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Abstract 

Economic theory often provides shape restrictions on functions of interest in applications, such as 
monotonicity, convexity, non-increasing (non-decreasing) returns to scale, or the Slutsky inequality of 
consumer theory; but economic theory does not provide finite-dimensional parametric models.  This 
motivates nonparametric estimation under shape restrictions.  Nonparametric estimates are often very 
noisy.  Shape restrictions stabilize nonparametric estimates without imposing arbitrary restrictions, such 
as additivity or a single-index structure, that may be inconsistent with economic theory and the data.  This 
paper explains how to estimate and obtain an asymptotic uniform confidence band for a conditional mean 
function under possibly nonlinear shape restrictions, such as the Slutsky inequality.  The results of Monte 
Carlo experiments illustrate the finite-sample performance of the method, and an empirical example 
illustrates its use in an application. 

We thank David Jacho-Chávez for providing the data used in this paper.  Part of this research was carried 
out while Joel L. Horowitz was a visitor at the Department of Economics, University College London, 
and the Centre for Microdata Methods and Practice.   
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NONPARAMETRIC ESTIMATION AND INFERENCE UNDER SHAPE RESTRICTIONS 

1. INTRODUCTION

Let Y  be a scalar random variable and X  be a scalar random variable or vector.  This paper 

presents a method for nonparametrically estimating and carrying out inference about the conditional mean 

function 

( ) ( | )g x E Y X x≡ =

under a shape restriction on g  such as monotonicity, convexity, non-increasing (non-decreasing) returns 

to scale, or the Slustky inequality of consumer theory.  Economic theory often provides shape restrictions 

but does not provide finite-dimensional parametric models.  For example, cost functions are monotone 

increasing, concave in input prices, and may exhibit non-increasing or non-decreasing returns to scale.  

Demand functions satisfy the Slutsky inequality, which is nonlinear.  This motivates nonparametric 

estimation under shape restrictions.  This paper explains how to estimate and form a uniform confidence 

band for g  under shape restrictions that are more complicated than monotonicity or convexity and may 

be nonlinear. 

It is well known that g  can be estimated consistently and with the optimal rate of convergence 

without imposing shape restrictions.  Fan and Gijbels (1996) and Härdle (1990), among many others, 

describe nonparametric estimation and rates of convergence without shape restrictions.  Mammen (1991a, 

1991b), Mammen and Thomas-Agnan (1999), and Wang and Shen (2013) discuss rates of convergence 

with shape restrictions.  However, fully nonparametric estimates can be noisy and inconsistent with 

economic theory due to random sampling errors.  For example, Blundell, Horowitz, and Parey (2012, 

2013) found fully nonparametric estimates of demand functions to be wiggly and non-monotonic.  

Blundell, Horowitz, and Parey (2012, 2013) also found that imposing the Slutsky restriction reduced 

random noise and led to well-behaved nonparametric estimates without the need for arbitrary and possibly 

incorrect parametric or semiparametric assumptions.   

Many methods are available for carrying out consistent nonparametric estimation under shape 

restrictions.  See, for example, Hall and Huang (2001, 2002); Hall, Huang, Gifford, and Gijbels (2001); 

Hall and Presnell (1999); and the references cited in the foregoing paragraph.  Asymptotic inference is not 

difficult if the values of x  at which the shape restriction binds or does not bind in the sampled population 

are known.  Liew (1976) illustrates this in the context of inequality constrained estimation of a linear 

model.  Du, Parmeter, and Racine (2013) carry out kernel nonparametric estimation.  In applications, 

however, it is not known where in the sampled population the shape restriction does or does not bind.  

This greatly complicates inference, because random sampling errors can cause the shape restriction to 
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bind or not bind the estimated and true g  at different values of x .  A similar problem arises in inference 

about a finite-dimensional parameter that may be on the boundary of the parameter set (Andrews 1999).  

Existing results on inference about a shape-restricted, nonparametrically estimated conditional mean 

function are limited to functions that are assumed to be monotonic or convex.  The literature on inference 

under monotonicity or convexity restrictions is vast.  See, among many others,  Birke and Dette (2006); 

Dumbgen (2003); Chernozhukov, Fernandez-Val, and Galichon (2009); Dette, Neumeyer, and Pilz 

(2006); Groeneboom, Jongbloed, and Wellner (2001); Pal and Woodroofe (2007); and the references 

therein.  Existing results do not treat shape restrictions such as increasing or decreasing returns to scale 

and the Slutsky inequality that are of particular importance in economics.  There is also a large literature 

on testing the hypothesis that a shape restriction holds.  See, for example, Romano, Shaikh, and Wolf 

(2014); Andrews and Shi (2013); Lee, Song, and Whang (2013); Chernozhukov, Lee, and Rosen (2013); 

Hall and Yatchew (2005); and the references therein. 

 This paper is concerned with inference under shape restrictions, such as the Slutsky restriction, 

that may be nonlinear in a sense that is defined in Section 4.  We formulate the estimation problem as 

minimization of a local quadratic objective function subject to constraints that implement the shape 

restriction.  In general, the shape restriction generates a continuum of constraints.  We reduce the number 

of constraints to a finite value by imposing the shape restriction and estimating g  only on a discrete grid 

of points x  in the support of X .  The grid becomes finer as the sample size, n , increases, thereby 

ensuring that, asymptotically, the shape restriction holds everywhere in the support of X .  This enables 

us to obtain a confidence band for g  that, asymptotically, is uniform over the support of X  and satisfies 

the shape restriction.   

 The use of a discrete grid of points x  enables us to overcome the problem of not knowing which 

constraints are binding in the sampled population.  Let   be the set of constraints that bind in the 

population.  This set is unknown.  We find a data-based set ̂  of “possibly binding constraints” and carry 

out estimation under the (possibly false) assumption that ˆ =  .  We show that ˆ =   with probability 

approaching 1 as n →∞ .  Consequently   can be treated as known asymptotically, and asymptotic 

inference can be carried out as if   were known and ˆ =  . 

 Let 0 ( )g x  and ˆ ( )g x , respectively, denote the true conditional mean function and the shape-

restricted nonparametric estimator.  We show that with suitable scaling, 0ˆ ( ) ( )g x g x−  is asymptotically 

jointly normally distributed with mean 0 over grid points.  Asymptotic normality makes it possible to 

obtain a confidence band for 0g  that is uniform over grid points.  As n →∞  and the distance between 
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grid points approaches 0, the uniform confidence band over grid points converges to a uniform confidence 

band over all values of x . 

 Estimation of ( )g x  at points x  that are not in the grid is unnecessary for forming an asymptotic 

uniform confidence band for g  but may be of interest for other reasons.  Estimation of ( )newg x  at a point 

newx  that is not in the grid can be carried out using the methods of this paper by shifting the location of 

the grid so that newx  is a point of the shifted grid.  Alternatively, ( )newg x  can be estimated using any of a 

variety of methods for interpolating ( )g x  between grid points subject to the shape restrictions.  The 

choice among interpolation methods is arbitrary and, except in special cases, does not yield an estimator 

that converges in probability as rapidly as an estimator based on the shifted grid. 

 Section 2 outlines the main steps involved in implementing our method.  Section 3 presents the 

unconstrained and constrained nonparametric estimators of g  and defines the grid.  Section 4 describes 

the method for finding the set ̂  of possibly binding constraints.  Section 5 explains how to carry out 

inference about g  and form a uniform confidence band for g  under shape restrictions.  To minimize 

notational complexity, the discussion in Sections 2-5 assumes that X  is a scalar random variable.  The 

extension to higher dimensions is outlined in Section 6.  Section 7 presents the results of Monte Carlo 

experiments and an empirical example that illustrate the numerical performance of our methods.  Section 

8 presents concluding comments.  The proofs of theorems are in the appendix, which is Section 9. 

2.  A GUIDE TO IMPLEMENTATION 

 This section outlines the main steps of our method for estimating and obtaining a uniform 

confidence band for g .  We assume here that X  is a scalar random variable whose support is [0,1] .  The 

extension to a multidimensional X  is presented in Section 6. 

 1.  Define a grid 1 20 ... 1Jx x x< < < < < of J  equally spaced points on (0,1) .  A data-based 

method for choosing J  in applications is presented in Section 7. 

 2.  Estimate ( )jg x  ( 1,...,j J= ) nonparametrically by using local quadratic estimation with 

bandwidth h .  Let ( )jg x  denote the resulting estimate.  A method for choosing h  in applications is 

presented in Section 3.1.   

 3.  Use the estimates ( )jg x  to find the set ̂  of possibly binding shape constraints.  ̂  is given 

by equation (4.7). 
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 4.  Re-estimate ( )jg x  ( 1,...,j J= ) nonparametrically using constrained local quadratic 

estimation under the restriction that the shape constraints in ̂  are binding (that is, they are equalities) 

and ignoring all other shape constraints. 

 5.  Form a uniform confidence band for g  using the method of equation (5.8) or (5.10). 

3.  THE ESTIMATORS OF g  

 This section describes our methods for estimating g  with and without shape restrictions.  The 

unrestricted estimator is used to estimate the set of possibly binding constraints.  The shape-restricted 

estimator is an extension of the unrestricted estimator.  Section 3.1 presents the unrestricted estimator.  

Section 3.2 presents grid and the shape-restricted estimator.   

 3.1  The Unrestricted Estimator 

 This section presents the unrestricted nonparametric estimator of g  that is used throughout the 

remainder of this paper.  Let { , : 1,..., }i iY X i n=  denote an independent random sample from the 

distribution of ( , )Y X .  Assume for now that X  is a scalar random variable.  The extension to a 

multidimensional X  is presented in Section 6.  Also assume that the support of X  is a compact interval.  

Without further loss of generality, let this interval be [0,1] .   

