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Abstract

In many applications of the di�erences-in-di�erences (DID) method, the treatment

increases more in the treatment group, but some units are also treated in the control

group. In such fuzzy designs, a popular estimator of treatment e�ects is the DID of the

outcome divided by the DID of the treatment, or OLS and 2SLS regressions with time and

group �xed e�ects estimating weighted averages of this ratio across groups. We start by

showing that when the treatment also increases in the control group, this ratio estimates

a causal e�ect only if treatment e�ects are homogenous in the two groups. Even when the

distribution of treatment is stable, it requires that treatment e�ects be constant over time.

As this assumption is not always applicable, we propose two alternative estimators. The

�rst estimator relies on a generalization of common trends assumptions to fuzzy designs,

while the second extends the changes-in-changes estimator of Athey & Imbens (2006).

When the distribution of treatment changes in the control group, treatment e�ects are

partially identi�ed. Finally, we prove that our estimators are asymptotically normal and

use them to revisit applied papers using fuzzy designs.
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1 Introduction

Di�erence-in-di�erences (DID) is a popular method to evaluate the e�ect of a treatment in

the absence of experimental data. In its basic version, a �control group� is untreated at two

dates, whereas a �treatment group� becomes treated at the second date. If the e�ect of time

is the same in both groups, the so-called common trends assumption, one can measure the

e�ect of the treatment by comparing the evolution of the outcome in both groups. DID can

be used with panel or repeated cross-section data, when a policy is implemented at a given

date in some groups but not in others. It can also be used when a policy a�ects individuals

born after a given date. In such instances, birth cohort plays the role of time.

However, in many applications of the DID method, the treatment rate or intensity increases

more in some groups than in others, but there is no group which experiences a sharp change

in treatment, and there is also no group which remains fully untreated. In such fuzzy designs,

a popular estimator of treatment e�ects is the DID of the outcome divided by the DID of the

treatment, an estimator referred to as the Wald-DID. For instance, Du�o (2001) uses a school

construction program in Indonesia to measure returns to education. The author uses districts

where many schools were constructed as a treatment group, and districts where few schools

were constructed as a control group. Years of schooling for cohorts born after the program

increased more in treatment districts. The author then estimates returns to schooling through

a 2SLS regression in which dummies for cohorts bene�ting from the program and for being

born in treatment districts are used as controls, while the instrument is the interaction of these

two dummies. The coe�cient for treatment in this regression is the Wald-DID. A number of

papers also estimate 2SLS regressions with time and group �xed e�ects and with a function

of time and group as the excluded instrument, or OLS regressions at the group × period level

with time and group �xed e�ects. In our supplementary material, we show that the coe�cient

of treatment in these two regressions is a weighted average of Wald-DIDs across groups. Such

estimators have been frequently used by economic researchers. From 2010 to 2012, 10.1% of

all papers published by the American Economic Review estimate either a simple Wald-DID,

or the aforementioned IV or OLS regression. Excluding lab experiments and theory papers,

this proportion raises to 19.7%.1 Still, to our knowledge no paper has studied whether these

estimators estimate a causal e�ect in models with heterogeneous treatment e�ects.

This papers makes the following contributions. We start by showing that the Wald-DID

estimand is equal to a local average treatment e�ect (LATE) only if two strong assumptions

are satis�ed. First, time should have the same e�ect on all counterfactual outcomes, thus

implying that the e�ect of the treatment should not vary over time. This assumption is often

not applicable. For instance, in Du�o (2001) it requires that the wage gap between high school

graduates born in younger and older cohorts should be the same had they not completed high

1Detailed results of our literature review can be found in de Chaisemartin & D'Haultf÷uille (2015).
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school. If they had not completed high school, graduates of every cohort would have entered

the labor market earlier, and would have had more labor market experience by the time their

wages are observed. As returns to experience tend to be concave (see Mincer & Jovanovic,

1979), the wage gap between graduates born in younger and older cohorts would presumably

have been lower if they had not completed high school. Second, when treatment increases

both in the treatment and in the control group, treatment e�ects should be homogenous in

the two groups. Indeed, in such instances the Wald-DID is equal to a weighted di�erence

between the LATE of treatment and control group units switching treatment over time. This

weighted di�erence can be interpreted as a causal e�ect only if these two LATEs are equal.

The weights received by each LATE can be estimated. In Du�o (2001), years of education

increased substantially both in treatment and in control districts, so the Wald-DID in this

paper is equal to a weighted di�erence between returns to schooling in treatment and control

districts, and returns in the control group receive a large negative weight. This weighted

di�erence estimates a causal e�ect only if returns to schooling are equal in the two groups of

districts. This might be violated as control districts are more developed and could therefore

have di�erent returns. The IV and OLS regressions we study in our supplementary material

su�er from the same problem. They both estimate a weighted sum of LATEs, with potentially

many negative weights as we illustrate by estimating these weights in two applications.

Second, we propose two alternative estimators for the same LATE when the distribution

of treatment is stable over time in the control group. Our �rst estimator, which we refer

to as the time-corrected Wald ratio (Wald-TC), is a natural generalization of DID to fuzzy

designs. It relies only on common trends assumptions between the treatment and the control

group, within subgroups of units sharing the same treatment at the �rst date. Our second

estimator, which we refer to as the changes-in-changes Wald ratio (Wald-CIC), generalizes the

changes-in-changes estimator introduced by Athey & Imbens (2006) to fuzzy designs. It relies

on the assumption that a control and a treatment unit with the same outcome and the same

treatment at the �rst period will also have the same outcome at the second period.2 Hereafter,

we refer to this condition as the common changes assumption. Our Wald-TC and Wald-CIC

estimators both have advantages and drawbacks, which we discuss later in the paper.

Third, we show that under the same common trends and common changes assumptions as

those underlying the Wald-TC and Wald-CIC estimands, the same LATE can be bounded

when the distribution of treatment changes over time in the control group. The smaller this

change, the tighter the bounds. Fourth, we show how these results extend to settings with

many group and periods, and how one can incorporate covariates in the analysis. Fifth, we

consider estimators of the Wald-DID, Wald-TC, and Wald-CIC estimands, both with and

without covariates. We show that they are asymptotically normal and prove the consistency

2Strictly speaking, the model in Athey & Imbens (2006) and our CIC model do not impose this restriction

if one allows the unobserved determinant of the outcome to change over time. We still �nd this presentation

of the CIC assumptions very helpful for pedagogical purposes.

3



of the bootstrap in some cases. Importantly, all our estimators allow for continuous covariates,

and for some of them we show how to account for clustering.

Finally, we use our results to revisit �ndings in Du�o (2001) on returns to education. The dis-

tribution of schooling substantially changed in the control group used by the author, so using

our Wald-CIC or Wald-TC estimators with her groups would only yield wide and uninforma-

tive bounds. Therefore, we use a di�erent control group where the distribution of schooling

did not change. Our Wald-DID estimate with these new groups is more than twice as large

as the author's. The di�erence between these two estimates could stem from the fact that

districts where years of schooling increased less also have higher returns to education. This

would bias downward the estimate in Du�o (2001), while our estimator does not rely on any

treatment e�ect homogeneity assumption. On the other hand, the validity of our Wald-DID

still relies on the assumption that time has the same e�ect on all potential outcomes, which

is not warranted in this context as we explained above. Because the Wald-TC and Wald-CIC

do not rely on this assumption, we choose them as our favorite estimates. They both lie in

between the two Wald-DIDs.

Overall, our paper shows that to do DID in fuzzy designs, researchers must �nd a control

group in which treatment is stable over time to point identify treatment e�ects without having

to assume that treatment e�ects are homogeneous. In such instances, three estimators are

available: the standard Wald-DID estimator, and our Wald-TC and Wald-CIC estimators.3

While the former estimator requires that treatment e�ects do not change over time, the latter

estimators do not rely on this assumption. In practice, using one or the other estimator can

make a substantial di�erence, as we show in our application.

Though to our knowledge, we are the �rst to study fuzzy DID estimators in models with

heterogeneous treatment e�ects, our paper is related to several other papers in the DID and

panel literature. Blundell et al. (2004) and Abadie (2005) consider a conditional version of the

common trends assumption in sharp DID designs, and adjust for covariates using propensity

score methods. Our Wald-DID estimator with covariates is related to their estimators. Bon-

homme & Sauder (2011) consider a linear model allowing for heterogeneous e�ects of time,

and show that in sharp designs it can be identi�ed if the idiosyncratic shocks are independent

of the treatment and of the individual e�ects. Our Wald-CIC estimator builds on Athey &

Imbens (2006) and is also related to the estimator of D'Haultf÷uille et al. (2013), who study

the possibly nonlinear e�ects of a continuous treatment using repeated cross sections. Finally,

Chernozhukov, Fernández-Val, Hahn & Newey (2013) consider a location-scale panel data

model (see their Assumption 4). Their idea of using always and never treated units in the

panel to recover the location and scale time e�ects is related to our idea of using groups where

treatment is stable to recover time e�ects.4 Our paper is also related to several papers in

3A stata package computing these estimators is available on the authors' webpages.
4There are also di�erences between our approaches. Their location and scale parameters do not depend on
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the partial identi�cation literature. In particular, our bounds are related to those in Manski

(1990), Horowitz & Manski (1995), and Lee (2009).

The remainder of the paper is organized as follows. In Section 2 we introduce our framework.

In Section 3 we present our identi�cation results in a simple setting with two groups, two

periods, a binary treatment, and no covariates. Section 4 considers extensions to settings with

many periods and groups, covariates, or a non-binary treatment. Section 5 considers inference.

In section 6 we revisit results from Du�o (2001). Section 7 concludes. The appendix gathers

the main proofs. Due to a concern for brevity, some further results, our literature review, two

supplementary applications, and additional proofs are deferred to our supplementary material

(see de Chaisemartin & D'Haultf÷uille, 2015).

2 Framework

We are interested in measuring the e�ect of a treatment D on some outcome. For now, we

assume that treatment is binary. Y (1) and Y (0) denote the two potential outcomes of the same

individual with and without treatment. The observed outcome is Y = DY (1) + (1−D)Y (0).

We assume that the data at our disposal can be divided into �time periods� represented by

a random variable T . If the analyst works with panel or repeated cross-sections data, time

periods are dates. But in many DID papers, time periods are cohorts of the same population

born in di�erent years (see, e.g., Du�o, 2001). While with panel or repeated cross-sections

data, each unit is or could be observed at both dates, with cohort data this is not the case. In

what follows, we do not index observations by time, to ensure that our framework can apply

to the three types of data. Referring to the panel data case is sometimes useful to convey the

intuition of our results. However, our analysis is more targeted to the repeated cross-sections

and cohort data cases: observing units at both dates open possibilities we do not explore here.

We also assume that the data can be divided into groups represented by a random variable G.

In this section and in the next, we focus on the simplest possible case where there are only two

groups, a �treatment� and a �control� group, and two periods of time. G is a dummy for units

in the treatment group and T is a dummy for the second period. Contrary to the standard

�sharp� DID setting where D = G×T , we consider a �fuzzy� setting where D 6= G×T . Some
units may be treated in the control group or at period 0, and all units are not necessarily

treated in the treatment group at period 1. However, we assume that the treatment rate

increased more between period 0 and 1 in the treatment than in the control group.

We now introduce notations that we use throughout the paper. For any random variable R,

let S(R) denote its support. Let also Rgt and Rdgt be two other random variables such that

the treatment while our Wald-TC (resp. Wald-CIC) estimator uses treatment speci�c additive shifts (resp.

quantile-quantile transforms) to account for the e�ect of time; our Wald-TC estimator is not compatible with

a location-scale model. Overall, our estimands are unrelated to theirs.
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Rgt ∼ R|G = g, T = t and Rdgt ∼ R|D = d,G = g, T = t, where ∼ denotes equality in

distribution. Let FR and FR|S denote the cumulative distribution function (cdfs) of R and its

cdf conditional on S. For any event A, FR|A is the cdf of R conditional on A. With a slight

abuse of notation, P (A)FR|A should be understood as 0 when P (A) = 0.

We consider the following model for the potential outcomes and the treatment:

Y (d) = hd(Ud, T ), d ∈ {0, 1},

D = 1{V ≥ vGT }, vG0 = v00 does not depend on G.
(1)

The model on potential outcomes is very general because at this stage, hd is left unrestricted.

We also impose a latent index model for the treatment (see, e.g., Vytlacil, 2002), where the

threshold depends both on time and group. In such a model, V may be interpreted as the

propensity to be treated. Because we do not impose any restriction on the distribution of V ,

the assumption that vG0 does not depend on G is just a normalization.

In addition to this model, we maintain the following assumptions throughout the paper.

Assumption 1 (Time invariance within groups)

For d ∈ S(D), (Ud, V ) ⊥⊥ T |G.

Assumption 2 (First stage)

E(D11) > E(D10), and E(D11)− E(D10) > E(D01)− E(D00).

Assumption 1 requires that the joint distribution of unobserved variables be stable over time in

each group. In other words, the composition of each group should not change over time. This

assumption could be violated if there is endogenous �migration� from one group to another.

However, DID identi�cation strategies always rely on this assumption. Assumption 2 is just a

way to de�ne the treatment and the control group in our fuzzy setting. First, the treatment

should increase in at least one group. If not, one can rede�ne the treatment variable as

D̃ = 1 − D. Then, the treatment group is the one experiencing the larger increase of its

treatment rate.

Before turning to identi�cation, it is useful to de�ne four subpopulations of interest. The model

1 and Assumption 1 imply that P (Dgt = 1) = P (V ≥ vgt|G = g). Therefore, Assumption 2

implies v11 < v00. Let

AT = {V ≥ v00, G = 1} ∪ {V ≥ max(v00, v01), G = 0},

NT = {V < v11, G = 1} ∪ {V < min(v00, v01), G = 0},

S1 = {V ∈ [v11, v00), G = 1},

S0 = {V ∈ [min(v00, v01),max(v00, v01)), G = 0}.

AT stands for �always treated�, and refers to units with a taste for treatment above the

threshold at both periods. NT stands for �never treated�, and refers to units with a taste for
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treatment below the threshold at both periods. S1 stands for �treatment group switchers�,

and refers to treatment group units with a taste for treatment between the second and �rst

period thresholds. S0 stands for �control group switchers�, and refers to control group units

with a taste for treatment between the two thresholds.

When the treatment rate is stable in the control group, time a�ects selection into treatment

only in the treatment group. Table 1 below considers an example. At both dates, untreated

units in the control group belong to the NT subgroup, while treated units belong to the AT

subgroup. On the other hand, untreated units in the treatment group in period 0 belong

either to the NT or S1 subgroup, while in period 1 they only belong to the NT subgroup.

Conversely, treated units in period 0 only belong to the AT subgroup, while in period 1 they

either belong to the NT or S1 subgroup.

Never Treated: Y(0)

Never Treated: Y(0)

Never Treated: Y(0)

Always Treated: Y(1)Always Treated: Y(1)

Always Treated: Y(1)

Switchers: Y(0) Switchers: Y(1)Treatment Group

Control Group

Period 0 Period 1

Never Treated: Y(0)

Always Treated: Y(1)

Table 1: Populations of interest when P (D00 = 0) = P (D01 = 0).

On the other hand, when the treatment rate changes in the control group, time a�ects selection

into treatment in both groups. Table 2 below considers an example where the treatment rate

increases in the control group. Untreated units in the control group in period 0 belong either to

the NT or S0 subgroup, while in period 1 they only belong to the NT subgroup. Conversely,

treated units in period 0 only belong to the AT subgroup, while in period 1 they either belong

to the NT or S0 subgroup.
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Switchers: Y(0) Switchers: Y(1)

Never Treated: Y(0)

Always Treated: Y(1)

Always Treated: Y(1)

Never Treated: Y(0)

Switchers: Y(0) Switchers: Y(1)

Period 1

Control Group

Treatment Group

Period 0

Always Treated: Y(1)

Never Treated: Y(0)      

Always Treated: Y(1)

Never Treated: Y(0)

Table 2: Populations of interest when P (D01 = 1) > P (D00 = 1).

Our identi�cations results focus on treatment group switchers. Our parameters of interest are

their Local Average Treatment E�ect (LATE) and Local Quantile Treatment E�ects (LQTE),

which are respectively de�ned by

∆ = E (Y11(1)− Y11(0)|S1) ,

τq = F−1Y11(1)|S1
(q)− F−1Y11(0)|S1

(q), q ∈ (0, 1).

We focus on this subpopulation because our assumptions either lead to point identi�cation of

∆ and τq, or at least to relatively tight bounds. On the other hand, our assumptions most

often lead to wide and uninformative bounds for the average treatment e�ect and for quantile

treatment e�ects.

3 Identi�cation

3.1 Identi�cation using a Wald-DID ratio

We �rst investigate the commonly used strategy of running an IV regression of the outcome

on the treatment with time and group as included instruments, and the interaction of the

two as the excluded instrument. The estimand arising from this regression is the Wald-DID

de�ned by WDID = DIDY /DIDD where, for any random variable R, we let

DIDR = E(R11)− E(R10)− (E(R01)− E(R00)) .

We consider a set of assumptions under which this estimand can receive a causal interpretation.

Assumption 3 (Common trends)

E(h0(U0, 1)− h0(U0, 0)|G) does not depend on G.
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Assumption 4 (Common average e�ect of time on both potential outcomes)

E(h1(U1, 1)− h1(U1, 0)|G,V ≥ v00) = E(h0(U0, 1)− h0(U0, 0)|G,V ≥ v00).

Assumption 3 requires that the mean of Y (0) follow the same evolution over time in the

treatment and control groups. This assumption is not speci�c to the fuzzy setting we are

considering here: DID in sharp settings also rely on this assumption (see, e.g., Abadie, 2005).

Assumption 4 requires that in both groups, the mean of Y (1) and Y (0) follow the same

evolution over time among units treated in period 0. This is equivalent to assuming that the

average treatment e�ect in this population does not change over time:

E(h1(U1, 1)− h0(U0, 1)|G,V ≥ v00) = E(h1(U1, 0)− h0(U0, 0)|G,V ≥ v00).

This assumption is speci�c to the fuzzy setting.

Theorem 3.1 Assume that Model (1) and Assumptions 1-4 are satis�ed. Let α = P (D11=1)−P (D10=1)
DIDD

.

WDID =αE(Y11(1)− Y11(0)|S1) + (1− α)E(Y01(1)− Y01(0)|S0).

When the treatment rate increases in the control group, α > 1 so the Wald-DID is equal to a

weighted di�erence of the LATEs of treatment and control group switchers in period 1. This

can be seen from Table 2. In both groups, the evolution of the mean outcome between period

0 and 1 is the sum of three things: the e�ect of time on the mean of Y (0) for never treated

and switchers; the e�ect of time on the mean of Y (1) for always treated; the average e�ect

of the treatment for switchers. Under Assumptions 3 and 4, the e�ect of time in both groups

cancel one another out. The Wald-DID is �nally equal to the weighted di�erence between

treatment and control group switchers' LATEs.

This weighted di�erence may not receive a causal interpretation. It might for instance be

negative, while both E(Y11(1) − Y11(0)|S1) and E(Y01(1) − Y01(0)|S0) are positive. If one

is ready to further assume that these two LATEs are equal, the Wald-DID is then equal to

E(Y11(1)−Y11(0)|S1). But E(Y11(1)−Y11(0)|S1) = E(Y01(1)−Y01(0)|S0) is a strong restriction
on the heterogeneity of the treatment e�ect. To better understand why it is needed, let us

consider a simple example in which all control group units have a treatment e�ect equal to

+2, while all treatment group units have a treatment e�ect equal to +1. Let us also assume

that time has no e�ect on the outcome, and that the treatment rate increases twice as much

in the treatment than in the control group. Then, WDID = 2/3× 1− 1/3× 2 = 0: the lower

increase of the treatment rate in the control group is exactly compensated by the fact that

the treatment e�ect is higher in this group. The Wald-DID does not estimate the treatment

e�ect in any of the two groups, or a weighted average of the two.

When the treatment rate diminishes in the control group, α < 1 so the Wald-DID is equal to

a weighted average of the LATEs of treatment and control group switchers in period 1. This
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quantity satis�es the no sign-reversal property: if the treatment e�ect is of the same sign for

everybody in the population, the Wald-DID is of that sign. Finally, when the treatment rate

is stable over time in the control group, α = 1 so the Wald-DID is equal to the LATE of

treatment group switchers.

But even when the treatment rate is stable in the control group, the Wald-DID relies on the

assumption that time has the same e�ect on both potential outcomes, at least among units

treated in the �rst period. Under Assumptions 1-3 alone, one can show that WDID is equal

to the same quantity as in Theorem 3.1, plus a bias term equal to

1

DIDD
[E(C1 − C0|V ≥ v00, G = 1)P (D10 = 1)− E(C1 − C0|V ≥ v00, G = 0)P (D00 = 1)] ,

where Cd = hd(Ud, 1) − hd(Ud, 0). Assumption 5 ensures that this bias term is equal to 0.

Otherwise, it might very well di�er from 0.5

To understand why this restriction is needed, consider a simple example. First, assume that

in period 0, Y (1) = Y (0): treatment has no e�ect. Then, assume that time increases Y (1)

by 1 unit, while leaving Y (0) unchanged. Finally, assume that the treatment rate went from

to 20 to 50% in the treatment group, while it remained equal to 80% in the control group.

Then, DIDY = 0.2× 1 + 0.3× 1 + 0.5× 0− (0.8× 1 + 0.2× 0) = −0.3. The �rst and third

terms respectively come from the e�ect of time on the mean outcome of always and never

treated in the treatment group. Similarly, the fourth and �fth terms respectively come from

the e�ect of time on the mean outcome of always and never treated in the control group.

Finally, the second term comes from the average treatment e�ect among treatment group

switchers. Therefore, WDID = −1, while every unit in the population has a treatment e�ect

equal to 1 in period 1, and to 0 in period 0.

3.2 Identi�cation using a time-corrected Wald ratio

In this section, we consider an alternative estimand to WDID. Instead of relying on Assump-

tions 3 and 4, it relies on the following assumption:

Assumption 5 (Common trends within treatment status at date 0)

E(h0(U0, 1) − h0(U0, 0)|G,V < v00) and E(h1(U1, 1) − h1(U1, 0)|G,V ≥ v00) do not depend

on G.

Assumption 5 requires that the mean of Y (0) (resp. Y (1)) follow the same evolution over time

among treatment and control group units that were untreated (resp. treated) at period 0.

5Assuming that E(C0 − C1|V < v0, G) does not depend on G is not su�cient to ensure that the bias is

equal to 0, unless P (D00 = 1) = P (D10 = 1).
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Let δd = E(Yd01)− E(Yd00) denote the change in the mean outcome between period 0 and 1

for control group units with treatment status d. Then, let

WTC =
E(Y11)− E(Y10 + δD10)

E(D11)− E(D10)
.

WTC stands for �time-corrected Wald�. When the outcome is bounded, let y and y respectively

denote the lower and upper bounds of its support. For any g ∈ S(G), let λgd = P (Dg1 =

d)/P (Dg0 = d) be the ratio of the shares of people receiving treatment d in period 1 and

period 0 in group g. For instance, λ00 > 1 when the share of untreated observations increases

in the control group between period 0 and 1. For any real number x, let M0(x) = max(0, x)

and m1(x) = min(1, x). Let also, for d ∈ {0, 1},

F d01(y) = M0 [1− λ0d(1− FYd01(y))]−M0(1− λ0d)1{y < y},

F d01(y) = m1 [λ0dFYd01(y)] + (1−m1(λ0d))1{y ≥ y}.

Then de�ne δd =
∫
ydF d01(y)− E(Yd00) and δd =

∫
ydF d01(y)− E(Yd00) and let

W TC =
E(Y11)− E(Y10 + δD10)

E(D11)− E(D10)
, W TC =

E(Y11)− E(Y10 + δD10
)

E(D11)− E(D10)
.

Theorem 3.2 Assume that Model (1) and Assumptions 1-2 and 5 are satis�ed.

1. If 0 < P (D01 = 1) = P (D00 = 1) < 1, WTC = ∆.

2. If 0 < P (D01 = 1) 6= P (D00 = 1) < 1 and P (y ≤ Y (d) ≤ y) = 1 for d ∈ {0, 1},
W TC ≤ ∆ ≤W TC .

6

Note that

WTC =
E(Y |G = 1, T = 1)− E(Y + (1−D)δ0 +Dδ1|G = 1, T = 0)

E(D|G = 1, T = 1)− E(D|G = 1, T = 0)
.

This is almost the Wald ratio with time as the instrument considered �rst by Heckman &

Robb (1985), except that we have Y + (1−D)δ0 +Dδ1 instead of Y in the second term of the

numerator. This di�erence arises because in our model time is not a standard instrument: it

is directly included in the outcome equation. When the treatment rate is stable in the control

group we can identify the direct e�ect of time on Y (0) and Y (1) by looking at how the mean

outcome of untreated and treated units changes over time in this group. Under Assumption 5,

this direct e�ect is the same in the two groups for units sharing the same treatment in the �rst

period. As a result, we can add these changes to the outcome of untreated and treated units

in the treatment group in period 0, to recover the mean outcome we would have observed in

this group in period 1 if switchers had not changed their treatment between the two periods.

This is what (1 −D)δ0 + Dδ1 does. Therefore, the numerator of WTC is equal to the e�ect

6It is not di�cult to show that these bounds are sharp. We omit the proof due to a concern for brevity.
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of time on the outcome that only goes through its e�ect on selection into treatment. Once

properly normalized, this yields the LATE of treatment group switchers.

The Wald-TC estimand generalizes the DID estimand to fuzzy settings, by using treatment-

speci�c additive shifts to account for the e�ect of time. In sharp settings, the DID estimand

accounts for the e�ect of time on the outcome by adding the evolution of the mean outcome

between period 0 and 1 in the control group to the period 0 outcome of treatment group units.

In fuzzy settings, the Wald-TC estimand accounts for the e�ect of time on the outcome by

adding the evolution of the mean outcome between period 0 and 1 among untreated (resp.

treated) units in the control group to the period 0 outcome of untreated (resp. treated) units

in the treatment group.

When the treatment rate changes in the control group, the evolution of the outcome in this

group can stem both from the direct e�ect of time on the outcome, and from its e�ect on

selection into treatment. For instance, and as can be seen from Table 2, when the treatment

rate increases in the control group, the di�erence between E(Y101) and E(Y100) arises both

from the e�ect of time on Y (1), and from the fact the former expectation is for always treated

and switchers while the later is only for always treated. Therefore, we can no longer identify the

direct e�ect of time on the outcome. However, when the outcome has bounded support, this

direct e�ect can be bounded, because we know the percentage of the control group switchers

account for. As a result, the LATE of treatment group switchers can also be bounded. The

smaller the change of the treatment rate over time in the control group, the tighter the bounds.

When the treatment rate does not change much in the control group, the di�erence between

WTC and ∆ is likely to be small. For instance, when the treatment rate increases in the

control group, it is easy to show that under the Assumptions of Theorem 3.2, WTC is equal

to ∆ plus the following bias term:

P (D10 = 0)
(

1− P (D01=0)
P (D00=0)

)
(E(Y01(0)|S0)− E(Y01(0)|NT ))

P (D11 = 1)− P (D10 = 1)

−
P (D10 = 1)

(
1− P (D00=1)

P (D01=1)

)
(E(Y01(1)|S0)− E(Y01(1)|AT ))

P (D11 = 1)− P (D10 = 1)
. (2)

This term cancels if P (D01 = 1) = P (D00 = 1), but also if

U0|S0, G = 0 ∼ U0|NT,G = 0 and U1|S0, G = 0 ∼ U1|AT,G = 0. (3)

This assumption is not very appealing, as it requires that control group switchers have the

same distribution of U0 as never treated, and the same distribution of U1 as always treated.

But Equations (2) and (3) still show that when the treatment rate does not change much in

the control group, WTC is close to ∆ unless switchers are extremely di�erent from never and

always treated.

12



Finally, note that when the treatment rate is stable in the control group, we have

WDID =
E(Y11)− E(Y10 + δD00)

E(D11)− E(D10)
.

When accounting for the e�ect of time on the outcome,WDID weights δ0 and δ1 by P (D00 = 0)

and P (D00 = 1), while WTC weights these terms by P (D10 = 0) and P (D10 = 1). These two

estimands are equal if and only if either δ0 = δ1 or P (D00 = 1) = P (D10 = 1). Otherwise,

they di�er. The assumptions under which WDID and WTC rely are non-nested. WTC requires

more common trends assumptions between groups, but it does not require common trends

assumptions between the two potential outcomes within groups. Therefore, testing WDID =

WTC is a joint test of Assumptions 1 and 3-5.

3.3 Identi�cation using instrumented changes-in-changes

In this section, we consider a second alternative estimand to WDID for continuous outcomes.

This estimand is inspired from the CIC model in Athey & Imbens (2006). It crucially relies

on a monotonicity assumption.

Assumption 6 (Monotonicity)

Ud ∈ R and hd(u, t) is strictly increasing in u for all (d, t) ∈ S(D)× S(T ).

Assumption 6 requires that at each period, potential outcomes are strictly increasing functions

of a scalar unobserved heterogeneity term. Hereafter, we refer to Assumptions 1-2 and 6

as to the IV-CIC model. The IV-CIC model generalizes the CIC model to fuzzy settings.

Assumption 1 implies Ud ⊥⊥ T |G and V ⊥⊥ T |G, which correspond to the time invariance

assumption in Athey & Imbens (2006). As a result, the IV-CIC model imposes a standard CIC

model both on Y and D. But Assumption 1 also implies Ud ⊥⊥ T |G,V : in each group, the

distribution of, say, ability among people with a given taste for treatment should not change

over time. Our results rely on this supplementary restriction.

The assumptions of the IV-CIC model have advantages and drawbacks with respect to those

underlying the Wald-DID and Wald-TC estimands. For instance, one implication of As-

sumptions 1 and 5 is that the di�erence between the mean outcome of always treated in the

treatment and in the control group should remain stable over time. This condition is not

invariant to the scaling of the outcome, but it only restricts its �rst moment. On the other

hand, the corresponding implication of Assumptions 1 and 6 is that the proportion of units in

the treatment group among any quantile group of the always treated remains constant over

time. For instance, if in period 0 70% of units in the �rst decile of always treated belonged

to the treatment group, in period 1 there should still be 70% of treatment group units in the

�rst decile.7 This condition is invariant to the scaling of the outcome, but it restricts its entire

7Unfortunately, this condition is not testable as always treated are not observed.
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distribution. When the treatment and the control groups have di�erent outcome distributions

in the �rst period (see e.g. Baten et al., 2014), the scaling of the outcome might have a large

e�ect on the results, so using a model invariant to this scaling might be preferable. On the

other hand, when the outcome distributions in the treatment and in the control group are

similar in the �rst period, using a model that only restricts the �rst moment of the outcome

might be preferable.

We also impose the assumption below, which is testable in the data.

Assumption 7 (Data restrictions)

1. S(Ydgt) = S(Y ) = [y, y] with −∞ ≤ y < y ≤ +∞, for (d, g, t) ∈ S(D)× S(G)× S(T ).

2. FYdgt is continuous on R and strictly increasing on S(Y ), for (d, g, t) ∈ S(D)× S(G)×
S(T ).

The �rst condition requires that the outcome have the same support in each of the eight

treatment × group × period cell. This condition does not restrict the support to be bounded:

y and y can be equal to − and +∞. Athey & Imbens (2006) make a similar assumption.

Common support conditions might not be satis�ed when outcome distributions di�er in the

treatment and in the control group, the very situations where CIC might be more appealing

than DID. Athey & Imbens (2006) show that in such instances, quantile treatment e�ects are

still point identi�ed over a large set of quantiles, while the average treatment e�ect can be

bounded. Even though we do not present them here, similar results apply in fuzzy settings.

The second condition is satis�ed if the distribution of Y is continuous with positive density in

each of the eight groups × periods × treatment status cells. With a discrete outcome, Athey

& Imbens (2006) show that one can bound treatment e�ects under their assumptions. Similar

results apply in fuzzy settings, but as CIC bounds for discrete outcomes are often not very

informative, we do not present them here.

Let Qd(y) = F−1Yd01
◦ FYd00(y) be the quantile-quantile transform of Y from period 0 to 1

in the control group conditional on D = d. This transform maps y at rank q in period 0

into the corresponding y′ at rank q in period 1. Let also Hd(q) = FYd10 ◦ F
−1
Yd00

(q) be the

inverse quantile-quantile transform of Y from the control to the treatment group in period 0

conditional on D = d. This transform maps rank q in the control group into the corresponding

rank q′ in the treatment group with the same value of y. Finally, for any increasing function

F on the real line, we denote by F−1 its generalized inverse:

F−1(q) = inf {x ∈ R : F (x) ≥ q} .

In particular, F−1R is the quantile function of the random variable R. We adopt the convention

that F−1R (q) = inf S(R) for q < 0, and F−1R (q) = supS(R) for q > 1.

Our identi�cation results rely on the following lemma.
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Lemma 3.1 If Assumptions 1-2 and 6-7 hold and if P (D00 = d) > 0,

FY11(d)|S1
(y) =

P (D10 = d)Hd ◦ (λ0dFYd01(y) + (1− λ0d)FY01(d)|S0
(y))− P (D11 = d)FYd11(y)

P (D10 = d)− P (D11 = d)
.

This lemma shows that under our IV-CIC assumptions, FY11(d)|S1
is point identi�ed when the

treatment rate remains constant in the control group, as in this case λ0d = 1. Let

FCIC,d(y) =
P (D10 = d)Hd ◦ (FYd01(y))− P (D11 = d)FYd11(y)

P (D10 = d)− P (D11 = d)
,

WCIC =
E(Y11)− E(QD10(Y10))

E(D11)− E(D10)
.

When the treatment rate changes in the control group, FY11(d)|S1
is partially identi�ed. Sharp

bounds can be obtained using Lemma 3.1. For any cdf Td, let

Gd(Td) = λ0dFYd01 + (1− λ0d)Td,

Cd(Td) =
P (D10 = d)Hd ◦Gd(Td)− P (D11 = d)FYd11

P (D10 = d)− P (D11 = d)
.

It follows from Lemma 3.1 that Cd(FY01(d)|S0
) = FY11(d)|S1

. Moreover, one can show that

G0(FY01(0)|S0
) = FY01(0)|V <v00 and G1(FY01(1)|S0

) = FY01(1)|V≥v00 . Therefore, the sharp lower

bound on FY11(d)|S1
is

min
Td∈D

Cd(Td) s.t. (Td, Gd(Td), Cd(Td)) ∈ D3,

where D is the set of cdfs on S(Y ).

It is di�cult to derive a closed-form expression for the solution of this problem, because

it corresponds to an in�nite dimensional optimization problem with an in�nite number of

inequality constraints. We therefore consider simpler bounds, which are sharp under a simple

testable assumption. Speci�cally, let M01(x) = min(1,max(0, x)), and let

T d = M01

(
λ0dFYd01 −H

−1
d (λ1dFYd11)

λ0d − 1

)
, T d = M01

(
λ0dFYd01 −H

−1
d (λ1dFYd11 + (1− λ1d))
λ0d − 1

)
,

FCIC,d(y) = sup
y′≤y

Cd (T d) (y′), FCIC,d(y) = inf
y′≥y

Cd
(
T d
)

(y′),

WCIC =

∫
ydFCIC,1(y)−

∫
ydFCIC,0(y), WCIC =

∫
ydFCIC,1(y)−

∫
ydFCIC,0(y),

τ q = max(F
−1
CIC,1(q), y)−min(F−1CIC,0(q), y), τ q = min(F−1CIC,1(q), y)−max(F

−1
CIC,0(q), y).

Finally, we introduce the two following conditions.

Assumption 8 (Existence of moments)∫
|y|dFCIC,d(y) < +∞ and

∫
|y|dFCIC,d(y) < +∞ for d ∈ {0, 1}.
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Assumption 9 (Increasing bounds)

For (d, g, t) ∈ S(D) × {0, 1}2, FYdgt is continuously di�erentiable, with positive derivative on

the interior of S(Y ). Moreover, T d, T d, Gd(T d), Gd(T d), Cd(T d) and Cd(T d) are increasing on

S(Y ).

Theorem 3.3 Assume that Model (1) and Assumptions 1-2 and 6-7 hold.

1. If 0 < P (D01 = 1) = P (D00 = 1) < 1, then FCIC,d(y) = FY11(d)|S1
(y) for d ∈ {0, 1},

WCIC = ∆ and F−1CIC,1(q)− F
−1
CIC,0(q) = τq.

2. If 0 < P (D01 = 1) 6= P (D00 = 1) < 1 and Assumption 8 is satis�ed, then FY11(d)|S1
(y) ∈

[FCIC,d(y), FCIC,d(y)] for d ∈ {0, 1}, ∆ ∈ [WCIC ,WCIC ] and τq ∈ [τ q, τ q]. Moreover,

if Assumption 9 holds, these bounds are sharp.

Our point identi�cation results combine ideas from Imbens & Rubin (1997) and Athey &

Imbens (2006). We seek to recover the distribution of, say, Y (1) among switchers in the

treatment × period 1 cell. On that purpose, we start from the distribution of Y among all

treated observations of this cell. As shown in Table 1, those include both switchers and always

treated. Consequently, we must �withdraw� from this distribution that of Y (1) among always

treated, exactly as in Imbens & Rubin (1997). But this last distribution is not observed.

