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Abstract

In this paper, we consider semiparametric model averaging of the nonlinear dynamic time

series system where the number of exogenous regressors is ultra large and the number of auto-

regressors is moderately large. In order to accurately forecast the response variable, we propose

two semiparametric approaches of dimension reduction among the exogenous regressors and

auto-regressors (lags of the response variable). In the first approach, we introduce a Ker-

nel Sure Independence Screening (KSIS) technique for the nonlinear time series setting which

screens out the regressors whose marginal regression (or auto-regression) functions do not make

significant contribution to estimating the joint multivariate regression function and thus reduces

the dimension of the regressors from a possible exponential rate to a certain polynomial rate,

typically smaller than the sample size; then we consider a semiparametric method of Model

Averaging MArginal Regression (MAMAR) for the regressors and auto-regressors that survive

the screening procedure, and propose a penalised MAMAR method to further select the re-

gressors which have significant effects on estimating the multivariate regression function and

predicting the future values of the response variable. In the second approach, we impose an

approximate factor modelling structure on the ultra-high dimensional exogenous regressors and

use a well-known principal component analysis to estimate the latent common factors, and then
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apply the penalised MAMAR method to select the estimated common factors and lags of the

response variable which are significant. Through either of the two approaches, we can finally

determine the optimal combination of the significant marginal regression and auto-regression

functions. Under some regularity conditions, we derive the asymptotic properties for the two

semiparametric dimension-reduction approaches. Some numerical studies including simulation

and an empirical application are provided to illustrate the proposed methodology.

JEL subject classifications: C14, C22, C52.

Keywords: Kernel smoother, penalised MAMAR, principal component analysis, semiparametric

approximation, sure independence screening, ultra-high dimensional time series.

1 Introduction

Suppose that Yt, t = 1, . . . , n, are n observations collected from a stationary time series process. In

practical applications, it is often interesting to study the multivariate regression function:

m(x) = E(Yt
∣∣Xt = x), (1.1)

where Xt = (Z
ᵀ

t ,Y
ᵀ

t−1)
ᵀ

with Zt =
(
Zt1, Zt2, . . . , Ztpn

)ᵀ
being a pn-dimensional vector of exogenous

regressors and Yt−1 = (Yt−1, Yt−2, . . . , Yt−dn)
ᵀ

being a vector of dn lags of the response variable

Yt, the superscript ᵀ stands for the transpose of a vector (or a matrix). In the nonlinear dynamic

time series analysis, it is reasonable to assume that both pn and dn increase with the sample size

n, and the dimension of the exogenous regressors can be even larger than the sample size. Such

an ultra-high dimensional time series setting poses challenges in estimating the regression function

m(x) and the subsequent forecasting of the response. It is well known that when the dimension

of Xt is very small (say 1 or 2), the conditional regression function m(x) can be well estimated by

using some commonly-used nonparametric methods such as the kernel method, the local polynomial

method and the spline method (c.f., Green and Silverman, 1994; Wand and Jones, 1995; Fan and

Gijbels, 1996). However, if the dimension is large, owing to the so-called “curse of dimensionality”,

the direct use of nonparametric methods might lead to a very poor estimation result and forecasting

performance. Hence, various nonparametric and semiparametric models, such as additive models,

varying coefficient models and partially linear models, have been proposed to deal with the curse

of dimensionality in the literature for the dynamic time series data (c.f., Teräsvirta, Tjøstheim and

Granger, 2010).
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It is well-known that the approach of model averaging is useful for improving the accuracy of

predicting future values of the response variable in time series analysis. The model averaging ap-

proach advocates combining several candidate models by assigning higher weights to better candidate

models. Under the linear regression setting with the dimension of covariates smaller than the sample

size, there has been an extensive literature on various model averaging methods, see, for example,

the AIC and BIC model averaging (Akaike, 1979; Raftery, Madigan and Hoeting, 1997; Claeskens

and Hjort, 2008), the Mallows Cp model averaging (Hansen, 2007; Wan, Zhang and Zou, 2010) and

the jackknife model averaging (Hansen and Racine, 2012). However, in the case of ultra-high di-

mensional time series, these methods may not perform well and the associated asymptotic theory

may fail. To address this issue, Ando and Li (2014) propose a two-step model averaging method

for a high-dimensional linear regression with the dimension of the covariates larger than the sample

size and shows that such a method works well both theoretically and numerically; while Cheng and

Hansen (2015) study the model averaging of the factor-augmented linear regression by applying a

principal component analysis on the high-dimensional covariates to estimate the unobservable factor

regressors. In this paper, we relax the restriction of linear modelling framework assumed in Ando

and Li (2014) and Cheng and Hansen (2015) by studying the nonlinear dynamic regression structure

for (1.1) which would provide a much more flexible framework.

Throughout the paper, we assume that the dimension of the exogenous variables Zt, pn, may

be diverging at certain exponential rate of n, which indicates that the dimension of the potential

explanatory variables Xt, pn+dn, can be diverging at an exponential rate, i.e., pn+dn = O(exp{nδ0})
for some positive constant δ0. To ensure that our semiparametric model averaging technique is feasible

both theoretically and numerically, we need to reduce the dimension of the potential covariates Xt

and select those variables that make a significant contribution to predicting the response. To achieve

the aim of dimension reduction, in this paper we propose two methods both of which include two

steps in the respective algorithm.

The first dimension reduction method is called as the “KSIS+PMAMAR” method which reduces

the dimension of the potential covariates via two steps introduced as follows. In the first step, we

use the approach of Kernal Sure Independence Screening (KSIS) which is motivated by Fan and

Lv (2008)’s Sure Independence Screening (SIS) method in the context of linear regression to screen

out the unimportant marginal regression (or auto-regression) functions, and reduce the dimension

of the potential covariates from the exponential rate to a certain polynomial rate of n which is

typically smaller than the sample size. This is done by first calculating the correlations between the

response variable Yt and the marginal regression or auto-regression functions E[Yt|Xtj] with Xtj being
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a univariate element chosen from Zt or Yt−1, and then removing those covariates whose corresponding

correlation coefficients are smaller than a pre-determined threshold value. Then we denote the chosen

covariates by X∗t =
(
X∗t1, X

∗
t2, . . . , X

∗
tqn

)ᵀ
which may include both exogenous variables and lags of the

response variable, where qn might be diverging but is smaller than the sample size n. In the second

step, we propose using a semiparametric method of model averaging lower dimensional regression

functions to estimate

m∗(x) = E(Yt|X∗t = x), (1.2)

where x = (x1, x2, . . . , xqn)
ᵀ
. Specifically, we approximate the conditional regression function m∗(x)

by an affine combination of one-dimensional conditional component regressions

m∗j(xj) = E(Yt|X∗tj = xj), j = 1, . . . , qn.

Each marginal regression m∗j(·) can be treated as a “nonlinear candidate model” and the number of

such nonlinear candidate models is qn. A weighted average of m∗j(xj) is then used to approximate

m∗(x), i.e.,

m∗(x) ≈ w0 +

qn∑
j=1

wjm
∗
j(xj), (1.3)

where wj, j = 0, 1, . . . , qn, are to be determined later and can be seen as the weights for different

candidate models. As the conditional component regressions m∗j(X
∗
tj) = E(Yt|X∗tj), j = 1, . . . , qn, are

unknown but univariate, in practice, they can be well estimated by various nonparametric approaches

which would not suffer from the curse of dimensionality problem. By replacing m∗j(X
∗
tj), j = 1, . . . , qn,

by their corresponding nonparametric estimates m̂∗j(X
∗
tj), we have the following “approximate linear

model”:

Yt ≈ w0 +

qn∑
j=1

wjm̂
∗
j(X

∗
tj). (1.4)

To further select the significant components m∗j(X
∗
tj) in (1.4), we use the penalisation device to

force some weights to zero as penalisation with linear regression models. For example, Tibshirani

(1996, 1997) proposes the penalised least squares estimation with the L1 penalty, which is well

known as the least absolute shrinkage and selection operator (LASSO). Frank and Friedman (1993)

and Fu (1998) study the penalised regression with general Lq penalty, which leads to the bridge

regression. Fan and Li (2001) and Fan and Peng (2004) use the smoothly clipped absolute deviation

(SCAD) penalty in the penalised likelihood method to carry out the estimation and variable selection

simultaneously. Bühlmann and van de Geer (2011) review the recent developments on this popular

topic. As in Fan and Li (2001), we will select the significant covariates and estimate the optimal
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weights simultaneously in the second step and use the optimal combination of the significant marginal

regressions for predicting the response. This method is called as Penalised Model Averaging MArginal

Regression (PMAMAR).

The second dimension-reduction method is called as “PCA+PMAMAR” which is also a two-step

procedure. In the first step, we assume that the ultra-high dimensional exogenous regressors Zt

satisfy the approximate factor model which has been commonly used in economic and financial data

analysis (c.f., Chamberlain and Rothschild, 1983; Fama and French, 1992; Stock and Watson, 2002;

Bai and Ng, 2002, 2006):

Ztk = (b0
k)

ᵀ
f0t + utk, k = 1, . . . , pn, (1.5)

where b0
k is an r-dimensional vector of factor loadings, f0t is an r-dimensional vector of common

factors, and utk is called an idiosyncratic error. We then apply the technique of Principal Component

Analysis (PCA) to estimate the latent factors which capture a large proportion of the information

contained in the exogenous regressors Zt, and thus achieve dimension reduction on Zt. We denote

X∗t,f =
(
f̂
ᵀ

t ,Y
ᵀ

t−1

)ᵀ

=
(
f̂t1, . . . , f̂tr, . . . ,Y

ᵀ

t−1

)ᵀ

as a combination of the estimated factor regressors and lags of response variables, where f̂t is the

estimated factor via PCA and f̂tk is the k-th element of f̂t, k = 1, . . . , r. In the second step, we use

the PMAMAR method sketched above to conduct a further selection among the (r+dn)-dimensional

regressors X∗t,f and determine an optimal combination of the significant marginal regressions. The

proposed PCA+PMAMAR method substantially generalises the framework of factor-augmented lin-

ear regression or autoregression (c.f., Stock and Watson, 2002; Bernanke, Boivin and Eliasz, 2005;

Bai and Ng, 2006; Pesaran, Pick and Timmermann, 2011; and Cheng and Hansen, 2015) to the

general semiparametric framework.

Under some regularity conditions, we establish the asymptotic properties of the developed semi-

parametric approaches. For the KSIS procedure, we establish the sure screening property, which

indicates that the covariates whose marginal regression functions make truly significant contribution

to estimating the multivariate regression function m(x) would be selected with probability approach-

ing one to form X∗t which would undergo a further selection in the PMAMAR procedure. For the

PCA approach, we show that the estimated latent factors are uniformly consistent with convergence

rate dependent on both n and pn, and the kernel estimation of the marginal regression with esti-

mated factor regressors is asymptotically equivalent to that with rotated true factor regressors. For

the PMAMAR procedure in either of the two semiparametric dimension-reduction approaches, we
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prove that the optimal weight estimation enjoys the well-known sparsity and oracle property with

the estimated values of the true zero weights forced to be zero.