 We use local quadratic estimation with bandwidth 1/5h n−∝  to obtain the unrestricted 

nonparametric estimator of g .  In applications, the bandwidth can be chosen by using cross-validation or 

plug-in methods for local constant or local linear estimation.  Under our assumptions, local quadratic 

estimation with 1/5h n−∝  provides an estimator of g  that is free of asymptotic bias, and the bandwidth 

can be selected by standard methods.  Local constant, local linear, and series estimation methods do not 

have this property.  They require undersmoothing or explicit bias correction to prevent asymptotic bias, 

and this requires choice of an auxiliary bandwidth (or series length in the case of series estimation).  

There are no satisfactory data-based methods for choosing the auxiliary bandwidth or series length.  Hall 

and Horowitz (2013) provide numerical illustrations of this problem.  Calonico, Cattaneo, and Farrell 

(2014) present an alternative form of undersmoothing that does not require an auxiliary bandwidth.  This 

method has some desirable theoretical properties but is more complex than the one used here. 

 The following notation is used to define the unrestricted estimator of ( )g x  and in the remainder 

of this paper.  Let K  denote a probability density function that is supported on [ 1,1]−  and symmetrical 
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about 0.  For any [ 1,1]v∈ − , let ( ) ( / )hK v K v h= .  Let ( )U Y g X= −  and 2 ( )U Var Uσ = .  For any 

[0,1]x∈ , let xN  denote the interval [ , ]x h x h− + .  Define 

1
(| | )

n

x i
i

n I X x h
=

= − ≤∑ . 

For 
1
,...,

nx
i i xX X N∈ , define the 3xn ×  matrix 

 
1 1

2

( )

2

1 ( ) ( )

..... ,

1 ( ) ( )
n nx x

i i
x

i i

X x X x

X x X x

 − −
 
 =
 

− −  

X  

the x xn n×  diagonal matrix 

 ( ) [ ( )] : ]x
h i i xdiag K X x X N= − ∈W , 

and the 3 3×  matrix 

( ) 1 ( ) ( ) ( )x x x x
n xn− ′=S X W X . 

Also, for 
1
,...,

nx
i i xX X N∈ , define the 1xn ×  vectors 

1

( ) ( ,..., )
nx

x
i iY Y ′=Y , 

1

( ) ( ,..., )
nx

x
i iU U ′=U , and 

1

( ) [ ( ),..., ( )]
nx

x
i ig X g X ′=g . 

Now let 1 2 3( , , )b b b ′=b  be a 3 1×  vector, and let 

( ) ( ) ( ) ( ) ( )
1 2 3

( ) ( ) ( ) ( ) ( ) ( )

( ) [ ( ), ( ), ( )] arg min( ) ( )

arg min( 2 ).

x x x x x

x x x x x x

x b x b x b x ′ ′≡ = − −

′ ′′= −

b

b

b Y X b W Y X b

b X W X b Y W X b

  

 

The unrestricted estimator of ( )g x  is 1( )g x b=  .  Standard algebra of least squares estimation shows that 

( ) 1 1 ( ) ( ) ( )

( ) 1 1 ( ) ( ) ( ) ( ) 1 1 ( ) ( ) ( )

( ) ( )

( ) ( ) .

x x x x
n x

x x x x x x x x
n x n x

x n

n n

− −

− − − −

′=

′ ′= +

b S X W Y

S X W U S X W g



 

Therefore, 

 ( ) 1 1 ( ) ( ) ( ) ( ) 1 1 ( ) ( ) ( )
1 1( ) ( ) ( ) ( ) ( )x x x x x x x x

n x n xg x g x e n e n g x− − − −′ ′′ ′− = + −S X W U S X W g , 

where 1 (1,0,0)e ′= . 

 Now make the following assumptions: 
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 Assumption 1:  { , : 1,..., }i iY X i n=  is an independent random sample from the distribution of 

( , )Y X , where (i) supp( ) [0,1]X = .  (ii) ( )Y g X U= + , ( | ) 0E U X x= =  and 2 2( | ) UE U X x σ= =  (a 

finite constant) for every [0,1]x∈ .  (iii) g  satisfies the assumed shape restriction.  (iv) 3(| | )E U < ∞ . 

 Assumption 2:  (i) ( )g x  is four times continuously differentiable at each [0,1]x∈ . (ii) The 

distribution of X  has a probability density function with respect to Lebesgue measure, Xf , that is 

continuously differentiable everywhere in [0,1] .  (iii) ( )Xf x δ≥  for some 0δ >  and every [0,1]x∈ . 

 Assumption 3:  (i) K  is a bounded probability density function that is supported on [ 1,1]−  and 

symmetrical about 0;  (ii) 1/5h cn−=  for some finite 0c > .  

 Except for Assumptions 1(iii) and 1(iv), these are standard assumptions in local polynomial 

nonparametric estimation.  Assumption 1(iii) ensures that the shape restricted model is not misspecified.  

Assumption 1(iv) used in Section 3 to ensure that ˆ( ) 1P = →  , where   is the unknown set of 

constraints that bind in the population and ̂  is the data-based set of possibly binding constraints.  

Assumption 1(iv) is also used in Section 4 to obtain the asymptotic distribution of the constrained 

estimator of g .  Assumption 1(ii) requires U  to be homoscedastic.  This assumption can be removed at 

the cost of a much more complex estimation procedure than the one presented here.  Assumptions 2 and 3 

make the local quadratic estimator undersmoothed, as is necessary to avoid asymptotic bias in the 

estimator of g .  The assumption that g  has four continuous derivatives is stronger than needed to obtain 

the asymptotic distributional results presented in this paper.  The results can be obtained under the 

assumption that g  is twice continuously differentiable.  However, this requires choosing an 

undersmoothing bandwidth or an auxiliary bandwidth for explicit bias correction.  There are no 

satisfactory empirical methods for making these choices in applications.  The method of Calonico, 

Cattaneo, and Farrell (2014) permits g to have three derivatives at the cost of greater complexity than the 

method used here. 

 The following proposition states the properties of ( )g x  that are used in this paper. 

 Proposition 1:  Let Assumptions 1(i), 1(ii), 2, and 3 hold.  For each (0,1)x∈  

(3.1) 1/2 1/2 ( ) 1 1 ( ) ( ) ( )
1( ) [ ( ) ( )] ( ) ( )x x x x

n x nnh g x g x nh e n r− − ′′− = +S X W U . 

and 

(3.2) 1/2 2
( )( ) [ ( ) ( )] (0, )d

g xnh g x g x N σ− →


 , 

where 2
nr ch≤  for all x  and some constant c < ∞ , and 
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2

2
( ) ( )

U
g x K

X
C

f x
σ

σ =


, 

where KC  is a constant that depends on K  but not on x , g , or h .    

Result (3.1) follows from Theorem 3.1 of Fan and Gijbels (1996).  See, also, Ruppert and Wand 

(1994).  Result (3.2) is obtained by applying the Lindeberg-Levy central limit theorem to the first term on 

the right-hand side of (3.1).  Fan and Gijbels (1996, p. 62) give the formula for KC .  In applications, 

( )Xf x  and 2
Uσ  can be replaced with consistent estimators to give the consistent estimator of 2

( )g xσ


, 

 
2

2
( )

ˆˆ ˆ ( )
U

g x K
X

C
f x
σ

σ =


, 

where ˆ ( )Xf x  is a consistent estimator of ( )Xf x  (e.g., a kernel nonparametric density estimator) and 2ˆUσ  

is a consistent estimator of 2
Uσ .  When X  is a scalar, 2

Uσ  can be estimated by the method of Rice (1984); 

Gasser, Sroka, and Jennen-Steinmetz (1986); and Buckley, Eagleson, and Silverman (1988).  To construct 

this estimator, let (1) (2) ( )... nX X X< < <  be the ordered sequence of iX ’s. and let ( ){ }iY  be the similarly 

ordered values of the iY ’s.  The estimator of 2
Uσ  is 

 
1

2 2
( 1) ( )

1

1ˆ [ ]
2( 1)

n

U i i
i

Y Y
n

σ
−

+
=

= −
− ∑ . 

This estimator is 1/2n− -consistent under Assumptions 1 and 2.   

 3.2  Shape-Restricted Estimation and the Grid 

 A shape restriction on g  can be written ( )( ) 0Ag x ≤  for every [0,1]x∈ , where A  is an operator.  

For example, if g  is monotone non-increasing, then /Ag dg dx= .  The shape restriction constitutes 

infinitely many constraints on g .  We represent the shape restriction as a finite number of constraints by 

imposing it only at a grid of J  equally spaced points 1 20 ... 1Jx x x< < < < < .  J  increases as n  

increases.  Because the grid points are equally spaced, the distance between two consecutive grid points is 

1 / ( 1)J∆ = + .  Let the notation n na b  mean that / 0n na b →  as n →∞ .  We assume that: 

Assumption 4:  (i) 1/5 1/4(log )J n n −
 .  (ii) 1 / [2( 1)]h J< + .  (iii) J →∞  as n →∞ . 

 Assumptions 4(i) and 3(ii) ensure that Assumption 4(ii) holds for all sufficiently large n .  

Assumption 4(ii) requires 1 / [2( 1)]h J< +  for any n .  Under this assumption, for each 1,...,i n= , there is 

only one j  such that 
ji xX N∈ .  Therefore, ( )jg x  and ( )kg x  are statistically independent if j k≠ .  

Assumption 4(iii) ensures that the distance between grid points decreases as n  increases. 
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Let ( )j jg g x= , and let g  be the 1J ×  vector 1( ,..., )Jg g ′=g .  With this notation, a shape 

restriction that is imposed only at grid points can be written 

 ( ) 0; 1,...,kA k Jk≤ = ≤g , 

where the kA ’s are functions.  For example, the restriction that g  is non-increasing, can be represented 

as 1 0j jg g+ − ≤ for every 1,..., 1j J= − .  Thus, 1( )k k kA g g+= −g , and 1Jk = − .  J  and k  both 

increase as n  increases.  This dependence on n  is not represented in the notation but is understood 

throughout this paper. 