To reconstruct it, we adapt the ideas in Athey & Imbens (2006) and apply the quantile-

quantile transform from period 0 to 1 among treated observations in the control group to the

distribution of Y (1) among treated units in the treatment group in period 0.

Intuitively, the quantile-quantile transform uses a double-matching to reconstruct the unob-

served distribution. Consider an always treated in the treatment × period 0 cell. She is �rst

matched to an always treated in the control × period 0 cell with same y. Those two always

treated are observed at the same period of time and are both treated. Therefore, under As-

sumption 6 they must have the same u1. Second, the control × period 0 always treated is

matched to her rank counterpart among always treated of the control × period 1 cell. We

denote y∗ the outcome of this last observation. Because U1 ⊥⊥ T |G,V ≥ v00, those two ob-

servations must also have the same u1. Consequently, y
∗ = h1(u1, 1), which means that y∗ is

the outcome that the treatment × period 0 cell unit would have obtained in period 1.

Note that

WCIC =
E(Y |G = 1, T = 1)− E((1−D)Q0(Y ) +DQ1(Y )|G = 1, T = 0)

E(D|G = 1, T = 1)− E(D|G = 1, T = 0)
.

Here again, WCIC is almost the standard Wald ratio in the treatment group with T as the

instrument, except that we have (1 − D)Q0(Y ) + DQ1(Y ) instead of Y in the second term

of the numerator. (1 −D)Q0(Y ) + DQ1(Y ) accounts for the fact time has a direct e�ect on

the outcome. When the treatment rate is stable in the control group, we can identify this
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direct e�ect by looking at how the distribution of the outcome evolves in this group. We can

then net out this direct e�ect in the treatment group. This is what (1−D)Q0(Y ) +DQ1(Y )

does. Both WCIC and WTC proceed from the same logic, except that WTC corrects for

the e�ect of time through additive shifts, while WCIC does so in a non-linear fashion. If

hd(Ud, T ) = ad(Ud) + bd(T ) with ad(.) strictly increasing, Assumptions 5 and 6 are both

satis�ed. We then have WCIC = WTC .

Our partial identi�cation results are obtained as follows. When 0 < P (D00 = 1) 6= P (D01 =

1) < 1, the second matching described above collapses, because treated (resp. untreated)

observations in the control group are no longer comparable in period 0 and 1. For instance,

when the treatment rate increases in the control group, treated observations in the control

group include only always treated in period 0. In period 1 they also include switchers, as is

shown in Table 2. Therefore, we cannot match period 0 and period 1 observations on their

rank anymore. However, under Assumption 1 the respective weights of switchers and always

treated in period 1 are known. We can therefore derive best and worst case bounds for the

distribution of the outcome for always treated in period 1, and match period 0 observations

to their best and worst case rank counterparts.

If the support of the outcome is unbounded, FCIC,0 and FCIC,0 are proper cdf when λ00 > 1,

but they are defective when λ00 < 1. When λ00 < 1, switchers belong to the group of treated

observations in the control × period 1 cell (cf. Table 2). Their Y (0) is not observed in period

1, so the data does not impose any restriction on FY01(0)|S0
: it could be equal to 0 or to 1,

hence the defective bounds. On the contrary, when λ00 > 1, switchers belong to the group

of untreated observations in the control × period 1 cell, and under Assumption 1 we know

that they account for 100(1 − 1/λ00)% of this group. Consequently, we can use trimming

bounds for FY01(0)|S0
(see Horowitz & Manski, 1995), hence the non-defective bounds. On the

contrary, FCIC,1 and FCIC,1 are always proper cdf, while we could have expected them to

be defective when λ00 > 1. This asymmetry stems from the fact that when λ00 > 1, setting

FY01(1)|S0
(y) = 0 would yield FY01(1)|S1

(y) > 1 for values of y approaching y, while setting

FY01(1)|S0
(y) = 1 would yield FY01(1)|S1

(y) < 0 for values of y approaching y.

The previous discussion implies that when S(Y ) is unbounded and λ00 < 1, our bounds on ∆

are in�nite because our bounds for the cdf of Y (0) of switchers are defective. Our bounds on

τq are also in�nite for low and high values of q. On the contrary, when λ00 > 1 our bounds on

τq are �nite for every q ∈ (0, 1). Our bounds on ∆ are also �nite provided FCIC,0 and FCIC,0

admit an expectation.

Finally, when the treatment rate changes in the control group, one can recover point identi�-

cation if one is ready to impose the same supplementary assumption as in Equation (3).
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3.4 Identi�cation with a fully treated or fully untreated control group

Up to now, we have considered general fuzzy situations where the P (Dgt = d) were restricted

only by Assumption 2. An interesting special case, which is close to the sharp design, is when

P (D00 = 1) = P (D01 = 1) = P (D10 = 1) = 0. In such instances, identi�cation of the average

treatment e�ect on the treated can be obtained under the same assumptions as those of the

standard DID or CIC models.

Theorem 3.4 Suppose that P (D00 = 1) = P (D01 = 1) = P (D10 = 1) = 0 < P (D11 = 1),

U0 ⊥⊥ T |G, and the outcome equation of Model (1) is satis�ed.

1. If Assumption 3 holds, then WDID = WTC = E(Y11(1)− Y11(0)|D = 1).

2. If Assumptions 6 and 7 hold, then WCIC = E(Y11(1)− Y11(0)|D = 1).

Hence, results of the sharp case extend to this intermediate case. Note that under Model (1)

and Assumption 1, the treated population corresponds to S1, so E(Y11(1)−Y11(0)|D = 1) = ∆

under these additional assumptions.

Another special case of interest is when P (D00 = 0) = P (D01 = 0) ∈ {0, 1}. Such situations

arise when a policy is extended to a previously a group, or when a program or a technology pre-

viously available in some geographic areas is extended to others (see our second supplementary

application in de Chaisemartin & D'Haultf÷uille (2015)). Theorem 3.1 applies in this special

case, but not Theorems 3.2-3.3, as they require that 0 < P (D00 = 0) = P (D01 = 0) < 1. In

such instances, identi�cation must rely on the assumption that time has the same e�ect on

both potential outcomes. For instance, if P (D00 = 1) = P (D01 = 1) = 1 and P (D10 = 1) < 1,

there are no untreated units in the control group that we can use to infer trends for untreated

units in the treatment group. We must therefore use treated units, under the assumption

that time has the same e�ect on both potential outcomes. Instead of the Wald-TC estimand,

one could then use E(Y11)−E(Y10+δ1)
E(D11)−E(D10)

. Because P (D00 = 1) = P (D01 = 1) = 1, this actu-

ally amounts to using WDID. We can also adapt our Wald-CIC estimand by considering the

following assumption.

Assumption 10 (Common e�ect of time on both potential outcomes)

h0(h
−1
0 (y, 1), 0) = h1(h

−1
1 (y, 1), 0) for every y ∈ S(Y ).

Assumption 10 requires that time have the same e�ect on both potential outcomes: once

combined with Equation (1) and Assumption 6, Assumption 10 implies that a treated and

an untreated unit with the same outcome in period 0 also have the same outcome in period

1. This restriction is not implied by the IV-CIC assumptions we introduced in Section 3.3:

Equation (1) and Assumption 6 alone only imply that two treated (resp. untreated) units

with the same outcome in period 0 also have the same outcome in period 1. An example of
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a structural function satisfying Assumption 10 is hd(Ud, T ) = f(gd(Ud), T ) with f(., t) and

gd(.) strictly increasing. This shows that Assumption 10 does not restrict the e�ects of time

and treatment to be homogeneous. Finally, Assumptions 4 and 10 are related, but they also

di�er on some respects. Assumption 4 restricts time to have the same average e�ect on the

potential outcomes of always treated. Assumption 10 restricts time to have the same e�ect

on the potential outcomes of units satisfying Y (0) = Y (1) at the �rst period.

Under Assumption 10, if P (D00 = d) = P (D01 = d) = 1 we can use changes in the distribution

of Y (d) in the control group over time to identify the e�ect of time on Y (1−d), hence allowing

us to recover both FY11(d)|S1
and FY11(1−d)|S1

.

Theorem 3.5 If Assumptions 1-2, 6-7, and 10 hold, and P (D00 = d) = P (D01 = d) = 1 for

some d ∈ {0, 1},
P (D10 = d)FQd(Yd10)(y)− P (D11 = d)FYd11(y)

P (D10 = d)− P (D11 = d)
= FY11(d)|S1

(y),

P (D10 = 1− d)FQd(Y1−d10)(y)− P (D11 = 1− d)FY1−d11
(y)

P (D10 = 1− d)− P (D11 = 1− d)
= FY11(1−d)|S1

(y),

E(Y11)− E(Qd(Y10))

E(D11)− E(D10)
= ∆.

The estimands introduced in this theorem are very similar to those considered in the �rst point

of Theorem 3.3, except that they apply the same quantile-quantile transform to all treatment

units in period 0, instead of applying di�erent transforms to units with a di�erent treatment.

Finally, when 0 < P (D00 = 1) = P (D01 = 1) < 1, Assumption 10 is testable. If it is satis�ed,

the quantile-quantile transforms Q0 and Q1 must be equal. When this test is not rejected,

applying a weighted average of these two transforms to all treatment group units in period 0

might result in e�ciency gains with respect to our Wald-CIC estimator.8

3.5 Panel data models

Model (1) is well suited for repeated cross sections or cohort data where we observe units only

once. On the other hand, it implies a strong restriction on selection into treatment when panel

data are available. As V does not depend on time, our selection equation implies that within

each group, time can a�ect individuals' treatment decision in only one direction. Actually, all

our results remain valid if Ud and V are indexed by time, provided that we rewrite Assumption

1 as follows: for d ∈ S(D), the distribution of (Udt, Vt) |G does not depend on t. Within each

group, time could then induce some units to go from non-treatment to treatment, while having

the opposite e�ect on other units.

We now discuss whether the common trends and monotonicity assumptions we introduced

above are satis�ed in standard panel data models. We index random variables by i, to distin-

guish individual e�ects from constant terms.

8We would like to thank an anonymous referee for pointing this out to us.
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First, we consider the following model:

Yit = γt + αi + βiDit + εit, (4)

Dit = 1{Vit ≥ vGit}, (5)

(εi1, Vi1, αi, βi)|Gi ∼ (εi0, Vi0, αi, βi)|Gi. (6)

The outcome equation has time and individual e�ects. It allows for heterogeneous but time

invariant treatment e�ects which can be arbitrarily correlated with the treatment, the indi-

vidual e�ect αi, and the idiosyncratic shocks. Equation (6) requires that the distribution of

(εit, Vit, αi, βi)|Gi does not depend on time. On the other hand, it does not restrict the cross-

sectional dependence between εit and Vit, nor the serial dependence between (εi0, Vi0) and

(εi1, Vi1). This implies in particular that in the �rst-di�erence equation, Di1 −Di0 is endoge-

nous in general. The Wald-DID estimand then amounts to instrumenting Di1 −Di0 by Gi in

this �rst-di�erence equation. It is easy to see that if Equations (4)-(6) hold, then Assumptions

1-6 are satis�ed:9 the additive separability of the time e�ect ensures that Assumptions 3, 5,

and 6 are satis�ed, while the time invariant treatment e�ects ensure that Assumption 4 is

satis�ed.

Second, we consider the following outcome equation instead of Equation (4):

Yit = γt + λtDit + αi + βiDit + εit. (7)

Under Equation (7), Assumption 4 is no longer satis�ed because treatment e�ects change

over time. On the other hand, the e�ect of time is still additively separable from treatment

and from the unobserved heterogeneity terms, so Equations (7) and (5)-(6) guarantee that

Assumptions 1-2 and 5-6 are satis�ed.

Then, we consider the following outcome equation:

Yit = γt + λtDit + µt(αi + βiDit + εit). (8)

Under Equation (8), Assumption 5 is no longer satis�ed because time has an heterogeneous

e�ect on the outcome. On the other hand, if Equations (8) and (5)-(6) hold, then Assumptions

1-2 and 6 are satis�ed. To see this, de�ne hd(u, t) = γt + λtd+ µtu and Udit = αi + βid+ εit.

Finally, we consider a last outcome equation:

Yit = γt + λtDit + αi + βiDit + µtεit. (9)

All our assumptions fail to hold under this �xed e�ects model with time-varying e�ects of

the idiosyncratic shock. As above, Assumption 5 fails because time has heterogeneous e�ects

9As mentioned above, Ud and V should be indexed by time, and Assumption 1 should be rewritten as

follows: for d ∈ S(D), the distribution of (Udt, Vt) |G is independent of t.
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on the outcome. Assumption 6 also fails because the outcome can no longer be written as a

function of time and a scalar unobserved term. Bonhomme & Sauder (2011) study a similar

model with �xed e�ects and non-stationary idiosyncratic shocks. In the sharp case, they

show that average and quantile treatment e�ects are identi�ed if the idiosyncratic shocks are

independent of treatment and of the �xed e�ects.

4 Extensions

In this section, we extend our analysis to situations where the data can be divided into several

groups and several periods, where covariates are available, or where the treatment is non-

binary. To generalize our results, we have to modify some of the assumptions we introduced

above. To ease the comparison, we label these assumptions using su�xes. For instance

Assumption 1X is similar to Assumption 1 except that it accounts for covariates X.

4.1 Multiple groups and time periods

Let us consider the case where the data can be divided into more than two groups and

time periods. Let G ∈ {0, 1, ..., g} be the group a unit belongs to. Let T ∈ {0, 1, ..., t}
be the period when she is observed. For any (g, t) ∈ S(G) × {1, ..., t}, let Sgt = {V ∈
[min(vgt−1, vgt),max(vgt−1, vgt)), G = g} be the subset of group g which switches treatment

status between t − 1 and t. Also, let St = ∪gg=0Sgt denote the units switching between t − 1

and t. Finally, let S =
⋃t
t=1 St be the union of all switchers. At each date, we can partition

the groups into three subsets, depending on whether their treatment rate is stable, increases,

or decreases between t− 1 and t. For every t ∈ {1, ..., t}, let

Gst = {g ∈ S(G) : E(Dgt) = E(Dgt−1)}

Git = {g ∈ S(G) : E(Dgt) > E(Dgt−1)}

Gdt = {g ∈ S(G) : E(Dgt) < E(Dgt−1)},

and let G∗t = 1{G ∈ Git} − 1{G ∈ Gdt}. We introduce the following assumptions, which

generalize Assumptions 3-5 to settings with multiple groups and periods (Assumptions 6 and

7 apply to this case without modi�cations).

Assumption 3M (Common trends)

For every t ∈ {1, ..., t}, E(h0(U0, t)− h0(U0, t− 1)|G) does not depend on G.

Assumption 4M (Common average e�ect of time on both potential outcomes)

For every t ∈ {1, ..., t}, E(h1(U1, t) − h1(U1, t − 1)|G,V ≥ vGt−1) = E(h0(U0, t) − h0(U0, t −
1)|G,V ≥ vGt−1).
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Assumption 5M (Common trends within treatment at previous period)

For every t ∈ {1, ..., t}, E(h0(U0, t)−h0(U0, t− 1)|G,V < vGt−1) and E(h1(U1, t)−h1(U1, t−
1)|G,V ≥ vGt−1) do not depend on G.

Theorem 4.1 below shows that when there is at least one group in which the treatment rate

is stable between each pair of consecutive dates, combinations of these assumptions allow us

to point identify ∆w, a weighted average of LATEs over di�erent periods:

∆w =

t∑
t=1

P (St)∑t
t=1 P (St)

E(Y (1)− Y (0)|St, T = t).

We also consider the following assumption, under which ∆w is equal to the LATE among the

whole population of switchers S.

Assumption 11 (Monotonic evolution of treatment, and homogenous e�ects over time)

1. For every t 6= t′ ∈ {1, ..., t}2 Git ∩ Gdt′ = ∅.

2. For every (t, t′) ∈ {1, ..., t}2, E(Y (1)− Y (0)|St, T = t′) = E(Y (1)− Y (0)|St, T = 1).

The �rst point of Assumption 11 requires that in every group, the treatment rate follows a

monotonic evolution over time. The second point requires that switchers' LATE be constant

over time.

For any random variable R and for any g 6= g′ ∈ {−1, 0, 1}2 and t ∈ {1, ..., t} let

DID∗R(g, g′, t) = E(R|G∗t = g, T = t)− E(R|G∗t = g, T = t− 1)

− (E(R|G∗t = g′, T = t)− E(R|G∗t = g′, T = t− 1))

W ∗DID(g, g′, t) =
DID∗Y (g, g′, t)

DID∗D(g, g′, t)

wt =
DID∗D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1)∑t
t=1DID

∗
D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1)

w10|t =
DID∗D(1, 0, t)P (G∗t = 1)

DID∗D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1)
.

Let also

δ∗dt = E(Y |D = d,G∗t = 0, T = t)− E(Y |D = d,G∗t = 0, T = t− 1) for d ∈ {0, 1}

W ∗TC(1, 0, t) =
E(Y |G∗t = 1, T = t)− E(Y + δ∗Dt|G∗t = 1, T = t− 1)

E(D|G∗t = 1, T = t)− E(D|G∗t = 1, T = t− 1)

W ∗TC(−1, 0, t) =
E(Y |G∗t = −1, T = t)− E(Y + δ∗Dt|G∗t = −1, T = t− 1)

E(D|G∗t = −1, T = t)− E(D|G∗t = −1, T = t− 1)
.
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Finally, let

Q∗dt(y) = F−1Y |D=d,G∗t=0,T=t ◦ FY |D=d,G∗t=0,T=t−1(y) d ∈ {0, 1}

W ∗CIC(1, 0, t) =
E(Y |G∗t = 1, T = t)− E(Q∗Dt(Y )|G∗t = 1, T = t− 1)

E(D|G∗t = 1, T = t)− E(D|G∗t = 1, T = t− 1)

W ∗CIC(−1, 0, t) =
E(Y |G∗t = −1, T = t)− E(Q∗Dt(Y )|G∗t = −1, T = t)

E(D|G∗t = −1, T = t)− E(D|G∗t = −1, T = t− 1)
.

Theorem 4.1 Assume that Model (1) and Assumption 1 are satis�ed. Assume also that for

every t ∈ {1, ..., t}, Gst 6= ∅. Finally, assume that G ⊥⊥ T .

1. If Assumptions 3M and 4M are satis�ed,

t∑
t=1

wt(w10|tW
∗
DID(1, 0, t) + (1− w10|t)W

∗
DID(−1, 0, t)) =∆w.

2. If Assumption 5M is satis�ed,

t∑
t=1

wt(w10|tW
∗
TC(1, 0, t) + (1− w10|t)W

∗
TC(−1, 0, t)) =∆w.

3. If Assumptions 6 and 7 are satis�ed,

t∑
t=1

wt(w10|tW
∗
CIC(1, 0, t) + (1− w10|t)W

∗
CIC(−1, 0, t)) =∆w.

4. If either t = 1 or Assumption 11 holds,

∆w = E(Y (1)− Y (0)|S, T > 0).

Let us �rst consider the simple case with multiple groups and two periods. In such instances,

the �rst, second, and third results of the theorem can respectively be rewritten as

w10|1W
∗
DID(1, 0, 1) + (1− w10|1)W

∗
DID(−1, 0, 1) = E(Y (1)− Y (0)|S1, T = 1),

w10|1W
∗
TC(1, 0, 1) + (1− w10|1)W

∗
TC(−1, 0, 1) = E(Y (1)− Y (0)|S1, T = 1),

w10|1W
∗
CIC(1, 0, 1) + (1− w10|1)W

∗
CIC(−1, 0, 1) = E(Y (1)− Y (0)|S1, T = 1).

This shows that with multiple groups and two periods of time, treatment e�ects for switchers

are identi�ed if there is at least one group in which the treatment rate is stable over time.

This holds under each of the three sets of assumptions we considered in the previous section.

The estimands we propose can be computed in four steps. First, we form three �super groups�,

by pooling together the groups where treatment increases (G∗ = 1), those where it is stable

(G∗ = 0), and those where it decreases (G∗ = −1). While in some applications these three
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sets of groups are known to the analyst, in other applications they must be estimated. In

our supplementary material, we review results from Gentzkow et al. (2011) where these sets

are known to the analyst. In Section 6 we review results from Du�o (2001) where these sets

are not known to the analyst and need to be estimated. Second, we compute the estimand

we suggested in the previous section with G∗ = 1 and G∗ = 0 as the treatment and control

groups. Third, we compute the estimand we suggested in the previous section with G∗ = −1

and G∗ = 0 as the treatment and control groups. Finally, we compute a weighted average of

those two estimands.

In the general case where t > 1, aggregating estimands at di�erent dates proves more di�-

cult than aggregating estimands from di�erent groups. This is because populations switching

treatment between di�erent dates might overlap. For instance, if a unit goes from non treat-

ment to treatment between period 0 and 1, and from treatment to non treatment between

period 1 and 2, she both belongs to period 1 and period 2 switchers. A weighted average of,

say, our Wald-DID estimands between period 0 and 1 and between period 1 and 2 estimates a

weighted average of the LATEs of two potentially overlapping populations. There is therefore

no natural way to weight these two estimands to recover the LATE of the union of period 1

and 2 switchers. As shown in the fourth point of the theorem, the aggregated estimand we

put forward still satis�es a nice property: it is equal to the LATE of the union of switchers in

the special case where each group experiences a monotonic evolution of its treatment rate over

time. When this is the case, populations switching treatment status at di�erent dates cannot

overlap, so our weighted average of switchers' LATE across periods is actually the LATE of

all switchers.

Theorem 4.1 relies on the Assumption that G ⊥⊥ T . This requires that the distribution of

groups be stable over time. This will automatically be satis�ed if the data is a balanced panel

and G is time invariant. With repeated cross-sections or cohort data, this assumption might

fail to hold. However, large deviations from this stable group assumption indicate that some

groups grow much faster than others, which might anyway call into question the common

trends assumptions underlying DID identi�cation strategies. Moreover, this assumption is

only a su�cient condition to rationalize our estimands under assumptions at the group level.

Another way to rationalize our estimands is to state our assumptions directly at the �super

group� level. For instance, if Assumptions 1, 3M, and 5M are satis�ed with G∗t instead of G,

then the �rst statement of Theorem 4.1 is still valid even if G is not independent of T . Finally,

when G is not independent of T , it is still possible to form a Wald-DID and a Wald-TC type of

estimand identifying a weighted average of LATEs under group-level assumptions. To do so,

one merely needs to implement some reweighting to ensure that the distribution of groups is the

same in periods t−1 and t in the reweighted population. For all (g, t) ∈ {0, 1, ..., g}×{1, ..., t},
let

rgt =
P (G = g|T = t)

P (G = g|T = t− 1)
.
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One can show that a weighted average of

E(Y |G∗t = 1, T = t)− E (rGtY |G∗t = 1, T = t− 1)− (E(Y |G∗t = 0, T = t)− E (rGtY |G∗t = 0, T = t− 1))

E(D|G∗t = 1, T = t)− E (rGtD|G∗t = 1, T = t− 1)− (E(D|G∗t = 0, T = t)− E (rGtD|G∗t = 0, T = t− 1))

and

E(Y |G∗t = −1, T = t)− E (rGtY |G∗t = −1, T = t− 1)− (E(Y |G∗t = 0, T = t)− E (rGtY |G∗t = 0, T = t− 1))

E(D|G∗t = −1, T = t)− E (rGtD|G∗t = −1, T = t− 1)− (E(D|G∗t = 0, T = t)− E (rGtD|G∗t = 0, T = t− 1))

identi�es a weighted average of LATEs under Assumptions 1, 3M, and 4M even if G is not

independent of T .10 One can follow similar steps to construct a Wald-TC type of estimand

identifying a weighted average of LATEs under Assumptions 1 and 5M even if G is not

independent of T .

Three last comments on Theorem 4.1 are in order. First, it contrasts with the current practice

in empirical work. When many groups and periods are available, researchers usually include

group and time �xed e�ects in their regressions, instead of pooling together groups into super

control and treatment groups as we advocate here. In de Chaisemartin & D'Haultf÷uille

(2015), we show that such regressions estimate a weighted average of switchers' LATEs across

groups, with potentially many negative weights and without the aggregation property we

obtain here (see Theorems S1 and S2). Second, groups where the treatment rate diminishes

can be used as �treatment� groups, just as those where it increases. Indeed, it is easy to show

that all the results from the previous section still hold if the treatment rate decreases in the

treatment group and is stable in the control group. Finally, when there are more than two

groups where the treatment rate is stable between two consecutive dates, our three sets of

assumptions become testable. Under each set of assumptions, using any subset of Gst as the
control group should yield the same result.

We now turn to partial identi�cation results when the treatment rate changes in every group.

To simplify the exposition, we focus on the case with multiple groups and two periods. Results

can easily be extended to accommodate multiple periods.

When the outcome has bounded support [y, y], let, for (d, g) ∈ {0, 1} × S(G),

F dg1(y) = M0

[
1− λgd(1− FYdg1(y))

]
−M0(1− λgd)1{y < y},

F dg1(y) = m1

[
λgdFYdg1(y)

]
+ (1−m1(λgd))1{y ≥ y}.

Then de�ne

δ
−
d = max

g∈S(G)

∫
ydF dg1(y)− E(Ydg0), δ+d = min

g∈S(G)

∫
ydF dg1(y)− E(Ydg0),

W−TC(g) =
E(Yg1)− E(Yg0 + δ+Dg0

)

E(Dg1)− E(Dg0)
, W+

TC(g) =
E(Yg1)− E(Yg0 + δ

−
Dg0

)

E(Dg1)− E(Dg0)
.

10The weights are the same as those in Theorem 4.1, except that one needs to replace P (G∗t = 1) and

P (G∗t = −1) by P (G∗t = 1|T = t) and P (G∗t = −1|T = t) in their de�nition.
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Let also F gg′d(y) and F gg′d(y) denote the lower and upper bounds on FYg1(d)|Sg
one can obtain

using G = g as the treatment group and G = g′ as the control group and applying Theorem

3.3. Finally, let

W−CIC(g) =

∫ (
max

g′∈S(G)
F gg′0(y)− min

g′∈S(G)
F gg′1(y)

)
dy, W+

CIC(g) =

∫ (
min

g′∈S(G)
F gg′0(y)− max

g′∈S(G)
F gg′1(y)

)
dy.

Theorem 4.2 Assume that Model (1) and Assumption 1 is satis�ed. Assume also that Gs1 =

∅.

1. If Assumption 5 is satis�ed and P (y ≤ Y (d) ≤ y) = 1 for d ∈ {0, 1},

W−TC(g) ≤ E(Yg1(1)− Yg1(0)|Sg1) ≤W+
TC(g).

2. If Assumptions 6 and 7 are satis�ed,

W−CIC(g) ≤ E(Yg1(1)− Yg1(0)|Sg1) ≤W+
CIC(g).

This theorem shows that with multiple groups, one can construct intersection bounds for

switchers' LATE when the treatment rate changes in every group over time. This holds under

the two sets of assumptions for which we considered partial identi�cation results in the previous

section. Under Assumption 5, one can bound the LATE among switchers in a given group

by using every other group as a potential control group and applying Theorem 3.2. One can

then select the control group yielding the highest (resp. smallest) lower (resp. upper) bound.

Under Assumption 6, one can bound the cdf of Y (1) and Y (0) among switchers in a given

group by using every other group as a potential control group and applying Theorem 3.3.

For each value of y, one can then select the control group yielding the highest (resp. lowest)

lower (resp. upper) bound. One can �nally bound switchers LATEs by using integration by

parts for Lebesgue-Stieljes integrals. Note that any group can be used to construct bounds

for the LATE of switchers in group g, even groups g′ which experienced a larger change of

their treatment rate. Here, we only present partial identi�cation results for treatment e�ects

among switchers of group g. One can also derive bounds for the entire population of switchers,

by taking a weighted average of these bounds.

4.2 Covariates

We now return to our initial setup with two groups and two periods but consider a framework

incorporating covariates. Let X be a vector of covariates. Assume that

Y (d) = hd(Ud, T,X), d ∈ S(D),

D = 1{V ≥ vGTX}, vG0X = v00X does not depend on G.
(10)

Then we replace Assumptions 1-7 by the following conditions.
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Assumption 1X (Conditional time invariance within groups)

For d ∈ S(D), (Ud, V ) ⊥⊥ T |G,X.

Assumption 2X (Conditional �rst stage)

Almost surely, E(D11|X) > E(D10|X), and E(D11|X)−E(D10|X) > E(D01|X)−E(D00|X).

Assumption 3X (Conditional common trends)

Almost surely, E(h0(U0, 1, X)− h0(U0, 0, X)|G,X) does not depend on G.

Assumption 4X (Conditional common e�ect of time on both potential outcomes)

Almost surely,

E(h1(U1, 1, X)−h1(U1, 0, X)|G,V ≥ v00X , X) = E(h0(U0, 1, X)−h0(U0, 0, X)|G,V ≥ v00X , X).

Assumption 5X (Conditional common trends within treatment status)

Almost surely, E(h0(U0, 1, X)−h0(U0, 0, X)|G,V < v00X , X) and E(h1(U1, 1, X)−h1(U1, 0, X)|G,V ≥
v00X , X) do not depend on G.

Assumption 6X (Monotonicity)

Ud ∈ R and hd(u, t, x) is strictly increasing in u for all (d, t, x) ∈ S(D)× S(T )× S(X).

Assumption 7X (Data restrictions)

1. S(Ydgt|X = x) = S(Y ) = [y, y] with −∞ ≤ y < y ≤ +∞, for (d, g, t, x) ∈ S(D) ×
S(G)× S(T )× S(X).

2. FYdgt|X=x is strictly increasing on R and continuous on S(Y ), for (d, g, t, x) ∈ S(D) ×
S(G)× S(T )× S(X).

3. S(Xgt) = S(X) for (g, t) ∈ S(G)× S(T ).

For any random variable R, let DIDR(X) = E(R11|X)−E(R10|X)−(E(R01|X)−E(R00|X)).

We also let δd(x) = E(Yd01|X = x)−E(Yd00|X = x), Qd,x(y) = F−1Yd01|X=x ◦FYd00|X=x(y), and

WDID(X) =
DIDY (X)

DIDD(X)

WTC(X) =
E(Y11|X)− E(Y10 + δD10(X)|X)

E(D11|X)− E(D10|X)

WCIC(X) =
E(Y11|X)− E(QD10,X(Y10)|X)

E(D11|X)− E(D10|X)
.

Finally, let S1 = {V ∈ [v11X , v00X), G = 1} and ∆(X) = E(Y11(1)− Y11(0)|S1, X).
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Theorem 4.3 Assume that Model (10) and Assumptions 1X-2X hold, and that for every

d ∈ S(D), 0 < P (D00 = d|X) = P (D01 = d|X) almost surely. Then

1. If Assumptions 3X-4X are satis�ed, WDID(X) = ∆(X) and

WX
DID ≡

E[DIDY (X)|G = 1, T = 1]

E[DIDD(X)|G = 1, T = 1]
= ∆.

2. If Assumption 5X is satis�ed, WTC(X) = ∆(X) and

WX
TC ≡

E(Y11)− E[E(Y10 +D10δ1(X) + (1−D10)δ0(X)|X)|G = 1, T = 1]

E(D11)− E(E(D10|X)|G = 1, T = 1)
= ∆.

3. If Assumptions 6X-7X are satis�ed, WCIC(X) = ∆(X) and

WX
CIC ≡

E(Y11)− E[E(D10Q1,X(Y10) + (1−D10)Q0,X(Y10)|X)|G = 1, T = 1]

E(D11)− E(E(D10|X)|G = 1, T = 1)
= ∆.

Incorporating covariates into the analysis has two advantages. First, it allows us to weaken

our identifying assumptions. For instance, when the distribution of some X evolves over time

in the control or in the treatment group, Assumption 1X is more plausible than Assumption

1: if the distribution of X is not stable over time and X is correlated with (Ud, V ), then the

distribution of (Ud, V ) is also not stable. Second, there might be instances where P (D00 =

d) 6= P (D01 = d) but P (D00 = d|X) = P (D01 = d|X) > 0 almost surely, meaning that in

the control group, the evolution of the treatment rate is entirely driven by a change in the

distribution of X. If that is the case, one can use the previous theorem to point identify

treatment e�ects among switchers, while our theorems without covariates only yield bounds.

When P (D00 = d|X) 6= P (D01 = d|X), one can derive bounds for ∆(X) and then for ∆.

These bounds could be tighter than the unconditional ones if changes in the distribution of

X drive most of the evolution of the treatment rate in the control group.

4.3 Non-binary, ordered treatment

We �rst consider the case where the treatment is not binary but takes a �nite number of

values and is ordered: D ∈ {0, 1, ..., d}. One prominent example is years of schooling, as in

our application in Section 6. We extend our model to this case as follows:

Y (d) = hd(Ud, T ), for d ∈ {0, ..., d},

D =
∑d

d=1 1{V ≥ vdGT }, −∞ = v0gt < v1gt... < vd+1
gt = +∞ for (g, t) ∈ {0, 1}2.

(11)

Assumption 4O (Common average e�ect of time on all potential outcomes)

For d ∈ {0, ..., d},

E(hd(Ud, 1)− hd(Ud, 0)|G,V ∈ [vdG0, v
d+1
G0 )) = E(h0(U0, 1)− h0(U0, 0)|G,V ∈ [vdG0, v

d+1
G0 )).
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Assumption 5O (Common trends within treatment status at date 0)

For every d ∈ S(D), E(hd(Ud, 1)− hd(Ud, 0)|G,V ∈ [vdG0, v
d+1
G0 )) does not depend on G.

Model (11) and Assumptions 4O-5O generalize respectively Model (1) and Assumptions 4-5 to

situations where the treatment is non-binary and ordered . Let & denote stochastic dominance

between two random variables, while ∼ denotes equality in distribution.

Theorem 4.4 Assume that Model (11) and Assumptions 1-2 are satis�ed, that D01 ∼ D00,

and that D11 & D10. Let wd = P (D11≥d)−P (D10≥d)
E(D11)−E(D10)

.

1. If Assumptions 3 and 4O are satis�ed,

WDID =

d∑
d=1

E(Y11(d)− Y11(d− 1)|V ∈ [vd11, v
d
10))wd.

2. If Assumption 5O is satis�ed,

WTC =

d∑
d=1

E(Y11(d)− Y11(d− 1)|V ∈ [vd11, v
d
10))wd.

3. If Assumptions 6 and 7 are satis�ed,

WCIC =

d∑
d=1

E(Y11(d)− Y11(d− 1)|V ∈ [vd11, v
d
10))wd.

Theorem 4.4 shows that with an ordered treatment, the estimands we considered in the previ-

ous sections are equal to the average causal response (ACR) parameter considered in Angrist

& Imbens (1995). This parameter is a weighted average, over all values of d, of the e�ect

of increasing treatment from d − 1 to d among switchers whose treatment status goes from

strictly below to above d over time.

For this theorem to hold, two conditions have to be satis�ed. First, in the treatment group,

the distribution of treatment in period 1 should dominate stochastically the corresponding

distribution in period 0. Angrist & Imbens (1995) also require that the distribution of treat-

ment conditional on Z = 1 dominate that conditional on Z = 0. Actually, this assumption is

not necessary for our three estimands to identify a weighted sum of treatment e�ects. If it is

not satis�ed, one still has that WDID, WTC , or WCIC identify

d∑
d=1

E(Y11(d)− Y11(d− 1)|V ∈ [min(vd10, v
d
11),max(vd10, v

d
11))wd,

which is a weighted sum of treatment e�ects with some negative weights. Second, the dis-

tribution of treatment should be stable over time in the control group. When it is not, one
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can still obtain some identi�cation results. Firstly, Theorem 3.1 generalizes to non-binary and

ordered treatments taking a �nite number of values. When treatment increases in the control

group, the Wald-DID identi�es a weighted di�erence of the ACRs in the treatment and in

the control group; when treatment decreases in the control group, the Wald-DID identi�es

a weighted average of these two ACRs. The weights are the same as those in Theorem 3.1.

Secondly, the second statement of Theorems 3.2 and 3.3 also generalize to non-binary and

ordered treatments taking a �nite number of values. When the distribution of treatment is

not stable over time in the control group, the ACR in the treatment group can be bounded

under Assumption 5O, or Assumptions 6 and 7.

Theorem 4.4 could easily be extended to continuous treatments. Our three estimators would

then estimate a weighted average derivative similar to that studied in Angrist et al. (2000).

However, non-parametric estimation of the Wald-CIC might be challenging, as one would have

to estimate the function d 7→ Qd in a �rst step.

5 Inference

In this section, we study the asymptotic properties of the estimators corresponding to the

estimands introduced in the previous sections. We focus on the point identi�ed case. Es-

timators of the bounds on average and quantile treatment e�ects in the partially identi�ed

case are considered in de Chaisemartin & D'Haultf÷uille (2015). We restrict ourselves to

repeated cross sections. For now, we suppose that an i.i.d. sample with the same distribution

as (Y,D,G, T,X) is available.

Assumption 12 (Independent and identically distributed observations)

(Yi, Di, Gi, Ti, Xi)i=1,...,n are i.i.d.

