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Abstract

In many applications of the differences-in-differences (DID) method, the treatment
increases more in the treatment group, but some units are also treated in the control
group. In such fuzzy designs, a popular estimator of treatment effects is the DID of the
outcome divided by the DID of the treatment, or OLS and 2SLS regressions with time and
group fixed effects estimating weighted averages of this ratio across groups. We start by
showing that when the treatment also increases in the control group, this ratio estimates
a causal effect only if treatment effects are homogenous in the two groups. Even when the
distribution of treatment is stable, it requires that treatment effects be constant over time.
As this assumption is not always applicable, we propose two alternative estimators. The
first estimator relies on a generalization of common trends assumptions to fuzzy designs,
while the second extends the changes-in-changes estimator of Athey & Imbens (2006).
When the distribution of treatment changes in the control group, treatment effects are
partially identified. Finally, we prove that our estimators are asymptotically normal and
use them to revisit applied papers using fuzzy designs.
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1 Introduction

Difference-in-differences (DID) is a popular method to evaluate the effect of a treatment in
the absence of experimental data. In its basic version, a “control group” is untreated at two
dates, whereas a “treatment group” becomes treated at the second date. If the effect of time
is the same in both groups, the so-called common trends assumption, one can measure the
effect of the treatment by comparing the evolution of the outcome in both groups. DID can
be used with panel or repeated cross-section data, when a policy is implemented at a given
date in some groups but not in others. It can also be used when a policy affects individuals

born after a given date. In such instances, birth cohort plays the role of time.

However, in many applications of the DID method, the treatment rate or intensity increases
more in some groups than in others, but there is no group which experiences a sharp change
in treatment, and there is also no group which remains fully untreated. In such fuzzy designs,
a popular estimator of treatment effects is the DID of the outcome divided by the DID of the
treatment, an estimator referred to as the Wald-DID. For instance, Duflo (2001) uses a school
construction program in Indonesia to measure returns to education. The author uses districts
where many schools were constructed as a treatment group, and districts where few schools
were constructed as a control group. Years of schooling for cohorts born after the program
increased more in treatment districts. The author then estimates returns to schooling through
a 2SLS regression in which dummies for cohorts benefiting from the program and for being
born in treatment districts are used as controls, while the instrument is the interaction of these
two dummies. The coefficient for treatment in this regression is the Wald-DID. A number of
papers also estimate 2SLS regressions with time and group fixed effects and with a function
of time and group as the excluded instrument, or OLS regressions at the group x period level
with time and group fixed effects. In our supplementary material, we show that the coefficient
of treatment in these two regressions is a weighted average of Wald-DIDs across groups. Such
estimators have been frequently used by economic researchers. From 2010 to 2012, 10.1% of
all papers published by the American Economic Review estimate either a simple Wald-DID,
or the aforementioned IV or OLS regression. Excluding lab experiments and theory papers,
this proportion raises to 19.7%.% Still, to our knowledge no paper has studied whether these

estimators estimate a causal effect in models with heterogeneous treatment effects.

This papers makes the following contributions. We start by showing that the Wald-DID
estimand is equal to a local average treatment effect (LATE) only if two strong assumptions
are satisfied. First, time should have the same effect on all counterfactual outcomes, thus
implying that the effect of the treatment should not vary over time. This assumption is often
not applicable. For instance, in Duflo (2001) it requires that the wage gap between high school
graduates born in younger and older cohorts should be the same had they not completed high

!Detailed results of our literature review can be found in de Chaisemartin & D’Haultfceuille (2015).



school. If they had not completed high school, graduates of every cohort would have entered
the labor market earlier, and would have had more labor market experience by the time their
wages are observed. As returns to experience tend to be concave (see Mincer & Jovanovic,
1979), the wage gap between graduates born in younger and older cohorts would presumably
have been lower if they had not completed high school. Second, when treatment increases
both in the treatment and in the control group, treatment effects should be homogenous in
the two groups. Indeed, in such instances the Wald-DID is equal to a weighted difference
between the LATE of treatment and control group units switching treatment over time. This
weighted difference can be interpreted as a causal effect only if these two LATEs are equal.
The weights received by each LATE can be estimated. In Duflo (2001), years of education
increased substantially both in treatment and in control districts, so the Wald-DID in this
paper is equal to a weighted difference between returns to schooling in treatment and control
districts, and returns in the control group receive a large negative weight. This weighted
difference estimates a causal effect only if returns to schooling are equal in the two groups of
districts. This might be violated as control districts are more developed and could therefore
have different returns. The IV and OLS regressions we study in our supplementary material
suffer from the same problem. They both estimate a weighted sum of LATEs, with potentially

many negative weights as we illustrate by estimating these weights in two applications.

Second, we propose two alternative estimators for the same LATE when the distribution
of treatment is stable over time in the control group. Our first estimator, which we refer
to as the time-corrected Wald ratio (Wald-TC), is a natural generalization of DID to fuzzy
designs. It relies only on common trends assumptions between the treatment and the control
group, within subgroups of units sharing the same treatment at the first date. Our second
estimator, which we refer to as the changes-in-changes Wald ratio (Wald-CIC), generalizes the
changes-in-changes estimator introduced by Athey & Imbens (2006) to fuzzy designs. It relies
on the assumption that a control and a treatment unit with the same outcome and the same
treatment at the first period will also have the same outcome at the second period.? Hereafter,
we refer to this condition as the common changes assumption. Our Wald-TC and Wald-CIC

estimators both have advantages and drawbacks, which we discuss later in the paper.

Third, we show that under the same common trends and common changes assumptions as
those underlying the Wald-TC and Wald-CIC estimands, the same LATE can be bounded
when the distribution of treatment changes over time in the control group. The smaller this
change, the tighter the bounds. Fourth, we show how these results extend to settings with
many group and periods, and how one can incorporate covariates in the analysis. Fifth, we
consider estimators of the Wald-DID, Wald-TC, and Wald-CIC estimands, both with and

without covariates. We show that they are asymptotically normal and prove the consistency

2Strictly speaking, the model in Athey & Imbens (2006) and our CIC model do not impose this restriction
if one allows the unobserved determinant of the outcome to change over time. We still find this presentation
of the CIC assumptions very helpful for pedagogical purposes.



of the bootstrap in some cases. Importantly, all our estimators allow for continuous covariates,

and for some of them we show how to account for clustering.

Finally, we use our results to revisit findings in Duflo (2001) on returns to education. The dis-
tribution of schooling substantially changed in the control group used by the author, so using
our Wald-CIC or Wald-TC estimators with her groups would only yield wide and uninforma-
tive bounds. Therefore, we use a different control group where the distribution of schooling
did not change. Our Wald-DID estimate with these new groups is more than twice as large
as the author’s. The difference between these two estimates could stem from the fact that
districts where years of schooling increased less also have higher returns to education. This
would bias downward the estimate in Duflo (2001), while our estimator does not rely on any
treatment effect homogeneity assumption. On the other hand, the validity of our Wald-DID
still relies on the assumption that time has the same effect on all potential outcomes, which
is not warranted in this context as we explained above. Because the Wald-TC and Wald-CIC
do not rely on this assumption, we choose them as our favorite estimates. They both lie in
between the two Wald-DIDs.

Overall, our paper shows that to do DID in fuzzy designs, researchers must find a control
group in which treatment is stable over time to point identify treatment effects without having
to assume that treatment effects are homogeneous. In such instances, three estimators are
available: the standard Wald-DID estimator, and our Wald-TC and Wald-CIC estimators.?
While the former estimator requires that treatment effects do not change over time, the latter
estimators do not rely on this assumption. In practice, using one or the other estimator can

make a substantial difference, as we show in our application.

Though to our knowledge, we are the first to study fuzzy DID estimators in models with
heterogeneous treatment effects, our paper is related to several other papers in the DID and
panel literature. Blundell et al. (2004) and Abadie (2005) consider a conditional version of the
common trends assumption in sharp DID designs, and adjust for covariates using propensity
score methods. Our Wald-DID estimator with covariates is related to their estimators. Bon-
homme & Sauder (2011) consider a linear model allowing for heterogeneous effects of time,
and show that in sharp designs it can be identified if the idiosyncratic shocks are independent
of the treatment and of the individual effects. Our Wald-CIC estimator builds on Athey &
Imbens (2006) and is also related to the estimator of D’Haultfeeuille et al. (2013), who study
the possibly nonlinear effects of a continuous treatment using repeated cross sections. Finally,
Chernozhukov, Fernandez-Val, Hahn & Newey (2013) consider a location-scale panel data
model (see their Assumption 4). Their idea of using always and never treated units in the
panel to recover the location and scale time effects is related to our idea of using groups where

treatment is stable to recover time effects. Our paper is also related to several papers in

3 A stata package computing these estimators is available on the authors’ webpages.
4There are also differences between our approaches. Their location and scale parameters do not depend on



the partial identification literature. In particular, our bounds are related to those in Manski
(1990), Horowitz & Manski (1995), and Lee (2009).

The remainder of the paper is organized as follows. In Section 2 we introduce our framework.
In Section 3 we present our identification results in a simple setting with two groups, two
periods, a binary treatment, and no covariates. Section 4 considers extensions to settings with
many periods and groups, covariates, or a non-binary treatment. Section 5 considers inference.
In section 6 we revisit results from Duflo (2001). Section 7 concludes. The appendix gathers
the main proofs. Due to a concern for brevity, some further results, our literature review, two
supplementary applications, and additional proofs are deferred to our supplementary material
(see de Chaisemartin & D’Haultfeeuille, 2015).

2 Framework

We are interested in measuring the effect of a treatment D on some outcome. For now, we
assume that treatment is binary. Y (1) and Y (0) denote the two potential outcomes of the same
individual with and without treatment. The observed outcome is Y = DY (1) + (1 — D)Y(0).

We assume that the data at our disposal can be divided into “time periods” represented by
a random variable T. If the analyst works with panel or repeated cross-sections data, time
periods are dates. But in many DID papers, time periods are cohorts of the same population
born in different years (see, e.g., Duflo, 2001). While with panel or repeated cross-sections
data, each unit is or could be observed at both dates, with cohort data this is not the case. In
what follows, we do not index observations by time, to ensure that our framework can apply
to the three types of data. Referring to the panel data case is sometimes useful to convey the
intuition of our results. However, our analysis is more targeted to the repeated cross-sections

and cohort data cases: observing units at both dates open possibilities we do not explore here.

We also assume that the data can be divided into groups represented by a random variable G.
In this section and in the next, we focus on the simplest possible case where there are only two
groups, a “treatment” and a “control” group, and two periods of time. G is a dummy for units
in the treatment group and 7T is a dummy for the second period. Contrary to the standard
“sharp” DID setting where D = G x T, we consider a “fuzzy” setting where D # G x T. Some
units may be treated in the control group or at period 0, and all units are not necessarily
treated in the treatment group at period 1. However, we assume that the treatment rate

increased more between period 0 and 1 in the treatment than in the control group.

We now introduce notations that we use throughout the paper. For any random variable R,

let S(R) denote its support. Let also Ry and Rgg be two other random variables such that

the treatment while our Wald-TC (resp. Wald-CIC) estimator uses treatment specific additive shifts (resp.
quantile-quantile transforms) to account for the effect of time; our Wald-TC estimator is not compatible with
a location-scale model. Overall, our estimands are unrelated to theirs.



Ry ~ R|G = g, T =t and Ry ~ R|D = d,G = ¢g,T = t, where ~ denotes equality in
distribution. Let Fr and Fpg denote the cumulative distribution function (cdfs) of R and its
cdf conditional on S. For any event A, Fp4 is the cdf of R conditional on A. With a slight
abuse of notation, P(A)Fp4 should be understood as 0 when P(A) = 0.

We consider the following model for the potential outcomes and the treatment:

Y(d) = hd(Ud,T), de {0, 1}, ( )
1

D = WV >wvgr}, vgo= v does not depend on G.
The model on potential outcomes is very general because at this stage, hy is left unrestricted.
We also impose a latent index model for the treatment (see, e.g., Vytlacil, 2002), where the
threshold depends both on time and group. In such a model, V may be interpreted as the
propensity to be treated. Because we do not impose any restriction on the distribution of V,

the assumption that vgg does not depend on G is just a normalization.

In addition to this model, we maintain the following assumptions throughout the paper.

Assumption 1 (Time invariance within groups)
Forde S(D), (Ug, V) L T|G.

Assumption 2 (First stage)
E(Dll) > E(Dlo), and E(DU) — E(Dlo) > E(D()l) — E(DOO).

Assumption 1 requires that the joint distribution of unobserved variables be stable over time in
each group. In other words, the composition of each group should not change over time. This
assumption could be violated if there is endogenous “migration” from one group to another.
However, DID identification strategies always rely on this assumption. Assumption 2 is just a
way to define the treatment and the control group in our fuzzy setting. First, the treatment
should increase in at least one group. If not, one can redefine the treatment variable as
D = 1— D. Then, the treatment group is the one experiencing the larger increase of its

treatment rate.

Before turning to identification, it is useful to define four subpopulations of interest. The model
1 and Assumption 1 imply that P(Dy = 1) = P(V > vy|G = g). Therefore, Assumption 2
implies v11 < vgg. Let

AT = {V > vgo, G = 1} U {V > maX(Uoo,'U()l),G = 0},

NT = {V <wv1,G = 1} U {V < min(voo,v01),G = 0},

S1 ={V € [v11,v00), G = 1},

So = {V S [min(voo, ’U()l), maX(Uoo, U01)), G = 0}.

AT stands for “always treated”, and refers to units with a taste for treatment above the

threshold at both periods. NT stands for “never treated”, and refers to units with a taste for



treatment below the threshold at both periods. S; stands for “treatment group switchers”,
and refers to treatment group units with a taste for treatment between the second and first
period thresholds. Sy stands for “control group switchers”, and refers to control group units

with a taste for treatment between the two thresholds.

When the treatment rate is stable in the control group, time affects selection into treatment
only in the treatment group. Table 1 below considers an example. At both dates, untreated
units in the control group belong to the NT subgroup, while treated units belong to the AT
subgroup. On the other hand, untreated units in the treatment group in period 0 belong
either to the NT or S; subgroup, while in period 1 they only belong to the NT subgroup.
Conversely, treated units in period 0 only belong to the AT subgroup, while in period 1 they
either belong to the NT or S; subgroup.

Period 0 Period 1

Control Group

Always Treated: Y(1)

Always Treated: Y(1)

Never Treated: Y(0)

Never Treated: Y(0)

Treatment Group

Always Treated: Y(1)

Always Treated: Y(1)

Switchers: Y(0)

Switchers: Y(1)

Never Treated: Y(0)

Never Treated: Y(0)

Table 1: Populations of interest when P(Dgg = 0) = P(Dg1 = 0).

On the other hand, when the treatment rate changes in the control group, time affects selection
into treatment in both groups. Table 2 below considers an example where the treatment rate
increases in the control group. Untreated units in the control group in period 0 belong either to
the NT or Sy subgroup, while in period 1 they only belong to the NT subgroup. Conversely,
treated units in period 0 only belong to the AT subgroup, while in period 1 they either belong
to the NT or Sp subgroup.



Period 0

Period 1

Control Group

Always Treated: Y(1)

Always Treated: Y(1)

Switchers: Y(0)

Switchers: Y(1)

Never Treated: Y(0)

Never Treated: Y(0)

Treatment Group

Always Treated: Y(1)

Always Treated: Y(1)

Switchers: Y(0)

Switchers: Y(1)

Never Treated: Y(0)

Never Treated: Y(0)

Table 2: Populations of interest when P(Dg; = 1) > P(Dgp = 1).

Our identifications results focus on treatment group switchers. Our parameters of interest are
their Local Average Treatment Effect (LATE) and Local Quantile Treatment Effects (LQTE),
which are respectively defined by

A = EYu(l)-Yu(0)S1),

—1 ]
T = Fyiays (@ = Fyoys (@), g€ (0,1).

We focus on this subpopulation because our assumptions either lead to point identification of
A and 7,4, or at least to relatively tight bounds. On the other hand, our assumptions most
often lead to wide and uninformative bounds for the average treatment effect and for quantile

treatment effects.

3 Identification

3.1 Identification using a Wald-DID ratio

We first investigate the commonly used strategy of running an IV regression of the outcome
on the treatment with time and group as included instruments, and the interaction of the
two as the excluded instrument. The estimand arising from this regression is the Wald-DID
defined by Wprp = DIDy /DIDp where, for any random variable R, we let

DIDg = E(R11) — E(R10) — (E(Ro1) — E(Roo)) -
We consider a set of assumptions under which this estimand can receive a causal interpretation.

Assumption 3 (Common trends)

E(ho(Up, 1) — ho(Uy,0)|G) does not depend on G.



Assumption 4 (Common average effect of time on both potential outcomes)

E(hl(Ul, 1) — hl(U1,0)|G, Vv Z Uoo) = E(ho(Uo, 1) — ho(U0,0)|G, %4 2 Uoo).

Assumption 3 requires that the mean of Y (0) follow the same evolution over time in the
treatment and control groups. This assumption is not specific to the fuzzy setting we are
considering here: DID in sharp settings also rely on this assumption (see, e.g., Abadie, 2005).
Assumption 4 requires that in both groups, the mean of Y (1) and Y'(0) follow the same
evolution over time among units treated in period 0. This is equivalent to assuming that the

average treatment effect in this population does not change over time:
E(h1(U1,1) — ho(Up, 1)|G,V > vy9) = E(h1(U1,0) — ho(Uop, 0)|G,V > wvgp).

This assumption is specific to the fuzzy setting.

P(D11=1)—P(D1p=1)
DIDp :

Theorem 3.1 Assume that Model (1) and Assumptions 1-4 are satisfied. Let o« =
Wpip =aE(Y11(1) = Y11(0)[51) + (1 — ) E(Yo1(1) — Yo1(0)[50)-

When the treatment rate increases in the control group, o > 1 so the Wald-DID is equal to a
weighted difference of the LATEs of treatment and control group switchers in period 1. This
can be seen from Table 2. In both groups, the evolution of the mean outcome between period
0 and 1 is the sum of three things: the effect of time on the mean of Y (0) for never treated
and switchers; the effect of time on the mean of Y (1) for always treated; the average effect
of the treatment for switchers. Under Assumptions 3 and 4, the effect of time in both groups
cancel one another out. The Wald-DID is finally equal to the weighted difference between

treatment and control group switchers’ LATEs.

This weighted difference may not receive a causal interpretation. It might for instance be
negative, while both E(Y71(1) — ¥71(0)|S1) and E(Yp1(1) — Y51(0)|So) are positive. If one
is ready to further assume that these two LATEs are equal, the Wald-DID is then equal to
E(Y11(1)=Y11(0)]S1). But E(Y11(1)—Y11(0)[S1) = E(Y01(1)—Y01(0)]Sp) is a strong restriction
on the heterogeneity of the treatment effect. To better understand why it is needed, let us
consider a simple example in which all control group units have a treatment effect equal to
+2, while all treatment group units have a treatment effect equal to +1. Let us also assume
that time has no effect on the outcome, and that the treatment rate increases twice as much
in the treatment than in the control group. Then, Wprp =2/3 x 1 —1/3 x 2 = 0: the lower
increase of the treatment rate in the control group is exactly compensated by the fact that
the treatment effect is higher in this group. The Wald-DID does not estimate the treatment

effect in any of the two groups, or a weighted average of the two.

When the treatment rate diminishes in the control group, a < 1 so the Wald-DID is equal to

a weighted average of the LATEs of treatment and control group switchers in period 1. This



quantity satisfies the no sign-reversal property: if the treatment effect is of the same sign for
everybody in the population, the Wald-DID is of that sign. Finally, when the treatment rate
is stable over time in the control group, a = 1 so the Wald-DID is equal to the LATE of

treatment group switchers.

But even when the treatment rate is stable in the control group, the Wald-DID relies on the
assumption that time has the same effect on both potential outcomes, at least among units
treated in the first period. Under Assumptions 1-3 alone, one can show that Wprp is equal

to the same quantity as in Theorem 3.1, plus a bias term equal to

1
DIDp

[E(C1 — Co|V = wvoo, G =1)P(D1p = 1) — E(C1 — G|V > o, G = 0)P(Dgp = 1)],

where Cq = hq(Ug,1) — hq(Ug,0). Assumption 5 ensures that this bias term is equal to 0.
Otherwise, it might very well differ from 0.

To understand why this restriction is needed, consider a simple example. First, assume that
in period 0, Y(1) = Y(0): treatment has no effect. Then, assume that time increases Y'(1)
by 1 unit, while leaving Y (0) unchanged. Finally, assume that the treatment rate went from
to 20 to 50% in the treatment group, while it remained equal to 80% in the control group.
Then, DIDy =02x14+0.3x1+05x0—(0.8x1+0.2x0)=—0.3. The first and third
terms respectively come from the effect of time on the mean outcome of always and never
treated in the treatment group. Similarly, the fourth and fifth terms respectively come from
the effect of time on the mean outcome of always and never treated in the control group.
Finally, the second term comes from the average treatment effect among treatment group
switchers. Therefore, Wprp = —1, while every unit in the population has a treatment effect

equal to 1 in period 1, and to O in period 0.

3.2 Identification using a time-corrected Wald ratio

In this section, we consider an alternative estimand to Wprp. Instead of relying on Assump-
tions 3 and 4, it relies on the following assumption:

Assumption 5 (Common trends within treatment status at date 0)

E(ho(Uo, 1) — ho(Uo, 0)|G,V < woo) and E(h1(Ut,1) — h1(U1,0)|G,V > wvoo) do not depend
on G.

Assumption 5 requires that the mean of Y (0) (resp. Y (1)) follow the same evolution over time

among treatment and control group units that were untreated (resp. treated) at period 0.

5 Assuming that E(Co — C1|V < wvo,G) does not depend on G is not sufficient to ensure that the bias is
equal to 0, unless P(Dgo = 1) = P(D1o = 1).
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Let 04 = E(Ya01) — E(Y400) denote the change in the mean outcome between period 0 and 1

for control group units with treatment status d. Then, let

E(Y11) — E(Yio + 0pyy)
E(D11) — E(Dho)

Wre =

Wre stands for “time-corrected Wald”. When the outcome is bounded, let y and 7 respectively
denote the lower and upper bounds of its support. For any g € S(G), let A\yq = P(Dg1 =
d)/P(Dgyo = d) be the ratio of the shares of people receiving treatment d in period 1 and
period 0 in group g. For instance, A\gg > 1 when the share of untreated observations increases
in the control group between period 0 and 1. For any real number z, let My(z) = max(0, z)
and my(x) = min(1, z). Let also, for d € {0, 1},

Fao1(y) = Mo [1 = Xoa(1 — Fyye, (v))] — Mo(1 — Aoa)L{y < 7},
Fa01(y) = m1 NoaFyyg, (9)] + (1 —m1(Xoa)) 1{y > y}.

Then define d; = [ ydFqo1(y) — E(Yaoo) and dq = [ ydE 01 (y) — E(Yaoo) and let

Wre = E(Dn)—B(Dw)  "° " E(Du)— E(D)

_ E(Yn) - EMi0+0Dpyy) E(Y11) = E(Yi0+p,,)

Theorem 3.2 Assume that Model (1) and Assumptions 1-2 and 5 are satisfied.
1. [fO < P(D01 = 1) = P(Doo = 1) <1, Wpe = A.

2.If0 < P(Dy = 1) # P(Dyyp = 1) < 1 and P(y < Y(d) < 3) = 1 for d € {0,1},
Wre <A< Wre.b

Note that

E(Y|G=1,T=1)—EY + (1 - D)§+ D5|G =1,T = 0)

Wre = E(D|G=1,T=1)— E(D|G=1,T = 0)

This is almost the Wald ratio with time as the instrument considered first by Heckman &
Robb (1985), except that we have Y + (1 — D)dg + DJ; instead of Y in the second term of the
numerator. This difference arises because in our model time is not a standard instrument: it
is directly included in the outcome equation. When the treatment rate is stable in the control
group we can identify the direct effect of time on Y (0) and Y (1) by looking at how the mean
outcome of untreated and treated units changes over time in this group. Under Assumption 5,
this direct effect is the same in the two groups for units sharing the same treatment in the first
period. As a result, we can add these changes to the outcome of untreated and treated units
in the treatment group in period 0, to recover the mean outcome we would have observed in
this group in period 1 if switchers had not changed their treatment between the two periods.
This is what (1 — D)dg + D61 does. Therefore, the numerator of Wre is equal to the effect

51t is not difficult to show that these bounds are sharp. We omit the proof due to a concern for brevity.
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of time on the outcome that only goes through its effect on selection into treatment. Once

properly normalized, this yields the LATE of treatment group switchers.

The Wald-TC estimand generalizes the DID estimand to fuzzy settings, by using treatment-
specific additive shifts to account for the effect of time. In sharp settings, the DID estimand
accounts for the effect of time on the outcome by adding the evolution of the mean outcome
between period 0 and 1 in the control group to the period 0 outcome of treatment group units.
In fuzzy settings, the Wald-TC estimand accounts for the effect of time on the outcome by
adding the evolution of the mean outcome between period 0 and 1 among untreated (resp.
treated) units in the control group to the period 0 outcome of untreated (resp. treated) units

in the treatment group.

When the treatment rate changes in the control group, the evolution of the outcome in this
group can stem both from the direct effect of time on the outcome, and from its effect on
selection into treatment. For instance, and as can be seen from Table 2, when the treatment
rate increases in the control group, the difference between E(Y701) and E(Y1gp) arises both
from the effect of time on Y (1), and from the fact the former expectation is for always treated
and switchers while the later is only for always treated. Therefore, we can no longer identify the
direct effect of time on the outcome. However, when the outcome has bounded support, this
direct effect can be bounded, because we know the percentage of the control group switchers
account for. As a result, the LATE of treatment group switchers can also be bounded. The

smaller the change of the treatment rate over time in the control group, the tighter the bounds.

When the treatment rate does not change much in the control group, the difference between
Wre and A is likely to be small. For instance, when the treatment rate increases in the
control group, it is easy to show that under the Assumptions of Theorem 3.2, Wp¢ is equal

to A plus the following bias term:

P(D1g = 0) (1= 55255 ) (E(Yo1(0)]S0) = E(Yo1 (0)|NT))
P(D11=1) = P(D1p = 1)
P(D1o = 1) (1= HE2=H) (B(Yor(1)|0) — E(Yor (1)|AT))

B P(Dy; =1)— P(Dyp=1) ‘ 2)

This term cancels if P(Dg; = 1) = P(Dgp = 1), but also if
U0|S[),G =0~ U0|NT, G =0 and U1|S(],G =0~ U1|AT,G = 0. (3)

This assumption is not very appealing, as it requires that control group switchers have the
same distribution of Uy as never treated, and the same distribution of U; as always treated.
But Equations (2) and (3) still show that when the treatment rate does not change much in
the control group, Wr¢ is close to A unless switchers are extremely different from never and

always treated.
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Finally, note that when the treatment rate is stable in the control group, we have

E(Y11) — E(Y10 + 6py,)
E(D11) — E(Dwo)

Wpip =

When accounting for the effect of time on the outcome, Wprp weights dg and d; by P(Dgo = 0)
and P(Dgp = 1), while Wpc weights these terms by P(D1g = 0) and P(D1p = 1). These two
estimands are equal if and only if either 69 = d; or P(Dgp = 1) = P(D1p = 1). Otherwise,
they differ. The assumptions under which Wprp and Wre rely are non-nested. Wy requires
more common trends assumptions between groups, but it does not require common trends
assumptions between the two potential outcomes within groups. Therefore, testing Wprp =

Wre is a joint test of Assumptions 1 and 3-5.

3.3 Identification using instrumented changes-in-changes

In this section, we consider a second alternative estimand to Wp;p for continuous outcomes.
This estimand is inspired from the CIC model in Athey & Imbens (2006). It crucially relies

on a monotonicity assumption.

Assumption 6 (Monotonicity)
Uq € R and hq(u,t) is strictly increasing in u for all (d,t) € S(D) x S(T).

Assumption 6 requires that at each period, potential outcomes are strictly increasing functions
of a scalar unobserved heterogeneity term. Hereafter, we refer to Assumptions 1-2 and 6
as to the IV-CIC model. The IV-CIC model generalizes the CIC model to fuzzy settings.
Assumption 1 implies Uy 1L T'|G and V' 1L T'| G, which correspond to the time invariance
assumption in Athey & Imbens (2006). As a result, the IV-CIC model imposes a standard CIC
model both on Y and D. But Assumption 1 also implies Uy IL T'|G,V: in each group, the
distribution of, say, ability among people with a given taste for treatment should not change

over time. Our results rely on this supplementary restriction.

The assumptions of the IV-CIC model have advantages and drawbacks with respect to those
underlying the Wald-DID and Wald-TC estimands. For instance, one implication of As-
sumptions 1 and 5 is that the difference between the mean outcome of always treated in the
treatment and in the control group should remain stable over time. This condition is not
invariant to the scaling of the outcome, but it only restricts its first moment. On the other
hand, the corresponding implication of Assumptions 1 and 6 is that the proportion of units in
the treatment group among any quantile group of the always treated remains constant over
time. For instance, if in period 0 70% of units in the first decile of always treated belonged
to the treatment group, in period 1 there should still be 70% of treatment group units in the

first decile.” This condition is invariant to the scaling of the outcome, but it restricts its entire

"Unfortunately, this condition is not testable as always treated are not observed.
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distribution. When the treatment and the control groups have different outcome distributions
in the first period (see e.g. Baten et al., 2014), the scaling of the outcome might have a large
effect on the results, so using a model invariant to this scaling might be preferable. On the
other hand, when the outcome distributions in the treatment and in the control group are
similar in the first period, using a model that only restricts the first moment of the outcome

might be preferable.

We also impose the assumption below, which is testable in the data.
Assumption 7 (Data restrictions)

1. S(Yyg) = S(Y) = [y, 7] with —oco <y <y < +oo, for (d,g,t) € S(D) x S(G) x S(T').

2. Fy,,, is continuous on R and strictly increasing on S(Y'), for (d, g,t) € S(D) x §(G) x
S(T).

The first condition requires that the outcome have the same support in each of the eight
treatment x group X period cell. This condition does not restrict the support to be bounded:
y and 7 can be equal to — and +o0o. Athey & Imbens (2006) make a similar assumption.
Common support conditions might not be satisfied when outcome distributions differ in the
treatment and in the control group, the very situations where CIC might be more appealing
than DID. Athey & Imbens (2006) show that in such instances, quantile treatment effects are
still point identified over a large set of quantiles, while the average treatment effect can be

bounded. Even though we do not present them here, similar results apply in fuzzy settings.

The second condition is satisfied if the distribution of Y is continuous with positive density in
each of the eight groups x periods x treatment status cells. With a discrete outcome, Athey
& Imbens (2006) show that one can bound treatment effects under their assumptions. Similar
results apply in fuzzy settings, but as CIC bounds for discrete outcomes are often not very

informative, we do not present them here.

Let Qq(y) = F;d(ln o Fy,,,(y) be the quantile-quantile transform of Y from period 0 to 1
in the control group conditional on D = d. This transform maps y at rank ¢ in period 0
into the corresponding y’ at rank ¢ in period 1. Let also Hi(q) = Fy,,, © F;dio(q) be the
inverse quantile-quantile transform of Y from the control to the treatment group in period 0
conditional on D = d. This transform maps rank ¢ in the control group into the corresponding
rank ¢’ in the treatment group with the same value of y. Finally, for any increasing function

F on the real line, we denote by F~! its generalized inverse:
Flq)=inf{zr eR: F(z) > q}.

In particular, Fjy ! is the quantile function of the random variable R. We adopt the convention
that Fj,*(q) = inf S(R) for ¢ < 0, and Fy,'(¢) = sup S(R) for ¢ > 1.

Our identification results rely on the following lemma.
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Lemma 3.1 If Assumptions 1-2 and 6-7 hold and if P(Dyy = d) > 0,

F ( ) = P(Dyg=d)Hgo ()\OdFYdOI (y) +(1— )‘Od)FYm(d)\SO (y)) — P(Du = d)FYdU (v)
Yu@|s:\Y) = P(Dyg =d) — P(Dy1 = d)

This lemma shows that under our IV-CIC assumptions, Fy, (s, is point identified when the

treatment rate remains constant in the control group, as in this case A\gg = 1. Let

P(Dlo = d)Hd © (FYdol (y)) - P(Dll = d)FYdll (y)
P(Dyp=d)— P(Dy; =d) '
EY1) — E(@py, (Yi0))
E(D11) — E(Dyo)

Ferealy) =

Weic =

When the treatment rate changes in the control group, Fy;, 4)s, is partially identified. Sharp

bounds can be obtained using Lemma 3.1. For any cdf Ty, let

Ga(Ta) = MoaFy,, + (1= Xoa)Ty,
P(Dlo = d)Hd o Gd(Td) — P(D11 = d)FYdll

Ca(Ta) = P(D1g=d) — P(D11 = d)

It follows from Lemma 3.1 that Cq(Fy,,(a)s,) = Fyii(a)s,- Moreover, one can show that
G[)(FYOl(O)'SO) = FY01(0)|V<'u00 and Gl(FY()l(l)\So) = FY01(1)|VZ”U00‘ Therefore, the sharp lower
bound on FYll(d)|Sl is

min Cy(Ty) s.t. (Ty, Ga(Ty), Ca(Ty)) € D3,
Tqa€D

where D is the set of cdfs on S(Y).