In addition, we further discuss some extensions of the proposed semiparametric dimension re-

duction approaches such as an iterative KSIS+PMAMAR procedure when implementing them in

practice. Through the simulation studies, we show that our methods outperform some existing

methods in terms of forecasting accuracy, and often have low prediction errors whose values are

close to those using the oracle estimation. Finally, we apply the developed semiparametric model

averaging methods to forecast the quarterly inflation in the UK and compare the results with those

using other commonly-used methods.

The rest of the paper is organised as follows. The semiparametric model averaging methods

are introduced in Section 2. The asymptotic theory of the developed methodology is established

in Section 3. Section 4 discusses some extensions when the methods are implemented in practice.

Section 5 gives some numerical studies to investigate the finite sample behaviour of the proposed

methodology and Section 6 concludes this paper. The proofs of the asymptotic results are provided

in an appendix.

2 Semiparametric model averaging

In this section, we introduce two types of semiparametric model averaging approaches which result in

dimension reduction of the possibly ultra-high dimensional covariates. One is the KSIS+PMAMAR

method proposed in Section 2.1 and the other is the PCA+PMAMAR method proposed in Section

2.2.

2.1 KSIS+PMAMAR method

As mentioned in Section 1, the KSIS+PMAMAR method is a two-step procedure. We first generalise

Fan and Lv (2008)’s SIS method to the ultra-high dimensional dynamic time series and general

semiparametric setting to screen out covariates whose nonparametric marginal regression functions

have low correlations with the response. Then, for the covariates that have survived the screening,

we propose a PMAMAR method with first-stage kernel smoothing to further select the exogenous

regressors and the lags of the response variable which make significant contribution to estimating

the multivariate regression function m∗(·) defined in (1.2), and use an optimal combination of the

significant marginal regression and auto-regression functions to approximate m∗(·).
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Step one: KSIS. For notational simplicity, we let

Xtj =
{ Ztj, j = 1, 2, . . . , pn,

Yt−(j−pn), j = pn + 1, pn + 2, . . . , pn + dn.

To measure the contribution made by the univariate covariate Xtj to estimating the multivariate

regression function m(x) = E(Yt
∣∣Xt = x), we consider the marginal regression function defined by

mj(xj) = E
(
Yt|Xtj = xj

)
, j = 1, . . . , pn + dn,

which is the projection of Yt onto the univariate component space spanned by Xtj. This function

can also be seen as the solution to the following nonparametric optimisation problem(c.f., Fan, Feng

and Song, 2011):

min
gj∈L2(P)

E
[
Yt − gj(Xtj)

]2
,

where L2(P) is the class of square integrable functions under the probability measure P. We estimate

the functions mj(·) by the commonly-used kernel smoothing method although other nonparametric

estimation methods such as the local polynomial smoothing and smoothing splines method are also

applicable. The kernel smoother of mj(xj) is

m̂j(xj) =

∑n
t=1 YtKtj(xj)∑n
t=1Ktj(xj)

, Ktj(xj) = K
(Xtj − xj

h1

)
, j = 1, . . . , pn + dn, (2.1)

where K(·) is a kernel function and h1 is a bandwidth. To make the above kernel estimation method

feasible, we simply assume that the initial observations, Y−1, Y−2, . . . , Y−dn , of the response are avail-

able.

When the observations are independent and the response variable has zero mean, the paper of

Fan, Feng and Song (2011) ranks the importance of the covariates by calculating the L2-norm of

m̂j(·), and chooses those covariates whose corresponding norms are larger than a pre-determined

threshold value which usually tends to zero. However, in the time series setting for j such that

j − pn →∞, we may show that under certain stationarity and weak dependence conditions,

m̂j(xj)
P→ mj(xj)→ E[Yt].

When E[Yt] is non-zero, the norm of m̂j(·) would tend to a non-zero quantity. As a consequence, if

covariates are chosen according to the L2-norm of their corresponding marginal regression functions,
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quite a few unimportant lags might be chosen. To address this issue, we consider ranking the im-

portance of the covariates by calculating the correlation between the response variable and marginal

regression:

cor(j) =
cov(j)√
v(Y ) · v(j)

=
[ v(j)
v(Y )

]1/2
, (2.2)

where v(Y ) = var(Yt), v(j) = var(mj(Xtj)) and cov(j) = cov(Yt,mj(Xtj)) = var(mj(Xtj)) = v(j).

Equation (2.2) indicates that the value of cor(j) is non-negative for all j and the ranking of cor(j)

is equivalent to the ranking of v(j) as v(Y ) is positive and invariant across j. The sample version of

cor(j) can be constructed as

ˆcor(j) =
ˆcov(j)√

v̂(Y ) · v̂(j)
=
[ v̂(j)
v̂(Y )

]1/2
, (2.3)

where

v̂(Y ) =
1

n

n∑
t=1

Y 2
t −

( 1

n

n∑
t=1

Yt

)2
,

ˆcov(j) = v̂(j) =
1

n

n∑
t=1

m̂2
j(Xtj)−

[ 1

n

n∑
t=1

m̂j(Xtj)
]2
, j = 1, 2, . . . , pn + dn.

The screened sub-model can be determined by,

Ŝ =
{
j = 1, 2, . . . , pn + dn : v̂(j) ≥ ρn

}
, (2.4)

where ρn is a pre-determined positive number. By (2.3), the criterion in (2.4) is equivalent to

Ŝ =
{
j = 1, 2, . . . , pn + dn : ˆcor(j) ≥ ρ�n

}
,

where ρ�n = ρ
1/2
n /

√
v̂(Y ). As in Section 1, we let X∗t =

(
X∗t1, X

∗
t2, . . . , X

∗
tqn

)ᵀ
be the covariates chosen

according to the criterion (2.4).

The above model selection procedure can be seen as the nonparametric kernel extension of the

SIS method, which is first introduced by Fan and Lv (2008) in the context of linear regression models.

Recent extensions to nonparametric additive models and varying coefficient models can be found in

Fan, Feng and Song (2011), Fan, Ma and Dai (2014) and Liu, Li and Wu (2014). However, the

existing literature only considers the case where the observations are independent, which might be

too restrictive for data arising from economics and finance. In this paper, we relax such a restriction

and show that the developed KSIS approach works well for the ultra-high dimensional time series
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and semiparametric setting. Another difference between our paper and the paper by Fan, Feng and

Song (2011) is that the kernel smoothing method is used in this paper to estimate the marginal

regression functions whereas the B-splines method is used in Fan, Feng and Song (2011). Hence, a

different mathematical tool is needed to derive our asymptotic theory.

Step two: PMAMAR. We next consider the multivariate regression function defined in (1.2)

which can be seen as an approximation to the multivariate regression function defined in (1.1)

after screening out the unimportant covariates. In order to avoid the curse of dimensionality, we

approximate m∗(·) by an affine combination of one-dimensional marginal regression functions m∗j(·)
with j = 1, . . . , qn. Such a method is called as model averaging marginal regressions or MAMAR (Li,

Linton and Lu, 2015) and is applied by Chen et al (2015) in the dynamic portfolio choice with many

conditioning variables. Since some of the marginal regression functions may not have a significant

effect on estimating m∗(·), they should be excluded in order to further enhance the predictability

of the semiparametrically approximated model. Hence, we next introduce a penalised version of

the MAMAR technique to simultaneously determine which marginal regression functions should be

included in the model averaging and obtain the affine weights.

The first stage in the semiparametric PMAMAR procedure is to estimate the marginal regression

functions m∗j(·) by the kernel smoothing method:

m̂∗j(xj) =

∑n
t=1 YtKtj(xj)∑n
t=1Ktj(xj)

, Ktj(xj) = K
(X∗tj − xj

h2

)
, j = 1, . . . , qn, (2.5)

where h2 is a bandwidth. Let

M̂(j) =
[
m̂∗j(X

∗
1j), . . . , m̂

∗
j(X

∗
nj)
]ᵀ

be the estimated values of

M(j) =
[
m∗j(X

∗
1j), . . . ,mj(X

∗
nj)
]ᵀ

for j = 1, . . . , qn. By using (2.5), we have

M̂(j) = Sn(j)Yn, j = 1, . . . , qn,

where Sn(j) is the n × n smoothing matrix whose (k, l)-component is K lj(X
∗
kj)/

[∑n
t=1Ktj(X

∗
kj)
]
,

and Yn = (Y1, . . . , Yn)
ᵀ

.

As introduced in (1.4) of Section 1, the second stage of PMAMAR is to replace the marginal

regression functions by their corresponding kernel estimates, and then use the penalised approach
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to select the significant marginal regression functions. Without loss of generality, we further assume

that E(Yt) = 0, otherwise, we can simply replace Yt by Yt − Y = Yt − 1
n

∑n
s=1 Ys. It is easy to

show that the intercept term w0 in (1.3) is zero under this assumption. In the sequel, we let wo :=

won = (wo1, . . . , woqn) be the optimal values of the weights in the model averaging. Based on the

approximate linear modelling framework (1.4), for given wn = (w1, . . . , wqn)
ᵀ
, we define the objective

function by

Qn(wn) =
[
Yn − M̂(wn)

]ᵀ[
Yn − M̂(wn)

]
+ n

qn∑
j=1

pλ(|wj|), (2.6)

where

M̂(wn) =
[
w1Sn(1) + . . .+ wqnSn(qn)

]
Yn = Sn(Y)wn,

Sn(Y) =
[
Sn(1)Yn, . . . ,Sn(qn)Yn

]
, and pλ(·) is a penalty function with a tuning parameter λ. The

vector M̂(wn) in (2.6) can be seen as the kernel estimate of

M(wn) =
[ qn∑
j=1

wjm
∗
j(X

∗
1j), . . . ,

qn∑
j=1

wjm
∗
j(X

∗
nj)
]ᵀ

for given wn. Our semiparametric estimator of the optimal weights wo can be obtained through

minimising the objective function Qn(wn):

ŵn = arg min
wn
Qn(wn). (2.7)

There has been extensive discussion on the choice of the penalty function for parametric linear

and nonlinear models. Many popular variable selection criteria, such as AIC and BIC, correspond to

the penalised estimation method with pλ(|z|) = 0.5λ2I(|z| 6= 0) with different values of λ. However,

as mentioned by Fan and Li (2001), such traditional penalised approaches are expensive in compu-

tational cost when qn is large. To avoid the expensive computational cost and the lack of stability,

some other penalty functions have been introduced in recent years. For example, LASSO which is the