Even if we do not observe the same unit twice, independence may be a strong assumption

in some applications: clustering at the group level can induce both cross-sectional and serial

correlation within clusters. However, we can extend some of our results to allow for clustering,

as we discuss below.

5.1 Inference without covariates

Let Igt = {i : Gi = g, Ti = t} (resp. Idgt = {i : Di = d,Gi = g, Ti = t}) and ngt (resp.

ndgt) denote the size of Igt (resp. Idgt) for all (d, g, t) ∈ {0, 1}3. The Wald-DID and Wald-TC
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estimators are simply de�ned by

ŴDID =
1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10 Yi −

1
n01

∑
i∈I01 Yi + 1

n00

∑
i∈I00 Yi

1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di − 1

n01

∑
i∈I01 Di + 1

n00

∑
i∈I00 Di

,

ŴTC =

1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10

[
Yi + δ̂Di

]
1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di

,

where δ̂d (d ∈ {0, 1}) is de�ned by

δ̂d =
1

nd01

∑
i∈Id01

Yi −
1

nd00

∑
i∈Id00

Yi.

Let F̂Ydgt denote the empirical cdf of Y on the subsample Idgt:

F̂Ydgt(y) =
1

ndgt

∑
i∈Idgt

1{Yi ≤ y}.

Similarly, we estimate the quantile of order q ∈ (0, 1) of Ydgt by F̂
−1
Ydgt

(q) = inf{y : F̂Ydgt(y) ≥
q}. The estimator of the quantile-quantile transform is Q̂d = F̂−1Yd01

◦ F̂Yd00 . Then, the Wald-

CIC estimator is de�ned by

ŴCIC =
1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10 Q̂Di(Yi)

1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di

.

Let P̂ (Dgt = d) be the proportion of subjects with D = d in the sample Igt, let Ĥd =

F̂Yd10 ◦ F̂
−1
Yd00

, and let

F̂Y11(d)|S1
=
P̂ (D10 = d)Ĥd ◦ F̂Yd01 − P̂ (D11 = d)F̂Yd11

P̂ (D10 = d)− P̂ (D11 = d)
.

Our estimator of the LQTE of order q for switchers is

τ̂q = F̂−1Y11(1)|S1
(q)− F̂−1Y11(0)|S1

(q).

We derive the asymptotic behavior of our CIC estimators under the following assumption,

which is similar to the one made by Athey & Imbens (2006) for the CIC estimators in sharp

settings.

Assumption 13 (Regularity conditions for the CIC estimators)

S(Y ) is a bounded interval [y, y]. Moreover, for all (d, g, t) ∈ {0, 1}3, FYdgt and FY11(d)|S1
are

continuously di�erentiable with strictly positive derivatives on [y, y].
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Theorem 5.1 below shows that all our estimators are root-n consistent and asymptotically

normal. We also derive the in�uence functions of our estimators. However, because these

in�uence functions take complicated expressions, using the bootstrap might be convenient for

inference. For any statistic T , we let T ∗ denote its bootstrap counterpart. For any root-n

consistent statistic θ̂ estimating consistently θ, we say that the bootstrap is consistent if with

probability one and conditional on the sample,
√
n(θ̂∗−θ̂) converges to the same distribution as

the limit distribution of
√
n(θ̂− θ).11 Theorem 5.1 implies that bootstrap con�dence intervals

are asymptotically valid for all our estimators.

Theorem 5.1 Suppose that Assumptions 1-2, 12 hold and 0 < P (D00 = 1) = P (D01 = 1) <

1. Then

1. If E(Y 2) <∞ and Assumptions 3-4 also hold,

√
n
(
ŴDID −∆

)
L−→ N (0, V (ψDID)) ,

where ψDID is de�ned in Equation (42) in the appendix. Moreover, the bootstrap is

consistent for ŴDID.

2. If E(Y 2) <∞ and Assumption 5 also holds,

√
n
(
ŴTC −∆

)
L−→ N (0, V (ψTC))

where ψTC is de�ned in Equation (43) in the appendix. Moreover, the bootstrap is

consistent for ŴTC .

3. If Assumptions 6, 7 and 13 also hold,

√
n
(
ŴCIC −∆

)
L−→ N (0, V (ψCIC)) ,

√
n (τ̂q − τq)

L−→ N (0, V (ψq,CIC)) ,

where ψCIC and ψq,CIC are de�ned in Equations (44) and (45) in the appendix. More-

over, the bootstrap is consistent for both estimators.

The result is straightforward for the Wald-DID and Wald-TC. Regarding the CIC, our proof

di�ers from the one of Athey & Imbens (2006). It is based on the weak convergence of the

empirical cdfs of the di�erent subgroups, and on a repeated use of the functional delta method.

This approach can be readily applied to other functionals of (FY11(0)|S1
, FY11(1)|S1

). We also

show in the supplementary material how it can be applied to estimate bounds on average and

quantile treatment e�ects in the partially identi�ed case.

11See, e.g., van der Vaart (2000), Section 23.2.1, for a formal de�nition of conditional convergence.
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5.2 Inference with covariates

In this section, we consider estimators of the Wald-DID, Wald-TC, and Wald-CIC estimands

with covariates derived in Subsection 4.2. For the Wald-DID and Wald-TC, our estimators

are entirely non-parametric.12 For the Wald-CIC, we could de�ne an estimator using a non-

parametric estimator of the conditional quantile-quantile transform Qd,X . However, such an

estimator would be cumbersome to compute. Following Melly & Santangelo (2015), we con-

sider instead an estimator of Qd,X based on quantile regressions. This estimator relies on the

assumption that conditional quantiles of the outcome are linear. However, it does not require

that the e�ect of the treatment be the same for units with di�erent values of their covariates,

contrary to the estimator with covariates suggested in Athey & Imbens (2006).

Let us assume that X ∈ Rr is a vector of continuous covariates. Adding discrete covariates is
easy by reasoning conditional on each corresponding cell. We take an approach similar to, e.g.,

Frölich (2007) by estimating in a �rst step conditional expectations by series estimators. For

any positive integer K, let pK(x) = (p1K(x), ..., pKK(x))′ be a vector of basis functions and

PK = (pK(X1), ..., p
K(Xn)). For any random variable R, we estimate mR(x) = E(R|X = x)

by the series estimator

m̂R(x) = pKn(x)′
(
PKnPKn ′)− PKn (R1, ..., Rn)′ ,

where (.)− denotes the generalized inverse and (Kn)n∈N is a sequence of integers tending

to in�nity at a rate speci�ed below. Following Frölich (2007), for any (g, t) ∈ {0, 1}2 we

estimate mR
gt(x) = E(Rgt|X = x) by m̂R

gt(x) = m̂1{G=g,T=t}R(x)/m̂1{G=g,T=t}(x). mR
dgt(x) =

E(Rdgt|X = x) is estimated similarly. Then our Wald-DID and Wald-TC estimators with

covariates are de�ned by

ŴX
DID =

1
n11

∑
i∈I11

[
Yi − m̂Y

10(Xi)− m̂Y
01(Xi) + m̂Y

00(Xi)
]

1
n11

∑
i∈I11

[
Di − m̂D

10(Xi)− m̂D
01(Xi) + m̂D

00(Xi)
] ,

ŴX
TC =

1
n11

∑
i∈I11

[
Yi − m̂Y

10(Xi)− m̂D
10(Xi)δ̂1(Xi)− (1− m̂D

10(Xi))δ̂0(Xi)
]

1
n11

∑
i∈I11

[
Di − m̂D

10(Xi)
] ,

where δ̂d(x) = m̂Y
d01(x)− m̂Y

d00(x).

We then introduce our Wald-CIC estimator with covariates. Suppose that for all (d, g, t, τ) ∈
{0, 1}3 × (0, 1),

FYdgt|X=x = x′βdgt(τ).

12In our Stata package, we also implement estimators relying on the assumption that all the conditional

expectations in WX
DID and WX

TC are linear functions of X and can therefore be estimated through simple

OLS regressions. These estimators might prove useful when the set of covariates is rich and the estimation of

our non-parametric estimators is cumbersome. Asymptotic normality of these estimators follows directly from

standard results on OLS regressions and the Delta method.
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Using the fact that FYdgt|X=x =
∫ 1
0 1{F

−1
Ydgt|X=x(τ) ≤ y}dτ (see, e.g., Chernozhukov et al.,

2010), we obtain

Qd,x(y) = x′βd01

(∫ 1

0
1{x′βd00(τ) ≤ y}dτ

)
.

Besides, some algebra shows that

E [QD10,X(Y10)|X] = mD
10(X)

∫ 1

0
Q1,X(X ′β110(u))du+ (1−mD

10(X))

∫ 1

0
Q0,X(X ′β010(u))du.

Hence, we estimate ŴX
CIC by

ŴX
CIC =

1
n11

∑
i∈I11

[
Yi − m̂D

10(Xi)
∫ 1
0 Q̂1,Xi(X

′
iβ̂110(u))du− (1− m̂D

10(Xi))
∫ 1
0 Q̂0,Xi(X

′
iβ̂010(u))du

]
1
n11

∑
i∈I11

[
Di − m̂D

10(Xi)
] ,

where the estimator of the conditional quantile-quantile transform satis�es

Q̂d,x(y) = x′β̂d01

(∫ 1

0
1{x′β̂d00(τ) ≤ y}dτ

)
,

and β̂dgt(τ) is obtained from a quantile regression of Y on X on the subsample Idgt:

β̂dgt(τ) = arg min
β∈B

∑
i∈Idgt

(τ − 1{Yi −X ′iβ ≤ 0})(Yi −X ′iβ).

Here B denotes a compact subset of Rr including βdgt(τ) for all (d, g, t, τ) ∈ {0, 1}3 × (0, 1).

In practice, instead of computing the whole quantile regression process, we can compute

τ 7→ β̂dgt(τ) on a �ne enough grid and replace integrals by corresponding averages. See Melly

& Santangelo (2015) for a detailed discussion on computational issues.

We prove the asymptotic normality of our estimators under the following assumptions.

Assumption 14 (Regularity conditions for the series estimators)

1. For any (d, g, t, α) ∈ {0, 1}3×{0, 1, 2}, infx∈S(X) P (D = d,G = g, T = t|X = x) > 0 and

x 7→ E(1{D = d}1{G = g}1{T = t}Y α|X = x) is s times continuously di�erentiable

on S(X), with s > 3r.

2. S(X) is a Cartesian product of compact connected intervals on which X has a probability

density function that is bounded away from zero. Moreover E(XX ′) is nonsingular.

3. The series terms pkKn , 1 ≤ k ≤ Kn, are products of polynomials orthonormal with

respect to the uniform weight. Moreover, K
4(s/r−1)
n /n→∞ and K7

n/n→ 0.

Assumption 15 (Regularity conditions for the conditional Wald-CIC estimator)

For all (d, g, t, x, τ) ∈ {0, 1}3 × S(X) × (0, 1), F−1Ydgt|X=x(τ) = x′βdgt(τ), with βdgt(τ) ∈ B, a
compact subset of Rr. Moreover, FYdgt|X=x is di�erentiable, with

0 < inf
(x,y)∈S(X)×S(Y )

fYdgt|X=x(y) ≤ sup
(x,y)∈S(X)×S(Y )

fYdgt|X=x(y) < +∞.
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Assumption 15 implies that Y has a compact support. If its conditional density is not bounded

away from zero, trimming may be necessary as discussed in Chernozhukov, Fernández-Val &

Melly (2013) and Melly & Santangelo (2015).

Theorem 5.2 Suppose that Model (10) and Assumptions 1X-2X, 12 and 14 hold. Then

1. If Assumptions 3X-4X also hold,

√
n
(
ŴX
DID −∆

)
L−→ N

(
0, V (ψXDID)

)
,

where the variable ψXDID is de�ned in Equation (46) in the appendix.

2. If Assumption 5X also holds,

√
n
(
ŴX
TC −∆

)
L−→ N

(
0, V (ψXTC)

)
,

where the variable ψXTC is de�ned in Equation (47) in the appendix.

3. If Assumptions 6X-7X and 15 also hold,

√
n
(
ŴX
CIC −∆

)
L−→ N

(
0, V (ψXCIC)

)
,

where the variable ψXCIC is de�ned in Equation (49) in the appendix.

We prove the asymptotic normality of the Wald-DID andWald-TC estimators using repeatedly

results on two-step estimators involving nonparametric �rst-step estimators, see e.g. Newey

(1994). Proving the asymptotic normality of the Wald-CIC estimator is more challenging. We

have to prove the weak convergence of
√
n
(
β̂dgt(.)− βdgt(.)

)
, seen as a stochastic process, on

the whole interval (0, 1). To our knowledge, this convergence has been established so far only

on [ε, 1−ε], for any ε > 0 (see, e.g., Angrist et al., 2006). Here, this result holds thanks to our

assumptions on the conditional distribution of Y . Finally, note that our Wald-CIC estimator

does not require any �rst-step nonparametric estimator in the special case where P (D10 =

1) = 0. In such a case, asymptotic normality still holds without the regularity conditions in

Assumption 14. Only the nonsingularity of E(XX ′) is needed. In our supplementary material,

we revisit results from Field (2007), where P (D10 = 1) = 0 and where the set of covariates is

very rich.

5.3 Accounting for clustering

In many applications, the i.i.d. condition in Assumption 12 is too strong, because of cross-

sectional or serial dependence within clusters. However, in such instances one can build upon

our previous results to draw inference on the Wald-DID and Wald-TC without covariates, and

on the Wald-CIC without covariates if clusters are of the same size.
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We consider an asymptotic framework where the number of clusters C tends to in�nity while

the sample size within each cluster remains bounded in probability. Let nc = #{i ∈ c}, nc =
1
C

∑C
c=1 nc, nct = #{i ∈ c : Ti = t}, ncdt = #{i ∈ c : Ti = t,Di = d}, Dct = 1

nct

∑
i∈c:Ti=tDi,

Yct = 1
nct

∑
i∈c:Ti=t Yi, and Ycdt = 1

ncdt

∑
i∈c:Ti=t,Di=d

Yi, with the convention that the sums are

equal to zero if they sum over empty sets. Then we can write the estimators of the Wald-DID

and Wald-TC as simple functions of averages of these variables de�ned at the cluster level.

Using the same reasoning as in the proof of Theorem 5.1, we can linearize both estimators,

ending up with

√
C
(
ŴDID −∆

)
=

1√
C

C∑
c=1

nc
nc
ψc,DID + oP (1),

√
C
(
ŴTC −∆

)
=

1√
C

C∑
c=1

nc
nc
ψc,TC + oP (1),

where ψc,DID = 1
nc

∑
i∈c ψi,DID and similarly for ψc,TC . In other words, to estimate the

asymptotic variance of our estimators while accounting for clustering, it su�ces to compute

the average over clusters of the in�uence functions we obtained assuming that observations

were i.i.d, multiply them by nc
nc
, and then compute the variance of this variable over clusters.

Our other estimators cannot be written as functions of variables aggregated at the cluster

level: they depend on the variables of every unit in each cluster. But as long as they can

still be linearized in the presence of clustering, the same argument as above applies. Such a

linearization can be obtained for the Wald-CIC estimator with clusters of same size, because

weak convergence of the empirical cdfs of the di�erent subgroups still holds in this context.13

We conjecture that it can also be obtained when clusters are of random sizes, or with our

estimators including covariates. Proving this last point would nevertheless require to adapt

results on two-step estimators to such a clustering framework. To the best of our knowledge,

no such results have been established yet.

6 Application: returns to education in Indonesia

6.1 Estimation strategy

In 1973-1974, the Indonesian government launched a major primary school construction pro-

gram, the so-called INPRES program. Du�o (2001) uses it to measure returns to education

among men through a fuzzy DID identi�cation strategy. In her analysis, groups are districts,

13To simplify, let us ignore the di�erent subgroups and let us consider the standard empirical process on

Y . Let Yc = (Yc1, ...., Ycnc)
′, where Yci denotes the outcome variable of individual i in cluster c. Because

the (Yc)c=1...C are i.i.d., its multivariate empirical process converges to a multivariate gaussian process. The

standard empirical process on Y can be written as the average over the nc components of this multivariate

process. Therefore, it also converges to a gaussian process.
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the administrative unit at which the program was implemented. This de�nition of groups

could violate Assumption 1 if the program generated endogenous migration between districts.

The author therefore uses district of birth instead of district of residence. She then constructs

two �super groups� of treatment and control districts, by regressing the number of schools

constructed on the number of school-age children in each district. Treatment districts are

those with a positive residual in that regression, as they received more schools than what

their population predicts. She also uses the fact that exposure to treatment varied across

cohorts. Children born between 1968 and 1972 entered primary school after the program was

launched, while children born between 1957 and 1962 had �nished primary school by that

time.

However, the INPRES program explains a small fraction of the di�erences in increases in

years of schooling between districts. A district-level regression of the increase in years of

schooling between these two groups of cohorts on the number of primary schools constructed

per school-age children has an R-squared of 0.03 only. The INPRES program was not the only

school construction program taking place at that time: between 1973 and 1983, the number of

primary, middle, and high schools in the country respectively increased by 96, 94, and 139%.

Including the change in the number of middle and high schools in the district-level regression

increases its R-squared to 0.14, but still leaves most of the variation unexplained.

Because of this, the results in Du�o's paper rely on the assumption that returns to education

are homogeneous between districts. The author �rst uses a simple Wald-DID with her two

groups of districts and cohorts to estimate returns to education. Under Assumptions 1-3

and 4O, one can show that this simple Wald-DID is equal to 0.47
0.11ACR1 − 0.36

0.11ACR0, where

ACR1 and ACR0 respectively denote the ACR parameters we introduced in Section 4.3 in the

treatment and in the control group, and where the weights can be computed from Table 3.14

If ACR1 6= ACR0, this simple Wald-DID could lie far from both ACR1 and ACR0. Then,

the author considers richer speci�cations. All of them include cohort and district of birth

�xed e�ects. We show in the supplementary material (see Theorem S2) that such regressions

estimate a weighted sum of switchers returns to education across districts, with potentially

many negative weights. We estimate the weights received by each district in her data, and

�nd that almost half of districts receive a negative weight, with negative weights summing up

to -3.28. Here again, if switchers' returns are heterogeneous across districts with positive and

negative weights, these regression coe�cients could lie very far from returns in any district.

Therefore, these richer speci�cations also rely on the assumption that returns to education

are homogeneous across districts.

This assumption is not warranted in this context. As one can see in Table 3, educational

attainment in the older cohort is substantially higher in control than in treatment districts,

implying that the supply of skilled labor is higher there. Returns to education could be

14Theorem 3.1 can easily be generalized to non-binary, ordered treatments.
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lower in control districts if the two groups face the same demand for skilled labor. On the

other hand, this di�erence in educational attainment might also indicate a higher level of

economic development in control districts, in which case demand for skilled labor and returns

to education could be higher there.

Table 3: Average number of years of education completed

Cohort 0 Cohort 1 Evolution s.e.

Groups in Du�o (2001)

Treatment districts 8.02 8.49 0.47 (0.070)

Control districts 9.40 9.76 0.36 (0.038)

New groups

Treatment districts 8.65 9.64 0.99 (0.082)

Control districts 9.60 9.55 -0.05 (0.097)

Notes. This table reports the evolution of average years of schooling between cohorts 0 and 1 in the treatment

and controls groups used by Du�o (2001) and in our new treatment and control groups. Standard errors are

clustered at the district level.

To avoid relying on the assumption that treatment e�ects are homogeneous between districts,

we use a di�erent statistical procedure from that used by Du�o to classify districts into a

treatment and a control group. This procedure should classify as controls only districts with a

stable distribution of education. Any classi�cation method leads us to make two types of errors:

classify some districts where the distribution of education remained constant as treatments

(type 1 error); and classify some districts where this distribution changed as controls (type 2

error). Type 1 errors are innocuous. For instance, if Assumptions 3 and 4O are satis�ed, all

control districts have the same evolution of their expected outcome. Misclassifying some as

treatment districts leaves the Wald-DID estimator unchanged, up to sampling error. On the

other hand, type 2 errors are a more serious concern. They lead us to include districts where

the true distribution of education was not stable in our super control group, thus violating

one of the requirements of Theorem 4.1.

We therefore choose a method based on chi-squared tests with very liberal level. Speci�cally,

we assign a district to our control group if the p-value of a chi-squared test comparing the

distribution of education between the two cohorts in that district is greater than 0.5. If that

p-value is lower than 0.5 and the average number of years of education increased in that

district, we assign it to our treatment group. We end up with control and treatment groups

respectively made up of 64 and 123 districts. We exclude from the analysis 97 districts with

a p-value lower than 0.5 and where years of education decreased. As shown in Section 4.1,
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we could gather them together to form a third super group, and use results from Theorem

4.1 to estimate returns to education. However, doing this hardly changes our point estimates.

We therefore stick to two super groups, to keep the presentation as simple as possible and to

follow Du�o (2001) who also has two super treatment and control groups.

As shown in Table 3, in treatment districts the younger cohort completed one more year of

education than the older one, while in control districts the two cohorts completed almost the

same number of years of education. In treatment districts, the distribution of education in

the younger cohort almost stochastically dominates that in the older cohort, as one can see

from Table 4. The college completion rate is 2.5 percentage points higher in the older than

in the younger cohort, but that di�erence is fairly small. Moreover, in control districts, the

distribution of education is almost the same between the two cohorts. The primary school and

college completion rate are respectively 2.6 percentage points higher and 3.3 percentage points

lower in the younger cohort, but these di�erences are small too. Overall, the two requirements

of Theorem 4.4 are close to being satis�ed. We argue below that the minor departures from

these two requirements that can be seen in Table 4 are unlikely to drive our results.

Table 4: Evolution of the distribution of education

Cohort 0 Cohort 1 Evolution s.e.

Treatment group

Completed primary school 0.815 0.931 0.116 (0.008)

Completed middle school 0.531 0.676 0.145 (0.011)

Completed high school 0.406 0.491 0.085 (0.013)

Completed undergrad 0.094 0.069 -0.025 (0.006)

N 17471

Control group

Completed primary school 0.877 0.904 0.026 (0.008)

Completed middle school 0.640 0.656 0.016 (0.012)

Completed high school 0.510 0.489 -0.021 (0.013)

Completed undergrad 0.104 0.071 -0.033 (0.006)

N 4868

Notes. This table reports the evolution of schooling between cohorts 0 and 1 by broad categories in our new

treatment and control groups. Standard errors are clustered at the district level.

Finally, we consider two placebo experiments to assess the plausibility of the common trends

assumptions underlying our estimators with our �super groups�. First, following Du�o (2001),

39



we compare years of schooling and wages for men born between 1957 and 1962 and those

born between 1951 and 1956 (cohort -1). Then, we compare men born between 1951 and

1956 and those born between 1945 and 1950 (cohort -2). Results lend strong support to our

identi�cation strategy. The di�erence in average years of education between the two groups

of districts is stable in the three older cohorts, but it is much larger for the younger cohort.

Accordingly, the di�erence in average wages between the two groups of districts is also very

stable in the three older cohorts, but it is much larger for the younger cohort. This remains

true when instead of comparing average wages we estimate the numerator of the Wald-TC and

of the Wald-CIC. While the placebo estimators are small and insigni�cant, the true estimators

are large and signi�cant. Theorem 4.1 relies on the assumption that G ⊥⊥ T . This assumption
fails to hold here: the distribution of districts is not perfectly stable between the two cohorts.

However, our placebo tests suggest that our common trend assumptions are satis�ed directly

at the �super group� level, thus implying that deviations from G ⊥⊥ T are not a serious concern

for our results.

Table 5: Placebo tests

Cohort -2 versus -1 Cohort -1 versus 0 Cohort 0 versus 1

DID schooling 0.108 -0.006 1.030

(0.191) (0.160) (0.127)

DID wages 0.050 0.002 0.164

(0.035) (0.026) (0.028)

Numerator Wald-TC 0.024 -0.012 0.103

(0.026) (0.021) (0.028)

Numerator Wald-CIC 0.023 -0.009 0.099

(0.027) (0.021) (0.028)

N 14452 19938 22339

Notes. This table reports placebo and true estimates comparing the evolution of education and wages from

cohort -2 to 1 in our two groups of districts. Standard errors are clustered at the district level. For the

numerator of the Wald-CIC, clustered standard errors are obtained by block bootstrap.

6.2 Results

First, we compare the weighted average of Wald-DIDs in Du�o (2001) to a simple Wald-DID

with our control groups. In Table 6, we estimate the same 2SLS regression as that reported

in the �rst column and third line of Table 7 in Du�o (2001), and we obtain returns of 7.3%
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per year of schooling.15 Then, we estimate the Wald-DID with our groups and �nd returns

of 15.9% per year of schooling. This coe�cient is signi�cantly di�erent from the previous

one (t-stat=-2.15), and it is also more precisely estimated: its standard error is 37% smaller,

presumably because it relies on a much larger �rst stage. While the estimator in Du�o

(2001) is only signi�cant at the 10% level (t-stat=1.68),16 our Wald-DID is signi�cant at any

conventional level. Note that the di�erence between these two estimators does not come from

the fact they are estimated on di�erent samples. Estimating Du�o's regression on our sample

of 22,339 observations actually yields a smaller coe�cient than her original estimate, which is

still signi�cantly di�erent from ours. The di�erence between these two estimates could stem

from the fact that districts where years of schooling increased less also have higher returns

to education. This would bias downward the estimate in Du�o (2001), while our Wald-DID

estimator does not rely on any treatment e�ect homogeneity assumption.

On the other hand, the validity of our Wald-DID still relies on Assumption 4O, which might

not be plausible in this context. For instance, under Assumption 4O the wage gap between

high-school graduates in cohort 0 and 1 should remain the same if they had only completed

primary school. Had they only completed primary school, high school graduates of both

cohorts would have joined the labor market earlier, and would have had more labor market

experience at the time we compare their wages. The wage gap between the two cohorts might

then have been lower, because returns to experience tend to be decreasing (see e.g. Mincer

& Jovanovic, 1979).17 The data lends some support to this hypothesis. In the control group,

while high-school graduates in cohort 1 earn 54% less than their cohort 0 counterpart, the gap

is only 20% for non-graduates, and the di�erence is signi�cant (t-stat=-7.64). This di�erence

could partly arise from selection e�ects: non-graduates di�er from high school graduates, so

the cohort gap among non-graduates might not be equal to the cohort gap we would have

observed among graduates had they not graduated. Still, it seems unlikely that selection can

fully account for this almost threefold di�erence.

Our Wald-TC and Wald-CIC estimators do not rely on Assumption 4O. They lie in-between

the estimate in Du�o (2001) and our Wald-DID. They do not di�er signi�cantly from the

coe�cient in Du�o (2001), but this is partly because this coe�cient is imprecisely estimated.

Using the Wald-TC estimator, one can for instance reject that returns to education are lower

than 6% at the 5% level. On the other hand, the Wald-TC and Wald-CIC signi�cantly di�er

from the Wald-DID, with t-stats respectively equal to -3.52 and -3.66. The Wald-DID and

15Our coe�cient di�ers very slightly from that of the author because we were not able to obtain exactly her

sample of 31,061 observations.
16This point estimate was signi�cant at the 5% level in the original paper. But once clustering standard

errors at the district level, which has become standard practice in DID analysis since Bertrand et al. (2004),

it loses some statistical signi�cance.
17We follow Mincer & Jovanovic (1979) and estimate a mincerian regression of wages on education, education

squared, age, and age squared in our data. We also �nd a signi�cantly negative coe�cient of age squared.

41



Wald-TC rely on di�erent �common trends� assumptions between districts (Assumptions 3 and

5O). But challenging one while defending the other seems di�cult as these two assumptions are

substantively very close. On the other hand, the Wald-TC and Wald-CIC do not require that

the wage gap between cohorts be constant across potential levels of education (Assumption

4O). As discussed in the previous paragraph, this assumption is not warranted in this context.

We therefore choose the Wald-TC and Wald-CIC as our preferred estimators.18

Table 6: Returns to education

Du�o (2001) WDID WTC WCIC OLS

Returns to education 0.073 0.159 0.104 0.100 0.077

(0.043) (0.028) (0.027) (0.027) (0.001)

N 30828 22339 22339 22339 30828

Notes. This table reports estimates of returns to schooling. Standard errors are clustered at the district level.

For the Wald-TC and Wald-CIC, clustered standard errors are obtained by block bootstrap.

As shown in Theorem 4.4, the parameter we estimate is a weighted average of the e�ect of

increasing years of education from d − 1 to d, over all possible values of d. The weights wd

can be estimated. They are shown in Figure 1. Our parameter puts the most weight on the

last years of primary school, on middle-school years, and on high-school years. Because in

the treatment group the distribution of education in young cohorts does not dominate that in

old cohorts, some weights are negative. But negative weights are fairly small, and sum up to

−0.14. Therefore, failure of stochastic dominance is unlikely to drive our results.

18To estimate the numerator of the Wald-CIC, we do not estimate Qd for each year of schooling. Instead,

we group schooling into 5 categories (did not complete primary school, completed primary school, completed

middle school, completed high school, completed college). Thus, we avoid estimating quantile-quantile trans-

forms on a very small number of units. To be consistent, we also use this de�nition to estimate the numerator

of the Wald-TC. Using years of schooling hardly changes our Wald-TC estimator.
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Figure 1: Weight received by each year of education.

6.3 Robustness checks

As a �rst robustness check, we investigate whether misclassi�cations of treatment districts as

controls can bias our results. To do so, we construct our groups again using a more liberal

criterion. Speci�cally, we assign a district to the control group if the p-value of the chi-squared

test is greater than 0.6. If that p-value is lower than 0.6 and the average number of years of

education increased in that district, we assign it to the treatment group. The control group

we obtain this way is 30% smaller than the previous one, which increases the variance of our

estimators. It also has a more stable distribution of education: a chi-squared test does not

reject the assumption that this distribution is the same between the two cohorts. On the other

hand, using this new control group leaves our estimates essentially unchanged: the Wald-DID,

Wald-TC, and Wald-CIC are now respectively equal to 15.8, 9.8, and 9.6%. This suggests that

the small changes in the distribution of education in our control group shown in Table 4 do

not drive our results.

As a second robustness check, we investigate whether the statistical procedure we use to form

our groups biases our estimates. Our method uses the same data twice, to form groups and

to estimate returns to education. It therefore shares some similarities with the endogenous

strati�cation methods studied in Abadie et al. (2013), which can produce �nite sample biases.

We conduct a simulation study to investigate the determinants of the bias. We �nd that �nite

sample bias is increasing with the correlation between the treatment and the unobserved

determinants of the outcome,19 decreasing with the size of the groups where the �rst stage

chi-squared tests are conducted, and decreasing with the change of treatment intensity in the

19An important di�erence with the methods studied in Abadie et al. (2013) is that our method does not

use the outcome but the treatment to construct groups. Therefore, our method produces biased estimates

only if the treatment is strongly correlated with the unobserved determinants of the outcome. If treatment is
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population. To detect potential biases, Abadie et al. (2013) suggest comparing the baseline

estimator to a split-sample estimator where half of the sample is used to construct groups, while

the other half is used to compute the estimator. Our simulations also suggest this is a good

way to assess the seriousness of the problem. With DGPs for which our procedure generates

little or no bias, the split-sample and baseline estimators are very close from each other; on

the other hand, with DGPs for which our procedure generates more bias, the split-sample

and baseline estimators are far away. Therefore, we re-estimate 200 times our Wald-DID,

Wald-TC, and Wald-CIC estimators using a split-sample procedure. The average of the split-

sample estimators are respectively 17.7%, 8.5%, and 8.0%. The three split-sample estimators

are not signi�cantly di�erent and less than 20% away from the original estimators. Overall,

endogenous strati�cation does not seem to be a strong concern in this application.

As a last robustness check, we investigate whether accounting for the sampling variance in-

duced by our classi�cation procedure would greatly a�ect our conclusions. Doing so is not

straightforward. A natural idea is to use a two-step bootstrap where in a �rst step we boot-

strap individuals within each cohort of each district and run our procedure to form our control

and treatment groups, while in a second step we bootstrap districts and estimate the Wald-

DID, the Wald-TC, and the Wald-CIC. In practice, this procedure does not work well. Under

the null that the distribution of education did not change over time, one can show that the

bootstrap statistics we use in our chi-squared tests do not have an approximate chi-squared

distribution, but are approximately distributed as sums of squares of N (0, 2) variables.20 We

therefore classify much fewer districts as controls than in the original sample. Dividing the

bootstrap test statistics by two does not solve the problem, because the modi�ed statistic then

has a di�erent distribution from that of the original statistic under the alternative hypothesis.

Instead, we opt for a modi�ed version of the two-step bootstrap: as in the original sample

we classify 23% of districts as controls, in each bootstrap replication we classify the 23% of

districts with the lowest chi-squared statistic as controls. The standard errors of our three

estimators are now respectively equal to 0.044, 0.045, and 0.045. Thus, accounting for the

sampling variance in our �rst step procedure seems to increase notably the standard errors

of our estimators, but also leaves our main conclusions unchanged. For instance, our Wald-

DID estimator would still be signi�cantly di�erent from the Wald-TC and Wald-CIC with

these larger standard errors. However, proving that this procedure indeed reproduces well the

distribution of our estimators goes beyond the scope of this paper and is left for future work.

This application di�ers from other applications of the fuzzy DID method in two important

ways. First, it makes use of individual-level data. Many applications of the fuzzy DID method

we found in our literature review directly use aggregate data at the county × year or state ×
year level. Second, the set of districts where education did not change between the two cohorts

exogenous or only weakly endogenous, it does not produce biases.
20Because districts are of �nite size, the distribution of the test statistic is not exactly equal to its asymptotic

distribution.
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is not known to the analyst and needs to be estimated. In many applications of the fuzzy DID

method the set of groups where treatment is stable is known to the analyst (examples include

Draca et al., 2011, Field, 2007, or Gentzkow et al., 2011). In our supplementary material,

we revisit Gentzkow et al. (2011) who use aggregate data and where the set of groups where

treatment is stable is known. We show that the methods we propose in this paper can also

be applied to this type of data, and that they can lead to substantially di�erent conclusions

from those reached by the authors using existing methods.

7 Conclusion

This paper studies treatment e�ects estimation in fuzzy DID designs. It makes the following

contributions. First, we show that the Wald-DID is equal to a local average treatment e�ect

(LATE) only if two strong assumptions are satis�ed: treatment e�ects should be constant

over time, and when treatment increases both in the treatment and in the control group treat-

ment e�ects should be homogeneous in the two groups. Second, we propose two alternative

estimators for the same LATE when the distribution of treatment is stable over time in the

control group. Our �rst estimator is a natural generalization of DID to the fuzzy case. Our

second estimator generalizes the changes-in-changes estimator introduced by Athey & Imbens

(2006). Our estimators do not require that treatment e�ects be stable over time. Third, we

show that under the same assumptions as those underlying our estimators, the same LATE

can be bounded when the distribution of treatment changes over time in the control group.

When using the DID method with fuzzy groups, it is crucial to �nd a control group where

treatment is stable over time to achieve point identi�cation without imposing treatment e�ect

homogeneity assumptions. In such instances, three estimators are available: the Wald-DID

and our two alternative estimators. Using one or the other estimator can make a substantial

di�erence, as we show in our application.
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A Main proofs

The lemmas pre�xed by S are stated and proven in our supplementary material (see de Chaise-

martin & D'Haultf÷uille, 2015). For any Θ ⊂ Rk, let
◦
Θ denote its interior and let C0(Θ) and

C1(Θ) denote respectively the set of continuous functions and the set of continuously di�eren-

tiable functions with strictly positive derivative on Θ. We most often use these notations with

Θ = S(Y ), in which cases we simply denote these sets by C0 and C1 respectively. Finally, for
any (d, g, t) ∈ S(D)×S(G)×S(T ), let pgt = P (G = g, T = t), pdgt = P (D = d,G = g, T = t),

pd|gt = P (Dgt = d), and Fdgt = FYdgt .

Theorem 3.1

Proof when p1|01 ≥ p1|00

Assume p1|01 ≥ p1|00. By Assumption 2, p1|11 > p1|10. Therefore, the threshold model on D

and Assumption 1 imply that

vg1 ≤ v00, for g ∈ {0, 1}. (12)

Then, it follows from Model (1) and Assumption 1 that

p1|g1 − p1|g0 = P (V ≥ vg1|T = 1, G = g)− P (V ≥ v00|T = 0, G = g)

= P (V ∈ [vg1, v00)|G = g). (13)

For any g ∈ {0, 1},

E(Yg1)− E(Yg0)

= E(hD(UD, 1)|G = g, T = 1)− E(hD(UD, 0)|G = g, T = 0)

= E(h1(U1, 1)|G = g, V ≥ vg1)P (V ≥ vg1|G = g) + E(h0(U0, 1)|G = g, V < vg1)P (V < vg1|G = g)

− E(h1(U1, 0)|G = g, V ≥ v00)P (V ≥ v00|G = g)− E(h0(U0, 0)|G = g, V < v00)P (V < v00|G = g)

= E(h1(U1, 1)− h0(U0, 1)|G = g, V ∈ [vg1, v00))P (V ∈ [vg1, v00)|G = g)

+ E(h1(U1, 1)− h1(U1, 0)|G = g, V ≥ v00)P (V ≥ v00|G = g)

+ E(h0(U0, 1)− h0(U0, 0)|G = g, V < v00)P (V < v00|G = g)

= E(Yg1(1)− Yg1(0)|V ∈ [vg1, v00))P (V ∈ [vg1, v00)|G = g)

+ E(h1(U1, 1)− h1(U1, 0)|G = g, V ≥ v00)P (V ≥ v00|G = g)

+ E(h0(U0, 1)− h0(U0, 0)|G = g, V < v00)P (V < v00|G = g)

= E(Yg1(1)− Yg1(0)|V ∈ [vg1, v00))P (V ∈ [vg1, v00)|G = g)

+ E(h0(U0, 1)− h0(U0, 0)|G = g). (14)

The �rst, second, third, fourth, and �fth equalities respectively follow from Model (1), Model

(1) and Assumption 1, Equation (12), Model (1) and Assumption 1, and Assumption 4.
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Combining Equation (14) and Assumption 3 imply that

DIDY =E(Y11(1)− Y11(0)|S1)P (S1|G = 1)

−E(Y01(1)− Y01(0)|S0)P (S0|G = 0).