It is difficult to derive a closed-form expression for the solution of this problem, because
it corresponds to an infinite dimensional optimization problem with an infinite number of
inequality constraints. We therefore consider simpler bounds, which are sharp under a simple

testable assumption. Specifically, let My; () = min(1, max(0, z)), and let

T, = My AOdFYdm - Ha?l()‘ldFde) Td — My, AOdFYdm - Hgl(AldFYd11 + (1 - Ald))

Feicaly) = sup Ca (Ty) (v), Fercaly) = inf Cq (Ta) (y'),
y'<y y'2y

Weore = / ydFcroa(y) — / ydEcrc0(y), Were = / ydEcreq(y) — / ydFcico(y),
7y = max(Fere,(9),y) — min(Fghe o(9),7), 7g = min(Eghe(0),7) — max(Foeo(a), v).
Finally, we introduce the two following conditions.

Assumption 8 (Ezistence of moments)

[lyldFcre.a(y) < +oo and [ |y|dFcroq(y) < +oo for d € {0,1}.
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Assumption 9 (Increasing bounds)

For (d,g,t) € S(D) x {0,1}2, Fy,,, is continuously differentiable, with positive derivative on
the interior of S(Y)). Moreover, Ty, Tq,Ga(Ty), Ga(Taq),Ca(Ty) and Cy(Ty4) are increasing on
S(Y).

Theorem 3.3 Assume that Model (1) and Assumptions 1-2 and 6-7 hold.

1. If 0 < P(Do1 = 1) = P(Doo = 1) < 1, then Forc.a(y) = Fyy,(a)s, (y) for d € {0,1},
Were = A and Fg}c,l(q) — Fg}ao(q) =T,

2. If 0 < P(Do1 = 1) # P(Doo = 1) < 1 and Assumption 8 is satisfied, then Fy, (a)s, (v) €
[ECIC,d(y)7FC’IC,d(y)] for d € {0,1}, A € Weie, Were] and 74 € [T4:Tq)- Moreover,
if Assumption 9 holds, these bounds are sharp.

Our point identification results combine ideas from Imbens & Rubin (1997) and Athey &
Imbens (2006). We seek to recover the distribution of, say, Y (1) among switchers in the
treatment X period 1 cell. On that purpose, we start from the distribution of Y among all
treated observations of this cell. As shown in Table 1, those include both switchers and always
treated. Consequently, we must “withdraw” from this distribution that of Y (1) among always
treated, exactly as in Imbens & Rubin (1997). But this last distribution is not observed.
To reconstruct it, we adapt the ideas in Athey & Imbens (2006) and apply the quantile-
quantile transform from period 0 to 1 among treated observations in the control group to the

distribution of Y'(1) among treated units in the treatment group in period 0.

Intuitively, the quantile-quantile transform uses a double-matching to reconstruct the unob-
served distribution. Consider an always treated in the treatment x period 0 cell. She is first
matched to an always treated in the control x period 0 cell with same y. Those two always
treated are observed at the same period of time and are both treated. Therefore, under As-
sumption 6 they must have the same u;. Second, the control x period 0 always treated is
matched to her rank counterpart among always treated of the control x period 1 cell. We
denote y* the outcome of this last observation. Because Uy 1L T|G,V > vy, those two ob-
servations must also have the same u;. Consequently, y* = hi(u1,1), which means that y* is

the outcome that the treatment x period 0 cell unit would have obtained in period 1.
Note that

E(Y|G=1,T=1) - E(1-D)Qu(Y)+DQ:(Y)|G=1,T =0)
E(D|G=1,T=1)— E(D|G=1,T = 0) '

Were =

Here again, Weojc is almost the standard Wald ratio in the treatment group with T as the
instrument, except that we have (1 — D)Qo(Y) + DQ1(Y) instead of Y in the second term
of the numerator. (1 — D)Qo(Y) + DQ1(Y) accounts for the fact time has a direct effect on

the outcome. When the treatment rate is stable in the control group, we can identify this
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direct effect by looking at how the distribution of the outcome evolves in this group. We can
then net out this direct effect in the treatment group. This is what (1 — D)Qo(Y) + DQ1(Y)
does. Both Weore and Wy proceed from the same logic, except that Wrpeo corrects for
the effect of time through additive shifts, while Wi does so in a non-linear fashion. If
ha(Ug, T) = aq(Ug) + bg(T) with ag(.) strictly increasing, Assumptions 5 and 6 are both
satisfied. We then have Wgoro = Wre.

Our partial identification results are obtained as follows. When 0 < P(Dgg = 1) # P(Dg1 =
1) < 1, the second matching described above collapses, because treated (resp. untreated)
observations in the control group are no longer comparable in period 0 and 1. For instance,
when the treatment rate increases in the control group, treated observations in the control
group include only always treated in period 0. In period 1 they also include switchers, as is
shown in Table 2. Therefore, we cannot match period 0 and period 1 observations on their
rank anymore. However, under Assumption 1 the respective weights of switchers and always
treated in period 1 are known. We can therefore derive best and worst case bounds for the
distribution of the outcome for always treated in period 1, and match period 0 observations

to their best and worst case rank counterparts.

If the support of the outcome is unbounded, Frro o and Fcrcp are proper cdf when Ao > 1,
but they are defective when Agg < 1. When Mgy < 1, switchers belong to the group of treated
observations in the control x period 1 cell (cf. Table 2). Their Y (0) is not observed in period
1, so the data does not impose any restriction on Fy; (g)s,: it could be equal to 0 or to 1,
hence the defective bounds. On the contrary, when Agg > 1, switchers belong to the group
of untreated observations in the control x period 1 cell, and under Assumption 1 we know
that they account for 100(1 — 1/Ag0)% of this group. Consequently, we can use trimming
bounds for Fy;, (o), (see Horowitz & Manski, 1995), hence the non-defective bounds. On the
contrary, Foyoq and Fere, are always proper cdf, while we could have expected them to
be defective when Agg > 1. This asymmetry stems from the fact that when Agg > 1, setting
Fy, (1)150(y) = 0 would yield Fy;, (1ys,(y) > 1 for values of y approaching g, while setting
Fy, (1)150(y) = 1 would yield Fy;, 1)js, (y) < 0 for values of y approaching y.

The previous discussion implies that when S(Y') is unbounded and Ay < 1, our bounds on A
are infinite because our bounds for the cdf of Y (0) of switchers are defective. Our bounds on
74 are also infinite for low and high values of g. On the contrary, when A9 > 1 our bounds on
74 are finite for every ¢ € (0,1). Our bounds on A are also finite provided F ;¢ o and Ferco

admit an expectation.

Finally, when the treatment rate changes in the control group, one can recover point identifi-

cation if one is ready to impose the same supplementary assumption as in Equation (3).
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3.4 Identification with a fully treated or fully untreated control group

Up to now, we have considered general fuzzy situations where the P(Dgy = d) were restricted
only by Assumption 2. An interesting special case, which is close to the sharp design, is when
P(Dogp =1) = P(Dg1 = 1) = P(D1p = 1) = 0. In such instances, identification of the average
treatment effect on the treated can be obtained under the same assumptions as those of the
standard DID or CIC models.

Theorem 3.4 Suppose that P(DOO = 1) = P(D()l = 1) = P(Dl[) = 1) =0< P(DH = 1),
Up IL T|G, and the outcome equation of Model (1) is satisfied.

1. If Assumption 3 holds, then Wprp = Wre = E(Y11(1) — Y11(0)|D = 1).
2. If Assumptions 6 and 7 hold, then Were = E(Y11(1) — Y11(0)|D = 1).

Hence, results of the sharp case extend to this intermediate case. Note that under Model (1)
and Assumption 1, the treated population corresponds to S1, so E(Y11(1)—Y11(0)|D =1) = A

under these additional assumptions.

Another special case of interest is when P(Dgy = 0) = P(Dgp1 = 0) € {0,1}. Such situations
arise when a policy is extended to a previously a group, or when a program or a technology pre-
viously available in some geographic areas is extended to others (see our second supplementary
application in de Chaisemartin & D’Haultfceuille (2015)). Theorem 3.1 applies in this special
case, but not Theorems 3.2-3.3, as they require that 0 < P(Dgg =0) = P(Dp; =0) < 1. In
such instances, identification must rely on the assumption that time has the same effect on
both potential outcomes. For instance, if P(Dgg =1) = P(Dp1 =1) =1and P(D1p=1) < 1,
there are no untreated units in the control group that we can use to infer trends for untreated
units in the treatment group. We must therefore use treated units, under the assumption
that time has the same effect on both potential outcomes. Instead of the Wald-TC estimand,
one could then use ZG1=EN0+31) = Bacayge P(Dgy = 1) = P(Dy; = 1) = 1, this actu-

E(D11)—E(D1o)
ally amounts to using Wprp. We can also adapt our Wald-CIC estimand by considering the

following assumption.

Assumption 10 (Common effect of time on both potential outcomes)

ho(hal(y, 1),0) = hl(hfl(y, 1),0) for every y € S(Y).

Assumption 10 requires that time have the same effect on both potential outcomes: once
combined with Equation (1) and Assumption 6, Assumption 10 implies that a treated and
an untreated unit with the same outcome in period 0 also have the same outcome in period
1. This restriction is not implied by the IV-CIC assumptions we introduced in Section 3.3:
Equation (1) and Assumption 6 alone only imply that two treated (resp. untreated) units

with the same outcome in period 0 also have the same outcome in period 1. An example of
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a structural function satisfying Assumption 10 is hq(Ug, T) = f(ga(Uq),T) with f(.,t) and
g4(.) strictly increasing. This shows that Assumption 10 does not restrict the effects of time
and treatment to be homogeneous. Finally, Assumptions 4 and 10 are related, but they also
differ on some respects. Assumption 4 restricts time to have the same average effect on the
potential outcomes of always treated. Assumption 10 restricts time to have the same effect

on the potential outcomes of units satisfying Y (0) = Y (1) at the first period.

Under Assumption 10, if P(Dgg = d) = P(Dy; = d) = 1 we can use changes in the distribution
of Y(d) in the control group over time to identify the effect of time on Y (1 —d), hence allowing
us to recover both Fy,, (q)s, and Fy; (1-q)|s; -

Theorem 3.5 If Assumptions 1-2, 6-7, and 10 hold, and P(Dyy = d) = P(Dy1 = d) =1 for
some d € {0,1},
P(D1o = d)Fg,(v,0)(y) — P(D1 = d)Fy,,, (y)

=F
P(Dlo = d) — P(Dll = d) Y11(d)|S1 (y)a
P(Dig=1-d)FQ,v,_u)(Y) = P(D11=1-d)Fy,_,,(y) - o)
P(Dl[):l_d)—P(Dllz]_—d) - Yll(l*d)|51 y I

E(Y11) — E(Qa(Y1o)) _
E(D11) — E(Dy)

The estimands introduced in this theorem are very similar to those considered in the first point

of Theorem 3.3, except that they apply the same quantile-quantile transform to all treatment

units in period 0, instead of applying different transforms to units with a different treatment.

Finally, when 0 < P(Dyy = 1) = P(Dp1 = 1) < 1, Assumption 10 is testable. If it is satisfied,
the quantile-quantile transforms Qg and )1 must be equal. When this test is not rejected,
applying a weighted average of these two transforms to all treatment group units in period 0

might result in efficiency gains with respect to our Wald-CIC estimator.®

3.5 Panel data models

Model (1) is well suited for repeated cross sections or cohort data where we observe units only
once. On the other hand, it implies a strong restriction on selection into treatment when panel
data are available. As V' does not depend on time, our selection equation implies that within
each group, time can affect individuals’ treatment decision in only one direction. Actually, all
our results remain valid if Uy and V' are indexed by time, provided that we rewrite Assumption
1 as follows: for d € S(D), the distribution of (Ug, V;) |G does not depend on t. Within each
group, time could then induce some units to go from non-treatment to treatment, while having

the opposite effect on other units.

We now discuss whether the common trends and monotonicity assumptions we introduced
above are satisfied in standard panel data models. We index random variables by ¢, to distin-

guish individual effects from constant terms.

8We would like to thank an anonymous referee for pointing this out to us.
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First, we consider the following model:

Yit = v + i + BiDig + €t (4)
Dit — 1{‘/Zt Z vaf}? (5)
(ein, Vi, i, Bi)|Gi ~ (gio, Vio, i, Bi) | Gi. (6)

The outcome equation has time and individual effects. It allows for heterogeneous but time
invariant treatment effects which can be arbitrarily correlated with the treatment, the indi-
vidual effect «;, and the idiosyncratic shocks. Equation (6) requires that the distribution of
(€4t, Vit, a4, Bi)|Gi does not depend on time. On the other hand, it does not restrict the cross-
sectional dependence between e;; and Vj;, nor the serial dependence between (g0, Vip) and
(€41, Vi1). This implies in particular that in the first-difference equation, D;; — Djg is endoge-
nous in general. The Wald-DID estimand then amounts to instrumenting D;; — D;g by G; in
this first-difference equation. It is easy to see that if Equations (4)-(6) hold, then Assumptions
1-6 are satisfied:? the additive separability of the time effect ensures that Assumptions 3, 5,
and 6 are satisfied, while the time invariant treatment effects ensure that Assumption 4 is
satisfied.

Second, we consider the following outcome equation instead of Equation (4):
Yie = i + MDig + o + BiDig + €4t (7)

Under Equation (7), Assumption 4 is no longer satisfied because treatment effects change
over time. On the other hand, the effect of time is still additively separable from treatment
and from the unobserved heterogeneity terms, so Equations (7) and (5)-(6) guarantee that

Assumptions 1-2 and 5-6 are satisfied.
Then, we consider the following outcome equation:
Yie =+ MDi + (o + BiDie + €ir). (8)

Under Equation (8), Assumption 5 is no longer satisfied because time has an heterogeneous
effect on the outcome. On the other hand, if Equations (8) and (5)-(6) hold, then Assumptions
1-2 and 6 are satisfied. To see this, define hg(u,t) = v + Med + ppu and Ugyy = oy + Bid + €t

Finally, we consider a last outcome equation:
Yie = vt + MDit + a; + BiDit + pe€it- (9)

All our assumptions fail to hold under this fixed effects model with time-varying effects of

the idiosyncratic shock. As above, Assumption 5 fails because time has heterogeneous effects

9As mentioned above, Uy and V should be indexed by time, and Assumption 1 should be rewritten as
follows: for d € S(D), the distribution of (Ug, V;) |G is independent of .
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on the outcome. Assumption 6 also fails because the outcome can no longer be written as a
function of time and a scalar unobserved term. Bonhomme & Sauder (2011) study a similar
model with fixed effects and non-stationary idiosyncratic shocks. In the sharp case, they
show that average and quantile treatment effects are identified if the idiosyncratic shocks are

independent of treatment and of the fixed effects.

4 Extensions

In this section, we extend our analysis to situations where the data can be divided into several
groups and several periods, where covariates are available, or where the treatment is non-
binary. To generalize our results, we have to modify some of the assumptions we introduced
above. To ease the comparison, we label these assumptions using suffixes. For instance

Assumption 1X is similar to Assumption 1 except that it accounts for covariates X.

4.1 Multiple groups and time periods

Let us consider the case where the data can be divided into more than two groups and
time periods. Let G € {0,1,...,g} be the group a unit belongs to. Let T € {0,1,...,¢}
be the period when she is observed. For any (g,t) € S(G) x {1,...,t}, let Sy = {V €

[min(vge—1, vgt), max(vg—1,v4¢)), G = g} be the subset of group g which switches treatment

status between ¢ — 1 and t. Also, let Sy = ngosgt denote the units switching between ¢ — 1
and t. Finally, let S = U,f:1 St be the union of all switchers. At each date, we can partition
the groups into three subsets, depending on whether their treatment rate is stable, increases,

or decreases between ¢t — 1 and t. For every ¢t € {1,...,}, let
Gst ={9 € S(G) : E(Dgt) = E(Dgt—1)}
Git ={9 € S(G) : E(Dg)
Git ={9 € S(G) : E(Dgy)
and let Gy = 1{G € Gy} — 1{G € Ga}. We introduce the following assumptions, which
generalize Assumptions 3-5 to settings with multiple groups and periods (Assumptions 6 and
7 apply to this case without modifications).
Assumption 3M  (Common trends)
For every t € {1, ...,t}, E(ho(Uo,t) — ho(Upy,t — 1)|G) does not depend on G.

Assumption 4M (Common average effect of time on both potential outcomes)

For every t e {1, ...,Z}, E(hl(Ul,t) — hl(Ul,t — 1)‘G,V > ’Uthl) = E(ho(Ug,t) — hQ(Uo,t —
1)‘G,V 2 'UGt—l)-
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Assumption 5M (Common trends within treatment at previous period)

For every t € {1, ...,%}, E(ho(Uo,t) — ho(Uo,t— 1)|G,V < 'Uthl) and E(hl(Ul,t) —hl(Ul,t—
1)|G,V > vgi—1) do not depend on G.

Theorem 4.1 below shows that when there is at least one group in which the treatment rate
is stable between each pair of consecutive dates, combinations of these assumptions allow us

to point identify A,,, a weighted average of LATEs over different periods:
t
=1 Zt 1 P(51)

We also consider the following assumption, under which A, is equal to the LATE among the

EY (1) =Y(0)[S:, T = t).

whole population of switchers S.

Assumption 11 (Monotonic evolution of treatment, and homogenous effects over time)
1. For everyt #t € {1,...1}? Gy N Gy = 0.

2. For every (t,t') € {1,...,t}%, E(Y(1) = Y(0)|S;,T =t') = BE(Y (1) = Y(0)|S;, T = 1).

The first point of Assumption 11 requires that in every group, the treatment rate follows a
monotonic evolution over time. The second point requires that switchers’ LATE be constant

over time.

For any random variable R and for any g # ¢’ € {—1,0,1}? and t € {1, ..., 1} let

DIDg(g.g't) = E(R|G;=g,T=t)-E(R|G; =¢,T=t-1)
— (BE(RIGf =¢, T=t)-E(R|Gf=¢,T=t—1))
DIDy(9.9.%)
DID},(g,9'51)
DID%(1,0,t)P(Gf = 1) + DID% (0, —1,1)P(G; = —1)

WBID(gaglvt) =

wy = —
St DID%(1,0,t)P(Gs = 1) + DID% (0, —1,t) P(G} = —1)
o DID%(1,0,t)P(G; =1)
W= DID;(1,0,6)P(Gf = 1) + DID};, (0, —1,t) P(G; = —1)°

Let also

8 =E(Y|D=d,Gf=0,T=t)— E(Y|D=d,G} =0,T =t—1) for d € {0,1}
EY|Gf=1,T=t)—E(Y +0,|G; =1,T =t —1)
ED|IGi=1,T=t)—E(D|G; =1,T =t—1)
E(Y|Gf =—1,T=1t)— E(Y +05,|Gf = —1,T =t —1)
ED|Gi=—-1,T=t)— E(D|Gf = -1,T =t — 1)

W%C’(la 0, t) =

Wj*ﬂc(—l, 0, t) —
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Finally, let

Qu(y) = F37|D a.Gr=0,7=t ° FY|p=d.cr=0r=t-1(y) d € {0,1}
EY|G; =1,T=t) - E(QpY)|G; =1,T=t-1)
EDIGi=1,T=1t) - E(D|G; =1,T =t —1)
EY|Gi=-1T=1t) - E(Qp(Y)|G; = -1,T =1t)
ED|G;=1,T=t)—E(D|G; = L,T=t 1)

WE’IC’(L 0, t) =

WE’IC(_L Oat) =

Theorem 4.1 Assume that Model (1) and Assumption 1 are satisfied. Assume also that for
every t € {1,...,t}, Gst # 0. Finally, assume that G 1L T.

1. If Assumptions SM and 4M are satisfied,

t
Zwt(wlo\tWBID(l’()’t) + (1 = wiop)Wpip(—1,0,t)) =Ay.
=1

2. If Assumption 5M is satisfied,

t

Z (w10t Wre(1,0,t) + (1 — wig) Wre(—1,0,1)) =Ay.
-1

3. If Assumptions 6 and 7 are satisfied,

t
Zwt(wlthéIC’(l’O?t) + (1 - wlOIt)Wé’IC<_1v Ovt)) =Ay.
t=1

4. If either t = 1 or Assumption 11 holds,

Ay = BE(Y(1) - Y(0)|S,T > 0).

Let us first consider the simple case with multiple groups and two periods. In such instances,

the first, second, and third results of the theorem can respectively be rewritten as

w101 Wprp(1,0,1) + (1 —wyop)Wpip(=1,0,1) = E(Y(1) =Y (0)|$,T = 1),
w101 Wrc(1,0,1) + (1 —wion)Wre(=1,0,1) = E(Y(1) -Y(0)[51,T = 1),
w101 Were(1,0,1) + (1 —wiop)Wee(=1,0,1) = E(Y (1) —=Y(0)[S1, T =1).

This shows that with multiple groups and two periods of time, treatment effects for switchers
are identified if there is at least one group in which the treatment rate is stable over time.
This holds under each of the three sets of assumptions we considered in the previous section.
The estimands we propose can be computed in four steps. First, we form three “super groups”,
by pooling together the groups where treatment increases (G* = 1), those where it is stable

(G* = 0), and those where it decreases (G* = —1). While in some applications these three
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sets of groups are known to the analyst, in other applications they must be estimated. In
our supplementary material, we review results from Gentzkow et al. (2011) where these sets
are known to the analyst. In Section 6 we review results from Duflo (2001) where these sets
are not known to the analyst and need to be estimated. Second, we compute the estimand
we suggested in the previous section with G* = 1 and G* = 0 as the treatment and control
groups. Third, we compute the estimand we suggested in the previous section with G* = —1
and G* = 0 as the treatment and control groups. Finally, we compute a weighted average of

those two estimands.

In the general case where ¢ > 1, aggregating estimands at different dates proves more diffi-
cult than aggregating estimands from different groups. This is because populations switching
treatment between different dates might overlap. For instance, if a unit goes from non treat-
ment to treatment between period 0 and 1, and from treatment to non treatment between
period 1 and 2, she both belongs to period 1 and period 2 switchers. A weighted average of,
say, our Wald-DID estimands between period 0 and 1 and between period 1 and 2 estimates a
weighted average of the LATESs of two potentially overlapping populations. There is therefore
no natural way to weight these two estimands to recover the LATE of the union of period 1
and 2 switchers. As shown in the fourth point of the theorem, the aggregated estimand we
put forward still satisfies a nice property: it is equal to the LATE of the union of switchers in
the special case where each group experiences a monotonic evolution of its treatment rate over
time. When this is the case, populations switching treatment status at different dates cannot
overlap, so our weighted average of switchers’ LATE across periods is actually the LATE of

all switchers.

Theorem 4.1 relies on the Assumption that G 1L T. This requires that the distribution of
groups be stable over time. This will automatically be satisfied if the data is a balanced panel
and G is time invariant. With repeated cross-sections or cohort data, this assumption might
fail to hold. However, large deviations from this stable group assumption indicate that some
groups grow much faster than others, which might anyway call into question the common
trends assumptions underlying DID identification strategies. Moreover, this assumption is
only a sufficient condition to rationalize our estimands under assumptions at the group level.
Another way to rationalize our estimands is to state our assumptions directly at the “super
group” level. For instance, if Assumptions 1, 3M, and 5M are satisfied with G} instead of G,
then the first statement of Theorem 4.1 is still valid even if G is not independent of T'. Finally,
when G is not independent of T, it is still possible to form a Wald-DID and a Wald-TC type of
estimand identifying a weighted average of LATEs under group-level assumptions. To do so,
one merely needs to implement some reweighting to ensure that the distribution of groups is the
same in periods t —1 and ¢ in the reweighted population. For all (¢,¢) € {0,1,...,g} x{1,..., t},

let
P(G=gIT=1)

P(G=glT=t—1)

Tgt =
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One can show that a weighted average of

E(Y|Gf =1,T=1t)— E(ra:Y|G; =1, T =t —1) — (B(Y|G} =0,T =t) — E (ra:Y|Gf =0,T =t — 1))
E(D|IGf =1,T =t) — E (re:D|G; = 1,T =t — 1) — (B(D|G; =0, =t) — E (re:D|G; = 0,T =t — 1))

and

E(Y|G; =-1,T=t)— E(re:Y |G} = —1,T =t — 1) — (E(Y|G} =0,T =t) — E(re:Y|G; = 0,T =t — 1))
E(D|G; = —1,T=t)— E(ra:D|Gf = —1,T =t —1) — (E(D|G; =0,T =t) — E (r:D|G; = 0,T =t — 1))

identifies a weighted average of LATEs under Assumptions 1, 3M, and 4M even if G is not
independent of 7.1 One can follow similar steps to construct a Wald-TC type of estimand
identifying a weighted average of LATEs under Assumptions 1 and 5M even if G is not
independent of T'.

Three last comments on Theorem 4.1 are in order. First, it contrasts with the current practice
in empirical work. When many groups and periods are available, researchers usually include
group and time fixed effects in their regressions, instead of pooling together groups into super
control and treatment groups as we advocate here. In de Chaisemartin & D’Haultfceuille
(2015), we show that such regressions estimate a weighted average of switchers’ LATEs across
groups, with potentially many negative weights and without the aggregation property we
obtain here (see Theorems S1 and S2). Second, groups where the treatment rate diminishes
can be used as “treatment” groups, just as those where it increases. Indeed, it is easy to show
that all the results from the previous section still hold if the treatment rate decreases in the
treatment group and is stable in the control group. Finally, when there are more than two
groups where the treatment rate is stable between two consecutive dates, our three sets of
assumptions become testable. Under each set of assumptions, using any subset of Gy as the

control group should yield the same result.

We now turn to partial identification results when the treatment rate changes in every group.
To simplify the exposition, we focus on the case with multiple groups and two periods. Results

can easily be extended to accommodate multiple periods.

When the outcome has bounded support [y, 7], let, for (d, g) € {0,1} x S(G),

Fag(y) = Mo [1 = Aga(1 = Fy,, ()] — Mo(1 = Aga)1{y < 7},
Fagi(y) =m1 [NgaFyy,, (v)] + (1 —mi(A\a))1{y > y}.

Then define
g; = Inax /ydfdgl(y) 7E(ng())a é:; :gg‘lsl(lé)/ydEdgl(y) 7E(ngO)7

E(Yy1) — E(Yyo +95,,) E(Yg) — E(Yg0 +p,,)

Wrelg) = s Wiel9) =
el = B0, - ED. Y T T B, - EDy)
'0The weights are the same as those in Theorem 4.1, except that one needs to replace P(G; = 1) and

P(G; = —1) by P(G; = 1|T =t) and P(Gf = —1|T = t) in their definition.
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Let also I ,4(y) and Fyq4(y) denote the lower and upper bounds on Py, (4)s, one can obtain
using G' = g as the treatment group and G = ¢’ as the control group and applying Theorem
3.3. Finally, let

Weie(g) = / (g,rg% )Fggfo(y)—g,gg?g)Fgg'l(yQ dy, Weielg) = / (g,rgl};?G)Fgg/o(y)—g/rggé)Fggq(y)) dy.

Theorem 4.2 Assume that Model (1) and Assumption 1 is satisfied. Assume also that Gs1 =
0.

1. If Assumption 5 is satisfied and P(y <Y (d) <7y) =1 for d € {0,1},

WJTC(Q) < EY;u(1) = Yn(0)[Sq) < W;C(g)-

2. If Assumptions 6 and 7 are satisfied,

WC_IC(Q) < E(Ygl(l) - Ygl(0)|5g1) < ngc(g)-

This theorem shows that with multiple groups, one can construct intersection bounds for
switchers’” LATE when the treatment rate changes in every group over time. This holds under
the two sets of assumptions for which we considered partial identification results in the previous
section. Under Assumption 5, one can bound the LATE among switchers in a given group
by using every other group as a potential control group and applying Theorem 3.2. One can
then select the control group yielding the highest (resp. smallest) lower (resp. upper) bound.
Under Assumption 6, one can bound the cdf of Y (1) and Y (0) among switchers in a given
group by using every other group as a potential control group and applying Theorem 3.3.
For each value of y, one can then select the control group yielding the highest (resp. lowest)
lower (resp. upper) bound. One can finally bound switchers LATEs by using integration by
parts for Lebesgue-Stieljes integrals. Note that any group can be used to construct bounds
for the LATE of switchers in group g, even groups ¢’ which experienced a larger change of
their treatment rate. Here, we only present partial identification results for treatment effects
among switchers of group ¢g. One can also derive bounds for the entire population of switchers,

by taking a weighted average of these bounds.

4.2 Covariates

We now return to our initial setup with two groups and two periods but consider a framework

incorporating covariates. Let X be a vector of covariates. Assume that
Y(d) = hd(Ud, T, X)’ de S(D)v

(10)
D

WV >wverx}, veox = voox does not depend on G.

Then we replace Assumptions 1-7 by the following conditions.
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Assumption 1X (Conditional time invariance within groups)

Forde S(D), (Ug, V) L T|G,X.

Assumption 2X (Conditional first stage)

Almost surely, E(D11|X) > E(D1o|X), and E(D11|X)— E(D19|X) > E(Do1|X) — E(Dgo| X).
Assumption 3X (Conditional common trends)

Almost surely, E(ho(Uy, 1, X) — ho(Uy,0,X)|G, X) does not depend on G.

Assumption 4X (Conditional common effect of time on both potential outcomes)

Almost surely,
E(hl(Ula ]-7X)_h1(U1’O7X)|Ga V> UOOXaX) = E(hO(UOa ]-aX)_hO(UOaOvX”G?V > UOOXaX)'

Assumption 5X (Conditional common trends within treatment status)

Almost surely, E(ho(Uo, 1, X)—ho(Up, 0, X)|G,V < vgox,X) and E(hy1(U1,1,X)—h1(U1,0,X)|G,V >
voox, X ) do not depend on G.

Assumption 6X (Monotonicity)
Ug € R and hq(u,t, ) is strictly increasing in u for all (d,t,z) € S(D) x S(T) x S(X).
Assumption 7X (Data restrictions)

1. S(Yyu|X = 2) = S(Y) = [y,7] with —oo < y <7y < +oo, for (d,g,t,x) € S(D) x
S(G) x S(T) x S(X).

2. Fy,,|x=z 18 strictly increasing on R and continuous on S(Y), for (d,g,t,x) € S(D) X
S(G) x S(T) x §(X).

3. S(Xy0) = S(X) for (g,t) € S(G) x S(T).

For any random variable R, let DIDR(X) = E(R11|X)—E(R10|X)—(E(R01|X) —E(RO()’X))
We also let da(z) = E(Yaor|X = @) — E(Yaoo| X = 2), Qaa(y) = Fy.\ |y © Fyypx=2(y), and

Wpip(X) = m
_ E(Y11|X) = E(Y10 + 0p,,(X)|X)
Wre(X) = 1]19(D11‘X) _10E<D?O‘X)
Were(X) = E(Vu|X) - E(QDw,X(Ym)‘X)‘

E(D11|X) — E(D1p|X)
Finally, let Sl = {V S ['UllXaUOOX),G = 1} and A(X) = E(Yn(l) — YH(O)‘Sl,X).
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Theorem 4.3 Assume that Model (10) and Assumptions 1X-2X hold, and that for every
de S(D), 0< P(Dgp =d|X) = P(Do1 =d|X) almost surely. Then

1. If Assumptions 3X-4X are satisfied, Wprp(X) = A(X) and

E[DIDy(X)|G =1,T = 1]

E[DIDp(X)|G=1,T=1] A

X
WDID =

2. If Assumption 5X is satisfied, Wrc(X) = A(X) and

wx, = E() = BIEW0 + D1o01(X) + (1 — D1)d(X)|X)|G =1,T=1] _ |
re = E(Dy1) — E(E(Dp|X)|G =1,T =1) -

3. If Assumptions 6X-7X are satisfied, Weoro(X) = A(X) and

E(Y11) — E[E(D10Q1,x (Y10) + (1 — D10)Qo,x (Y10)|X)|G =1,T = 1]

E(D11) — E(E(Dyo|X)|G=1,T =1) = A.

X _
Weire =

Incorporating covariates into the analysis has two advantages. First, it allows us to weaken
our identifying assumptions. For instance, when the distribution of some X evolves over time
in the control or in the treatment group, Assumption 1X is more plausible than Assumption
1: if the distribution of X is not stable over time and X is correlated with (Uy, V'), then the
distribution of (Uy, V') is also not stable. Second, there might be instances where P(Dgy =
d) # P(Dg1 = d) but P(Dgp = d|X) = P(Do1 = d|X) > 0 almost surely, meaning that in
the control group, the evolution of the treatment rate is entirely driven by a change in the
distribution of X. If that is the case, one can use the previous theorem to point identify
treatment effects among switchers, while our theorems without covariates only yield bounds.
When P(Dgy = d|X) # P(Do1 = d|X), one can derive bounds for A(X) and then for A.
These bounds could be tighter than the unconditional ones if changes in the distribution of

X drive most of the evolution of the treatment rate in the control group.

4.3 Non-binary, ordered treatment

We first consider the case where the treatment is not binary but takes a finite number of
values and is ordered: D € {0,1,...,d}. One prominent example is years of schooling, as in

our application in Section 6. We extend our model to this case as follows:

Y(d) = ha(Ug,T), for d € {0, ...,d},
] ; (11)
D = 23:1 WV > v‘éT}, —00 = vgt < ’U;t... < v;lfl = +oo for (g,t) € {0,1}2.

