It follows that

an — fllmco = 0.

+ an -

me+mo,<>0

But remember that fn € ©p. So, by definition of the || - ||;,co-closure, f € Op.
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I Sup-norm convergence over closed domains D

Throughout the paper we have focused on functions with open domains D. In practice we may also
be interested in functions with closed domains D. First, note that convergence of a sequence of
functions in a Sobolev L, norm where the integral is taken over the interior of D implies convergence
in the Sobolev L, norm where the integral is taken over the entire D. This follows since D is a
subset of R% and hence its boundary has measure zero. So the value of the integral is not affected
by its values on the boundary. For Sobolev sup-norms, however, convergence over the interior of D
does not automatically imply convergence over all of D. In the following lemma, we illustrate how
to do this extension for sequences from a Holder ball which are known to converge in the ordinary
sup-norm over the interior. Similar results can be obtained with different parameter spaces and for

convergence in general Sobolev sup-norms.

Lemma S3. Let D C R% be closed and convex. Let f, : D — R be a sequence of functions in

© ={f€%(D): | flocorr < B}
Suppose

sup |fn(2) — f(2)] = 0.

z€intD

for some function f. Suppose f is continuous at each boundary point in D. Then

sup [ fn () — f(x)] = 0.
z€D

Proof of lemma S3. We want to show that for any € > 0, there is an IV such that

[fulz) = f(@)| <e
for all n > N, for all z € D. For each = € D, choose an element z, € intD such that ||z — 2|} <

e/(3B) and

This is possible since f is continuous on all of D, including at boundary points, and by convexity

of D. By the triangle inequality,

[fu(z) = f(@)| = |fa(2) = f(2) = fa(22) + fa(22) = f(22) + f(2)]
< |fn($) - fn(zw)’ + |f(x) - f(zoc)| + ‘fn(zﬂc) - f(ZﬂC)‘

By the definition of this parameter space we have

v e
sup | fn (@) — fu(22)| < Bllz — zlld < <.
z€D 3
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By uniform convergence of f,, to f on the interior of D, there is an N such that

‘fn(zac) - f(zx)‘ <

W ™

for all n > N. Thus we’re done. O

J Proofs for section 6

Proof of proposition 10. We omit this proof because it is almost identical to the proof of lemma
A1l in Newey and Powell (2003). O

Proof of proposition 11. We verify the conditions of proposition 10.

1. The parameter space is || - ||--compact by part 1 of theorems 3 and 4. Since the sieve space is

a || - ||c-closed subset of the || - ||.-compact set ©, it is also || - ||.~compact.

2. Define Q(g) = —E((Y — g(X))?). Then for g1, g2 € O,

|Q(g1) — Q(g2)]

= |E(g2(X)? = 91(X)?) + E(2Y (91 (X) — g2(X)))]
< [E(g2(X)? = 91(X)?)| + [E(2Y (91(X) — g2(X)))|
= |E( )

~—

)
) 92(
92(X) = 91(X))(92(X) + g1(X))| + 2 [E(Y (91(X) — g2(X)))]
(92(X) — g1(X))?) E ((92(X) + 91(X))?) + 2VE (Y2) E ((91(X) — g2(X))?)
(92(X) — 91(X))?) E (292(X)? + 291(X)?) + 2VVE (Y2) E ((91(X) — 92(X))?).

~—

The fourth line follows from the Cauchy-Schwarz inequality and the last line from (a + b)?
2a® + 2b? for any a, b, € R. Next,

2
E((91(X) — 2(X))?) < (Sup |91 () — 92(00)\%(96)) E(pe(X)72) = llg1 — g2ll? - E(ue(X)72).

zeR

Moreover, for all g € O,

E(g(X)?) = E(9(X)?pe(X)*pe(X)~?)
< lgll? - E(pe(X)7?)
< C?||gll3 - E(pue(X)7?)
< C?B?E(p.(X)72).

The third line follows by the compact embedding result, part 1 of theorem 3. Therefore

Q(91) — Qg2)] < 2 (BCE(e(X) ™) + VEVE (10X) 2)) llg1 = g2l
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Since E(Y?) < oo and E(u.(X)™2) < oo, Q is | - |lc-continuous. Similarly, let @n(g) =
—L5% (Vi — 9(X;))% Identical arguments imply that

n

@n(g1) — Qn(g2)| <2 BC%ZMC(X’Z)72+ <:LZY3> (:LZ/’LC(Xi)_2> 191 = g2lle-
=1 =1

=1

Hence Q is || - ||e-continuous.