Dividing each side by DIDD and using Equation (13) yields the result.

Proof when p1|01 < p1|00

Assume p1|01 < p1|00. Equation (14) still holds for g = 1, but not for g = 0 because v00 < v01.

On the other hand, a reasoning similar to that we used to derive Equations (13) yields

p1|00 − p1|01 = P (S0|G = 0). (15)

Moreover,

E(Y01)− E(Y00)

= E(h1(U1, 1)|G = 0, V ≥ v01)P (V ≥ v01|G = 0) + E(h0(U0, 1)|G = 0, V < v01)P (V < v01|G = 0)

− E(h1(U1, 0)|G = 0, V ≥ v00)P (V ≥ v00|G = 0)− E(h0(U0, 0)|G = 0, V < v00)P (V < v00|G = 0)

= −E(h1(U1, 1)− h0(U0, 1)|G = 0, V ∈ [v00, v01))P (V ∈ [v00, v01)|G = 0)

+ E(h1(U1, 1)− h1(U1, 0)|G = 0, V ≥ v00)P (V ≥ v00|G = 0)

+ E(h0(U0, 1)− h0(U0, 0)|G = 0, V < v00)P (V < v00|G = 0)

= −E(Y01(1)− Y01(0)|V ∈ [v00, v01))P (V ∈ [v00, v01)|G = 0)

+ E(h0(U0, 1)− h0(U0, 0)|G = 0). (16)

The �rst, second, and third equalities respectively follow from Model (1) and Assumption 1,

v00 < v01, Model (1) and Assumption 1 and 4. Taking the di�erence between Equation (14)

with g = 1 and Equation (16) yields

DIDY =E(Y11(1)− Y11(0)|S1)P (S1|G = 1)

+E(Y01(1)− Y01(0)|S0)P (S0|G = 0).

Dividing each side of the previous display by DIDD and using Equations (13) and (15) yields

the result. �

Theorem 3.2

Proof of 1

Following the same steps as those used to reach the last but one equality in Equation (14),

we obtain

E(Y11)− E(Y10)

= E(Y11(1)− Y11(0)|S1)P (S1|G = 1)

+ E(h1(U1, 1)− h1(U1, 0)|G = 1, V ≥ v00)P (V ≥ v00|G = 1)

+ E(h0(U0, 1)− h0(U0, 0)|G = 1, V < v00)P (V < v00|G = 1). (17)
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Then,

δ1 = E(Y101)− E(Y100)

= E(h1(U1, 1)|G = 0, V ≥ v00)− E(h1(U1, 0)|G = 0, V ≥ v01)

= E(h1(U1, 1)− h1(U1, 0)|G = 0, V ≥ v00). (18)

The second equality follows from Model (1) and Assumption 1. The third one follows from

the fact that p1|01 = p1|00 combined with Assumption 1 implies that {G = 0, V ≤ v01} =

{G = 0, V ≤ v00}.

Similarly,

δ0 = E(h0(U0, 1)− h0(U0, 0)|G = 0, V < v00). (19)

Finally, the result follows combining Equations (17), (18), (19), and Assumption 5, once noted

that p1|10 = P (V ≥ v00|G = 1) and P (S1|G = 1) = p1|11 − p1|10.

Proof of 2

We only prove that W TC is a lower bound when λ00 > 1. The proofs for the upper bound

and when λ00 < 1 are symmetric.

We have

E(Y11(1)− Y11(0)|S1)P (S1|G = 1)

= E(Y11)− E(Y10)

− E(h1(U1, 1)− h1(U1, 0)|G = 1, V ≥ v00)P (V ≥ v00|G = 1)

− E(h0(U0, 1)− h0(U0, 0)|G = 1, V < v00)P (V < v00|G = 1)

= E(Y11)− E(Y10)

− E(h1(U1, 1)− h1(U1, 0)|G = 0, V ≥ v00)P (V ≥ v00|G = 1)

− E(h0(U0, 1)− h0(U0, 0)|G = 0, V < v00)P (V < v00|G = 1)

= E(Y11)− E(Y10)

− (E(Y01(1)|V ≥ v00)− E(Y100))p1|10

− (E(Y01(0)|V < v00)− E(Y000))p0|10.

The �rst, second, and third equalities respectively follow from Equation (17), Assumption 5,

and Model (1) combined with Assumption 1.

It follows from the last display that the proof will be complete if we can show that δ1 and δ0 are

respectively upper bounds for E(Y01(1)|V ≥ v00)−E(Y100) and E(Y01(0)|V < v00)−E(Y000).

50



When λ00 > 1, it follows from Model (1) and Assumption 1 that v00 < v01. Then, we have

P (V ≥ v01|G = 0, T = 1, V ≥ v00) =
P (V ≥ v01|G = 0, T = 1)

P (V ≥ v00|G = 0, T = 1)

=
P (V ≥ v01|G = 0, T = 1)

P (V ≥ v00|G = 0, T = 0)

=
p1|01

p1|00

= λ01, (20)

where the second equality follows from Assumption 1. Therefore,

E(Y01(1)|V ≥ v00) = λ01E(Y01(1)|V ≥ v01) + (1− λ01)E(Y01(1)|V ∈ S0)

≤ λ01E(Y101) + (1− λ01)y =

∫
ydF 101(y). (21)

This proves that δ1 is an upper bound for E(Y01(1)|V ≥ v00)− E(Y100).

Similarly,

P (V < v00|G = 0, T = 1, V < v01) = 1/λ00,

and

E(Y001) = 1/λ00E(Y01(0)|V < v00) + (1− 1/λ00)E(Y01(0)|V ∈ S0).

Following Horowitz & Manski (1995), the last display implies that

E(Y01(0)|V < v00) ≤
∫
ydF 001(y).

This proves that δ0 is an upper bound for E(Y01(0)|V < v00)− E(Y000). �

Lemma 3.1

We only prove the formula for d = 0, the reasoning being similar for d = 1.

Using the same steps as those used to prove Equations (20) and (21) , one can show that

P (S1|G = 1, T = 1, V < v00) =
p0|10 − p0|11

p0|10

and

FY11(0)|V <v00(y) =
p0|10 − p0|11

p0|10
FY11(0)|S1

(y) +
p0|11

p0|10
F011(y).

Therefore,

FY11(0)|S1
(y) =

p0|10FY11(0)|V <v00(y)− p0|11F011(y)

p0|10 − p0|11
. (22)
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Then, we show that for all y ∈ S(Y11(0)|V < v00),

FY11(0)|V <v00 = F010 ◦ F−1000 ◦ FY01(0)|V <v00 . (23)

Assumption 1 implies that U0 ⊥⊥ T |G,V < v00. As a result, for all (g, t) ∈ {0, 1}2,

FYgt(0)|V <v00(y) = P (h0(U0, t) ≤ y|G = g, T = t, V < v00)

= P (U0 ≤ h−10 (y, t)|G = g, V < v00)

= FU0|G=g,V <v00(h−10 (y, t)).

The second point of Assumption 7 combined with Assumptions 1 and 6 implies that FU0|G=g,V <v00

is strictly increasing. Hence, its inverse exists and for all q ∈ (0, 1),

F−1Ygt(0)|V <v00(q) = h0

(
F−1U0|G=g,V <v00

(q), t
)
.

This implies that for all y ∈ S(Yg1(0)|V < v00),

F−1Yg0(0)|V <v00 ◦ FYg1(0)|V <v00(y) = h0(h
−1
0 (y, 1), 0). (24)

By Assumption 7, we have

S(Y010) = S(Y000)

⇒ S(Y10(0)|V < v00) = S(Y00(0)|V < v00)

⇒ S(h0(U0, 0)|V < v00, G = 1, T = 0) = S(h0(U0, 0)|V < v00, G = 0, T = 0)

⇒ S(U0|V < v00, G = 1) = S(U0|V < v00, G = 0)

⇒ S(h0(U0, 1)|V < v00, G = 1, T = 1) = S(h0(U0, 1)|V < v00, G = 0, T = 1)

⇒ S(Y11(0)|V < v00) = S(Y01(0)|V < v00),

where the third and fourth implications are obtained combining Assumptions 1 and 6. Once

combined with Equation (24), the previous display implies that for all y ∈ S(Y11(0)|V < v00),

F−1Y10(0)|V <v00 ◦ FY11(0)|V <v00(y) = F−1Y00(0)|V <v00 ◦ FY01(0)|V <v00(y).

This proves Equation (23), because {V < v00, G = g, T = 0} = {D = 0, G = g, T = 0}.

Finally, we show that

FY01(0)|V <v00(y) = λ00F001(y) + (1− λ00)FY01(0)|S0
(y). (25)

Suppose �rst that λ00 ≤ 1. Then, v01 ≤ v00 and S0 = {V ∈ [v01, v00), G = 0}. Moreover,

reasoning as for P (S1|G = 1, V < v00), we get

λ00 =
P (V < v01|G = 0)

P (V < v00|G = 0)
= P (V < v01|G = 0, V < v00)

FY01(0)|V <v00(y) = λ00F001(y) + (1− λ00)FY01(0)|S0
(y).
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If λ00 > 1, v01 > v00 and S0 = {V ∈ [v00, v01), G = 0}. We then have

1/λ00 = P (V < v00|G = 0, V < v01)

F001(y) = 1/λ00FY01(0)|V <v00(y) + (1− 1/λ00)FY01(0)|S0
(y),

so Equation (25) is also satis�ed.

The lemma follows by combining (22), (23) and (25). �

Theorem 3.3

Proof of 1

The proof follows from Lemma 3.1: λ00 = λ01 = 1 when pd|00 = pd|01 > 0.

Proof of 2

Construction of the bounds.

We only establish the validity of the bounds for FY11(0)|S1
(y). The reasoning is similar for

FY11(1)|S1
(y). Bounds for ∆ and τq directly follow from those for the cdfs.

We start considering the case where λ00 < 1. We �rst show that in such instances, 0 ≤
T0, G0(T0), C0(T0) ≤ 1 if and only if

T0 ≤ T0 ≤ T0. (26)

G0(T0) is included between 0 and 1 if and only if

−λ00F001

1− λ00
≤ T0 ≤

1− λ00F001

1− λ00
,

while C0(T0) is included between 0 and 1 if and only if

H−10 (λ10F011)− λ00F001

1− λ00
≤ T0 ≤

H−10 (λ10F011 + (1− λ10))− λ00F001

1− λ00
.

Since −λ00F001/(1− λ00) ≤ 0 and (1− λ00F001)/(1− λ00) ≥ 1, T0, G0(T0) and C0(T0) are all

included between 0 and 1 if and only if

M0

(
H−10 (λ10F011)− λ00F001

1− λ00

)
≤ T0 ≤ m1

(
H−10 (λ10F011 + (1− λ10))− λ00F001

1− λ00

)
. (27)

Composing each term of these inequalities by M0(.) and then by m1(.) yields Equation (26),

since M0(T0) = m1(T0) = T0 and M0 ◦m1 = m1 ◦M0.

Now, when λ00 < 1, G0(T0) is increasing in T0, so C0(T0) as well is increasing in T0. Combining

this with (26) implies that for every y′,

C0(T0)(y
′) ≤ C0(T0)(y

′) ≤ C0(T0)(y
′). (28)
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Because C0(T0)(y) is a cdf,

C0(T0)(y) = inf
y′≥y

C0(T0)(y
′) ≤ inf

y′≥y
C0(T0)(y

′) = FCIC,0(y).

This proves the result for the upper bound. The result for the lower bound follows similarly.

Let us now turn to the case where λ00 > 1. Using the same reasoning as above, we get that

G0(T0) and C0(T0) are included between 0 and 1 if and only if

λ00F001 − 1

λ00 − 1
≤ T0 ≤

λ00F001

λ00 − 1
,

λ00F001 −H−10 (λ10F011 + (1− λ10))
λ00 − 1

≤ T0 ≤
λ00F001 −H−10 (λ10F011)

λ00 − 1
.

The inequalities in the �rst line are not binding since they are implied by those on the second

line. Thus, we also get (27). Hence, 0 ≤ T0, G0(T0), C0(T0) ≤ 1 if and only if

T0 ≤ T0 ≤ T0. (29)

Besides, when λ00 > 1, G0(T0) is decreasing in T0, so C0(T0) is also decreasing in T0. Combin-

ing this with Equation (29) implies that for every y, Equation (28) holds as well. This proves

the result.

Sketch of the proof of sharpness.

The full proof is in the supplementary material (see de Chaisemartin & D'Haultf÷uille, 2015).

We only consider the sharpness of FCIC,0, the reasoning being similar for the upper bound.

The proof is also similar and actually simpler for d = 1. The corresponding bounds are proper

cdf, so we do not have to consider converging sequences of cdf as we do in case b) below.

a. λ00 > 1. We show that if Assumptions 7-9 hold, then FCIC,0 is sharp. For that purpose,

we construct h̃0, Ũ0, Ṽ such that:

(i) Y = h̃0(Ũ0, T ) when D = 0 and D = 1{Ṽ ≥ vGT };

(ii) (Ũ0, Ṽ ) ⊥⊥ T |G;

(iii) h̃0(., t) is strictly increasing for t ∈ {0, 1};

(iv) F
h̃0(Ũ0,1)|G=0,T=1,Ṽ ∈[v00,v01) = T 0.

(i) ensures that Model (1) is satis�ed on the observed data. Because we can always de�ne

Ỹ (0) as h̃0(Ũ0, T ) when D = 1 without contradicting the data and the model, (i) is actually

su�cient for Model (1) to hold globally, not only on the observed data. (ii) and (iii) ensure that

Assumptions 1 and 6 hold. Finally, (iv) ensures that the DGP corresponding to (h̃0, Ũ0, Ṽ )

rationalizes the bound.
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The construction of h̃0, Ũ0, and Ṽ is long, so its presentation is deferred to the supplementary

material.

b. λ00 < 1. The idea is similar as in the previous case. A di�erence, however, is that when

λ00 < 1, T 0 is not a proper cdf, but a defective one, since limy→y T 0(y) < 1. As a result, we

cannot de�ne a DGP such that T̃0 = T 0, However, by Lemma S2, there exists a sequence (T k0)k

of cdf such that T k0 → T 0, G0(T
k
0) is an increasing bijection from S(Y ) to (0, 1) and C0(T

k
0) is

increasing and onto (0, 1). We can then construct a sequence of DGP (h̃k0(., 0), h̃k0(., 1), Ũk0 , Ṽ
k)

such that Points (i) to (iii) listed above hold for every k, and such that T̃ k0 = T k0. Since T
k
0(y)

converges to T 0(y) for every y in
◦
S(Y ), we thus de�ne a sequence of DGP such that T̃ k0 can be

arbitrarily close to T 0 on
◦
S(Y ) for su�ciently large k. Since C0(.) is continuous, this proves

that FCIC,0 is sharp on
◦
S(Y ). This construction is long, so its exposition is deferred to the

supplementary material. �

Theorem 3.4

Proof of 1

p1|00 = p1|10 implies that WDID = WTC . Therefore, the proof will be complete if we can show

that WDID = E(Y11(1)− Y11(0)|D = 1). On that purpose, notice that the outcome Equation

of Model (1), U0 ⊥⊥ T |G, and Assumption 3 imply that

E(Y11(0))− E(Y10(0))− (E(Y01(0))− E(Y00(0))) = 0. (30)

Then,

DIDY = E(Y11)− E(Y10)− (E(Y01)− E(Y00))

= p1|11E(Y11(1)− Y11(0)|D = 1) + E(Y11(0))− E(Y10(0))− (E(Y01(0))− E(Y00(0)))

= p1|11E(Y11(1)− Y11(0)|D = 1).

The second equality follows from p1|00 = p1|01 = p1|10 = 0, the third from Equation (30). This

completes the proof once noted that DIDD = p1|11.

Proof of 2

As p1|10 = 0, the numerator of WCIC is E(Y11)−E(Q0(Y10)). It is easy to see that the proof

will be complete if we can show that E(Q0(Y10)) = E(Y11(0)). As p1|00 = p1|01 = 0, Q0 is the

quantile-quantile transform of the outcome in the entire control group, so E(Q0(Y10)) is the

same estimand as that considered in Equation (16) in Athey & Imbens (2006). The outcome

equation of Model (1), U0 ⊥⊥ T |G, and Assumptions 6 and 7 ensure that the assumptions of

their Theorem 3.1 hold. Therefore, E(Q0(Y10)) = E(Y11(0)) �
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Theorem 3.5

Assume that p1|00 = p1|01 = 1 (the proof is symmetric when p1|00 = p1|01 = 0). For

FY11(1)|S1
(y), the proof directly follows from Lemma 3.1. For FY11(0)|S1

(y), one can follow

similar steps as those used to establish Equation (24) and show that for all y ∈ S(Y ),

F−1Y00(1)|V≥v00 ◦ FY01(1)|V≥v00(y) = h1(h
−1
1 (y, 1), 0). (31)

Equations (24) and (31), Assumption 10, and p1|00 = p1|01 = 1 imply that for all y ∈ S(Y ),

FY11(0)|V <v00(y) = F010 ◦ F−1100 ◦ F101(y). (32)

Combining Equations (22) and (32) yields the result �

Theorem 4.1

We start proving the �rst statement. Under the assumptions of the theorem, Assumptions

1-4 are satis�ed for the treatment and control groups G∗t = 1 and G∗t = 0 between dates t− 1

and t. For instance, the fact that (Ud, V ) ⊥⊥ T |G∗t = 0 follows from the fact that G ⊥⊥ T

and (Ud, V ) ⊥⊥ T |G = g for every g ∈ Gst. Moreover, for every t ≥ 1 and for every g ∈ Gst,
E(Dgt) = E(Dgt−1), thus implying that E(D|G∗t = 0, T = t) = E(D|G∗t = 0, T = t − 1).

Therefore, it follows from Theorem 3.1 that

W ∗DID(1, 0, t) = E(Y (1)− Y (0)|St, G∗t = 1, T = t). (33)

Similarly, one can show that

W ∗DID(−1, 0, t) = E(Y (1)− Y (0)|St, G∗t = −1, T = t). (34)

Then, G ⊥⊥ T implies that

DID∗D(1, 0, t)P (G∗t = 1) = (E(D|G∗t = 1, T = t)− E(D|G∗t = 1, T = t− 1))P (G∗t = 1)

= P (St|G∗t = 1)P (G∗t = 1)

= P (St, G
∗
t = 1).

Similarly, one can show that

DID∗D(0,−1, t)P (G∗t = −1) = P (St, G
∗
t = −1).

Therefore, it follows from the two previous displays that

DID∗D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1) = P (St) (35)

and

DID∗D(1, 0, t)P (G∗t = 1)

DID∗D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1)

= P (G∗t = 1|St). (36)
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The result follows combining Equations (33), (34), (35), and (36), once noted that Assumption

1 and G ⊥⊥ T imply that P (G∗t = 1|St) = P (G∗t = 1|St, T = t) and P (G∗t = −1|St) = P (G∗t =

−1|St, T = t).

The proofs of the second and third statements follow from similar arguments. To prove the

fourth statement, it su�ces to notice that the �rst point of Assumption 11 implies that for

every g ∈ {0, 1, ..., g} the sequence vgt is monotonic in t. Therefore, for every g ∈ S(G) and

t 6= t′ ∈ {1, ..., t}2, Sgt ∩ Sgt′ = ∅. This in turn implies that St ∩ St′ = ∅. Combining this with
the third point of Assumption 11 yields the result �

Theorem 4.2

The two results are straightforward extensions of the second point of Theorems 3.2 and 3.3,

so their proof is omitted.

Theorem 4.3

We only prove the �rst result, the second and third results follow from similar arguments.

WDID(X) = ∆(X) follows from the same steps as those used to prove Theorem 3.1. Then,

WX
DID = ∆ follows after some algebra, once noted that

fX11|S1
(x) =

E(D11|X = x)− E(D10|X = x)

E(D11)− E(E(D10|X)|G = 1, T = 1)
fX11(x)

=
DIDD(x)

E[DIDD(X)|G = 1, T = 1]
fX11(x).

The �rst equality follows from Model (10), Assumption 1X, and Bayes's law. The second

follows from the fact that E(D01|X)− E(D00|X) = 0 almost surely. �

Proof of Theorem 4.4

We only prove the �rst statement, the second and third statements follow from similar argu-

ments.

D01 ∼ D00 and D11 & D10 combined with Model (11) and Assumption 1 imply that

vd01 = vd00, for every d ∈ {1, d} (37)

vd11 ≤ vd10, for every d ∈ {1, d}. (38)

Then, it follows from Model (11), Assumption 1 and Equation (38) that for every d ∈
{1, 2, ..., d},

P (D11 ≥ d)− P (D10 ≥ d) = P (V ≥ vdg1|T = 1, G = g)− P (V ≥ vdg0|T = 0, G = g)

= P (V ∈ [vdg1, v
d
g0)|G = g). (39)
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Then, for every g ∈ {0, 1},

E(Yg1)− E(Yg0)

= E(hD(UD, 1)|G = g, T = 1)− E(hD(UD, 0)|G = g, T = 0)

=
d∑
d=0

E(hd(Ud, 1)|G = g, V ∈ [vdg1, v
d+1
g1 ))P (V ∈ [vdg1, v

d+1
g1 )|G = g)

−
d∑
d=0

E(hd(Ud, 0)|G = g, V ∈ [vdg0, v
d+1
g0 ))P (V ∈ [vdg0, v

d+1
g0 )|G = g)

=

d∑
d=1

E(hd(Ud, 1)− hd−1(Ud−1, 1)|G = g, V ∈ [vdg1, v
d
g0))P (V ∈ [vdg1, v

d
g0)|G = g)

+
d∑
d=0

E(hd(Ud, 1)− E(hd(Ud, 0)|G = g, V ∈ [vdg0, v
d+1
g0 ))P (V ∈ [vdg0, v

d+1
g0 )|G = g)

=

d∑
d=1

E(Yg1(d)− Yg1(d− 1)|V ∈ [vdg1, v
d
g0))P (V ∈ [vdg1, v

d
g0)|G = g)

+ E(h0(U0, 1)− h0(U0, 0)|G = g). (40)

The �rst, second, third, and fourth, equalities respectively follow from Model (11), Model (11)

and Assumption 1, Equations (37) and (38), and Model (11) combined with Assumptions 1

and 4O.

Combining Equation (40) with Equation (37) and Assumption 3 imply that

DIDY =

d∑
d=1

E(Y11(d)− Y11(d− 1)|V ∈ [vd11, v
d
10))P (V ∈ [vd11, v

d
10)|G = 1).

The result follows from Equation (39), after dividing each side of the previous display by

DIDD �

Theorem 5.1

Proof of 1 and 2

Asymptotic normality is obvious by the central limit theorem and the delta method. Con-

sistency of the bootstrap follows by consistency of the bootstrap for sample means (see, e.g.,

van der Vaart, 2000, Theorem 23.4) and the delta method for bootstrap (van der Vaart, 2000,

Theorem 23.5). A convenient way to obtain the asymptotic variance is to use repeatedly the

following argument. If

√
n
(
Â−A

)
=

1√
n

n∑
i=1

ai + oP (1) and
√
n
(
B̂ −B

)
=

1√
n

n∑
i=1

bi + oP (1),
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then Lemma S3 ensures that

√
n

(
Â

B̂
− A

B

)
=

1√
n

n∑
i=1

ai − (A/B)bi
B

+ oP (1). (41)

This implies for instance that

√
n
(
Ê(Y11)− E(Y11)

)
=

1√
n

n∑
i=1

GiTi(Yi − E(Y11))

p11
+ oP (1),

and similarly for Ê(D11). Applying repeatedly this argument, we obtain, after some algebra,

√
n
(
ŴDID −∆

)
=

1√
n

n∑
i=1

ψDID,i + oP (1),

where, omitting the index i, ψDID is de�ned by

ψDID =
1

DIDD

[
GT (ε− E(ε11))

p11
− G(1− T )(ε− E(ε10))

p10
− (1−G)T (ε− E(ε01))

p01

+
(1−G)(1− T )(ε− E(ε00))

p00

]
(42)

and ε = Y −∆D. Similarly,

√
n
(
ŴTC −∆

)
=

1√
n

n∑
i=1

ψTC,i + oP (1),

where ψTC is de�ned by

ψTC =
1

E(D11)− E(D10)

{
GT (ε− E(ε11))

p11
− G(1− T )(ε+ (δ1 − δ0)D − E(ε10 + (δ1 − δ0)D10))

p10

− E(D10)D(1−G)

[
T (Y − E(Y101))

p101
− (1− T )(Y − E(Y100))

p100

]
− (1− E(D10))(1−D)(1−G)

[
T (Y − E(Y001))

p001
− (1− T )(Y − E(Y000))

p000

]}
. (43)

Proof of 3

We �rst show that (F̂Y11(0)|S1
, F̂Y11(1)|S1

) tends to a continuous gaussian process. Let θ̃ =

(F000, F001, ..., F111, λ10, λ11). By Lemma S4,
̂̃
θ = (F̂000, F̂001, ..., F̂111, λ̂10, λ̂11) converges to a

continuous gaussian process. Let

πd : (F000, F001, ..., F111, λ10, λ11) 7→ (Fd10, Fd00, Fd01, Fd11, 1, λ1d) , d ∈ {0, 1},

so that (F̂Y11(0)|S1
, F̂Y11(1)|S1

) =
(
R1 ◦ π0(θ̃), R1 ◦ π1(θ̃)

)
, where R1 is de�ned as in Lemma

S5. πd is Hadamard di�erentiable as a linear continuous map. Because Fd10, Fd00, Fd01, Fd11

are continuously di�erentiable with strictly positive derivative by Assumption 13, λ1d > 0, and
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λ1d 6= 1 under Assumption 7, R1 is also Hadamard di�erentiable at (Fd10, Fd00, Fd01, Fd11, 1, λ1d)

tangentially to (C0)4×R2. By the functional delta method (see, e.g., van der Vaart & Wellner,

1996, Lemma 3.9.4), (F̂Y11(0)|S1
, F̂Y11(1)|S1

) tends to a continuous gaussian process.

Now, by integration by parts for Lebesgue-Stieljes integrals,

∆ =

∫ y

y
FY11(0)|S1

(y)− FY11(1)|S1
(y)dy.

Moreover, the map ϕ1 : (F1, F2) 7→
∫
S(Y )(F2(y)−F1(y))dy, de�ned on the domain of bounded

càdlàg functions, is linear. Because S(Y ) is bounded by Assumption 13, ϕ1 is also con-

tinuous with respect to the supremum norm. It is thus Hadamard di�erentiable. Because

∆̂ = ϕ1

(
F̂Y11(1)|S1

, F̂Y11(0)|S1

)
, ∆̂ is asymptotically normal by the functional delta method.

The asymptotic normality of τ̂q follows along similar lines. By Assumption 13, FY11(d)|S1

is di�erentiable with strictly positive derivative on its support. Thus, the map (F1, F2) 7→
F−12 (q) − F−11 (q) is Hadamard di�erentiable at (FY11(0)|S1

, FY11(1)|S1
) tangentially to the set

of functions that are continuous at (F−1Y11(0)|S1
(q), F−1Y11(1)|S1

(q)) (see Lemma 21.3 in van der

Vaart, 2000). By the functional delta method, τ̂q is asymptotically normal.

The validity of the bootstrap follows along the same lines. By Lemma S4, the bootstrap is

consistent for
̂̃
θ. Because both the LATE and LQTE are Hadamard di�erentiable functions of̂̃

θ, as shown above, the result simply follows by the functional delta method for the bootstrap

(see, e.g., van der Vaart, 2000, Theorem 23.9).

Finally, we compute the asymptotic variance of both estimators. The functional delta method

also implies that both estimators are asymptotically linear. To compute their asymptotic vari-

ance, it su�ces to provide their asymptotic linear approximation. For that purpose, let us �rst

linearize FY11(d)|S1
(y), for all y. It follows from the proof of the �rst point of Lemma S5 that

the mapping φ1 : (F1, F2, F3) 7→ F1 ◦F−12 ◦F3 is Hadamard di�erentiable at (Fd10, Fd00, Fd01),

tangentially to (C0)3. Moreover applying the chain rule, we obtain

dφ1(h1, h2, h3) = h1 ◦Q−1d +H ′d ◦ Fd01 ×
[
−h2 ◦Q−1d + h3

]
.

Applied to (F1, F2, F3) = (Fd10, Fd00, Fd01), this and the functional delta method once more

imply that
√
n
(
Ĥd ◦ F̂d01 −Hd ◦ Fd01

)
= dφ1(h1n, h2n, h3n) + oP (1),

where the oP (1) is uniform over y and h1n =
√
n(F̂d10 − Fd10). h2n and h3n are de�ned

similarly. Furthermore, applying Lemma S3 yields, uniformly over y,

h1n(y) =
1√
n

n∑
i=1

1{Di = d}Gi(1− Ti)(1{Yi ≤ y} − Fd10(y))

pd10
+ oP (1).
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A similar expression holds for h2n and h3n. Hence, by continuity of dφ1, we obtain, after some

algebra,

√
n
(
Ĥd ◦ F̂d01(y)−Hd ◦ Fd01(y)

)
=

1√
n

n∑
i=1

1{Di = d}
{
Gi(1− Ti)(1{Qd(Yi) ≤ y} −Hd ◦ Fd01(y))

pd10
+ (1−Gi)H ′d ◦ Fd01(y)

×
[
−(1− Ti)(1{Qd(Yi) ≤ y} − Fd01(y))

pd00
+
Ti(1{Yi ≤ y} − Fd01(y))

pd01

]}
+ oP (1),

which holds uniformly over y. Applying repeatedly Lemma S3, we then obtain, after some

algebra,
√
n
(
F̂Y11(d)|S1

(y)− FY11(d)|S1
(y)
)

=
1√
n

n∑
i=1

Ψdi(y) + oP (1),

where, omitting the index i,

Ψd(y) =
1

pd|11 − pd|10

{
GT

p11

[
1{D = d}1{Y ≤ y} − pd|11Fd11(y)− FY11(d)|S1

(y)
(
1{D = d} − pd|11

)]
+
G(1− T )

p10

[
−1{D = d} (1{Qd(Y ) ≤ y} −Hd ◦ Fd01(y)) +

(
1{D = d} − pd|10

) (
FY11(d)|S1

(y)−Hd ◦ Fd01(y)
)]

+pd|10(1−G)1{D = d}H ′d ◦ Fd01(y)

[
(1− T )(1{Qd(Y ) ≤ y} − Fd01(y))

pd00
− T (1{Y ≤ y} − Fd01(y))

pd01

]}
.

By the functional delta method, this implies that we can also linearize ŴCIC and τ̂q. Moreover,

we obtain by the chain rule the following in�uence functions:

ψCIC =

∫
Ψ0(y)−Ψ1(y)dy, (44)

ψq,CIC =

[
Ψ1

fY11(1)|S1

]
◦ F−1Y11(1)|S1

(q)−
[

Ψ0

fY11(0)|S1

]
◦ F−1Y11(0)|S1

(q). (45)

Theorem 5.2

Proof of 1

For any random variable R, let mR
gt(x) = E(Rgt|X = x). The estimator ŴX

DID can be written

as ŴX
DID = N̂X

DID/D̂
X
DID, with

N̂X
DID = Ê [Y11]− Ê

[
m̂Y

10(X11)
]
− Ê

[
m̂Y

01(X11)
]

+ Ê
[
m̂Y

00(X11)
]

D̂X
DID = Ê [D11]− Ê

[
m̂D

10(X11)
]
− Ê

[
m̂D

01(X11)
]

+ Ê
[
m̂D

00(X11)
]
.

The true parameter ∆ = NX
DID/D

X
DID can be decomposed similarly. We show below that the

eight terms in the numerator N̂X
DID and in the denominator D̂X

DID can be linearized. We can

then use, as in the previous proof, the formula for linearizing ratios.
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Let us �rst consider Ê
[
Ê(Y10|X)|G = 1, T = 1

]
. Assumption 14 ensures that we can apply

Lemma S8 to I = G× T , J = G× (1− T ), U = Y and V = 1. As a result,

√
n
(
Ê
[
Ê(Y10|X)|G = 1, T = 1

]
− E

[
mY

10(X)|G = 1, T = 1
])

=
1√
np11

n∑
i=1

Gi

[
Ti
(
mY

10(Xi)− E
[
mY

10(X)|G = 1, T = 1
])

+
(1− Ti)E(GT |Xi)

E(G(1− T )|Xi)

(
Yi −mY

10(Xi)
)]

+ oP (1).

Applying the same reasoning as above to the two other terms of N̂X
DID, we obtain

√
n
(
N̂X
DID −NX

DID

)
=

1√
np11

n∑
i=1

GiTi(Yi −mY
10(Xi)−mY

01(Xi) +mY
00(Xi)−NX

DID)− Gi(1− Ti)E(GT |Xi)

E(G(1− T )|Xi)

(
Yi −mY

10(Xi)
)

+
(1−Gi)TiE(GT |Xi)

E((1−G)T |Xi)

(
Yi −mY

01(Xi)
)
− (1−Gi)(1− Ti)E(GT |Xi)

E(1−G)(1− T )|Xi)

(
Yi −mY

00(Xi)
)

+ oP (1).

Similarly, the denominator satis�es

√
n
(
D̂X
DID −DX

DID

)
=

1√
np11

n∑
i=1

{
GiTi(Di −mD

10(Xi)−mD
01(Xi) +mD

00(Xi)−DX
DID)− Gi(1− Ti)E(GT |Xi)

E(G(1− T )|Xi)

(
Di −mD

10(Xi)
)

+
(1−Gi)TiE(GT |Xi)

E((1−G)T |Xi)

(
Di −mD

01(Xi)
)
− (1−Gi)(1− Ti)E(GT |Xi)

E((1−G)(1− T )|Xi)

(
Di −mD

00(Xi)
)

+ oP (1).

Combining these two results and (41), we �nally obtain

√
n
(
ŴX
DID −∆

)
=

1√
n

n∑
i=1

ψXDID,i + oP (1),

where, omitting the index i, ψXDID is de�ned by

ψXDID =
1

p11DX
DID

{
GT (ε−mε

10(X)−mε
01(X) +mε

00(X))−
[
G(1− T )E(GT |X)

E(G(1− T )|X)
(ε−mε

10(X))

+
(1−G)TE(GT |X)

E((1−G)T |X)
(ε−mε

01(X))− (1−G)(1− T )E(GT |X)

E((1−G)(1− T )|X)
(ε−mε

00(X))

]}
,

(46)

and ε = Y −∆D. The result follows by the central limit theorem.

Proof of 2

The proof is very similar as above. For any random variable R, Let mR
dgt(x) = E(Rdgt|X = x).

The estimator satis�es ŴX
TC = N̂X

TC/D̂
X
TC , with

N̂X
TC = Ê [Y11]− Ê

[
m̂Y

10(X11)
]
− Ê

[
m̂Y

001(X11)
]

+ Ê
[
m̂Y

000(X11)
]
− Ê

[
m̂D

10(X11)m̂
Y
101(X11)

]
+ Ê

[
m̂D

10(X11)m̂
Y
100(X11)

]
+ Ê

[
m̂D

10(X11)m̂
Y
001(X11)

]
− Ê

[
m̂D

10(X11)m̂
Y
000(X11)

]
D̂X
TC = Ê [D11]− Ê

[
m̂D

10(X11)
]
.
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The two terms of the denominator and the �rst four terms of the numerator can be linearized

exactly as above. Regarding the other four terms, remark that for instance

Ê
[
m̂D

10(X11)m̂
Y
101(X11)

]
− Ê

[
mD

10(X11)m
Y
101(X11)

]
=Ê

[
mD

10(X11)
(
m̂Y

101(X11)−mY
101(X11)

)]
+ Ê

[
mY

101(X11)
(
m̂D

10(X11)−mD
10(X11)

)]
+ Ê

[(
m̂D

10(X11)−mD
10(X11)

) (
m̂Y

101(X11)−mY
101(X11)

)]
.