 We impose shape restrictions on the grid by constraining differences between values of ( )g x  at 

different values of x , not by constraining derivatives of g .  This is because estimators of derivatives of 

g  converge more slowly than the estimator of g .  Consequently, the random sampling error of the 

constrained estimator of g  is larger and the uniform confidence band for g  wider if shape restrictions 

are imposed by constraining derivatives than if they are imposed by constraining differences.   

 Let { : ( ) 0}kk A= =g  denote the set of constraints that bind in the sampled population, and let 

| |  denote the number of elements in  .  Estimation of g  subject to ( ) 0kA ≤g  ( 1,...,k k= ) is 

asymptotically equivalent to estimating g  subject to ( ) 0kA =g  for k∈ .  In other words, constraints 

that do not bind in the population can be dropped, and constraints that do bind can be replaced by 

equalities.  In typical applications, the function ( )kA g  depends only on a few components of g .  For 

example, 1( ) 0k k kA g g+= − ≤g  represents the restriction that g  is non-increasing, and ( )kA g  depends 

on only two components of g .  The restriction that g  is convex can be represented as 

1 2( ) ( ) 2 ( ) ( ) 0k k k kA g x g x g x+ += − + − ≤g , and ( )kA g  depends on only three components of g .  If 

| | k<  (not all constraints are binding), then there may be some components of g  that do not affect the 

value of ( )kA g  for any k∈ .  That is, there may be some jg ’s for which ( ) / 0k jA g∂ ∂ =g  for every 

k∈ .  These jg ’s are unconstrained.  They can be estimated and inference about them carried out using 

the unrestricted nonparametric method of Section (3.1).  It is necessary to carry out constrained estimation 

and inference only for jg ’s satisfying ( ) / 0k jA g∂ ∂ ≠g  for some k∈ .  These components affect the 

value of ( )kA g  for some k∈  and, therefore, are constrained.  Call these jg ’s “active components” of 

g .  Call the remaining components “inactive.”  Define 

{ : is an active component of }jj g= g , 
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and let | |  denote the number of elements of  .  Let ( )ag  denote the | | 1×  vector of active 

components of g . 

 We use the following notation to define the shape-restricted local quadratic estimator of ( )ag .  

Index the components of ( )ag  and the grid points corresponding to them by 1,...,| |=  .  Define the 3n×  

matrix 

 

2
1 1

( )

2

1 ( ) ( )
... ; 1,..., | |

1 ( ) ( )n n

X x X x

X x X x

 − −
 

= = 
 − − 

X
 



 

  . 

Let ( )W   be the n n×  diagonal matrix whose ( , )i i  component is ( )h iK X x−


, and let Q  be the 

3 | | 3 | |×   block diagonal matrix 

 

(1) (1) (1)

(2) (2) (2)

(| |) (| |) (| |)

0 ... 0

0 ... 0
... ...

0 0 ...

 ′
 
 ′

=  
 
 ′  

X W X

X W XQ

X W X  

. 

Finally, define the 3 | | 1×  vector 

 (1) (1) (| |) (| |)[( ) ... ( ) ]′ ′′ ′ ′=d X W Y X W Y  , 

and let b  the 3 | | 1×  vector 11 21 31 1| | 2| | 3| |( , , ,..., , , )b b b b b b ′   . 

 If   were known, the shape restricted local quadratic estimator of g


 ( ∈  ) would be 1b


 , 

where 1b


  is the (3 2)−  component of the 3 | | 1×  vector 

  arg min(0.5 - )′ ′=
b

b b Qb d b . 

subject to: 

  ( ) 0;kA k= ∈g  . 

However,   is unknown in applications.  Therefore, we replace it with the estimate ̂  that is described in 

Section 4.  Redefine the active components of g  as the jg ’s satisfying ( ) / 0k jA g∂ ∂ ≠g  for some ˆk∈ .  

In the definitions of Q  and d , replace   with  

 ˆ { : is a redefined active component of }jj g= g   

and replace | |  with ˆ| | , which is the number of elements of ̂ .  We estimate an active component g


 

by 1̂ĝ b=
 

, which is the (3 2)−  component of the vector 
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(3.3)  ˆ arg min(0.5 - )′ ′=
b

b b Qb d b . 

subject to: 

  ˆ( ) 0;kA k= ∈g  . 

The estimator of the vector of redefined active components ( )ag  is ( )
11 14 3| | 2
ˆ ˆ ˆˆ ( , ,.., )a b b b − ′=g  .   

 In summary, we estimate the active components of g  by solving (3.3) and the remaining 

components by the unrestricted method of Section (3.1).  Denote the resulting estimator of g  by ˆ̂g .  

Section 4 obtains the asymptotic distribution of 1/2 ˆ̂( ) ( )nh −g g  and a uniform confidence band for g .1 

4.  THE SET OF POSSIBLY BINDING CONSTRAINTS 

 This section explains how to find the set ̂  of possibly binding constraints.  Define the 1J ×  

vectors ( )
1[ ( ),..., ( )]J

Jg x g x ′=g  and ( )
1[ ( ),..., ( )]J

Jg x g x ′=g   .  For each 1,...,k k= , define the set  

 ( ) { : ( ) / 0 for all }k jk j A g= ∂ ∂ =g g .   

Let | ( ) |k  denote the number of components of ( )k , and define 0 1,...,max | ( ) |kJ kk==  .  Let   be 

the set of constraints for which ( ) 1/20 ( ) [(log ) / ( )]J
kA n nh< ≤g , and let  | |  be the number of 

constraints in  .  Make the following assumption: 

 Assumption 5:  (i) There is a finite constant q  not depending on n  such that | ( ) |k q≤  for all 

1,...,k k= .  (ii) The vector ( )Jg  is contained in a compact subset   of J
 .  (iii) kA  is a twice 

continuously differentiable function of its arguments for each 1,...,k k= .  There is a constant < ∞  such 

that 2 ( )| ( ) / |J
k jA g∂ ∂ ≤g



  for all ( )J ∈g  ; , 1,...,j J= ; and 1,...,k k= . (iv) | | 0→  as n →∞ . 

Assumption 5(i) is motivated by the observation that with typical shape restrictions, such as 

monotonicity, convexity, or the Slutsky inequality, ( )kA g  depends on only a few components of g .  

Assumption 5(iv) holds for typical shape restrictions if Assumption 4 holds.  Examples illustrating this 

are given in the appendix.   

Under Assumption 5(iii), a Taylor series expansion gives 

                                                      
1  If n  is small, random sampling errors may cause the unrestricted estimator of the inactive components 
of g  to violate the constraints ( ) 0kA ≤g .  This problem can be avoided by imposing the constraints on 
all components of g .  The problem does not arise if n  is large and the assumptions of this paper are 

satisfied.  Therefore, it does not affect the asymptotic distribution of 1/2 ˆ̂( ) ( )nh −g g  or the asymptotic 
uniform confidence band for ( )g x .  



11 
 

( ) 2( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )(4.1) ( ) ( ) ( )

( ) ( ) [ / ( )].

J
J J J J J Jk

k k p

J
J Jk

p

AA A O

A O J nh

′ ∂  − = − + −   ∂    

′ ∂
= − + 

∂  

gg g g g g g
g

g g g
g

  



 

The components of 1/2 ( ) ( )( ) ( )J Jnh −g g  are independently normally distributed with means of 0 by (3.2).  

If J  were fixed, asymptotic multivariate normality of 1/2 ( ) ( )( ) ( )J Jnh −g g and of the 1k ×  vector whose 

k ’th component is 1/2 ( ) ( )( ) [ ( ) ( )]J J
k knh A A−g g  would follow from (3.2) and (4.1).  The following 

theorem shows that this result holds even if J →∞  as n →∞ . 

 Theorem 4.1:  Let Assumptions 1-4 and 5(i)-5(iii) hold.  Define the J J×  diagonal matrix 

2
( )[ : 1,..., ]

jg xdiag j Jω σ= =


.  Let ϒ  be the k k×  matrix whose ( , )k   component is 

 
( ) ( )( ) ( )J J

k
k

A Aω
′   ∂ ∂

ϒ =    
∂ ∂     

g g
g g





. 

Define the random variables ~ (0, )N ωz  and ~ (0, )N ϒz .  Then  

(4.2) 1/2 ( ) ( )lim sup | [( ) ( ) ] ( ) | 0J J
n

P nh P
→∞

− ≤ − ≤ =
t

g g t z t  

and  

(4.3) 1/2 ( ) ( )lim sup | {( ) [ ( ) ( )] } ( ) | 0J J
k kn

P nh A A P
→∞

− ≤ − ≤ =
t

g g t z t  .    

 Now let 1/2(log )nc n= .  Then 1/21 ( ) [( log ) ]nc O n n −−Φ = , where Φ  is the standard normal 

distribution function.  It follows from (4.3) that asymptotically, 

 1/2 1/2 ( ) ( ) 1/2( ) | ( ) ( ) | [( log ) ]J J
kk k k nP nh A A c O n n− − ϒ − > = g g  

and 

(4.4) 1/2 1/2 ( ) ( ) 1/2( ) | ( ) ( ) |  for any 1,..., [ ( log ) ] (1)J J
kk k k nP nh A A c k O n n ok k− − ϒ − > = = = g g . 

If k∈ , then ( )( ) 0J
kA =g .  Therefore,  

(4.5) ( ) 1/2 1/2 1/2[| ( ) | ( )  for every ] 1 [ ( log ) ] 1J
k kk nP A nh c k O n nk− −≤ ϒ ∈ = − →g � . 