L1-penalty pλ(|z|) = λ|z| has been extensively studied by many authors (see, for example, Bühlmann

and van de Geer, 2011); Frank and Friedman (1993) consider the Lq-penalty pλ(|z|) = λ|z|q for

0 < q < 1; Fan and Li (2001) suggest using the SCAD penalty function which is defined by

p′λ(z) = λ

[
I(z ≤ λ) +

a0λ− z
(a0 − 1)λ

I(z > λ)

]
with pλ(0) = 0, where a0 > 2, λ > 0 and I(·) is the indicator function.
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2.2 PCA+PMAMAR method

It is well known that we may also achieve dimension reduction through the use of factor models when

analysing high-dimensional time series data. In this subsection, we assume that the high-dimensional

exogenous variables Zt follow the approximate factor model defined in (1.5). The number of the

common factors, r, is assumed to be fixed throughout the paper, but it is usually unknown in

practice and its determination method will be discussed in Section 4 below. From the approximate

factor model, we can find that the main information in the exogenous regressors may be summarised

in the common factors f0t which have a much lower dimension. The aim of dimension reduction

can thus be achieved, and it may be reasonable to replace Zt with an ultra-high dimension by the

unobservable ft with a fixed dimension in estimating the conditional multivariate regression function

and predicting the future value of the response variable Yt. In the framework of linear regression

or autoregression, such an idea has been frequently used in the literature since Stock and Watson

(2002) and Bernanke, Boivin and Eliasz (2005). However, so far as we know, there is virtually no

work on combining the factor model (1.5) with the nonparametric nonlinear regression. The only

exception is the paper by Härdle and Tsybakov (1995) which consider the additive regression model

on principal components when the observations are independent and the dimension of the potential

regressors is fixed. The latter restriction is relaxed in this paper.

Instead of directly studying the multivariate regression function m(x) defined in (1.1), we next

consider the multivariate regression function defined by

mf (x1,x2) = E
(
Yt|f0t = x1,Yt−1 = x2

)
, (2.8)

where Yt−1 is defined as in Section 1, x1 is r-dimensional and x2 is dn-dimensional. In order to

develop a feasible estimation approach for the factor augmented nonlinear regression function in

(2.8), we need to estimate the unobservable factor regressors f0t . This will be done through the PCA

approach.

Step one: PCA on the exogenous regressors. Letting

B0
n = (b0

1, . . . ,b
0
pn)

ᵀ
and Ut = (ut1, . . . , utpn)

ᵀ
,

we may rewrite the approximate factor model (1.5) as

Zt = B0
nf

0
t + Ut. (2.9)

We next apply the PCA approach to obtain the estimation of the common factors f0t . Denote

Zn = (Z1, . . . ,Zn)
ᵀ

, the n × pn matrix of the observations of the exogenous variables. We then
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construct F̂n =
(
f̂1, . . . , f̂n

)ᵀ

as the n× r matrix consisting of the r eigenvectors (multiplied by
√
n)

associated with the r largest eigenvalues of the n×n matrix ZnZ
ᵀ

n/(npn). Furthermore, the estimate

of the factor loading matrix (with rotation) is defined as

B̂n =
(
b̂1, . . . , b̂pn

)ᵀ

= Zᵀ

nF̂n/n,

by noting that F̂ ᵀ

nF̂n/n = Ir.

As shown in the literature (see also Theorem 3 in Section 3.2 below), f̂t is a consistent estimator

of the rotated common factor Hft, where

H = V̂−1
(
F̂ ᵀ

nF0
n/n
) [

(B0
n)

ᵀ
B0
n/pn

]
, F0

n =
(
f01 , . . . , f

0
n

)ᵀ
,

and V̂ is the r × r diagonal matrix of the first r largest eigenvalues of ZnZ
ᵀ

n/(npn) arranged in

descending order. Consequently, we may consider the following multivariate regression function with

rotated latent factors:

m∗f (x1,x2) = E
(
Yt|Hf0t = x1,Yt−1 = x2

)
. (2.10)

In the subsequent PMAMAR step, we can use f̂t to replace Hf0t in the semiparametric procedure.

The factor modelling and PCA estimation ensure that most of the useful information contained in

the exogenous variables Zt can be extracted before the second step of PMAMAR, which may lead

to possible good performance in forecasting Yt through the use of the estimated common factors.

In contrast, as discussed in some existing literature such as Fan and Lv (2008), when irrelevant

exogenous variables are highly correlated with some relevant ones, they might be selected into a

model by the SIS procedure with higher priority than some other relevant exogenous variables, which

results in high false positive rates and low true positive rates and leads to loss of useful information

in the potential covariates, see, for example, the discussion in Section 4.1.

Step two: PMAMAR using estimated factor regressors. As in Section 1, we define

X̂∗t,f =
(
f̂
ᵀ

t ,Y
ᵀ

t−1

)ᵀ

=
(
f̂t1, . . . , f̂tr,Y

ᵀ

t−1

)ᵀ

,

where f̂tk is the k-th element of f̂t, k = 1, . . . , r. We may apply the two-stage semiparametric

PMAMAR procedure which is exactly the same as that in Section 2.1 to the process
(
Yt, X̂

∗
t,f

)
,

t = 1, . . . , n, and then obtain the estimation of the optimal weights ŵn,f . To save the space, we

next only sketch the kernel estimation of the marginal regression function with the estimated factor

regressors obtained via PCA.

12



For k = 1, . . . , r, define

m∗k,f (zk) = E
[
Yt|f̃ 0

tk = zk

]
, f̃ 0

tk = e
ᵀ

r(k)Hf0t ,

where er(k) is an r-dimensional column vector with the k-th element being one and zeros elsewhere,

k = 1, . . . , r. As in Section 2.1, we estimate m∗k,f (zk) by the kernel smoothing method:

m̂∗k,f (zk) =

∑n
t=1 YtK̃tk(zk)∑n
t=1 K̃tk(zk)

, K̃tk(zk) = K
( f̂tk − zk

h3

)
, j = 1, . . . r, (2.11)

where h3 is a bandwidth. In Section 3.2 below, we will show that m̂∗k,f (zk) is asymptotically equivalent

to m̃∗k,f (zk) which is defined as in (2.11) but with f̂tk replaced by f̃ 0
tk. The latter kernel estimation

is infeasible in practice as the factor regressor involved is unobservable. As we may show that the

asymptotic order of m̂∗k,f (zk) − m̃∗k,f (zk) is oP (n−1/2) under some mild conditions (c.f., Theorem 3),

the influence of replacing f̃ 0
tk by the estimated factor regressors f̂tk in the PMAMAR procedure is

asymptotically negligible.

3 The main theoretical results

In this section, we establish the asymptotic properties for the methodologies developed in Section 2

above. The asymptotic theory for the KSIS+PMAMAR method is given in Section 3.1 and that for

the PCA+PMAMAR method is given in Section 3.2.

3.1 Asymptotic theory for KSIS+PMAMAR

In this subsection, we first derive the sure screening property for the developed KSIS method which

implies that the covariates whose marginal regression functions make significant contribution to esti-

mating the multivariate regression function m(x) would be chosen in the screening with probability

approaching one. The following regularity conditions are needed in the proof of this property.

A1. The process {(Yt,Xt)} is stationary and α-mixing with the mixing coefficient decaying at a

geometric rate: α(k) ∼ cαθ
k
0, where 0 < cα <∞ and 0 < θ0 < 1.

A2. Let fj(·) be the marginal density function of Xtj, the j-th element of Xt. Assume that fj(·) has

continuous derivatives up to the second order and infxj∈Cj fj(xj) > 0, where Cj is the compact
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support of Xtj. For each j, the conditional density functions of Yt for given Xtj exists and

satisfies the Lipschitz continuous condition. Furthermore, the length of Cj is uniformly bounded

by a positive constant.

A3. The kernel function K(·) is a Lipschitz continuous and bounded probability density function

with a compact support. Let the bandwidth satisfy h1 ∼ n−θ1 with 1/6 < θ1 < 1.

A4. The marginal regression function mj(·) has continuous derivatives up to the second order and

there exists a positive constant cm such that supj supxj∈Cj
[
|mj(xj)|+|m′j(xj)|+|m′′j (xj)|

]
≤ cm.

A5. The response variable Yt satisfies E[exp{s|Yt|}] <∞ where s is a positive constant.

Remark 1. The condition A1 imposes the stationary α-mixing dependence structure on the obser-

vations, which is not uncommon in the time series literature (c.f., Bosq, 1998; Fan and Yao, 2003).

It might be possible to consider a more general dependence structure such as the near epoch depen-

dence studied in Lu and Linton (2007) and Li, Lu and Linton (2012), however, the technical proofs

would be more involved. Hence, we impose the mixing dependence structure and focus on the ideas

proposed. The restriction of geometric decaying rate on the mixing coefficient is due to the ultra-high

dimensional setting and it may be relaxed if the dimension of the covariates diverges at a polynomial

rate. The conditions A2 and A4 give some smoothness restrictions on the marginal density functions

and marginal regression functions. To simplify the discussion, we assume that all of the marginal

density functions have compact support. Such an assumption might be too restrictive for time series

data, but it could be relaxed by slightly modifying our methodology. For example, if the marginal

density function of Xtj is the standard normal density which does not have a compact support, we

can truncate the tail of Xtj in the KSIS procedure by replacing Xtj with XtjI
(
|Xtj| ≤ ζn

)
and ζn

divergent to infinity at a slow rate. The condition A3 is a commonly-used condition on the kernel

function as well as the bandwidth. The strong moment condition on Yt in A5 is also quite common

in the SIS literature such as Fan, Feng and Song (2011) and Liu, Li and Wu (2014).

Define the index set of “true” candidate models as

S =
{
j = 1, 2, . . . , pn + dn : v(j) 6= 0

}
.

The following theorem gives the sure screening property for the KSIS procedure.

Theorem 1. Suppose that the conditions A1–A5 are satisfied.
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(i) For any small δ1 > 0, there exists a positive constant δ2 such that

P

(
max

1≤j≤pn+dn

∣∣∣v̂(j)− v(j)
∣∣∣ > δ1n

−2(1−θ1)/5
)

= O
(
M(n) exp

{
−δ2n(1−θ1)/5

})
, (3.1)

where M(n) = (pn + dn)n(17+18θ1)/10 and θ1 is defined in the condition A3.

(ii) If we choose the pre-determined tuning parameter ρn = δ1n
−2(1−θ1)/5 and assume

min
j∈S

v(j) ≥ 2δ1n
−2(1−θ1)/5, (3.2)

then we have

P
(
S ⊂ Ŝ

)
≥ 1−O

(
MS(n) exp

{
−δ2n(1−θ1)/5

})
, (3.3)

where MS(n) = |S|n(17+18θ1)/10 with |S| being the cardinality of S.