Lemma S7 implies that the last term is an oP (1/
√
n). As a result,

N̂X
TC = Ê [Y11]− Ê

[
m̂Y

10(X11)
]
− Ê

[
m̂Y

001(X11)
]

+ Ê
[
m̂Y

000(X11)
]
− Ê

[
mD

10(X11)m̂
Y
101(X11)

]
− Ê

[
m̂D

10(X11)m
Y
101(X11)

]
+ Ê

[
mD

10(X11)m
Y
101(X11)

]
+ Ê

[
mD

10(X11)m̂
Y
100(X11)

]
+ Ê

[
m̂D

10(X11)m
Y
100(X11)

]
− Ê

[
mD

10(X11)m
Y
100(X11)

]
+ Ê

[
mD

10(X11)m̂
Y
001(X11)

]
+ Ê

[
m̂D

10(X11)m
Y
001(X11)

]
− Ê

[
mD

10(X11)m
Y
001(X11)

]
− Ê

[
mD

10(X11)m̂
Y
000(X11)

]
− Ê

[
m̂D

10(X11)m
Y
000(X11)

]
+ Ê

[
mD

10(X11)m
Y
000(X11)

]
+ oP (1/

√
n).

We then apply Lemma S8 to each of these terms. After some tedious algebra, we obtain

√
n
(
ŴX
TC −WX

TC

)
=

1√
n

n∑
i=1

ψXTC,i + oP (1),

where ψXTC satis�es

ψXTC =
1

p11DX
TC

{
GT

(
U −∆(D −mD

10(X))− E
[
U11 −∆(D11 −mD

10(X11))
])

+E(GT |X)

[
V −∆

G(1− T )

E(G(1− T )|X)
(D −mD

10(X))

]}
. (47)

and

U = Y −mY
10(X)−mY

001(X) +mY
000(X)−mD

10(X)
(
mY

101(X)−mY
100(X)−mY

001(X) +mY
000(X)

)
,

V =
G(1− T )

E(G(1− T )|X)

{
−(Y −mY

10(X)) +
[
mY

100(X)−mY
101(X)−mY

000(X) +mY
001(X)

]
(D −mD

10(X))
}

+ (1−G)

{
mD

10(X)D

[
−T (Y −mY

101(X))

E(D(1−G)T )|X)
+

(1− T )
(
Y −mY

100(X)
)

E(D(1−G)(1− T )|X)

]

+(1−D)(1−mD
10(X))

[
T (Y −mY

001(X))

E((1−D)(1−G)T |X)
− (1− T )(Y −mY

000(X))

E((1−D)(1−G)(1− T )|X)

]}
.

The result follows by the central limit theorem.

Proof of 3

The estimand is the same as WX
TC , except for the second term of the numerator. Therefore,

it su�ces to prove that we can linearize this speci�c term, which is the plug-in estimator of

E [E(DQ1X(Y ) + (1−D)Q0X(Y )|X,G = 1, T = 0)|G = 1, T = 1] .
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This expectation comprises two terms. As the reasoning is similar for both, let us focus

on the �rst, θ1 = E [E(DQ1X(Y )|X,G = 1, T = 0)|G = 1, T = 1]. Let us de�ne mQ1

dgt(x) =

E(Q1X(Y )|X = x,D = d,G = g, T = t). First, the estimator θ̂1 of θ1 satis�es

θ̂1 − θ1 = Ê
[
m̂D

10(X)m̂Q1
110(X)|G = 1, T = 1

]
− θ1

= Ê
[
m̂D

10(X)mQ1
110(X)|G = T = 1

]
− Ê

[
mD

10(X)mQ1
110(X)|G = 1, T = 1

]
+ θ̃1 − θ1 + Ê

[(
m̂D

10(X)−mD
10(X)

) (
m̂Q1

110(X)−mQ1
110(X)

)
|G = 1, T = 1

]
, (48)

where θ̃1 = Ê
[
mD

10(X)m̂Q1
110(X)|G = T = 1

]
. As in parts 1 and 2 above, the �rst two terms

on the right-hand side can be linearized using Lemma S8. We linearize below θ̃1 − θ1 and

prove that the last term is an oP (1/
√
n). As in Lemma S5, let us de�ne

R4(FX , Q1|X , Q2|X , Q3|X) =

∫
mD

10(x)×
∫ 1

0
Q1|X{Q−12|X [Q3|X(u|x)|x]|x}dudFX(x).

Let us de�ne hereafter Fdgt|X = FYdgt|X and Fdgt|x = FYdgt|X=x. Because

E [Q1X(Y )|X = x,D = G = 1, T = 0] =

∫ 1

0
F−1101|x ◦ F100|x ◦ F−1110|x(u)du,

we have

θ1 = R4(FX11 , F
−1
101|X , F

−1
100|X , F

−1
110|X), θ̃1 = R4(F̂X11 , F̂

−1
101|X , F̂

−1
100|X , F̂

−1
110|X),

where F̂X11 is the empirical cdf of X11. By Lemma S9, the process

(x, τ) 7→ (F̂X11(x), F̂−1101|x(τ), F̂−1100|x(τ), F̂−1110|x(τ)),

de�ned on S(X)× (0, 1) and suitably normalized, converges to a continuous gaussian process

G. Moreover,
√
n
[
F̂−1dgt|x(τ)− F−1dgt|x(τ)

]
=

1√
n

n∑
i=1

ψidgtx(τ) + oP (1),

where the oP (1) is uniform over (x, τ) and

ψidgtx(τ) =
1{Di = d}1{Gi = g}1{Ti = t}x′JτXi

pdgt

(
τ − 1{Yi −X ′iβdgt(τ) ≤ 0}

)
.

Besides, R4 is Hadamard di�erentiable at (FX11 , F
−1
101|X , F

−1
100|X , F

−1
110|X) tangentially to C0(S(X))×

C0((0, 1)× S(X))3. Therefore, by the functional delta method and because G is continuous,

√
n(θ̃1 − θ1) =

1√
n

n∑
i=1

Ψ1i + oP (1),
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where

Ψ1i =
GiTi
p11

[
mD

10(Xi)m
Q1
110(Xi)− θ1

]
+

∫
mD

10(x)

{∫ 1

0
ψi101x

(
F100|x ◦ F−1110|x(u)

)
+
F−1101|x

′ ◦ F100|x ◦ F−1110|x(u)

F−1100|x
′ ◦ F100|x ◦ F−1110|x(u)

[
− ψi100x

(
F100|x ◦ F−1110|x(u)

)
+ ψi110x(u)

]
du

}
dFX11(x).

We now prove that the third term in (48) is an oP (1/
√
n). We have∣∣∣Ê [(m̂D

10(X)−mD
10(X)

) (
m̂Q1

110(X)−mQ1
110(X)

)
|G = 1, T = 1

]∣∣∣
≤
∥∥m̂D

10 −mD
10

∥∥
∞ ×

∥∥∥m̂Q1
110 −m

Q1
110

∥∥∥
∞
.

By Lemma S7,
∥∥m̂D

10 −mD
10

∥∥
∞ = oP (n−1/4). Besides, m̂Q1

110 = R5(F̂
−1
101|X , F̂

−1
100|X , F̂

−1
110|X),

whereR5(Q1|X , Q2|X , Q3|X) =
∫ 1
0 Q1|X{Q−12|X [Q3|X(u|x)|x]|x}du. Part 3 of the proof of Lemma

S5 implies that R5 is Hadamard di�erentiable at (F−1101|X , F
−1
100|X , F

−1
110|X). Then, by Lemma

S9 and the functional delta method,
∥∥∥m̂Q1

110 −m
Q1
110

∥∥∥
∞

= OP (n−1/2). Thus, the third term in

(48) is an oP (1/
√
n).

To conclude, we provide the linearization of WX
CIC . Let us de�ne for that purpose

Ψ0i =
GiTi
p11

[
(1−mD

10(Xi))m
Q0
010(Xi)− θ0

]
+

∫
(1−mD

10(x))

{∫ 1

0
ψi001x

(
F000|x ◦ F−1010|x(u)

)
+
F−1001|x

′ ◦ F000|x ◦ F−1010|x(u)

F−1000|x
′ ◦ F000|x ◦ F−1010|x(u)

[
− ψi000x

(
F000|x ◦ F−1010|x(u)

)
+ ψi010x(u)

]
du

}
dFX11(x),

where θ0 = E [E((1−D)Q0X(Y )|X,G = 1, T = 0)|G = 1, T = 1]. Using what precedes and

Lemma S8 on the remaining terms, we obtain after some tedious algebra

√
n
(
ŴX
CIC −WX

CIC

)
=

1√
n

n∑
i=1

ψXCIC,i + oP (1),

where ψXCIC satis�es

ψXCIC =
1

p11DX
CIC

{
GT

(
Y −∆(D −mD

10(X))− E
[
Y11 −∆(D11 −mD

10(X11))
])
− p11(Ψ1 + Ψ0)

+
E(GT |X)G(1− T )

E(G(1− T )|X)
(D −mD

10(X))
[
mQ0

010(X)−mQ1
110(X)−∆

]}
. (49)
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Supplement to �Fuzzy Di�erences-in-Di�erences�

Clément de Chaisemartin∗ Xavier D'Haultf÷uille†

October 23, 2015

Abstract

This paper gathers the supplementary material to de Chaisemartin & D'Haultf÷uille

(2015). First, we show that two commonly used OLS and IV regressions with time and group

�xed e�ects estimate weighted averages of Wald-DIDs. It then follows from Theorem 3.1 in

de Chaisemartin & D'Haultf÷uille (2015) that these regressions estimate weighted sums of

LATEs, with potentially many negative weights as we illustrate through two applications.

We review all the applied papers published in the American Economic Review between 2010

and 2012 and �nd that around 20% of them estimate one or the other regression. Second,

we consider estimators of the bounds on average and quantile treatment e�ects derived

in Theorems 3.2 and 3.3 in de Chaisemartin & D'Haultf÷uille (2015) and we study their

asymptotic behavior. Third, we revisit Gentzkow et al. (2011) and Field (2007) using our

estimators. Finally, we present all the proofs not included in the main paper.

1 Fuzzy DID regressions, and their pervasiveness in economics

1.1 Fuzzy DID regressions...

Researchers using fuzzy DID designs usually do not estimate simple regressions with two groups

and two periods, but more complex speci�cations with multiple groups and periods. Practices

are not uni�ed so details of their speci�cations can vary. In this section, we study two regres-

sion speci�cations which have often been used. We show that in both cases, the coe�cient of

treatment is equal to a weighted sum of Wald-DIDs. Following the result of Theorem 3.1 in the

main paper, it is then easy to show that this weighted sum can be rewritten as a weighted sum

of the LATEs of switchers in the di�erent groups, with potentially many negative weights, as

we illustrate through two examples. Therefore, these coe�cients could lie far from the LATE of

switchers in any group.

∗Warwick University, clement.de-chaisemartin@warwick.ac.uk
†CREST, xavier.dhaultfoeuille@ensae.fr
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First, we study the coe�cient of a treatment variable D in a 2SLS regression of Y on a constant,

group dummies (1{G = g})1≤g≤g, time dummies (1{T = t})1≤t≤t, and D, with a �rst stage fully

saturated in (T,G). As the �rst stage is fully saturated, the second stage is a regression of Y on

a constant, group dummies (1{G = g})1≤g≤g, time dummies (1{T = t})1≤t≤t, and E(D|T,G).

This 2SLS regression is therefore algebraically equivalent to an OLS regression at the group ×
period level of Y on time and group dummies and a measure of treatment intensity in each group

× period cell. As shown in the next subsection, such OLS regressions are pervasive in applied

work.

Assume that for every 1 ≤ t ≤ t the mean of treatment does not follow a parallel evolution in

any pair of groups between t− 1 and t.1 For every (g, g′, t) ∈ {0, ..., g}2 × {1, ..., t}, let

DIDD(g, g′, t) = E(Dgt)− E(Dgt−1)− (E(Dg′t)− E(Dg′t−1)) ,

WDID(g, g′, t) =
E(Ygt)− E(Ygt−1)− (E(Yg′t)− E(Yg′t−1))

E(Dgt)− E(Dgt−1)− (E(Dg′t)− E(Dg′t−1))
.

For (g, t) ∈ {1, ..., g} × {1, ..., t}, let

wagt =
DIDD(g, g − 1, t)P (G ≥ g)P (T ≥ t) (E (D|G ≥ g, T ≥ t)− E (D|G ≥ g)− E (D|T ≥ t) + E(D))∑g

g=1

∑t
t=1DIDD(g, g − 1, t)P (G ≥ g)P (T ≥ t) (E (D|G ≥ g, T ≥ t)− E (D|G ≥ g)− E (D|T ≥ t) + E(D))

.

For (g, t) ∈ {0, ..., g} × {1, ..., t}, let

wbgt =
[E(Dgt)− E(Dgt−1)]P (G = g)P (T ≥ t)(E(D|G = g, T ≥ t)− E(D|G = g)− E(D|T ≥ t) + E(D))∑g

g=0

∑t
t=1 [E(Dgt)− E(Dgt−1)]P (G = g)P (T ≥ t)(E(D|G = g, T ≥ t)− E(D|G = g)− E(D|T ≥ t) + E(D))

.

Finally, when treatment is binary, let

∆gt = E (Y (1)− Y (0)|V ∈ [min(vgt−1, vgt),max(vgt−1, vgt)), G = g, T = t)

denote the LATE of the units in group g switching treatment between t− 1 and t.

Theorem S1 Let β denote the coe�cient of D in a 2SLS regression of Y on a constant, (1{G =

g})1≤g≤g, (1{T = t})1≤t≤t, and D, with a �rst stage fully saturated in (T,G).

1. If T ⊥⊥ G,

β =
t∑
t=1

g∑
g=1

WDID(g, g − 1, t)wagt.

1If for some t, there are groups which experience a parallel evolution of their mean treatment between t − 1

and t, the formula in the �rst point of Theorem S1 remains valid after grouping together these groups. The

formula in the second point of Theorem S1 remains valid as is.
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2. Morever, if D is binary, and Model (1) and Assumptions 1, 3M, and 4M in the main paper

are satis�ed, then

β =

g∑
g=0

t∑
t=1

∆gtw
b
gt.

The �rst statement of the theorem shows that if T ⊥⊥ G, β is a weighted average of Wald-DIDs

across pairs of groups and between t− 1 and t, for all consecutive dates t− 1 and t. With only

two dates, one can order groups according to their increase in treatment between the two dates,

thus ensuring that all the weights wagt are positive. With more than two dates, some of the

weights wagt might be negative.

Then, it follows from the same reasoning as in Theorem 3.1 that when D is binary and un-

der appropriate common trends assumptions, each of these Wald-DIDs is equal to a weighted

sum of the LATE of switchers of both groups. Rearranging this sum yields the second result.

Importantly, some of the weights wbgt might be negative. With two periods, that will be the

case for instance if the distribution of the changes in treatment between period 0 and 1 across

groups is not symmetric around 0. Note also that a similar result with the same weights holds

if treatment is not binary but ordered and with a �nite support. A di�erence though is that in

such instances, β is not equal to a weighted sum of LATEs but to a weighted sum of the ACRs

parameters we introduced in Section 4.3.

Many papers estimate regressions similar to that studied in Theorem S1 with aggregate data at

the group × period level. Results similar to that of Theorem S1 still apply to these regressions.

We now review four cases of such group-level regressions which frequently arise in practice. First,

when the group level variables are constructed from micro-level variables (e.g.: average wage in

county c and year t) and the OLS regression is weighted by the population in each group ×
period, the �rst and second statements of Theorem S1 apply as is. Second, when the group level

variables are constructed from micro-level variables but the regressions are not weighted, the

�rst and second statements of Theorem S1 also apply as is, except that now P (G = g) = 1
g+1

for

every group. Note that with unweighted regressions, G is automatically independent of T unless

some groups appear or disappear, which is unlikely to be the case when groups are counties,

states, or regions. Third, there are instances where all units in each group × period share the

same value of the treatment. This is for instance the case in Gentzkow et al. (2011). When

that is the case, the second statement of Theorem S1 actually gets simpler. In such settings,

when treatment changes in one group, all units switch treatment. Therefore, ∆gt is equal to the

average e�ect of changing the treatment from its value in period t − 1 to its value in period t

across all units, normalized by the change in treatment from period t − 1 to t. Fourth, many

papers estimate group-level regressions of the �rst-di�erence of the group mean outcome on the

�rst di�erence of the group mean treatment with time dummies. One can show that Theorem

3



1 also applies to these regressions, with di�erent weights. Speci�cally, wagt and wbgt should be

respectively replaced by

DIDD(g, g − 1, t)P (G ≥ g)P (T = t) (E (D|G ≥ g, T = t)− E (D|G ≥ g, T = t− 1)− E (D|T = t) + E(D|T = t− 1))∑g
g=1

∑t
t=1DIDD(g, g − 1, t)P (G ≥ g)P (T = t) (E (D|G ≥ g, T = t)− E (D|G ≥ g, T = t− 1)− E (D|T = t) + E(D|T = t− 1))

and

[E(Dgt)− E(Dgt−1)]P (G = g)P (T = t)(E(Dgt)− E(Dgt−1)− E(D|T = t) + E(D|T = t− 1))∑g
g=0

∑t
t=1 [E(Dgt)− E(Dgt−1)]P (G = g)P (T = t)(E(Dgt)− E(Dgt−1)− E(D|T = t) + E(D|T = t− 1))

.

A few lines of algebra are su�cient to show that the weights are the same when t = 1, re�ecting

the fact that �xed e�ects and �rst-di�erence estimators are algebraically equivalent with two

periods.

We use Theorem S1 to revisit an empirical application. Enikolopov et al. (2011) study the e�ect

of having access to an independent TV channel on the share of people voting for opposition

parties in Russia. They regress the share of votes for opposition parties in the 1995 and 1999

elections in region r on region dummies, an indicator for the 1999 election, and on the share of

people having access to the independent TV channel in region r at the time of the election. Figure

1 below presents the weights wbg1999 for the 1938 regions in their sample. Regions are ordered

according to the increase in the share of people watching the independent TV channel they

experienced between the two elections, from the lowest to the largest increase. 1020 weights are

negative, and the negative weights sum up to -2.26, against 3.26 for positive weights. Negative

weights therefore account for 41% of the sum of the absolute value of weights. If the e�ect of

gaining access to an independent TV channel is heterogeneous across regions where few / many

voters gained access to it between 1995 and 1999, the regression coe�cients in Enikolopov et al.

(2011) could lie far from the LATE in any region.
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Figure S 1: wbg1999 in Enikolopov et al. (2011).
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Second, we study the coe�cient of a treatment variableD in a 2SLS regression of Y on a constant,

group dummies (1{G = g})1≤g≤g, time dummies (1{T = t})1≤t≤t, and D, where the instrument

for D is equal to f(G)1{T ≥ t0} for some t0 ≥ 1. This speci�cation corresponds exactly to

the one estimated in the �rst column and third line of Table 7 in Du�o (2001): there f(G) is

the number of schools constructed during the INPRES program in one's district of birth, and

1{T ≥ t0} is a dummy for being born late enough to enter school after the program completion.

Let T ∗∗ = 1{T ≥ t0}. For any random variable R and for any (g, t) ∈ {0, ..., g} × {0, 1}, let
R∗∗gt ∼ R|G = g, T ∗∗ = t. Assume that there are no groups where treatment follows a parallel

evolution before and after t0,
2 and let groups be ordered according to their increase of treatment

before and after t0:

E(D∗∗01)− E(D∗∗00) < E(D∗∗11)− E(D∗∗10) < ... < E(D∗∗g1)− E(D∗∗g0).

For any (g, g′) ∈ {0, ..., g}2, let

DID∗∗R (g, g′) = E(R∗∗g1)− E(R∗∗g0)− (E(R∗∗g′1)− E(R∗∗g′0)),

W ∗∗
DID(g, g′) =

DID∗∗Y (g, g′)

DID∗∗D (g, g′)
.

Let also

wcg =
DID∗∗D (g, g − 1)P (G ≥ g)(E(f(G)|G ≥ g)− E(f(G)))∑g

g′=1DID
∗∗
D (g′, g′ − 1)P (G ≥ g′)(E(f(G)|G ≥ g′)− E(f(G)))

for 1 ≤ g ≤ g,

wdg =

[
E(D∗∗g1)− E(D∗∗g0)

]
P (G = g)(f(g)− E(f(G)))∑g

g=0

[
E(D∗∗g1)− E(D∗∗g0)

]
P (G = g)(f(g)− E(f(G)))

for 0 ≤ g ≤ g.

Theorem S2 Let β denote the coe�cient of D in a 2SLS regression of Y on a constant, (1{G =

g})1≤g≤g, (1{T = t})1≤t≤t, and D, where the instrument for D writes as f(G)1{T ≥ t0} for some

1 ≤ t0 ≤ t.

1. If T ⊥⊥ G,

β =

g∑
g=1

W ∗∗
DID(g, g − 1)wcg.

2. Morever, if D is binary and Model (1) and Assumptions 1 and 3-4 are satis�ed with T ∗∗

instead of T , then

β =

g∑
g=0

∆gw
d
g ,

where ∆g is the LATE of the switchers of group g.

2If there are groups which experience a parallel evolution of their mean treatment, the formula in the �rst

point of Theorem S2 remains valid after grouping together these groups. The formula in the second point remains

valid as is.
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The �rst statement of the theorem shows that if T ⊥⊥ G, β is a weighted average of Wald-

DIDs before and after t0 and across groups with consecutive evolutions of their mean treatment.

Then, it follows from Theorem 3.1 that when D is binary and under appropriate common trends

assumptions, each of these Wald-DIDs is equal to a weighted sum of the LATEs of switchers

of both groups. Rearranging this sum of weighted di�erences yields the second result. Here as

well, a similar result with the same weights holds if treatment is not binary but ordered and

with a �nite support. Note that the weights wdg are all positive if and only if all groups where

treatment increases (resp. decreases) have a value of f(G) greater (resp. lower) than the mean

of f(G) in the population.

We illustrate this result by estimating the weights wdg for the 284 districts in Du�o (2001).

Districts are ordered according to the increase in years of schooling they experienced between

the two cohorts, from the lowest to the largest increase. 132 weights out of 284 are negative,

and the negative weights sum up to -3.28, against 4.28 for positive weights. If switchers' returns

to schooling are heterogeneous across districts with positive and negative weights, the regression

coe�cient in Du�o (2001) could lie far from returns to schooling in any district.
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Figure S 2: wdg in Du�o (2001).

1.2 ... and their pervasiveness in economics.

We assess the pervasiveness of the fuzzy DID method in economics by conducting a review of

all papers relying partly or fully on this method that were published in the American Economic

Review (AER) between 2010 and 2012. We chose this journal because among the top journals

in economics, it was the �rst that started posting online the data used in the empirical papers
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it publishes, thus enabling us to reanalyze some of the fuzzy DID papers published there.

Over these three years, the AER published 337 papers. This excludes papers and proceedings,

comments, replies, and presidential addresses. Out of these 337 papers, 34 papers estimate

either ratios of DIDs on their outcome and treatment variables, or the regressions studied in

Theorems S2 and S1, or regressions very close to one of these two regressions. Therefore, their

main coe�cient of interest is equal to a Wald-DID, or to a weighted average of Wald-DIDs.

When one withdraws from the denominator theory papers and lab experiments, the proportion

of papers using the fuzzy DID method raises to 19.5%. Fuzzy DID is therefore a very popular

method among economists using real world data to study empirical questions.

Table S 1: Fuzzy DID papers published in the AER between 2010 and 2012

2010 2011 2012 Total

# papers using the fuzzy DID method 5 15 14 34

% of published papers 5.2% 13.0% 11.2% 10.1%

% of empirical papers, excluding lab experiments 12.8% 24.6% 19.2% 19.7%

We now review each of the 34 papers published by the AER between 2010 and 2012 and that we

included in our fuzzy DID count, and justify why their methodology quali�es as a fuzzy DID.

For each paper, we use the following presentation:

Title of the paper. Where the fuzzy DID method is used in the paper.

Why the method used in the paper quali�es as a fuzzy DID.

1. Patient Cost-Sharing and Hospitalization O�sets in the Elderly. Elasticities of

care use to co-payment estimated after Tables 2 and 3.

The elasticity discussed after Table 2 is estimated as the ratio of the e�ect of the Medicare

reform on utilization, divided by the e�ect of the Medicare reform on co-payment. Both

e�ects are estimated through standard sharp DID speci�cations in Table 2. Therefore,

the elasticity estimate is a Wald-DID. Note that even though elasticities do not appear in

regression tables, estimating them is one of the main goals of the paper: elasticity estimates

are referred to in the abstract.

2. The E�ect of Medicare Part D on Pharmaceutical Prices and Utilization. Tables

2 and 3.

In regression equation (1), the dependent variable is the change in the price of drug j
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between 2003 and 2006, and the explanatory variable is the Medicare market share for

drug j in 2003. This regression is the �rst-di�erence version of the �xed e�ects regression

studied in Theorem S1. Because the data only bears two periods, the two regressions are

algebraically equivalent.

3. The Gender Wage Gap and Domestic Violence. Table 2.

In regression equation (2), the dependent variable is the log of female assaults among

females of race r in county c in year t, and the explanatory variables are race, year, county,

race × year, race × county, and county × year dummies, as well as the gender wage gap

in county c, year t, and race r. Di�erencing this equation with respect to one race (say

white people) yields the same regression as that considered in Theorem S1.

4. Inherited Trust and Growth. Figure 4 and Table 6.

Figure 4 presents a regression of changes in income per capita from 1935 to 2000 on changes

in inherited trust over the same period and a constant. This regression is the �rst-di�erence

version of the �xed e�ects regression studied in Theorem S1. Because the data only bears

two periods, the two regressions are algebraically equivalent.

5. Inheritance Law and Investment in Family Firms. Table 7.

In the regressions presented in Table 7, the dependent variable is the capital expenditure

of �rm j in year t, and the explanatory variables are �rm dummies, a dummy for whether

year t is a succession period for �rm j, and the interaction of this dummy with the level of

investor protection in the country where �rm j is located. This speci�cation is similar to

that studied in Theorem S1 with two periods (succession and no succession).

6. Trade Liberalization, Exports, and Technology Upgrading: Evidence on the

Impact of MERCOSUR on Argentinian Firms. Tables 3 to 12.

In regression equation (11), the dependent variable is the change in exporting status of

�rm i in sector j between 1992 and 1996, and the explanatory variable is the change in

trade tari�s in Brasil for products in sector j over the same period. This regression is the

�rst-di�erence version of the �xed e�ects regression studied in Theorem S1. Because the

data only bears two periods, the two regressions are algebraically equivalent.

7. Using Loopholes to Reveal the Marginal Cost of Regulation: The Case of Fuel-

Economy Standards. Table 5 column 2.

In the regression in Table 5 column (2), the dependent variable is a dummy for whether

a car sold is a �exible fuel vehicle, and the explanatory variables are state and month

dummies, and the percent ethanol availability in each month × state. This regression is

the same as that considered in Theorem S1.
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8. What Do Trade Negotiators Negotiate About? Empirical Evidence from the

World Trade Organization. Table 3, OLS columns.

In regression equations (15a) and (15b), the dependent variable is the ad valorem tari�

level bound by country c on product g, while the explanatory variables are country and

product �xed e�ects, and two treatment variables which vary at the country × product

level. These regressions are therefore the same as that considered in Theorem S1, except

that they have two treatment variables.

9. Group Size and Incentives to Contribute: A Natural Experiment at Chinese

Wikipedia. Tables 3 and 4, columns 4-6.

In the regression in, say, Table 3 column (4), the dependent variable is the total number of

contributions to Wikipedia by individual i at period t, regressed on individual �xed e�ects,

a dummy for whether period t is after the Wikipedia block, and the interaction of this

dummy and a measure of social participation by individual i. This regression is the same

as that considered in Theorem S1 (treatment is equal to 0 before the block, and to social

participation after it).

10. Panic on the Streets of London: Police, Crime, and the July 2005 Terror

Attacks. Table 2, Panel C, Columns 3-4.

In regression equation (7), the dependent variable is change in crime rates between week t

and the same week one year ago in borough b, and the explanatory variables are a dummy

for whether week t is around the terrorist attacks in London, and the number of police

forces in borough b in week t. The interaction of the time dummy and of whether borough

b belongs to Theseus operation is used as the excluded instrument for police forces. This

regression is equivalent to that studied in Theorem S2 (borough �xed e�ects disappear

because of the �rst di�erencing with respect to the previous year, something the authors

do to control for seasonality).

11. The Impact of Regulations on the Supply and Quality of Care in Child Care

Markets. Table 7, Columns 4 and 5.

In Regression Equation (1), the dependent variable is the outcome for market m in state

s in year t, and the explanatory variables are state and year �xed e�ects and a measure of

regulations in state s in year t. This regression is the same as that considered in Theorem

S1.

12. House Prices, Home Equity-Based Borrowing, and the US Household Leverage

Crisis. Tables 2 and 3.

Regression equations (1) and (2) are �rst-di�erence versions of the 2SLS regression studied

in Theorem S2. In levels, the instrument would be the elasticity interacted with the year
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2006. Because the data only bears two periods, the two regressions are algebraically

equivalent.

13. State Misallocation and Housing Prices: Theory and Evidence from China.

Table 5, Panel A.

In regression equation (15), the dependent variable is a measure of the quantity of housing

services in household i's residence in year t, while the explanatory variables are a dummy for

period t being after the reform, a measure of mismatch in household i, and the interaction

of the measure of mismatch and the time dummy. This speci�cation almost perfectly

coincides with that studied in Theorem S1, except that it has a measure a mismatch in

household i instead of household �xed e�ects. If the mismatch measure can take only two

values, it is easy to show that the coe�cient of interest α1 is equal to the DID of the

outcome before and after the reform and across the two groups of households, divided by

the di�erence between the value of mismatch in these two groups.

14. The Fundamental Law of Road Congestion: Evidence from US Cities. Table 5.

In regression equation (4), the dependent variable is the change in vehicle kilometers

traveled in MSA s between periods t and t-1, and the explanatory variable is the change in

kilometers of roads in MSA s between periods t and t-1. This regression is a �rst-di�erence

version of that considered in Theorem S1. Because the data bears more than two periods,

the two regressions are not algebraically equivalent. However, its coe�cient can also be

written as a weighted average of Wald-DIDs, as we explain after stating Theorem S1.

15. The Consequences of Radical Reform: The French Revolution. Table 3.

In Equation (1), the dependent variable is urbanization in polity j at time t, while the

explanatory variables are time and polity dummies, and the number of years of French

presence in polity j interacted with the time e�ects. This regression is similar to that

studied in Theorem S1.

16. School Desegregation, School Choice, and Changes in Residential Location

Patterns by Race. Table 6.

In the regression presented in, say, the �rst column of Table 6, the dependent variable is

enrolment in schools of MSA j in year t, while the explanatory variables are time and MSA

e�ects and the value of the dissimilarity index of schools in MSA j in year t. The excluded

instrument for the dissimilarity index is a dummy for whether in period t, the MSA was

desegregated. This regression is the same as that studied in Theorem S2.

17. The E�ects of Rural Electri�cation on Employment: New Evidence from South

Africa. Tables 4 and 5 columns 5-8, Table 8 columns 3-4, Table 9 column 2, and Table

10 columns 2, 4, and 6.
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Regression equations (3) and (4) are �rst-di�erence versions of the second and �rst stages

of the 2SLS regression studied in Theorem S2. In levels, the instrument would be the land

gradient Zj interacted with a dummy for the second wave of the panel. Because the data

only bears two periods, the two regressions are algebraically equivalent.

18. Media and Political Persuation: Evidence from Russia. Table 3.

In regression equation (5), the dependent variable is the share of votes for party j in year

t and subregion s, and the explanatory variables are subregion and time e�ects, and the

NTV audience in subregion s in period t. This regression is the same as that studied in

Theorem S1.

19. Dynamic Ine�ciencies in an Employment-Based Health Insurance System:

Theory and Evidence. Tables 2, 3, 5, and 6, Column 3.

In regression equation (7), the dependent variable is the health expenditures of individual j

working in industry i in period t and region r, and the explanatory variables are individual

e�ects, region speci�c time e�ects, and the job tenure of individual j. The death rate of

establishments in industry i in period t and region r is used as an instrument for the job

tenure of individual j. Within each region, the regression has time e�ects and individual

e�ects, and an instrument varying only across industry × periods cells. Even though this

instrument does not have the exact same form as that in the regression studied in Theorem

S2, these two regressions are close.

20. The E�ect of Newspaper Entry and Exit on Electoral Politics. Tables 2 and 3.

In regression equation (1), the dependent variable is, say, voter turnout in county c in

election year t, and the explanatory variables are county �xed e�ects, state-year e�ects,

and the number of newspapers in county c in year t. Within each state, this regression is

the same as that studied in Theorem S1 (within each state, state-year e�ects become year

e�ects).

21. Americans Do IT Better: US Multinationals and the Productivity Miracle.

Table 2, Columns 6-8.

In the regression in, say, column 6 of Table 2, the dependent variable is the log of output

per worker in �rm i in period t, while the explanatory variables are �rms and time �xed

e�ects, and the log of the amount of IT capital per employee (ln(C/L)) as well as the

interaction of ln(C/L) and a dummy for whether the �rm is owned by a US multinational.

The coe�cient of ln(C/L) is equal to the same weighted average of Wald-DIDs as the

coe�cient considered in Theorem S1, within the sample of �rms which are not owned by a

US multinational. The coe�cient of the interaction is equal to the di�erence between this

weighted average in the sample of �rms owned by a US multinational, and in the sample

of those not owned by a US multinational.
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22. Standard Setting Committees: Consensus Governance for Shared Technology

Platforms. Table 4, columns 1-3.

In regression equation (5), the dependent variable is a measure of time to consensus for

project i submitted to committee j, while the explanatory variables are a dummy for

projects submitted to the standards track, a measure of distributional con�ict, and the

interaction of the standards track and distributional con�ict. This speci�cation almost

coincides with that studied in Theorem S1, except that it has a measure of distributional

con�ict instead of committee �xed e�ects. If the measure of distributional con�ict can take

only two values, it is easy to show that the coe�cient of interest τ is equal to the DID of

the outcome across the standards and non-standards track and the low and high value of

distributional con�ict, divided by the di�erence between the value of distributional con�ict

in these two groups.

23. Compulsory Licensing: Evidence from the Trading with the Enemy Act. Table

2, columns 3-8.

In the regression equation in the beginning of Section III, the dependent variable is the

number of patents by US inventors in patent class c at period t, and the explanatory

variables are patent class and time �xed e�ects, and the interaction of period t being after

the trading with the enemy act and a measure of treatment intensity. Therefore, this

regression is the same as that in Theorem S1 (treatment is equal to 0 before the act).

24. The Internet and Local Wages: A Puzzle. Tables 2 and 4.

In regression equation (1), the dependent variable is the di�erence between log wages in

2000 and 1995 in county i, and the explanatory variable is the extent of advanced Internet

investment by businesses in county i in 2000. This regression is the �rst-di�erence version

of the �xed e�ects regression studied in Theorem S1. Because the data only bears two

periods, the two regressions are algebraically equivalent. Table 4 presents regressions where

advanced internet investment is instrumented by a county level variable. This regression

is the �rst-di�erence version of that studied in Theorem S2. Because the data only bears

two periods, the two regressions are algebraically equivalent.

25. Estimating the Peace Dividend: The Impact of Violence on House Prices in

Northern Ireland. Table 1, columns 3 and 5-7.

In regression equation (1), the dependent variable is the price of houses in region r at time

t, while the explanatory variables include region and time �xed e�ects, and the numbers

of people killed because of the civil war in region r at time t-1. This regression is the same

as that studied in Theorem S1.

26. Paying a Premium on Your Premium? Consolidation in the US Health Insur-

ance Industry. Tables 2 and 5.
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In regression equation (1), the dependent variable is the change of the log premium for

employer e in market m in year t, and explanatory variables are time and market e�ects,

and the change in various treatment variables (change in the fraction of self-insured em-

ployees...). This regression is a �rst-di�erence version of that considered in Theorem S1,

with several treatment variables. Because the data bears more than two periods, the two

regressions are not algebraically equivalent. However, its coe�cient can also be written as

a weighted average of Wald-DIDs, as we explain after stating Theorem S1. In regression

equation (3), the treatment variables are instrumented by a dummy for period t being after

the merger of two insurers and a market level-variable. This regression a �rst-di�erence

version of that studied in Theorem S2. Because the data bears more than two periods, the

two regressions are not algebraically equivalent. However, we conjecture that its coe�cient

can also be written as a weighted average of Wald-DIDs.

27. The Enduring Impact of the American Dust Bowl: Short- and Long-Run Ad-

justments to Environmental Catastrophe. Table 2. In regression equation (1), the

dependent variable is, say, the change in log land value in county c between period t and

1930, and the explanatory variables are state × year e�ects, the share of county c in high

erosion, and the share of county c in medium erosion. This regression is a �rst-di�erence

version of that in Theorem S1, with two treatment variables and state-year e�ects. Because

the data bears more than two periods, the two regressions are not algebraically equivalent.

However, its coe�cient can also be written as a weighted average of Wald-DIDs, as we

explain after stating Theorem S1.

28. A Rational Expectations Approach to Hedonic Price Regressions with Time-

Varying Unobserved Product Attributes: The Price of Pollution. Table 5.