3. Suppose Q(g9) = Q(go). Then E((Y — g(X))?) = E((Y — go(X))?), which implies that g(X) =
go(X) almost everywhere. If g(Z) # go(Z) for some Z, then g(Z) # go(Z) in a neighborhood
of Z by continuity of gg, a contradiction. Hence g(x) = go(x) for all x € R. Thus ||g — go|lc =

supzer |9(7) — go(2)|pe(w) = 0. Moreover,

Q(g0) = —E((Y — go(X))?) > —E(2Y” + 2go(X)?) > —cc.

4. For any g € Oy

ok~ g0lle < sup lu(z) — g(@)] sup o) + sup [(gie) — g(a))ps(a)] sup L)
|z|<M || <M |x|>M |z|>M Ms(l')

Let € > 0. Since g and g are in ©,

sup |(gk(z) — g(z))ps(w)| < [lgx — glls < 2B.
> M

Thus, since p. and ug satisfy assumption 1, we can choose M such that

su ) — g\x T su C(x>
s [(96(2) = g(a)s(a)] sup LTS

=

<

IR

By assumption, for a fixed M, we can pick k large enough to make supj,<as [gx(7) — g()]
arbitrarily small. By pu? satisfying the integrability assumption 6’ and continuity of .,

SUP|g|< s He(T) < 00. Hence we can pick k large enough so that

Do ™

sup g () —g(x)| sup pe(z) <
|z| <M |lz|<M

Thus ||gr — 9o||lc < . Hence we have shown that ||grx — gollc — 0 as k — 0.

5. For all g € ©, C O,

(Y — g(X))* <2Y? + g(X)* < 2Y* + 2B C%p(X) 7.
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Since E(Y?) < oo and E(u.(X)™2) < oo we have

E (sup (Y — g(X))2> < 0.

geo

Hence Jennrich’s uniform law of large numbers implies that

sup |Qn(g) — Q(9)| & 0.

9€Ok,

O

Proof of proposition 12. The proof is similar to the one of proposition 11 and verifies the conditions

of proposition 10.
1. This step is identical to the corresponding step in the proof of proposition 11.

2. Define Q(g) = —E((Y — g(X))?uc(X)?). Then for g1, g2 € O,

Q(g1) — Q(g2)] = |E ((92(X)? = g1(X)*)ue(X)?) + E (2Y (91(X) — g2(X))e(X)?) |
< VE ((92(X) — 91(X))?ue(X)?) E ((gz( )+91(X) 2he(X)?)
+2VE (Y2ue(X)2) E((
< VE ((92(X) — 91 (X)
+ 2VE (Y2pu.(X)?

Next,
E ((91(X) = 92(X))?1e(X)?) < llg1 — g2]2.

Moreover, for all g € O,
E (9(X)*u(X)?) < B*M3.
Therefore

Q91 — Qg2)] <2 (BMs + VEVZu(X)D)) llg1 — 9ol

Since E (Y2p.(X)?) < oo, Q is continuous. Similarly, let Qnlg) = — S (Yi—g(Xi))? ke (X0)2
Identical arguments imply that

|Qnl91) — Qn(g2)] <2 (BM5 +J Zyzﬂc i ) lg1 = g2lle-

Hence @ is continuous.

3. As before, E((Y —g(X))*1e(X)?) = E((Y —g0(X))* e(X)?) implies g(X) (X)) = go(X)pe(X)
(

almost everywhere. If g(Z) # go(Z) for some Z, then g(z) # go(Z) in a neighborhood of Z
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by continuity of go. Moreover if p.(z) > 0, then u.(x) > 0 with positive probability in a
neighborhood of Z, which contradicts that g(X)u.(X) = go(X)uc(X) almost everywhere.
Thus, ¢(Z) # go(z) implies p.(Z) = 0. Therefore ||g — go||c = 0. Moreover,

Q(90) = —E((Y = g0(X))*pe(X)?) > —E(2Y?1e(X)? + 290(X)*pe(X)?) > —o0.
4. This step is identical to the corresponding step in the proof of proposition 11.
5. For all g € ©, C O,
(Y = g(X))?pe(X)? < 2Y%e(X)? 4 29(X)pe(X)? < 2Ype(X)? + 2B* M3,

This combined with E(Y?u.(X)?) < oo let us apply Jennrich’s uniform law of large numbers,

which gives

O]