Assumption 40 (Common average effect of time on all potential outcomes)

For d € {0,...,d},

E(hd(Ud7 1) - hd(Udv 0)|G7 Ve [Ug‘Oa UgJ(Sl)) = E(hO(UO’ 1) - hO(UU’ 0)|Ga Ve [v((i}O’ UgJ(Sl))
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Assumption 50 (Common trends within treatment status at date 0)

For every d € S(D), E(hg(Ug, 1) — ha(Ua, 0)|G,V € [vd, viash)) does not depend on G.

Model (11) and Assumptions 40-50 generalize respectively Model (1) and Assumptions 4-5 to
situations where the treatment is non-binary and ordered . Let 2 denote stochastic dominance

between two random variables, while ~ denotes equality in distribution.

Theorem 4.4 Assume that Model (11) and Assumptions 1-2 are satisfied, that Dy ~ Dy,

and that D1y 2 Dio. Let wq = DRp=t=i7u2d

1. If Assumptions 8 and 4O are satisfied,
d
Wpip = Z E(Yn(d) — Yll(d — 1)|V S [Uill, vfo))wd.
d=1
2. If Assumption 50 is satisfied,

d
Wre =Y E(Yii(d) — Yii(d — 1)|V € [ofy, vf))wa.
d=1

3. If Assumptions 6 and 7 are satisfied,

d
Were =) B(Yu(d) = Yiu(d = )|V € [vfy, vfp))wa.
d=1

Theorem 4.4 shows that with an ordered treatment, the estimands we considered in the previ-
ous sections are equal to the average causal response (ACR) parameter considered in Angrist
& Imbens (1995). This parameter is a weighted average, over all values of d, of the effect
of increasing treatment from d — 1 to d among switchers whose treatment status goes from

strictly below to above d over time.

For this theorem to hold, two conditions have to be satisfied. First, in the treatment group,
the distribution of treatment in period 1 should dominate stochastically the corresponding
distribution in period 0. Angrist & Imbens (1995) also require that the distribution of treat-
ment conditional on Z = 1 dominate that conditional on Z = 0. Actually, this assumption is
not necessary for our three estimands to identify a weighted sum of treatment effects. If it is

not satisfied, one still has that Wprp, Wre, or Were identify

E(Y11(d) — Ynu(d—-1)|V € [min(vfo,vfl), maX(“va”%))wd,

Mm

.
Il

1

which is a weighted sum of treatment effects with some negative weights. Second, the dis-

tribution of treatment should be stable over time in the control group. When it is not, one
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can still obtain some identification results. Firstly, Theorem 3.1 generalizes to non-binary and
ordered treatments taking a finite number of values. When treatment increases in the control
group, the Wald-DID identifies a weighted difference of the ACRs in the treatment and in
the control group; when treatment decreases in the control group, the Wald-DID identifies
a weighted average of these two ACRs. The weights are the same as those in Theorem 3.1.
Secondly, the second statement of Theorems 3.2 and 3.3 also generalize to non-binary and
ordered treatments taking a finite number of values. When the distribution of treatment is
not stable over time in the control group, the ACR in the treatment group can be bounded

under Assumption 50, or Assumptions 6 and 7.

Theorem 4.4 could easily be extended to continuous treatments. Our three estimators would
then estimate a weighted average derivative similar to that studied in Angrist et al. (2000).
However, non-parametric estimation of the Wald-CIC might be challenging, as one would have

to estimate the function d — @4 in a first step.

5 Inference

In this section, we study the asymptotic properties of the estimators corresponding to the
estimands introduced in the previous sections. We focus on the point identified case. Es-
timators of the bounds on average and quantile treatment effects in the partially identified
case are considered in de Chaisemartin & D’Haultfeeuille (2015). We restrict ourselves to
repeated cross sections. For now, we suppose that an i.i.d. sample with the same distribution
as (Y,D,G, T, X) is available.

Assumption 12 (Independent and identically distributed observations)

(}/ia Div Giv ﬂ, Xi)i=1,...,n are i.1.d.

Even if we do not observe the same unit twice, independence may be a strong assumption
in some applications: clustering at the group level can induce both cross-sectional and serial

correlation within clusters. However, we can extend some of our results to allow for clustering,

as we discuss below.

5.1 Inference without covariates

Let Zgy = {i : G; = ¢,T; = t} (vesp. Zgye = {i : D; = d,G; = g,T; = t}) and ng (resp.
nagt) denote the size of Zy; (resp. Zyq) for all (d, g,t) € {0,1}3. The Wald-DID and Wald-TC
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estimators are simply defined by

1 1 1 g
ni11 £=i€l11 Y n10 ZiGIm Y n01 Eiel(n Yi+ oo noo ziEIoo Y;

1 o _ L _ 1 1 >
Tll Ziel—ll DZ n10 ZiGIlo DZ no1 Zielbl DZ + 100 ZiEZQO DZ
1 . _ 1 Y
niy ZiGIﬂ YL n10 ZieIlO |:}/’L + 5Dli|

ATC _
1 1 . ’
ni1 €111 D; n1io ZiGIlo D;

Wpip =

where &y (d € {0,1}) is defined by
Lyw Ly
i€Zg01 ZEIdOO

Let F\ngt denote the empirical cdf of Y on the subsample Zg4:

Fngt = Z ]l{Y<y}

lGId t

Similarly, we estimate the quantile of order ¢ € (0,1) of Y4 by FY (q) = inf{y : ﬁydqt< ) >
q}. The estimator of the quantile-quantile transform is Qd = F;d 3)1 o FYdOO Then, the Wald-
CIC estimator is defined by

1 1 -~
s 2ietn Yi — o 2iety @ni(Yi)
1 1 .
i 2uietiy Di = g 2oiezyo Di

Let P(Dgt = d) be the proportion of subjects with D = d in the sample Zy, let Hy =
Fyd10 o F , and let

Were =

ﬁ(Dl() = d)ﬁd o F\Ydm — P(DH = d)Fde
P(Dyy = d) — P(Dy; = d)

Fy, (s, =

Our estimator of the LQTE of order ¢ for switchers is

~ -1 Hi—1

Tq = FY11(1)|S1(q> - FY11(0)\51(q)'

We derive the asymptotic behavior of our CIC estimators under the following assumption,
which is similar to the one made by Athey & Imbens (2006) for the CIC estimators in sharp
settings.

Assumption 13 (Regularity conditions for the CIC estimators)

S(Y) is a bounded interval [y,y]. Moreover, for all (d,g,t) € {0,1}*, Fy, , and Fy,, (4s, are

continuously differentiable with strictly positive derivatives on [y, 7).
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Theorem 5.1 below shows that all our estimators are root-n consistent and asymptotically
normal. We also derive the influence functions of our estimators. However, because these
influence functions take complicated expressions, using the bootstrap might be convenient for
inference. For any statistic T', we let T™ denote its bootstrap counterpart. For any root-n
consistent statistic 0 estimating consistently 8, we say that the bootstrap is consistent if with
probability one and conditional on the sample, \/5(5*—5) converges to the same distribution as
the limit distribution of \/ﬁ@ —6).11 Theorem 5.1 implies that bootstrap confidence intervals

are asymptotically valid for all our estimators.

Theorem 5.1 Suppose that Assumptions 1-2, 12 hold and 0 < P(Dgy = 1) = P(Dg1 = 1) <
1. Then

1. If E(Y?) < 0o and Assumptions 3-4 also hold,
vn (WDID - A) L N(0.V (Uprp)) s

where Yprp is defined in Equation (42) in the appendiz. Moreover, the bootstrap is
consistent for WDID.

2. If BE(Y?) < oo and Assumption § also holds,
vn (/WTC - A) L5 N0,V (¥1c))

where Yo is defined in Equation (43) in the appendiz. Moreover, the bootstrap is

consistent for Wre.

3. If Assumptions 6, 7 and 13 also hold,

Vvn (ﬁ/\cm - A) L N0,V ($ere)
Vi (7 = 74) =5 N0,V (¢g.010)),

where Yorc and Ygcrc are defined in Equations (44) and (45) in the appendiz. More-

over, the bootstrap is consistent for both estimators.

The result is straightforward for the Wald-DID and Wald-TC. Regarding the CIC, our proof
differs from the one of Athey & Imbens (2006). It is based on the weak convergence of the
empirical cdfs of the different subgroups, and on a repeated use of the functional delta method.
This approach can be readily applied to other functionals of (Fy,,(0)s,, Fyi;(1)s,). We also
show in the supplementary material how it can be applied to estimate bounds on average and

quantile treatment effects in the partially identified case.

1See, e.g., van der Vaart (2000), Section 23.2.1, for a formal definition of conditional convergence.
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5.2 Inference with covariates

In this section, we consider estimators of the Wald-DID, Wald-TC, and Wald-CIC estimands
with covariates derived in Subsection 4.2. For the Wald-DID and Wald-TC, our estimators
are entirely non-parametric.'? For the Wald-CIC, we could define an estimator using a non-
parametric estimator of the conditional quantile-quantile transform @4 x. However, such an
estimator would be cumbersome to compute. Following Melly & Santangelo (2015), we con-
sider instead an estimator of Q4 x based on quantile regressions. This estimator relies on the
assumption that conditional quantiles of the outcome are linear. However, it does not require
that the effect of the treatment be the same for units with different values of their covariates,

contrary to the estimator with covariates suggested in Athey & Imbens (2006).

Let us assume that X € R" is a vector of continuous covariates. Adding discrete covariates is
easy by reasoning conditional on each corresponding cell. We take an approach similar to, e.g.,
Frolich (2007) by estimating in a first step conditional expectations by series estimators. For
any positive integer K, let p™ (z) = (p1x (), ..., K ()" be a vector of basis functions and
PE = (p%(Xy),...,p®(X,,)). For any random variable R, we estimate m’'(z) = E(R|X = z)

by the series estimator
Wl () = pn (@) (PKnPEA) ™ PR (Ry, o Ry

where (.)~ denotes the generalized inverse and (K, )nen is a sequence of integers tending
to infinity at a rate specified below. Following Frélich (2007), for any (g,t) € {0,1}% we
estimate mﬁ(aj) = E(Ry|X = x) by ﬁlg‘%(a}) = mUHCG=9T=tR ) ) H{G=9.T=t} () m%t(x) =
E(Rqq|X = ) is estimated similarly. Then our Wald-DID and Wald-TC estimators with

covariates are defined by

WX . %ﬂ i€T11 [YZ - 75\WL%/O(X%') - moyl (XZ) + mg)/o<Xz)}
DID — ~ ~ ~ )
%u €111 [Dl - mﬁ)(Xl) - m(l))l(Xl) + m(?o(Xl)]
miT 2oieTn {Yz — mig(Xi) — Mip(Xi)o1 (Xs) — (1 — mip(Xi))do(X5)

Wic = _ ,
nin i€l [DZ - %(XZ)]

where gd(a:) = MYy () — Mo ().

We then introduce our Wald-CIC estimator with covariates. Suppose that for all (d, g,t,7) €
{0,1}° % (0,1),

Fy, 1 x=2 = 7 Bagi(7).

2In our Stata package, we also implement estimators relying on the assumption that all the conditional
expectations in Wia;p and Wi are linear functions of X and can therefore be estimated through simple
OLS regressions. These estimators might prove useful when the set of covariates is rich and the estimation of
our non-parametric estimators is cumbersome. Asymptotic normality of these estimators follows directly from
standard results on OLS regressions and the Delta method.
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Using the fact that Fy, |x—, = fol H{F}Zilﬂx—z(ﬂ < y}dr (see, e.g., Chernozhukov et al.,
A gt X=
2010), we obtain
1
Qax(y) = 7' Baor (/ {2 Baoo () < y}d7> :
0
Besides, some algebra shows that

1 1
E[Qp,o,x(Y10)|X] = m?o(X)/o Q1.x (X' Br1o(u))du + (1 - m{%(X))/O Qo,x (X' Bo1o(u))du.

Hence, we estimate ngc by

WX %11 1€711 |:YVZ - mﬁ)(xl) fol Q\l,Xi (XZ/BHO(U))dU — (1 — T?L%(Xz)) fol @O,Xi (X{BOIO(U))dU}
cic — — ’
%n ZiEIn [Dl - m{DO(XZ)]

where the estimator of the conditional quantile-quantile transform satisfies

o~ o~ 1 o~
Gua(y) = o' Baon ( | 16 Bam(r) < y}dr) ,

0

and Edgt(r) is obtained from a quantile regression of Y on X on the subsample Z;g;:

Bage(r) = arg min > (7= 1{Yi = Xi8 < 0})(¥i = X}5).
€ ’iGngt
Here B denotes a compact subset of R” including S44:(7) for all (d,g,t,7) € {0,1}® x (0,1).
In practice, instead of computing the whole quantile regression process, we can compute
T — Bdgt(T) on a fine enough grid and replace integrals by corresponding averages. See Melly

& Santangelo (2015) for a detailed discussion on computational issues.
We prove the asymptotic normality of our estimators under the following assumptions.
Assumption 14 (Regularity conditions for the series estimators)

1. For any (d,g,t,a) € {0,1}*x{0,1,2}, infyesx) P(D =d,G =g, T =t|X =) >0 and

x— E(I{D = d}1{G = g}1{T = t}Y*| X = z) is s times continuously differentiable
on S(X), with s > 3r.

2. 8(X) is a Cartesian product of compact connected intervals on which X has a probability

density function that is bounded away from zero. Moreover E(XX') is nonsingular.

3. The series terms prg,, 1 < k < K,, are products of polynomials orthonormal with

respect to the uniform weight. Moreover, Kﬁ(s/rfl)/n — o0 and K'/n — 0.

n’

Assumption 15 (Regularity conditions for the conditional Wald-CIC estimator)

For all (d,g,t,z,7) € {0,1}> x S(X) x (0,1), F;d;lX:m(T) = &' Bage(T), with Bage(T) € B, a

compact subset of R". Moreover, Fy, | x=z 15 differentiable, with

0< inf Ty x=2(y) < sup Py x=2(y) < +o0.
(z,y)ES(X)xS(Y) Yage| X () (2.5)ES(X)xS(Y) Yage| X ()
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Assumption 15 implies that Y has a compact support. If its conditional density is not bounded
away from zero, trimming may be necessary as discussed in Chernozhukov, Fernandez-Val &

Melly (2013) and Melly & Santangelo (2015).

Theorem 5.2 Suppose that Model (10) and Assumptions 1X-2X, 12 and 14 hold. Then

1. If Assumptions 3X-4X also hold,
= L
vn (ngD - A) S N (0,V(¥p)) .
where the variable ngD is defined in Equation (46) in the appendiz.

2. If Assumption 5X also holds,
s L
Vi (Wi = A) 55 N (0,V(4ie)
where the variable 1/}%(0 is defined in Equation (47) in the appendiz.

3. If Assumptions 6X-7X and 15 also hold,
e L
vn (Wc)*(}c - A) = N (0,V (i),
where the variable wglc is defined in Equation (49) in the appendiz.

We prove the asymptotic normality of the Wald-DID and Wald-TC estimators using repeatedly
results on two-step estimators involving nonparametric first-step estimators, see e.g. Newey
(1994). Proving the asymptotic normality of the Wald-CIC estimator is more challenging. We
have to prove the weak convergence of \/n (Edgt(.) - 5dgt(.)>, seen as a stochastic process, on
the whole interval (0,1). To our knowledge, this convergence has been established so far only
on [e,1—¢], for any € > 0 (see, e.g., Angrist et al., 2006). Here, this result holds thanks to our
assumptions on the conditional distribution of Y. Finally, note that our Wald-CIC estimator
does not require any first-step nonparametric estimator in the special case where P(Dyg =
1) = 0. In such a case, asymptotic normality still holds without the regularity conditions in
Assumption 14. Only the nonsingularity of E(X X') is needed. In our supplementary material,
we revisit results from Field (2007), where P(Djo = 1) = 0 and where the set of covariates is

very rich.

5.3 Accounting for clustering

In many applications, the i.i.d. condition in Assumption 12 is too strong, because of cross-
sectional or serial dependence within clusters. However, in such instances one can build upon
our previous results to draw inference on the Wald-DID and Wald-TC without covariates, and

on the Wald-CIC without covariates if clusters are of the same size.
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We consider an asymptotic framework where the number of clusters C' tends to infinity while
the sample size within each cluster remains bounded in probability. Let n. = #{i € ¢}, . =
% Zle Ney et = #{i€c: Ty =t}, nege =#{i €c:T; =t,D; =d}, Dy = e ZiGC:Ti:t D;,
Y. = n%t ZiEC:Ti:t Y;,and Y4 = ﬁ Ziec:Ti:mDi:d Y;, with the convention that the sums are
equal to zero if they sum over empty sets. Then we can write the estimators of the Wald-DID
and Wald-TC as simple functions of averages of these variables defined at the cluster level.
Using the same reasoning as in the proof of Theorem 5.1, we can linearize both estimators,

ending up with

\f

e (WTC - A) TZ —tere +op(l),

3

C
\@(WD[D—A) 722 cDID+OP(1)7
C

3

where . prp = %Zi@ Y; prp and similarly for ¢.7c. In other words, to estimate the
asymptotic variance of our estimators while accounting for clustering, it suffices to compute
the average over clusters of the influence functions we obtained assuming that observations

were i.i.d, multiply them by <, and then compute the variance of this variable over clusters.

Our other estimators cannot be written as functions of variables aggregated at the cluster
level: they depend on the variables of every unit in each cluster. But as long as they can
still be linearized in the presence of clustering, the same argument as above applies. Such a
linearization can be obtained for the Wald-CIC estimator with clusters of same size, because
weak convergence of the empirical cdfs of the different subgroups still holds in this context.!?
We conjecture that it can also be obtained when clusters are of random sizes, or with our
estimators including covariates. Proving this last point would nevertheless require to adapt
results on two-step estimators to such a clustering framework. To the best of our knowledge,

no such results have been established yet.

6 Application: returns to education in Indonesia

6.1 Estimation strategy

In 1973-1974, the Indonesian government launched a major primary school construction pro-
gram, the so-called INPRES program. Duflo (2001) uses it to measure returns to education

among men through a fuzzy DID identification strategy. In her analysis, groups are districts,

13To simplify, let us ignore the different subgroups and let us consider the standard empirical process on
Y. Let Y. = (Ye1,...., Yen,)', where Y; denotes the outcome variable of individual 7 in cluster c. Because
the (Ye¢)e=1...c are i.i.d., its multivariate empirical process converges to a multivariate gaussian process. The
standard empirical process on Y can be written as the average over the n. components of this multivariate

process. Therefore, it also converges to a gaussian process.
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the administrative unit at which the program was implemented. This definition of groups
could violate Assumption 1 if the program generated endogenous migration between districts.
The author therefore uses district of birth instead of district of residence. She then constructs
two “super groups” of treatment and control districts, by regressing the number of schools
constructed on the number of school-age children in each district. Treatment districts are
those with a positive residual in that regression, as they received more schools than what
their population predicts. She also uses the fact that exposure to treatment varied across
cohorts. Children born between 1968 and 1972 entered primary school after the program was
launched, while children born between 1957 and 1962 had finished primary school by that

time.

However, the INPRES program explains a small fraction of the differences in increases in
years of schooling between districts. A district-level regression of the increase in years of
schooling between these two groups of cohorts on the number of primary schools constructed
per school-age children has an R-squared of 0.03 only. The INPRES program was not the only
school construction program taking place at that time: between 1973 and 1983, the number of
primary, middle, and high schools in the country respectively increased by 96, 94, and 139%.
Including the change in the number of middle and high schools in the district-level regression

increases its R-squared to 0.14, but still leaves most of the variation unexplained.

Because of this, the results in Duflo’s paper rely on the assumption that returns to education
are homogeneous between districts. The author first uses a simple Wald-DID with her two
groups of districts and cohorts to estimate returns to education. Under Assumptions 1-3
and 40, one can show that this simple Wald-DID is equal to %ACRl — %ACRQ, where
ACR, and AC Ry respectively denote the ACR parameters we introduced in Section 4.3 in the
treatment and in the control group, and where the weights can be computed from Table 3.4
If ACR; # ACRy, this simple Wald-DID could lie far from both ACR; and ACRy. Then,
the author considers richer specifications. All of them include cohort and district of birth
fixed effects. We show in the supplementary material (see Theorem S2) that such regressions
estimate a weighted sum of switchers returns to education across districts, with potentially
many negative weights. We estimate the weights received by each district in her data, and
find that almost half of districts receive a negative weight, with negative weights summing up
to -3.28. Here again, if switchers’ returns are heterogeneous across districts with positive and
negative weights, these regression coefficients could lie very far from returns in any district.
Therefore, these richer specifications also rely on the assumption that returns to education

are homogeneous across districts.

This assumption is not warranted in this context. As one can see in Table 3, educational
attainment in the older cohort is substantially higher in control than in treatment districts,

implying that the supply of skilled labor is higher there. Returns to education could be

" Theorem 3.1 can easily be generalized to non-binary, ordered treatments.
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lower in control districts if the two groups face the same demand for skilled labor. On the
other hand, this difference in educational attainment might also indicate a higher level of
economic development in control districts, in which case demand for skilled labor and returns

to education could be higher there.

Table 3: Average number of years of education completed

Cohort 0 Cohort 1 Evolution s.e.
Groups in Duflo (2001)

Treatment districts 8.02 8.49 0.47 (0.070)
Control districts 9.40 9.76 0.36 (0.038)
New groups
Treatment districts 8.65 9.64 0.99 (0.082)
Control districts 9.60 9.55 -0.05 (0.097)

Notes. This table reports the evolution of average years of schooling between cohorts 0 and 1 in the treatment
and controls groups used by Duflo (2001) and in our new treatment and control groups. Standard errors are

clustered at the district level.

To avoid relying on the assumption that treatment effects are homogeneous between districts,
we use a different statistical procedure from that used by Duflo to classify districts into a
treatment and a control group. This procedure should classify as controls only districts with a
stable distribution of education. Any classification method leads us to make two types of errors:
classify some districts where the distribution of education remained constant as treatments
(type 1 error); and classify some districts where this distribution changed as controls (type 2
error). Type 1 errors are innocuous. For instance, if Assumptions 3 and 40 are satisfied, all
control districts have the same evolution of their expected outcome. Misclassifying some as
treatment districts leaves the Wald-DID estimator unchanged, up to sampling error. On the
other hand, type 2 errors are a more serious concern. They lead us to include districts where
the true distribution of education was not stable in our super control group, thus violating

one of the requirements of Theorem 4.1.

We therefore choose a method based on chi-squared tests with very liberal level. Specifically,
we assign a district to our control group if the p-value of a chi-squared test comparing the
distribution of education between the two cohorts in that district is greater than 0.5. If that
p-value is lower than 0.5 and the average number of years of education increased in that
district, we assign it to our treatment group. We end up with control and treatment groups
respectively made up of 64 and 123 districts. We exclude from the analysis 97 districts with

a p-value lower than 0.5 and where years of education decreased. As shown in Section 4.1,
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we could gather them together to form a third super group, and use results from Theorem
4.1 to estimate returns to education. However, doing this hardly changes our point estimates.
We therefore stick to two super groups, to keep the presentation as simple as possible and to

follow Duflo (2001) who also has two super treatment and control groups.

As shown in Table 3, in treatment districts the younger cohort completed one more year of
education than the older one, while in control districts the two cohorts completed almost the
same number of years of education. In treatment districts, the distribution of education in
the younger cohort almost stochastically dominates that in the older cohort, as one can see
from Table 4. The college completion rate is 2.5 percentage points higher in the older than
in the younger cohort, but that difference is fairly small. Moreover, in control districts, the
distribution of education is almost the same between the two cohorts. The primary school and
college completion rate are respectively 2.6 percentage points higher and 3.3 percentage points
lower in the younger cohort, but these differences are small too. Overall, the two requirements
of Theorem 4.4 are close to being satisfied. We argue below that the minor departures from

these two requirements that can be seen in Table 4 are unlikely to drive our results.

Table 4: Evolution of the distribution of education

Cohort 0 Cohort 1 Evolution s.e.
Treatment group

Completed primary school 0.815 0.931 0.116 (0.008)

Completed middle school 0.531 0.676 0.145 (0.011)

Completed high school 0.406 0.491 0.085 (0.013)

Completed undergrad 0.094 0.069 -0.025 (0.006)
N 17471

Control group

Completed primary school — 0.877 0.904 0.026 (0.008)

Completed middle school 0.640 0.656 0.016 (0.012)

Completed high school 0.510 0.489 -0.021 (0.013)

Completed undergrad 0.104 0.071 -0.033 (0.006)
N 4868

Notes. This table reports the evolution of schooling between cohorts 0 and 1 by broad categories in our new

treatment and control groups. Standard errors are clustered at the district level.

Finally, we consider two placebo experiments to assess the plausibility of the common trends

assumptions underlying our estimators with our “super groups”. First, following Duflo (2001),
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we compare years of schooling and wages for men born between 1957 and 1962 and those
born between 1951 and 1956 (cohort -1). Then, we compare men born between 1951 and
1956 and those born between 1945 and 1950 (cohort -2). Results lend strong support to our
identification strategy. The difference in average years of education between the two groups
of districts is stable in the three older cohorts, but it is much larger for the younger cohort.
Accordingly, the difference in average wages between the two groups of districts is also very
stable in the three older cohorts, but it is much larger for the younger cohort. This remains
true when instead of comparing average wages we estimate the numerator of the Wald-TC and
of the Wald-CIC. While the placebo estimators are small and insignificant, the true estimators
are large and significant. Theorem 4.1 relies on the assumption that G L T'. This assumption
fails to hold here: the distribution of districts is not perfectly stable between the two cohorts.
However, our placebo tests suggest that our common trend assumptions are satisfied directly
at the “super group” level, thus implying that deviations from G 1L T are not a serious concern

for our results.

Table 5: Placebo tests

Cohort -2 versus -1 Cohort -1 versus 0 Cohort 0 versus 1

DID schooling 0.108 -0.006 1.030
(0.191) (0.160) (0.127)

DID wages 0.050 0.002 0.164
(0.035) (0.026) (0.028)

Numerator Wald-TC 0.024 -0.012 0.103
(0.026) (0.021) (0.028)

Numerator Wald-CIC 0.023 -0.009 0.099
(0.027) (0.021) (0.028)

N 14452 19938 22339

Notes. This table reports placebo and true estimates comparing the evolution of education and wages from
cohort -2 to 1 in our two groups of districts. Standard errors are clustered at the district level. For the

numerator of the Wald-CIC, clustered standard errors are obtained by block bootstrap.

6.2 Results

First, we compare the weighted average of Wald-DIDs in Duflo (2001) to a simple Wald-DID
with our control groups. In Table 6, we estimate the same 2SLS regression as that reported
in the first column and third line of Table 7 in Duflo (2001), and we obtain returns of 7.3%
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15 Then, we estimate the Wald-DID with our groups and find returns

per year of schooling.
of 15.9% per year of schooling. This coefficient is significantly different from the previous
one (t-stat=-2.15), and it is also more precisely estimated: its standard error is 37% smaller,
presumably because it relies on a much larger first stage. While the estimator in Duflo
(2001) is only significant at the 10% level (t-stat=1.68),'6 our Wald-DID is significant at any
conventional level. Note that the difference between these two estimators does not come from
the fact they are estimated on different samples. Estimating Duflo’s regression on our sample
of 22,339 observations actually yields a smaller coefficient than her original estimate, which is
still significantly different from ours. The difference between these two estimates could stem
from the fact that districts where years of schooling increased less also have higher returns
to education. This would bias downward the estimate in Duflo (2001), while our Wald-DID

estimator does not rely on any treatment effect homogeneity assumption.

On the other hand, the validity of our Wald-DID still relies on Assumption 40, which might
not be plausible in this context. For instance, under Assumption 40 the wage gap between
high-school graduates in cohort 0 and 1 should remain the same if they had only completed
primary school. Had they only completed primary school, high school graduates of both
cohorts would have joined the labor market earlier, and would have had more labor market
experience at the time we compare their wages. The wage gap between the two cohorts might
then have been lower, because returns to experience tend to be decreasing (see e.g. Mincer
& Jovanovic, 1979).17 The data lends some support to this hypothesis. In the control group,
while high-school graduates in cohort 1 earn 54% less than their cohort 0 counterpart, the gap
is only 20% for non-graduates, and the difference is significant (t-stat=-7.64). This difference
could partly arise from selection effects: non-graduates differ from high school graduates, so
the cohort gap among non-graduates might not be equal to the cohort gap we would have
observed among graduates had they not graduated. Still, it seems unlikely that selection can

fully account for this almost threefold difference.

Our Wald-TC and Wald-CIC estimators do not rely on Assumption 40. They lie in-between
the estimate in Duflo (2001) and our Wald-DID. They do not differ significantly from the
coefficient in Duflo (2001), but this is partly because this coefficient is imprecisely estimated.
Using the Wald-TC estimator, one can for instance reject that returns to education are lower
than 6% at the 5% level. On the other hand, the Wald-TC and Wald-CIC significantly differ
from the Wald-DID, with t-stats respectively equal to -3.52 and -3.66. The Wald-DID and

50ur coefficient differs very slightly from that of the author because we were not able to obtain exactly her

sample of 31,061 observations.
'6This point estimate was significant at the 5% level in the original paper. But once clustering standard

errors at the district level, which has become standard practice in DID analysis since Bertrand et al. (2004),

it loses some statistical significance.
1"We follow Mincer & Jovanovic (1979) and estimate a mincerian regression of wages on education, education

squared, age, and age squared in our data. We also find a significantly negative coefficient of age squared.

41



Wald-TC rely on different “common trends” assumptions between districts (Assumptions 3 and
50). But challenging one while defending the other seems difficult as these two assumptions are
substantively very close. On the other hand, the Wald-TC and Wald-CIC do not require that
the wage gap between cohorts be constant across potential levels of education (Assumption
40). As discussed in the previous paragraph, this assumption is not warranted in this context.
We therefore choose the Wald-TC and Wald-CIC as our preferred estimators.'®

Table 6: Returns to education

Duflo (2001) Wpip Wre Wero OLS

Returns to education 0.073 0.159 0.104 0.100 0.077
(0.043) (0.028) (0.027) (0.027) (0.001)
N 30828 22339 22339 22339 30828

Notes. This table reports estimates of returns to schooling. Standard errors are clustered at the district level.
For the Wald-TC and Wald-CIC, clustered standard errors are obtained by block bootstrap.

As shown in Theorem 4.4, the parameter we estimate is a weighted average of the effect of
increasing years of education from d — 1 to d, over all possible values of d. The weights wy
can be estimated. They are shown in Figure 1. Our parameter puts the most weight on the
last years of primary school, on middle-school years, and on high-school years. Because in
the treatment group the distribution of education in young cohorts does not dominate that in
old cohorts, some weights are negative. But negative weights are fairly small, and sum up to

—0.14. Therefore, failure of stochastic dominance is unlikely to drive our results.

18T6 estimate the numerator of the Wald-CIC, we do not estimate Qg for each year of schooling. Instead,
we group schooling into 5 categories (did not complete primary school, completed primary school, completed
middle school, completed high school, completed college). Thus, we avoid estimating quantile-quantile trans-
forms on a very small number of units. To be consistent, we also use this definition to estimate the numerator
of the Wald-TC. Using years of schooling hardly changes our Wald-TC estimator.
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Figure 1: Weight received by each year of education.

6.3 Robustness checks

As a first robustness check, we investigate whether misclassifications of treatment districts as
controls can bias our results. To do so, we construct our groups again using a more liberal
criterion. Specifically, we assign a district to the control group if the p-value of the chi-squared
test is greater than 0.6. If that p-value is lower than 0.6 and the average number of years of
education increased in that district, we assign it to the treatment group. The control group
we obtain this way is 30% smaller than the previous one, which increases the variance of our
estimators. It also has a more stable distribution of education: a chi-squared test does not
reject the assumption that this distribution is the same between the two cohorts. On the other
hand, using this new control group leaves our estimates essentially unchanged: the Wald-DID,
Wald-TC, and Wald-CIC are now respectively equal to 15.8, 9.8, and 9.6%. This suggests that
the small changes in the distribution of education in our control group shown in Table 4 do

not drive our results.

As a second robustness check, we investigate whether the statistical procedure we use to form
our groups biases our estimates. Our method uses the same data twice, to form groups and
to estimate returns to education. It therefore shares some similarities with the endogenous
stratification methods studied in Abadie et al. (2013), which can produce finite sample biases.
We conduct a simulation study to investigate the determinants of the bias. We find that finite
sample bias is increasing with the correlation between the treatment and the unobserved
determinants of the outcome,'® decreasing with the size of the groups where the first stage

chi-squared tests are conducted, and decreasing with the change of treatment intensity in the

!9An important difference with the methods studied in Abadie et al. (2013) is that our method does not
use the outcome but the treatment to construct groups. Therefore, our method produces biased estimates
only if the treatment is strongly correlated with the unobserved determinants of the outcome. If treatment is
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population. To detect potential biases, Abadie et al. (2013) suggest comparing the baseline
estimator to a split-sample estimator where half of the sample is used to construct groups, while
the other half is used to compute the estimator. Our simulations also suggest this is a good
way to assess the seriousness of the problem. With DGPs for which our procedure generates
little or no bias, the split-sample and baseline estimators are very close from each other; on
the other hand, with DGPs for which our procedure generates more bias, the split-sample
and baseline estimators are far away. Therefore, we re-estimate 200 times our Wald-DID,
Wald-TC, and Wald-CIC estimators using a split-sample procedure. The average of the split-
sample estimators are respectively 17.7%, 8.5%, and 8.0%. The three split-sample estimators
are not significantly different and less than 20% away from the original estimators. Overall,

endogenous stratification does not seem to be a strong concern in this application.