In, say, the �rst regression equation in the bottom of page 1915, the dependent variable is

the change in the price of house j between sales 2 and 3, and the explanatory variables are

the change in various pollutants in the area around house j between sales 2 and 3. This

regression is a �rst-di�erence version of in Theorem S1, with several treatment variables.

Because the data bears two periods, the two regressions are algebraically equivalent.

29. The Impact of Family Income on Child Achievement: Evidence from the

Earned Income Tax Credit. Table 3.

In the reduced form of regression equation (4), the dependent variable is the change in

test scores for child i between years a and a-1, while the explanatory variable is the change

in the expected EITC income of her family based on her family income in year a-1. This

regression is a �rst-di�erence version of that in Theorem S1. Because the data bears more

than two periods, the two regressions are not algebraically equivalent. However, its coe�-

cient can also be written as a weighted average of Wald-DIDs, as we explain after stating
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Theorem S1. The �rst stage is the same regression but with the change in the income of

the family of student i between years a and a-1. Overall, the 2SLS coe�cient arising from

regression equation (4) is a ratio of 2 weighted averages of Wald-DIDs.

30. Katrina's Children: Evidence on the Structure of Peer E�ects from Hurricane

Evacuees. Tables 3-6.

In regression equation (1), the dependent variable is the test score of student i in school

j in grade g in year t, and the explanatory variables are grade, school, year, and grade ×
year e�ects, and the fraction of Katrina students received by school j in grade g and year

t. Within each grade, this regression is the same as that considered in Theorem S1 (within

each grade, grade × year e�ects become simple year e�ects).

31. The Collateral Channel: How Real Estate Shocks A�ect Corporate Investment.

Table 5.

In regression equation (1), the dependent variable is the value of investment in �rm i and

year t divided by the lagged book value of properties, plants, and equipments (PPE), and

the explanatory variables are �rm and time dummies and the market value of �rm i in

year t divided by its lagged PPE. This regression is the same as that studied in Theorem

S1.

32. The Spending and Debt Response to Minimum Wage Hikes. Tables 1, 2, and 5.

In regression equation (1), the outcome variable is, say, income of household i at period

t, and the explanatory variables include household and time dummies, and the minimum

wage in the state where household i lives in period t. This regression is the same as that

considered in Theorem S1.

33. Exports, Export Destinations, and Skills. Table 5.

In regression equation (7), the dependent variable is a measure of skills in the labor force

employed by company i in industry j at period t, and the explanatory variables are �rm

and industry × time dummies, the ratio of exports to sales in �rm i at period t, and

the share of �rm exports to high income destinations over total exports. To instrument

this variable, the authors use a dummy for the years 1999 or 2000 (a large devaluatation

happened in Brazil in 1999) interacted with the share of exports of �rm i to Brazil in 1998.

This speci�cation is very similar to that studied in Theorem S2.

34. Political Aid Cycles. Table 3, columns 4 and 5, and Tables 4 and 5.

In regression equation (2), the dependent variable is the amount of donations received

by receiver r from donor d in year t, and the explanatory variables are donor × receiver

dummies, a dummy for whether there is an election in country r in year t, a measure of

alignment between the ruling political parties in countries r and d, and the interaction of
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the election dummy and the measure of alignment. This speci�cation is very close to that

studied in Theorem S1, with units of observation being pairs of donors and receivers.

2 Inference in the partially identi�ed case

In this section, we show how to draw inference on the bounds given in the second statements

of Theorems 3.2 and 3.3 in de Chaisemartin & D'Haultf÷uille (2015). We adopt the same

notations hereafter. In order for the bounds to be �nite, we assume that S(Y ) = [y, y] with

−∞ < y < y < +∞. We also suppose for simplicity that y and y are known by the researcher.3

If not, they can respectively be estimated by mini=1...n Yi and maxi=1...n Yi, and Theorem S3

below remains valid under regularity conditions on FYd01 at these boundaries.

First, let us consider the Wald-TC bounds. Let λ̂0d = P̂ (D01=d)

P̂ (D00=d)
, λ̂1d = P̂ (D11=d)

P̂ (D10=d)
, and

F̂ d01(y) = M0

[
1− λ̂0d(1− F̂Yd01(y))

]
−M0(1− λ̂0d)1{y < y},

F̂ d01(y) = m1

[
λ̂0dF̂Yd01(y)

]
+ (1−m1(λ̂0d))1{y ≥ y}.

Then de�ne

δ̂d =

∫
ydF̂ d01(y)− 1

nd00

∑
i∈Id00

Yi, δ̂d =

∫
ydF̂ d01(y)− 1

nd00

∑
i∈Id00

Yi.

Finally, we estimate the bounds by

Ŵ TC =

1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10

[
Yi + δ̂Di

]
1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di

, Ŵ TC =

1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10

[
Yi + δ̂Di

]
1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di

.

Now let us turn to the Wald-CIC bounds. For d ∈ {0, 1}, let

T̂ d =M01

(
λ̂0dF̂Yd01 − Ĥ

−1
d (λ̂1dF̂Yd11)

λ̂0d − 1

)
, T̂ d =M01

(
λ̂0dF̂Yd01 − Ĥ

−1
d (λ̂1dF̂Yd11 + (1− λ̂1d))

λ̂0d − 1

)
,

Ĝd(T ) = λ̂0dF̂Yd01 + (1− λ̂0d)T, Ĉd(T ) =
λ̂1dF̂Yd11 − Ĥd ◦ Ĝd(T )

λ̂1d − 1
.

We then estimate the bounds on FY11(d)|S1 by

F̂CIC,d(y) = sup
y′≤y

Ĉd

(
T̂ d

)
(y′), F̂CIC,d(y) = inf

y′≥y
Ĉd

(
T̂ d

)
(y′).

Therefore, to estimate bounds for the LATE and LQTE, we use

ŴCIC =

∫
ydF̂CIC,1(y)−

∫
ydF̂CIC,0(y), ŴCIC =

∫
ydF̂CIC,1(y)−

∫
ydF̂CIC,0(y),

3In particular, we estimate F−1Ydgt
(0) and F−1Ydgt

(1) by y and y respectively. The de�nition of F̂−1Ydgt
(τ) for

τ ∈ (0, 1) remains the same as in Section 5 of de Chaisemartin & D'Haultf÷uille (2015).
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τ̂ q = F̂
−1

CIC,1(q)− F̂
−1

CIC,0(q), τ̂ q = F̂
−1

CIC,1(q)− F̂
−1

CIC,0(q).

Hereafter, we de�ne q = FCIC,0(y), q = FCIC,0(y), q1 = [λ11FY111 ◦ F−1
Y101

( 1
λ01

)− 1]/[λ11 − 1] and

q2 = [λ11FY111 ◦ F−1
Y101

(1− 1/λ01)]/[λ11 − 1]. Our results rely on the following assumptions.

Assumption S1 (Technical conditions for inference with TC bounds)

1. S(Y ) = [y, y] with −∞ < y < y < +∞.

2. λ00 6= 1 and for d ∈ {0, 1}, the equation Fd01(y) = 1/λd0 admits at most one solution.

Assumption S1 allows for continuous or discrete outcome variables. In the case of a discrete

variable, the equation Fd01(y) = 1/λd0 will have no solution, except if there is a point in the

support of Yd01 at which Fd01(y) is exactly equal to 1/λd0. Therefore, Assumption 1 rules out

only very rare scenarios. In the continuous case, the equation Fd01(y) = 1/λd0 will have a unique

solution if, e.g., Fd01 is strictly increasing on its support.

Assumption S2 (Technical conditions for inference with CIC bounds)

1. λ00 6= 1 and q < q.

2. FCIC,d and FCIC,d are strictly increasing on Sd = [F−1
CIC,d(q), F

−1
CIC,d(q)] and

Sd = [F
−1

CIC,d(q), F
−1

CIC,d(q)] respectively. Their derivatives, whenever they exist, are strictly

positive.

The condition q < q in Assumption S2 is automatically satis�ed when λ00 > 1, because then

the bounds are proper cdfs so q = 0 and q = 1. When λ00 < 1 and Assumption 9 holds, one

can show that it is satis�ed when λ10 < H0(λ00) − H0(1 − λ00). The larger the increase of

the treatment rate in the treatment group and the smaller the increase in the control group,

the more this condition is likely to hold.The strict monotonicity requirement is only a slight

reinforcement of Assumption 9. When λ00 < 1, FCIC,0 and FCIC,0 satisfy Assumption S2 when

H0(λ00F001)− λ10F011 and H0(λ00F001 + 1− λ00)− λ10F011 have positive derivatives on S(Y ). If

H0 is equal to the identity function, this will hold if the ratio of the derivatives of F011 and F001

is strictly lower than λ00
λ10

. Hence, here as well, the larger the increase of the treatment rate in

the treatment group and the smaller the increase in the control group, the more this condition

is likely to hold. It is possible to derive similar su�cient conditions for Assumption S2 to hold

in the three other possible cases (FCIC,0 and FCIC,0 when λ00 > 1, FCIC,1 and FCIC,1 when

λ00 < 1, and FCIC,1 and FCIC,1 when λ00 > 1). We refer the reader to the proof of Lemma S6

for more details.

Theorem S3 establishes the asymptotic normality of the estimated bounds of ∆ and τq for q ∈ Q,
where Q is de�ned as (q, q)\{q1, q2} when λ00 > 1 and (0, 1) when λ00 < 1.
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Theorem S3 Assume that Model (1) and Assumptions 1-2 and 12 hold.

- If Assumptions 5 and S1 also hold, then (Ŵ TC −W TC , Ŵ TC −W TC) are asymptotically

normal. Moreover, the bootstrap is consistent for both.

- If Assumptions 6-7, 9, 13 and S2 hold, then (ŴCIC −WCIC , ŴCIC −WCIC) and (τ̂ q −
τ q, τ̂ q − τ q), for q ∈ Q, are asymptotically normal. Moreover, the bootstrap is consistent

for both.

For the CIC bounds, we restrict q to Q when λ00 < 1 because the estimated bounds on τq are

not root-n consistent and asymptotically normal for every q. First, the estimated bounds are

equal to the true bounds with probability approaching one for q < q or q > q, because basically,

the true bounds put mass at the boundaries y or y.4 Second, the bounds may exhibit kinks

at q1 and q2, which also leads to asymptotic non-normality of τ̂ q and τ̂ q. On the other hand,

when λ00 > 1, asymptotic normality holds for every q ∈ (0, 1): the bounds on FY11(d)|S1 are not

defective cdfs, and they do not exhibit kinks, except possibly at the boundaries of their support.

Theorem S3 can be used to construct con�dence intervals on ∆ and τq as follows. Let us focus

on the Wald-TC bounds on ∆, the reasoning being similar for other bounds and parameters. If

we know ex ante that partial identi�cation holds or, equivalently, that λ00 6= 1, we can follow

Imbens & Manski (2004) and use the lower bound of the one-sided con�dence interval of level

1− α on W TC and the upper bound of the one-sided con�dence interval of level 1− α on W TC .

However, in practice we rarely know ex ante whether λ00 = 1 or not. This is an important issue,

since the estimators and the way con�dence intervals are constructed di�er in the two cases.

To address this issue, we propose a procedure which yields con�dence intervals with desired

asymptotic coverage in both cases. Let σ̂λ00 denote an estimator of the variance of λ̂00. Our

procedure has three steps:

1. Compare tλ00 =
∣∣∣ λ̂00−1
σ̂λ00

∣∣∣ to some sequence (cn)n∈N satisfying cn → +∞ and cn√
n
→ 0.

2. If tλ00 ≤ cn, form con�dence intervals for ∆ using the point identi�cation results.

3. If tλ00 > cn, form con�dence intervals for ∆ using the partial identi�cation results.

This procedure yields pointwise valid con�dence intervals, because comparing |tλ00| to cn instead
of a �xed critical value ensures that asymptotically, the probability of conducting inference under

the wrong maintained assumption vanishes to 0. An inconvenient of this procedure is that it

relies on the choice of a tuning parameter, the sequence (cn)n∈N. Note that many procedures

recently suggested in the moment inequality literature also share this inconvenient (see Andrews

4A similar conclusion holds if y or y are estimated rather than known by the researcher: the estimators are n

rather than root-n consistent and not asymptotically normal.
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& Soares, 2010 or Chernozhukov et al., 2013). Also, it is unclear whether the con�dence interval

CI1−α resulting from that procedure is uniformly valid, i.e. whether it satis�es

lim
n→∞

inf
P∈P0

inf
∆∈[WTC ,WTC ]

P (∆ ∈ CI1−α) ≥ 1− α,

where P0 denotes a set of distributions of (D,G, T, Y ). Uniformly valid con�dence intervals on

partially identi�ed parameters have for instance been proposed by Imbens & Manski (2004),

Andrews & Soares (2010), Andrews & Barwick (2012), Chernozhukov et al. (2013), and Romano

et al. (2014). However, to the best of our knowledge none of the existing procedure applies to

our context. The solutions suggested by Imbens & Manski (2004) or Stoye (2009) require that

the bounds converge uniformly towards normal distributions. But our bounds involve the terms

m1(λ0d) and M0(1−λ0d), with m1 and M0 non-di�erentiable at 1 and 0 respectively. Therefore,

our estimators are not asymptotically normal when λ0d = 1. The literature on moment inequality

models does not apply either. One can for instance show that under Assumptions 1 , 2, and 5,

our parameter of interest ∆ satis�es a moment inequality model with four moment inequalities.

However, the moments depend on preliminary estimated parameters that once again, do not

have an asymptotically normal distribution when λ00 = 1, thus violating the requirements of,

e.g., Andrews & Soares (2010) and Andrews & Barwick (2012).

3 Supplementary applications

3.1 E�ects of newspapers on electoral participation in the US

Gentzkow et al. (2011) study the e�ect of newspapers on electoral participation in the US. They

estimate OLS regressions of the change in turnout between consecutive elections in county c on

election dummies and the change of the number of daily newspapers available in county c. In

column 2 of their Table 2, they �nd that one additional newspaper increases turnout by 0.26

percentage points in US presidential elections from 1872 to 1928. Their regression speci�cation is

exactly equivalent to that studied in Theorem S1. We estimate the weights wbgt in this application,

and �nd that treatment e�ects in 32% of county × election cells receive a negative weight, and

that negative weights sum up to -0.27. The validity of their coe�cient therefore relies on the

assumption that the e�ect of newspapers on turnout is constant over time and across counties.

To avoid relying on that assumption, we use a �rst estimator inspired from the weighted sum

of Wald-DIDs in the �rst point of Theorem 4.1. As the authors include state-year e�ects in

their speci�cations, we slightly modify our estimator to also allow for di�erential trends across

states. Our estimator is obtained in �ve steps. First, for each election the sets of counties

Gst, Git, and Gdt are respectively de�ned as counties where the number of newspapers remains

18



stable, increases, and decreases between elections t− 1 and t. Second, we focus on the counties

in Gst or Git and estimate a 2SLS regression of the change in turnout between elections t − 1

and t on state dummies and the change in the number of newspapers. The instrument for the

change in newspapers is a dummy for counties in Git. Let βDID(1, 0, t) denote the coe�cient

of the change in newspapers in this regression. Without the state dummies, we would have

βDID(1, 0, t) = W ∗
DID(1, 0, t). Therefore, βDID(1, 0, t) is a modi�ed version of W ∗

DID(1, 0, t)

allowing for state-speci�c trends. Third, we focus on the counties in Gst or Gdt and estimate a

2SLS regression of the change in turnout between elections t−1 and t on state dummies and the

change in the number of newspapers. The instrument for the change in newspapers is a dummy

for counties in Gdt. Here as well, the coe�cient of the change in newspapers βDID(−1, 0, t) is

a modi�ed version of W ∗
DID(−1, 0, t) allowing for state-speci�c trends. Fourth, we estimate the

weights wt and w10|t allowing for state-speci�c trends. We repeat these steps for each election

and our estimator is �nally equal to

βDID =
16∑
t=0

w1872+4t(w10|1872+4tβDID(1, 0, 1872 + 4t) + (1− w10|1872+4t)βDID(−1, 0, 1872 + 4t)).

This estimator does not rely on the assumption that treatment e�ects are homogeneous across

counties, because it only uses counties where the number of newspapers is stable as controls.

However, this estimator still requires that the e�ect of newspapers on turnout do not vary over

time (Assumption 4 in the main paper). In this context, this assumption is not warranted.

Historians have shown that in the end of the 19th century, alternative ways of communicating

information such as radio stations, telegraphic lines, and telephonic lines quickly developed in the

US, thus ending the print monopoly of mass media (see White, 2003). This might have reduced

the e�ects of newspapers. In their Table 5, the authors give suggestive evidence of this by showing

that their regression coe�cients diminish over time. To avoid relying on that assumption, we use

a second estimator βTC . βTC closely resembles the weighted sum of Wald-TCs we introduced

in the second point of Theorem 4.1, except that we allow for state-speci�c trends in each of

the regressions we estimate to compute this weighted sum.5,6 Note that estimating a Wald-CIC

type of estimator while controlling for state-speci�c trends appears di�cult. For each pairs of

consecutive elections, there are many states where only few counties had, say, 2 newspapers

at both elections. This makes it impossible to estimate the quantile-quantile transforms Qd

within-state. We could estimate a weighted average of Wald-CIC estimators without controlling

5Using directly the two weighted sums we introduced in the �rst and second points of Theorem 4.1 increases

even further the di�erence between our estimators and that of Gentzkow et al. (2011).
6Only 18% of county × election cells have 3 newspapers or more, and only 9% have 4 or more. To estimate

the numerators of our Wald-TCs, we group the number of newspapers into 4 categories: 0, 1, 2, and more than

3. Results remain unchanged if we instead group the number of newspapers into 5 categories: 0, 1, 2, 3, and

more than 4.
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for state-speci�c trends, but we prefer to remain as close as possible to the authors' original

speci�cation.

Results are presented in Table 2 below. βDID is close to the estimator in Gentzkow et al.

(2011). On the other hand, βTC is almost twice as large and is signi�cantly di�erent from their

estimator (t-stat=2.05). It is also signi�cantly di�erent from βDID at the 10% level (t-stat=1.72).

To reconstruct the change in turnout that a county in Git or Gdt would have experienced if its

number of newspapers had not changed, βDID uses all counties in the same state and in Gst. To
reconstruct this counterfactual trend, βTC only uses counties in the same state, in Gst, and with

the same number of newspapers in period t − 1 as the county in Git or Gdt. The fact that βTC
and βDID substantially di�er indicates that among counties in Gst, those with di�erent numbers

of newspapers experience di�erent evolutions of their turnouts. βDID and βTC rely on di�erent

�common trends� assumptions between counties. But challenging one while defending the other

seems di�cult as these two assumptions are substantively very close. On the other hand, βTC

does not require that the e�ect of newspapers on turnout be constant over time, an assumption

that is not warranted in this context as we explained above. We therefore choose βTC as our

preferred estimator.

Table S 2: E�ect of one additional newspaper on turnout

Gentzkow et al. (2011) βDID βTC OLS

E�ect of newspapers on turnout 0.0026 0.0031 0.0047 -0.0079

(0.0009) (0.0012) (0.0014) (0.0007)

N 15627 15627 15627 15627

Notes. This table reports estimates of the e�ect of one additional newspaper on turnout. Standard errors are

clustered at the district level. For βDID and βTC , clustered standard errors are obtained by block bootstrap.

This application also illustrates that our Wald-TC estimator can be used when only aggregate

data are available, provided all units in each group × period cell share the same value of the

treatment, as is the case in Gentzkow et al. (2011). In such instances, our Wald-CIC estimator

can also be used if one is ready to assume that Assumptions 1-2 and 6-7 are satis�ed with Y gt

instead of Y . On the other hand, when units in the same group × period cell can have di�erent

values of the treatment, one cannot use our Wald-TC and Wald-CIC estimators, because δd and

Qd cannot be estimated from aggregate data. This is for instance the case in Enikolopov et al.

(2011). In such instances, authors can still follow our recommendation of �nding a control group

where treatment is stable and then estimate the Wald-DID.
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3.2 E�ects of a titling program in Peru on labour supply

Between 1996 and 2003, the Peruvian government issued property titles to 1.2 million urban

households, the largest titling program targeted to squatters in the developing world. Field

(2007) examines the labor market e�ects of increases in tenure security resulting from the pro-

gram. To isolate the e�ect of property rights, the author uses a survey conducted in 2000, and

exploits two sources of variation in exposure to the titling program. Firstly, this program took

place at di�erent dates in di�erent neighborhoods. In 2000, it had approximately reached 50% of

targeted neighborhoods. Secondly, it only impacted squatters, i.e. households without a prop-

erty title prior to the program. The author can therefore construct four groups of households:

squatters in neighborhoods reached by the program before 2000, squatters in neighborhoods

reached by the program after 2000, non-squatters in neighborhoods reached by the program

before 2000, and non-squatters in neighborhoods reached by the program after 2000. Table 3

presents the share of households with a property title in 2000 in each group.

Table S 3: Share of households with a property right

Reached after 2000 Reached before 2000

Squatters 0% 71%

Non-squatters 100% 100%

In Table 5 of her paper, the author uses 2SLS regressions to estimate the e�ect of having a

property right on househods' labor supply. Her dependent variable is the number of hours

worked per week by each household. Her explanatory variables are a dummy for squatters, a

dummy for neighbourhoods reached before 2000, a dummy for whether the household has a

property right, and a rich set of 62 control variables. Her instrument for property rights is the

interaction of the squatters and reached before 2000 dummies. Therefore, her estimator is a

Wald-DID accounting linearly for the e�ect of covariates. We revisit her results and compute

instead the estimator ŴX
CIC introduced in Section 5.2 of the main paper, with the same set of

covariates. ŴX
CIC also accounts linearly for the e�ect of covariates so this estimator is comparable

to the author's. As all units in the control group are treated, we cannot estimate exactly ŴX
CIC

but we follow Theorem 3.5 and apply the quantile-quantile transform of treated units in the

control group to untreated units in the treatment group. On top of Assumptions 1X-2X and

6X-7X, the validity of this estimator also requires a conditional version of Assumption 10. Her

Wald-DID and our Wald-CIC estimator with covariates are respectively equal to 18.07 and 16.17,

thus implying that being granted a property title increases the number of hours worked by 16

to 18 hours. The two point estimates are not signi�cantly di�erent (t-stat=1.29). Quantile

treatment e�ects are shown in Figure 3. They are negative and insigni�cant in the bottom of
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the distribution of the outcome, and positive and signi�cant in the top. As per our estimates,

being granted a property title decreases the �rst decile of labour supply by 5 hours and increases

the 9th decile by 53 hours. These two estimates are signi�cantly di�erent (t-stat=2.21). The

best a�ne approximation to the QTE function has a slope of 74.6 with a standard error of 25.8.7

Overall, our reanalysis yields a point estimate very similar to the author's for the average e�ect

of property titles, but it also unveils an interesting pattern of heterogeneous e�ects along the

distribution of the outcome.
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Figure S3: Estimated LQTEs on the number of hours worked in Field (2005).

4 Supplementary proofs

In this section and in the next, we use the same notations as those used in the proofs of de Chaise-

martin & D'Haultf÷uille (2015).

Theorem 3.3 (sharpness of the bounds)

Sharpness of the bounds for FY11(d)|S1(y)

We only consider the sharpness of FCIC,0, the reasoning being similar for the upper bound. The

7We estimate the standard error of this slope by bootstrap: in each bootstrap sample, we estimate the QTE

and the slope of the best a�ne approximation to the QTE function.
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proof is also similar and actually simpler for d = 1. The corresponding bounds are proper cdf,

so we do not have to consider converging sequences of cdf as we do in case b) below.

a. λ00 > 1. We show that if Assumptions 2, 7, and 9 hold, then FCIC,0 is sharp. For that

purpose, we construct h̃0, Ũ0, Ṽ such that:

(i) Y = h̃0(Ũ0, T ) when D = 0 and D = 1{Ṽ ≥ vGT};

(ii) h̃0(., t) is strictly increasing for t ∈ {0, 1};

(iii) (Ũ0, Ṽ ) ⊥⊥ T |G;

(iv) Fh̃0(Ũ0,1)|G=0,T=1,Ṽ ∈[v00,v01) = T 0.

First, let

h̃0(., 0) = F−1
000 ◦G0(T 0) ◦ F−1

001,

h̃0(., 1) = F−1
001.

Second, let

Ũ0 = (1−D)h̃−1
0 (Y, T )

+D(1− T )(1−G)1{V ∈ [v00, v01)}Ũ1
0

+DTG1{V ∈ [v11, v00)}Ũ2
0

+D [1− (1− T )(1−G)1{V ∈ [v00, v01)} − TG1{V ∈ [v11, v00)}]U0,

where Ũ1
0 and Ũ2

0 are two random variables such that S(Ũ1
0 ) = S(Ũ2

0 ) = (0, 1), and

FŨ1
0 |G=0,T=0,V ∈[v00,v01) = T 0 ◦ F−1

001,

FŨ2
0 |G=1,T=1,V ∈[v11,v00) = C0(T 0) ◦ F−1

001.

FŨ1
0 |G=0,T=0,V ∈[v00,v01) is a valid cdf on (0, 1) since (i) T 0 is increasing by Assumption 9 and F

−1
001 is

also increasing, (ii) limy→y T 0(y) = 0 and limy→y T 0(y) = 1 when λ00 > 1. FŨ2
0 |G=1,T=1,V ∈[v11,v00)

is also a valid cdf on (0, 1) since (i) C0(T 0) is increasing by Assumption 9 and F−1
001 is also

increasing, (ii) C0(T 0) (S(Y )) = (0, 1) when λ00 > 1, as per the second point of Lemma S1.

Third, for every u ∈ (0, 1), let

P0(u) = T 0 ◦ F−1
001(u),

P1(u) = C0(T 0) ◦ F−1
001(u),

P2(u) = H0 ◦G0(T 0) ◦ F−1
001(u).
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As shown in the proof of Lemma S6 (lower bound, case 2), Assumption 9 ensures that P0(u),

P1(u), and P2(u) are non di�erentiable at only one point. Moreover, using the fact that

F001 =
1

λ00

G0 (T 0) +

(
1− 1

λ00

)
T 0, (50)

H0 ◦G0(T 0) = λ10F011 + (1− λ10)C0(T 0), (51)

and T 0, G (T 0), and C0(T 0) are increasing under Assumption 9, one can show that

0 ≤
(

1− 1

λ00

)
P ′0(u) ≤ 1,

0 ≤ (1− λ10)P ′1(u)

P ′2(u)
≤ 1,

for any u at which P0(.), P1(.), and P2(.) are di�erentiable, and P ′2(u) > 0. Then, let BS0 and

BS1 be two Bernoulli random variables such that for every u ∈ (0, 1),

P (BS0 = 1|Ũ0 = u,D = 0, G = 0, T = 1) =

(
1− 1

λ00

)
P ′0(u),

P (BS1 = 1|Ũ0 = u,D = 0, G = 1, T = 0) =
(1− λ10)P ′1(u)

P ′2(u)
,

with the convention that P (BS0 = 1|Ũ0 = u,D = 0, G = 0, T = 1) and P (BS1 = 1|Ũ0 =

u,D = 0, G = 1, T = 0) are equal to 0 at the point at which P0(u), P1(u), and P2(u) are

not di�erentiable, and P (BS1 = 1|Ũ0 = u,D = 0, G = 1, T = 0) = 0 when P ′2(u) = 0. The

�rst convention is innocuous as it applies to a 0 Lebesgue measure set. As we shall see later,

the second convention is also innocuous, because when P ′2(u) = 0, Equation (51) implies that

P ′1(u) = 0 as well.

Finally, let

Ṽ = (1−D)(1−G)T
[
BS0Ṽ

1 + (1−BS0)Ṽ
2
]

+(1−D)G(1− T )
[
BS1Ṽ

3 + (1−BS1)Ṽ
4
]

+ (1− (1−D) [(1−G)T +G(1− T )])V,

where Ṽ 1, Ṽ 2, Ṽ 3, and Ṽ 4 are such that S(Ṽ 1) = S(V ) ∩ [v00, v01), S(Ṽ 2) = S(V ) ∩ (−∞, v00),

S(Ṽ 3) = S(V ) ∩ [v11, v00), S(Ṽ 4) = S(V ) ∩ (−∞, v11), and

fṼ 1|G=0,T=1,D=0,BS0=1,Ũ0
(v|u) = fV |G=0,T=0,V ∈[v00,v01),Ũ0

(v|u),

fṼ 2|G=0,T=1,D=0,BS0=0,Ũ0
(v|u) = fV |G=0,T=0,V <v00,Ũ0

(v|u),

fṼ 3|G=1,T=0,D=0,BS1=1,Ũ0
(v|u) = fV |G=1,T=1,V ∈[v11,v00),Ũ0

(v|u),

fṼ 4|G=1,T=0,D=0,BS1=0,Ũ0
(v|u) = fV |G=1,T=1,V <v11,Ũ0

(v|u).
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We shall now show that (h̃0(., 0), h̃0(., 1), Ũ0, Ṽ ) satis�es (i), (ii), (iii), and (iv). By construction,

Point (i) is satis�ed. Moreover, it follows from Assumption 7 that h̃0(., 1) is strictly increasing

on (0, 1). Besides, G0(T 0) ◦ F−1
001 is strictly increasing on (0, 1) and included between 0 and 1 as

shown in the �rst point of Lemma S1. F−1
000 is also strictly increasing on (0, 1) by Assumption 7.

Therefore, h̃0(., 0) is also strictly increasing on (0, 1), and Point (ii) is satis�ed.

Then, we check Point (iii). We show that it holds in the control group. For that purpose, we
use Bayes law to write

fŨ0,Ṽ |G=0,T=t(u, v)

= P (Ṽ < v01|G = 0, T = t)[P (Ṽ < v00|G = 0, T = t, Ṽ < v01)fŨ0|G=0,T=t,Ṽ <v00
(u)fṼ |G=0,T=t,Ṽ <v00,Ũ0

(v|u)

+P (Ṽ ∈ [v00, v01)|G = 0, T = t, Ṽ < v01)fŨ0|G=0,T=t,Ṽ ∈[v00,v01)(u)fṼ |G=0,T=t,Ṽ ∈[v00,v01),Ũ0
(v|u)]

+P (Ṽ ≥ v01|G = 0, T = t)fŨ0,Ṽ |G=0,T=t,Ṽ≥v01(u, v), (52)

and we show that all elements in the right-hand side of the previous display are equal for t = 0

and t = 1.

We �rst evaluate all of these quantities when T = 1. First, it follows from the de�nition of Ṽ

that

P (Ṽ < v01|G = 0, T = 1) = p0|01. (53)

Then,

P (Ũ0 ≤ u|G = 0, T = 1, Ṽ < v01) = P (Ũ0 ≤ u|G = 0, T = 1, D = 0)

= P (h̃−1
0 (Y, 1) ≤ u|G = 0, T = 1, D = 0)

= P (Y ≤ F−1
001(u)|G = 0, T = 1, D = 0)

= u.

Therefore,

fŨ0|G=0,T=1,Ṽ <v01
(u) = 1.

Then, we have, almost everywhere,

fŨ0,1{Ṽ ∈[v00,v01)}|G=0,T=1,Ṽ <v01
(u, 1)

= P (Ṽ ∈ [v00, v01)|G = 0, T = 1, Ṽ < v01, Ũ0 = u)fŨ0|G=0,T=1,Ṽ <v01
(u)

= P (BS0 = 1|G = 0, T = 1, D = 0, Ũ0 = u)

=

(
1− 1

λ00

)
P ′0(u). (54)

The second equality follows from the de�nition of Ṽ , and from fŨ0|G=0,T=1,Ṽ <v01
(u) = 1. Equation

(54) and the fact that P ′0 is a density imply that

P (Ṽ ∈ [v00, v01)|G = 0, T = 1, Ṽ < v01) = 1− 1

λ00

, (55)

fŨ0|G=0,T=1,Ṽ ∈[v00,v01)(u) = P ′0(u), (56)
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and

P (Ṽ < v00|G = 0, T = 1, Ṽ < v01) =
1

λ00

, (57)

fŨ0|G=0,T=1,Ṽ <v00
(u) = λ00 − (λ00 − 1)P ′0(u). (58)

Next, we have

fṼ |G=0,T=1,Ṽ ∈[v00,v01),Ũ0
(v|u) = fṼ 1|G=0,T=1,D=0,BS0=1,Ũ0

(v|u),

= fV |G=0,T=0,V ∈[v00,v01),Ũ0
(v|u), (59)

and

fṼ |G=0,T=1,Ṽ <v00,Ũ0
(v|u) = fṼ 2|G=0,T=1,D=0,BS0=0,Ũ0

(v|u)

= fV |G=0,T=0,V <v00,Ũ0
(v|u). (60)

Then, we evaluate all of these quantities when T = 0. First, notice that

P (Ṽ < v01|G = 0, T = 0) = P (V < v01|G = 0, T = 0)

= P (V < v01|G = 0, T = 1)

= p0|01. (61)

The �rst equality follows from the de�nition of Ṽ and the second from the fact V satis�es

Assumption 1. One can use similar arguments to show that

P (Ṽ ∈ [v00, v01)|G = 0, T = 0, Ṽ < v01) = 1− 1

λ00

, (62)

P (Ṽ < v00|G = 0, T = 0, Ṽ < v01) =
1

λ00

. (63)

Then, it follows from the de�nition of Ṽ and Ũ0 that

fŨ0|G=0,T=0,Ṽ ∈[v00,v01)(u) = fŨ1
0 |G=0,T=0,V ∈[v00,v01)(u) = P ′0(u). (64)

Next,

P (Ũ0 ≤ u|G = 0, T = 0, Ṽ < v00) = P (Ũ0 ≤ u|G = 0, T = 0, D = 0)

= P (h̃−1
0 (Y, 0) ≤ u|G = 0, T = 0, D = 0)

= P (Y ≤ F−1
000 ◦G0(T 0) ◦ F−1

001(u)|G = 0, T = 0, D = 0)

= G0(T 0) ◦ F−1
001(u)

= λ00u− (λ00 − 1)P0(u),

where the last equality follows from (50). This implies that

fŨ0|G=0,T=0,Ṽ <v00
(u) = λ00 − (λ00 − 1)P ′0(u). (65)
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Then, it follows from the de�nition of Ṽ that

fṼ |G=0,T=0,Ṽ ∈[v00,v01),Ũ0
(v|u) = fV |G=0,T=0,V ∈[v00,v01),Ũ0

(v|u), (66)

fṼ |G=0,T=0,Ṽ <v00,Ũ0
(v|u) = fV |G=0,T=0,V <v00,Ũ0

(v|u). (67)

Finally,

fŨ0,Ṽ |G=0,T=0,Ṽ≥v01(u, v) = fU0,V |G=0,T=0,V≥v01(u, v)

= fU0,V |G=0,T=1,V≥v01(u, v)

= fŨ0,Ṽ |G=0,T=1,Ṽ≥v01(u, v), (68)

where the �rst and last equality follow from the de�nition of (Ũ0, Ṽ ), while the second equality

follows from the fact (U0, V ) satis�es Assumption 1.

Finally, combining Equation (52) with Equations (53) and (61), (55) and (62), (57) and (63),

(56) and (64), (58) and (65), (59) and (66), (60) and (67), and (68), we get that

fŨ0,Ṽ |G=0,T=1(u, v) = fŨ0,Ṽ |G=0,T=0(u, v).

This shows that (iii) holds in the control group. Showing that it also holds in the treatment

group relies on a very similar reasoning, so we skip this part of the proof due to a concern for

brevity.

b. λ00 < 1. The idea is similar as in the previous case. A di�erence, however, is that when

λ00 < 1 and y = +∞, T 0 is not a proper cdf, but a defective one, since limy→+∞ T 0(y) < 1.

As a result, we cannot de�ne a DGP such that T̃0 = T 0, However, by Lemma S2, there exists

a sequence (T k0)k of cdf such that T k0 → T 0, G0(T k0) is an increasing bijection from S(Y ) to

(0, 1) and C0(T k0) is increasing and onto (0, 1). We can then construct a sequence of DGP

(h̃k0(., 0), h̃k0(., 1), Ũk
0 , Ṽ

k) such that Points (i) to (iii) listed above hold for every k, and such that

T̃ k0 = T k0. Since T k0(y) converges to T 0(y) for every y in
◦
S(Y ), we thus de�ne a sequence of

DGP such that T̃ k0 can be arbitrarily close to T 0 on
◦
S(Y ) for su�ciently large k. Since C0(.) is

continuous, this proves that FCIC,0 is sharp on
◦
S(Y ).

In what follows, we exhibit h̃k0(., 0) and h̃k0(., 1) satisfying (i), as well as distributions of Ũk
0 for

all relevant subpopulations which are a) compatible with the data, b) satisfy (iii), and c) reach

the bound. We do not not exhibit (Ũk
0 , Ṽ

k) as we did in the previous proof, to avoid repeating

twice similar arguments.

Let

h̃k0(., 1) = G0(T k0)−1

h̃k0(., 0) = F−1
000
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h̃k0(., 1) is strictly increasing on (0, 1) since G0(T k0) is an increasing bijection on (0, 1) as shown in

Lemma S2. h̃k0(., 0) is strictly increasing on (0, 1) under Assumption 7. Therefore, (i) is veri�ed.