If k∉ , ( ) 1/2| ( ) | [(log ) / ( ) ]J
kA n nh>g , and 1/2 1/2 ( ) ( )( ) | ( ) ( ) |J J

kk k k nnh A A c−ϒ − ≤g g , then for all 

sufficiently large n , 
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1/2 ( ) 1/2 ( ) 1/2 ( ) ( )

1/2 ( ) 1/2 1/2

| ( ) | | ( ) | | ( ) ( ) |

| ( ) | ( ) ( ) .

J J J J
kk k kk k kk k k

J
kk k n n

A A A A

A nh c nh c− −

ϒ ≥ ϒ −ϒ −

≥ ϒ − >

g g g g

g

 

 

But | |  is an integer, and | | 0→  as n →∞  by Assumption 5(iv).  Therefore, 

1/2 1/2 ( )( ) | ( ) |J
kk k nnh A cϒ >g  for every k∉  if n  is sufficiently large and 

1/2 1/2 ( ) ( )( ) | ( ) ( ) |J J
kk k k nnh A A c−ϒ − ≤g g  for every k k≤ .  By (4.4), the probability of the latter event is 

1 (1)o− .  Therefore,  

(4.6) 1/2 1/2 ( )( ) | ( ) |   for any (1)J
kk k nP nh A c k o− ϒ ≤ ∉ = g  . 

Define 

{ }1/2 1/2 ( ): ( ) | ( ) |J
kk k nk nh A c−= ϒ ≤g

 . 

Then it follows from (4.5) and (4.6) that ( ) 1P = →   as n →∞ . 

This result continues to hold if kkϒ  is replaced by the consistent estimator obtained by replacing 

2
( )jg xσ


with 2
( )ˆ

jg xσ


 in ω  and ( )Jg  with ( )Jg  in kϒ 

.  Define 

(4.7) { }1/2 1/2 ( )ˆ ˆ: ( ) | ( ) |J
kk k nk nh A c−= ϒ ≤g . 

Then ˆ( ) 1P = →   as n →∞ .  ̂  can be calculated from the data and is the desired set of possibly 

binding constraints. 

5.  ASYMPTOTIC DISTRIBUTION OF THE CONSTRAINED ESTIMATOR AND UNIFORM 

CONFIDENCE BAND 

 This section shows that 1/2 ˆ̂( ) ( )nh −g g  is asymptotically multivariate normally distributed with 

mean 0.  This result is used to obtain an asymptotic uniform confidence band for ( )g x .  Because 

ˆ( ) 1P = →   as n →∞ , the asymptotic distribution of 1/2 ˆ̂( ) ( )nh −g g  is the same regardless of whether 

  is estimated by ̂  or known.  Therefore, it suffices to derive the asymptotic distribution and 

confidence band under the assumption that   is known.  Accordingly, it is assumed throughout this 

section that   is known.  Section 5.1 treats the case of linear constraint functions kA .  Section 5.2 

extends the results of section 5.1 to nonlinear constraints.   
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 5.1  Linear Constraints 

 If the functions kA  are linear, the inequalities ( ) 0kA ≤g  ( 1,...,k k= ) can be written as ≤Ag r , 

where A  is a Jk ×  matrix and r  is a 1k ×  vector.  For example, if g  is monotone non-increasing, then 

1( ) ( ) ( )k k kA g x g x+= −g , 0=r , and A  is the ( 1)J J− ×  matrix 

 

1 1 0 0 ... 0 0
0 1 1 0 ... 0 0

...
0 0 0 0 ... 1 1

− 
 − =
 
 

− 

A . 

 It follows from (3.2) and the Assumption 4 that the estimators of the inactive components of 
1/2 ˆ̂( ) ( - )nh g g  are asymptotically normally distributed with means of 0 independently of each other and of 

the active components.  Therefore, asymptotic distribution of 1/2 ˆ̂( ) ( )nh −g g  will be known after the 

asymptotic distribution of its of active components has been obtained. 

Let k k≤  the number of rows of A  corresponding to constraints affecting active components of 

g .  Let ( )aA  be the | |k×   matrix consisting of the columns of A  corresponding to active components 

of g .  The constraints on these components can be written as ( ) ( ) ( )a a a=A g r , where ( )ar  is a 1k ×  

vector.  Let A


 denote the 3 | |k ×   matrix in which column 3 2−  ( 1,...,| |=  ) is column   of ( )aA  

and the remaining columns are all zeros.  Because it can be assumed as n →∞  that   is known, problem 

(3.3) with linear constraints can be rewritten as 

(5.1)  ˆ arg min(0.5 - )′ ′=
b

b b Qb d b  

subject to: 

  ( )a=Ab r


. 

Note that A


 and r  are non-stochastic.  Problem (5.1) can be solved analytically using the method of 

Lagrangian multipliers.  The solution is the well-known constrained least squares estimator 

 ( ) -1 -1 ( )ˆ ( ) ( )a a+′ ′= − −b b Q A AQ A Ab r
   

  , 

where ( )ab  is the subvector of the unconstrained local quadratic estimator of Section (3.1) corresponding 

to active components of g  and the superscript + denotes the Moore-Penrose generalized inverse.  Only 

columns 1, 4,…, 3 | | 2−  of the 3 | |k ×   matrix A


 are non-zero, and components 1, 4,…, 3 | | 2−  of the 

3 | | 1×  vector b  correspond to components of ( )ag , which is the local quadratic estimator of ( )ag .  The 

submatrix of A


 consisting of columns 1, 4,…, 3 | | 2−  is ( )aA .  Therefore, ( ) ( )a aA =b A g




 , 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ),

a a a a

a a a a a a a a a

A

E E

− = −

= − + − + −

b r A g r

A g g A g g A g r







  

 

and 

 ( ) -1 -1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ( ) [ ( ) ( ) ( )]a a a a a a a a a aE E+′ ′= − − + − + −b b Q A AQ A A g g A g g A g r
  



   . 

Under Assumption 1(iii),  

 ( ) ( ) ( ) 0a a a− =A g r  

and  

 ( ) ( ) ( ) 4 1/2( ) ( ) [( ) ]a a aE O h o nh −− = =A g g  

for all J .  Therefore, 

 

{ }

( ) ( ) ( ) ( ) -1 -1 ( ) ( ) ( ) ( ) 1/2

-1 -1 ( ) ( ) ( ) ( ) 1/2
| | | |

ˆ ( ) [ ( ) ] ( ) [( ) ]

[ ( ) ] ( ) [( ) ]

a a a a a a a a

a a a a

E o nh

I E o nh

+ −

+ −
×

′ ′− = − − − +

′ ′= − − +

g g g g Q A AQ A A g g

Q A AQ A A g g

  

  

  

  

 

for all J , where ( )[ ] a⋅  denotes the | | | |×   submatrix of the | 3 | | 3 |×   matrix [ ]⋅  consisting of rows 

and columns 1, 4,…, 3 | | 2− .  Define  

 { }-1 -1 ( ) ( )
| | | | [ ( ) ]a aI +
× ′ ′Ξ = − Q A AQ A A

  

  . 

Then 

(5.2) ( ) ( ) ( ) ( ) 1/2ˆ ( ) [( ) ]a a a aE o nh −− = Ξ − +g g g g   

for all J . 

 Now rearrange the components of g  and ˆ̂g  into the vectors ( ) ( )[ , ]a a− ′g g  and ( ) ( )ˆ ˆˆ ˆ[ , ]a a− ′g g , 

respectively, where the superscript ( )a−  denotes inactive components of g  and ˆ̂g .  It follows from 

Theorem 4.1 and asymptotic negligibility of 1/2 ( ) ( )( ) ( )a anh E −g g   that 1/2 ( ) ( )( ) ( )a anh E−g g   are 

independently asymptotically multivariate normally distributed with diagonal covariance matrices.  

Therefore, (5.2) implies that 1/2 ( ) ( )ˆ( ) ( )a anh −g g  and 1/2 ˆ̂( ) ( )nh −g g  are linear combinations of 

asymptotic multivariate normals and are, themselves, asymptotically multivariate normal.  Consequently, 

we have the following theorem. 

 Theorem 5.1:  Let Assumptions 1-5 hold.  Let nΣ  be the J J×  matrix  
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( )

( )

0

0
 

a
n

n a
n

− Σ
Σ =  

Σ  
, 

( ) 2
( )[ : ( ) is inactive]

j

a
n g x jdiag g xσ−Σ =



, 

( )a
n ′Σ = Ξ Ω Ξ , 

and 

 2
( )[ : ( ) is active]

jg x jdiag g xσΩ =


.   

Let z  be a random vector that is distributed as (0, )nN Σ . If the constraints on g  are linear, then  

(5.3) 1/2 ˆ̂lim sup | [( ) ( ) ] ( ) | 0
n

P nh P
→∞

− ≤ − ≤ =
t

g g t z t .    

Result (5.3) continues to hold if 2
( )jg xσ


 is replaced in nΣ  with the estimator 2
( )ˆ

jg xσ


 described in 

Section 3.1.  Denote the resulting matrix by ˆ
nΣ .  Then it follows from (5.3) that a two-sided, asymptotic 

1 α−  confidence interval for ( )jg x  is 

(5.4) 1/2 1/2
, 1 /2 , 1 /2

ˆ ˆˆ ˆˆ ˆ( ) ( )j n jj j j n jjg nh z g g nh zα α
− −

− −− Σ ≤ ≤ + Σ  

where ˆ̂
jg  is the j ’th component of ˆ̂g  and 1 /2z α−  is the 1 / 2α−  quantile of the standard normal 

distribution.  It follows from the properties of constrained least squares estimators that ( )cov( )J
nΣ − g  is 

positive semidefinite.  Therefore, the confidence interval (5.4) is no wider and may be narrower than a 

confidence interval for jg  based on the unconstrained estimator jg . 