Remark 2. The above theorem shows that the covariates whose marginal regressions have not too

small positive correlations with the response variable would be included in the screened model with

probability approaching one at a possible exponential rate of n. The condition (3.2) guarantees that

the correlations between the marginal regression functions and the response for covariates whose

indices belong to S are bounded away from zero, but the lower bound may converge to zero. As

pn + dn = O(exp{nδ0}), in order to ensure the validity of Theorem 1(i), we need to impose the

restriction δ0 < (1 − θ1)/5, which reduces to δ0 < 4/25 if the order of the optimal bandwidth in

kernel smoothing (i.e., θ1 = 1/5) is used. Our theorem generalises the results in Fan, Feng and Song

(2011) and Liu, Li, Wu (2014) to dynamic time series case and those in Ando and Li (2014) to the

flexible nonparametric setting.

We next study the asymptotic properties for the PMAMAR method including the well-known

the sparsity and oracle properties. As in Sections 1 and 2, we recall that qn = |Ŝ| and the dimension

of the potential covariates is reduced from pn + dn to qn after implementing the KSIS procedure. As

above, we let X∗t be the KSIS-chosen covariates, which may include both the exogenous regressors

and lags of Yt. Define

an = max
1≤j≤qn

{
|p′λ(|woj|)|, |woj| 6= 0

}
and

bn = max
1≤j≤qn

{
|p′′λ(|woj|)|, |woj| 6= 0

}
.

We need to introduce some additional conditions to derive the asymptotic theory.
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A6. The matrix

Λn :=

 E
[
m∗1(X

∗
t1)m

∗
1(X

∗
t1)
]

. . . E
[
m∗1(Xt1)m

∗
qn(X∗tqn)

]
...

...
...

E
[
m∗qn(X∗tqn)m∗1(Xt1)

]
. . . E

[
mqn(X∗tqn)mqn(X∗tqn)

]


is positive definite with the largest eigenvalue bounded. The smallest eigenvalue of Λn, χn, is

positive and satisfies qn = o(
√
nχn).

A7. The bandwidth h2 satisfies

nh42 → 0, n
1
2
−ξh2 →∞, q2n(τn + h22) = o(χn) (3.4)

as n→∞, where ξ is positive but arbitrarily small, and τn =
(

logn
nh2

)1/2
.

A8. Let an = O(n−1/2χ−1n ), bn = o(χn), pλ(0) = 0, and there exit two positive constants C1 and C2

such that
∣∣p′′λ(ϑ1)− p′′λ(ϑ2)

∣∣ ≤ C2|ϑ1 − ϑ2| when ϑ1, ϑ2 > C1λ.

Remark 3. The condition A6 gives some regularity conditions on the eigenvalues of the qn × qn
positive definite matrix Λn. Note that we allow that some eigenvalues tend to zero at certain rates.

In contrast, most of the existing literature dealing with independent observations assumes that the

smallest eigenvalue of Λn is bounded away from zero, which may be violated for time series data.

The restrictions in the condition A7 imply that undersmoothing is needed in our semiparametric

procedure and qn can only be divergent at a polynomial rate of n. The condition A8 is a commonly-

used condition on the penalty function pλ(·), and would be similar to that in Fan and Peng (2004)

if we let χn > χ with χ being a positive constant.

Without loss of generality, define the vector of the optimal weights:

wo = (wo1, . . . , woqn)
ᵀ

=
[
w

ᵀ

o(1), w
ᵀ

o(2)
]ᵀ
,

where wo(1) is composed of non-zero weights with dimension sn and wo(2) is composed of zero

weights with dimension (qn−sn). In order to give the asymptotic normality for ŵn(1), the estimator

of wo(1), we need to introduce some further notation. Define

η∗t = Yt −
qn∑
j=1

wojm
∗
j(X

∗
tj), η∗tj = Yt −m∗j(X∗tj)
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and ξt =
(
ξt1, . . . , ξtsn

)ᵀ
with ξtj = η∗tj − η̃

∗
tj, η

∗
tj = m∗j(X

∗
tj)η

∗
t ,

η̃∗tj =

qn∑
k=1

wokη
∗
tkβjk(X

∗
tk) =

sn∑
k=1

wokη
∗
tkβjk(X

∗
tk), βjk(xk) = E

[
m∗j(X

∗
tj)|X∗tk = xk

]
.

Throughout the paper, we assume that the mean of ξt is zero, and define Σn =
∑∞

t=−∞ E
(
ξ0ξ

ᵀ
t

)
and

Λn1 as the top-left sn × sn submatrix of Λn. Let

ωn = [p′λ(|wo1|)sgn(wo1), . . . , p
′
λ(|wosn|)sgn(wosn)]

ᵀ

and

Ωn = diag {p′′λ(|wo1|), . . . , p′′λ(|wosn|)} ,

where sgn(·) is the sign function. In the following theorem, we give the asymptotic theory of ŵn

obtained by the PMAMAR method.

Theorem 2. Suppose that the conditions A1–A8 are satisfied.

(i) There exists a local minimizer ŵn of the objective function Qn(·) defined in (2.6) such that

‖ŵn −wo‖ = OP

(√
qn(n−1/2χ−1n + an)

)
, (3.5)

where χn and an are defined in the conditions A6 and A8, respectively, and ‖·‖ denotes the Euclidean

norm.

(ii) Let ŵn(2) be the estimator of wo(2) and further assume that

λ→ 0,
χn
√
nλ

√
qn
→∞, lim inf

n→∞
lim inf
ϑ→0+

p′λ(ϑ)

λ
> 0. (3.6)

Then, the local minimizer ŵn of the objective function Qn(·) satisfies ŵn(2) = 0 with probability

approaching one.

(iii) If we further assume that the eigenvalues of Λn1 are bounded away from zero and infinity,

√
nAnΣ

−1/2
n

(
Λn1 + Ωn

)[
ŵn(1)−wo(1)−

(
Λn1 + Ωn

)−1
ωn

]
d−→ N

(
0,A0

)
, (3.7)

where 0 is a null vector whose dimension may change from line to line, An is an s× sn matrix such

that AnA
ᵀ

n → A0 and A0 is an s×s symmetric and non-negative definite matrix, s is a fixed positive

integer.

Remark 4. Theorem 2(i) indicates that the convergence rate of the estimator ŵn is determined

by the dimension of the covariates, the matrix Λn and the penalty function. The involvement of χn
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in the convergence rate makes Theorem 2(i) more general than the results obtained in the existing

literature. If we assume that all the eigenvalues of the matrix Λn are bounded from zero and infinity

with χn > χ > 0, the convergence rate would reduce to OP

(√
qn(n−1/2 + an)

)
, which is the same

as that in Theorem 1 of Fan and Peng (2004). Furthermore, when qn is fixed and an = O(n−1/2),

we could derive the root-n convergence rate for ŵn as in Theorem 3.1 of Li, Linton and Lu (2015).

Theorem 2(ii) shows that the estimator of wo(2) is equal to zero with probability approaching one,

which indicates that the PMAMAR procedure possesses the well known sparsity property, and thus

can be used as a model selector. Theorem 2(ii) and (iii) above shows that the proposed estimator of

the optimal weights enjoy the oracle property which takes wo(2) = 0 as a prerequisite. Furthermore,

when n is large enough and λ tends to zero sufficiently fast for some penalty functions (such as the

SCAD penalty), the asymptotic distribution in (3.7) would reduce to

√
nAnΣ

−1/2
n Λn1

[
ŵn(1)−wo(1)

] d−→ N
(
0,A0

)
, (3.8)

which is exactly the same as that in Theorem 3.3 of Li, Linton and Lu (2015).

3.2 Asymptotic theory for PCA+PMAMAR

In this subsection, we show that the estimated common factors are the consistent estimation of the

true common factors (with rotation), and the asymptotic order of the difference between m̂∗k,f (zk)

defined in (2.11) and the infeasible kernel estimation m̃∗k,f (zk) is oP (n−1/2) uniformly. The latter

asymptotic result implies that the sparsity and oracle property for the PMAMAR approach developed

in Theorem 2 still holds. We start with some regularity conditions which are used when proving the

asymptotic results.

B1. The process {(Yt, ft,Ut)} is stationary and α-mixing with the mixing coefficient decaying at a

geometric rate: α(k) ∼ cαθ
k
0, where cα and 0 < θ0 < 1 are defined as in the condition A1.

B2. The random common factors satisfy the conditions that E [f0t ] = 0, maxt ‖f0t ‖ = OP (1), the

r × r matrix ΛF := E
[
f0t (f0t )

ᵀ]
is positive definite and E

[
‖f0t ‖4+τ

]
<∞ for some 0 < τ <∞.

B3. The matrix (B0
n)

ᵀ
B0
n/pn is positive definite with the smallest eigenvalue bounded away from

zero and maxk ‖b0
k‖ is bounded.
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B4. The idiosyncratic error satisfies E[utk] = 0, E[utkf
0
t ] = 0 and maxk E [|utk|8] <∞. Furthermore,

there exist two positive constants C3 and C4 such that

max
t

E

∥∥∥∥∥
pn∑
k=1

utkb
0
k

∥∥∥∥∥
4
 ≤ C3p

2
n (3.9)

and

max
t1,t2

E

∣∣∣∣∣
pn∑
k=1

{ut1kut2k − E[ut1kut2k]}

∣∣∣∣∣
4
 ≤ C4p

2
n, (3.10)

and maxk E[exp{s‖utkf0t ‖}] <∞ where s is a positive constant as in the condition A5.

B5. (i) The kernel function K(·) is positive and has continuous derivatives up to the second order

with a compact support. In addition, the derivative functions of K(·) are bounded.

(ii) There exists 0 < γ0 < 1/6 such that n1−γ0h33 →∞. In addition, n3/(p2nh
4
3) = o(1).

(iii) The marginal regression functions (corresponding to the factor regressors) m∗k,f (·) have

continuous and bounded derivatives up to the second order.

Remark 5. The above conditions have been commonly used in the literature. For example, the

conditions B2 and B3 are similar to Assumptions A and B in Bai and Ng (2002), whereas the

conditions B1 and B4 are similar to the corresponding conditions in Assumptions 3.2–3.4 in Fan,

Liao and Mincheva (2013). In particular, the exponential bound maxk E[exp{s‖utkf0t ‖}] <∞ in the

condition B4 is crucial to ensure that pn can diverge at an exponential rate of n. The condition B5

is mainly used for the proof of Theorem 3(ii) in Appendix B.