Let us consider �rst the distribution of Ũk
0 among untreated observations in the control group

in period 1. It follows from Bayes rule that

FŨk0 |G=0,T=1,Ṽ <v00
= λ00FŨk0 |G=0,T=1,Ṽ <v01

+ (1− λ00)FŨk0 |G=0,T=1,Ṽ ∈[v01,v00) (69)

Given h̃k0(., 1), to have T̃ k0 = T k0, we must have

FŨk0 |G=0,T=1,Ṽ ∈[v01,v00) = T k0 ◦G0(T k0)−1.

This de�nes a valid cdf since T k0 is a cdf and G0(T k0)−1 is increasing and onto S(Y ). It can be

achieved by constructing Ṽ using an appropriate Bernoulli random variable to split untreated

observations in the control group in period 0 between some for which Ṽ ∈ [v01, v00), and some

for which Ṽ < v01, exactly as we did for λ00 > 1.

Given h̃k0(., 1), and the fact h̃k0(Ũk
0 , 1) = Y for all observations such that G = 0, T = 1, Ṽ < v01,

a few computations yield

FŨk0 |G=0,T=1,Ṽ <v01
= F001 ◦G0(T k0)−1.

Plugging the last two equations into (69) �nally yields FŨk0 |G=0,T=1,Ṽ <v00
= I, where I denotes

the identity function on [0, 1].

Now, let us turn to untreated observations in the control group in period 0. Given h̃k0(., 0),

and the fact h̃k0(Ũk
0 , 0) = Y for all observations such that G = 0, T = 0, Ṽ < v00, a few

computations yield FŨk0 |G=0,T=0,Ṽ <v00
= I. Since Y (0) is not observed for observations such that

G = 0, T = 1, Ṽ ∈ [v01, v00), the data does not impose any constraint on their U0, so we can set

FŨk0 |G=0,T=0,Ṽ ∈[v01,v00) = T k0 ◦G0(T k0)−1.

Therefore, the distributions of Ũk
0 |G = 0, T = t, Ṽ < v01 and Ũk

0 |G = 0, T = t, Ṽ ∈ [v01, v00)

satisfy (iii).

Then, let us consider untreated observations in the treatment group in period 1. Using the

de�nition of h̃k0(., 1) and the fact h̃k0(Ũk
0 , 1) = Y for all observations such that G = 1, T = 1, Ṽ <

v11, one can show after a few computations that

FŨk0 |G=1,T=1,Ṽ <v11
= F011 ◦G0(T k0)−1.

Since Y (0) is not observed for observations such that G = 1, T = 1, Ṽ ∈ [v11, v00), the data does

not impose any constraint on their U0, so we can set

FŨk0 |G=1,T=1,Ṽ ∈[v11,v00) = C0(T k0) ◦G0(T k0)−1.
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This de�nes a valid cdf, as shown in Points 2 and 3 of Lemma S2.

Finally, let us consider untreated observations in the treatment group in period 0. It follows

from Bayes rule that we must have

FŨk0 |G=1,T=0,Ṽ <v00
= λ10FŨk0 |G=1,T=0,Ṽ <v11

+ (1− λ10)FŨk0 |G=1,T=0,Ṽ ∈[v11,v00). (70)

To satisfy point (iii), we must have

FŨk0 |G=1,T=0,Ṽ <v11
= F011 ◦G0(T k0)−1.

This can be achieved by constructing Ṽ using an appropriate Bernoulli random variable to split

untreated observations in the treatment group in period 0 between some for which Ṽ ∈ [v11, v00),

and some for which Ṽ < v11, exactly as we did for λ00 > 1. Using the de�nition of h̃k0(., 1) and

the fact h̃k0(Ũk
0 , 1) = Y for all observations such that G = 0, T = 1, Ṽ < v11, one can show after

a few computations that

FŨk0 |G=1,T=0,Ṽ <v00
= F010 ◦ F−1

000.

Plugging the last two equations into (70) �nally yields

FŨk0 |G=1,T=0,Ṽ ∈[v11,v00) =
p0|10F010 ◦ F−1

000 − p0|11F011 ◦G0(T k0)−1

p0|10 − p0|11

= C0(T k0) ◦G0(T k0)−1.

Therefore, the distributions of Ũk
0 |G = 1, T = t, Ṽ < v11 and Ũk

0 |G = 1, T = t, Ṽ ∈ [v11, v00)

satisfy (iii). This completes the proof when λ00 < 1.

Sharpness of the bounds for ∆ and τq

We prove that the bounds on ∆ and τq are sharp under Assumption 9. We only focus on

the lower bound, the result being similar for the upper bound. The model and data impose

no condition on the joint distribution of (U0, U1). Hence, by the previous sharpness proof we

can rationalize the fact that (FY11(0)|S1 , FY11(1)|S1) = (FCIC,0, FCIC,1) when λ00 > 1. Sharpness

of ∆ and τq follows directly. When λ00 < 1, on the other hand, we can only rationalize the

fact that (FY11(0)|S1 , FY11(1)|S1) = (C0k, FCIC,1), where C0k converges pointwise to FCIC,0. To

show the sharpness of the LATE and LQTE, we thus have to prove that limk→∞
∫
ydC0k(y) =∫

ydFCIC,0(y) and limk→∞C
−1
0k (q) = F−1

CIC,0(q).

As for the LATE, we have, by integration by parts for Lebesgue-Stieljes integrals,∫
ydC0k(y) = y −

∫ y

y

C0kdy = −
∫ 0

y

C0k(y)dy +

∫ y

0

[1− C0k(y)] dy. (71)

We now prove the convergence of each integral in the right-hand side. As shown by Lemma S2,

C0k can be de�ned as C0k = C0(T k0) with T k0 ≤ T0, T0 denoting FY11(0)|S0 . Because C0(T0) =

29



FY11(0)|S1 and C0(.) is increasing when λ00 < 1, C0k ≤ FY11(0)|S1 . E(|Y11(0)| |S1) < +∞ implies

that
∫ 0

y
FY11(0)|S1(y)dy < +∞. Thus, by the dominated convergence theorem,

lim
k→∞

∫ 0

y

C0kdy =

∫ 0

y

FCIC,0(y)dy < +∞.

Now consider the second integral in (71). If y < +∞, we can also apply the dominated conver-

gence theorem: 1−C0k ≤ 1 implies that
∫ y

0
[1− C0k(y)] dy →

∫ y
0

[
1− FCIC,0(y)

]
dy. If y = +∞,

limy→+∞ FCIC,0(y) = ` < 1 so that∫ y

0

[
1− FCIC,0(y)

]
dy = +∞.

By Fatou's lemma,

lim inf

∫ y

0

[1− C0k(y)] dy ≥
∫ y

0

[
1− FCIC,0(y)

]
dy = +∞.

Thus, in this case as well the second integral in (71) converges to
∫ y

0

[
1− FCIC,0(y)

]
dy. Finally,

because
∫ 0

y
C0k(y)dy converges to a �nite limit,

∫
ydC0k(y) converges to

∫
ydFCIC,0(y). Hence,

the lower bound of ∆ is sharp.

Now, let us turn to τq. Following Lemma S2 , we can let C0k = C0(T k0), where T k0 and C0(T k0)

satisfy the three following requirements:

1. T k0 ≥ T 0

2. for all y∗ ∈
◦
S(Y ), there is a k ∈ N such that for every k′ ≥ k, T k

′

0 (y) = T 0(y) for all y ≤ y∗.

3. C0(T k0) is increasing.

Suppose �rst that yq ≡ F−1
CIC,0(q) ∈

◦
S(Y ). Then point 2 above implies that for all k large

enough, C0k(y) = FCIC,0(y) for every y ≤ yq. This implies that C−1
0k (q) = yq. Hence, C−1

0k (q)

converges to yq. Now suppose that yq 6∈
◦
S(Y ). Given that S(Y ) = [y, y], yq ∈ {y, y}. If

yq = y, y ≤ C−1
0k (q) ≤ F−1

CIC,0(q), where the second inequality follows from the fact that point

1 above implies that C0k ≥ FCIC,0. Therefore, C
−1
0k (q) = yq. Finally, if yq = y, the proof of

Lemma S2 shows that there exists a sequence (yk)k∈N converging towards y such that, for every

k ≥ 1, C0k(yk − 1/k) = FCIC,0(yk − 1/k). Moreover, by de�nition, FCIC,0(yk − 1/k) < q. Thus,

C0k(yk − 1/k) < q, and y ≥ C−1
0k (q) ≥ yk − 1/k, where the second inequality holds by point 3

above. Hence, in this case as well, C−1
0k (q) converges to y. This proves that the lower bound of

τq is sharp, which completes the proof �

30



Theorem S1

Proof of 1

As the �rst stage regression is fully saturated in (T,G), the predicted value of D from this

regression is E(D|T,G). As a result, the second stage is a regression of Y on a constant, the

time and group dummies, and E(D|T,G). Then, β = cov(Y,Z̃)

V (Z̃)
, where Z̃ is the residual from an

OLS regression of E(D|T,G) on the constant and the group and time dummies. Let α, αg, and

αt respectively denote the coe�cients of the constant and of the group and time dummies in

that regression. We have V (Z̃) = cov(E(D|T,G), Z̃) = cov(D, Z̃). The �rst equality follows

from the fact that

E(D|T,G) = α +

g∑
g=1

αg1{G = g}+
t∑
t=1

αt1{T = t}+ Z̃

and Z̃ is by construction uncorrelated with the time and group dummies. The second equality

follows from the law of iterated expectations. Therefore, β = cov(Y,Z̃)

cov(D,Z̃)
.

As G ⊥⊥ T , it follows from the Frisch-Waugh theorem that the αt are equal to the coe�cient of

the time dummies in a regression of E(D|G, T ) on the constant and the time dummies alone.

Therefore,

αt = E(E(D|G, T )|T = t)− E(E(D|G, T )|T = 0) = E(D|T = t)− E(D|T = 0).

Similarly, as G ⊥⊥ T , it follows from the Frisch-Waugh theorem that the αg are equal to the

coe�cient of the group dummies in a regression of E(D|G, T ) on the constant and the group

dummies alone. Therefore,

αg = E(E(D|G, T )|G = g)− E(E(D|G, T )|G = 0) = E(D|G = g)− E(D|G = 0).

Then, we have

Z̃ = E(D|G, T )− α− (E(D|G)− E(D|G = 0))− (E(D|T )− E(D|T = 0)) .
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Let us �rst consider the numerator of β.

cov(Y, Z̃) = cov(Y,E(D|G,T )− E(D|G)− E(D|T ))

= E((E(D|G,T )− E(D|G)− E(D|T ) + E(D))E(Y |G,T ))

=
t∑
t=0

g∑
g=0

P (G = g)P (T = t)(E(Dgt)− E(D|G = g)− E(D|T = t) + E(D))E(Ygt)

=
t∑
t=1

g∑
g=0

P (G = g)P (T = t)(E(Dgt)− E(D|G = g)− E(D|T = t) + E(D)) (E(Ygt)− E(Yg0)− (E(Y0t)− E(Y00)))

=
t∑
t=1

g∑
g=1

P (G = g)P (T = t)(E(Dgt)− E(D|G = g)− E(D|T = t) + E(D))
t∑

t′=1

g∑
g′=1

WDID(g′, g′ − 1, t′)DIDD(g′, g′ − 1, t′)

=
t∑
t=1

g∑
g=1

WDID(g, g − 1, t)DIDD(g, g − 1, t)
t∑

t′=t

g∑
g′=g

P (G = g′)P (T = t′)(E(Dg′t′ )− E(D|G = g′)− E(D|T = t′) + E(D))

=
t∑
t=1

g∑
g=1

WDID(g, g − 1, t)DIDD(g, g − 1, t)P (G ≥ g)P (T ≥ t) (E (D|G ≥ g, T ≥ t)− E (D|G ≥ g)− E (D|T ≥ t) + E(D)) .

Similarly, one can show that

cov(D, Z̃) =
t∑
t=1

g∑
g=1

DIDD(g, g − 1, t)P (G ≥ g)P (T ≥ t) (E (D|G ≥ g, T ≥ t)− E (D|G ≥ g)− E (D|T ≥ t) + E(D)) .

Proof of 2

If D is binary, Model (1) and Assumptions 1, 3M, and 4M are satis�ed, one can show that for

every (g, t) ∈ {1, ..., g} × {1, ..., t},

WDID(g, g − 1, t) =
E(Dgt)− E(Dgt−1)

DIDD(g, g − 1, t)
∆gt −

E(Dg−1t)− E(Dg−1t−1)

DIDD(g, g − 1, t)
∆g−1t.

This proof follows the same steps as those used in the proof of Theorem 3.1. Then, combining

the last display with the �rst point of the theorem yields the result�

Theorem S2

Proof of 1

We have β = cov(Y,Z̃)

cov(D,Z̃)
, where Z̃ is the residual from an OLS regression of T ∗∗ × f(G) on the

constant and the group and time dummies. Let α, αg, and αt respectively denote the coe�cients

of the constant and of the group and time dummies in that regression. As G ⊥⊥ T , it follows

from the Frisch-Waugh theorem that the αt are equal to the coe�cient of the time dummies in

a regression of T ∗∗ × f(G) on the constant and the time dummies alone. Therefore,

αt = E(T ∗∗ × f(G)|T = t)− E(T ∗∗ × f(G)|T = 0) = 1{t ≥ t0}E(f(G)).

Similarly, as G ⊥⊥ T , it follows from the Frisch-Waugh theorem that the αg are equal to the

coe�cient of the group dummies in a regression of T ∗∗ × f(G) on the constant and the group
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dummies alone. Therefore,

αg = E(T ∗∗ × f(G)|G = g)− E(T ∗∗ × f(G)|G = 0) = (f(g)− f(0))E(T ∗∗).

Then, we have

Z̃ = T ∗∗f(G)− α− T ∗∗E(f(G))− (f(G)− f(0))E(T ∗∗).

Therefore, a few computations yield

β =
cov(Y, f(G)|T ∗∗ = 1)− cov(Y, f(G)|T ∗∗ = 0)

cov(D, f(G)|T ∗∗ = 1)− cov(D, f(G)|T ∗∗ = 0)
.

Now, let us consider the numerator.

cov(Y, f(G)|T ∗∗ = 1)− cov(Y, f(G)|T ∗∗ = 0)

= E((f(G)− E(f(G)))Y |T ∗∗ = 1)− E((f(G)− E(f(G)))Y |T ∗∗ = 0)

= E((f(G)− E(f(G)))E(Y |G, T ∗∗ = 1)|T ∗∗ = 1)− E((f(G)− E(f(G)))E(Y |G, T ∗∗ = 0)|T ∗∗ = 0)

=

g∑
g′=0

P (G = g′|T ∗∗ = 1)(f(g′)− E(f(G)))E(Y |G = g′, T ∗∗ = 1)

−
g∑

g′=0

P (G = g′|T ∗∗ = 0)(f(g′)− E(f(G)))E(Y |G = g′, T ∗∗ = 0)

=

g∑
g′=0

P (G = g′)(f(g′)− E(f(G)))(E(Y |G = g′, T ∗∗ = 1)− E(Y |G = g′, T ∗∗ = 0))

=

g∑
g′=1

P (G = g′)(f(g′)− E(f(G)))DID∗∗Y (g′, 0)

=

g∑
g′=1

P (G = g′)(f(g′)− E(f(G)))

g′∑
g=1

DID∗∗Y (g, g − 1)

=

g∑
g′=1

P (G = g′)(f(g′)− E(f(G)))

g∑
g=1

W ∗∗
DID(g, g − 1)DID∗∗D (g, g − 1)

=

g∑
g=1

W ∗∗
DID(g, g − 1)DID∗∗D (g, g − 1)

g∑
g′=g

P (G = g′)(f(g′)− E(f(G)))

=

g∑
g=1

W ∗∗
DID(g, g − 1)DID∗∗D (g, g − 1)P (G ≥ g)(E(f(G)|G ≥ g)− E(f(G))).

Similarly, one can show that

cov(D, f(G)|T ∗∗ = 1)− cov(D, f(G)|T ∗∗ = 0)

=

g∑
g=1

DID∗∗D (g, g − 1)P (G ≥ g)(E(f(G)|G ≥ g)− E(f(G))).
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Proof of 2

The proof follows similar steps as that of point 2 of Theorem 1 and is therefore omitted. �

Theorem S3

We let hereafter θ = (F000, ..., F011, F100, ..., F111, λ00, λ10, λ01, λ11).

Proof of 1

We already showed in the proof of Theorem 5.1 that each term of the bounds, except
∫
ydF̂ d10(y)

and
∫
ydF̂ d10(y), could be linearized. Therefore, it su�ces to prove that these integrals can be

linearized as well. Let us focus on
∫
ydF̂ d10(y), as the reasoning is similar for the other. An

integration by part yields∫
ydF̂ d10(y)−

∫
ydF d10(y)

=−
∫ y

y

[
F̂ d10(y)− F d10(y)

]
dy

=−
∫ y

y

[
m1

(
λ̂0dF̂Yd01(y)

)
−m1 (λ0dFYd01(y))

]
dy + (y − y)

[
m1

(
λ̂0d

)
−m1 (λ0d)

]
.

By assumption, the equation λ0dFYd01(y) = 1 admits at most one solution. Hence, by Point

2 of Lemma 6 and the chain rule, θ 7→
∫ y
y
m1 [λ0dFYd01(y)] dy + (y − y)m1 (λ0d) is Hadamard

di�erentiable tangentially to (C0)4 × R2. The result then follows from Lemma 4, the functional

delta method, and the functional delta method for the bootstrap.

Proof of 2

Let θ = (F000, ..., F011, F100, ..., F111, λ00, λ10, λ01, λ11). By Lemma 6, for d ∈ {0, 1} and q ∈ Q,
θ 7→

∫ y
y
FCIC,d(y)dy, θ 7→

∫ y
y
FCIC,d(y)dy, θ 7→ F

−1

CIC,d(q), and θ 7→ F−1
CIC,d(q) are Hadamard

di�erentiable tangentially to (C0)4 × R2. Because ∆ =
∫
S(Y )

FCIC,0(y)− FCIC,1(y)dy, ∆ is also

a Hadamard di�erentiable function of θ tangentially to (C0)4 × R2. The same reasoning applies

for ∆, and for τq and τq for every q ∈ Q. The result follows as previously �

5 Technical lemmas

5.1 Lemmas related to identi�cation

Lemma S1 Assume Assumptions 7 and 9 hold, and λ0d > 1. Then:

1. Gd(T d) is a bijection from S(Y ) to [0, 1];
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2. Cd(T d) (S(Y )) = [0, 1].

Proof: we only prove the result for d = 0, the reasoning being similar otherwise. One can show

that when λ00 > 1,

G0(T 0) = min
(
λ00F001,max

(
λ00F001 + (1− λ00), H

−1
0 ◦ (λ10F011)

))
. (72)

By Assumption 7, λ10F011 is strictly increasing. Moreover, S(Y10|D = 0) = S(Y00|D = 0) implies

that H−1
0 is strictly increasing on [0, 1]. Consequently, H−1

0 ◦ (λ10F011) is strictly increasing on

S(Y ) since λ10 < 1. Therefore, G0(T 0) is strictly increasing on S(Y ) as a composition of the

max and min of strictly increasing functions, which in turn implies that G0(T 0) ◦F−1
001 is strictly

increasing on [0, 1]. Moreover, it is easy to see that since S(Y1t|D = 0) = S(Y0t|D = 0),

lim
y→y

H−1
0 ◦ (λ10F011) ◦ F−1

001(y) = 0,

lim
y→y

H−1
0 ◦ (λ10F011) ◦ F−1

001(y) ≤ 1.

Hence, by Equation (72),

lim
y→y

G0(T 0)(y) = 0, lim
y→y

G0(T 0)(y) = 1. (73)

Finally, G0(T 0) ◦ F−1
001 is also continuous by Assumption 7, as a composition of continuous func-

tions. Point 1 then follows, by the intermediate value theorem.

Now, we have

C0(T 0) =
p0|10F010 ◦ F−1

001 ◦G0(T 0)− p0|11F011

p0|10 − p0|11

.

(73) implies that G0(T 0) is a cdf. Hence, by Assumption 7,

lim
y→y

C0(T 0)(y) = 0, lim
y→y

C0(T 0)(y) = 1.

Moreover, C0(T 0) is increasing by Assumption 9. Combining this with Assumption 7 yields

Point 2, since C0(T 0) is continuous by Assumption 7 once more �

Lemma S2 Suppose Assumptions 7 and 9 hold, p0|g0 > 0 for g ∈ {0; 1} and λ00 < 1. Then

there exists a sequence of cdf T k0 such that

1. T k0(y)→ T 0(y) for all y ∈
◦
S(Y );

2. G0(T k0) is an increasing bijection from S(Y ) to [0, 1];

3. C0(T k0) is increasing and onto [0, 1].
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The same holds for the upper bound.

Proof: we consider a sequence (yk)k∈N converging to y and such that yk < y. Since yk < y, we

can also de�ne a strictly positive sequence (ηk)k∈N such that yk + ηk < y. By Assumption 9, H0

is continuously di�erentiable. Moreover,

H ′0 =
F ′010 ◦ F−1

000

F ′000 ◦ F−1
000

is strictly positive on S(Y ) under Assumption 9. F ′011 is also strictly positive on S(Y ) under

Assumption 9. Therefore, using a Taylor expansion of H0 and F011, it is easy to show that there

exists constants A1k > 0 and A2k > 0 such that for all y < y′ ∈ [yk, yk + ηk]
2,

H0(y′)−H0(y) ≥ A1k(y
′ − y), (74)

F011(y′)− F011(y) ≤ A2k(y
′ − y). (75)

We also de�ne a sequence (εk)k∈N by

εk = min

(
ηk,

A1k(1− λ00) (T0(yk)− T 0(yk))

λ10A2k

)
. (76)

Note that as shown in (26), since λ00 < 1, 0 ≤ T0, G0(T0), C0(T0) ≤ 1 implies that we must have

T0 ≤ T0,

which implies in turn that εk ≥ 0. Consequently, since 0 ≤ εk ≤ ηk, inequalities (74) and (75)

also hold for y < y′ ∈ [yk, yk + εk]
2.

We now de�ne T k0. For every k such that εk > 0, let

T k0(y) =

∣∣∣∣∣∣∣
T 0(y) if y < yk

T 0(yk) +
T0(yk+εk)−T 0(yk)

εk
(y − yk) if y ∈ [yk, yk + εk]

T0(y) if y > yk + εk.

For every k such that εk = 0, let

T k0(y) =

∣∣∣∣∣ T 0(y) if y < yk

T0(y) if y ≥ yk

Then, we verify that T k0 de�nes a sequence of cdf which satisfy Points 1, 2 and 3. Under

Assumption 9, T 0(y) is increasing, which implies that T k0(y) is increasing on (y, yk). Since T0(y)

is a cdf, T k0(y) is also increasing on (yk + εk, y). Finally, it is easy to check that when εk > 0,

T k0(y) is increasing on [yk, yk +εk]. T
k
0 is continuous on (y, yk) and (yk +εk, y) under Assumption
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7. It is also continuous at yk and yk + εk by construction. This proves that T k0(y) is increasing

on S(Y ). Moreover,

lim
y→y

T k0(y) = lim
y→y

T 0(y) = 0,

lim
y→y

T k0(y) = lim
y→y

T0(y) = 1.

Hence, T k0 is a cdf. Point 1 also holds by construction of T k0(y).

G0(T k0) = λ00F001 + (1 − λ00)T k0 is strictly increasing and continuous as a sum of the strictly

increasing and continuous function λ00F001 and an increasing and continuous function. Moreover,

G0(T k0) tends to 0 (resp. 1) when y tends to y (resp. to y). Point 2 follows by the intermediate

value theorem.

Finally, let us show Point 3. Because G0(T k0) is a continuous cdf, C0(T k0) is also continuous and

converges to 0 (resp. 1) when y tends to y (resp. to y). Thus, the proof will be completed if

we show that C0(T k0) is increasing. By Assumption 9, C0(T k0) is increasing on (y, yk). Moreover,

since FY11(0)|S1 = C0(T0), C0(T k0) is also increasing on (yk + εk, y). Finally, when εk > 0, we have

that for all y < y′ ∈ [yk, yk + εk]
2,

H0(λ00F001(y
′) + (1− λ00)T

k
0(y
′))−H0(λ00F001(y) + (1− λ00)T

k
0(y))

≥ A1k(1− λ00)
(
T k0(y

′)− T k0(y)
)

≥ A1k(1− λ00) (T0(yk)− T 0(yk))

εk
(y′ − y)

≥ λ10A2k(y
′ − y)

≥ λ10

(
F011(y

′)− F011(y)
)
,

where the �rst inequality follows by (74) and F001(y′) ≥ F001(y), the second by the de�nition of

T k0 and T0(yk + εk) ≥ T0(yk), the third by (76) and the fourth by (75). This implies that C0(T k0)

is increasing on [yk, yk + εk], since

C0(T k0) =
H0(λ00F001 + (1− λ00)T k0)− λ10F011

1− λ10

.

It is easy to check that under Assumption 7 C0(T k0) is continuous on S(Y ). This completes the

proof �

5.2 Lemmas related to inference

In the following lemmas, we let, for any functional R, dRF denote the Hadamard di�erential of

R taken at F . Whenever it exists, this di�erential is the continuous linear form satisfying

dRF (h) = lim
t→0

R(F + tht)−R(F )

t
, for any ht s.t. ||ht − h||∞ → 0.
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In absence of ambiguity, we let the point at which the di�erential is taken implicit and simply

denote it by dR. In addition to the sets C0(Θ) and C1(Θ), we also denote by D(Θ) (resp. Dc(Θ))

the set of bounded càdlàg (resp. cdfs) functions on Θ. Once more, Θ is left implicit when it is

S(Y ).

Also, for any (r, k) ∈ N∗, u = (u1, ..., ur) ∈ Rr and any function h = (h1, ...hk)
′ from Rr to Rk,

let ‖u‖1 =
∑r

j=1 |uj| and ‖h‖∞ = maxj=1,...,k supx∈Rr |hj(x)| denote the usual L1 norm of u and

the supremum norm of h, respectively. The following inequality on ratios is used repeatedly in

the proofs of Theorems 5.1 and 5.2. It is probably well-known but we prove it for the sake of

completeness.

Lemma S3 Let (x1, y1) and (x2, y2) be such that y2 ≥ C > 0 and max(|x1−x2|, |y1−y2|) ≤ C/2.

Then ∣∣∣∣x1

y1

− x2

y2

− 1

y2

(
x1 − x2 −

x2

y2

(y1 − y2)

)∣∣∣∣ ≤ 2(1 + |x2/y2|)
C2

max(|x1 − x2|, |y1 − y2|)2.

Proof:

First, some algebra shows that

x1

y1

− x2

y2

− 1

y2

(
x1 − x2 −

x2

y2

(y1 − y2)

)
=
y1 − y2

y2
2

[
(x2 − x1) +

x1

y1

(y1 − y2)

]
.

As a result,∣∣∣∣x1

y1

− x2

y2

− 1

y2

(
x1 − x2 −

x2

y2

(y1 − y2)

)∣∣∣∣ ≤ 1 + |x1/y1|
C2

max(|x1 − x2|, |y1 − y2|)2.

Besides, y1 ≥ y2 − |y1 − y2| ≥ C/2. Thus,∣∣∣∣x1

y1

− x2

y2

∣∣∣∣ ≤ |x2||y2 − y1|
y1y2

+
|x1 − x2|

y1

≤ C

2y1

(
|x2|
y2

+ 1

)
≤ 1 + |x2/y2|.

The triangular inequality then yields∣∣∣∣x1

y1

− x2

y2

− 1

y2

(
x1 − x2 −

x2

y2

(y1 − y2)

)∣∣∣∣ ≤ 2(1 + |x2/y2|)
C2

max(|x1 − x2|, |y1 − y2|)2
�

The following lemma is used to establish the asymptotic normality of the Wald-CIC estimator

in the proof of Theorem 5.1.

Lemma S4 Suppose that pd|g0 > 0 for (d, g) ∈ {0, 1}2 and let

θ = (F000, F001, ..., F111, λ00, λ10, λ01, λ11)
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and

θ̂ = (F̂000, F̂001, ..., F̂111, λ̂00, λ̂10, λ̂01, λ̂11).

Then √
n
(
θ̂ − θ

)
=⇒ G,

where G denotes a gaussian process de�ned on S(Y )8 × {0}4. Moreover, G is continuous in its

k-th component (k ∈ {1, ..., 8} if the corresponding Fdgt is continuous.
8 Finally, the bootstrap is

consistent for θ̂.

Proof: let Gn denote the standard empirical process. We prove the result for

η = (F000, F001, ..., F111, p1|00, p1|01, p1|10, p1|11)

instead of θ. The result on θ then follows as (λ00, λ10, λ01, λ11) is a smooth function of (p1|00, p1|01, p1|10, p1|11).

For any (y, d, g, t) ∈ (S(Y ) ∪ {+∞})× {0, 1}3, let

fdgty(Y,D,G, T ) =
1{D = d}1{G = g}1{T = t} [1{Y ≤ y} − Fdgt(y)]

pdgt
,

fgt(Y,D,G, T ) = 1{G = g}1{T = t}
[
1{D = 1} − p1|gt

]
/pgt.

We have, for all (y, d, g, t) ∈ (S(Y ) ∪ {−∞,+∞})× {0, 1}3,

√
n
(
F̂dgt(y)− Fdgt(y)

)
=

√
n

ndgt

n∑
i=1

1{Di = d}1{Gi = g}1{Ti = t} [1{Yi ≤ y} − Fdgt(y)]

=
npdgt
ndgt

Gnfdgty

= Gnfdgty (1 + oP (1)) .

Similarly,
√
n
(
p̂1|gt − p1|gt

)
= Gnfg,t (1 + oP (1)). Hence, letting

fy = (f000y, ..., f111y, f00, f01, f10, f11)′,

we obtain
√
n (η̂ − η) = Gnfy (1 + oP (1)). Weak convergence of the left-hand side to a gaus-

sian process follows because each class {fdgty : y ∈ S(Y )} is Donsker. Moreover, remark that
√
ndgt

(
F̂dgt(y)− Fdgt(y)

)
is the standard empirical process on the sample Idgt of random size

ndgt. Therefore (see, e.g. Theorem 3.5.1 in van der Vaart & Wellner, 1996), it converges in

distribution to a process B ◦ Fdgt, where B is a Brownian bridge. Hence, continuity follows as

long as Fdgt is continuous.

Now let us turn to the bootstrap. Observe that

√
n
(
F̂ ∗dgt(y)− Fdgt(y)

)
=
npdgt
n∗dgt

G∗nfy,d,g,t,

8Formally, the link between (d, g, t) and k is k = 1 + t+ 2g + 4t.
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where G∗n denote the bootstrap empirical process. Because npdgt/n
∗
dgt

P−→ 1 and by consistency

of the bootstrap empirical process (see, e.g., van der Vaart, 2000, Theorem 23.7), the bootstrap

is consistent for η̂ �

The next two lemmas allows us to use the functional delta method for the CIC estimators of

average and quantile treatment e�ects, both in the point and partially identi�ed case, with and

without covariates.

Lemma S5 1. Let R1(F1, F2, F3, F4, λ, µ) =
µF4−F1◦F−1

2 ◦q1(F3,λ)

µ−1
and R2(F1, F2, F3, F4, λ, µ) =

µF4−F1◦F−1
2 ◦q2(F3,λ)

µ−1
, with q1(F3, λ) = λF3 and q2(F3, λ) = λF3 + 1 − λ. R1 and R2 are

Hadamard di�erentiable at any (F10, F20, F30, F40, λ00, λ10) ∈ (C1)4× [0,∞)× ([0,∞)\{1}),
tangentially to (C0)4 × R2. Moreover, dR1 ((C0)4 × R2) and dR2 ((C0)4 × R2) are included

in C0.

2. Let R3(F1) =
∫ y
y
m1(F1)(y)dy and R4(F1, F2) =

∫ y
y
F2(m1(F1))(y)dy. Tangentially to C0,

R3 is Hadamard di�erentiable at any F10 ∈ Dc and the equation F10(y) = 1 admits at

most one solution on
◦
S(Y ). Tangentially to (C0)2, R4 is Hadamard di�erentiable at any

(F10, F20) such that F10 satis�es the same conditions as for R3 and F20 is continuously

di�erentiable on [0, 1]. The same holds if we replace m1 (and the equation F10(y) = 1) by

M0 (and F10(y) = 0).

3. Let R4(F,Q1|X , Q2|X , Q3|X) =
∫
mD

10(x)
∫ 1

0
Q1|X{Q−1

2|X [Q3|X(u|x)|x]|x}dudF (x), wheremD
10(x) =

E(D10|X = x). Then, tangentially to C0(S(X))×C0((0, 1)×S(X))3 , R4 is Hadamard dif-

ferentiable at any (F0, Q10|X , Q20|X , Q30|X) such that F0 ∈ Dc(S(X)), (Q1|X(.|x), Q2|X(.|x), Q3|X(.|x)) ∈
(C1(0, 1))3 for all x ∈ S(X) and G(x) = mD

10(x)
∫ 1

0
Q10|X{Q−1

20|X [Q30|X(u|x)|x]|x}du is of

bounded variation. Moreover, for all h1 such that h1(inf S(X)) = h1(supS(X)) = 0,

dR4(h1, h2, h3, h4) =

∫
mD

10(x)

∫ 1

0

{
h2

[
Q−1

20|X [Q30|X(u|x)], x
]

+ ∂u

[
Q10|X ◦Q−1

20|X

]
[(Q30|X(u|x)|x)|x]

×
[
−h3

[
Q−1

20|X [Q30|X(u|x)], x
]

+ h4(u, x)
]}

dudF0(x)−
∫
h1(x)dG(x).

Proof of 1. We �rst prove that φ1(F1, F2, F3) = F1 ◦ F−1
2 ◦ F3 is Hadamard di�erentiable at

(F10, F20, F30) ∈ (C1)
3
. Because (F10, F20) ∈ (C1)

2
, the function φ2 : (F1, F2, F3) 7→ (F1 ◦F−1

2 , F3)

is Hadamard di�erentiable at (F10, F20, F30) tangentially to D×C0×D (see, e.g., van der Vaart

& Wellner, 1996, Problem 3.9.4), and therefore tangentially to (C0)
3
. Moreover computations

show that its derivative at (F10, F20, F30) satis�es

dφ2(h1, h2, h3) =

(
h1 ◦ F−1

20 −
F ′10 ◦ F−1

20

F ′20 ◦ F−1
20

h2 ◦ F−1
20 , h3

)
.
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This shows that dφ2

(
(C0)

3
)
⊆ (C0)

2
.

Then, the composition function φ3 : (U, V ) 7→ U ◦V is Hadamard di�erentiable at any (U0, V0) ∈
(C1)

2
, tangentially to C0 × D (see, e.g., van der Vaart & Wellner, 1996, Lemma 3.9.27), and

therefore tangentially to (C0)
2
. It is thus Hadamard di�erentiable at (F10 ◦ F−1

20 , F30), and one

can show that dφ3

(
(C0)

2
)
⊆ C0. Thus, by the chain rule (see van der Vaart & Wellner, 1996,

Lemma 3.9.3), φ1 = φ3 ◦ φ2 is also Hadamard di�erentiable at (F10, F20, F30) tangentially to

(C0)3, and dφ1

(
(C0)

3
)
⊆ C0.

Finally, because q1(F3, λ) is a smooth function of F3 and λ, and R1 is a smooth function of

(φ1(F1, F2, q1(F3, λ)), F4, µ), it is also Hadamard di�erentiable at (F10, F20, F30, F40, λ00, λ10) tan-

gentially to (C0)4 × R2, and dR1 ((C0)4 × R2) ⊆ C0.

Proof of 2. We only prove the result for R4 and m1, the reasoning being similar (and simpler)

for R3 and M0. For any collections of functions (ht1) and (ht2) in C0, respectively converging

uniformly towards h1 and h2 in C0, we have

R4(F10 + tht1, F20 + tht2)−R4(F10, F20)

t
=

∫ y

y

ht2 ◦m1(F10 + tht1)(y)dy

+

∫ y

y

F20 ◦m1(F10 + tht1)− F20 ◦m1(F10)

t
(y)dy.

Consider the �rst integral I1.

|ht2 ◦m1(F10 + tht1)(y)− h2 ◦m1(F10)(y)|
≤ |ht2 ◦m1(F10 + tht1)(y)− h2 ◦m1(F10 + tht1)(y)|
+ |h2 ◦m1(F10 + tht1)(y)− h2 ◦m1(F10)(y)|
≤ ||ht2 − h2||∞ + |h2 ◦m1(F10 + tht1)(y)− h2 ◦m1(F10)(y)|.

By uniform convergence of ht2 towards h2, the �rst term in the last inequality converges to 0

when t goes to 0. By convergence of m1(F10 + tht1) towards m1(F10) and continuity of h2, the

second term also converges to 0. As a result,

ht2 ◦m1(F10 + tht1)(y)→ h2 ◦m1(F10)(y).

Moreover, for t small enough,

|ht2 ◦m1(F10 + tht1)(y)| ≤ ||h2||∞ + 1.