 An asymptotic 1 α−  uniform confidence band for ( )jg x  ( 1,...,j J= ) is  

 1 1 2 1
ˆ̂{ ,..., : ; 1,..., }J j j j jg g g g j Jα g g− = − ≤ − ≤ = ,  

where 1jg  and 2jg  are critical values.  The coverage probability is 

 2 1
1

ˆ̂[ ]
J

j j j j
j

P g gg g
=

  − ≤ − ≤ 
  


 

or, equivalently,  

(5.5) 1 2
1

ˆ ˆˆ ˆ[ ]
J

j j j j j
j

P g g gg g
=

  − ≤ ≤ + 
  


. 

An asymptotic coverage probability of 1 α−  can be obtained by choosing the 1jg ’s and 2jg ’s so that 
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(5.6) 2 1
1
{ } 1

J

j j j
j

P Zg g α
=

  − ≤ ≤ = − 
  


, 

where 1( ,..., )JZ Z Z ′=  is a random variable with the 1 ˆ[0,( ) ]nN nh − Σ  distribution.  For a symmetrical 

confidence band, 1 2j j jg g g= = , where 0jg > , and 

(5.7) 
1
| | } 1

J

j j
j

P Z g α
=

  ≤ = − 
  


. 

The probability in (5.7) can be estimated by Monte Carlo for any jg ’s by drawing random samples from 

the 1 ˆ[0,( ) ]nN nh − Σ  distribution. 

 Except in special cases, the boundaries of the confidence band (5.5) do not satisfy the shape 

restrictions that are assumed to hold for g .  To obtain a confidence band whose boundaries satisfy the 

shape restrictions, define e  to be a 1J ×  vector of 1’s, 1 11 1( ,..., )Jg g ′=γ , and 2 12 2( ,..., )Jg g ′=γ .  The 

uniform confidence band that has the minimum average width among bands satisfying the shape 

restrictions can be obtained by solving the nonlinear programming problem 

(5.8) 
1 2

1 2 2 1,
( , ) arg min ( )′ ′= −

ζ ζ
γ γ e ζ ζ  

subject to 

2 1
1

1

2

(5.9) { } 1

ˆ̂( - ) 0

ˆ̂( ) 0.

J

j j j
j

P Zζ ζ α
=

  − ≤ ≤ = − 
  

≤

≤

A g ζ

A g + ζ



 

The resulting confidence band is 1 2ˆ ˆ≤ ≤g - γ g g + γ .  The minimum width symmetrical confidence band 

that satisfies the shape restrictions can be obtained by setting 2 1= −γ γ  in problem (5.7). 

 Solving problem (5.8) is difficult computationally because of the nonlinear constraint (5.9).  The 

nonlinear constraint can be removed and computation simplified at the cost of a wider confidence band.  

To obtain this band, let 1γ  and 2γ  be the vectors of confidence limits obtained in (5.5)-(5.6).  A 

confidence band whose boundaries satisfy the shape restrictions but whose average width may exceed the 

average width of the band obtained from (5.8) is 1 2
ˆ ˆˆ ˆ ˆ ˆ≤ ≤g - γ g g + γ , where 

(5.10) 
1 2

1 2 2 1,
ˆ ˆ( , ) arg min ( )′ ′= −

ζ ζ
γ γ e ζ ζ  
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subject to 

1 1 2 2

1

2

ˆ̂( - ) 0

ˆ̂( ) 0.

≤ ≤ ≤

≤

≤

ζ γ γ ζ

A g ζ

A g + ζ

 

 

 The grid points { }jx  become dense in [0,1]  as n →∞ .  Therefore, { : 1,..., }j j Jg =  and (5.6)-

(5.10) provide an asymptotic uniform confidence region for ( )g x . 

 5.2 Nonlinear Constraints 

 This section explains how to obtain an asymptotic uniform confidence band for g  when one or 

more of the functions ( )kA g  specifying the shape constraints is nonlinear.  As was explained in the 

introduction to Section 4, we assume that ˆ =   in deriving asymptotic uniform confidence band. 

 As in Section 3.1, let g  denote the unconstrained local quadratic estimator of g .  For k∈ , 

define the scalar kη  by ( )k kA η=g .   Let (1)b  denote the intercept components of b  (that is, components 

1, 4,…, 3 | | 2− ).  Then unrestricted estimates of the active components of g  can be obtained by solving 

(5.11)  ( ) arg min(0.5 - )a ′ ′=
b

b b Qb d b  

subject to: 

  (1)( ) ( )k kA kη= ∈b  . 

The constrained estimates are obtained by solving 

(5.12)  ˆ arg min(0.5 - )′ ′=
b

b b Qb d b  

subject to: 

  (1)( ) 0 ( )kA k= ∈b  . 

But k∈  implies that 0kη →  as n →∞ .  Therefore, finding ĝ  is equivalent to finding the effect of a 

small change in the kη ’s on the optimal solution to (5.11).  This can be done by using the theory of 

sensitivity analysis in nonlinear programming (Fiacco 1983).  

 To state the result of the sensitivity analysis, modify the definition of ( )kA ⋅  to include all 

components of b  in its arguments.  Let ( )A b  be the | | 1×  vector whose k ’th component is ( )kA b .  Let 

bA  be the | | 3 | |×   matrix whose ( , )k j  component is 0( ) /k jA∂ ∂b b , where 0b  is the 3 | | 1×  vector 

 0 {[ ( ), ( ), ( )] : }j j jg x g x g x j′ ′′ ′= ∈b  . 
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Let ( )[ ] a⋅  denote the | | | |×   submatrix of the | 3 | | 3 |×   matrix [ ]⋅  consisting of rows and columns 1, 

4,…, 3 | | 2− .  Define  

 { }-1 -1 ( )
| | | | [ ( ) ] aI +
× ′ ′Ξ = − b b b bQ A A Q A A  . 

The result is given by the following theorem. 

 Theorem 5.2:  Let Assumptions 1-5 hold.  Define nΣ  as the J J×  matrix  whose ( , )j k  element 

is 

 

( )

, ( )

0

0
 

a
n

n jk a
n

− Σ
Σ =  

Σ  
, 

( ) 2
( )[ : ( ) is inactive]

j

a
n g x jdiag g xσ−Σ =



, 

( )a
n ′Σ = Ξ Ω Ξ , 

and 
2

( )[ : ( ) is active]
jg x jdiag g xσΩ =



. 

Let z  be a random vector that is distributed as (0, )nN Σ .  Then  

(5.13) 1/2 ˆ̂lim sup | [( ) ( ) ] ( ) | 0
n

P nh P
→∞

− ≤ − ≤ =
t

g g t z t .    

 An asymptotic uniform confidence region for g  and ( )g x  can now be constructed as in Section 

5.1 by replacing (5.3) with (5.13).   

5.3  Uniformity 

 The asymptotic distributional results and confidence bands in Sections 5.1 and 5.2 assume that 

the constraints are fixed as n →∞ .  That is, if ( )k kA c=g  for some k k≤  and 0kc < , then kc  remains 

constant as n →∞ .  The asymptotic results do not hold uniformly over kc  in a neighborhood of 0.  For 

each 1,...,k k=  there are sequences { }nkc  such that ( ) 0k nkA c= <g , 0nkc →  as n →∞ , and (5.3) and 

(5.13) do not hold.  This problem can be overcome by replacing the constraints ( ) 0kA ≤g  with the 

slightly relaxed versions ( )k nA δ≤g , where 1/2( ) logn nh nδ −= .  Then with probability approaching 1 as 

n →∞ , no relaxed constraint is binding.  The asymptotic distribution of 1/2 ˆ( ) ( )nh −g g  with the relaxed 

constraints is the same as that of the unconstrained estimator, and there is no issue of uniformity.  In finite 

samples, however, one or more of the relaxed constraints may be binding.  Therefore, the finite-sample 

variability of the constrained estimator 1/2 ˆ( ) ( )nh −g g  may be less than that of the unconstrained 
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estimator.  The results of Blundell, Horowitz, and Parey (2012) illustrate this reduction in finite-sample 

variability in an empirical setting. 

6.  MULTIVARIATE EXTENSION 

 This section outlines the extension of the results of Sections 3-5 to a two-dimensional explanatory 

vector X , such as price and income in a demand function.  Extensions to higher dimensions are possible 

but are less useful for economics and likely to yield low estimation precision because of the curse of 

dimensionality.  The extension to a two-dimensional X  involves mainly notational adjustments to the 

results of Sections 3-5.  Therefore, the results of the extension are presented without proofs. 

 Denote the data by 1 2{ , , : 1,...., }i i iY X X i n= .  Assume that 2
1 2supp( , ) [0,1]i iX X =  for all 

1,...,i n= .  The following notation is used to state the unrestricted estimator of 1 2( , )g x x .  Let K  denote 

a probability density function that is supported on 2[ 1,1]−  and whose odd moments are all zero.  For any 

2
1 2( , ) [ 1,1]ν ν ν≡ ∈ −  and bandwidths 1h  and 2h , let  

(6.1) 1 1 2 2( ) ( / , / )hK K h hν ν ν= .   

For any 2
1 2, [0,1]x x ∈ , let xN  denote the rectangle 1 1 2 2{ , : | | , | | }x h x hx ζ x ζ− ≤ − ≤ .  Define 

 1 1 1 2 2 2
1

(| | ) (| | )
n

x i i
i

n I X x h I X x h
=

= − ≤ − ≤∑ . 

For 1 2, ,...,
xni i i i=  and 

1 11 2 1 2( , ),..., ( , )
n nx x

i i i i xX X X X N∈ , define the 1 6×  vector 

 ( ) 2 2
1 1 2 2 1 1 2 2 1 1 2 21 ( ) ( ) ( ) ( ) ( )( )x

i i i i i i iX x X x X x X x X x X x = − − − − − − X  

and the 6xn ×  matrix 

 
1

( )

( )

( )

...

nx

x
i

x

x
i

 
 
 =
 
 
 

X

X

X

. 