Theorem 3. Suppose that the conditions B1–B4 are satisfied, and

n = o(p2n), pn = O
(
exp{nδ∗}

)
, 0 ≤ δ∗ < 1/3. (3.11)

(i) For the PCA estimation f̂t, we have

max
t

∥∥∥f̂t −Hf0t

∥∥∥ = OP

(
n−1/2 + n1/4p−1/2n

)
, (3.12)

where H is defined in Section 2.2.

(ii) In addition, suppose that the conditions A5 and B5 are satisfied and the latent factor f0t has

a compact support. Then we have

max
1≤k≤r

sup
zk∈F∗

k

∣∣m̂∗k,f (zk)− m̃∗k,f (zk)∣∣ = oP
(
n−1/2

)
, (3.13)
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where F∗k is the compact support of f̃ 0
tk.

Remark 6. Theorem 3(i) gives the uniform consistency result for the estimation of the common

factors, which is very similar to some existing results on PCA estimation of the high-dimensional

factor models such as Theorem 3.3 in Fan, Liao and Mincheva (2013). If we further assume that

n3 = o(p2n) which automatically holds when pn is divergent at an exponential rate of n, the uniform

convergence rate in (3.12) would be OP

(
n−1/2

)
. Theorem 3(ii) shows that we may replace m̂∗k,f (·)

by the infeasible kernel estimation m̃∗k,f (·) when deriving the asymptotic theory for the PMAMAR

method introduced in Section 3.2, and Theorem 2 in Section 3.1 still holds with some notational

modifications (c.f., qn in (3.5) needs to be replaced by dn). The restriction of compact support on f0t
can be removed if we slightly modify the methodology as discussed in Remark 1.

4 Some extensions of the methodology

In this section, we first introduce an iterative KSIS+PMAMAR procedure which is expected to work

well when the covariates are highly correlated, and then discuss how to select the number of the latent

factors in the approximate factor model (1.5) and an extension of the PCA+PMAMAR approach.

4.1 An iterative KSIS+PMAMAR procedure

Difficulties in variable selection arise when the covariates are highly correlated with each other. It

is documented in Fan and Lv (2008) that even if the covariates are mutually independent, the data

generated from them may exhibit significant spurious correlation when the covariate dimension is

large. As discussed in Fan and Lv (2008), when irrelevant covariates are highly correlated with some

relevant ones, they might be selected into a model with higher priority than some other relevant

covariates, which results in high false positive rates and low true positive rates. Such a problem

is even more severe in the present paper. Due to the time series nature of the data, both the

response Yt and the covariates Xt are likely to be autocorrelated over time t. This results in both

the autocorrelation between Xtj and Xsj, t 6= s, and the inter-correlation between covariate Xtj and

Xtk, j 6= k, as Xtj, j = pn + 1, . . . , pn + dn, are generated from the lags of Yt. Hence, if we try to

estimate or predict Yt with pn + dn potential covariates by running firstly the KSIS and secondly the

PMAMAR with the components that have survived the screening process, then the results could be

very unsatisfactory. This is especially so when pn + dn is much larger than the sample size n. To

alleviate this problem, we propose below an iterative version for the KSIS+PMAMAR procedure.
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Due to the autocorrelation in the response Yt and the lagged covariates Xtj, j = pn + 1, . . . , pn + dn,

the iterative procedure developed in Fan, Feng and Song (2011) is not applicable in this context.

This is because their iterative procedure includes a permutation step in which the observed data

is randomly permuted to obtain a data-driven screening threshold for each iteration. When the

data are autocorrelated, as is the case in our context, permutation would destroy the inherent serial

dependence structure and hence may lead to erroneous thresholds being obtained. Our iterative

KSIS+PMAMAR procedure is as follows:

Step 1: For each j = 1, 2, . . . , pn + dn, estimate the marginal regression function mj(xj) by

the kernel method and denote the estimate as m̂j(xj). Then calculate the sample covariance

between Yt and m̂j(Xtj):

v̂(j) =
1

n

n∑
t=1

m̂2
j(Xtj)−

[ 1

n

n∑
t=1

m̂j(Xtj)
]2
.

Select the variable with the largest v̂(j) and let S =
{
j : v̂(j) = max

i
(v̂(i)), 1 ≤ i ≤ pn + dn

}
.

Step 2: Run a linear regression of the response variable Y on the estimated marginal regression

functions of the selected variables in S, and obtain the residuals êS.

Step 3: Run a linear regression the estimated marginal regression function of each variable in Sc

which is defined as {1, 2, . . . , pn + dn} \S on the estimated marginal regression functions of the

selected variables in S, and obtain the residuals êiS for each i ∈ Sc, .

Step 4: Compute the kernel estimate of the marginal regression function, m̂e
i , of the residuals êS

from Step 2 on the residuals êiS from Step 3 for each i ∈ Sc, and calculate the sample covariance

v̂e(i) between êS and m̂e
i . Add the variable j with the largest v̂e(i) among all i ∈ Sc to the set

S.

Step 5: Run a PMAMAR regression with the SCAD penalty of Y against Xj, j ∈ S, as in (2.6),

and discard any variables from S if their corresponding estimated weights are zero.

Step 6: Repeat Steps 2–5 until no new variable is recruited or until the number of variables selected

in S hits [n/ log(n)].

In Step 4 of the above procedure, we treat the residuals from linearly regressing the response

variable on the marginal regression functions of currently selected variables as the new response

variable and the residuals from linearly regressing the marginal regression functions of the unselected
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variables on those of the selected variables as the new covariates, and then carry out a nonparametric

screening and select the variable with the largest resulting sample covariance v̂e(i) as the candidate

to be added to S. The use of the residuals, instead of the original Y and unselected m̂j’s, reduces

the priority of those remaining irrelevant variables that are highly correlated with some selected

relevant variables being picked and increases the priority of the remaining relevant variables that

are marginally insignificant but jointly significant being picked. Hence, this iterative procedure may

help reduce false positive rates and increase true positive rates. The variables in the selected set S
then undergo the PMAMAR regression with the SCAD penalty. The set S is then updated with any

variables having insignificant weights being discarded. Other penalty functions such as the LASSO

and the MCP are equally applicable in Step 5. The above iterative procedure can be considered as

a greedy selection algorithm, since at most one variable is selected in each iteration. This algorithm

starts with zero variables and keeps adding or deleting variables until none of the remaining variables

are considered significant in the sense of significance of the weights in PMAMAR.

4.2 The selection of number of factors and the PCA+KSIS+PMAMAR

procedure

In reality, the number of common factors, r, in the approximate factor model (1.5) is usually unknown.

Hence, we need to select the number of factors to be extracted from an eigenanalysis of the matrix

ZnZ
ᵀ

n/(npn). There could be two ways to address this issue. The first is to set a maximum number,

say rmax (which is usually not too large), for the factors. Since the factors extracted from the

eigenanalysis are orthogonal to each other, the over-extracted insignificant factors will be discarded

in the PMAMAR step. Another approach is to selected the first few eigenvectors (corresponding to

the first few largest eigenvalues) of ZnZ
ᵀ

n/(npn) so that a pre-determined amount, say 95%, of the

total variation is accounted for. The reader is referred to Boneva, Linton and Vogt (2015) for more

information on the selection of the number of common component functions. Other commonly-used

selection criteria such as BIC can be found in Bai and Ng (2002) and Fan, Liao and Mincheva (2013).

In the second step of the PCA+PMAMAR procedure proposed in Section 2.2, the estimated

factors and the dn candidate lags of Y undergo a PMAMAR regression. However, since the lags of

Y are often highly correlated, when dn is large, the PMAMAR regression usually cannot produce

satisfactory results in selecting the truly significant lags. This could lead to poor performance of the

PCA+PMAMAR procedure in the prediction of future values of Y . In order to alleviate this problem,

a KSIS step can be added in between the PCA and PMAMAR steps so that the candidate lags of

Y first undergo a KSIS to preliminarily screen out some insignificant lags. The simulation results
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in Example 5.2 below show that this PCA+KSIS+PMAMAR procedure improves the prediction

performance of the PCA+PMAMAR procedure.

5 Numerical studies

In this section, we give simulation studies (Examples 5.1 and 5.2) and an empirical application

(Example 5.3) of the methodology developed in Section 2 and the extensions discussed in Section 4.

5.1 Simulation studies

Example 5.1. In this example, the sample size is set to be n = 100, and the numbers of candidate

exogenous covariates and lagged terms are (pn, dn) = (30, 10) and (pn, dn) = (150, 50). The model is

defined by

Yt = m1(Zt1) +m2(Zt2) +m3(Zt3) +m4(Zt4) +m5(Yt−1) +m6(Yt−2) +m7(Yt−3) + εt, (5.1)

for t ≥ 1, where, following Meier, van de Geer and Bühlmann (2009), we set

mi(x) = sin(0.5πx), i = 1, 2, . . . , 7, (5.2)

the exogenous covariates Zt = (Zt1, Zt2, . . . , Ztpn)
ᵀ

are independently drawn from pn-dimensional

Gaussian distribution with zero mean and covariance matrix cov(Z) = Ipn or CZ, whose the main-

diagonal entries are 1 and off-diagonal entries are 1/2. The error term εt are independently generated

from the N(0, 0.72) distribution. The real size of exogenous regressors is 4 and the real lag length is

3. We generate 100 + n observations from the process (5.1) with initial states Y−2 = Y−1 = Y0 = 0

and discard the first 100− dn observations.

The aim of this simulated example is to compare the performance of the iterative KSIS+PMAMAR

(IKSIS+PMAMAR) procedure proposed in Section 4.1 with the (non-iterative) KSIS+PMAMAR

procedure proposed in Section 2.1. In order to further the comparison, we also employ the itera-

tive sure independence screening (ISIS) method proposed in Fan and Lv (2008), the penalised least

squares method for high-dimensional generalised additive models (penGAM) proposed in Meier, van

de Geer and Bühlmann (2009), and the oracle semiparametric model averaging method (Oracle,

in which the true relevant variables are known). For the KSIS+PMAMAR, we choose [n/ log(n)]

variables from the screening step, which then undergo a SCAD-penalised MAMAR regression. The
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measures of performance considered are the true positive (TP) and false positive (FP), defined, re-

spectively, as the numbers of true and false relevant variables selected, the estimation error (EE)

defined as the mean squared error, the prediction error (PE) defined as the mean squared prediction

error. We generate a prediction test set of size n/10 = 10 and calculated the one-step-ahead fore-

casts for the response Y , from which the PE is obtained. The smoothing parameters in the penalised

regressions are chosen by the cross-validation. The SCAD penalised regression is implemented using

the R package “ncvreg”, the ISIS method implemented using the “SIS” R package and the penGAM

method implemented using the “penGAM” package1. The results in Table 5.1 are based on 200

simulation replications.