As a last robustness check, we investigate whether accounting for the sampling variance in-
duced by our classification procedure would greatly affect our conclusions. Doing so is not
straightforward. A natural idea is to use a two-step bootstrap where in a first step we boot-
strap individuals within each cohort of each district and run our procedure to form our control
and treatment groups, while in a second step we bootstrap districts and estimate the Wald-
DID, the Wald-TC, and the Wald-CIC. In practice, this procedure does not work well. Under
the null that the distribution of education did not change over time, one can show that the
bootstrap statistics we use in our chi-squared tests do not have an approximate chi-squared
distribution, but are approximately distributed as sums of squares of N(0,2) variables.?Y We
therefore classify much fewer districts as controls than in the original sample. Dividing the
bootstrap test statistics by two does not solve the problem, because the modified statistic then
has a different distribution from that of the original statistic under the alternative hypothesis.
Instead, we opt for a modified version of the two-step bootstrap: as in the original sample
we classify 23% of districts as controls, in each bootstrap replication we classify the 23% of
districts with the lowest chi-squared statistic as controls. The standard errors of our three
estimators are now respectively equal to 0.044, 0.045, and 0.045. Thus, accounting for the
sampling variance in our first step procedure seems to increase notably the standard errors
of our estimators, but also leaves our main conclusions unchanged. For instance, our Wald-
DID estimator would still be significantly different from the Wald-TC and Wald-CIC with
these larger standard errors. However, proving that this procedure indeed reproduces well the

distribution of our estimators goes beyond the scope of this paper and is left for future work.

This application differs from other applications of the fuzzy DID method in two important
ways. First, it makes use of individual-level data. Many applications of the fuzzy DID method
we found in our literature review directly use aggregate data at the county x year or state x

year level. Second, the set of districts where education did not change between the two cohorts

exogenous or only weakly endogenous, it does not produce biases.
20Because districts are of finite size, the distribution of the test statistic is not exactly equal to its asymptotic
distribution.
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is not known to the analyst and needs to be estimated. In many applications of the fuzzy DID
method the set of groups where treatment is stable is known to the analyst (examples include
Draca et al., 2011, Field, 2007, or Gentzkow et al., 2011). In our supplementary material,
we revisit Gentzkow et al. (2011) who use aggregate data and where the set of groups where
treatment is stable is known. We show that the methods we propose in this paper can also
be applied to this type of data, and that they can lead to substantially different conclusions

from those reached by the authors using existing methods.

7 Conclusion

This paper studies treatment effects estimation in fuzzy DID designs. It makes the following
contributions. First, we show that the Wald-DID is equal to a local average treatment effect
(LATE) only if two strong assumptions are satisfied: treatment effects should be constant
over time, and when treatment increases both in the treatment and in the control group treat-
ment effects should be homogeneous in the two groups. Second, we propose two alternative
estimators for the same LATE when the distribution of treatment is stable over time in the
control group. Our first estimator is a natural generalization of DID to the fuzzy case. Our
second estimator generalizes the changes-in-changes estimator introduced by Athey & Imbens
(2006). Our estimators do not require that treatment effects be stable over time. Third, we
show that under the same assumptions as those underlying our estimators, the same LATE

can be bounded when the distribution of treatment changes over time in the control group.

When using the DID method with fuzzy groups, it is crucial to find a control group where
treatment is stable over time to achieve point identification without imposing treatment effect
homogeneity assumptions. In such instances, three estimators are available: the Wald-DID
and our two alternative estimators. Using one or the other estimator can make a substantial

difference, as we show in our application.
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A Main proofs

The lemmas prefixed by S are stated and proven in our supplementary material (see de Chaise-

martin & D’Haultfceuille, 2015). For any © C R¥, let © denote its interior and let C°(©) and
C'(©) denote respectively the set of continuous functions and the set of continuously differen-
tiable functions with strictly positive derivative on ©. We most often use these notations with
© = S(Y), in which cases we simply denote these sets by C* and C' respectively. Finally, for
any (d,g,t) € S(D)xS(G)xS(T), let pgy = P(G = g, T =t), page = P(D =d,G =g, T = 1),
Pdlgt = P(Dg = d), and Fgg = Fngz'

Theorem 3.1

Proof when pyg; > p1j00

Assume pyg; > p1joo- By Assumption 2, pyjy; > pyj1o. Therefore, the threshold model on D
and Assumption 1 imply that

Vg1 < V00, for g & {07 1} (12)
Then, it follows from Model (1) and Assumption 1 that

Pigt —Prgo = PV 2vu|T'=1,G=g)— P(V >v0|T =0,G = g)
= PV € [vg1,v00)|G = g). (13)

For any g € {0, 1},

— h1(U1,0)|G = g,V > vgo) P(V > vo0|G = g)
— ho(Up,0)|G = g,V < vp0)P(V < vgo|G = g)
Yg1(1) =Yg (0)|V € [vg1,v00)) P(V € [vg1,v00) |G = g)
hi1(U1,1) — hi(U1,0)|G = g,V > voo)P(V > vp9|G = g)

1) = ho(Up, 0)|G = g,V < vgo) P(V < vpo|G = g)
Y1 (1) = Y (0)|V € [vg1,000)) P(V € [vg1,v00)|G = 9)
— ho(Uo, 0)|G = g).

(U1, 1)
(U1,0)
h1(Un,1) — ho(Uo, 1)|G = g,V € [vg1,v00)) P(V € [vg1,000)|G = )
(U1, 1)
(Uo, 1)

The first, second, third, fourth, and fifth equalities respectively follow from Model (1), Model
(1) and Assumption 1, Equation (12), Model (1) and Assumption 1, and Assumption 4.
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|G =9,V >v50)P(V > v5|G = g) + E(ho(Uo, 1)|G = g,V < v1) P(V < vy1|G = g)
|G =g,V > UOQ)P(V > Uoo’G = g) — E(ho(U0,0)|G =g,V < U()())P(V < Uoo‘G = g)

(14)



Combining Equation (14) and Assumption 3 imply that
DIDy =E(Y11(1) — Y11(0)[S1) P(S1|G = 1)
—E(Y01(1) — Y01(0)|So) P(So|G = 0).
Dividing each side by DIDp and using Equation (13) yields the result.
Proof when pyjo1 < pij00

Assume pyjg; < prjoo- Equation (14) still holds for g = 1, but not for g = 0 because vy < vo1-

On the other hand, a reasoning similar to that we used to derive Equations (13) yields
Pijoo — P1jo1 = P(So|lG =0). (15)
Moreover,
E(Yo1) — E(Yoo)
= E(hi(U,1)|G=0,V >v51)P(V > vp1|G =

CE(h (U, 1) — ho(Un, 1)|G = 0,V € [v00, v01)) P(V € [v00, v01)| G = 0)
E(h(U1,1) = hi(U1,0)|G = 0,V > v00) P(V > 00|G = 0)

E(ho(Uo, 1) — ho(Up, 0)|G =0,V < vgo) P(V < voo|G = 0)

—E(Y01(1) = Y01 (0)|V' € [voo, v01)) P(V € [vo0, v01)|G = 0)

E(ho(Uo, 1) — ho(Up, 0)|G = 0).

+ o+

The first, second, and third equalities respectively follow from Model (1) and Assumption 1,
voo < vo1, Model (1) and Assumption 1 and 4. Taking the difference between Equation (14)
with ¢ = 1 and Equation (16) yields
DIDy =E(Y11(1) — Y11(0)|S1)P(S1|G = 1)
+E(Yo1(1) — Y01(0)[S0) P(So|G = 0).
Dividing each side of the previous display by DIDp and using Equations (13) and (15) yields
the result. o

Theorem 3.2

Proof of 1
Following the same steps as those used to reach the last but one equality in Equation (14),
we obtain
E(Y11) — E(Y1o)
= EY11(1) — Y11(0)[S1)P(51|G = 1)
+ E(hi(U1,1) — hi(U1,0)|G =1,V > vgo) P(V > vpo|G = 1)
+ E(ho(Uoy, 1) — ho(Up,0)|G =1,V < vgo) P(V < vpo|G = 1). (17)
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) (ho(Ug,l)’GZO,V<U01)P(V<’U01’G:0)
— E(h1(U1,0)|G=O,V>’U()())P(V>U()0|G ) (ho(U(), )’GIO V<U()0)P(V<’U0()’G=0)
)



Then,

01

E(Y101) — E(Y100)
E(hl(Ul, 1)|G = 0, Vv Z Uoo) — E(hl(U1,0)|G = O,V Z ’001)
E(hl(Ul, 1) — hl(U1,0)|G = O,V Z ’Uoo).

(18)

The second equality follows from Model (1) and Assumption 1. The third one follows from

the fact that pjo1 = pijoo combined with Assumption 1 implies that {G = 0,V < vo1} =

{G = O,V < Uoo}.

Similarly,

6o = E(ho(Uo, 1) — ho(Up, 0)|G = 0,V < vgo).

(19)

Finally, the result follows combining Equations (17), (18), (19), and Assumption 5, once noted

that pyj10 = P(V > voo|G = 1) and P(S1|G = 1) = pyj11 — P1j10-

Proof of 2

We only prove that W, is a lower bound when Agp > 1. The proofs for the upper bound

and when Agp < 1 are symmetric.

We have

E(Yii(

E(Y11) — E(Y10)
E(hi(Uy, 1)
E(ho(Uo, 1)
E(Y11) — E(Yio)
E(h (U, 1) —
E(ho(Uo, 1)
E(Y11) — E(Yio)
(E(

(E(

\
>=
=
S
=
Q
I
\.I—\
<
A
j~d
S
v,
<
A
S
8
Q
I
=

hl(Ul,O)’G = 0, Vv Z UOQ)P(V Z ’U()()’G = 1)
— ho(U(),O)’G =0,V < UOQ)P(V < ’U()()’G =1)

E(Yo1(1)|V > vo0) — E(Y100))P1[10
Y01(0)|V < woo) — E(Yoo0))Poj10-

The first, second, and third equalities respectively follow from Equation (17), Assumption 5,

and Model (1) combined with Assumption 1.

It follows from the last display that the proof will be complete if we can show that §; and & are
respectively upper bounds for E(Yp1(1)|V > voo) — E(Yi00) and E(Yo1(0)|V < veo) — E(Yo0o)-
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When A\gg > 1, it follows from Model (1) and Assumption 1 that vy < vg1. Then, we have

P(V Z ’U01|G:0,T: 1)
P(V > vp0|G =0,T =1)
P(V 2 ’U01|G:0,T: 1)
P(V > vpo|G =0,T =0)
Pijo1

PV >vn|G=0,T=1,V >wvy) =

where the second equality follows from Assumption 1. Therefore,

E(Yoir(1)|V >wve0) = AnEXo1(1)|V > vo1) + (1 — Xo1) E(Yor (1)|V € Sp)

< MiEMYio) + (1= X))y = /delm (y)- (21)

This proves that &; is an upper bound for E(Yo1(1)|V > voo) — E(Y100)-
Similarly,
PV <vyplG=0,T=1,V <wvp1) = 1/,
and
EYoo1) = 1/20EY01(0)|V < wvoo) + (1 —1/Xo0) E(Yo1(0)|V € Sp).

Following Horowitz & Manski (1995), the last display implies that
EGnOV <o) < [ ydEon ().

This proves that g is an upper bound for E(Y1(0)|V < voo) — E(Yooo)- O

Lemma 3.1

We only prove the formula for d = 0, the reasoning being similar for d = 1.

Using the same steps as those used to prove Equations (20) and (21) , one can show that

P(Sl|G = 1’T - ]-,V < UOO) = ZM
Poj1o

and

Poj1o — Po|11 Poli1

Fys,(0)V <vo () |pO|mFy11(0)lsl (y) + Po:w Foui(y).

Therefore,

Poj10FY11 (0)[V<voo () — Pojr1Fo11(Y)

Fyny o)1 (y) = - YOV <voor | ' )
Poj10 — Poj11

ol



Then, we show that for all y € S(Y11(0)|V < vgo),

Py 0)v<uoo = F010 © Fog © Fyo, 0)[V<vno- (23)
Assumption 1 implies that Uy 1L T|G,V < wvgo. As a result, for all (g,t) € {0,1}2,
Py, = Plho(Uot) <ylG=g,T =1tV < wy)
= P(UO S hal(yat)’G = g7V < UOO)
FU0|G:9,V<U00 (hgl(yv t))

The second point of Assumption 7 combined with Assumptions 1 and 6 implies that Fy;;|g—g,v<vgo

is strictly increasing. Hence, its inverse exists and for all ¢ € (0, 1),

F;gt( )|V<v00( q) = ho( UOIG gV<v00<q) t)-

This implies that for all y € S(Y1(0)|V < vgo),

) <o © Frp @1v-<onn ) = ho(hg (4, 1),0). (24)

By Assumption 7, we have

S(Yo10) = S(Yooo)

= S(Y10(0)|V < v00) = S(Yoo (0)[V < v00)
S(ho(Up, 0)|V < 090, G =1,T =0) = S(ho(Up, 0)|V < v99,G=0,T =0)
SWolV < 100, G = 1) = S|V < 100, G = 0)
S(ho(Uo, DV < v, G =1,T = 1) = S(ho(Up, 1)|V < v90,G=0,T =1)
S(Y11(0)|V < vgo) = S(Y01(0)|V < vgp),

where the third and fourth implications are obtained combining Assumptions 1 and 6. Once

combined with Equation (24), the previous display implies that for all y € S(Y11(0)|V < vgp),
Fl;lO( )|V<v00 © FY11(0)|V<U00( ) FY_'OO( )‘V<v00 0 FY01(0)|V<’U00 (y>

This proves Equation (23), because {V < vg9,G =¢,T =0} ={D =0,G = ¢,T = 0}.

Finally, we show that

FY01(0)|V<1100 (y) = >‘00F001(y) + (1 - AOO)FY01(0)|SO (y) (25)

Suppose first that Agg < 1. Then, vg; < vgg and Sy = {V € [vo1,v00),G = 0}. Moreover,
reasoning as for P(S1|G =1,V < wvy), we get
(V < Q}01‘G )
(V < U00|G = 0)
Fyy 0)[v<voo () = Moo Foo1(¥) + (1 = Xoo) Fyy, (050 (%)

Aoo =

(V < ’001|G =0, V< 1)00)

02



If Agg > 1, v91 > voo and So = {V S [Uoo,vol),G = O}. We then have

1/x00 = P(V < vgolG =0,V < wg1)

Foo1(y) = 1/ 200 vy, (0) v <uvoo (¥) + (1 = 1/X00) Fygy (0)150 (¥)
so Equation (25) is also satisfied.
The lemma follows by combining (22), (23) and (25). o

Theorem 3.3

Proof of 1

The proof follows from Lemma 3.1: Agp = Aox = 1 when pgjo0 = pgjo1 > 0.
Proof of 2

Construction of the bounds.

We only establish the validity of the bounds for Fy, (s, (y). The reasoning is similar for
Fy,,1)1s, (). Bounds for A and 7, directly follow from those for the cdfs.

We start considering the case where A\gp < 1. We first show that in such instances, 0 <
TQ, Go(To), Co(To) < 1 if and only if
Ty < Ty < To. (26)

Go(Tp) is included between 0 and 1 if and only if

=Moo Foo1 <Ty < 1 — XooFoo1
1= Ao 1= oo
while Cy(Tp) is included between 0 and 1 if and only if
Hy Y (MoFo11) — MooFool <T < Hy ' (AoFon + (1= o)) — oo Foor
1 — Aoo 0= 1 — Aoo '

Since *)\00F001/(1 — )\00) < 0 and (1 — )\00F001)/(1 - )\00) > 1, To, Go(To) and Co(T(_)) are all
included between 0 and 1 if and only if

M, Hy Y (MoFoi1) — Moo Foor < Ty < my Hy Y (AoForn + (1= A1o)) — AooFoor (27)
1= oo - 1= Aoo '

Composing each term of these inequalities by Mj(.) and then by m(.) yields Equation (26),
since M()(T()) = ml(T(]) = T() and MO omip =myqo M(].

Now, when A\gp < 1, Go(Tp) is increasing in Ty, so Cy(Tp) as well is increasing in 7y. Combining
this with (26) implies that for every v/,

Co(To)(y') < Co(To)(y") < Co(To)(y')- (28)
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Because Cy(Tp)(y) is a cdf,

Co(To)(y) = inf Co(To)(y') < Jnf Co (To)(y") = Ferco(y)-

This proves the result for the upper bound. The result for the lower bound follows similarly.

Let us now turn to the case where A\gg > 1. Using the same reasoning as above, we get that
Go(Tp) and Cy(Tp) are included between 0 and 1 if and only if

)\og\Fom I 1 <Ty < iooFomj

00 — 00— 1

XooFoor — Hy ' (MoForr + (1 — Aio)) < T < XooFoor — Hy (Ao Forr)
Moo — 1 =0= Moo — 1 '

The inequalities in the first line are not binding since they are implied by those on the second
line. Thus, we also get (27). Hence, 0 < Tp, Go(Tp), Co(Tp) < 1 if and only if

To < Tp < T. (29)

Besides, when A\gg > 1, Go(Tp) is decreasing in Tp, so Cy(Tp) is also decreasing in Ty. Combin-
ing this with Equation (29) implies that for every y, Equation (28) holds as well. This proves
the result.

Sketch of the proof of sharpness.

The full proof is in the supplementary material (see de Chaisemartin & D Haultfoeuille, 2015).
We only consider the sharpness of Fryc, the reasoning being similar for the upper bound.
The proof is also similar and actually simpler for d = 1. The corresponding bounds are proper

cdf, so we do not have to consider converging sequences of cdf as we do in case b) below.
a. Ao > 1. We show that if Assumptions 7-9 hold, then Fr ¢ is sharp. For that purpose,
we construct hg,Up, V such that:
(i) Y = ho(Up, T) when D = 0 and D = 1{V > vgr};
(i) (To, V) IL T|G;
(i) ho(.,t) is strictly increasing for t € {0,1};

(iv) F io(T0,1)|G=0,T=1,7 €[uoo.vo1) — L0-

(i) ensures that Model (1) is satisfied on the observed data. Because we can always define
Y (0) as ho(Up, T) when D = 1 without contradicting the data and the model, (i) is actually
sufficient for Model (1) to hold globally, not only on the observed data. (ii) and (iii) ensure that
Assumptions 1 and 6 hold. Finally, (iv) ensures that the DGP corresponding to (Eo, (70,17)

rationalizes the bound.
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The construction of 7L0, (70, and V is long, so its presentation is deferred to the supplementary

material.

b. Agg < 1. The idea is similar as in the previous case. A difference, however, is that when
Xoo < 1, Ty is not a proper cdf, but a defective one, since lim, 3 T(y) < 1. As a result, we
cannot define a DGP such that Ty = Ty, However, by Lemma, S2, there exists a sequence (TF)y,
of cdf such that TX — T, Go(T%) is an increasing bijection from S(Y) to (0,1) and Co(T%) is
increasing and onto (0,1). We can then construct a sequence of DGP (ﬁ’g(, 0), 71’5(., 1), ﬁé“, vk
such that Points (i) to (iii) listed above hold for every k, and such that Té“ = T%. Since T%(y)
converges to T'y(y) for every y in S (OY), we thus define a sequence of DGP such that T, & can be
arbitrarily close to Ty on S (OY) for sufficiently large k. Since Cy(.) is continuous, this proves

o
that Fioyc is sharp on S(Y'). This construction is long, so its exposition is deferred to the

supplementary material. o

Theorem 3.4

Proof of 1

P1joo = P1)10 implies that Wprp = Wre. Therefore, the proof will be complete if we can show
that Wprp = E(Y11(1) — Y11(0)|D = 1). On that purpose, notice that the outcome Equation
of Model (1), Uy 1L T|G, and Assumption 3 imply that

E(Y11(0)) = E(Y10(0)) — (E(Y01(0)) — E(Y0(0))) = 0. (30)

Then,

= P1|11E(Y11

DIDy = E(Y11)— E(Yi) — (E(Yo1) — E(Yoo))
|
= p1|11E(Y11 |

(1) —
(1) = Y1 (0
The second equality follows from pjjog = p1jo1 = P1j10 = 0, the third from Equation (30). This
completes the proof once noted that DIDp = pyy1.

Proof of 2

As p1j10 = 0, the numerator of Weic is E(Y11) — E(Qo(Y10)). It is easy to see that the proof
will be complete if we can show that E(Qo(Y10)) = E(Y11(0)). As pijg0 = p1jo1 = 0, Qo is the
quantile-quantile transform of the outcome in the entire control group, so E(Qo(Y10)) is the
same estimand as that considered in Equation (16) in Athey & Imbens (2006). The outcome
equation of Model (1), Uy L T'|G, and Assumptions 6 and 7 ensure that the assumptions of
their Theorem 3.1 hold. Therefore, E(Qo(Y10)) = E(Y11(0)) o
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Theorem 3.5

Assume that pjo9 = pijo1 = 1 (the proof is symmetric when pyjo9 = pyjo1 = 0). For
Fy,,(1))5, (), the proof directly follows from Lemma 3.1. For Fy,,(g)s,(y), one can follow
similar steps as those used to establish Equation (24) and show that for all y € S(Y),

Fyot 01V 300 © F¥or (0Vue0 () = hi (ki (y,1),0). (31)

Equations (24) and (31), Assumption 10, and pyjoo = p1jo1 = 1 imply that for all y € S(Y),
Fy 0)[v<wo (W) = Fowoo Flo6 0 Fio1(y). (32)

Combining Equations (22) and (32) yields the result o

Theorem 4.1

We start proving the first statement. Under the assumptions of the theorem, Assumptions
1-4 are satisfied for the treatment and control groups G} = 1 and G} = 0 between dates ¢t — 1
and t. For instance, the fact that (U, V) 1L T|G; = 0 follows from the fact that G 1L T
and (Uyg,V) 1L T|G = g for every g € Gg. Moreover, for every t > 1 and for every g € G,
E(Dgy) = E(Dgi—1), thus implying that E(D|G; = 0,7 =t) = E(D|Gf = 0,T =t —1).
Therefore, it follows from Theorem 3.1 that
Whip(1,0,t) = E(Y(1) =Y (0)|S;,G; =1,T =1t). (33)
Similarly, one can show that
Wpip(=1,0,t) = E(Y (1) = Y(0)[S;, Gf = =1, T = 1). (34)
Then, G 1L T implies that
DIDL(1,0,)P(Gf =1) = (E(D|G; =1,T=t)—E(D|G;=1,T=t-1))P(G; =1)
— P(SIG] = 1)P(G} =1)
= P(S,Gf=1).
Similarly, one can show that
DIDp/(0,—-1,t)P(Gf = —1) = P(S;,G; =—1).
Therefore, it follows from the two previous displays that

DID}(1,0,t)P(G; = 1)+ DID}(0,—1,t)P(Gy = —1) = P(S) (35)

and
DID},(1,0,t)P(Gy = 1)
DID3,(1,0,t)P(Gf = 1)+ DID}, (0, —-1,t)P(Gf = —1)
— PG} =1|S). (36)
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The result follows combining Equations (33), (34), (35), and (36), once noted that Assumption
1 and G 1L T imply that P(G; = 1|S;) = P(Gf = 1|S,T =t) and P(Gf = —1|S;) = P(G} =
=115, T =1).

The proofs of the second and third statements follow from similar arguments. To prove the
fourth statement, it suffices to notice that the first point of Assumption 11 implies that for
every g € {0,1,...,g} the sequence vy is monotonic in ¢. Therefore, for every g € S(G) and
t#t € {l,.,t}? Su N S, = 0. This in turn implies that S; N Sy = (). Combining this with
the third point of Assumption 11 yields the result o

Theorem 4.2

The two results are straightforward extensions of the second point of Theorems 3.2 and 3.3,

so their proof is omitted.

Theorem 4.3
We only prove the first result, the second and third results follow from similar arguments.

Wprp(X) = A(X) follows from the same steps as those used to prove Theorem 3.1. Then,
ng p = A follows after some algebra, once noted that

_ E(Dn|X = 1) — BE(Dy|X =)
fX11|Sl($) - E(Dll)li E(E(D10|X)|G =1,T = 1)fX11(:C)
DIDp(x)

= EDIDy(0[G =T =1 X @)

The first equality follows from Model (10), Assumption 1X, and Bayes’s law. The second
follows from the fact that E(Dg1|X) — E(Doo|X) = 0 almost surely. o

Proof of Theorem 4.4

We only prove the first statement, the second and third statements follow from similar argu-

ments.

Dy1 ~ Doy and D11 = D1 combined with Model (11) and Assumption 1 imply that

vd = gy, for every d € {1,d} (37)
vl <ovdy, for every d € {1,d}. (38)

Then, it follows from Model (11), Assumption 1 and Equation (38) that for every d €

{1,2,....d},

P(D11 >d)— P(Dyp>d) = P(Vngl\T:LGZQ)_P(VZUZOIT:(],GZQ)
= P(V € [vj1,v)|G = g). (39)
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Then, for every g € {0,1},

E(Yg1) — E(Yyo)
— E(hp(Up,1)|G = g,T = 1) — E(hp(Un,0)|G = g, T = 0)

E(ha(Ua, 1)|G = g,V € [vgy, vg{ ) P(V € [vgy, vgi )G = g)

E(ha(Ua, 0)|G = g,V € [vgo, vgo )PV € [vgo,vg 1)IG = g)

E(hd(Udal)_hd—l(Ud—b )|G—g,V€ [ Vgls gO)) (VG [ Ugls gO)|G_g)

I
M~ 20~ B~ 2D~ 21

+ ) B(ha(Ug, 1) = E(ha(Ua, 0)|G = g,V € [vj, vg ) P(V € [, vid )G = g)
= E(Y;ﬂ(d)_y ( _1)"/6[ Vg1s gO))P(VG[ gl> gO)‘G_g)
d=1
+ E(ho(Uo, 1) — ho(Uo, 0)|G = g). (40)

The first, second, third, and fourth, equalities respectively follow from Model (11), Model (11)
and Assumption 1, Equations (37) and (38), and Model (11) combined with Assumptions 1
and 40.
Combining Equation (40) with Equation (37) and Assumption 3 imply that
d
DIDy =Y E(Yu(d) = Yiu(d = )|V € [vf;,050)) P(V € [vfy, 0fp)|G = 1).

d=1

The result follows from Equation (39), after dividing each side of the previous display by
DIDp g

Theorem 5.1

Proof of 1 and 2

Asymptotic normality is obvious by the central limit theorem and the delta method. Con-
sistency of the bootstrap follows by consistency of the bootstrap for sample means (see, e.g.,
van der Vaart, 2000, Theorem 23.4) and the delta method for bootstrap (van der Vaart, 2000,
Theorem 23.5). A convenient way to obtain the asymptotic variance is to use repeatedly the

following argument. If
\/H(E—A) fZal—&—oP ) and f(B B) be +op(l
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then Lemma S3 ensures that

A A\ 1 &a— (A/B)b
\/ﬁ<§ - B) = Z;+0p(1)- (41)

This implies for instance that

(Yi — E(Y11))
P11

vn (E(Yu) — E(Yu)) = \}ﬁ > Gl +op(1),
=1

and similarly for E (D11). Applying repeatedly this argument, we obtain, after some algebra,
— 1 &
vn (WDID - A) =— > 9Ypip,;+op(l),

where, omitting the index ¢, ¥ prp is defined by

¢ . 1 |:GT(E — E(é‘n)) _ G(l — T)(E — E(é‘lo)) _ (1 — G)T(E — E(E(n))
PP = DIDp P11 P10 Po1
=601 = D)~ Plew) 2
Poo
and e =Y — AD. Similarly,
NG (/WTC - A) =L zn:ichz' +op(1),
vn i=1 7
where Y7o is defined by
" B 1 {GT(€ — E(gll)) B G(l — T)(€ + (51 — 50)D — E(610 + ((51 — 50)D10))
e ~ E(D11) — E(Dyo) P11 P10
- E(Dlo)D(l o G) |:T(Y B E(}/i01)) . (1 — T)(Y B E(Y100)):|
Pio1 P1oo
Proof of 3

We first show that (ﬁY11(0)|Sl7F\Y11(1)‘SI> tends to a continuous gaussian process. Let 0 =

(Fo00, Foots -+ Fi11, M0, A1)- By Lemma S4, 8 = (Fooo, Foou, - Fi11, Mo, A1) converges to a

continuous gaussian process. Let

74+ (Fooo, Foot, -, Fi11, Ao, A1) = (Faio, Faoos Faor, Faris 1, \a),  d € {0,1},

so that (ﬁYu(O)ISwF\Yu(l)ISl) = (Rl omy(0), Ry om(@)), where R; is defined as in Lemma
S5. my is Hadamard differentiable as a linear continuous map. Because Fyi9, Fyoo, Fao1, Fai1

are continuously differentiable with strictly positive derivative by Assumption 13, A4 > 0, and
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A1g # 1 under Assumption 7, R; is also Hadamard differentiable at (Fy10, Fa00, Fao1, Fai1, 1, Aa)
tangentially to (C%)* x R2. By the functional delta method (see, e.g., van der Vaart & Wellner,
1996, Lemma 3.9.4), (ﬁY11(0)|517 ﬁY11(1)|51) tends to a continuous gaussian process.

Now, by integration by parts for Lebesgue-Stieljes integrals,

v
A =/ Fy, )15 (W) — Fyiy s, () dy.
Yy

Moreover, the map ¢1 : (Fy, Fy) — fs(y)(Fg (y) — F1(y))dy, defined on the domain of bounded
cadlag functions, is linear. Because S(Y') is bounded by Assumption 13, ¢; is also con-
tinuous with respect to the supremum norm. It is thus Hadamard differentiable. Because
A= 1 <ﬁY11(1)|517F\Y11(0)|31>7 Ais asymptotically normal by the functional delta method.
The asymptotic normality of 7, follows along similar lines. By Assumption 13, Fyiy(ays:
is differentiable with strictly positive derivative on its support. Thus, the map (Fi, F3) —
F;Y(q) — F7'(q) is Hadamard differentiable at (Fyi1 (081> Fyi:(1))s;) tangentially to the set
of functions that are continuous at (Fljli(O)ISl (q)7F1711(1)\Sl(q)) (see Lemma 21.3 in van der
Vaart, 2000). By the functional delta method, 7, is asymptotically normal.

The validity of the bootstrap follows along the same lines. By Lemma 5S4, the bootstrap is
consistent for 9. Because both the LATE and LQTE are Hadamard differentiable functions of
5, as shown above, the result simply follows by the functional delta method for the bootstrap

(see, e.g., van der Vaart, 2000, Theorem 23.9).

Finally, we compute the asymptotic variance of both estimators. The functional delta method
also implies that both estimators are asymptotically linear. To compute their asymptotic vari-
ance, it suffices to provide their asymptotic linear approximation. For that purpose, let us first
linearize Fy,,(q)|s, (¥), for all y. It follows from the proof of the first point of Lemma S5 that
the mapping ¢ : (F1, Fy, F3) — Fjo F2_1 o F3 is Hadamard differentiable at (Fg10, Fi00, Fuo1)s
tangentially to (C)3. Moreover applying the chain rule, we obtain

dqbl(hl, ho, h3) =hyo Q(;l + H& o Fyp1 X [—hg o Q(;l + hg] .

Applied to (F1, Fa, F3) = (Fy10, Faoo, Fa01), this and the functional delta method once more
imply that
Vn (Hd o Fyo1 — Hgo de) = d1(hin, han, han) +op(1),

where the op(1) is uniform over y and hy, = \/ﬁ(ﬁdlo — Fi10). hon and hs, are defined

similarly. Furthermore, applying Lemma S3 yields, uniformly over y,

=1

Pdio
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A similar expression holds for ho, and hs,. Hence, by continuity of d¢1, we obtain, after some

algebra,

vn <ﬁd o Faor(y) — Hy o de(l/))
gz":ﬂwizd}{ i(1 = T)(1{Qa(Yi) < y} — Hao Fann(y))

Pdio

:X[ (1= T)(A{Qu(Y:) < y} — Faon (y ))+Ti<n{YiSy}—de(y))”HP(l),

Pdoo Pdo1

+ (1= Gi)Hy o Fyo1(y)

which holds uniformly over y. Applying repeatedly Lemma S3, we then obtain, after some
algebra,

\/ﬁ(ﬁyu(dnsl() Fy, (a5, (Y ) Z‘I’dz +op(1),

where, omitting the index 4,

Va(y) = % {GT [1{D = d}1{Y <y} — pg1 Fanr(y) — Fy, @15, (v) (1{D = d} — paj1)]
Pdj11 — Pdjio (P11
- % [—1{D = d} (1{Qq4(Y) < y} — Hyo Fan (y)) + (L{D = d} — paj10) (Fvy, (a5, (¥) — Ha o Fao1(y))]

Pdoo Pdo1

By the functional delta method, this implies that we can also linearize /Wc 1c and 7,. Moreover,

we obtain by the chain rule the following influence functions:

Yerc = / Uo(y) — Wi(y)dy, (44)
BERZ = \IJO -
Theorem 5.2

Proof of 1

For any random variable R, let mﬁ(aj) = E(Rg|X = x). The estimator /WgID can be written

—~v oy Ay ]
as Wprp = Nprp/Dprp, with

Njp=E[Yi] - E [ﬁﬁfo(Xll)] ~E [7/7\13)/1()(11)] +E [ﬁ?OYO(Xll)}
Dp = E D] — E [mby(X11)] — E [m (X11)] + E [ (X11)] -

The true parameter A = N gl n/ Dg ;p can be decomposed similarly. We show below that the
eight terms in the numerator Nf))(ID and in the denominator l,ngD can be linearized. We can

then use, as in the previous proof, the formula for linearizing ratios.
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Let us first consider E [E(YMX)]G =1,T= 1]. Assumption 14 ensures that we can apply
Lemma S8 to [ =G xT,J=Gx(1—-T),U =Y and V = 1. As a result,

\/E(E [E(Y10|X)|G —1,T= 1} — E[mly(X)|G=1,T = 1])

ZG[ (%) — B [y (001G = 1,7 = 1]) + 2R (37l x) | -+ on).

fpn

Applying the same reasoning as above to the two other terms of ]ngD, we obtain
vn (Ngm - Ngm)

ZG TV = mio(Xs) = mgy (Xa) +mog(Xi) = Nppp) — GZEEl(g(?)_EZ(j?\QjZ)
(1-Gi)(1 - T)E(GT|X;)

E1-G)(1-T)X:)

(Yi — mip(X)))

\fpn
( - G)T;E(GT|X;)
E((1-G)TX;)
Similarly, the denominator satisfies
vn (BgID - Dg[D)
1 ¢ D D D X Gi(1 - T;) E(GT|X;) D
= ; {GiTi(Dz‘ — mio(X;) — mg(X;) + mao(Xy) — Dprp) — EGA—T) X)) (Di — mi(Xi))
(1-G)T;E(GT|X;)
E((1-G)T1X;)

(Y; — mgy (X4)) — (Y; = mgo(X3)) + op(1).