For 1 2( , )i i iX X X=  and 1 2( , )x x x= , define the x xn n×  diagonal matrix 

 ( ) [ ( )] : ]x
h i i xdiag K X x X N= − ∈W  

and the 6 6×  matrix 

 ( ) 1 ( ) ( ) ( )x x x x
n xn− ′=S X W X . 

For 
1
,...,

nx
i i xX X N∈ , define the 1xn ×  vector 

1

( ) ( ,..., )
nx

x
i iY Y ′=Y  and 

1

( ) [ ( ),..., ( )]
nx

x
i ig X g X ′=g . 

Now let 1 6( ,..., )b b ′=b  be a 6 1×  vector, and let 
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( ) ( ) ( ) ( ) ( )
1 6

( ) ( ) ( ) ( ) ( ) ( )

( ) [ ( ),..., ( )] arg min( ) ( )

arg min( 2 ).

x x x x x

x x x x x x

x b x b x ′ ′≡ = − −

′ ′′= −

b

b

b Y X b W Y X b

b X W X b Y W X b

 

. 

The unrestricted estimator of ( )g x  is 1( ) ( )g x b x=  .  Standard algebra of least squares estimation shows 

that 

( ) 1 1 ( ) ( ) ( )( ) ( )x x x x
n xx n− − ′=b S X W Y  

Therefore, 

 ( ) 1 1 ( ) ( ) ( )
1( ) ( ) ( ) ( )x x x x

n xg x g x e n g x− − ′′− = −S X W Y , 

where 1 (1,0,0,0,0,0)e ′= . 

 Now make the following assumptions, which are modifications of Assumptions 1-3: 

 Assumption 1´:  { , : 1,..., }i iY X i n=  is an independent random sample from the distribution of 

( , )Y X , where (i) 2supp( ) [0,1]X = .  (ii) ( )Y g X U= + , ( | ) 0E U X x= =  and 2 2( | ) UE U X x σ= =  (a 

finite constant) for every 2[0,1]x∈ .  (iii) g  satisfies the assumed shape restriction.  (iv) 3(| | )E U < ∞ . 

 Assumption 2´:  (i) ( )g x  is four times continuously differentiable with respect to any 

combination of the components of 2[0,1]x∈ . (ii) The distribution of X  has a probability density function 

with respect to Lebesgue measure, Xf , that is continuously differentiable everywhere in 2[0,1] .  (iii) 

( )Xf x δ≥  for some 0δ >  and every 2[0,1]x∈ . 

 Assumption 3´:  (i) K  is a bounded probability density function that is supported on 2[ 1,1]− , and 

all odd moments of K  are zero;  (ii) 1/6
j jh c n−=  ( 1,2j = ) for some finite 0jc > .  

 The bandwidths undersmooth g , so there is no asymptotic bias, and can be selected by applying 

cross-validation or plug-in methods to the local linear estimator of g .  The following proposition 

generalizes Proposition 1 to the case of a bivariate X . 

 Proposition 1´:  Let Assumptions 1´(i), 1´(ii), 2´, and 3´ hold.  For each 2(0,1)x∈ , 

 1/2 2
1 2 ( )( ) [ ( ) ( )] (0, )d

g xnh h g x g x N σ− →


 , 

where 2
( ) 0g xσ >


 is finite.  
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The expression for 2
( )g xσ


 is lengthy and is given by Ruppert and Wand (1994, equation (4.7)).  It requires 

a consistent estimator of 2
Uσ  for a bivariate X .  To do this, let j(i) (i = 1, …, n) be a set of indices that is 

defined through the following recursion: 

 j X X
j n j( ) arg min

,...,
1

2 1= −
=

 

and 

 j i X X i n
j i j j i j i( ) arg min ; ,..., .

, (1),... ( )
= − =

≠ −1
2  

The number j(i) is the index of the design point that is nearest to Xi among those whose indices are not 

j(1), …, j(i - 1).  Then 2
Uσ  can be estimated by  

 2 2
( )

1

1ˆ ( )
2

n

U i j i
i

Y Y
n

σ
=

= −∑  

Under Assumption 1´, 2ˆUσ  is a n1/2-consistent estimator of 2
Uσ  (Horowitz and Spokoiny 2001). 

 The grid consists of 2J  equally spaced points 1 2{ ( , ) : , 1,..., }jk j kx x x j k J= = .  The shape 

restriction is 

 ( ) 0; 1,...,kA k k≤ =g , 

where g  is the 2 1J ×  vector whose components are 1 2( , )j kg x x  ( , 1,...,j k J= ).  To obtain the bivariate 

extension of Theorem 5.1 replace Assumption 4 by 

Assumption 4´:  (i) 1/6 1/4(log )J n n −
 .  (ii) 1 2, 1 / [2( 1)]h h J< + .  (iii) J →∞  as n →∞ . 

The bivariate extension of Theorem 5.1 is obtained from the scalar version by replacing Assumptions 1-4 

with Assumptions 1´-4´, J  with 2J , and 2
( )jg xσ


 with its bivariate extension, 2
( )jkg xσ


.   

 To define the constrained estimator, index the grid points by ∈  .  For ∈   let 

(6.2) ( ) 2 2
1 1 2 2 1 1 2 2 1 1 2 21 ( ) ( ) ( ) ( ) ( )( )i i i i i i iX x X x X x X x X x X x = − − − − − − X 

     

. 

Define the matrix Q  and vector d  as in Section 2 but with hK  and ( )X   as in (6.1) and (6.2).  Let b  be 

the 6 | | 1×  vector 11 21 61 1| | 2| | 6| |( , ..., ,..., , ,..., )b b b b b b ′   .  Define 

(6.3) ˆ arg min(0.5 - )′ ′=
b

b b Qb d b . 

subject to: 

  ˆ( ) 0;kA k= ∈g  . 
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Problem (6.3) is the same as (3.3) but with hK  and ( )X   as in (6.1) and (6.2).  Define active components 

of g  as in Section 3.  The constrained estimator of the active components of g  is  

 ( )
11 71 6| | 5
ˆ ˆ ˆˆ ( , ,.., )a b b b − ′=g  . 

 To obtain the bivariate extensions of Theorems 5.1 and 5.2, redefine | | as the number of 

constraints for which ( ) 1/2
1 20 ( ) [(log ) / ( )]J

kA n nh h< ≤g , where ( )Jg  is the 2 1J ×  vector 

11[ ( ),..., ( )]JJg x g x ′  .  The bivariate extensions of Theorems 5.1 and 5.2 are obtained from the scalar 

versions of these theorems by replacing Assumptions 1-4 with Assumptions 1´-4´, using the redefined 

| |  in Assumption 5(iv), replacing J  with 2J , 1/2( )nh  with 1/2
1 2( )nh h , and the scalar version of 

2
( )jg xσ


 with its bivariate extension.  The appendix gives an example in which the redefined | | 0→  in 

the bivariate case. 

7.  MONTE CARLO EXPERIMENTS AND AN EMPIRICAL EXAMPLE 

 This section presents the results of Monte Carlo experiments and an empirical example that 

illustrate the usefulness of the shape-restricted estimator described in Sections 3-6.  The empirical 

example consists of estimating a production function under a shape constraint.  The Monte Carlo 

experiments are designed to mimic the empirical example and illustrate the finite-sample performance of 

the uniform confidence band based on the shape-restricted estimator.   

 To describe the model used in the experiments and example, let Y , K , and L , respectively, 

denote value-added output, capital, and labor.  Suppose that 

(7.1) log ( , )Y f K L U= + , 

where U  is an unobserved random variable that is independent of K  and L  and satisfies ( ) 0E U = .  

Suppose that the function exp[ ( , )]f K L  satisfies constant or decreasing returns to scale in levels.  That is 

(7.2) exp[ ( , )] exp[ ( , )]f K L f K Lλ λ λ≤  

for all 0λ > .  It is customary to use the log transformation in empirical economics, and we follow that 

convention here.  Taking logarithms on both sides of (7.2) yields 

(7.3) ( , ) log ( , )f K L f K Lλ λ λ≤ +  

for all 0λ > .  Define logy Y= , logk K= , log L= , ( , ) ( , )kg k f e e= 

 , and logλ λ= .  Then (7.3) is 

equivalent to 

(7.4) ( , ) ( , )g k g kλ λ λ+ + ≤ +  

  . 

Model (7.1) is equivalent to 
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(7.5) ( , )y g k U= + . 

The Monte Carlo experiments and empirical example are based on (7.4) and (7.5). 

 7.1  Monte Carlo Experiments 

 This section presents the results of a small set of Monte Carlo experiments that illustrate the 

finite-sample performance of the uniform confidence band for ( , )g k   in (7.5) using the shape restricted 

estimator.  In the experiments, samples of size 1000n =  and 2000n =  were generated from the 

production function 

 [ ] [ ]{ }21/2 1/2( , ) log exp( ) exp( )g k k
τ 

= + 
 

   

for some constant 0τ > .  The resulting model is 

(7.6) [ ] [ ]{ }21/2 1/2log exp( ) exp( )y k U
τ 

= + + 
 

 . 

Model (7.6) is equivalent to the following production function model in levels: 

 1/2 1/2exp[( ) ]Y K L Uτ2= + + . 

Values of k and   in (7.6) were generated randomly and independently of each other from the [0,1]U  

distribution.  U  was sampled independently of ( , )k   from the (0,0.01)N  distribution.   

 We report results for 1τ =  (constant returns to scale) and 0.5τ =  (decreasing returns to scale).  In 

each experiment, the shape restriction is that g  satisfies non-increasing returns to scale.  Thus, 1τ =  

when the shape constraint is binding. 

 We used the grid 

(7.7) ( , ) , : , 1,...,
1 1i j

i jk i j J
J J

  = =  + +  
 , 

where J  is chosen using the method described in the next paragraph.  Using this grid, the discrete 

version of (7.4) is 

 1 1 1, ,
1 1 1 1 1

i j i jg g
J J J J J
+ +   ≤ +   + + + + +   

 

for every , 1,..., 1i j J= − . 