It can be seen from Table 5.1 that the iterative version of KSIS+PMAMAR generally increases

the TP of the non-iterative version while at the same time decreases the FP. This results in a better

performance of the IKSIS+PMAMAR in both estimation and prediction than the KSIS+PMAMAR.

Among the 4 variable selection procedures (i.e., IKSIS+PMAMAR, KSIS+PMAMAR, penGAM, and

ISIS), the penGAM has the smallest FP. In fact, it is the most conservative in variable selection and

on average selects the least number of variables. This makes it the approach that has the highest

EE, since within the same linear or nonlinear modelling framework it is generally the case that the

more variables are selected the smaller the EE is. The ISIS, in contrast to the other approaches,

assumes a linear modelling structure and hence is not able to correctly recognise the truly relevant

and falsely relevant variables when the underlying data generating process is nonlinear, leading to

low TP and high FP. This poor performance of the ISIS in variable selection also results in its poor

predictive power. The predictive performance of an approach largely depends on its accuracy in

variable selection, and a low TP and high FP will lead to a high PE. The results for the Oracle

serve as a benchmark for those of the other approaches. The PEs from the IKSIS+PMAMAR and

KSIS+PMAMAR are the closest among all the approaches to that of the Oracle. It can also be

observed, by a comparison of the first two panels of Table 5.1 with the last two, that when the

correlation among the exogenous variables increases, the performance of all approaches worsens.

Example 5.2. The exogenous variables Zt in this example are generated via an approximate factor

model:

Zt = Bf t + zt,

where the rows of the pn × r loadings matrix B and the common factors ft, t = 1, · · · , n, are

independently generated from the multivariate N(0, Ir) distribution, and the pn-dimensional error

1The authors thank Dr Lukas Meier for kindly providing the ”penGAM” package.
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Table 5.1: Average results on variable selection and accuracy of estimation and prediction in Example

5.1 over 200 replications

Model Method TP FP EE PE

IKSIS+PMAMAR 6.970(0.2437) 6.815(5.3417) 0.3487(0.0960) 1.2760(0.7326)

Example 5.1 KSIS+PMAMAR 6.940(0.2771) 8.020(3.9735) 0.3516(0.0659) 1.3186(0.7777)

cov(Z) = Ipn penGAM 6.040(1.0067) 0.285(0.5340) 1.7083(0.2783) 2.2329(1.1247)

(pn, dn) = (30, 10) ISIS 5.380(0.8055) 7.620(0.8055) 1.7089(0.2729) 2.7024(1.5347)

Oracle 7.000(0.0000) 0.000(0.0000) 0.4840(0.0789) 0.9848(0.5942)

IKSIS+PMAMAR 6.785(0.6170) 9.510(5.5438) 0.2419(0.1033) 1.6758(0.9705)

Example 5.1 KSIS+PMAMAR 6.290(0.8242) 11.075(3.5768) 0.3556(0.0811) 1.7893(1.0595)

cov(Z) = Ipn penGAM 5.995(1.0680) 1.815(1.6414) 1.6923(0.2855) 2.3322(1.1407)

(pn, dn) = (150, 50) ISIS 4.435(1.0494) 16.565 (1.0494) 1.0371(0.2036) 3.1249(1.6246)

Oracle 7.000(0.0000) 0.000(0.0000) 0.4780(0.0718) 1.0300(0.5795)

IKSIS+PMAMAR 5.845(1.3075) 2.34(3.0382) 0.7888(0.2352) 1.8205(0.9793)

Example 5.1 KSIS+PMAMAR 4.395(1.1293) 2.715(3.3361) 1.2163(0.3427) 2.1788(1.1767)

cov(Z) = CZ penGAM 3.260(1.0186) 0.085(0.2796) 2.8712(0.3216) 3.2532(1.3589)

(pn, dn) = (30, 10) ISIS 3.890(1.0788) 8.790(1.6912) 2.3324(0.5088) 4.6481(3.1292)

Oracle 7.000(0.0000) 0.000(0.0000) 0.7867(0.0959) 1.5681(0.9315)

IKSIS+PMAMAR 4.615(1.5259) 3.335(4.1773) 0.8342(0.3272) 2.3521(1.1848)

Example 5.1 KSIS+PMAMAR 3.265(0.7600) 2.980(2.7709) 1.4383(0.2735) 2.6098(1.7253)

cov(Z) = CZ penGAM 3.150(0.9655) 0.585(0.8223) 2.7857(0.3037) 3.3010(1.5413)

(pn, dn) = (150, 50) ISIS 2.675(1.1515) 18.3 (1.1342) 1.3640(0.3241) 8.6358(6.4155)

Oracle 7.000(0.0000) 0.000(0.0000) 0.7886(0.0976) 1.6337(0.9636)
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terms zt, t = 1, · · · , n, are independently drawn from the 0.1N(0, Ipn) distribution. We set pn = 30

or 150, r = 3, and generate the response variable via

Yt = m1(ft1) +m2(ft2) +m3(ft3) +m4(Yt−1) +m5(Yt−2) +m6(Yt−3) + εt, (5.3)

where fti is the i-th component of ft, mi(·), i = 1, · · · , 6, are the same as in (5.2), and εt, t = 1, · · · , n,

are independently drawn from the N(0, 0.72) distribution. In this example, we choose the num-

ber of candidate lags of Y as dn = 10. We compare the performance, in terms of estimation

error and prediction error, of the following methods: PCA+PMAMAR, PCA+KSIS+PMAMAR,

KSIS+PMAMAR, penGAM, ISIS, and Oracle. Since in reality both r and the factors ft are unob-

servable, in the first two methods, the factors are estimated by the first r̂ eigenvectors of ZnZ
ᵀ

n/(npn),

where Zn = (Z1, · · · ,Zn)>, and r is estimated by r̂, where r̂ is chosen so that 95% of the variation

in Zn is accounted for. In the PCA+PMAMAR method, the estimated factors and dn lags of Y

directly undergo a PMAMAR with the SCAD penalty, while in PCA+KSIS+PMAMAR the lags of

Y first undergo the KSIS and then the selected lags together with the estimated factors undergo a

PMAMAR. The KSIS+PMAMAR, penGAM and ISIS deal directly with pn exogenous variables in

Zt and dn lags of Y as in Example 5.1, and the Oracle uses the first 3 factors and the first 3 lags, as

is the true case in the data generating process.

As in Example 5.1, the sample size is set as n = 100 and the experiment is repeated for 200

times. The results are summarised in Table 5.2. It can be seen from these results that when the

number of exogenous variables pn is not so large compared with the sample size n (i.e., 30 compared

to 100), the KSIS+PMAMAR outperforms all the other approaches (except the Oracle), including

the two PCA based approaches, in terms of estimation and prediction accuracy. However, when

pn becomes larger than n, the PCA based approaches show their advantage in effective dimension

reduction of the exogenous variables, which results in their lower EE and PE. The PCA+PMAMAR

has a lower EE but higher PE than the PCA+KSIS+PMAMAR. This is due to the fact that without

the screening step the PCA+PMAMAR selects more false lags of Y , and the higher FP leads to an

higher PE and lower EE under the same PMAMAR framework. The above suggests that if one’s

main concern is to predict future values of the response, there may be benefits in having the KSIS

step to screen out some insignificant lags between the PCA and PMAMAR step.

5.2 An empirical application

Example 5.3. We next apply the proposed semiparametric model averaging methods to forecast

inflation in the UK. The data were collected from the Office for National Statistics (ONS) and
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Table 5.2: Average results on accuracy of estimation and prediction in Example 5.2 over 200 repli-

cations

Model Method EE PE

PCA+PMAMAR 0.7498(0.1313) 2.2641(1.1040)

PCA+KSIS+PMAMAR 0.8846(0.1414) 2.1239(1.0183)

Example 5.2 KSIS+PMAMAR 0.5816(0.1116) 2.1106(1.0122)

(pn, dn) = (30, 10) penGAM 1.9028(0.2561) 2.6342(1.2488)

ISIS 2.1372(0.3876) 11.6244(18.9164)

Oracle 0.9926(0.1551) 1.9821(0.9775)

PCA+PMAMAR 0.7207(0.1240) 2.1505(1.0793)

PCA+KSIS+PMAMAR 0.8469(0.1469) 1.9355(0.9954)

Example 5.2 KSIS+PMAMAR 0.9985(0.2731) 2.8453(1.6823)

(pn, dn) = (150, 10) penGAM 1.8461(0.2526) 2.6132(1.2584)

ISIS 1.8177(0.6077) 43.4549(69.3956)

Oracle 0.9421(0.1626) 1.7782(0.9229)

the Bank of England (BoE) websites and included quarterly observations on CPI and some other

economics variables over the period Q1 1997 to Q4 2013. All the variables are seasonally adjusted. We

use 53 series measuring aggregate real activity and other economic indicators to forecast CPI. Given

the possible time persistence of CPI, we also add its 4 lags as predictors. Data from Q1 1997 to Q4

2012 are used as the training set and those between Q1 2013 and Q4 2013 are used for forecasting.

As in Stock and Watson (1998, 1999), we make 4 types of transformations on different variables,

depending on their nature: (i) logarithm, (ii) first difference of logarithms; (iii) first difference, and

(iv) no transformation. Logarithms are usually taken on positive series that are not in rates or

percentages, and first differences are taken of quantity series and of price indices. All series are

standardised to have mean zero and unity variance after these transformations.

We use the training set to select or screen out the significant variables among the 53 exogenous

economic variables and the 4 lags of CPI as well as to estimate the model averaging weights or model

coefficients. These selected variables and estimated coefficients are then used to form forecasts of

CPI in the four quarters of 2013. As in the simulation, we compare the forecasting capacity of the

IKSIS+PMAMAR, KSIS+PMAMAR, PCA+PMAMAR, penGAM and ISIS methods. Note that

due to the small number of candidate lags of the response (d = 4), there is not much necessity
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Table 5.3: Mean squared prediction errors of various approaches in forecasting inflation in the UK

Method IKSIS+PMAMAR KSIS+PMAMAR PCA+PMAMAR penGAM ISIS Phillips curve

PE 0.0360 0.1130 0.0787 0.0865 0.3275 1.1900

to use the PCA+KSIS+PMAMAR approach in this example, and hence it is not included in the

comparison. Similarly to Stock and Watson (2002), in the PCA+PMAMAR approach, common

factors extracted from the exogenous variables together with lags of the response are used to forecast

the response. The difference with Stock and Watson (2002)’s approach is that the PCA+PMAMAR

allows these factors and lags to contribute to forecasting the response in a possibly nonlinear way.