Proof of proposition 13. Let gy, € Oy, such that ||gs, — golle = 0. Then ||gx, lc < [lgollc + 1 for n

large enough. Moreover, ||go|lc < C||golls < co. From the proof of proposition 12 we know that

1QUgk) = Qo) < 2 (Ms(llgolle + 1) + VE(V21e(X)) ) llgh,, = golle

and

~ ~ 1<
|@n(gk,) — Qnlgo)| <2 | Ms(|[gollc +1) + EZYZ'QMJXOQ 9k, — golle-
i=1

Now write

~

Qn(gt,) = QUgk) = (@nlgr,) = Bnl90)) + (Quloo) — Qlo0) ) + (QU90) — Qg))-

Qnlg0)—Q(g0) = O,(1/+/n) by the central limit theorem, which applies since E((Y —go(X))?*) < oo

and . is uniformly bounded above. Thus,

Qn(gr,) — Qgk,) = Op(llg, — gollc + 1/v/n).

Since max{1/v/n, ||gk, — 9ollc} = O(An), lemma A.3 in Chen and Pouzo (2012) implies that for
some My > 0 it holds that ||go||s < Mo and

Guw €{9 € P2p,  l9llL2p, < Mo}

with probability arbitrarily close to 1 for all large n. Hence it suffices to prove that ||gw, — gollc 20,
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where

> (Vi = g(X0))?ue(Xi)® + An!\9!s>

=1

SRS

Juw(x) = argmax — (
geéi\io

and (:)ﬁio ={g € ékn lglls < Mo}

Consistency now follows from proposition 12 under two additional arguments:

1. First, SUp Mo Anllglls < AnMy — 0 and therefore the sample objective function (including
kn

the penalty) still converges to @) uniformly over g € (:)KO

2. Second, since (:)anO is finite dimensional, for any g1, g2 € (:)%0 there exists D > 0 such that

llgrlls — llg2llsl < Dlllgalle — llgelle] < Dllgr — golle. Hence the sample objective function
(including the penalty) is still continuous on @%0.

All other assumptions of proposition 10 hold using the same arguments as those in the proof of

proposition 12. Thus ||, — golle = 0 and hence ||§u, — golle = 0. O

Proof of proposition 14. The proof is adapted from the proof of theorem 4.3 in Newey and Powell
(2003). Again we verify the conditions of proposition 10.

1. This step is identical to the corresponding step in the proof of proposition 11.

2a. Define Q(g9) = —E(E(Y — g(X) | Z)?). For g1,92 € O,

E(Y — 1(X) | 2)* = E(Y — g2(X) | 2)*|
= [EQ2Y | Z2)E(g2(X) — 91(X) | Z) + E(g2(X) — g1(X) [ Z)E(g2(X) + 91(X) | Z)]
< [EQY + g2(X) + 61(X) | 2)] - [E(g2(X) — 91(X) | 2]
= [E((290(X) + g2(X) + g1(X)pe(X)pe(X) ™1 | 2)] - [E((92(X) = g1(X)pe(X)pe(X) 71 | 2))
< ABM;|E(ue(X) ™1 | Z)| - Mslgr — gallc - [E(ue(X) ™1 | 2)]
= 4BMFE(ne(X) ™" | Z)*[lgr — g2]lc
< ABMZE(ue(X) 7% | Z) g1 = g2l

The fourth line uses E(U | Z) = 0 and the last uses Jensen’s inequality. Therefore

Qg1) = QUo2)| E(E(Y — 1(X) | 2)* = E(Y — g2(X) | 2)*))
< ABMZE(1e(X) %) llg1 — galle-
Hence, @ is continuous.
2b. Let
O, =(9€0O: g—Zb]p] ) for some by,...,b;, € R

7j=1
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Define Pz as the n X k,, matrix with (¢, j)th element p;(X;). Let Qz = Pz (P, Pz)~ P} where
(P}, Pz)~ denotes the Moore-Penrose generalized inverse of (P}, Pz). Let Y and g(X) be the
n x 1 vectors with elements Y; and g(X;), respectively. Define Qn(g) = —1Qz (Y — g(X))|I>.
Then for g1, g2 € O,

|@n(91) - @n(g2)|

Q2 ~ (XD~ QY — ga(X))]?