(1-G;)(1 -T)E(GT|X;)
E((1-G)(1-T)X;)

Combining these two results and (41), we finally obtain

vn (WDID A) f Z DDy i top(l),

where, omitting the index 1, 1/% ;p is defined by

1 € € € G(l — T)E(GT|X) €
10 = oo { G (e = mig(X) = iy () + i (00) — | F BT e = i)

(1 - GTE(GT|X) . (1-G)(1-T)E(GT|X) .
E(1-G)T|X) (& =mo (X)) - E(1-G)1-1)X) G moo(X))] },

and e =Y — AD. The result follows by the central limit theorem.

Proof of 2

The proof is very similar as above. For any random variable R, Let mgfqt(m) = E(Ryp| X = x).
The estimator satisfies Wi, = ]/\77)50/131)«(0, with

~

Nic = E[Yi1] - E [m}y(X11)] — E [Moy(X11)] + E [Mdgo(X11)] — B [y (X11)mlo) (X11)]
~D

+E [mlo(X 1)m100(X11)] +E [mlo(Xll)mom(Xll)] E[ o(X1 )m(l)/oo(Xll)]
ﬁj)gc = E [DH] — E [m{)o(XH)] .
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The two terms of the denominator and the first four terms of the numerator can be linearized

exactly as above. Regarding the other four terms, remark that for instance
E [
—E

[

3(X11)Migy (X11)] — E [mih(X11)mipy (X11)]
(X11) (MYor (X11) = mior (X1))] + E [mlor (Xa1) (fp(X11) = mip(Xn))]
[(M10(X11) — mip(X11)) (Mfor(X11) — mip; (X11))] -

ti1> SU HU

Lemma S7 implies that the last term is an op(1/4/n). As a result,

Nio = E[Yu] — E [m)y(X11)] — E [Mge)(X11)] + E [mdoo(X11)] — E [mfy(Xa1)myg; (X11)]
— E [mfy(X1)mio (X)) + E [mfy(Xa1)mio (X1)] + E [mfy(X11)mio(X11)]
+ E [mfh(X11)mig(X11)] — B [mB(X11)mloo(X11)] + E [mB(X11)mde; (X11)]
+ B [mfy(X11)migy (Xn)] = E [mfy(X1)mio (X11)] — E [mfy (X11)Mdoo(X11))]
— B [ify (X11)mioo(X11)] + E [m{p(X11)mige(X11)] + op(1/vn).

We then apply Lemma S8 to each of these terms. After some tedious algebra, we obtain
~ 1 &
vn (W’_I)“(C - W%c) =7 Zlﬁ%ai +op(1),
i=1

where 1%50 satisfies

Ve =% {GT (U — A(D — mi})(X)) — E [U1 — A(D1; — mf)(X11))])
pllDTC

G(1—T)
E(G(1 —T)|X)

E(GT|X) [V —-A (D — mﬁ)(X))} } . (47)

and
U=Y —mjo(X) = mio (X) + mfoo(X) — mip(X) (mﬁ)l(X) — migo(X) — miy (X) + moyl)o(X)) )

GUZT) o (v — (X)) + [mlon(X) — mlon (X) — milng(X) + mle; ()] (D — mBy(X))}

V= E(GA-T)|X)

=3
h<
B

=<
o

N 1-T) (Y —mjy(X))
E(D1-G)T)|X) EDA-G)01-T)X)

b T(Y — myy (X)) (L= T)(Y = mgp(X))
#1 =D)L= mf00) | s~ S D~ G T )

+(1-G) {m{%(X)D

The result follows by the central limit theorem.

Proof of 3

The estimand is the same as WQXC, except for the second term of the numerator. Therefore,

it suffices to prove that we can linearize this specific term, which is the plug-in estimator of
EEDQix(Y)+(1-D)Qoux(V)|X,G=1,T=0)|G=1,T=1].
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This expectation comprises two terms. As the reasoning is similar for both, let us focus
on the first, 6 = E[E(DQ1x(Y)|X,G=1,T=0)|G = 1’Tf 1]. Let us define mnglt(:z;) =
EQix(Y)|X =2,D=d,G =g, T =t). First, the estimator 6; of 6; satisfies
g — 6, =E [mﬁ)(X)mm(XnG —1,T = 1] — 4
= B [afy(X)mEy(X)|G =T = 1] = E [mB(xX)mEh(X)IG = 1,7 =1]

+ 00— b1+ B | (R (X) - mpy(x)) (R0 -mBh(X) ) 16 = 1.7 =1], (48)

where 6§, = F [m{jo(X)ﬁl?llO( NG =T= 1] As in parts 1 and 2 above, the first two terms

on the right-hand side can be linearized using Lemma S8. We linearize below 51 — 01 and
prove that the last term is an op(1/4y/n). As in Lemma S5, let us define

1
Ri(Fx, Qupx. Qi Qapx) = [ mfala) x | @l @z [Qux(ulo)lalla}dudF (o)

Let us define hereafter Fyyx = Fy, . 1x and Fyg, = Fy, | x=z- Because

1
ElhxY)NX=2,D=G=1,T=0] = / Fl_(]hz o F100|x o F110|x( u)du,
0
we have

-l

100[X° E

110|X) Iy

01 = Ra(Fx,,, Figh o Fion 110|X)

6y = Ry(Fx,,, Fig; 101]x £'100/x

101|Xx°

where ﬁXu is the empirical cdf of X11. By Lemma S9, the process

(2,7) = (Fxyy (), Figl (1) Frogio (M) Frigo (1),

defined on S(X) x (0,1) and suitably normalized, converges to a continuous gaussian process

G. Moreover,

\/> Fdfqt|z< ) F@ﬂx } \/} Z wzdgta: + OP(I)

where the op(1) is uniform over (z,7) and

KD = dj1{G; = g} {T; = t}a'J- X,
DPdgt

Vidgtz(T) = (7 — 1{Y; — X[Bage(7) < 0}) .

Besides, R4 is Hadamard differentiable at (Flx,,, thX, FlOé\X’ Fﬂ(l)\x) tangentially to CY(S(X))x

C°((0,1) x S(X))3. Therefore, by the functional delta method and because G is continuous,

Vn(fy — Z Uy +op(1

64



i = pznl [m{%( )mno 91 /mlo {/ Yitots FlOO'”” 110\ (u )>
—1
Flotje

-1
F100|z

"o FlOO\z © F110|x(u)

"o FlOO\z o F11é| (u)

[ — Y1002 <F100|ac o F110|x( )) + %11%(“)] du} dFx,, ().

We now prove that the third term in (48) is an op(1/y/n). We have

B [(Rh(x) - mB(x)) (A0 - mEu(X)) 16 = 1,7 =1]|

< Hmlo —mloHoo X Hm%o m?llo
By Lemma S7, Hﬁz%—m%”m = op(n~Y*). Besides, m%o = Rs( 101\X’F1_00|X’F1_10|X)

where R5(Q1|x, Q2)x, Q3x) = fol Q1|X{Q2_|§([Q3‘X(u|x)\x] |z}du. Part 3 of the proof of Lemma

S5 implies that Ry is Hadamard differentiable at (F1_01|X,F1_00|X,F1_10‘X)

7’7\1%10 - m?lloHoo = Op(n~'/2). Thus, the third term in

Then, by Lemma
S9 and the functional delta method, ‘
(48) is an op(1/y/n).

To conclude, we provide the linearization of Wé(lc. Let us define for that purpose

Vo = (1= mip (X)mey (Xi) - 60} /(1 - miol {/ vioor F000|z 010' . )>

- -1
F001| © Fooola © Fop)s (u)

+
F000|a: © Foooj © F01o| (u)

{ — Yi000x <F000|x ° F010|m( )) + %omx(u)} du} dFx,, (z),

where 6y = F[E((1 - D)Qox(Y)|X,G=1,T =0)|G =1,T = 1]. Using what precedes and

Lemma S8 on the remaining terms, we obtain after some tedious algebra
1 n
X X X
Vn (WCIC - WCIC) = n Z Yore, +op(1),
i=1

where ¢()§ ¢ satisfies

1c = ;X {GT (Y = A(D — m{)(X)) — E [Yi1 — A(D11 — mip(X11))]) — pir(¥1 + o)
nrcrc
Eﬁgflaﬁ,}? (D = mfy(X)) [mGy(X) = m(X) - A } | (49)
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Supplement to “Fuzzy Differences-in-Differences”

Clément de Chaisemartin® Xavier D’Haultfeeuille’

October 23, 2015

Abstract

This paper gathers the supplementary material to de Chaisemartin & D’Haultfeeuille
(2015). First, we show that two commonly used OLS and IV regressions with time and group
fixed effects estimate weighted averages of Wald-DIDs. It then follows from Theorem 3.1 in
de Chaisemartin & D’Haultfceuille (2015) that these regressions estimate weighted sums of
LATESs, with potentially many negative weights as we illustrate through two applications.
We review all the applied papers published in the American Economic Review between 2010
and 2012 and find that around 20% of them estimate one or the other regression. Second,
we consider estimators of the bounds on average and quantile treatment effects derived
in Theorems 3.2 and 3.3 in de Chaisemartin & D’Haultfceuille (2015) and we study their
asymptotic behavior. Third, we revisit Gentzkow et al. (2011) and Field (2007) using our

estimators. Finally, we present all the proofs not included in the main paper.

1 Fuzzy DID regressions, and their pervasiveness in economics
1.1 Fuzzy DID regressions...

Researchers using fuzzy DID designs usually do not estimate simple regressions with two groups
and two periods, but more complex specifications with multiple groups and periods. Practices
are not unified so details of their specifications can vary. In this section, we study two regres-
sion specifications which have often been used. We show that in both cases, the coefficient of
treatment is equal to a weighted sum of Wald-DIDs. Following the result of Theorem 3.1 in the
main paper, it is then easy to show that this weighted sum can be rewritten as a weighted sum
of the LATEs of switchers in the different groups, with potentially many negative weights, as
we illustrate through two examples. Therefore, these coefficients could lie far from the LATE of

switchers in any group.

*Warwick University, clement.de-chaisemartin@warwick.ac.uk
TCREST, xavier.dhaultfoeuille@ensae.fr



First, we study the coefficient of a treatment variable D in a 2SLS regression of Y on a constant,
group dummies (1{G = g})1<4<3, time dummies (1{T" = t}),<,<;, and D, with a first stage fully
saturated in (T, G). As the first stage is fully saturated, the second stage is a regression of Y on
a constant, group dummies (1{G = g})1<y<g, time dummies (1{7" = t}),.;7, and E(D|T,G).
This 2SLS regression is therefore algebraically equivalent to an OLS regression at the group x
period level of Y on time and group dummies and a measure of treatment intensity in each group
x period cell. As shown in the next subsection, such OLS regressions are pervasive in applied

work.

Assume that for every 1 <t < t the mean of treatment does not follow a parallel evolution in

any pair of groups between ¢t — 1 and t.! For every (g,¢,t) € {0,...,g}* x {1,..., 1}, let

DIDp(g,9',t) = E(Dg)— E(Dg-1) — (E(Dgt) — E(Dygi-1)),
E(Yy) — E(Yy-1) — (E(Yyt) — E(Yyi1))
E(Dgt) - E<Dgt—1) - (E(Dg’t> - E(Dg’t—l)).

WDID(ga g/7 t) =

For (g,t) € {1,....,9} x {1,....t}, let

DIDp(g,9 — 1,)P(G > g)P(T > 1) (E(D|G > ¢,T > t) — E(D|G > g) — E(DIT > t) + E(D))
SS9, Si_, DIDp(g.g— LO)P(G > g)P(T > 1) (E(D|G > g.T > 1) — E(D|G > g) — E(D|T > 1) + (D))’

a __
wgt_

For (g,t) € {0,....,g} x {1,....t}, let

b [E(Dgt) — E(Dgt—1)] P(G = g)P(T 2 )(E(D|G =g, T > 1) — E(D|G = g) — E(D|T > t) + E(D)) .
o 390 Xiet [E(Dgt) — E(Dge—1)] P(G = g)P(T > t)(E(D|G = g,T > t) — E(D|G = g) — E(D|T > t) + E(D))

Finally, when treatment is binary, let
Ay =FE Y (1) =Y (0)|V € min(vg_1,v4), max(vg_1,v4)),G = g,T = t)

denote the LATE of the units in group ¢ switching treatment between ¢t — 1 and t¢.

Theorem S1 Let § denote the coefficient of D in a 2SLS regression of Y on a constant, (1{G =
9})1<g<g, (H{T =t})1<i<z, and D, with a first stage fully saturated in (T, G).

1. IfT 1 G,

i g

B = ZZWDID(%Q—Lt)wgt-

t=1 g=1

'If for some t, there are groups which experience a parallel evolution of their mean treatment between ¢ — 1
and ¢, the formula in the first point of Theorem S1 remains valid after grouping together these groups. The
formula in the second point of Theorem S1 remains valid as is.



2. Morever, if D is binary, and Model (1) and Assumptions 1, 3M, and 4M in the main paper

are satisfied, then

g t

g = Z Z Agtwlg’t.

g=0 t=1

The first statement of the theorem shows that if 7" 1L G, [ is a weighted average of Wald-DIDs
across pairs of groups and between t — 1 and ¢, for all consecutive dates ¢t — 1 and t. With only
two dates, one can order groups according to their increase in treatment between the two dates,
thus ensuring that all the weights wy, are positive. With more than two dates, some of the

weights wyg, might be negative.

Then, it follows from the same reasoning as in Theorem 3.1 that when D is binary and un-
der appropriate common trends assumptions, each of these Wald-DIDs is equal to a weighted
sum of the LATE of switchers of both groups. Rearranging this sum yields the second result.
Importantly, some of the weights wgt might be negative. With two periods, that will be the
case for instance if the distribution of the changes in treatment between period 0 and 1 across
groups is not symmetric around 0. Note also that a similar result with the same weights holds
if treatment is not binary but ordered and with a finite support. A difference though is that in
such instances, [ is not equal to a weighted sum of LATEs but to a weighted sum of the ACRs

parameters we introduced in Section 4.3.

Many papers estimate regressions similar to that studied in Theorem S1 with aggregate data at
the group X period level. Results similar to that of Theorem S1 still apply to these regressions.
We now review four cases of such group-level regressions which frequently arise in practice. First,
when the group level variables are constructed from micro-level variables (e.g.: average wage in
county ¢ and year t) and the OLS regression is weighted by the population in each group x
period, the first and second statements of Theorem S1 apply as is. Second, when the group level
variables are constructed from micro-level variables but the regressions are not weighted, the
first and second statements of Theorem S1 also apply as is, except that now P(G = g) = y-}—_l for
every group. Note that with unweighted regressions, G is automatically independent of T" unless
some groups appear or disappear, which is unlikely to be the case when groups are counties,
states, or regions. Third, there are instances where all units in each group x period share the
same value of the treatment. This is for instance the case in Gentzkow et al. (2011). When
that is the case, the second statement of Theorem S1 actually gets simpler. In such settings,
when treatment changes in one group, all units switch treatment. Therefore, A, is equal to the
average effect of changing the treatment from its value in period ¢t — 1 to its value in period ¢
across all units, normalized by the change in treatment from period ¢t — 1 to t. Fourth, many
papers estimate group-level regressions of the first-difference of the group mean outcome on the

first difference of the group mean treatment with time dummies. One can show that Theorem



1 also applies to these regressions, with different weights. Specifically, wg, and wzt should be
respectively replaced by

DIDp(g,9— L,)P(G > g)P(T =) (E(D|G > ¢,T =) — E(D|G > g,T =t —1) — E(D|T = t) + E(D|T = t — 1))
9 S DIDp(g,g—1,6)P(G> g)P(T =t)(E(D|G > g, T =t)— E(D|G>g,T =t—1)— E(D|T = t) + E(D|T =t — 1))

g=1

and

[E(Dgt) = B(Dye—1)] P(G = 9) P(T = )(B(Dgt) = E(Dyi—1) = E(DIT =) + E(DIT =t =1))
7\ S0, [B(Dyt) — E(Dgi—1)] P(G = g)P(T = t)(E(Dgt) — E(Dge—1) — B(DIT = 1) + E(D|T =t — 1))

A few lines of algebra are sufficient to show that the weights are the same when ¢ = 1, reflecting
the fact that fixed effects and first-difference estimators are algebraically equivalent with two

periods.

We use Theorem S1 to revisit an empirical application. Enikolopov et al. (2011) study the effect
of having access to an independent TV channel on the share of people voting for opposition
parties in Russia. They regress the share of votes for opposition parties in the 1995 and 1999
elections in region 7 on region dummies, an indicator for the 1999 election, and on the share of
people having access to the independent TV channel in region r at the time of the election. Figure
1 below presents the weights wglggg for the 1938 regions in their sample. Regions are ordered
according to the increase in the share of people watching the independent TV channel they
experienced between the two elections, from the lowest to the largest increase. 1020 weights are
negative, and the negative weights sum up to -2.26, against 3.26 for positive weights. Negative
weights therefore account for 41% of the sum of the absolute value of weights. If the effect of
gaining access to an independent TV channel is heterogeneous across regions where few / many
voters gained access to it between 1995 and 1999, the regression coefficients in Enikolopov et al.
(2011) could lie far from the LATE in any region.

.01 .015 .02
1 1 1
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1

-.005
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Counties ordered by their increase in treatment

Figure §1: w499 in Enikolopov et al. (2011).



Second, we study the coefficient of a treatment variable D in a 2SLS regression of Y on a constant,
group dummies (1{G = g})1<y<g, time dummies (1{7" = t}),<;<;, and D, where the instrument
for D is equal to f(G)1{T > to} for some ¢, > 1. This specification corresponds exactly to
the one estimated in the first column and third line of Table 7 in Duflo (2001): there f(G) is
the number of schools constructed during the INPRES program in one’s district of birth, and
{T > to} is a dummy for being born late enough to enter school after the program completion.

Let T** = 1{T > to}. For any random variable R and for any (g,t) € {0,...,g} x {0,1}, let
Ri¥ ~ R|G = g, T** =t. Assume that there are no groups where treatment follows a parallel
evolution before and after to,2 and let groups be ordered according to their increase of treatment

before and after ¢q:
E(Dgy) — E(Dyy) < E(Diy) — E(Dyg) < ... < E(Dg) — E(Dg).
For any (g,4') € {0, ...,g}?, let
DID3(g9,9") = E(RJ) — E(Ry) — (E(RF) — E(Rg)),

g'l
- DIDy (g, 9)
D )

Let also

v _ DIDE.g - VPG > (EFQIC20) - ESG) o

¢ Y4 _ DID3(g,g —1)P(G = ¢)(E G N ’

[E(D;;) — E(Dy)] P(G = g)(f(g
)

wsd = _
’ 1—0 [E(D3i) = B(D;)] P(G = g)(f(g) — BE(f(G
Theorem S2 Let § denote the coefficient of D in a 2SLS regression of Y on a constant, (1{G =

9} )i<g<g, (H{T = 1})1<1<7, and D, where the instrument for D writes as f(G)1{T > to} for some
1<t, <1

1. IfT 1 G,

S

g
B = ZWB*ID(Q’Q_DU’;-

g9=1

2. Morever, if D is binary and Model (1) and Assumptions 1 and 3-4 are satisfied with T**
instead of T', then

g
B=> Aguj,
g=0

where Ay is the LATE of the switchers of group g.

2If there are groups which experience a parallel evolution of their mean treatment, the formula in the first
point of Theorem S2 remains valid after grouping together these groups. The formula in the second point remains
valid as is.



The first statement of the theorem shows that if 7" 1l G, [ is a weighted average of Wald-
DIDs before and after ¢, and across groups with consecutive evolutions of their mean treatment.
Then, it follows from Theorem 3.1 that when D is binary and under appropriate common trends
assumptions, each of these Wald-DIDs is equal to a weighted sum of the LATEs of switchers
of both groups. Rearranging this sum of weighted differences yields the second result. Here as
well, a similar result with the same weights holds if treatment is not binary but ordered and
with a finite support. Note that the weights wg are all positive if and only if all groups where
treatment increases (resp. decreases) have a value of f(G) greater (resp. lower) than the mean
of f(G) in the population.

We illustrate this result by estimating the weights w¢ for the 284 districts in Duflo (2001).
Districts are ordered according to the increase in years of schooling they experienced between
the two cohorts, from the lowest to the largest increase. 132 weights out of 284 are negative,
and the negative weights sum up to -3.28, against 4.28 for positive weights. If switchers’ returns
to schooling are heterogeneous across districts with positive and negative weights, the regression

coefficient in Duflo (2001) could lie far from returns to schooling in any district.

T T T
0 100 200 300
Districts ordered by their increase in years of schooling

Figure §2: wf in Duflo (2001).

1.2 ... and their pervasiveness in economics.

We assess the pervasiveness of the fuzzy DID method in economics by conducting a review of
all papers relying partly or fully on this method that were published in the American Economic
Review (AER) between 2010 and 2012. We chose this journal because among the top journals

in economics, it was the first that started posting online the data used in the empirical papers



it publishes, thus enabling us to reanalyze some of the fuzzy DID papers published there.

Over these three years, the AER published 337 papers. This excludes papers and proceedings,
comments, replies, and presidential addresses. Out of these 337 papers, 34 papers estimate
either ratios of DIDs on their outcome and treatment variables, or the regressions studied in
Theorems S2 and S1, or regressions very close to one of these two regressions. Therefore, their
main coefficient of interest is equal to a Wald-DID, or to a weighted average of Wald-DIDs.
When one withdraws from the denominator theory papers and lab experiments, the proportion
of papers using the fuzzy DID method raises to 19.5%. Fuzzy DID is therefore a very popular

method among economists using real world data to study empirical questions.

Table S1: Fuzzy DID papers published in the AER between 2010 and 2012

2010 2011 2012  Total

# papers using the fuzzy DID method 5 15 14 34
% of published papers 52% 13.0% 11.2% 10.1%
% of empirical papers, excluding lab experiments 12.8% 24.6% 19.2% 19.7%

We now review each of the 34 papers published by the AER between 2010 and 2012 and that we
included in our fuzzy DID count, and justify why their methodology qualifies as a fuzzy DID.
For each paper, we use the following presentation:

Title of the paper. Where the fuzzy DID method is used in the paper.

Why the method used in the paper qualifies as a fuzzy DID.

1. Patient Cost-Sharing and Hospitalization Offsets in the Elderly. Flasticities of
care use to co-payment estimated after Tables 2 and 3.
The elasticity discussed after Table 2 is estimated as the ratio of the effect of the Medicare
reform on utilization, divided by the effect of the Medicare reform on co-payment. Both
effects are estimated through standard sharp DID specifications in Table 2. Therefore,
the elasticity estimate is a Wald-DID. Note that even though elasticities do not appear in
regression tables, estimating them is one of the main goals of the paper: elasticity estimates

are referred to in the abstract.

2. The Effect of Medicare Part D on Pharmaceutical Prices and Utilization. Tables
2 and 3.
In regression equation (1), the dependent variable is the change in the price of drug j



between 2003 and 2006, and the explanatory variable is the Medicare market share for
drug j in 2003. This regression is the first-difference version of the fixed effects regression
studied in Theorem S1. Because the data only bears two periods, the two regressions are

algebraically equivalent.

. The Gender Wage Gap and Domestic Violence. Tuble 2.

In regression equation (2), the dependent variable is the log of female assaults among
females of race r in county c in year t, and the explanatory variables are race, year, county,
race X year, race X county, and county x year dummies, as well as the gender wage gap
in county ¢, year t, and race r. Differencing this equation with respect to one race (say

white people) yields the same regression as that considered in Theorem S1.

. Inherited Trust and Growth. Figure / and Table 6.

Figure 4 presents a regression of changes in income per capita from 1935 to 2000 on changes
in inherited trust over the same period and a constant. This regression is the first-difference
version of the fixed effects regression studied in Theorem S1. Because the data only bears

two periods, the two regressions are algebraically equivalent.

. Inheritance Law and Investment in Family Firms. Table 7.

In the regressions presented in Table 7, the dependent variable is the capital expenditure
of firm j in year t, and the explanatory variables are firm dummies, a dummy for whether
year t is a succession period for firm j, and the interaction of this dummy with the level of
investor protection in the country where firm j is located. This specification is similar to

that studied in Theorem S1 with two periods (succession and no succession).

. Trade Liberalization, Exports, and Technology Upgrading: Evidence on the
Impact of MERCOSUR on Argentinian Firms. Tables 3 to 12.

In regression equation (11), the dependent variable is the change in exporting status of
firm i in sector j between 1992 and 1996, and the explanatory variable is the change in
trade tariffs in Brasil for products in sector j over the same period. This regression is the
first-difference version of the fixed effects regression studied in Theorem S1. Because the

data only bears two periods, the two regressions are algebraically equivalent.

. Using Loopholes to Reveal the Marginal Cost of Regulation: The Case of Fuel-
Economy Standards. Table 5 column 2.

In the regression in Table 5 column (2), the dependent variable is a dummy for whether
a car sold is a flexible fuel vehicle, and the explanatory variables are state and month
dummies, and the percent ethanol availability in each month x state. This regression is

the same as that considered in Theorem S1.



10.

11.

12.

. What Do Trade Negotiators Negotiate About? Empirical Evidence from the

World Trade Organization. Table 3, OLS columns.

In regression equations (15a) and (15b), the dependent variable is the ad valorem tariff
level bound by country c on product g, while the explanatory variables are country and
product fixed effects, and two treatment variables which vary at the country x product
level. These regressions are therefore the same as that considered in Theorem S1, except
that they have two treatment variables.

Group Size and Incentives to Contribute: A Natural Experiment at Chinese
Wikipedia. Tables 3 and 4, columns 4-6.

In the regression in, say, Table 3 column (4), the dependent variable is the total number of
contributions to Wikipedia by individual i at period t, regressed on individual fixed effects,
a dummy for whether period t is after the Wikipedia block, and the interaction of this
dummy and a measure of social participation by individual i. This regression is the same
as that considered in Theorem S1 (treatment is equal to 0 before the block, and to social

participation after it).

Panic on the Streets of London: Police, Crime, and the July 2005 Terror
Attacks. Tuble 2, Panel C, Columns 3-4.

In regression equation (7), the dependent variable is change in crime rates between week t
and the same week one year ago in borough b, and the explanatory variables are a dummy
for whether week t is around the terrorist attacks in London, and the number of police
forces in borough b in week t. The interaction of the time dummy and of whether borough
b belongs to Theseus operation is used as the excluded instrument for police forces. This
regression is equivalent to that studied in Theorem S2 (borough fixed effects disappear
because of the first differencing with respect to the previous year, something the authors
do to control for seasonality).

The Impact of Regulations on the Supply and Quality of Care in Child Care
Markets. Table 7, Columns 4 and 5.

In Regression Equation (1), the dependent variable is the outcome for market m in state
s in year t, and the explanatory variables are state and year fixed effects and a measure of

regulations in state s in year t. This regression is the same as that considered in Theorem
S1.

House Prices, Home Equity-Based Borrowing, and the US Household Leverage
Crisis. Tables 2 and 3.
Regression equations (1) and (2) are first-difference versions of the 2SLS regression studied

in Theorem S2. In levels, the instrument would be the elasticity interacted with the year



13.

14.

15.

16.

17.

2006. Because the data only bears two periods, the two regressions are algebraically

equivalent.

State Misallocation and Housing Prices: Theory and Evidence from China.
Table 5, Panel A.

In regression equation (15), the dependent variable is a measure of the quantity of housing
services in household i’s residence in year t, while the explanatory variables are a dummy for
period t being after the reform, a measure of mismatch in household i, and the interaction
of the measure of mismatch and the time dummy. This specification almost perfectly
coincides with that studied in Theorem S1, except that it has a measure a mismatch in
household i instead of household fixed effects. If the mismatch measure can take only two
values, it is easy to show that the coefficient of interest oy is equal to the DID of the
outcome before and after the reform and across the two groups of households, divided by

the difference between the value of mismatch in these two groups.

The Fundamental Law of Road Congestion: Evidence from US Cities. Table 5.
In regression equation (4), the dependent variable is the change in vehicle kilometers
traveled in MSA s between periods t and t-1, and the explanatory variable is the change in
kilometers of roads in MSA s between periods t and t-1. This regression is a first-difference
version of that considered in Theorem S1. Because the data bears more than two periods,
the two regressions are not algebraically equivalent. However, its coefficient can also be

written as a weighted average of Wald-DIDs, as we explain after stating Theorem S1.

The Consequences of Radical Reform: The French Revolution. Table 5.

In Equation (1), the dependent variable is urbanization in polity j at time t, while the
explanatory variables are time and polity dummies, and the number of years of French
presence in polity j interacted with the time effects. This regression is similar to that
studied in Theorem S1.

School Desegregation, School Choice, and Changes in Residential Location
Patterns by Race. Table 6.

In the regression presented in, say, the first column of Table 6, the dependent variable is
enrolment in schools of MSA j in year t, while the explanatory variables are time and MSA
effects and the value of the dissimilarity index of schools in MSA j in year t. The excluded
instrument for the dissimilarity index is a dummy for whether in period t, the MSA was

desegregated. This regression is the same as that studied in Theorem S2.

The Effects of Rural Electrification on Employment: New Evidence from South
Africa. Tables 4 and 5 columns 5-8, Table 8 columns 3-4, Table 9 column 2, and Table
10 columns 2, 4, and 6.

10



18.

19.

20.

21.

Regression equations (3) and (4) are first-difference versions of the second and first stages
of the 2SLS regression studied in Theorem S2. In levels, the instrument would be the land
gradient Z; interacted with a dummy for the second wave of the panel. Because the data

only bears two periods, the two regressions are algebraically equivalent.

Media and Political Persuation: Evidence from Russia. Tuble 5.

In regression equation (5), the dependent variable is the share of votes for party j in year
t and subregion s, and the explanatory variables are subregion and time effects, and the
NTV audience in subregion s in period t. This regression is the same as that studied in
Theorem S1.

Dynamic Inefficiencies in an Employment-Based Health Insurance System:
Theory and Evidence. Tuables 2, 3, 5, and 6, Column 3.

In regression equation (7), the dependent variable is the health expenditures of individual j
working in industry i in period t and region r, and the explanatory variables are individual
effects, region specific time effects, and the job tenure of individual j. The death rate of
establishments in industry i in period t and region r is used as an instrument for the job
tenure of individual j. Within each region, the regression has time effects and individual
effects, and an instrument varying only across industry x periods cells. Even though this
instrument does not have the exact same form as that in the regression studied in Theorem

S2, these two regressions are close.

The Effect of Newspaper Entry and Exit on Electoral Politics. Tables 2 and 3.
In regression equation (1), the dependent variable is, say, voter turnout in county ¢ in
election year t, and the explanatory variables are county fixed effects, state-year effects,
and the number of newspapers in county c in year t. Within each state, this regression is
the same as that studied in Theorem S1 (within each state, state-year effects become year
effects).

Americans Do IT Better: US Multinationals and the Productivity Miracle.
Table 2, Columns 6-8.

In the regression in, say, column 6 of Table 2, the dependent variable is the log of output
per worker in firm i in period t, while the explanatory variables are firms and time fixed
effects, and the log of the amount of IT capital per employee (In(C/L)) as well as the
interaction of In(C'/L) and a dummy for whether the firm is owned by a US multinational.
The coefficient of In(C'/L) is equal to the same weighted average of Wald-DIDs as the
coefficient considered in Theorem S1, within the sample of firms which are not owned by a
US multinational. The coefficient of the interaction is equal to the difference between this
weighted average in the sample of firms owned by a US multinational, and in the sample

of those not owned by a US multinational.

11



22.

23.

24.

25.

26.

Standard Setting Committees: Consensus Governance for Shared Technology
Platforms. Table 4, columns 1-5.