We also calculate forecasts based on the Phillips curve specification:

It+1 − It = α + β(L)Ut + γ(L)∆It + εt+1, (5.4)

where It is the CPI in the t-th quarter, Ut is the unemployment rate, β(L) = β0 +β1L+β2L
2 +β3L

3

and γ(L) = γ0 + γ1L+ γ2L
2 + γ3L

3 are lag polynomials with L being the lag operator, and ∆ is the

first difference operator.

The prediction errors (PE) of the above approaches are summarised in Table 5.3, which shows

the IKSIS+PMAMAR has the smallest PE followed by the PCA+PMAMAR and penGAM and

then the KSIS+PMAMAR and ISIS. The Phillips curve forecasts are much worse than those of the

other 5 methods. Among the variable selection/screening methods, the IKSIS+PMAMAR selects 12

exogenous variables and 3 lags of the response; the KSIS+PMAMAR selects 2 exogenous and 2 lags

of response; the PCA+PMAMAR selects 4 common factors from the 53 exogenous variables and 3

lags of response; the penGAM selects 2 exogenous only; and the ISIS selects 17 exogenous and 2 lags.

6 Conclusion

In this paper, we have developed two types of semiparametric methods to achieve dimension reduction

on the candidate covariates and obtain good forecasting performance for the response variable. The

KSIS technique, as the first step of the KSIS+PMAMAR method and the generalisation of the

SIS technique proposed by Fan and Lv (2008), screens out the regressors whose marginal regression
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functions do not make significant contribution to estimating the joint regression function and reduces

the dimension of the regressors from an ultra large size to a moderately large size. The sure screening

property developed in Theorem 1 shows that, through KSIS, the covariates whose marginal regression

functions make truly significant contribution would be selected with probability approaching one.

An iterative version of the KSIS is further developed in Section 4.1 and it can be seen as a possible

solution to address the issue of false selection of some irrelevant covariates which are highly correlated

to the significant covariates. The PMAMAR approach, as the second step of the two semiparametric

dimension-reduction methods, is an extension of the MAMAR approximation introduced in Li, Linton

and Lu (2015). Theorem 2 proves that the PMAMAR enjoys some well-known properties in high-

dimensional variable selection such as the sparsity and oracle property. Both the simulated and

empirical examples in Section 5 show that the KSIS+PMAMAR and its iterative version perform

reasonably well in finite samples.

The second PCA+PMAMAR method is a generalisation of some well-known factor-augmented

linear regression and auto-regression models (c.f., Stock and Watson, 2002; Bernanke, Boivin and

Eliasz, 2005; Bai and Ng, 2006). Through assuming an approximate factor modelling structure

on the ultra-high dimensional exogenous regressors and implementing the PCA, we estimate the

unobservable factor regressors and achieve dimension reduction on the exogenous regressors. Theorem

3 in Section 3.2 indicates that the estimated factor regressors are uniformly consistent and the

asymptotic properties for the subsequent PMAMAR method (c.f., Theorem 2) remains valid for the

further selection of the estimated factor regressors and the lags of the response variable. Example 5.2

shows that the PCA+PMAMAR method performs well in predicting the future value of the response

variable when the sample size is small (n = 100). Furthermore, we may extend the methodology and

theory to the more general case that some lags of the estimated factor regressors are included in the

PMAMAR procedure.

Appendix A: Some technical lemmas

In this appendix, we give some technical lemmas which will be used in the proof the main results.

The first result in a well-known exponential inequality for the α-mixing sequence which can be found

in some existing literature such as Bosq (1998).
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Lemma 1. Let {Zt} be a zero-mean α-mixing process satisfying P(|Zt| ≤ B) = 1 for all t ≥ 1. Then

for each integer q ∈ [1, n/2] and each ε > 0, we have

P
(∣∣∣ n∑

t=1

Zt

∣∣∣ > nε
)
≤ 4 exp

(
− ε2q

8v2(q)

)
+ 22

(
1 +

4B

ε

)1/2
qα([p]), (A.1)

where v2(q) = 2σ2(q)/p2 +Bε/2, p = n/(2q),

σ2(q) = max
1≤j≤2q−1

E
{

([jp] + 1− jp)Z[jp]+1 + Z[jp]+2 + . . .+ Z[(j+1)p]

+((j + 1)p− [(j + 1)p])Z[(j+1)p]+1

}2

and [·] denotes the integer part.

Define

Gji =
{

sup
xj∈Cj

∣∣∣ n∑
t=1

{(Xtj − xj
h1

)i
K
(Xtj − xj

h1

)
− E
[(Xtj − xj

h1

)i
K
(Xtj − xj

h1

)]}∣∣∣ ≥ (nh1)
1
2
+κ2
}
, (A.2)

where 0 < κ2 < 1/2 and i = 0, 1, . . .. The following Lemma gives the upper bound of the probability

of the event Gj0 ∪ Gj1 ∪ Gj2.

Lemma 2. Suppose that the conditions A1–A3 in Section 3.1 are satisfied. Then we have

P
(
Gj0 ∪ Gj1 ∪ Gj2

)
≤M1n

(5+9θ1−2κ2+2κ2θ1)/4
[
exp

{
−c1n2(1−θ1)κ2

}
+ exp

{
−c2n(1−θ1)( 12−κ2)

}]
(A.3)

for j = 1, 2, . . . , pn + dn, where c1, c2 and M1 are positive constants which are independent of j, and

θ1 is defined in the condition A3.

Proof. We next only prove that

P
(
Gj0
)
≤ M1

3

(
n(5+9θ1−2κ2+2κ2θ1)/4

[
exp

{
−c1n2(1−θ1)κ2

}
+ exp

{
−c2n(1−θ1)( 12−κ2)

}])
, (A.4)

as the same conclusion also holds for Gj1 and Gj2 with a similar proof. Then the proof of (A.3) can be

completed. We cover the uniformly bounded set Cj by a finite number of intervals Cj(k) with centre

sj(k) and radius h1(nh1)
1
2
+κ2/(3cKn), where cK is a positive constant such that |K(u) − K(v)| ≤

cK |u − v|. Let Nn(j) be the total number of Cj(k) and it is easy to see that the order of Nn(j) is

O
(
nh−11 (nh1)

− 1
2
−κ2
)
.
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Note that

sup
xj∈Cj

∣∣∣ n∑
t=1

{
K
(Xtj − xj

h1

)
− E
[
K
(Xtj − xj

h1

)]}∣∣∣
≤ max

1≤k≤Nn(j)

∣∣∣ n∑
t=1

{
K
(Xtj − sj(k)

h1

)
− E
[
K
(Xtj − sj(k)

h1

)]}∣∣∣+

max
1≤k≤Nn(j)

sup
xj∈Cj(k)

∣∣∣ n∑
t=1

[
K
(Xtj − xj

h1

)
−K

(Xtj − sj(k)

h1

)]∣∣∣+

max
1≤k≤Nn(j)

sup
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E
[
K
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h1

)
−K

(Xtj − sj(k)

h1
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{
K
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)
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[
K
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)]}∣∣∣+
2

3
(nh1)

1
2
+κ2 ,

which indicates that

P
(
Gj0
)
≤ P

(
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t=1

{
K
(Xtj − sj(k)

h1

)
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[
K
(Xtj − sj(k)

h1
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3
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1
2
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P
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. (A.5)

Then, by taking Zt = K
(Xtj−sj(k)

h1

)
− E

[
K
(Xtj−sj(k)

h1

)]
, B = 2 supuK(u), p = (nh1)

1
2
−κ2 and ε =

(nh1)
1
2
+κ2/(3n) in Lemma 1 and noting that h1 ∼ n−θ1 , we may show that

P
(∣∣∣ n∑

t=1

{
K
(Xtj − sj(k)

h1

)
− E
[
K
(Xtj − sj(k)

h1

)]}∣∣∣ > 1

3
(nh1)

1
2
+κ2
)

≤ 4 exp
{
−c1(nh1)2κ2

}
+ c3n

3/2(nh1)
(2κ2−3)/4 exp

{
−c2(nh1)

1
2
−κ2
}

= 4 exp
{
−c1n2(1−θ1)κ2

}
+ c3n

[2κ2+3−(2κ2−3)θ1]/4 exp
{
−c2n(1−θ1)( 12−κ2)

}
, (A.6)

where c1, c2 and c3 are positive constants which are independent of j. Combining (A.5) and (A.6)

and using the definition of Nn(j), we can prove (A.4), completing the proof of Lemma 2. �

Lemma 3. Let ηtj = Yt −mj(Xtj). Suppose that the conditions A1–A5 are satisfied. Then we have

for any ξ > 0 and j = 1, 2, . . . , pn + dn,

P
(

sup
xj∈Cj

∣∣∣ n∑
t=1

ηtjK
(Xtj − xj

h1

)∣∣∣ > ξ(nh1)n
−κ1
)

≤ M2n
1+

7κ1
4

+
5θ1
2

[
exp

{
−c4n1−2κ1−θ1

}
+ exp

{
−c5nκ1/2

}]
, (A.7)
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where 0 < κ1 < (1− θ1)/2, c4, c5 and M2 are positive constants which are independent of j.

Proof. As E[exp{s|Yt|}] <∞ assumed in the condition A5, we may show that

E[exp{s|ηtj|}] ≤ E[exp{s|Yt|+ s|mj(Xtj)|}] ≤ escmE[exp{s|Yt|}] <∞. (A.8)

Let

νn = nκ1/2, ηtj = ηtjI
(
|ηtj| ≤ νn

)
, η̃tj = ηtjI

(
|ηtj| > νn

)
.

As E[ηtj] = 0, it is easy to show that

ηtj = ηtj − E[ηtj] = ηtj − E[ηtj] + η̃tj − E[η̃tj].

Hence, we have

n∑
t=1

ηtjK
(Xtj − xj

h1

)
=

n∑
t=1

{
ηtj − E[ηtj]

}
K
(Xtj − xj

h1

)
+

n∑
t=1

{
η̃tj − E[η̃tj]

}
K
(Xtj − xj

h1

)
. (A.9)

For sufficiently large k, by (A.8) and the choice of νn, we can prove that

E[|η̃tj|] = E[|ηtj|I(|ηtj| > νn)] ≤ E[|ηtj|k+1ν−kn ] = O(ν−kn ) = o(h1n
−κ1). (A.10)

Then, we can show that

P
(

sup
xj∈Cj

∣∣∣ n∑
t=1

{
η̃tj − E[η̃tj]

}
K
(Xtj − xj

h1

)∣∣∣ > 1

2
ξ(nh1)n

−κ1
)

≤ P
(

sup
xj∈Cj

∣∣∣ n∑
t=1

η̃tjK
(Xtj − xj

h1

)∣∣∣ > 1

4
ξ(nh1)n

−κ1
)

≤ P
(

max
1≤t≤n

|ηtj| > νn

)
≤

n∑
t=1

P
(
|ηtj| > νn

)
≤ n

E[exp{s|ηtj|}]
exp{sνn}

= M2(n exp{−snκ1/2})/2, (A.11)

where M2 is a sufficiently large positive constant which is independent of j.