 We used the local quadratic estimator of g  described in Section 3 with the uniform kernel 

function.  A baseline bandwidth 0 0.15h =  was determined by auxiliary simulations.  Then we set 

1/6
0 ( /1000)hh C h n −= , where 0.95,1,hC =  or 1.05 , depending on the experiment.  In practice, as is 

explained in Section 3, h  can be chosen by cross-validation for local linear estimation.  We did not use 
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cross-validation in the Monte Carlo experiments because of its computational cost.  The size of the grid, 

J , was ( )J J h=    , the largest integer not greater than ( )J h , where 

(7.8) 1/21 1( ) min (log ) , 1.1
2

J h n
h h

− = −  
. 

This choice of J  satisfies Assumptions 4 ´(i) and 4´(ii). 

 There were 1,000 Monte Carlo replications in each experiment with 10,000 draws used to 

estimate the distribution of Z .  When the estimated set of possibly binding constraints is nonempty, the 

limiting distribution of Z  is degenerate.  We used the singular value decomposition (SVD) to deal with 

singularity. 

 We present results for symmetrical nominal 95% uniform confidence bands for g  obtained from 

the shape-restricted estimator.  We also present results on uniform confidence bands using the 

unconstrained estimator (that is, the returns to scale constraint was not imposed) and the infeasible 

constrained estimator in which the true set of binding constraints,  , is used in place of the estimated set 

̂ .  We call this the oracle estimator. 

 The results of the experiments are shown in Tables 1-2.  Column 3 of the tables shows the 

empirical coverage probabilities of the uniform confidence bands.  Column 4 shows the relative average 

widths of the various confidence bands.  These are the ratios of the average widths of the bands to the 

average width of the band based on the unconstrained estimator.  The relative width of the latter band is 

1.0 by definition.  The relative widths of the bands based on the constrained and oracle estimators are 

smaller (larger) than 1.0 according to whether the average widths of these bands are smaller (larger) than 

the average widths of the bands obtained from the unconstrained estimator.  The results show that the 

empirical coverage probabilities of the bands obtained with all estimators are close to the nominal 

probability of 0.95.  The confidence bands based on the constrained estimator are narrower than the bands 

based on the unconstrained estimator when the constraints are binding ( 1τ = ) and have almost the same 

width when the constraints are not binding ( 0.5τ = ).  In this set of experiments, the constrained estimator 

performs as well as the oracle estimator. 

 7.2  Empirical Example 

 This section reports the results of estimating a production function for the Chinese chemical 

industry using the firm-level data of Jacho-Chávez, Lewbel, and Linton (2010).  We estimated the 

production function using data for 1995 and 2001.  The dependent variable, y , is the logarithm of value-

added real output.  The explanatory variables are the logarithm of the net value of real fixed assets, k , 

and the logarithm of the number of employees,  .  As in Jacho-Chávez, Lewbel, and Linton (2010), 
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observations with outliers are removed and both regressors are normalized by their respective medians.  

As in the Monte Carlo experiments, we used the local quadratic estimator with a uniform kernel function.  

For each year, the bandwidth, h , was chosen by cross-validation.  The grid points were chosen to be 

within the support of ( , )k   in the data.  The number of points, J , was determined by (7.8).  The sample 

sizes were 1560n =  for 1995 and 1638n =  for 2001.  Increasing returns to scale are unlikely in the 

chemical industry.  Accordingly, we carried out unconstrained estimation of g  and estimation under the 

restriction of non-increasing returns to scale.  

 Table 3 and Figure 1 present the estimation results at several points ( , )k   for which the 

normalized values of k  and   are equal.  The constrained and unconstrained estimates are similar, as is 

to be expected in an industry that has non-increasing returns.  However, the constrained estimates are 

more precise than the unconstrained ones.  For example, in 1995 the constrained and unconstrained point 

estimates of (2.524,2.524)g  are the same, but the standard error of the constrained estimate is much less 

than that of the unconstrained estimate.  It can be seen from Figure 1 that the constrained estimates are 

slightly more precise than the unconstrained ones in the middle of the distribution of ( , )k   and much 

more precise near the boundaries of the support of ( , )k  . 

8.  CONCLUSIONS 

 Economic theory often provides shape restrictions on functions of interest in applications, but it 

does not provide finite-dimensional parametric models.  This motivates nonparametric estimation under 

shape restrictions.  Shape restrictions can stabilize noisy nonparametric estimates without imposing 

arbitrary restrictions, such as additivity or a single-index structure, that may be inconsistent with 

economic theory and the data.  This paper has explained how to estimate and obtain an asymptotic 

uniform confidence band for a conditional mean function under a possibly nonlinear shape restriction.  

There is a large literature in statistics and econometrics on estimating a conditional mean function under 

linear shape restrictions, such as monotonicity or convexity.  To our knowledge, this paper is the first to 

construct a uniform confidence band under shape restrictions such as non-increasing or non-decreasing 

returns to scale and the Slutsky inequality of consumer theory.  The results of Monte Carlo experiments 

and an empirical application have illustrated the finite-sample performance and usefulness of our method.  

The methods of this paper can be extended to conditional quantile functions with shape restrictions, 

though doing so is complicated technically because of the non-differentiability of the objective function 

of quantile estimation.  Estimation of conditional quantile functions under shape restrictions is a topic for 

further research. 
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9.  PROOFS OF THEOREMS 

 9.1  Examples in which | | (1)o=  as n →∞  

 Scalar case:  Let X  be a scalar and  

 2

0 if 0 0.5
( )

( 0.5)   if  0.5 1.

x
g x

x x

≤ ≤= 
− < ≤

 

Let there be J  equally spaced grid points in [0,1] .  Assume that J  is odd so that ( 1)/2 0.5Jx + =  and 

0.5jx >  implies that ( 1) / 2j J> + .  The shape restriction is that g  is non-decreasing, so 

1( ) ( ) 0j jg x g x− − ≤ .  Let 1 0.5j jx x −> ≥  be grid points.  Then ( 3) / 2j J≥ + , and 

 

1 2

2

1| ( ) ( ) | [2 1 ( 1)]
( 1)

2 .
( 1)

j jg x g x j J
J

j
J

−− = − − +
+

<
+

 

Therefore,  

(9.1) 
1/2

1
log0 | ( ) ( ) |j j

ng x g x
nh−

 < − ≤  
 

 

implies that  

 
1/22( 1) log

2
J nj

nh
+  ≤  

 
 

Under Assumptions 3(ii) and  4(i), 

 
1/22( 1) log 0

2
J n

nh
+   → 

 
 

as n →∞ .  Therefore, there can be no grid points jx  and 1jx −  satisfying (9.1) if n  is sufficiently large, 

which implies that | | 0=  if n  is sufficiently large. 

 Bivariate case:  Let 1 2( , )X X X ′=  be two dimensional.  Let 

 
2 2
1 2

1 2 2 2 2 2
1 2 1 2

0 if 0.25
( , )

0.25 if 0.25

x x
g x x

x x x x

 + ≤= 
+ − + >

 

Let there be J  equally spaced grid points in each of the two dimensions.  Assume that J  is odd so that 

1,( 1)/2 2,( 1)/2 0.5J Jx x+ += = .  Therefore, 1, 0.5jx >  or 2, 0.5kx >  implies that 1j k J+ > + .  The shape 

restriction is 
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1, 1 2 1 2

1 2, 1 1 2

( , ) ( , ) 0

( , ) ( , ) 0

j k j k

j k j k

g x x g x x

g x x g x x

−

−

− ≤

− ≤
 

This is the finite-difference analog of the restriction 1 2 1( , ) / 0g x x x∂ ∂ ≥  and 1 2 2( , ) / 0g x x x∂ ∂ ≥ .   

 If 1 2( , ) 0j kg x x >  and 2j ≥ , then  

 

1 2 1, 1 2 1, 1 22

1 2 1, 1 2 1, 1 22

1( , ) ( , ) (2 1) if ( , ) 0
( 1)

1( , ) ( , ) (2 1) if ( , ) 0.
( 1)

j k j k j k

j k j k j k

g x x g x x j g x x
J

g x x g x x j g x x
J

− −

− −

− = − >
+

− ≤ − =
+

 

Therefore, 

 1, 2 1, 1 2 2
2( , ) ( , )

( 1)j k j k
jg x x g x x

J−− ≤
+

. 

Similarly, if 1 2( , ) 0j kg x x >  and 2k ≥ , then 

 1 2 1 2, 1 2
2( , ) ( , )

( 1)j k j k
kg x x g x x

J−− ≤
+

. 

Now proceed as in the example for a scalar X . 

 9.2  Proofs of Theorems 4.1, 5.1, and 5.2 

 Proof of Theorem 4.1:  By (3.1),  

 ( ) ( ) ( ) ( )1/2 1 1/2
1( ) [ ( ) ( )] ( / )( ) ( )j j j j

j

x x x xd
j j x nnh g x g x e nh n nh− − ′′− → S X W U . 

Define 

 
1 1

1 2 2

( )

1 2 2

1 ( ) ( )

.....

1 ( ) ( )

j

n nx x

i j i j
x

i j i j

h X x h X x

h X x h X x

− −

− −

 − −
 
 =
 

− −  

X  

and  

 
2

1 0 0
0 0

0 0
h h

h

 
 

=  
 
 

e .   