In regression equation (5), the dependent variable is a measure of time to consensus for
project i submitted to committee j, while the explanatory variables are a dummy for
projects submitted to the standards track, a measure of distributional conflict, and the
interaction of the standards track and distributional conflict. This specification almost
coincides with that studied in Theorem S1, except that it has a measure of distributional
conflict instead of committee fixed effects. If the measure of distributional conflict can take
only two values, it is easy to show that the coefficient of interest 7 is equal to the DID of
the outcome across the standards and non-standards track and the low and high value of
distributional conflict, divided by the difference between the value of distributional conflict

in these two groups.

Compulsory Licensing: Evidence from the Trading with the Enemy Act. Table
2, columns 3-8.

In the regression equation in the beginning of Section III, the dependent variable is the
number of patents by US inventors in patent class c¢ at period t, and the explanatory
variables are patent class and time fixed effects, and the interaction of period t being after
the trading with the enemy act and a measure of treatment intensity. Therefore, this

regression is the same as that in Theorem S1 (treatment is equal to 0 before the act).

The Internet and Local Wages: A Puzzle. Tables 2 and 4.

In regression equation (1), the dependent variable is the difference between log wages in
2000 and 1995 in county i, and the explanatory variable is the extent of advanced Internet
investment by businesses in county i in 2000. This regression is the first-difference version
of the fixed effects regression studied in Theorem S1. Because the data only bears two
periods, the two regressions are algebraically equivalent. Table 4 presents regressions where
advanced internet investment is instrumented by a county level variable. This regression
is the first-difference version of that studied in Theorem S2. Because the data only bears

two periods, the two regressions are algebraically equivalent.

Estimating the Peace Dividend: The Impact of Violence on House Prices in
Northern Ireland. Table 1, columns 3 and 5-7.

In regression equation (1), the dependent variable is the price of houses in region r at time
t, while the explanatory variables include region and time fixed effects, and the numbers
of people killed because of the civil war in region r at time t-1. This regression is the same
as that studied in Theorem S1.

Paying a Premium on Your Premium? Consolidation in the US Health Insur-
ance Industry. Tables 2 and 5.

12



27.

28.

29.

In regression equation (1), the dependent variable is the change of the log premium for
employer e in market m in year t, and explanatory variables are time and market effects,
and the change in various treatment variables (change in the fraction of self-insured em-
ployees...). This regression is a first-difference version of that considered in Theorem S1,
with several treatment variables. Because the data bears more than two periods, the two
regressions are not algebraically equivalent. However, its coefficient can also be written as
a weighted average of Wald-DIDs, as we explain after stating Theorem S1. In regression
equation (3), the treatment variables are instrumented by a dummy for period ¢ being after
the merger of two insurers and a market level-variable. This regression a first-difference
version of that studied in Theorem S2. Because the data bears more than two periods, the
two regressions are not algebraically equivalent. However, we conjecture that its coefficient

can also be written as a weighted average of Wald-DIDs.

The Enduring Impact of the American Dust Bowl: Short- and Long-Run Ad-
justments to Environmental Catastrophe. Table 2. In regression equation (1), the
dependent variable is, say, the change in log land value in county ¢ between period t and
1930, and the explanatory variables are state x year effects, the share of county c in high
erosion, and the share of county ¢ in medium erosion. This regression is a first-difference
version of that in Theorem S1, with two treatment variables and state-year effects. Because
the data bears more than two periods, the two regressions are not algebraically equivalent.
However, its coefficient can also be written as a weighted average of Wald-DIDs, as we

explain after stating Theorem S1.

A Rational Expectations Approach to Hedonic Price Regressions with Time-
Varying Unobserved Product Attributes: The Price of Pollution. Table 5.

In, say, the first regression equation in the bottom of page 1915, the dependent variable is
the change in the price of house j between sales 2 and 3, and the explanatory variables are
the change in various pollutants in the area around house j between sales 2 and 3. This
regression is a first-difference version of in Theorem S1, with several treatment variables.

Because the data bears two periods, the two regressions are algebraically equivalent.

The Impact of Family Income on Child Achievement: Evidence from the
Earned Income Tax Credit. Table 3.

In the reduced form of regression equation (4), the dependent variable is the change in
test scores for child i between years a and a-1, while the explanatory variable is the change
in the expected EITC income of her family based on her family income in year a-1. This
regression is a first-difference version of that in Theorem S1. Because the data bears more
than two periods, the two regressions are not algebraically equivalent. However, its coeffi-

cient can also be written as a weighted average of Wald-DIDs, as we explain after stating

13



30.

31.

32.

33.

34.

Theorem S1. The first stage is the same regression but with the change in the income of
the family of student i between years a and a-1. Overall, the 25LS coefficient arising from

regression equation (4) is a ratio of 2 weighted averages of Wald-DIDs.

Katrina’s Children: Evidence on the Structure of Peer Effects from Hurricane
Evacuees. Tables 3-6.

In regression equation (1), the dependent variable is the test score of student i in school
j in grade g in year t, and the explanatory variables are grade, school, year, and grade x
year effects, and the fraction of Katrina students received by school j in grade g and year
t. Within each grade, this regression is the same as that considered in Theorem S1 (within

each grade, grade X year effects become simple year effects).

The Collateral Channel: How Real Estate Shocks Affect Corporate Investment.
Table 5.

In regression equation (1), the dependent variable is the value of investment in firm i and
year t divided by the lagged book value of properties, plants, and equipments (PPE), and
the explanatory variables are firm and time dummies and the market value of firm i in
year t divided by its lagged PPE. This regression is the same as that studied in Theorem
S1.

The Spending and Debt Response to Minimum Wage Hikes. Tables 1, 2, and 5.
In regression equation (1), the outcome variable is, say, income of household i at period
t, and the explanatory variables include household and time dummies, and the minimum
wage in the state where household i lives in period t. This regression is the same as that

considered in Theorem S1.

Exports, Export Destinations, and Skills. Table 5.

In regression equation (7), the dependent variable is a measure of skills in the labor force
employed by company i in industry j at period t, and the explanatory variables are firm
and industry x time dummies, the ratio of exports to sales in firm i at period t, and
the share of firm exports to high income destinations over total exports. To instrument
this variable, the authors use a dummy for the years 1999 or 2000 (a large devaluatation
happened in Brazil in 1999) interacted with the share of exports of firm i to Brazil in 1998.

This specification is very similar to that studied in Theorem S2.

Political Aid Cycles. Table 3, columns 4 and 5, and Tables /4 and 5.

In regression equation (2), the dependent variable is the amount of donations received
by receiver r from donor d in year t, and the explanatory variables are donor X receiver
dummies, a dummy for whether there is an election in country r in year t, a measure of

alignment between the ruling political parties in countries r and d, and the interaction of
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the election dummy and the measure of alignment. This specification is very close to that

studied in Theorem S1, with units of observation being pairs of donors and receivers.

2 Inference in the partially identified case

In this section, we show how to draw inference on the bounds given in the second statements
of Theorems 3.2 and 3.3 in de Chaisemartin & D’Haultfeeuille (2015). We adopt the same
notations hereafter. In order for the bounds to be finite, we assume that S(Y') = [y, 7] with
—00 <y < ¥ < +oo. We also suppose for simplicity that y and i are known by the researcher.?
If not, they can respectively be estimated by min;—; , Y; and max,;—; , Y;, and Theorem S3

below remains valid under regularity conditions on Fy, , at these boundaries.

P(Doy=d) § _ P(Dii=d)
First, let us consider the Wald-TC bounds. Let )\Od = P (Dw=d)’ Ad = B (Do d), and

Fa1(y) = My [1 — Noa(l — ﬁYd01(y)):| — Mo(1 = Aoa)L{y < 7},
Fan(y) = mi [NaaFyag, ()] + (1= mi(Roa)) 1y = ).

Then define

~ 1
éd_/dedm - Z Yi, 5d /dedm(Z/)_n_ Z Y;.

1€Z400

Finally, we estimate the bounds by

1 1 < 1 1 N
—~ 77»_11 ZieIu }/; - n_l() Ziel—lo |:Y; + 5Dz:| - n_ll ZiEIH }/; - n_l() ZieIlo |:}/; + éD1:|

ETC - 1 1 ; TC — 1 1
E ZZ'GIM Dl - m ZiGIlo DZ n_ll ZiEle D’L - E ZiGIlo D
Now let us turn to the Wald-CIC bounds. For d € {0, 1}, let
id — My, AOdFYdm : chl(AldFYd11) , %d — My, )‘OdFYdm - Hdil/p‘ldFde + (1 - Ald)) 7
Aog — 1 Aog — 1
A1dFYcln j:[d ° éd(T)

Ga(T) = NoaFyye, + (1 —Noa)T, Ca(T) =
>\1d -1

We then estimate the bounds on Fy,, (4)s, by

Ferealy) = sup Cy (fd) ), Fercaly) = inf Ca (iz) V).

y'<y

Therefore, to estimate bounds for the LATE and LQTE, we use

Weie = /deCIC,l(y) —/?/dzcw,o(y)7 Were = /ydzmm(?/) —/deCIC,O(?/)a

3In particular, we estimate F;ﬂ:7f (0) and F;d}ﬂ(l) by y and ¥ respectively. The definition of ﬁ;dif (1) for
€ (0,1) remains the same as in Section 5 of de Chaisemartin & D’Haultfceuille (2015).
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~—1 ~_1 ~ ~—1 ~—1

T, =Ferc1(@) = Ecrco(@), Tg=Fere1(0) — Feeo(a).

Hereafter, we define ¢ = Fereo(y), 7= Fereo®), o = [MiFyy, o Fyh (55) — 1]/[M1 — 1] and

Aot

Y
¢ = [AM1Fy,,, © F;lil(l —1/X01)]/[A11 — 1]. Our results rely on the following assumptions.

Assumption S1 (Technical conditions for inference with TC bounds)

1. 8(Y) = [y, 7] with —co <y <7 < +00.

2. Moo # 1 and for d € {0, 1}, the equation Fu1(y) = 1/Aao admits at most one solution.

Assumption S1 allows for continuous or discrete outcome variables. In the case of a discrete
variable, the equation Fyp (y) = 1/Ag will have no solution, except if there is a point in the
support of Yy at which Fy1(y) is exactly equal to 1/Ag. Therefore, Assumption 1 rules out
only very rare scenarios. In the continuous case, the equation Fy1(y) = 1/Ag will have a unique

solution if, e.g., Fj; is strictly increasing on its support.
Assumption S2 (Technical conditions for inference with CIC bounds)
1. Ao #1 and ¢ < 7q.

2. Foroa and ch,d are strictly increasing on S, = [EE‘}C,d(Q>7EE’}C,d(a)] and
Sy = [F(;C’d(g),F;C’d@)] respectively. Their derivatives, whenever they exist, are strictly

positive.

The condition ¢ < g in Assumption 52 is automatically satisfied when Aoy > 1, because then
the bounds are proper cdfs so ¢ = 0 and ¢ = 1. When Ay < 1 and Assumption 9 holds, one
can show that it is satisfied when A\jg < Ho(Ago) — Ho(l — Ago). The larger the increase of
the treatment rate in the treatment group and the smaller the increase in the control group,
the more this condition is likely to hold.The strict monotonicity requirement is only a slight
reinforcement of Assumption 9. When Aoy < 1, Fjc o and ch,o satisfy Assumption S2 when
Hy(AooFoo1) — MoFoi1 and Ho(AgoFoor + 1 — Aoo) — A1oFo11 have positive derivatives on S(Y'). If
Hy is equal to the identity function, this will hold if the ratio of the derivatives of Fy11 and Fyo,
is strictly lower than %1’% Hence, here as well, the larger the increase of the treatment rate in
the treatment group and the smaller the increase in the control group, the more this condition
is likely to hold. It is possible to derive similar sufficient conditions for Assumption S2 to hold
in the three other possible cases (ECIC’O and Fczc,o when Mgy > 1, Feoieq and chql when
Moo < 1, and Fro; and ch,l when Aoy > 1). We refer the reader to the proof of Lemma S6

for more details.

Theorem S3 establishes the asymptotic normality of the estimated bounds of A and 7, for ¢ € Q,
where Q is defined as (¢,7)\{q1, g2} when Ago > 1 and (0, 1) when Aoy < 1.
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Theorem S3 Assume that Model (1) and Assumptions 1-2 and 12 hold.

- If Assumptions 5 and S1 also hold, then (ETC — Woe, Wre — Wre) are asymptotically

normal. Moreover, the bootstrap is consistent for both.

- If Assumptions 6-7, 9, 18 and S2 hold, then (ECIC ~Were,Were — Were) and (T, —
Ty Tq — Tq), for ¢ € Q, are asymptotically normal. Moreover, the bootstrap is consistent

for both.

For the CIC bounds, we restrict ¢ to Q@ when Aoy < 1 because the estimated bounds on 7, are
not root-n consistent and asymptotically normal for every ¢. First, the estimated bounds are
equal to the true bounds with probability approaching one for ¢ < g or ¢ > g, because basically,
the true bounds put mass at the boundaries y or 7.4 Second, the bounds may exhibit kinks
at ¢; and g9, which also leads to asymptotic non-normality of ’fq and %q. On the other hand,
when Ao > 1, asymptotic normality holds for every ¢ € (0,1): the bounds on Fy,,@4)s, are not
defective cdfs, and they do not exhibit kinks, except possibly at the boundaries of their support.

Theorem S3 can be used to construct confidence intervals on A and 7, as follows. Let us focus
on the Wald-TC bounds on A, the reasoning being similar for other bounds and parameters. If
we know ex ante that partial identification holds or, equivalently, that A\gg # 1, we can follow
Imbens & Manski (2004) and use the lower bound of the one-sided confidence interval of level
1 — o on W and the upper bound of the one-sided confidence interval of level 1 — o on Wre.
However, in practice we rarely know ex ante whether \o9p = 1 or not. This is an important issue,
since the estimators and the way confidence intervals are constructed differ in the two cases.
To address this issue, we propose a procedure which yields confidence intervals with desired
asymptotic coverage in both cases. Let o), denote an estimator of the variance of Xoo. Our
procedure has three steps:

Xoo—1

1. Compare ty,, = |3}
00

to some sequence (¢, )nen satisfying ¢, — 400 and G — 0.

2. If ty,, < cy, form confidence intervals for A using the point identification results.
3. If ty,, > cp, form confidence intervals for A using the partial identification results.

This procedure yields pointwise valid confidence intervals, because comparing |ty,,| to ¢, instead
of a fixed critical value ensures that asymptotically, the probability of conducting inference under
the wrong maintained assumption vanishes to 0. An inconvenient of this procedure is that it
relies on the choice of a tuning parameter, the sequence (c,),en. Note that many procedures

recently suggested in the moment inequality literature also share this inconvenient (see Andrews

*A similar conclusion holds if y or 7 are estimated rather than known by the researcher: the estimators are n

rather than root-n consistent and not asymptotically normal.
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& Soares, 2010 or Chernozhukov et al., 2013). Also, it is unclear whether the confidence interval

CI,_, resulting from that procedure is uniformly valid, i.e. whether it satisfies

lim inf inf . PAeCh_,) >1-aq,

n—00 PEPo A€[W o, Wrc)
where Py denotes a set of distributions of (D, G, T,Y’). Uniformly valid confidence intervals on
partially identified parameters have for instance been proposed by Imbens & Manski (2004),
Andrews & Soares (2010), Andrews & Barwick (2012), Chernozhukov et al. (2013), and Romano
et al. (2014). However, to the best of our knowledge none of the existing procedure applies to
our context. The solutions suggested by Imbens & Manski (2004) or Stoye (2009) require that
the bounds converge uniformly towards normal distributions. But our bounds involve the terms
mi(Aog) and My(1 — Agg), with m; and My non-differentiable at 1 and 0 respectively. Therefore,
our estimators are not asymptotically normal when Aoy = 1. The literature on moment inequality
models does not apply either. One can for instance show that under Assumptions 1 , 2, and 5,
our parameter of interest A satisfies a moment inequality model with four moment inequalities.
However, the moments depend on preliminary estimated parameters that once again, do not
have an asymptotically normal distribution when A\gg = 1, thus violating the requirements of,
e.g., Andrews & Soares (2010) and Andrews & Barwick (2012).

3 Supplementary applications
3.1 Effects of newspapers on electoral participation in the US

Gentzkow et al. (2011) study the effect of newspapers on electoral participation in the US. They
estimate OLS regressions of the change in turnout between consecutive elections in county ¢ on
election dummies and the change of the number of daily newspapers available in county c. In
column 2 of their Table 2, they find that one additional newspaper increases turnout by 0.26
percentage points in US presidential elections from 1872 to 1928. Their regression specification is
exactly equivalent to that studied in Theorem S1. We estimate the weights wgt in this application,
and find that treatment effects in 32% of county x election cells receive a negative weight, and
that negative weights sum up to -0.27. The validity of their coefficient therefore relies on the

assumption that the effect of newspapers on turnout is constant over time and across counties.

To avoid relying on that assumption, we use a first estimator inspired from the weighted sum
of Wald-DIDs in the first point of Theorem 4.1. As the authors include state-year effects in
their specifications, we slightly modify our estimator to also allow for differential trends across
states. Our estimator is obtained in five steps. First, for each election the sets of counties

Gst, Git, and Gy are respectively defined as counties where the number of newspapers remains
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stable, increases, and decreases between elections ¢t — 1 and t. Second, we focus on the counties
in G4 or G; and estimate a 2SLS regression of the change in turnout between elections ¢t — 1
and t on state dummies and the change in the number of newspapers. The instrument for the
change in newspapers is a dummy for counties in G;. Let Sprp(1,0,t) denote the coefficient
of the change in newspapers in this regression. Without the state dummies, we would have
Bprp(1,0,t) = Wj,p(1,0,t). Therefore, Sprp(1,0,%) is a modified version of W}, 5(1,0,t)
allowing for state-specific trends. Third, we focus on the counties in Gy or G4 and estimate a
2SLS regression of the change in turnout between elections ¢t — 1 and ¢ on state dummies and the
change in the number of newspapers. The instrument for the change in newspapers is a dummy
for counties in Gy. Here as well, the coefficient of the change in newspapers Sp;p(—1,0,%) is
a modified version of W7},;,(—1,0,%) allowing for state-specific trends. Fourth, we estimate the
weights w; and w,o; allowing for state-specific trends. We repeat these steps for each election
and our estimator is finally equal to

16
Bpip = Z wigra+4¢(Wio)1872+4:Bp1p (1,0, 1872 + 4t) + (1 — wyop187244t) Bprp(—1,0, 1872 + 4t)).
t=0
This estimator does not rely on the assumption that treatment effects are homogeneous across

counties, because it only uses counties where the number of newspapers is stable as controls.

However, this estimator still requires that the effect of newspapers on turnout do not vary over
time (Assumption 4 in the main paper). In this context, this assumption is not warranted.
Historians have shown that in the end of the 19th century, alternative ways of communicating
information such as radio stations, telegraphic lines, and telephonic lines quickly developed in the
US, thus ending the print monopoly of mass media (see White, 2003). This might have reduced
the effects of newspapers. In their Table 5, the authors give suggestive evidence of this by showing
that their regression coefficients diminish over time. To avoid relying on that assumption, we use
a second estimator frc. Bre closely resembles the weighted sum of Wald-TCs we introduced
in the second point of Theorem 4.1, except that we allow for state-specific trends in each of
the regressions we estimate to compute this weighted sum.?® Note that estimating a Wald-CIC
type of estimator while controlling for state-specific trends appears difficult. For each pairs of
consecutive elections, there are many states where only few counties had, say, 2 newspapers
at both elections. This makes it impossible to estimate the quantile-quantile transforms )y

within-state. We could estimate a weighted average of Wald-CIC estimators without controlling

5Using directly the two weighted sums we introduced in the first and second points of Theorem 4.1 increases

even further the difference between our estimators and that of Gentzkow et al. (2011).
60nly 18% of county x election cells have 3 newspapers or more, and only 9% have 4 or more. To estimate

the numerators of our Wald-TCs, we group the number of newspapers into 4 categories: 0, 1, 2, and more than
3. Results remain unchanged if we instead group the number of newspapers into 5 categories: 0, 1, 2, 3, and
more than 4.
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for state-specific trends, but we prefer to remain as close as possible to the authors’ original

specification.

Results are presented in Table 2 below. [prp is close to the estimator in Gentzkow et al.
(2011). On the other hand, f7¢ is almost twice as large and is significantly different from their
estimator (t-stat=2.05). It is also significantly different from Sp;p at the 10% level (t-stat=1.72).
To reconstruct the change in turnout that a county in G;; or G4 would have experienced if its
number of newspapers had not changed, Sprp uses all counties in the same state and in G. To
reconstruct this counterfactual trend, Src only uses counties in the same state, in G;, and with
the same number of newspapers in period ¢ — 1 as the county in G;; or G4. The fact that ¢
and [prp substantially differ indicates that among counties in G, those with different numbers
of newspapers experience different evolutions of their turnouts. Sprp and fr¢ rely on different
“common trends” assumptions between counties. But challenging one while defending the other
seems difficult as these two assumptions are substantively very close. On the other hand, Sr¢
does not require that the effect of newspapers on turnout be constant over time, an assumption
that is not warranted in this context as we explained above. We therefore choose frc as our

preferred estimator.

Table S2: Effect of one additional newspaper on turnout

Gentzkow et al. (2011) 5D[D 5TC’ OLS
Effect of newspapers on turnout 0.0026 0.0031 0.0047  -0.0079
(0.0009) (0.0012) (0.0014) (0.0007)

N 15627 15627 15627 15627

Notes. This table reports estimates of the effect of one additional newspaper on turnout. Standard errors are
clustered at the district level. For 8prp and Br¢, clustered standard errors are obtained by block bootstrap.

This application also illustrates that our Wald-TC estimator can be used when only aggregate
data are available, provided all units in each group x period cell share the same value of the
treatment, as is the case in Gentzkow et al. (2011). In such instances, our Wald-CIC estimator
can also be used if one is ready to assume that Assumptions 1-2 and 6-7 are satisfied with 79t
instead of Y. On the other hand, when units in the same group x period cell can have different
values of the treatment, one cannot use our Wald-TC and Wald-CIC estimators, because 4 and
Q4 cannot be estimated from aggregate data. This is for instance the case in Enikolopov et al.
(2011). In such instances, authors can still follow our recommendation of finding a control group
where treatment is stable and then estimate the Wald-DID.
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3.2 Effects of a titling program in Peru on labour supply

Between 1996 and 2003, the Peruvian government issued property titles to 1.2 million urban
households, the largest titling program targeted to squatters in the developing world. Field
(2007) examines the labor market effects of increases in tenure security resulting from the pro-
gram. To isolate the effect of property rights, the author uses a survey conducted in 2000, and
exploits two sources of variation in exposure to the titling program. Firstly, this program took
place at different dates in different neighborhoods. In 2000, it had approximately reached 50% of
targeted neighborhoods. Secondly, it only impacted squatters, i.e. households without a prop-
erty title prior to the program. The author can therefore construct four groups of households:
squatters in neighborhoods reached by the program before 2000, squatters in neighborhoods
reached by the program after 2000, non-squatters in neighborhoods reached by the program
before 2000, and non-squatters in neighborhoods reached by the program after 2000. Table 3
presents the share of households with a property title in 2000 in each group.

Table S3: Share of households with a property right

Reached after 2000 | Reached before 2000

Squatters 0% 71%
Non-squatters 100% 100%

In Table 5 of her paper, the author uses 2SLS regressions to estimate the effect of having a
property right on househods’ labor supply. Her dependent variable is the number of hours
worked per week by each household. Her explanatory variables are a dummy for squatters, a
dummy for neighbourhoods reached before 2000, a dummy for whether the household has a
property right, and a rich set of 62 control variables. Her instrument for property rights is the
interaction of the squatters and reached before 2000 dummies. Therefore, her estimator is a
Wald-DID accounting linearly for the effect of covariates. We revisit her results and compute
instead the estimator /Wé([c introduced in Section 5.2 of the main paper, with the same set of
covariates. ngc also accounts linearly for the effect of covariates so this estimator is comparable
to the author’s. As all units in the control group are treated, we cannot estimate exactly /Wé(m
but we follow Theorem 3.5 and apply the quantile-quantile transform of treated units in the
control group to untreated units in the treatment group. On top of Assumptions 1X-2X and
6X-7X, the validity of this estimator also requires a conditional version of Assumption 10. Her
Wald-DID and our Wald-CIC estimator with covariates are respectively equal to 18.07 and 16.17,
thus implying that being granted a property title increases the number of hours worked by 16
to 18 hours. The two point estimates are not significantly different (t-stat=1.29). Quantile
treatment effects are shown in Figure 3. They are negative and insignificant in the bottom of
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the distribution of the outcome, and positive and significant in the top. As per our estimates,
being granted a property title decreases the first decile of labour supply by 5 hours and increases
the 9th decile by 53 hours. These two estimates are significantly different (t-stat=2.21). The
best affine approximation to the QTE function has a slope of 74.6 with a standard error of 25.8.7
Overall, our reanalysis yields a point estimate very similar to the author’s for the average effect
of property titles, but it also unveils an interesting pattern of heterogeneous effects along the
distribution of the outcome.
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Figure §3: Estimated LQTEs on the number of hours worked in Field (2005).

4 Supplementary proofs

In this section and in the next, we use the same notations as those used in the proofs of de Chaise-
martin & D’Haultfceuille (2015).

Theorem 3.3 (sharpness of the bounds)

Sharpness of the bounds for Fyu(d)\gl(y)

We only consider the sharpness of F;¢ o, the reasoning being similar for the upper bound. The

"We estimate the standard error of this slope by bootstrap: in each bootstrap sample, we estimate the QTE
and the slope of the best affine approximation to the QTE function.
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proof is also similar and actually simpler for d = 1. The corresponding bounds are proper cdf,

so we do not have to consider converging sequences of c¢df as we do in case b) below.

a. Ao > 1. We show that if Assumptions 2, 7, and 9 hold, then F;q, is sharp. For that

purpose, we construct ﬁo, (70, V such that:
(i) Y = ho(Up, T) when D =0 and D = 1{V > vgr};
(i) ho(.,t) is strictly increasing for ¢ € {0,1};

(iii) (Up, V) L T|G;

(IV) Fﬁo(ij@,1)|G:0,T=1,‘7€[v0071)01) = IO‘

First, let
Eo(., 0) = F&oé o Go(Ly) o FOB%?
h/o(.7 1) — FO_Oi.

Second, let

Uy = (1—D)hg'(Y,T)

+D(1 = T)(1 — G)I{V € [vgo, vo1) U,

+DTGI{V € [v11, v00)}U2

+D[1—(1-T)(1-G)I{V € [vgo,vo1)} — TGI{V € [v11,v00)}] Uy,

where U} and U2 are two random variables such that S(U2) = S(U2) = (0,1), and

- _ —1
FU(HG:O,T:O,VE[UOO,U(H) - I0 © FO()l’
_ -1
FU3|G:1,T:1,V€[U11,’UQO) - CO(IO) o F001-

F[701 |G:0,T=0,V€ [Uoo,'l)(n)

also increasing, (ii) limy_gzo(y) =0 and lim, 5 T(y) = 1 when Aoy > 1. F[702|G:17T:1’V6[

is a valid cdf on (0, 1) since (i) T, is increasing by Assumption 9 and Fj,) is

v11,000)
is also a valid cdf on (0,1) since (i) Cy(T,) is increasing by Assumption 9 and Fyy; is also

increasing, (i) Co(Zy) (S(Y)) = (0,1) when Aoy > 1, as per the second point of Lemma S1.
Third, for every u € (0,1), let

Py(u) = Tyo Fy(u),
Pi(u) = Co(Ty) o Fooy(u),
Py(u) = HgoGo(TL,) o Fyp1(u).
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As shown in the proof of Lemma S6 (lower bound, case 2), Assumption 9 ensures that Py(u),

Py (u), and Py(u) are non differentiable at only one point. Moreover, using the fact that

1 1
Foor = —Go (L) + (1 — —) T, (50)
Aoo Aoo
Hyo Go(Ty) = MoForr + (1 — Xo)Co(ZLy), (51)

and T, G (T,), and Cy(T,) are increasing under Assumption 9, one can show that

1
0< (1—7> Py(u) < 1,

00

(
S TRw

for any u at which Fy(.), Pi(.), and P,(.) are differentiable, and Pj(u) > 0. Then, let Bg, and

Bgs, be two Bernoulli random variables such that for every u € (0, 1),

~ 1
P(Bs, =1Uy=u,D=0,G=0,T=1) = (1——)\ )P(’)(u),
00
~ (1 —Aio) Pi(w)
( S1 ’UO u, 07G ) O) PQ/('U/) 3

with the convention that P(Bg, = 1|Uy = u,D = 0,G = 0,7 = 1) and P(Bs, = 1|Uy =
u,D = 0,G = 1,7 = 0) are equal to 0 at the point at which Py(u), P,(u), and P(u) are
not differentiable, and P(Bs, = 1|Uy = u,D = 0,G = 1,T = 0) = 0 when Pj(u) = 0. The
first convention is innocuous as it applies to a 0 Lebesgue measure set. As we shall see later,

the second convention is also innocuous, because when Pj(u) = 0, Equation (51) implies that
P{(u) =0 as well.

Finally, let

V = 0-D)(1-&T [350‘71 T (1 BSO)XN/?}
+(1- D)G(1-T) [351?3 r(1- le)ﬂ
+1-1-D)[(1-GOT+G1-1T)])V,

where V1, V2, V3 and V* are such that S(V?!) = S(V) N [vgo, vo1), S(V2) = S(V) N (=00, vg0),
S(V3) = S(V) N [vi1, v00), S(VA) = S(V) N (—o0, v11), and

f\71|G:0,T:1,D:0,BSO:1,UO vlu

fv|G:0,T:0,VE[voo,u01),(70 (v|u),

v

S

<
~— ~— ~— ~—

f\72|G:O,T:1,D:O,BSO -0, fV|G=0,T=0,v<voo,(70 (v]uw),

=

I~

f‘73IG:1,T=0,D=07lezl, fV|G:1,T:1,ve[vH,UOO),ﬁO v|u),

S

(vl
(V]
(vl
5, (0

f\~/4|G:1,T:0,D:O,le —0,0, \ VU

fV|G:1,T:1,v<u11,l70 (v]u).
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We shall now show that (ho(.,0), ho(., 1), Uy, V) satisfies (i), (ii), (iii), and (iv). By construction,
Point (i) is satisfied. Moreover, it follows from Assumption 7 that ho(., 1) is strictly increasing
on (0,1). Besides, Go(T,) o Fyy; is strictly increasing on (0,1) and included between 0 and 1 as
shown in the first point of Lemma S1. Fy is also strictly increasing on (0,1) by Assumption 7.
Therefore, h(.,0) is also strictly increasing on (0, 1), and Point (ii) is satisfied.

Then, we check Point (iii). We show that it holds in the control group. For that purpose, we
use Bayes law to write

fﬁo,V\G:o,T:t(ua v)

= P(f/ <vn|G=0,T = t)[P(? <we|G=0,T =t, V< UOl)fﬁo\G:O,T:t,\7<uoo (u)f‘?IG:07T:t7‘7<’U007[70 (v|u)
+P(‘7 € [voo,v01)|G =0,T =1t, V< Uol)f170|G:07T:t7‘7€[voo,vo1)(u)ff/lG:O,T:t,f/e[voo,vm)ﬁo (v|u)]
+P(‘7 > v|G=0,T = t)fﬁUi/\G=o,T=t,\72v01 (u,v), (52)

and we show that all elements in the right-hand side of the previous display are equal for ¢t = 0
and t = 1.

We first evaluate all of these quantities when T = 1. First, it follows from the definition of 1%
that

P(‘7<U01‘GIO,TI 1) = Pojo1- (53)
Then,
PUy<ulG=0T=1V <uvy) = PUy<ulG=0,T=1,D=0)
= P(hg'(V,1) <u|G=0,T=1,D=0)
= P(Y < Fyi(u)|G=0,T=1,D=0)
= U.
Therefore,

fﬁ()|G:0,T:1,\7<U01 (U) =L

Then, we have, almost everywhere,

fﬁo,1{‘76[U007001)}|G:0,T:1,‘7<U01 (u’ ]')
= P(V - [Uoo, U01>|G = O,T = 1, V < Vo1, U() = u)fﬁo|G=O,T=1,‘N/<’U01 (u)
— P(Bg,=1G=0,T=1,D=0,U,=u)

_ (1 _ ALOO) Pi(u). (54)

The second equality follows from the definition of 17, and from fﬁo\G:O,T:Lf/@m (u) = 1. Equation

(54) and the fact that P is a density imply that
_ _ 1
P(VE [Uoo,U01)‘G:O,T:1,V<'U01) = 1—)\—, (55)
00

f(70|G:0,T:1,‘7€[v00,U01)(u) = Pé(“)’ (56)
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and

~ ~ 1
P(V<U00|G:O,T:1,V<U01):)\—, (57)
00

Fo016=0.7=1.7 <v0 (W) = oo — (Moo — 1) (). (58)

Next, we have

f‘~/|G:07T:17‘~/€[Uooﬂ)m)ﬁo <U|u) - f\~/1|G:0,T:1,D:O,BSO:1,(70 (U|u)>
- fV\G:O,T:O,Ve[vOO,vol),f]o (v|u), (59)
and
7 1G=0,0=1,7 <un0,0 (VW) = f‘72|G:o,T:1,D:o,BSO:o,(70(U|U)

= fV|G:0,T=O,V<v00,l70 (v|u). (60)

Then, we evaluate all of these quantities when 7" = 0. First, notice that
PV <vn|G=0,T=0) = PV <vn|G=0,T=0)
= P(V <U01’G:0,T: 1)
= Pojo1- (61)

The first equality follows from the definition of V and the second from the fact V satisfies

Assumption 1. One can use similar arguments to show that

P(V € [voo,v01)|G =0,T =0,V < vgy) =1 — )\Loo (62)
P(‘7<UOOIG:0,T:0,XN/<1}01)=)\LOO. (63)

Then, it follows from the definition of V and [70 that
fﬁo\G:O,T:O,f/e[voo,vm)(u) = fﬁg|G:0,T:0,vE[voo,v01)<“> = Fy(u). (64)

Next,

PUy <ulG=0,T=0,V <uvy) = PUy<ulG=0T=0,D=0)
= P(hg'(Y,0) <u|G =0,T =0,D =0)
= P(Y < Fy 0 Go(Ly) 0 Foy (w)|G = 0,T =0, D =0)
= Go(Zy) © Fon (u)
= oot — (Ao — 1) Po(u),
where the last equality follows from (50). This implies that

Fo16=0r=0.7<upo (W) = Aoo = (Moo — 1) Fo(u). (65)

26



Then, it follows from the definition of V that

f‘7\G=07T=07‘7€[U00,Uo1),(70(U|u> - fV|G=O,T:O,V€[voo,vgl),ﬁo(U’u)7 (66)
f\7|G:0,T:0,\7<v00,(70(U‘U> = fV|G:O,T:O,V<v00,(70(v’u)' (67)
Finally,
J50 716=0=07 50 (W V) = Juo,vIG=0,T=0,V 300 (U, V)

on,VlG:O,T:LVzvm (U, U)

), (68)

<

fﬁo,WG:o,T:l,f/zum (u,

where the first and last equality follow from the definition of (ﬁo, XN/), while the second equality
follows from the fact (Uy, V') satisfies Assumption 1.