Thus, by the dominated convergence theorem, I1 →
∫ y
y
h2 ◦m1(F10)(y)dy, which is linear in h2

and continuous since the integral is taken over a bounded interval.
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Now consider the second integral I2. Let us de�ne y1
as the solution to F10(y) = 1 on (y, y) if

there is one such solution, y
1

= y otherwise. We prove that almost everywhere,

F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t
→ F ′20(F10(y))h1(y)1{y < y

1
}. (77)

As F10 is increasing, for y < y
1
, F10(y) < 1, so that for t small enough, F10(y) + tht1(y) < 1.

Therefore, for t small enough,

F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t
=

F20 ◦ (F10(y) + tht1(y))− F20 ◦ F10(y)

t

=
(F ′20(F10(y)) + ε(t))(F10(y) + tht1(y)− F10(y))

t
= (F ′20(F10(y)) + ε(t))ht1(y)

for some function ε(t) converging towards 0 when t goes to 0. Therefore,

F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t
→ F ′20(F10(y))h1(y),

so that (77) holds for y < y
1
. Now, if y > y > y

1
, F10(y) > 1 because F10 is increasing. Thus,

for t small enough, F10(y) + tht1(y) > 1. Therefore, for t small enough,

F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t
= 0,

so that (77) holds as well. Thus, (77) holds almost everywhere.

Now, remark that m1 is 1-Lipschitz. As a result,∣∣∣∣F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t

∣∣∣∣ ≤ ||F ′20||∞|ht1(y)|

≤ ||F ′20||∞ (|h1(y)|+ ||ht1 − h1||∞) .

Because ||ht1 − h1||∞ → 0, |h1(y)|+ ||ht1 − h1||∞ ≤ |h1(y)|+ 1 for t small enough. Thus, by the

dominated convergence theorem,∫ y

y

F20 ◦m1(F10 + tht1)− F20 ◦m1(F10)

t
(y)dy →

∫ y
1

y

F ′20(F10(y))h1(y)dy.

The right-hand side is linear with respect to h1. It is also continuous since the integral is taken

over a bounded interval. The second point follows.

Proof of 3. Combining the same reasoning as in part 1 with a dominated convergence ar-

gument, we obtain that R5(Q1|X , Q2|X , Q3|X) =
∫ 1

0
Q1|X{Q−1

2|X [Q3|X(u|x)|x]|x}du is Hadamard

di�erentiable at (Q10|X , Q20|X , Q30|X), with

dR5(h1, h2, h3) =

∫ 1

0

{
h1

[
Q−1

20|X [Q30|X(u|x)], x
]

+ ∂u

[
Q10|X ◦Q−1

20|X

]
[(Q30|X(u|x)|x), x]

×
[
−h2

[
Q−1

20|X [Q30|X(u|x)], x
]

+ h3(u, x)
]}

du.
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Besides, by the same reasoning as in the proof of Lemma 20.10 of van der Vaart (2000),

R6(FX , G) =
∫
mD

10(x)G(x)dFX(x) is Hadamard di�erentiable at any (FX , G) such that FX

is a cdf and G is of bounded variation. Moreover,

dR6(h1, h2) = −
∫
h1d[mD

10 ×G] +

∫ [
mD

10 × h2

]
dFX .

The result follows by the chain rule �

Lemma S6 Assume Assumptions 2, 7, 9, 12 and S2 hold. Let

θ = (F000, ..., F011, F100, ..., F111, λ00, λ10, λ01, λ11).

For d ∈ {0, 1} and q ∈ Q, θ 7→
∫ y
y
FCIC,d(y)dy, θ 7→

∫ y
y
FCIC,d(y)dy, θ 7→ F

−1

CIC,d(q) and

θ 7→ F−1
CIC,d(q) are Hadamard di�erentiable tangentially to (C0)4 × R2.

Proof: the proof is complicated by the fact that even if the primitive cdf are smooth, the bounds

FCIC,d and FCIC,d may admit kinks, so that Hadamard di�erentiability is not trivial to derive.

The proof is also lengthy as FCIC,d and FCIC,d take di�erent forms depending on d ∈ {0, 1} and
whether λ00 < 1 or λ00 > 1. Before considering all possible cases, note that by Assumption 9,

FCIC,d = Cd(T d).

1. Lower bound FCIC,d

For d ∈ {0, 1}, let Ud =
λ0dFd01−H−1

d (m1(λ1dFd11))

λ0d−1
, so that

T d = M0 (m1 (Ud)) ,

Cd(T d) =
λ1dFd11 −Hd (λ0dFd01 + (1− λ0d)T d)

λ1d − 1
.

Also, let

yu0d = inf{y : Ud(y) > 0} and yu1d = inf{y : Ud(y) > 1}.

When yu0d and y
u
1d are in R, we have, by continuity of Ud, Ud(y

u
0d) = 0 and Ud(y

u
1d) = 1. Conse-

quently, T d(y
u
0d) = Ud(y

u
0d) and T d(y

u
1d) = Ud(y

u
1d).

Case 1: λ00 < 1 and d = 0.

In this case, U0 =
H−1

0 (λ10F011)−λ00F001

1−λ00 . We �rst prove by contradiction that yu00 = +∞. First,

because limy→+∞ U0(y) < 1, we have

lim
y→+∞

T 0(y) = M0( lim
y→+∞

U0(y)) < 1.

Thus, by Assumption 9, U0(y) < 1 for all y, otherwise T 0(y) would be decreasing. Hence,

yu10 = +∞.
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Therefore, when yu00 < +∞, there exists y such that 0 < U0(y) < 1. Assume that there exists

y′ ≥ y such that U0(y′) < 0. By continuity and the intermediate value theorem, this would

imply that there exists y′′ ∈ (y, y′) such that U0(y′′) = 0. But since both U0(y) and U0(y′′) are

included in [0, 1], this would imply that T 0 is strictly decreasing between y and y′′, which is not

possible under Assumption 9. This proves that when yu00 < +∞, there exists y such that for

every y′ ≥ y, 0 ≤ U0(y′) < 1.

Consequently, T 0 = U0 for every y
′ ≥ y. This in turn implies that C0(T 0) = 0 for every y′ ≥ y.

Moreover, C0(T 0) is increasing under Assumption 9, which implies that C0(T 0) = 0 for every y.

This proves that when yu00 < +∞, C0(T 0) = 0. This implies that S0 is empty, which violates

Assumption S2. Therefore, under Assumption 9, we cannot have yu00 < +∞ when λ00 < 1.

Because yu00 = +∞, T 0 = 0. Therefore,

C0(T 0)(y) =
λ10F011(y)−H0 (λ00F001(y))

λ10 − 1
.

The map F 7→
∫
S(Y )

F (y)dy is linear and continuous with respect to the supremum norm at any

continuous F because S(Y ) is bounded. It is thus Hadamard di�erentiable, tangentially to C0.

Therefore, by Assumption S2, the �rst point of Lemma S5, and the chain rule,

θ 7→
∫
S(Y )

FCIC,0(y)dy

is Hadamard di�erentiable tangentially to (C0)4 × R2.

Then, the map F 7→ F−1 is Hadamard di�erentiable at any F with strictly positive derivative,

tangentially to C0 (see, e.g., van der Vaart, 2000, Lemma 21.4). Moreover, by Assumption S2,

C0(T 0) is increasing and di�erentiable with strictly positive derivative on S0, which is equal to

S(Y ) in this case. Thus, by the �rst point of Lemma 5 and the chain rule, θ 7→ F−1
CIC,0(q) is

Hadamard di�erentiable tangentially to (C0)4 × R2 for any q ∈ Q.

Case 2: λ00 > 1 and d = 0.

In this case,

U0 =
λ00F001 −H−1

0 (λ10F011)

λ00 − 1
.

Therefore, limy→y U0(y) = 0, and limy→y U0(y) > 1. As a result, −∞ < yu10 < +∞, and

T 0(yu10) = U0(yu10) = 1. This in turn implies C0(T 0)(yu10) = 0. Combining this with Assumption

9 implies that C0(T 0)(y) = 0 for every y ≤ yu10. Moreover, Assumption 9 also implies that

T d(y) = 1 for every y ≥ yu10. Therefore,

C0(T 0)(y) =

∣∣∣∣∣ 0 if y ≤ yu10,
λ10F011(y)−H0(λ00F001(y)+(1−λ00))

λ10−1
if y > yu10.
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Thus, C0(T 0)(y) = M0(R2(F011, F010, F000, F001, λ00, λ10)), where R2 is de�ned as in Lemma S5.

Hadamard di�erentiability of
∫ y
y
C0(T 0)(y)dy tangentially to (C0)4×R2 thus follows by Points 1

and 2 of Lemma S5, the chain rule and the fact that by Assumption 13, (F011, F010, F000, F001, λ00, λ10) ∈
(C1)4× [0,∞)× ([0,∞)\{1}). As for the LQTE, note that by Point 1 of Lemma S5, θ 7→ C0(T 0)

is Hadamard di�erentiable as a function on (yu10, y), tangentially to (C0)4 ×R2. By Assumption

S2, C0(T 0) is also strictly increasing and di�erentiable with positive derivative on S0 = (yu10, y).

Thus, by point 1 of Lemma S5, Hadamard di�erentiability of F 7→ F−1(q) at (C0(T 0), q) for

q ∈ Q tangentially to C0, and the chain rule, θ 7→ F−1
CIC,0(q) is Hadamard di�erentiable tangen-

tially to (C0)4 × R2.

Case 3: λ00 < 1 and d = 1.

In this case,

U1 =
λ01F100 −H−1

1 (λ11F111)

λ01 − 1
.

λ11 > 1 implies that 1
λ11

< 1. Therefore, y∗ = F−1
111( 1

λ11
) is in

◦
S(Y ) under Assumption 7.

Case 3.a: λ00 < 1, d = 1 and yu01 < y∗.

We have U1(y∗) = λ01F100(y∗)−1
λ01−1

< 1. Assume that U1(y∗) < 0. Since yu01 < y∗, this implies that

there exists y < y∗ such that 0 < U1(y). Since U1 is continuous, there also exists y′ < y∗ such

that 0 < U1(y′) < 1. By continuity and the intermediate value theorem, this �nally implies that

there exists y′′ such that y′ < y′′ and U1(y′′) = 0. This contradicts Assumption 9 since this

would imply that T 1 is decreasing between y
′ and y′′. This proves that

0 ≤ U1(y∗) < 1.

Therefore, T 1(y∗) = U1(y∗), which in turn implies that C1(T 1)(y∗) = 0. By Assumption 9, this

implies that for every y ≤ y∗, C1(T 1)(y) = 0.

For every y greater than y∗,

U1(y) =
λ01F100(y)− 1

λ01 − 1
.

U1(y) < 1. Since U1(y∗) ≥ 0 and y 7→ λ01F100(y)−1
λ01−1

is increasing, U1(y) ≥ 0. Consequently, for

y ≥ y∗, T 1(y) = U1(y).

Finally, we obtain

C1(T 1)(y) =

∣∣∣∣∣ 0 if y ≤ y∗,
λ11F111(y)−1

λ11−1
if y > y∗.

The result follows as in Case 2 above.
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Case 3.b: λ00 < 1, d = 1 and yu01 ≥ y∗.

For all y ≥ y∗, U1(y) = λ01F100(y)−1
λ01−1

. This implies that yu01 = F−1
100(1/λ01) < +∞ and U1(yu01) = 0.

Because y 7→ λ01F100(y)−1
λ01−1

is increasing, U1(y) ≥ 0 for every y ≥ yu01. Moreover, U1(y) ≤ 1.

Therefore, T 1(y) = U1(y) for every y ≥ yu01. Beside, for every y lower than y
u
01, T 1(y) = 0. As a

result,

C1(T 1)(y) =

∣∣∣∣∣ λ11F111(y)−H1(λ01F101(y))
λ11−1

if y ≤ yu01,
λ11F111(y)−1

λ11−1
if y > yu01.

This implies that∫ y

y

C1(T 1)(y)dy =
1

λ11 − 1

[
λ11

∫ y

y

F111(y)dy −R4(λ01F101, H1)

]
,

where R4 is de�ned in Lemma S5. θ 7→
∫ y
y
F111(y)dy is Hadamard di�erentiable at F111, tan-

gentially to C0. As shown in the proof of Lemma S5, H1 = F110 ◦ F−1
100 is a Hadamard di�er-

entiable function of (F110, F100), tangentially to (C0)2. Thus, by Lemma S5 and the chain rule,

R4(λ01F101, H1) is a Hadamard di�erentiable function of (F101, F110, F100), tangentially to (C0)3.

The result follows for
∫ y
y
C1(T 1)(y)dy.

The previous display also shows that C1(T 1) is Hadamard di�erentiable as a function of

(F100, F101, F110, F111, λ01, λ11)

when considering the restriction of these functions to (y, yu01) only. By Assumption S2, C1(T 1)

is also a di�erentiable function with positive derivative on (y, yu01). Therefore, using once again

the �rst point of Lemma S5 and the chain rule, θ 7→ C1(T 1)−1(q) is Hadamard di�erentiable

tangentially to (C0)4×R2, for q ∈ (C1(T 1)(y), C1(T 1)(yu01)) = (0, q1). The same holds when con-

sidering the interval (yu01, y) instead of (y, yu01). Hence, θ 7→ F−1
CIC,1(q) is Hadamard di�erentiable

tangentially to (C0)4 × R2, for q ∈ (0, 1)\{q1} = Q.

Case 4: λ00 > 1 and d = 1.

In this case,

U1 =
H−1

1 (λ11F111)− λ01F100

1− λ01

.

Therefore, limy→y U1(y) = 0, which implies that yu11 > −∞. As above, λ11 > 1 implies that

y∗ is in
◦
S(Y ) under Assumption 7. U1(y∗) = 1−λ01F100(y∗)

1−λ01 > 1, which implies that yu11 < +∞.

Therefore, reasoning as for Case 2, we obtain

C1(T 1)(y) =

∣∣∣∣∣ 0 if y ≤ yu11,
λ11F111(y)−H1(λ01F100(y)+(1−λ01))

λ11−1
if y > yu11.
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The result follows as in Case 2 above.

2. Upper bound FCIC,d.

Let Vd =
λ0dFd01−H−1

d (M0(λ1dFd11+(1−λ1d)))

λ0d−1
, so that

T d = M0 (m1 (Vd)) ,

Cd(T d) =
λ1dFd11 −Hd

(
λ0dFd01 + (1− λ0d)T d

)
λ1d − 1

.

Also, let

yv0d = inf{y : Vd(y) > 0}, yv1d = inf{y : Vd(y) > 1}.

Note that when yv0d and y
v
1d are in R, by continuity of Vd we have Vd(y

v
0d) = 0 and Vd(y

v
1d) = 1.

Consequently, T d(y
v
0d) = Vd(y

v
0d) and T d(y

v
1d) = Vd(y

v
1d).

Case 1: λ00 < 1 and d = 0.

In this case,

V0 =
H−1

0 (λ10F011 + (1− λ10))− λ00F001

1− λ00

.

Since λ10 < 1, limy→y V0(y) > 0 and can even be greater than 1.

First, let us prove by contradiction that yv10 = −∞. V0(y) ≤ 1 for every y ≤ yv10. Using the fact

that limy→y V0(y) > 0 and that T 0 must be increasing under Assumption 9, one can also show

that 0 ≤ V0(y) for every y ≤ yv10. This implies that T 0(y) = V0(y) which in turn implies that

C0(T 0)(y) = 1 for every y ≤ yv10. Since C0(T 0) must be increasing under Assumption 9, this

implies that for every y ∈ S(Y ),

C0(T 0)(y) = 1.

This implies that S0 is empty, which violates Assumption S2. Therefore, yv10 = −∞.

yv10 = −∞ implies that limy→y T 0(y) = 1. This combined with Assumption 9 implies that

T 0(y) = 1 for every y ∈ S(Y ). Therefore,

C0(T 0)(y) =
λ10F011(y)−H0 (λ00F001(y) + (1− λ00))

λ10 − 1
.

The result follows as in Case 1 of the lower bound.

Case 2: λ00 > 1 and d = 0.

In this case,

V0 =
λ00F001 −H−1

0 (λ10F011 + (1− λ10))

λ00 − 1
.
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Since λ10 < 1, limy→y V0(y) < 0. Therefore, yv00 > −∞.

Case 2.a): λ00 > 1, d = 0 and yv00 < +∞.

If yv00 ∈ R, T 0(yv00) = V0(yv00) which in turn implies that C0(T 0)(yv00) = 1. By Assumption 9, this

implies that for every y ≥ yv00, C0(T 0)(y) = 1. For every y ≤ yv00, T 0(y) = 0, so that

C0(T 0) =
λ10F011 −H0 (λ00F001)

λ10 − 1
.

As a result,

C0(T 0)(y) =

∣∣∣∣∣ λ10F011(y)−H0(λ00F001(y))
λ10−1

if y ≤ yv00,

1 if y > yv00.

The result follows as in Case 2 of the lower bound.

Case 2.b): λ00 > 1, d = 0 and yv00 = +∞.

If yv00 = +∞, T 0(y) = 0 for every y ∈ S(Y ), so that

C0(T 0)(y) =
λ10F011(y)−H0 (λ00F001(y))

λ10 − 1
.

The result follows as in Case 1 of the lower bound.

Case 3: λ00 < 1 and d = 1.

In this case,

V1 =
λ01F101 −H−1

1 (λ11F111 − (λ11 − 1))

λ01 − 1
.

Therefore, limy→y V1(y) = 0, which implies that yv11 > −∞. λ11 > 1 implies that λ11−1
λ11

< 1.

Therefore, y∗ = F−1
111(λ11−1

λ11
) is in

◦
S(Y ) under Assumption 7.

Case 3.a): λ00 < 1, d = 1 and yv11 > y∗.

We have V1(y∗) = λ01F101(y∗)/(λ01 − 1) > 0. If y∗ < yv11, V1(y∗) < 1. Therefore, 0 < T 1(y∗) =

V1(y∗) < 1. This implies that C1(T 1)(y∗) = 1 which in turn implies that C1(T 1)(y) = 1 for every

y ≥ y∗ under Assumption 9.

For every y lower than y∗,

V1(y) =
λ01F101(y)

λ01 − 1
.

V1(y) > 0. Since by assumption yv11 > y∗, V1(y) < 1. Consequently, for y ≤ y∗, we have

T 1(y) = V1(y). As a result,

C1(T 1)(y) =

∣∣∣∣∣ λ11F111(y)
λ11−1

if y ≤ y∗,

1 if y > y∗.
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The result follows as in Case 2 of the lower bound.

Case 3.b): λ00 < 1, d = 1, and yv11 ≤ y∗.

First, V1(yv11) = 1, implying T 1(yv11) = 1. By Assumption 9, T 1(y) = 1 for all y ≥ yv11. Second,

if y ≤ yv11 ≤ y∗, V1(y) = λ01F101(y)
λ01−1

. Thus V1 is increasing on (−∞, yv11). Moreover V1(yv11) = 1.

Hence, V1(y) ≤ 1 for every y ≤ yv11. Because we also have V1(y) ≥ 0, T 1(y) = V1(y) for every

y ≤ yv11.

As a result,

C1(T 1)(y) =

∣∣∣∣∣ λ11F111(y)
λ11−1

if y ≤ yv11,
λ11F111(y)−H1(λ01F101(y)+1−λ01)

λ11−1
if y > yv11.

The result follows as in Case 3.b) of the lower bound. Note that here, C1(T 1)(y) is kinked

at yv11, with C1(T 1)(yv11) = q2. Hence, we have to exclude this point of the domain on which

θ 7→ F
−1

CIC,1(q) is Hadamard di�erentiable.

Case 4: λ00 > 1 and d = 1.

In this case,

V1 =
H−1

1 (λ11F111 − (λ11 − 1))− λ01F101

1− λ01

.

limy→y V1(y) = 1, which implies that yv01 < +∞. As above, λ11 > 1 implies that λ11−1
λ11

< 1.

Therefore, y∗ = F−1
111(λ11−1

λ11
) is in

◦
S(Y ) under Assumption 7. V1(y∗) = −λ01F101(y∗)

1−λ01 < 0. Since

T 1 is increasing under Assumption 9, one can show that this implies that yv01 > y∗. Therefore,

reasoning as for Case 2, we obtain that

C1(T 1)(y) =

∣∣∣∣∣ λ11F111(y)−H1(λ01F101(y))
λ11−1

if y ≤ yv01,

1 if y > yv01.

The result follows as in Case 2 of the lower bound �

For any random variable U , we let hereafter m̂U denote the series estimator ofmU(x) = E(U |X =

x) with Kn terms in the series estimator. Then, for any other random variable J ∈ {0, 1}, we
let m̂U

J=1(x) = m̂UJ(x)/m̂J(x) denote our estimator of mU
J=1(x) = E(U |J = 1, X = x).

Lemma S7 Suppose that (Ii, Ji, Ui, Vi, Xi)i=1,...,n are i.i.d. and parts 2 and 3 of Assumption 14

hold. Suppose also thatmJ andmJU are s times continuously di�erentiable. Then
∥∥m̂U

J=1(x)−mU
J=1

∥∥
∞ =

oP (n−1/4).

Proof: by Theorem 4 of Newey (1997) and parts 2 and 3 of Assumption 14,

max
(∥∥m̂JU −mJU

∥∥
∞ ,
∥∥m̂J −mJ

∥∥
∞

)
= Op

(
Kn

[√
Kn/n+K−s/rn

])
.
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Moreover, by the conditions on Kn, the right-hand side is an oP (n−1/4). Hence, with probability

approaching one, the left-hand side is smaller than c/2, where c = infx∈S(X) m
J(x) > 0. Then,

by Lemma S3 and the triangular inequality,∥∥m̂U
J=1 −mU

J=1

∥∥
∞ ≤

1

c

[∥∥m̂JU −mJU
∥∥
∞ +

∥∥mU
J=1

∥∥
∞

∥∥mJ −mJ
∥∥
∞

]
+

2(1 +
∥∥mU

J=1

∥∥
∞)

c2
max

(∥∥m̂JU −mJU
∥∥
∞ ,
∥∥m̂J −mJ

∥∥
∞

)2
.

The result follows �

The proof of Theorem 5.2 uses repeatedly Lemma S8 below, which establishes a linear repre-

sentation result on two-steps estimators involving a nonparametric �rst step. Let I and J be

two dummy variables and let U and V be two other random variables. In the proof of Theorem

5.2, I and J are functions of D, G and T , U is D or Y and V is a function of X. Let also

γ0 = E[V E[U |X, J = 1]|I = 1] and

γ̂ =

∑n
i=1 IiVim̂

U
J=1(Xi)∑n

i=1 Ii
.

The following lemma shows that under suitable conditions, γ̂ admits a linear representation.

Lemma S8 Suppose that (Ii, Ji, Ui, Vi, Xi)i=1,...,n are i.i.d. and parts 2 and 3 of Assumption 14

hold. Suppose also that x 7→ E(U2|X = x) is bounded, x 7→ E(JU |X = x), x 7→ E(J |X = x)

and E(IV |X = x) are s times continuously di�erentiable, E(|V |3) < ∞, P (J = 1|X) ≥ p > 0

almost surely and P (I = 1) > 0. Then

√
n (γ̂ − γ0) =

1√
n

n∑
i=1

Ii(Vim
U
J=1(Xi)− γ0) + λ(Xi)Ji(Ui −mU

J=1(Xi))

P (I = 1)
+ oP (1), (78)

where λ(x) = E(IV |X = x)/E(J |X = x).

Proof: let β̂ = 1
n

∑n
i=1 IiVim̂

U
J=1(Xi) and β0 = E(IV mU

J=1(X)). We �rst prove that β̂ is root-n

consistent and can be linearized. We follow Frölich (2007, pp.62-69) by checking that Condi-

tions 6.1-6.6 of Newey (1994) are satis�ed, except for 6.4-(i): we check instead that his weaker

Condition 5.1-(i) is satis�ed, since 6.4-(i) is only needed for the consistency of the asymptotic

variance estimator. We adopt the same notation as Newey (1994), by letting g0 = (g01, g02)′ =

(mJU ,mJ)′, ĝ(x) = (m̂JU , m̂J)′, Zi = (Ii, Ji, Xi, Ui, Vi)
′, m(Z, g, β) = IV g1(X)/g2(X) − β and

m(Z, g) = m(Z, g, β0).

First, remark that E[(J − E(J |X))2|X] ≤ 1/4 and E[(JU − E(JU |X))2|X] ≤ E(U2|X), which

is bounded by assumption. Hence, Condition 6.1 holds. Conditions 6.2 and 6.3 are satis�ed here
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by parts 2 and 3 of Assumption 14, as shown in page 156 of Newey (1997). To check Assumption

5.1-(i), let

D(Z, g; β, g̃) =
IV

g̃2(X)

[
g1(X)− g̃1(X)

g̃2(X)
× g2(X)

]
.

Let C = p, so that ‖g02‖∞ ≥ C. By Lemma S3 applied to x1 = IV g1(X), y1 = g2(X),

x2 = IV g01(X) and y2 = g02(X), with g satisfying ‖g − g0‖∞ < C/2,

|m(Z, g)−m(Z, g0)−D(Z, g − g0; β, g0)|

≤2(1 + |V mU
J=1(X)|)

C2
max (|V | ‖g1 − g01‖∞ , ‖g2 − g02‖∞)2

≤2(1 + |V mU
J=1(X)|)

C2
(1 + |V |)2 ‖g − g0‖2

∞ ,

so Condition 5.1-(i) holds. Now let us turn to Condition 6.4-(ii). Using Newey's notation, we

check it for d = 0. First, E[|V |3] <∞ and there exists K0 such that |mU
J=1(x)| ≤ K0 on S(X).

Thus,

E
[
(1 + |V mU

J=1(X)|)|V |2
]
<∞.

Then, here α = s/r and ζ0(Kn) ≤ C1Kn for some constant C1 (see Newey, 1994, p.1371). There-

fore, the two statements of Condition 6.4-(ii) hold because Kn

[√
Kn/n+K

−s/r
n

]
= o(n−1/4) by

part 3 of Assumption 14.

We check Condition 6.5 with d = 1. A similar reasoning as above shows that

|D(Z, g; β, g0)| ≤ |V |
p

(1 +K0) ‖g‖∞ ,

which implies the �rst statement. The second and third statement follow from the same reasoning

as in Frölich (2007), p.68, and from the conditions s > 3r and K7
n/n → 0. Finally, Condition

6.6-(i) is satis�ed with δ(X) = λ(X)
(
1,−mU

J=1(X)
)
. Then Condition 6.6-(ii) holds by applying

the same reasoning as in Frölich (2007), pp.68-69, and because both g0 and δ are s times

di�erentiable.

Hence, Conditions 6.1-6.6 of Newey (1994) hold. By the proof of his Theorem 6.1, this implies

that his Conditions 5.1-5.3 also hold. Then, by his Lemma 5.1,

√
n
(
β̂ − β0

)
=

1√
n

n∑
i=1

m(Zi, g0) + δ(Xi)
(
JiUi −mJU(Xi), (Ji −mJ(Xi))

)′
+ oP (1)

=
1√
n

n∑
i=1

IiVim
U
J=1(Xi)− β0 + λ(Xi)Ji(Ui −mU

J=1(Xi)) + oP (1).

Now, applying Lemma S3 with x1 = β̂, y1 = P̂ (Ii = 1), x2 = β0 and y2 = P (I = 1), we obtain,
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with a large probability,∣∣∣∣γ̂ − γ0 −
1

P (I = 1)

[
β̂ − β0 − γ0

(
P̂ (I = 1)− P (I = 1)

)]∣∣∣∣
≤ 2(1 + |γ0|)
P (I = 1)2

max(|β̂ − β0|, |P̂ (I = 1)− P (I = 1)|)2.

Moreover, the right-hand side is an oP (1/
√
n). By rearranging the left-hand side, we �nally

obtain the linear decomposition (78) �

Finally, the asymptotic normality of the CIC-type estimator with covariates, established in Part

3 of Theorem 5.2, uses the following Lemma S9, together with Part 3 of Lemma S5 above.

Lemma S9 1. Under Assumptions 7X, 14 and 15, we have

√
n
[
F̂−1
dgt|x(τ)− F−1

dgt|x(τ)
]

=
1√
n

∑
i∈Idgt

x′JτXi

pdgt
(τ − 1{Yi −X ′iβ(τ) ≤ 0}) + oP (1),

where Jτ = E
[
fY |X(X ′β(τ))XX ′

]−1
and the oP (1) is uniform over (τ, x) ∈ (0, 1)× S(X).

2. For any (x, τ) ∈ S(X)× (0, 1), let Ĝ(τ, x) = (F̂X11(x), F̂−1
101|x(τ), F̂−1

100|x(τ), F̂−1
110|x(τ)). Then

√
n
[
Ĝ−G

]
=⇒ G,

where the convergence is in the space of continuous process on (0, 1) × S(X) and G denotes a

continuous gaussian process de�ned on that space.

Proof: Part 1. We prove that uniformly over (τ, x),

√
ndgt

[
F̂−1
dgt|x(τ)− F

−1
dgt|x(τ)

]
=

1
√
ndgt

∑
i∈Idgt

x′JτXi

(
τ − 1{Yi −X ′iβdgt(τ) ≤ 0}

)
+ oP (1). (79)

The result then follows directly from ndgt/[npdgt]
P−→ 1, as in the proof of Lemma S4. To alleviate

the notational burden, we let the dependency in (d, g, t) implicit hereafter. For instance, we let

I denote Idgt, n denote ndgt, etc.. We denote by Pn the empirical distribution of (X, Y ) on I,
P denote its true distribution and Gn =

√
n(Pn − P ). We write, e.g., Ph as a shortcut for∫

hdP . We also let ρτ,β(x, y) = (τ − 1{y − x′β ≤ 0})(y − x′β), hτ,β(x, y) = x(τ − 1{y ≤ x′β}),
R = {ρτ,β, (τ, β) ∈ [0, 1] × B} and H = {hτ,β, (τ, β) ∈ [0, 1] × B}. To establish our proof of

(79), we �rst show that β̂(τ) is uniformly consistent in τ . Then we prove a uniform Bahadur

representation on β̂(τ).

a. Uniform consistency

Let Mτ (β) = −Pρτ,β and Mnτ (β) = −Pnρτ,β. First, R is Glivenko-Cantelli because it satis�es

the conditions of pointwise compact classes considered in Example 19.8 in van der Vaart (2000).

As a result,

sup
β,τ
|Mnτ (β)−Mτ (β)| P−→ 0.
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Following the proof of Theorem 5.7 of van der Vaart (2000), this implies

0 ≤ sup
τ∈(0,1)

Mτ (β(τ))−Mτ (β̂(τ))
P−→ 0. (80)

Second, using Equation (4.3) of Koenker (2005), we obtain, for any β,

Mτ (β(τ))−Mτ (β) = E[ρτ (Y −X ′β)]− E[ρτ (Y −X ′β(τ))]

= E

[∫ X′(β−β(τ))

0

FY |X(s+X ′β(τ))− FY |X(X ′β(τ))ds

]
.

Because inf(y,x) fY |X(y|x) = c > 0 and X is assumed to have bounded support, this yields

Mτ (β(τ))−Mτ (β) ≥ K ‖β(τ)− β‖2 , (81)

for some constant K > 0 independent of τ . Fix ε > 0. If supτ∈(0,1)

∥∥∥β̂(τ)− β(τ)
∥∥∥ > ε, then

there exists τ0 such that
∥∥∥β̂(τ0)− β(τ0)

∥∥∥ > ε/2. Then (81) implies that

sup
τ∈(0,1)

Mτ (β(τ))−Mτ (β̂(τ)) ≥ Kε2/4,

which happens with proability approaching 0 in view of (80). The result follows.

b. Uniform Bahadur representation

Let X (resp. Y) denote the matrix (resp. the vector) stacking all Xi (resp. Yi), for i ∈ I. For all
τ ∈ (0, 1), there exists a subset h ⊂ I of r elements such that the corresponding submatrix (resp.
subvector) X(h) (resp. Y (h)) of X (resp. of Y) satis�es β̂(τ) = X(h)−1Y (h) (see Koenker, 2005,

p.34). Note also that by Assumptions 14-15, Y and X are in general position with probability

one (see Koenker, 2005, p.35). Then∑
i∈h

Xi(τ − 1{Yi ≤ X ′iβ̂(τ)} = (τ − 1)X(h)′ιr,

where ιr is a vector of one of size r. Moreover, by Theorem 2.1 of Koenker (2005), there exists

λ = (λ1, ..., λr)
′ with |λj| ≤ 1 such that∑

i∈h

Xi(τ − 1{Yi ≤ X ′iβ̂(τ)} = X(h)′λ,

where h denotes the complement of h in I. By Assumption 15, ‖Xi‖1 ≤ C for some C > 0.

Hence, we obtain, ∥∥∥∥∥∑
i∈I

Xi(τ − 1{Yi ≤ X ′iβ̂(τ)})

∥∥∥∥∥
1

≤ 2
∑
i∈h

‖Xi‖1 ≤ 2Cr,
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which holds uniformly over (d, g, t, τ). Thus,

sup
τ∈(0,1)

∥∥∥∥∥ 1√
n

∑
i∈I

Xi(τ − 1{Yi ≤ X ′iβ̂(τ)})

∥∥∥∥∥
1

P−→ 0.

Now, using Phτ,β(τ) = 0, we obtain

−
√
nP
[
hτ,β̂(τ) − hτ,β(τ)

]
= Gn

[
hτ,β̂(τ) − hτ,β(τ)

]
+ Gnhτ,β(τ) + oP (1),

uniformly over τ . Moreover, by the intermediate value theorem,

√
nP
[
hτ,β̂(τ) − hτ,β(τ)

]
= E

[
fY |X(X ′(tτ β̂(τ) + (1− tτ )β(τ))|X)XX ′

]√
n
(
β̂(τ)− β(τ)

)
.

for some random tτ ∈ [0, 1]. Now, by uniform consistency of β̂(τ) and continuity of fY |X(.|x),

sup
τ∈(0,1)

∣∣∣fY |X(X ′(tτ β̂(τ) + (1− tτ )β(τ))|X)− fY |X(X ′(tτ β̂(τ) + (1− tτ )β(τ))|X)
∣∣∣ P−→ 0.

Because fY |X(.|x) is bounded and S(X) is compact, Theorem 2.20 in van der Vaart (2000)

implies that √
nP
[
hτ,β̂(τ) − hτ,β(τ)

]
=
(
J−1
τ + oP (1)

)√
n
(
β̂(τ)− β(τ)

)
,

where the oP (1) is uniform over τ .

Next, remark that H = H1 + H2, with H1 = {(x, y) 7→ xτ, τ ∈ [0, 1]} and H2 = {(x, y) 7→
−x1{y− x′β ≤ 0}, β ∈ B}. The sets H1 and {(x, y) 7→ y− x′β}, β ∈ B} are Donsker as subsets
of vector spaces (see van der Vaart, 2000, Example 19.17). Still by Example 19.17 in van der

Vaart, 2000, this imlies that H2, and then also H, is Donsker. Besides,

P
∥∥∥hτ,β̂(τ) − hτ,β(τ)

∥∥∥2

1
= E

[
‖X‖2

1

∣∣∣1{Y ≤ X ′β̂(τ)} − 1{Y ≤ X ′β̂(τ)}
∣∣∣2]

≤ C2E
[∣∣∣FY |X(X ′β̂(τ))− FY |X(X ′β(τ))

∣∣∣]
≤ K ′ sup

(y,x)

fY |X(y|x)
∥∥∥β̂(τ)− β(τ)

∥∥∥
1
.

Hence, supτ∈(0,1) P
∥∥∥hτ,β̂(τ) − hτ,β(τ)

∥∥∥2

1

P−→ 0. Then, following the proof of Theorem 19.26 of

van der Vaart (2000), we get, uniformly over τ ,

Gn

[
hτ,β̂(τ) − hτ,β(τ)

]
P−→ 0.

For all τ ∈ (0, 1), the smallest eigenvalue of J−1
τ is greater than the one of cE[XX ′]. It is thus

bounded away from 0, uniformly over τ . This, combined with the boundedness of S(X) and

what precedes, yields

sup
x,τ

∣∣∣x′JτGn

[
hτ,β̂(τ) − hτ,β(τ)

]∣∣∣ P−→ 0.
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Equation (79) follows.

2. We prove the result for F̂−1 only. By the Cramer-Wold device, a similar reasoning applies for

Ĝ. By the stability properties of Donsker classes (see, e.g.,van der Vaart, 2000, Example 19.18),

it is easy to see that the set of functions

{(d, g, t, x, y) 7→ 1{d = d̃, g = g̃, t = t̃}x̃′Jτ (y − 1{y − x′β ≤ 0}), (x̃, τ, β) ∈ S(X)× (0, 1)×B}

is Donsker, for any (d̃, g̃, t̃) ∈ {0, 1}3. Hence,

1√
n

∑
i∈I

x′JτXi (τ − 1{Yi −X ′iβ(τ) ≤ 0}) =⇒ G,

where the convergence is in the space of continuous process on (0, 1) × S(X) and G denotes a

continuous gaussian process. Part 1 and, e.g. Theorem 18.10-(iv) of van der Vaart (2000) then

imply the result �
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