Then, 

 ( ) ( ) ( ) ( )1/2 1 1/2
1( ) [ ( ) ( )] ( / )( ) ( )j j j j

j

x x x xd
j j x n hnh g x g x e nh n nh− − ′′− → S e X W U

 . 
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The 3 1×  vector ( ) ( ) ( )1/2( ) j j jx x xnh − ′X W U  is asymptotically trivariate normally distributed with mean 0 

by the multivariate extension of the Lindeberg-Levy central limit theorem.  Let jΣ  denote the covariance 

matrix of the limiting distribution.  Let J  denote the set of all convex sets in J
  and jZ  be a random 

vector with the (0, )jN Σ  distribution.  It follows from Theorem 1.1 of Bentkus (2003) (see, also, 

Corollary 11.1 of DasGupta (2008)) that for some constant 1c < ∞  

(9.2) 
3

( ) ( ) ( )1/2 1/2
1sup [( ) ] ( ) ( )j j jx x x

j
B

P nh B P Z B c nh− −

∈

′ ∈ − ∈ ≤X W U


. 

Let ξ  denote the 3 1J ×  vector whose 3 2,...,3j j−  components are ( ) ( ) ( )1/2( ) j j jx x xnh − ′X W U .  Let Z  

denote a random vector with the (0, )N Σ  distribution, where 

 
1 ... 0

0 ... 0
0 ... J

 Σ
 

Σ =  
 Σ 







. 

Then (9.2) implies that for some 2c < ∞  

(9.3) 
3

1/2
2sup ( ] ( ) ( )

JB
P B P Z B c J nh −

∈
∈ − ∈ ≤ξ 


. 

Let jL  denote the probability limit of ( ) 1
1( / )( )j

j

x
x ne nh n −′ S  as n →∞ .  Standard calculations for kernel 

estimators show that 

(9.4) ( ) 1 1/2
1( / )( ) [( ) ]j

j

x
x n j pe nh n L O nh− −′ = +S . 

The theorem follows by combining (9.3), (9.4), and Assumption 4.  Q.E.D. 

 Proof of Theorem 5.1:  By Theorem 4.1, 1/2 ( ) ( )( ) ( )a anh −g g   and 1/2 ( ) ( )ˆ̂( ) ( )a anh − −−g g  are 

asymptotically multivariate normal with means of zero.  Therefore, 1/2 ˆ̂( ) ( )nh −g g  is a linear combination 

of asymptotic multivariate normals with means of zero and is asymptotically multivariate normally 

distributed with a mean of 0.  The covariance matrix nΣ  follows from (3.2), (5.2), and independence of 

the components of ˆ̂ −g g  from one another.  Q.E.D. 

 The following notation is used in the proof of Theorem 5.2.  Define the 

(3 | | | |) (3 | | | |)+ × +     matrix 

 
| | | |0

H
×

′ 
=  
 

b

b

Q A
A  

 

and the (3 | | | |) | |+ ×   matrix 
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 3| | | |

3| | | |

0
V

I
×

×

 
=   
 

 

 
. 

Then 

 11 12

12 22

R R
H

R R
+  
=  ′ 

, 

where 
1 1 1

11 3| | 3| |[ ( ) ]R I− − + −
× ′ ′= − b b b bQ A A Q A A Q  , 

 1 1
12 ( )R − − +′ ′= b b bQ A A Q A , 

and 

 1
22 ( )R − +′= − b bA Q A . 

In addition, 

 12

22

R
H V

R
+  

=  
 

. 

Proof of Theorem 5.2:  Let b̂  denote the solution to (5.9), and note that only components of g  in 

  are affected by the constraints.  It follows by corollaries 3.2.4 and 3.2.5 of Fiacco (1983) that 

2( ) ( ) ( )
12

ˆ ( ) (a a aR O − = − +  
 

b b A b A b   , 

where 1 | |( ) [ ( ),..., ( )]A A ′⋅ = ⋅ ⋅A   and ⋅  is the Euclidean norm in | |


 .  Therefore, 

 
2( ) 1 ( ) ( )ˆ ( ) ( ) ( ) ,a a aO A− +  ′ ′= − +  

 
-1

b b bb b Q A A Q A A b b    

Recall that 0b  denotes the 3 | | 1×  vector   

 0 {[ ( ), ( ), ( )] : }j j jg x g x g x j′ ′′ ′= ∈b   

and that the modified definition of ( )kA ⋅  includes all components of b  in its arguments.  Then Taylor 

series expansions yield 

 

( ) ( )
0 0

( ) ( )0 0
0 0 0

( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

a ak k
k k

a ak k k k
k

AA A

A A AA

∂
= + −

′∂

 ∂ ∂ ∂
= + − + − − ′ ′ ′∂ ∂ ∂ 

bb b b b
b

b b bb b b b b
b b b
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for each 1,...,| |k =  , where b


 is between ( )ab  and 0b .  Under Assumption 5, ( ) /kA∂ ∂b b  is a 

continuous function of b .  Moreover columns of ( ) /kA∂ ∂b b  corresponding to derivatives of g  are zero, 

and 0( ) 0=A b  because A  is defined as the vector giving the binding constraints.  Therefore, 

 
2( ) ( ) ( ) ( ) ( )( ) ( )a a a a aO = − + − 

 bA b A g g g g

   

and 

 
2-1 1 ( ) ( )

0 3| | 3| | 0
ˆ [ ( ) ]( ) a aI O− +

×
 ′ ′− = − − + − 
 b b b bb b Q A A Q A A b b g g

  . 

But 0( ) ( - )E− =b bA b b A b b   , because the estimator of g  is undersmoothed and columns of bA  

corresponding to derivatives of g  are zero.  Therefore, 

 

2( ) -1 1 ( ) ( ) ( ) ( ) ( )
3| | 3| |

2-1 1 ( ) ( ) ( ) ( ) ( )
| | | |

ˆ [ ( ) ] ( )

{ [ ( ) ] }( ) ,

a a a a a a

a a a a a

I O

I O

− +
×

− +
×

 ′ ′− = − − + − 
 

 ′ ′= − − + − 
 

b b b b

b b b b

g g Q A A Q A A g g g g

Q A A Q A A g g g g

 

 

 

 

 

and 
1/2 ( ) -1 1 ( ) 1/2 ( ) ( )

| | | |ˆ( ) ( ) { [ ( ) ] }( ) ( ) (1)a a a a
pnh I nh o− +

× ′ ′− = − − +b b b bg g Q A A Q A A g g  . 

Now proceed as in the proof of Theorem 5.1.  Q.E.D.  
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Table 1:  Results of Monte Carlo Experiments when the Constraints Are Binding 
 

Model:  Constant returns to scale; 1τ =  
Nominal coverage probability:  0.95 

 
Unconstrained Estimation 

 
 

n hC  Empirical Cov. 
Prob. 

Relative Width 

1000 0.95 0.946 1.0 
1000 1.00 0.942 1.0 
1000 1.05 0.945 1.0 
2000 0.95 0.954 1.0 
2000 1.00 0.952 1.0 
2000 1.05 0.951 1.0 

 
 

Constrained Estimation 
 

n hC  Empirical Cov. 
Prob. 

Relative Width 

1000 0.95 0.947 0.818 
1000 1.00 0.933 0.818 
1000 1.05 0.944 0.818 
2000 0.95 0.953 0.819 
2000 1.00 0.954 0.819 
2000 1.05 0.960 0.818 

 
 

Oracle Estimation 
 

n hC  Empirical Cov. 
Prob. 

Relative Width 

1000 0.95 0.949 0.816 
1000 1.00 0.935 0.817 
1000 1.05 0.944 0.817 
2000 0.95 0.958 0.817 
2000 1.00 0.959 0.817 
2000 1.05 0.962 0.817 
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Table 2:  Results of Monte Carlo Experiments when the Constraints Are Not Binding 
 

Model:  Decreasing returns to scale; 0.5τ =  
Nominal coverage probability:  0.95 

 
Unconstrained Estimation 

 
n hC  Empirical Cov. 

Prob. 
Relative Width 

1000 0.95 0.946 1.0 
1000 1.00 0.941 1.0 
1000 1.05 0.943 1.0 
2000 0.95 0.954 1.0 
2000 1.00 0.951 1.0 
2000 1.05 0.951 1.0 

 
 

Constrained Estimation 
 

n hC  Empirical Cov. 
Prob. 

Relative Width 

1000 0.95 0.946 0.999 
1000 1.00 0.942 1.0 
1000 1.05 0.944 1.0 
2000 0.95 0.953 1.0 
2000 1.00 0.949 1.0 
2000 1.05 0.952 1.0 

 
 

Oracle Estimatio 
 

n hC  Empirical Cov. 
Prob. 

Relative Width 

1000 0.95 0.948 1.0 
1000 1.00 0.942 1.0 
1000 1.05 0.944 1.0 
2000 0.95 0.953 1.0 
2000 1.00 0.949 1.0 
2000 1.05 0.952 1.0 
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Table 3:  Results of Estimating a Production Function 
 

Year Estimation 
Method 

,k   Function 
Estimate 

Standard 
Error 

Lower 95% 
Uniform 
Bound 

Upper 95% 
Uniform 
Bound 

1995 Unconstrained -1.002 8.591 0.117 8.309 8.872 
  0.761 10.403 0.092 10.183 10.623 
  2.524 12.058 1.044 9.550 14.565 
 Constrained -1.002 8.621 0.072 8.481 8.761 
  0.761 10.384 0.072 10.244 10.524 
  2.524 12.147 0.072 12.007 12.287 
       

2001 Unconstrained -1.662 8.546 0.239 7.971 9.121 
  0.168 9.833 0.101 9.590 10.075 
  1.997 11.538 0.295 10.830 12.246 
 Constrained -1.662 8.066 0.089 7.894 8.239 
  0.168 9.806 0.089 9.723 10.068 
  1.997 11.725 0.089 11.553 11.898 

 
 



Figure 1. Nonparametric Estimates and their Uniform Confidence Bands
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Note: The solid lines represent nonparametric estimates, whereas the dashed lines show
95% uniform confidence bands. The circles correspond to the grid. On one hand, the top
and bottom panels show estimates for 1995 and 2001, respectively. On the other hand, the
left and right panels show unconstrained and constrained estimates, respectively.
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