Finally, combining Equation (52) with Equations (53) and (61), (55) and (62), (57) and (63),
(56) and (64), (58) and (65), (59) and (66), (60) and (67), and (68), we get that

fﬁo,17|G:o,T:1(Ua v) = fﬁo,fx\azo,T:o(Ua v).

This shows that (iii) holds in the control group. Showing that it also holds in the treatment
group relies on a very similar reasoning, so we skip this part of the proof due to a concern for
brevity.

b. Ay < 1. The idea is similar as in the previous case. A difference, however, is that when
Moo < 1 and § = 400, T, is not a proper cdf, but a defective one, since lim,_, - T(y) < 1.
As a result, we cannot define a DGP such that TO = T,, However, by Lemma S2, there exists
a sequence (%), of cdf such that 7% — T, Go(TF) is an increasing bijection from S(Y) to
(0,1) and Cy(T%) is increasing and onto (0,1). We can then construct a sequence of DGP
(hE(.,0), hE(.,1), Uk, V*) such that Points (i) to (iii) listed above hold for every k, and such that
Tk = TE. Since TF(y) converges to Ty(y) for every y in S(OY), we thus define a sequence of

DGP such that T} can be arbitrarily close to T, on S(Y) for sufficiently large k. Since Cy(.) is
continuous, this proves that Fr;q, is sharp on S(Y').

In what follows, we exhibit A%(.,0) and hE(., 1) satisfying (i), as well as distributions of U¥ for
all relevant subpopulations which are a) compatible with the data, b) satisfy (iii), and ¢) reach

the bound. We do not not exhibit ([7(’;, Vk) as we did in the previous proof, to avoid repeating

twice similar arguments.
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ﬁ’g(., 1) is strictly increasing on (0, 1) since Go(T%) is an increasing bijection on (0, 1) as shown in

Lemma S2. E'g(., 0) is strictly increasing on (0, 1) under Assumption 7. Therefore, (i) is verified.
Let us consider first the distribution of [76“ among untreated observations in the control group
in period 1. Tt follows from Bayes rule that

Fﬁ(l)ch:07T:17‘7<UOO = AooFﬁ(lﬂG:O7T:17‘7<’UOI + (1 - )\00)F65|G:0,T:1,‘76[1}017’U()0) (69)

Given hk(.,1), to have TF = T*, we must have

F=

_ mk ky—1
Uk|G=0,T=1,V€vo1,v00) IO © GO(IO) ’

This defines a valid cdf since T% is a cdf and Go(T%)™" is increasing and onto S(Y'). It can be
achieved by constructing V' using an appropriate Bernoulli random variable to split untreated
observations in the control group in period 0 between some for which V' € [vg, vo), and some

for which V < Vo1, exactly as we did for A\gg > 1.

Given RE(.,1), and the fact h5(UF, 1) = Y for all observations such that G = 0,7 = 1,V < vgy,

a few computations yield

5 . — ky—1
FUéCIG:O’T:17V<,U01 — F(]Ol @) GO(IO) .

Plugging the last two equations into (69) finally yields Fj = [, where I denotes

¥1G=0,T=1,V<vgo
the identity function on [0, 1].

Now, let us turn to untreated observations in the control group in period 0. Given ES(.,O),
and the fact AE(UE,0) = Y for all observations such that G = 0,7 = 0,V < vgp, a few
computations yield F55|G:07T:07‘~/ w00
G=0,T=1,V € [vp1,v00), the data does not impose any constraint on their Uy, so we can set

= /. Since Y'(0) is not observed for observations such that

_ 7k k\—1
Fﬁg|G=0,T=o,\7€[u01,voo) =10 GO(IO) .
Therefore, the distributions of l7{f|G =0,T =tV < vy and ﬁ(ﬂG =0T =1tV € [Vo1, Voo)
satisfy (iii).
Then, let us consider untreated observations in the treatment group in period 1. Using the

definition of 2%(., 1) and the fact hf(UE, 1) =Y for all observations such that G = 1,7 =1,V <

v11, one can show after a few computations that

=

N _ ky—1
Uk|G=1,T=1,V<vi; — For 0 Go(Ty) -

Since Y (0) is not observed for observations such that G = 1,7 = 1,V € [u11, vg), the data does

not impose any constraint on their Uy, so we can set

k ky—
Fﬁg|G=1,T=1,\7e[vu,v00) = CO(IO) o GO(Io) "
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This defines a valid cdf, as shown in Points 2 and 3 of Lemma S2.

Finally, let us consider untreated observations in the treatment group in period 0. It follows

from Bayes rule that we must have

Fﬁé‘G::l,T:07‘7<’UOO - )\IOFﬁé€|G:1,T=0,‘7<U11 + (1 - AlO)Fﬁg|G=1,T=0,‘7€[1)11,v00)' (70)

To satisfy point (iii), we must have

Fﬁ(’;|G:1,T:0,\7<vH

= Foi1 0 Go(T5) ™"

This can be achieved by constructing 1% using an appropriate Bernoulli random variable to split
untreated observations in the treatment group in period 0 between some for which Ve [v11, Voo),
and some for which V < vy1, exactly as we did for gy > 1. Using the definition of ES(., 1) and
the fact h5(UF, 1) =Y for all observations such that G = 0,7 = 1,V < vy;, one can show after
a few computations that

F=

~ _ —1
Uk|G=1,T=0,V<voo Fo10 © Fgp-

Plugging the last two equations into (70) finally yields

Poj10Fo10 © Fogy — popin Forr © Go(Lf) ™

Pojio — Poj11
= Co(Lg) 0 Go(T5) .

Fﬁ(’f |G=1,T=0,V€[v11,v00)

Therefore, the distributions of UF|G = 1,7 = ¢,V < vy, and UF|G = 1,T = ¢,V € [v11, voo)
satisfy (iii). This completes the proof when Aoy < 1.

Sharpness of the bounds for A and 7,

We prove that the bounds on A and 7, are sharp under Assumption 9. We only focus on
the lower bound, the result being similar for the upper bound. The model and data impose
no condition on the joint distribution of (Uy, U;). Hence, by the previous sharpness proof we
can rationalize the fact that (Fy,,(o)s,. Fyviia)s:) = (Ecreo Feren) when Ao > 1. Sharpness
of A and 7, follows directly. When Aoy < 1, on the other hand, we can only rationalize the
fact that (Fy,,o)s.: Fyvi,ays) = (Cok, Ferea), where Cop converges pointwise to Feyeo. To
show the sharpness of the LATE and LQTE, we thus have to prove that limy_,« [ ydCox(y) =
JYdE crco(y) and limgo Coil(0) = Fopeo(a)-

As for the LATE, we have, by integration by parts for Lebesgue-Stieljes integrals,

[ viCuniw) =3~ /  Condy = / ' Couly)dy + / "1 Couly)] dy. (71)

We now prove the convergence of each integral in the right-hand side. As shown by Lemma S2,
Cor can be defined as Co, = Co(T%) with TF < Ty, T, denoting Fy,,(0))s,- Because Cy(Tp) =
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Fy, (0)s; and Coy(.) is increasing when Agg < 1, Cor < Fyy 0)s:- £(]Y11(0)] [S1) < +oo implies
that fyo Fy, (0)s: (¥)dy < 4+00. Thus, by the dominated convergence theorem,

0 0
lim / Cordy = / Feoicoly)dy < +oo.
k—o00 y y

Now consider the second integral in (71). If 7§ < 400, we can also apply the dominated conver-
gence theorem: 1—Cy, < 1 implies that foy 1 — Cor(y)] dy — foy (1= Foreo)] dy. Iy = 400,

/Oy [1 - Ecm,o@)} dy = +00.

By Fatou’s lemma,

v v
lim inf/ 1 — Co(y)] dy > / 11— Ecreo(y)] dy = +o0.
0 0

Thus, in this case as well the second integral in (71) converges to foy (1= Fereo(y)] dy. Finally,
because f; Cor(y)dy converges to a finite limit, [ ydCo(y) converges to [ ydF;q,(y). Hence,
the lower bound of A is sharp.

Now, let us turn to 7,. Following Lemma S2 , we can let Cy, = Co(T%), where T and Co(TF)

satisfy the three following requirements:

1. Iy > T,

o

2. for all y, € S(Y), there is a k € N such that for every k' > k, T¥ (y) = T, (y) for all y < y,.

3. Co(T%) is increasing.

Suppose first that y, = Ea}ao(q) € S(Y). Then point 2 above implies that for all k large
enough, Cop(y) = Feyeoly) for every y < y,. This implies that Cp,'(¢) = y,. Hence, Cy,'(q)

o

converges to y,. Now suppose that y, ¢ S(Y). Given that S(Y) = [y,7], y, € {y,7}. If
Yo =9, y < Coi(q) < Ea}(),o(Q)v where the second inequality follows from the fact that point
1 above implies that Cox > Frco. Therefore, Coi (@) = y,. Finally, if y, = 7, the proof of
Lemma S2 shows that there exists a sequence (yx)ren converging towards 7 such that, for every
k>1, Cox(yx — 1/k) = Foreo(yr — 1/k). Moreover, by definition, Fryoo(yx — 1/k) < g. Thus,
Cox(yx — 1/k) < q, and § > Cy,'(q) > yr — 1/k, where the second inequality holds by point 3
above. Hence, in this case as well, C’&j(q) converges to 3. This proves that the lower bound of

7, is sharp, which completes the proof 4
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Theorem S1

Proof of 1

As the first stage regression is fully saturated in (7', G), the predicted value of D from this
regression is E(D|T,G). As a result, the second stage is a regression of Y on a constant, the
time and group dummies, and E(D|T,G). Then, § = %, where Z is the residual from an
OLS regression of E(D|T, G) on the constant and the group and time dummies. Let o, o, and
oy respectively denote the coefficients of the constant and of the group and time dummies in
that regression. We have V(Z) = cov(E(D|T,G), Z) = cov(D, Z). The first equality follows

from the fact that
g t _
EDIT,G)=a+ Y a{G=g}+> al{T =t} +2
g=1 t=1
and Z is by construction uncorrelated with the time and group dummies. The second equality

cov(Y,Z)

follows from the law of iterated expectations. Therefore, 5 = woo(D.2)"

As G 1L T, it follows from the Frisch-Waugh theorem that the «; are equal to the coefficient of
the time dummies in a regression of E(D|G,T) on the constant and the time dummies alone.

Therefore,
o = E(E(D|G,T)|T =t)— E(E(D|G,T)|T =0)=E(D|T =t)— E(D|T =0).

Similarly, as G 1L T, it follows from the Frisch-Waugh theorem that the o, are equal to the
coefficient of the group dummies in a regression of E(D|G,T) on the constant and the group

dummies alone. Therefore,
ay = E(E(D|G,T)|G = g) — E(E(D|G,T)|G =0) = E(D|G = g) — E(D|G =0).
Then, we have

Z = E(D|G,T) — a — (E(D|G) — E(D|G = 0)) — (E(D|T) — E(D|T = 0)).
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Let us first consider the numerator of j.

cov(Y,Z) = cov(Y,E(D|G,T)— E(D|G) — E(D|T))
= E(E(D|G,T) - E(D|G) - E(D|T) + E(D))E(Y|G,T))
i g
= > P(G=g)P(T = t)(E(Dg:) — E(D|G = g) — E(D|T = t) + E(D))E(Yyt)
t=0g=0
it g
= > P(G = g)P(T = t)(E(Dg:) — E(D|G = g) — E(D|T = t) + E(D)) (E(Ygt) — E(Yg0) — (E(Yor) — E(Yo0)))
t=1g=0
t g t g
= > > P(G=g)P(T =t)(E(Dg) — E(D|G =g) — E(DIT =t)+ E(D)) > > Wpiplg',g’ — 1,¢)DIDp(g’,g' —1,1)
t=1g=1 t'=1g'=1
i g i g
= > > Wpip(g,9—1,)DIDp(g,9 — 1,1) Z Z =g )P(T =t')(E(Dyv) — E(D|G = g¢') — E(D|T = t') + E(D))
t=1g=1 '=tg'=g
i g
= > > Wbip(g,9—1,)DIDp(g,9 — 1,t)P(G > g)P(T > ) (E(D|G > g,T > t) — E(D|G > g) — E(D|T > t) + E(D)).
t=1g=1
Similarly, one can show that
-
coo(D,Z) = Y Xg: DIDp(g,9— 1,)P(G > g)P(T > t) (E(D|G > g, T >t) — E(D|G > g) — E(D|T > t) + E(D)).
t=1g=1
Proof of 2

If D is binary, Model (1) and Assumptions 1, 3M, and 4M are satisfied, one can show that for
every (g,8) € {1,..,g} x {1,...7},
E(Dg) — E(Dgi—1) E(Dy-11) — E(Dy—14-1)

_ A, 1.
DIDp(g,9—1,t) % DIDp(g,9 — 1,1) g-1t

WDID(.gvg - ]-7t) =

This proof follows the same steps as those used in the proof of Theorem 3.1. Then, combining

the last display with the first point of the theorem yields the resulty

Theorem S2

Proof of 1

We have 8 = %, where Z is the residual from an OLS regression of T** x f(G) on the
constant and the group and time dummies. Let o, o, and a; respectively denote the coefficients
of the constant and of the group and time dummies in that regression. As G 1L T it follows
from the Frisch-Waugh theorem that the a; are equal to the coefficient of the time dummies in

a regression of 7** x f(G) on the constant and the time dummies alone. Therefore,
= E(T" x f(G)|T =t) = E(T™ x f(G)|T = 0) = {t > to} E(f(G)).

Similarly, as G 1L T, it follows from the Frisch-Waugh theorem that the o, are equal to the

coefficient of the group dummies in a regression of 7** x f(G) on the constant and the group
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dummies alone. Therefore,
ag = E(T™ x f(G)|G = g) — E(T™ x f(G)|G=0) = (f(9) — f(0)E(T™).
Then, we have
Z =T"f(G) —a—=T"E(f(G)) — (f(G) = f(0))E(T™).
Therefore, a few computations yield

_ conVJ(@IT = 1) con(V J(QIT =0)
cov(D, f(G)|T* =1) — cov(D, f(G)|T* =0)

Now, let us consider the numerator.
cou(Y, f(G)|T* = 1) = cov(Y, f(G)|T™ = 0)
= B((f(G)=E(f(G)Y|T™ =1) - E(f(G) — E(f(G)))Y[T™ = 0)
)

= E((f(G) = E(f(@)EY|G,T™ =1)|[T™ =1) = E(f(G) = E(f(G)EY|G,T™ = 0)[T™

= ilP(G =9)(fg) — E(f(G)))DIDy (g, 0)

= Zg;p@ =9)(fg) — E(f(G))) i:; DIDy (9,9 — 1)

= ilP(G =9g)(f(¢) — E(f(G))) i Whin(g, 9 —1)DIDE (9,9 — 1)

- ZWDID ,g—1)DID}(g,9 — 1) ZP — E(f(G)))

- ZWDID 1)DID} (9,9 — )P(G = g)(E(f(G)|G = g) — E(f(G)))-

Similarly, one can show that
cov(D, f(G)|T™ = 1) — cov(D, f(G)|T*™ = 0)

= Y DIDj;(g,9— 1)P(G > g)(E(f(G)|G > g) — E(f(G))).

g=1
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Proof of 2

The proof follows similar steps as that of point 2 of Theorem 1 and is therefore omitted. o

Theorem S3

We let hereafter 6 = (Fooo, ey F(]H, Floo, ey Flll; )\00, )\10, )\01, )\11).
Proof of 1

We already showed in the proof of Theorem 5.1 that each term of the bounds, except [ ydF q10(y)
and [ ydF 210(y), could be linearized. Therefore, it suffices to prove that these integrals can be

linearized as well. Let us focus on [ ydFa0(y), as the reasoning is similar for the other. An

integration by part yields

/yd%dm(y) - /ydfdlo(y)

[Fdlo — Fai0(y )} dy

/ [ /\OdFYd01 )> —my ()\OdFYdm (y))} dy + @ - Q) [ml (:\\Od> —my ()‘Od)} .

By assumption, the equation A\osFy,,, (y) = 1 admits at most one solution. Hence, by Point
2 of Lemma 6 and the chain rule, 6 — fygml [MoaFy,o, ()] dy + (T — y)ma (Xoa) is Hadamard
differentiable tangentially to (C°)* x R2. The result then follows from Lemma 4, the functional
delta method, and the functional delta method for the bootstrap.

Proof of 2

Let 0 = (Fooo, -, Fo11, F100, ---» F111, Mooy A0, Ao1, A11). By Lemma 6, for d € {0,1} and ¢ € Q,
0 — fygﬂcjo,d(y)dy, 0 — fyﬂfcm,d(y)dy, 0 — F;}qd(q), and 6 — Ea}ad(q) are Hadamard
differentiable tangentially to (C°)* x R2. Because A = Jsory Ecicoly) — Ferea(y)dy, A is also
a Hadamard differentiable function of 6 tangentially to (C°)* x R%. The same reasoning applies

for A, and for 7, and 7, for every ¢ € Q. The result follows as previously o

5 Technical lemmas
5.1 Lemmas related to identification

Lemma S1 Assume Assumptions 7 and 9 hold, and \og > 1. Then:
1. G4(Ty) is a bijection from S(Y') to [0,1];
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2. Ca(Ly) (S(Y)) = [0,1].

Proof: we only prove the result for d = 0, the reasoning being similar otherwise. One can show
that when /\00 > 1,

Go(Ty) = min (Ao Foor, max (Moo Foor + (1 — Xoo), Hy o (MoFbin))) - (72)

By Assumption 7, Ao Fo1; is strictly increasing. Moreover, S(Yio|D = 0) = S(Yoo|D = 0) implies
that H, ' is strictly increasing on [0,1]. Consequently, Hy "' o (AjgFpyy) is strictly increasing on
S(Y) since \jg < 1. Therefore, Go(T,) is strictly increasing on S(Y) as a composition of the
max and min of strictly increasing functions, which in turn implies that Go(T,) o Fyg} is strictly
increasing on [0, 1]. Moreover, it is easy to see that since S(Y1;|D = 0) = S(Y:|D = 0),

lim Hy' o (AoFour) © Fooi(y) = 0,

y—y
hHlH(;l e} ()\10F011) (0] F&ﬁ(y) S 1.
y—y
Hence, by Equation (72),
lim Go (L) (y) = 0, lim Go(L)(y) = 1. (73)
y—y Y=y

Finally, Go(Z,) o FO_(ﬁ is also continuous by Assumption 7, as a composition of continuous func-
tions. Point 1 then follows, by the intermediate value theorem.
Now, we have
~ PpojoFoio © Fioi 0 Go(Ly) — Poj11 o1t
Pojio — Poj11 '

(73) implies that Go(T,) is a cdf. Hence, by Assumption 7,

Co(Ly)

lim Co(Zy)(y) =0, 21/1_{% Co(Lo)(y) = 1.

Y=y

Moreover, Co(T,) is increasing by Assumption 9. Combining this with Assumption 7 yields

Point 2, since Cy(T) is continuous by Assumption 7 once more

Lemma S2 Suppose Assumptions 7 and 9 hold, pogo > 0 for g € {0;1} and Ao < 1. Then
there exists a sequence of cdf z’g such that

[e)

1. Tg(y) = To(y) for all y € S(Y);
2. Go(T%) is an increasing bijection from S(Y) to [0,1];

3. Co(TF) is increasing and onto [0,1].
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The same holds for the upper bound.

Proof: we consider a sequence (yx)ren converging to y and such that y, < 7. Since y, < 7, we
can also define a strictly positive sequence (n;)ren such that y + n, < 7. By Assumption 9, Hy

is continuously differentiable. Moreover,

/ —1
Fo10 © Fooo

/ —1
Fooo © Fooo

HY =

is strictly positive on S(Y) under Assumption 9. F{,; is also strictly positive on S(Y) under
Assumption 9. Therefore, using a Taylor expansion of Hy and Fjy1, it is easy to show that there

exists constants Ay, > 0 and Ao > 0 such that for all y <y’ € [yr, Y& + M)

Alk(yl — y), (74)
Ao (v — ). (75)

Ho(y') — Ho(y)
F011(y/) - Fon(l/)

IN IV

We also define a sequence (gx)ren by

(76)

. A1k (1 — Xoo) (To(yx) — To(yr))
ck = T (mC7 Ao Aap ) .

Note that as shown in (26), since Aoy < 1, 0 < Ty, Go(Tp), Co(Tp) < 1 implies that we must have
E S T07

which implies in turn that e, > 0. Consequently, since 0 < g5 < 1y, inequalities (74) and (75)
also hold for y < v € [yx, yr + €1)*.

We now define z’g. For every k such that e, > 0, let

Ty(y) if y <y
Th(y) = | Lolye) + UHL=LoW) () — ) if y € [y, yi + 4l
To(y) if y >y + e

For every k such that ¢, = 0, let

To(y) ify <y
Toy)=| 7
To(y) ity >y

Then, we verify that z’g defines a sequence of cdf which satisfy Points 1, 2 and 3. Under
Assumption 9, T,(y) is increasing, which implies that T%(y) is increasing on (¥, k). Since Ty(y)
is a cdf, T%(y) is also increasing on (yi + €, 7). Finally, it is easy to check that when g > 0,

TF(y) is increasing on [y, yr +x]. T% is continuous on (y, yx) and (yx, + €x, y) under Assumption
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7. It is also continuous at y, and y + ; by construction. This proves that T’ lg(y) is increasing

on S(Y'). Moreover,

im Th(y) = limTy(y) =0,

y—y y—y
lim TH(y) = limTy(y) = 1.
y—y Y=y

Hence, T% is a cdf. Point 1 also holds by construction of T¢(y).

GO(IIS) = XooFoo1 + (1 — /\OO)IIS is strictly increasing and continuous as a sum of the strictly
increasing and continuous function Aoy Fpo; and an increasing and continuous function. Moreover,
Go(T%) tends to 0 (resp. 1) when y tends to y (resp. to 7). Point 2 follows by the intermediate

value theorem.

Finally, let us show Point 3. Because Go(TF) is a continuous cdf, Co(TF) is also continuous and
converges to 0 (resp. 1) when y tends to y (resp. to 7). Thus, the proof will be completed if
we show that Co(Z§) is increasing. By Assumption 9, Co(T) is increasing on (y,yx). Moreover,
since Fy;, o)s, = Co(Th), Co(L}) is also increasing on (yy, + &, 7). Finally, when g, > 0, we have
that for all y < v’ € [yx, yr + €)%

Ho(XooFoor (y') + (1 — Xo0)LZ6(y")) — Ho(AooFoor () + (1 — Xa0)Z6 (y))
)

> A1 = Moo) (TW) - Th())

> A1k (1 — Aoo) (Zz(yk) To(yx)) o — )
> Aodor(y' —v)

> Ao (Fou(y') — Fou(y))

where the first inequality follows by (74) and Fyo1(y') > Foo1(y), the second by the definition of
TF and Ty(yx +er) > To(yx), the third by (76) and the fourth by (75). This implies that Co(T5)

is increasing on [y, yx + €], since

Ho(MooFoor + (1 — Xoo)Ls) — AoFon

Co(T5) = T

It is easy to check that under Assumption 7 Cy(Z%) is continuous on S(Y'). This completes the

proof o

5.2 Lemmas related to inference

In the following lemmas, we let, for any functional R, dRr denote the Hadamard differential of
R taken at F'. Whenever it exists, this differential is the continuous linear form satisfying

ARy (h) = Tim R(F +thy) — R(F)

lim p , for any h;y s.t. ||hy — hl|o — 0.
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In absence of ambiguity, we let the point at which the differential is taken implicit and simply
denote it by dR. In addition to the sets C°(©) and C'(0©), we also denote by D(O) (resp. D.(0))
the set of bounded cadlag (resp. cdfs) functions on ©. Once more, O is left implicit when it is

S(Y).

Also, for any (r, k) € N*, u = (uy, ...,u,) € R” and any function h = (hy,...h;)" from R” to R¥,

let [lull, = 325 |u;] and [|h]|, = max;—1 _xsup,cg- |hj(2)| denote the usual L' norm of u and

the supremum norm of h, respectively. The following inequality on ratios is used repeatedly in
the proofs of Theorems 5.1 and 5.2. It is probably well-known but we prove it for the sake of

completeness.

Lemma S3 Let (x1,y1) and (x2,y2) be such that y, > C > 0 and max(|x1—xs|, |y1 —y2|) < C/2.
Then

T T 1 T 2(1 + |z
=2 (371 — T2 — —2(y1 —92)>' < %maqul — x|, |1 —y2‘)2'

Proof:

T T 1 T — T
AL ($1 — T — —2(y1 - y2)> _ 23/2 {(:)32 — )+ —1(y1 — 1)
U1 Y2 Y2 Yy (5

2 Y2
As a result,
ot | i L+ [@1/y1] )
IR L R A - < —— 7 max(|zy — xa|, |11 — .
v U v ( 1 2 s (1 y2)>’ = 2 (|21 o, [y1 — yol)

Besides, y1 > y2 — |y1 — y2| > C/2. Thus,

< [2ally2 = | | Jor = 2 < (@
Y12 (0 2y1 \ Y2

x X2
Y1 Y2

The triangular inequality then yields

T z 1 T 21+ |z
oz - (951 — X3 — —2(y1 —y2)>' < %max(!ml — o), |y1 — v )

The following lemma is used to establish the asymptotic normality of the Wald-CIC estimator
in the proof of Theorem 5.1.

Lemma S4 Suppose that pyg > 0 for (d,g) € {0,1}* and let

9 = (F0007 F0017 ceey F1117 )\007 >\107 )\017 )\11)
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and
0 = (Fooo, Foor, -, 111, Moo, Ao, Aors Aaa).
Then
NG (5 - 9) — G,
where G denotes a gaussian process defined on S(Y)® x {0}*. Moreover, G is continuous in ils

k-th component (k € {1,...,8} if the corresponding Fyy is continuous.® Finally, the bootstrap is

consistent for 6.
Proof: let G,, denote the standard empirical process. We prove the result for

n= (F()oo, Foot, -+ F111,p1\00,p1\017171|107p1|11)

instead of §. The result on ¢ then follows as (Ago, Ao, Ao1, A11) is a smooth function of (p1j00, P1jo1, P1j10, P1j11)-
For any (y,d, g,t) € (S(Y) U {+00}) x {0,1}3, let
1{D = 1{G = Q\1{T =t} [1{Y <y} — F,
fun (Y, D, G, T) = TP = DG = g} g P <)~ Faply)]
dgt

fgt<YvD7G7T) = ]l{G = g}]l{T = t} [H{D = 1} _pl\gt} /pgt'

We have, for all (y,d, g,t) € (S(Y) U {—o00,+o0}) x {0,1}3,

Vit (Fanlw) ~ Faa)) = LS 1{D: = d}1{G: = g}{T: = (1Y < 0} — Fauy)

NPdgt
= J andgty

Ndgt

= andgty (1 + OP(]')) :

Similarly, \/n (ﬁugt — p1|gt) =G, fy: (1 4+ 0p(1)). Hence, letting
fy = (fOOOya ceey f111y, foo; f01; f10>f11)/7

we obtain \/n (7 —n) = G,f, (14 op(1)). Weak convergence of the left-hand side to a gaus-
sian process follows because each class {fay, 1y € S(Y)} is Donsker. Moreover, remark that
N (ﬁdgt(y) — ngt(y)> is the standard empirical process on the sample Z;, of random size
Ndge- Therefore (see, e.g. Theorem 3.5.1 in van der Vaart & Wellner, 1996), it converges in
distribution to a process B o Fy,, where B is a Brownian bridge. Hence, continuity follows as

long as Fyg is continuous.
Now let us turn to the bootstrap. Observe that
NPagt

Vi (Fiew) = Fan®)) = 226 frage

dgt

8Formally, the link between (d, g,t) and k is k = 1+t + 2g + 4t.
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where G}, denote the bootstrap empirical process. Because npgg:/ Mgt .1 and by consistency
of the bootstrap empirical process (see, e.g., van der Vaart, 2000, Theorem 23.7), the bootstrap

is consistent for 1 o

The next two lemmas allows us to use the functional delta method for the CIC estimators of
average and quantile treatment effects, both in the point and partially identified case, with and
without covariates.

Lemma S5 1. Let Ri(F), Fy, Fy, Fy, \, ) = M0 oA yn g poop By By Fy o\ p) =

pn—1
pFy—FioFy !

M_1°QQ(F3’A), with ¢1(F3,\) = AF3 and q2(F3,\) = AMF3 +1— \. Ry and Ry are
Hadamard differentiable at any (Fio, Fao, F30, Fao, Mo, A10) € (C1)* x [0, 00) x ([0, 00)\{1}),
tangentially to (C°)* x R?. Moreover, dR; ((C°)* x R?) and dRy ((C°)* x R?) are included
in C°.

2. Let R3(Fy) fy ma(F1)(y)dy and Ry(Fy, Fy) = fnyg(ml(Fl))(y)dy. Tangentially to C°,
Rs is Hadamard differentiable at any Fiy € D. and the equation Fio(y) = 1 admits at

most one solution on S(OY) Tangentially to (C°)?, Ry is Hadamard differentiable at any
(Fio, Fao) such that Fyg satisfies the same conditions as for Ry and Fyy is continuously
differentiable on [0,1]. The same holds if we replace my (and the equation Fio(y) = 1) by
My (and Fio(y) =0).

3. Let R4(F, Q”X,QQ‘X,QE”X) = fm%(x) fol Q1|X{Q;‘§[Qg|x(u|l’>|$]|ZE}dUdF< ) where m{%(m) =
E(D1y|X = x). Then, tangentially to C°(S(X)) xC°((0,1) x 8(X))* , Ry is Hadamard dif-
ferentiable at any (Fo, Q1o|x, Q20x, Q30/x) such that Fy € De(S(X)), (Qux(-|7), Qo x(|2), Qax(.]x)) €
(C10,1))? for all z € S(X) and G(z) = mi)(z fo Quox{Qax |

Qzo)x (ulz)|z]|x}du is of
bounded variation. Moreover, for all hy such that hy(inf S(X)) = hy

(sup S(X)) =0,
AR oo s) = [ mfyte) [ ke @iy Qo (1121, 2] + 2. [Quoy © Q] (@)
x | =hs |Qalx[Quox ()], 2| + ha(u, 2)]| } dudFy () - / hy (2)dG(z).

Proof of 1. We first prove that ¢, (Fy, Fy, F3) = F} o Fy ' o Fy is Hadamard differentiable at
(Fio, Fao, Fio) € (C1)*. Because (Fig, Fyo) € (C1)?, the function ¢y : (Fy, Fy, F3) — (Fio Fy ', Fy)
is Hadamard differentiable at (Fyq, Fa, F39) tangentially to D x C° x D (see, e.g., van der Vaart
& Wellner, 1996, Problem 3.9.4), and therefore tangentially to (CO)B. Moreover computations
show that its derivative at (Fio, Foo, F3o) satisfies

Flyo I, 2_01

dpo(hy, he, hs) = [ hyo oyt — =22 ——20 ho o Ficl hs ).
P2 (h1, ha, hs) <1O 20 FQIOOFQ_Ol 20 L9y 3)
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This shows that dgs ((C0)3> C (€YY

Then, the composition function ¢3 : (U, V) — UoV is Hadamard differentiable at any (Uy, V) €
(CY)?, tangentially to C° x D (see, e.g., van der Vaart & Wellner, 1996, Lemma 3.9.27), and
therefore tangentially to (C°)°. It is thus Hadamard differentiable at (Fyq o Fiy', Fy), and one
can show that dos ((60)2) C CY Thus, by the chain rule (see van der Vaart & Wellner, 1996,
Lemma 3.9.3), ¢1 = ¢3 0 ¢ is also Hadamard differentiable at (Fyo, Fao, F30) tangentially to
(C)3, and dey ((00)3) cco.