< Q2010 — 52O 1Q(2Y = g1(X) - g2(X)) |
< g (X) — 92X - [2Y — g2 (X) — ga(X)]
= D160 — (0 R0 | D28 — 1(X0) — ga(X0))?
=1 =1
< (|5 Xm0 [ o2 + 452050 | s = ol
i=1

n < :
=1

The second line follows because, by the Cauchy-Schwarz inequality,

[(a'a) = (D) = |(a — ) (a+b)| < v/(a—b)'(a—b)/(a+b)(a+b)
for all a,b € R™. The third line follows because @)z is idempotent and thus ||Qzb|| < ||b]| for
all b € R™. Hence @n is continuous.

. By completeness, Q(g) = —E(E(Y — g(X) | Z)?) = 0 implies that g(z) = go(x) almost
everywhere. Identical arguments as those in the proof of proposition 11 then imply that

llg — gollc = 0, by continuity of gg. Moreover,
Q(g0) = ~E(E(U | 2)*) =0 > —cc.

. Assumption 4 of proposition 10 holds using identical arguments as those in the proof of

proposition 11.

. Assumption 5 of proposition 10 requires convergence of @n to @ uniformly over the sieve

spaces. We show this by applying corollary 2.2 in Newey (1991). O is || - ||.-compact, which

is Newey’s assumption 1. @ is || - ||-continuous, which is Newey’s equicontinuity assumption.
Next, define
1 ¢ 1o
Bo= .|, Z; He(Xi) 72|~ 24}@2 + 4B2M2p.(X;) "2
1= 1=

and recall that
‘Qn(gl) — Qn(g2)] < Bn”Ql - 92”0-

42



By Kolmogorov’s strong law of large numbers and the existence of the relevant moments,
B, = O,(1). Hence Newey’s assumption 3A holds. All that remains is to show Newey’s

assumption 2, pointwise convergence: |Q(g) — Q(g)| = op(1) for all g € ©. First write
Qlg) — ZEY 9(X)| Z = Z;)* —~E(E(Y —g(X) | 2)°)
- Z( X)|Z =2 ~B(Y - g(X)| Z = Z,)%),

where ]E(Y —g(X) | Z = Z;) is the series estimator of the conditional expectation evaluated
at Z;. For the first part notice that E(Y — g(X) | Z = Z;)? is iid and

E(E(Y —g(X)| 2)*) <E(E(Y - 9(X))*| 2))
<E(2Y? +29(X)?)
< 2E(Y?) + 2E(ue(X) ) |9ll2

< Q.

It follows from Kolmogorov’s strong law of large numbers that
—ZE Y —9(X)| Z=2)-E(EY - g(X) | 2)%) &o.

Next, following Newey (1991), define p as the n x 1 vector containing Y; — g(X;) and h as the
n x 1 vector containing E(Y — ¢(X) | Z = Z;). Then

n

IS (B~ g(xX) | 2= 20 - E(Y — g(X) | Z = 7)) | =

=1

= [1Qzpl” —IIRI?| /n.

Since for all a,b € R™ it holds that a’a — b'b = (a — b)'(a — b) + 20/ (a — D),

1Qzpl” = Il*] /n < (1Qzp — hlI* +2]|h]| - 1Qzp — hl|) /n.

Since

B2 /n = LS R(Y —g(X) | 2 = 23)%
i=1

the previous arguments imply that ||h]|?/n = O,(1). It therefore suffices to prove that ||Qzp—
h||?/n = op(1), which by Markov’s inequality is implied by

E (|Qzp — hl) /n 0.
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as n — 0. Newey (1991) shows

E (||Qzp — h||?*) /n < E (trace(Qz var(h | Z))) /n + o(1).

Therefore,

n

E(|Qzp—hl*) /n <E <Z(Qz)ii var(Y; — g(Xi) | Zi)) /n+o(1)

i=1

1 n 1 n
SE (| 2 @2y 2 —g(X0) | 247 | + o)
<E \1trace Zvar Xi) | Z:)? | +o(1)
=E ltmce (Qz)— Zvar Xi) | Z:)? | +o(1)
En 1<
< (/B (| L w00 127 ot

\/>\/E (var(Y; X5) | Z:)2) + o(1).

The second line follows from the Cauchy-Schwarz inequality. The third line from the definition
of the trace. The fourth line because Q7 is idempotent. The fifth line because trace(Qz) < ky,.
The last line by Jensen’s inequality. Since E ((var(YZ- —9(X5) | ZZ-))Z) < oo and ky/n — 0, it
follows that

E (IQzp — hlI?) /n — 0.
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