Finally, because ¢;(F5,\) is a smooth function of F3 and A, and R; is a smooth function of
(o1 (F1, Fy,q1(F5,\)), Fy, ), it is also Hadamard differentiable at (Fio, Fso, F30, Fa0, Aoo, A1o) tan-
gentially to (C°)* x R?, and dR; ((C°)* x R?) C C°.

Proof of 2. We only prove the result for R4 and m;, the reasoning being similar (and simpler)
for R3 and M. For any collections of functions (hy) and (hs) in C°, respectively converging

uniformly towards h; and hsy in C°, we have

Ry(Fio + the, Fao + thie) — Ry(Fio, Fao)
t

Y
= / htg oml(Fm +tht1)(y)dy
y
+ /y Fyo omy(Fio + thy) — Fag 0 my(Fio)
t
y

(y)dy.

Consider the first integral I;.

|hua 0 ma (Fio + thet ) (y) — ha o ma(Fio) (y)]
< iz 0o ma(Fro + thi)(y) — ha o ma(Fio + thi)(y))|
+  [ha oma(Fio + thi)(y) — ha 0 ma(Fio)(y)]
< e = halloo 4 [ho 0 M (Fro + thet)(y) — ko 0 ma(Fro)(y)]-

By uniform convergence of h;; towards ho, the first term in the last inequality converges to 0
when t goes to 0. By convergence of my(Fio + thy) towards my(Fip) and continuity of hy, the

second term also converges to 0. As a result,
hia 0 My (Fio + the)(y) — he o ma(Fio)(y).
Moreover, for ¢t small enough,
|z 0 ma (Fio + tha)(y)| < ko] + 1.

Thus, by the dominated convergence theorem, I; — fyy he o my(Fio)(y)dy, which is linear in hy

and continuous since the integral is taken over a bounded interval.

41



Now consider the second integral I5. Let us define y as the solution to Fio(y) = 1 on (y,7) if

there is one such solution, y L= otherwise. We prove that almost everywhere,

Fog omy(Fio(y) + thtliy)) — Fy o (Fo(y)) — Foo(Fio(y)h(y)1{y <y, }- (77)

As Fy is increasing, for y <y , Fio(y) < 1, so that for ¢ small enough, Fio(y) + tha(y) < 1.

Therefore, for ¢ small enough,

Fyo oma(Fro(y) +tha(y)) — Faoormi(Fro(y)) _ Fao o (Fio(y) + tha(y)) — Fao © Fio(y)
t t
_ (Fy(Fo(y)) + () (Fio(y) + tha(y) — Fio(y))
t

= (Fyo(Fro(y) +e(t)ha(y)
for some function &(t) converging towards 0 when ¢ goes to 0. Therefore,

Fay o my (Fio(y) + tha(y)) — Fao o mi(Fio(y))
t

so that (77) holds for y <y . Now, if § >y >y , Fio(y) > 1 because Iy is increasing. Thus,

— Foo(Fio(y))ha(y),

for t small enough, Fio(y) + thu(y) > 1. Therefore, for ¢ small enough,
Fay o my (Fio(y) + tha(y)) — Fao o mi(Fio(y))
t
so that (77) holds as well. Thus, (77) holds almost everywhere.

=0,

Now, remark that m; is 1-Lipschitz. As a result,

Fao o my(Fio(y) + thia(y)) — Fao 0 ma(Fio(y)) '

¢ < ‘|F2,O||oo|ht1(y)|

< F5olloe (Iha ()] + [lher = Palfoo) -

Because ||hy — hil|oo = 0, [h1(y)] + [|her — hil]oo < |R1(y)| + 1 for ¢ small enough. Thus, by the

dominated convergence theorem,

/y Fag omy(Fig + thy) — Fag 0 my(Fio)
y

t iy~ [ (o))

The right-hand side is linear with respect to hy. It is also continuous since the integral is taken

over a bounded interval. The second point follows.

Proof of 3. Combining the same reasoning as in part 1 with a dominated convergence ar-
gument, we obtain that Rs(Qqx,Q2x,Q3x) = fol Q1|X{Q2_‘§([Q3|X(u|x)]as]|a:}du is Hadamard
differentiable at (Q1o|x, Q20x, @30/x), With

ARs(h, ho, hs) = /0 i [Qat Qo (wlo)] 2] + 0. [Quox 0 Q5] (Qux (wlo)]o), 2
X [—hg [ngl‘X[Q30|X(u|x)], x] + hs(u, x)} } du.
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Besides, by the same reasoning as in the proof of Lemma 20.10 of van der Vaart (2000),
Re(Fx,G) = [mi)(2)G(z)dFx(x) is Hadamard differentiable at any (Fy,G) such that Fyx

is a c¢df and G is of bounded variation. Moreover,
dRg(h1, hy) = —/hld[m% x G +/ [miy X he] dFx.
The result follows by the chain rule 4
Lemma S6 Assume Assumptions 2, 7, 9, 12 and S2 hold. Let
0 = (Fooo, -+, Foir, F100, -5 F1115 Moo, A10s Aot A1n)-

- 7 —1
For d € {0,1} and ¢ € Q, 0 f;ﬂcwvd(y)dy, 0 — fgy Feica(y)dy, 0 — Feroqlq) and
0 — Ea}c,d(Q) are Hadamard differentiable tangentially to (C°)* x R?.

Proof: the proofis complicated by the fact that even if the primitive cdf are smooth, the bounds
Feoioq and FCIC,d may admit kinks, so that Hadamard differentiability is not trivial to derive.
The proof is also lengthy as F;¢ 4 and Feje,q take different forms depending on d € {0,1} and
whether \gg < 1 or A\gg > 1. Before considering all possible cases, note that by Assumption 9,
Feoroa= Ca(Ly)-

1. Lower bound F,q,

—1
For d € {0,1}, let Uy = 2ttty il

) , so that

Ty = Mo(mi (Ua)),

CuT,) = MaFann — Hy ();i)ldfiml-i- (1— AOd)Id).

Also, let
Yoy = inf{y : Uy(y) > 0} and v}, = inf{y : Uy(y) > 1}.
When ), and y}, are in R, we have, by continuity of Uy, Ua(yg,) = 0 and Uy(yi,;) = 1. Conse-
quently, Ty(y5q) = Ua(Y5q) and Ly(yty) = Ua(yiy)-
Case 1: A\gg <1 and d = 0.

-1
In this case, Uy = Ho (Alofglxlo)o—/\ooﬂml- We first prove by contradiction that yj, = +o0o. First,

because lim, - Up(y) < 1, we have

lim Ty(y) = Mo( lim Uy(y)) < 1.

y——4oo y——+00

Thus, by Assumption 9, Up(y) < 1 for all y, otherwise Tj(y) would be decreasing. Hence,

Yip = +00.
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Therefore, when yf, < 400, there exists y such that 0 < Up(y) < 1. Assume that there exists
y' > y such that Uy(y’) < 0. By continuity and the intermediate value theorem, this would
imply that there exists y” € (y,7') such that Uy(y”) = 0. But since both Uy(y) and Uy(y”) are
included in [0, 1], this would imply that T is strictly decreasing between y and y”, which is not
possible under Assumption 9. This proves that when yj, < 400, there exists y such that for
every y >y, 0 < Up(vy') < 1.

Consequently, T, = Uy for every y' > y. This in turn implies that Co(T;) = 0 for every y' > v.
Moreover, Cy(T,) is increasing under Assumption 9, which implies that Cy(ZL,) = 0 for every y.
This proves that when yj, < +o00, Cyo(L,) = 0. This implies that &, is empty, which violates
Assumption S2. Therefore, under Assumption 9, we cannot have yj, < 400 when Mgy < 1.
Because y, = +00, T, = 0. Therefore,

MoFo11(y) — Ho (Moo Foo1(y))

Co(L)(y) = -

The map F' +— fs(y) F(y)dy is linear and continuous with respect to the supremum norm at any
continuous F because S(Y) is bounded. It is thus Hadamard differentiable, tangentially to C°.
Therefore, by Assumption S2, the first point of Lemma S5, and the chain rule,

0 / ECIC,O (y)dy
S(Y)

is Hadamard differentiable tangentially to (C°)* x R2.

Then, the map F +— F~! is Hadamard differentiable at any F with strictly positive derivative,
tangentially to C° (see, e.g., van der Vaart, 2000, Lemma 21.4). Moreover, by Assumption S2,
Co(T,) is increasing and differentiable with strictly positive derivative on S, which is equal to
S(Y) in this case. Thus, by the first point of Lemma 5 and the chain rule, 0 — Fio(q) is
Hadamard differentiable tangentially to (C°)* x R? for any ¢ € Q.

Case 2: \gg > 1 and d = 0.

In this case,

AooFoo1 — Ho_l()\loFou)

U
0 Xoo — 1

Therefore, lim,_,, Uy(y) = 0, and lim, 3 Up(y) > 1. As a result, —oo < y}, < +oo, and
To(yiy) = Uo(yi‘o)iz 1. This in turn implies Co(Zy)(y},) = 0. Combining this with Assumption
9 implies that Co(L,)(y) = 0 for every y < yi,,. Moreover, Assumption 9 also implies that
T,(y) =1 for every y > yi). Therefore,

0 if y < yips
Co(TLo)(y) = by —Ho(\ Y T
10F011(y) Ho()\;i)o_Fi)(n(y)-i-(l 00)) if y > yﬁ)-
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Thus, Co(Ly)(y) = Mo(R2(For1, Fo1o0, Fooo, Foors Aoos A10)), Where Rs is defined as in Lemma S5.
Hadamard differentiability of fyﬂ Co(T,)(y)dy tangentially to (C°)* x R? thus follows by Points 1

and 2 of Lemma S5, the chain rule and the fact that by Assumption 13, (Fo11, Fo10, Fooo, Foo1, Moo, A1o) €
(C)* x [0,00) x ([0,00)\{1}). As for the LQTE, note that by Point 1 of Lemma S5, 6 — Cy(T)

is Hadamard differentiable as a function on (y%,7), tangentially to (C°)* x R?. By Assumption

S2, Cy(L,) is also strictly increasing and differentiable with positive derivative on S, = (yi,, 7).
Thus, by point 1 of Lemma S5, Hadamard differentiability of F' — F~*(q) at (Co(Ty),q) for

q € Q tangentially to C°, and the chain rule, 6 — F E}ao(q) is Hadamard differentiable tangen-
tially to (CY)* x R2.

Case 3: A\ggp <1 and d=1.

In this case,

U Mot Fioo — Hy 'Oq Fin)
! Aot — 1 '

A11 > 1 implies that /\%1 < 1. Therefore, y* = Ffﬁ(/\%l) is in S(Y') under Assumption 7.
Case 3.a: \op < 1, d=1 and y§; < y".

We have Uy (y*) = %(_yl)_l < 1. Assume that U;(y*) < 0. Since y8; < y*, this implies that
there exists y < y* such that 0 < U;(y). Since U; is continuous, there also exists ¢y < y* such
that 0 < U;(y') < 1. By continuity and the intermediate value theorem, this finally implies that
there exists 3" such that ¢y < y” and U;(y”) = 0. This contradicts Assumption 9 since this

would imply that T, is decreasing between 3y’ and y”. This proves that

Therefore, T, (y*) = Uy(y*), which in turn implies that Cy(T,)(y*) = 0. By Assumption 9, this
implies that for every y < y*, C1(T;)(y) = 0.

For every y greater than y*,

Ao1F100 (?/) —1

Ul (y> = )\01 -1

Ui(y) < 1. Since Uy(y*) > 0 and y +— %{%’H is increasing, U;(y) > 0. Consequently, for
y=y", Ii(y) = Ui(y)

Finally, we obtain

0 if y <y,
CZ)W) = | ruruw-1

v if y > y*.

The result follows as in Case 2 above.

45



Case 3.b: \oo < 1, d=1 and y§; > y*.

For all y > y*, Uy(y) = Am%o_(?_l This implies that y& = Fo5(1/Xo1) < +oo and Uy (y) = 0.
’\‘”I;:)‘;—O_(?{)_l is increasing, U;(y) > 0 for every y > y,. Moreover, U;(y) < 1.

Therefore, T, (y) = Uy (y) for every y > y,. Beside, for every y lower than y, T;(y) = 0. As a

Because y —

result, i "
A1 Fi11(y)—Hi(Mo1Fio1(y . u
UL = | g™ L
B VP LY > Yor-
This implies that
] ]
/ 01(21)(2/)6@2 )\111_ 1 [)\11/ F111(Z/)dy—R4(>\o1F101,H1) )
Y Y

where R, is defined in Lemma S5. 0 — fyﬂ Fi11(y)dy is Hadamard differentiable at Fjq1, tan-
gentially to C°. As shown in the proof of Lemma S5, H; = Fijg o Fl_o(l] is a Hadamard differ-
entiable function of (Fiyg, Fioo), tangentially to (C°)%. Thus, by Lemma S5 and the chain rule,
Ry(No1 Fho1, Hy) is a Hadamard differentiable function of (Fio1, Fi10, Fi00), tangentially to (C°)3.
The result follows for fyﬂ Ci(T)(y)dy.

The previous display also shows that C;(T';) is Hadamard differentiable as a function of
(F1007 F1017 F1107 F1117 )\017 )\11>

when considering the restriction of these functions to (y,yg;) only. By Assumption S2, Cy(T)
is also a differentiable function with positive derivative on (y, yg;). Therefore, using once again
the first point of Lemma S5 and the chain rule, § — C1(T;)"'(¢) is Hadamard differentiable
tangentially to (C°)* x R?, for ¢ € (C1(T)(y), C1(L1)(y5,)) = (0,¢1). The same holds when con-
sidering the interval (yg,7) instead of (y, yg;). Hence, 0 — Fcjo4(q) is Hadamard differentiable
tangentially to (C°)* x R?, for ¢ € (0,1)\{q:} = Q.

Case 4: Moo >1 and d=1.

In this case,

Hi ' (M1 Fian) — Aot Fioo
1— 2o '

U1:

Therefore, lim, ,, U;(y) = 0, which implies that yj; > —oco. As above, A;; > 1 implies that

y* is in S(Y') under Assumption 7. U;(y*) = HT_;;SE’(ZJ) > 1, which implies that yj4, < 4o0.

Therefore, reasoning as for Case 2, we obtain

Ci(Ty)(y) = A —Hi(\ —A I
11F111(y) H1(>\1011_Flloo(y)+(1 01)) if y > yiLl‘
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The result follows as in Case 2 above.

2. Upper bound ch,d.

1
Let V; = XoaFao1—H; (Aizi?ff‘ﬂduﬂlfhd)))’ so that

Ty = My(mi(Va)),

_ MaFuyin — Hy (MogFaor + (1 — Xog)T
Cd(Td) _ 1d4'd11 d()\o: iml ( Od) d).

Also, let
Yog = inf{y : Vy(y) > 0}, yiy =inf{y: Vi(y) > 1}.

Note that when yg, and y7, are in R, by continuity of V; we have V;(yg,;) = 0 and V(y},) = 1.
Consequently, T4(ysy) = Va(ys,) and Ta(y¥,) = Va(y?,).

Case 1: A\gg < 1 and d = 0.

In this case,

Hy ' (MoFoin + (1 — Aio)) — AooFoor

V p—
0 1 — Ao

Since A9 < 1, limy_gVO(y) > 0 and can even be greater than 1.

First, let us prove by contradiction that yj, = —oco. Vo(y) < 1 for every y < y},. Using the fact
that lim, ,, Vo(y) > 0 and that T\, must be increasing under Assumption 9, one can also show
that 0 < I/I)(y) for every y < 9%, This implies that Ty(y) = Vo(y) which in turn implies that
Co(To)(y) = 1 for every y < y¥,. Since Co(T,) must be increasing under Assumption 9, this
implies that for every y € S(Y),

Co(To)(y) = 1.

This implies that Sy is empty, which violates Assumption S2. Therefore, Yiy = —00.

yly = —oo implies that lim,,, To(y) = 1. This combined with Assumption 9 implies that
To(y) = 1 for every y € S(Y). Therefore,

)\10F011(?/) — Hy ()\00F001(y) + (1 - )\00))

Co(To)(y) = o 1

The result follows as in Case 1 of the lower bound.
Case 2: Mog > 1 and d = 0.

In this case,

v XooFoor — Hy ' (MoFou + (1 — M)
0 = .
Moo — 1
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Since Ao < 1, lim,,, Vo(y) < 0. Therefore, yg5, > —oc.
Case 2.a): oo > 1, d =0 and y5, < +oc.

If 48 € R, To(yg) = Vo(yg) which in turn implies that Co(To)(yy,) = 1. By Assumption 9, this
implies that for every y > 42, Co(To)(y) = 1. For every y < 48, To(y) = 0, so that

— MoFo11 — Ho (Moo Foor)

Co(Ty) = .
o(To) Mo~ 1
As a result,
A10Fo11(y)—Ho (Moo Foo1(y)) ify <
_ — Y = Yoo
GTow=|, ! o= b
1LY > Yoo-

The result follows as in Case 2 of the lower bound.
Case 2.b): Moo > 1, d =0 and y, = +0o0.
If yy, = +o0, To(y) = 0 for every y € S(Y), so that

)\10F011(y) — H ()\ooFom(y))

Co(To)(y) = o1

The result follows as in Case 1 of the lower bound.
Case 3: A\ggp <1 and d=1.

In this case,

Vo= XorFior — Hy "M Fin — (A — 1))
1 — .
)\01 —1

A11—1

u=l <

Therefore, lim, ,, Vi(y) = 0, which implies that y7;, > —oco. A;; > 1 implies that

Therefore, y* = Ffﬁ(’\i\llzl) is in S(Y') under Assumption 7.

Case 8.a): Ao < 1, d =1 and y};, > y*.

We have Vi(y*) = X1 Fio1(y*)/(Mo1 — 1) > 0. If y* < ¥, Vi(y*) < 1. Therefore, 0 < Ty (y*) =
Vi(y*) < 1. This implies that C;(T)(y*) = 1 which in turn implies that Cy(T;)(y) = 1 for every
y > y* under Assumption 9.

For every y lower than y*,

o1 Fio1(y)

Vily) = o1

Vi(y) > 0. Since by assumption y{; > y*, Vi(y) < 1. Consequently, for y < y*, we have
T1(y) = Vi(y). As a result,

A1 F111(y)

Ol(Tl)(y) = 1 At ity >y

if y <7,
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The result follows as in Case 2 of the lower bound.
Case 3.b): Moo < 1, d=1, and y}; < y*.

First, Vi(y¥,) = 1, implying T, (y?,) = 1. By Assumption 9, T;(y) = 1 for all y > y¥,. Second,
ity <y, <y, Vi(y) = %ﬂll@) Thus V; is increasing on (—oo,y};). Moreover Vi(y};) = 1.

Hence, Vi(y) < 1 for every y < y¥,. Because we also have Vi(y) > 0, T1(y) = Vi(y) for every
Y < i

As a result,
A11F111(y)

_ it y <y,
CiT)W) = | A B monr 1-\ -
11F111(y) 1,\(110i1101(y)+ 01) if y > yijl'

The result follows as in Case 3.b) of the lower bound. Note that here, C1(T})(y) is kinked
at y¥,, with C1(T1)(y?,) = ¢2. Hence, we have to exclude this point of the domain on which
0 — F;}Cyl(q) is Hadamard differentiable.

Case 4: A\op > 1 and d = 1.

In this case,

Hi'(MiFin — (A — 1) = A Fio

Vi =
! 1 — Ao

lim, 5 Vi(y) = 1, which implies that yj; < +o0o0. As above, A;; > 1 implies that < 1.

Therefore, y* = Fm(’\llnl) is in S( ) under Assumption 7. Vi(y*) = _’\(’IIF—K?I(Z’) < 0. Since

T is increasing under Assumption 9, one can show that this implies that yg, > y*. Therefore,

)\11 1
A11

reasoning as for Case 2, we obtain that

A11F111(y)—Hi(Mo1F1o1(y)) if v <y
el _ y_y )
aTw=|, M £y > g
01-

The result follows as in Case 2 of the lower bound

For any random variable U, we let hereafter mY denote the series estimator of mY(z) = E(U|X =
x) with K, terms in the series estimator. Then, for any other random variable J € {0,1}, we
let mY_,(z) = mY/(z)/m’(x) denote our estimator of my_,(z) = E(U|J =1,X = z).

Lemma S7 Suppose that (I;, J;,U;, Vi, X;)iz1...n are i.i.d. and parts 2 and 3 of Assumption 1}

.....

hold. Suppose also that m” and m’Y are s times continuously differentiable. Then ||7’ﬁg:1(x) —mY_, HOO =

op(n=Y4).

Proof: by Theorem 4 of Newey (1997) and parts 2 and 3 of Assumption 14,

max ([’ = m?V|| i’ = m|| ) = Op (K |[VEu/n+ K;7]).
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Moreover, by the conditions on K, the right-hand side is an op(n~'/*). Hence, with probability
approaching one, the left-hand side is smaller than c¢/2, where ¢ = inf,cs(x) m’(z) > 0. Then,

by Lemma S3 and the triangular inequality,

_ L.
s = miaalle < 2 [ = m ™+ flmi | flm” = m ][]
201+ [Jmial.) Ny

+

s ([~ | ! — ]| )?
o o

c2

The result follows g

The proof of Theorem 5.2 uses repeatedly Lemma S8 below, which establishes a linear repre-
sentation result on two-steps estimators involving a nonparametric first step. Let [ and J be
two dummy variables and let U and V' be two other random variables. In the proof of Theorem
5.2, I and J are functions of D, G and T, U is D or Y and V is a function of X. Let also
v = E[VE[U|X,J = 1]|I = 1] and

;}\/ _ Z?:l IZWm?:l(‘XVZ)
Z?:l I;

The following lemma shows that under suitable conditions, 7 admits a linear representation.

Lemma S8 Suppose that (I;, J;,U;, V;, Xi)iz1, . n are i.i.d. and parts 2 and 3 of Assumption 14
hold. Suppose also that v — E(U?|X = z) is bounded, x — E(JU|X =z), x — E(J|X = 1)
and E(IV|X = x) are s times continuously differentiable, E(|V]*) < oo, P(J =1|X) >p >0
almost surely and P(I = 1) > 0. Then

(Xi) = 70) + AM(Xi) Ji(Ui — m5_,(X3))
PI=1)

V(A =) = % 12;: Li(Vimyy +op(1),  (78)

where N(xz) = E(IV|X =x)/E(J|X = z).

Proof: let 3 = LS LVimY_y(X;) and By = E(IVmY_;(X)). We first prove that 3 is root-n
consistent and can be linearized. We follow Frolich (2007, pp.62-69) by checking that Condi-
tions 6.1-6.6 of Newey (1994) are satisfied, except for 6.4-(i): we check instead that his weaker
Condition 5.1-(i) is satisfied, since 6.4-(i) is only needed for the consistency of the asymptotic
variance estimator. We adopt the same notation as Newey (1994), by letting go = (go1, go2) =
(7, m?Y, Gla) = (@, @Y, Z = (L, Jiy Xe, U ViYs m(Z,g,8) = IV (X)/g2(X) — B and
m(Z,g) = m(Z, g o).

First, remark that E[(J — E(J|X))?|X] < 1/4 and E[(JU — E(JU|X))?* X] < E(U%X), which
is bounded by assumption. Hence, Condition 6.1 holds. Conditions 6.2 and 6.3 are satisfied here
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by parts 2 and 3 of Assumption 14, as shown in page 156 of Newey (1997). To check Assumption

5.1-(i), let
14 91(X)

D(Z,g;8,9) = 5H(X) N(X) = 92(X)

Let C' = p, so that [|ge|l,, > C. By Lemma S3 applied to 21 = IVgi(X), y1 = g2(X),
T = IV go1(X) and ya = go2(X), with g satisfying |lg — g0l < C/2,

X ga(X)

im(Z,g) —m(Z, g0) — D(Z,9 — go; B, 90)|

21+ [VmY_ (X
2Ot COD e (Vs — gl 192 — 00l

20+ Vi, ()
LA

L+ VD llg = 9oll%

so Condition 5.1-(i) holds. Now let us turn to Condition 6.4-(ii). Using Newey’s notation, we
check it for d = 0. First, E[|[V]}] < co and there exists Ky such that |mY_,(z)] < Ky on S(X).
Thus,

E[1+|[Vmi_j(X)D|IV]’] < oo.
Then, here a = s/r and (o(K,) < C1 K, for some constant C; (see Newey, 1994, p.1371). There-

fore, the two statements of Condition 6.4-(ii) hold because K, [\/Kn/n + KQS/T} = o(n~Y*) by
part 3 of Assumption 14.

We check Condition 6.5 with d = 1. A similar reasoning as above shows that

V
D(Z.g:8.90) < L1+ K)ol

which implies the first statement. The second and third statement follow from the same reasoning
as in Frolich (2007), p.68, and from the conditions s > 3r and K[ /n — 0. Finally, Condition
6.6-(i) is satisfied with 0(X) = A(X) (1, —mY_,(X)). Then Condition 6.6-(ii) holds by applying
the same reasoning as in Frolich (2007), pp.68-69, and because both gy and ¢ are s times
differentiable.

Hence, Conditions 6.1-6.6 of Newey (1994) hold. By the proof of his Theorem 6.1, this implies
that his Conditions 5.1-5.3 also hold. Then, by his Lemma 5.1,

Vi (3 - 60) - % Z m(Zi, go) + 6(X:) (Jil; — m”" (X0), (Ji = m”(X,)))" + op(1)
- % S Vimb (X0 = o+ XD HU; = ml (X)) + 0p(1).

Now, applying Lemma S3 with z; = B, = ﬁ([Z = 1), o = fp and yo = P(I = 1), we obtain,
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with a large probability,

§—70—ﬁ [B—ﬁo—%(ﬁ(le)—P(I:1)>H
2(1 + |7l) 3 Sor 2
< mmax(lﬁ—ﬁo\,lP(I— 1) = P(I=1)|)".

Moreover, the right-hand side is an op(1/4/n). By rearranging the left-hand side, we finally

obtain the linear decomposition (78) o

Finally, the asymptotic normality of the CIC-type estimator with covariates, established in Part
3 of Theorem 5.2, uses the following Lemma S9, together with Part 3 of Lemma S5 above.

Lemma S9 1. Under Assumptions 7X, 14 and 15, we have

Vi [Fahe () = Fihy ()] = 7= 30 5 = 100 = X(5(r) < 0) + on(D),

= pdgt

where J; = E [fy|X(X/ﬁ(T>)XX/}_1 and the op(1) is uniform over (1,z) € (0,1) x S(X).
2. For any (z,7) € S(X) x (0,1), let G(r,x) = (Fy,, (2), ﬁiﬁlx(T), ﬁl_oé‘x(T),ﬁl_l(l)‘x(T)). Then

\/ﬁ[é—G} — G,

where the convergence is in the space of continuous process on (0,1) x S(X) and G denotes a

continuous gaussitan process defined on that space.

Proof: Part 1. We prove that uniformly over (7, ),

Viagt [Fogh(r) = Eagh (7)] = }Z 20X (7~ (Y~ X{Bage(r) < 0}) +op(L).  (79)
The result then follows directly from ngg:/[npagt] LN 1, as in the proof of Lemma S4. To alleviate
the notational burden, we let the dependency in (d, g, t) implicit hereafter. For instance, we let
T denote Zyy, n denote ngy, etc.. We denote by P, the empirical distribution of (X,Y’) on Z,
P denote its true distribution and G,, = y/n(P, — P). We write, e.g., Ph as a shortcut for
[ hdP. We also let p,5(x,y) = (1 — L{y — 2’8 < 0})(y — 2'B), hrp(x,y) = z(r — L{y < 2'B}),
R = {prp, (1,8) € [0,1] x B} and H = {h.p,(7,5) € [0,1] x B}. To establish our proof of
(79), we first show that B(T) is uniformly consistent in 7. Then we prove a uniform Bahadur

representation on B\(T)

a. Uniform consistency
Let M.(8) = —Pp;p and M, () = —P,p,p. First, R is Glivenko-Cantelli because it satisfies
the conditions of pointwise compact classes considered in Example 19.8 in van der Vaart (2000).
As a result,

sup | Vs (8) = M5 (8) — 0.
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Following the proof of Theorem 5.7 of van der Vaart (2000), this implies

0< sup M (B(r)) — M, (B(r)) — 0. (80)

7€(0,1)

Second, using Equation (4.3) of Koenker (2005), we obtain, for any £,
M-(B(1)) = Mr(8) = Elp,(Y = X'B8)] = E[p-(Y — X'B(7))]

=K

X'(B=B(7))
/O Fy|X(S+X/6(7'))—Fy|X(X/B(T))dS] .

Because inf(, ) fy|x(y|z) = ¢ > 0 and X is assumed to have bounded support, this yields

M (B(7)) = M- (8) > K ||B(r) = B]I", (81)

for some constant K > 0 independent of 7. Fix ¢ > 0. If sup ¢

’B(T) —6(7’)” > ¢, then
there exists 7 such that HB(T@) — B(TO)H > ¢/2. Then (81) implies that

sup M, (8(1)) — M.(B(r)) > Ke?/4,

7€(0,1)
which happens with proability approaching 0 in view of (80). The result follows.
b. Uniform Bahadur representation

Let X (resp. Y) denote the matrix (resp. the vector) stacking all X; (resp. Y;), for ¢ € Z. For all
7 € (0, 1), there exists a subset h C Z of r elements such that the corresponding submatrix (resp.
subvector) X (h) (resp. Y (h)) of X (resp. of Y) satisfies 3(7') = X (h)7'Y (h) (see Koenker, 2005,
p-34). Note also that by Assumptions 14-15, Y and X are in general position with probability
one (see Koenker, 2005, p.35). Then

> Xi(r — WY < X{B(r)} = (r — DX (h)s,,
ich
where ¢, is a vector of one of size r. Moreover, by Theorem 2.1 of Koenker (2005), there exists
A= (A1, ..., \) with |A\;] <1 such that
> Xl — 1{Y; < X[B(r)} = X(h)'A,
ich

where h denotes the complement of h in Z. By Assumption 15, || X;||, < C for some C > 0.
Hence, we obtain,

3 Xi(r - 1{Y; < X[B(r)})

1€T

<2 ||IXil|, < 2Cr,

1 ich
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which holds uniformly over (d, g,t, 7). Thus,

P

sup — 0.

7€(0,1)

Jr X7 - 1% £ KB

€T

1

Now, using Ph; g;) = 0, we obtain
—ﬁfhﬁm—Mwﬂ=®Vﬁm—Mwﬂﬁ%MWWWﬂ%
uniformly over 7. Moreover, by the intermediate value theorem,
VAP [, 50y = hepin | = B [ frix(X'(5() + (1= 1) B0)X) XX | v (B(r) = ().
for some random ¢, € [0,1]. Now, by uniform consistency of 3(r) and continuity of fyix(]z),

sup
7€(0,1)

P (X/(t8(r) + (L £)8(2)IX) — frx (X(65(r) + (1= 1)8(r) 1X)| 5 0.

Because fy|x(.|r) is bounded and S(X) is compact, Theorem 2.20 in van der Vaart (2000)
implies that

VAP [ 5y = B = (1 + 0p (1) v (B(7) = B(7))
where the op(1) is uniform over 7.
Next, remark that H = H; + Hay, with Hy = {(z,y) — a7,7 € [0,1]} and Hy = {(z,y) —
—z1{y —2/8 <0},5 € B}. The sets H; and {(z,y) — y — 2'B}, f € B} are Donsker as subsets

of vector spaces (see van der Vaart, 2000, Example 19.17). Still by Example 19.17 in van der
Vaart, 2000, this imlies that Hs, and then also H, is Donsker. Besides,

P

2 2
=B |IX|;

) ~ 2
hedtr) ot WY < XB(n)} - 1Y < X'B(r)}] }

< C?B || Fyx (X'B(m) — Frx (X'8(7))|

< K'sup fyx(y|z) HB(T) - B(T)H '

(y,) 1

0. Then, following the proof of Theorem 19.26 of

2
hefiry = hrpn)||
van der Vaart (2000), we get, uniformly over T,

Hence, sup ¢ o) P ‘

P
G [Py 50y = Hrsin)| 0.

For all 7 € (0,1), the smallest eigenvalue of J-! is greater than the one of cE[X X']. It is thus
bounded away from 0, uniformly over 7. This, combined with the boundedness of S(X) and

what precedes, yields

sup |2’ J, G, |:h773(7') — hTﬁ(T)} ‘ 0.

x,T
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Equation (79) follows.

2. We prove the result for 1 only. By the Cramer-Wold device, a similar reasoning applies for
G. By the stability properties of Donsker classes (see, e.g.,van der Vaart, 2000, Example 19.18),

it is easy to see that the set of functions
{(d,g,t,0,9) = Wd=d,g=3G,t = FJ(y — 1y — /B < 0}), (F,7,8) € S(X) x (0,1) x B}

is Donsker, for any ((z g,t) € {0,1}3. Hence,
1
— Y 2 TXi (r— 1{Y; — X[B(r) < 0}) = G,
Vg

where the convergence is in the space of continuous process on (0,1) x S(X) and G denotes a
continuous gaussian process. Part 1 and, e.g. Theorem 18.10-(iv) of van der Vaart (2000) then

imply the result
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