We next consider the upper bound for the probability of the event:{
sup
xj∈Cj

∣∣∣ n∑
t=1

{
ηtj − E[ηtj]

}
K
(Xtj − xj

h1

)∣∣∣ > 1

2
ξ(nh1)n

−κ1
}
.

The argument is similar to the proof of (A.4) above. We cover Cj by a finite number of intervals

C∗j (k) with centre s∗j(k) and radius ξh21n
−κ1/(6cKνn), where cK is defined as in the proof of Lemma 2.
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Letting N∗n(j) be the total number of C∗j (k), the order of N∗n(j) is O
(
nκ1h−21 νn

)
. By some standard

arguments, we have

sup
xj∈Cj

∣∣∣ n∑
t=1

{
ηtj − E[ηtj]

}
K
(Xtj − xj

h1

)∣∣∣
≤ max

1≤k≤N∗
n(j)

∣∣∣ n∑
t=1

{
ηtj − E[ηtj]

}
K
(Xtj − s∗j(k)

h1

)∣∣∣+

max
1≤k≤N∗

n(j)
sup

xj∈C∗j (k)

∣∣∣ n∑
t=1

{
ηtj − E[ηtj]

}[
K
(Xtj − xj

h1

)
−K

(Xtj − s∗j(k)

h1

)]∣∣∣
≤ max

1≤k≤N∗
n(j)

∣∣∣ n∑
t=1

{
ηtj − E[ηtj]

}
K
(Xtj − s∗j(k)

h1

)∣∣∣+
1

3
ξ(nh1)n

−κ1 .

Hence, we have

P
(

sup
xj∈Cj

∣∣∣ n∑
t=1

{
ηtj − E[ηtj]

}
K
(Xtj − xj

h1

)∣∣∣ > 1

2
ξ(nh1)n

−κ1
)

≤ P
(

max
1≤k≤N∗

n(j)

∣∣∣ n∑
t=1

{
ηtj − E[ηtj]

}
K
(Xtj − s∗j(k)

h1

)∣∣∣ > 1

6
ξ(nh1)n

−κ1
)

≤
N∗
n(j)∑
k=1

P
(∣∣∣ n∑

t=1

{
ηtj − E[ηtj]

}
K
(Xtj − s∗j(k)

h1

)∣∣∣ > 1

6
ξ(nh1)n

−κ1
)
. (A.12)

Then, by taking Zt =
{
ηtj − E[ηtj]

}
K
(Xtj−s∗j (k)

h1

)
, B = 2νn supuK(u), p = nκ1/νn = nκ1/2 and

ε = ξh1n
−κ1/6 in Lemma 1 and noting that h1 ∼ n−θ1 , we can show that

P
(∣∣∣ n∑

t=1

{
ηtj − E[ηtj]

}
K
(Xtj − s∗j(k)

h1

)∣∣∣ > 1

6
ξ(nh1)n

−κ1
)

≤ 4 exp
{
−c4n1−2κ1h1

}
+ c6n

1+
κ1
4 h
−1/2
1 exp

{
−c5nκ1/2

}
= 4 exp

{
−c4n1−2κ1−θ1

}
+ c6n

1+
κ1
4
+
θ1
2 exp

{
−c5nκ1/2

}
, (A.13)

where c4, c5 and c6 are positive constants which are independent of j. By (A.12), (A.13) and the

definition of N∗n(j), we can prove that

P
(

sup
xj∈Cj

∣∣∣ n∑
t=1

{
ηtj − E[ηtj]

}
K
(Xtj − xj

h1

)∣∣∣ > 1

2
ξ(nh1)n

−κ1
)

≤ M2

2
n1+

7κ1
4

+
5θ1
2

[
exp

{
−c4n1−2κ1−θ1

}
+ exp

{
−c5nκ1/2

}]
. (A.14)

33



We can complete the proof of (A.7) by using (A.9), (A.11) and (A.14). �

We next derive the upper bound for the probability of the event{
sup
xj∈Cj

|m̂j(xj)−mj(xj)| > ξn−2(1−θ1)/5
}

for any ξ > 0, where Lemmas 2 and 3 will play a crucial role.

Lemma 4. Suppose that the conditions A1–A5 in Section 3.1 are satisfied. Then we have for any

ξ > 0 and j = 1, 2, . . . , pn + dn,

P
(

sup
xj∈Cj

|m̂j(xj)−mj(xj)| > ξn−2(1−θ1)/5
)
≤M∗

1 (n) +M∗
2 (n), (A.15)

where

M∗
1 (n) = 2M1n

(7+14θ1)/6 exp
{
−c7n(1−θ1)/3

}
, M∗

2 (n) = 2M2n
(17+18θ1)/10 exp

{
−c8n(1−θ1)/5

}
,

c7 = min(c1, c2), c8 = min(c4, c5), M1, c1 and c2 are defined in Lemma 2, and M2, c4 and c5 are

defined in Lemma 3.

Proof. Let Gj = Gj0 ∪ Gj1 ∪ Gj2 and the complement Gcj = Gcj0 ∩ Gcj1 ∩ Gcj2. Notice that

P
(

sup
xj∈Cj

|m̂j(xj)−mj(xj)| > ξn−κ1
)

≤ P
(

sup
xj∈Cj

|m̂j(xj)−mj(xj)| > ξn−κ1 ,Gcj
)

+ P
(
Gj
)
. (A.16)

By Lemma 2 with κ2 = 1/6, we may show that

P
(
Gj
)
≤ 2M1n

(7+14θ1)/6 exp
{
−c7n(1−θ1)/3

}
=: M∗

1 (n). (A.17)

Consider the decomposition:

m̂j(xj)−mj(xj) =

∑n
t=1

[
Yt −mj(xj)

]
K
(Xtj−xj

h1

)∑n
t=1K

(Xtj−xj
h1

)
=

∑n
t=1

[
Yt −mj(Xtj)

]
K
(Xtj−xj

h1

)∑n
t=1K

(Xtj−xj
h1

) +

∑n
t=1

[
mj(Xtj)−mj(xj)

]
K
(Xtj−xj

h1

)∑n
t=1K

(Xtj−xj
h1

)
=: In1(xj) + In2(xj). (A.18)

By the condition A4 and Taylor’s expansion for mj(·), we have

mj(Xtj)−mj(xj) = m′(xj)(Xtj − xj) +
1

2
m′′j (xtj)(Xtj − xj)2,
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where xtj lies between Xtj and xj. Hence, for In2(xj), we have

In2(xj) = m′(xj)

∑n
t=1(Xtj − xj)K

(Xtj−xj
h1

)∑n
t=1K

(Xtj−xj
h1

) +
1

2
·
∑n

t=1m
′′
j (xtj)(Xtj − xj)2K

(Xtj−xj
h1

)∑n
t=1K

(Xtj−xj
h1

) .

On the event Gcj with κ2 = 1/6, as θ1 > 1/6 and choosing κ1 as 2(1− θ1)/5,

In2(xj) = O
(
h21 + (nh1)

−1/3h1
)

= o(n−κ1). (A.19)

Hence, we have

P
(

sup
xj∈Cj

|m̂j(xj)−mj(xj)| > ξn−κ1 ,Gcj
)
≤ P

(
sup
xj∈Cj

∣∣∣ n∑
t=1

ηtjK
(Xtj − xj

h1

)∣∣∣ > ξ1(nh1)n
−κ1
)
, (A.20)

where ξ1 = 1
2
ξ infxj∈Cj fj(xj). By Lemma 3 with κ1 = 2(1− θ1)/5, we have

P
(

sup
xj∈Cj

∣∣∣ n∑
t=1

ηtjK
(Xtj − xj

h1

)∣∣∣ > ξ1(nh1)n
−κ1
)
≤ 2M2n

(17+18θ1)/10 exp
{
−c8n(1−θ1)/5

}
,

with c8 = min(c4, c5), which indicates that

P
(

sup
xj∈Cj

|m̂j(xj)−mj(xj)| > ξn−κ1 ,Gcj
)
≤ 2M2n

(17+18θ1)/10 exp
{
−c8n(1−θ1)/5

}
=: M∗

2 (n). (A.21)

We can complete the proof of (A.15) by combining (A.16), (A.17) and (A.21). �

Lemma 5. Suppose that the conditions B1–B4 and (3.11) in Section 3.2 are satisfied. Then, we

have ∥∥∥dn(F̂n)
∥∥∥ :=

∥∥vec (MF̂nF
0
n

)
/
√
n
∥∥ = oP (1), (A.22)

where vec(·) denotes the vectorization of a matrix.

Proof. It is easy to see that the PCA method is equivalent to the following constrained least squares

method: (
F̂n, B̂n

)
= arg min

bk,ft

pn∑
k=1

n∑
t=1

(
Ztk − b

ᵀ

kft
)2

= arg min
Fn,Bn

∥∥Zn −FnBᵀ

n

∥∥2
F
, (A.23)

where ‖ · ‖F is the Frobenius norm of a matrix, and the n× r matrix Fn and the pn × r matrix Bn

need to satisfy
1

n
F ᵀ

nFn = Ir,
1

pn
B

ᵀ

nBn is diagonal. (A.24)

Denote MFn = In −Fn
(
F ᵀ

nFn
)−1F ᵀ

n =: In −PFn and Ln(Fn) = Tr
(
Zᵀ

nMFnZn
)
, where Tr(·) is the

trace of a square matrix.
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From (A.23), we may show that

Ln(F̂n)− Ln(F0
n) = Tr

(
Zᵀ

nMF̂nZn
)
− Tr

(
Zᵀ

nMF0
n
Zn
)
≤ 0. (A.25)

Using the fact that MF0
n
F0
n = 0 and (F0

n)
ᵀMF0

n
= 0, and then by (2.9), we have

Ln(F̂n)− Ln(F0
n) = Tr

(
MF̂nF

0
n(B0

n)
ᵀ
B0
n(F0

n)
ᵀMF̂n

)
+ Tr

(
U ᵀ

nMF̂nUn
)
−

Tr
(
U ᵀ

nMF0
n
Un
)

+ Tr
(
U ᵀ

nMF̂nF
0
n(B0

n)
ᵀ)

+

Tr
(
B0
n(F0

n)
ᵀMF̂nUn

)
= Tr

(
MF̂nF

0
n(B0

n)
ᵀ
B0
n(F0

n)
ᵀMF̂n

)
+ Tr

(
U ᵀ

nPF̂nUn
)
−

Tr
(
U ᵀ

nPF0
n
Un
)

+ Tr
(
U ᵀ

nMF̂nF
0
n(B0

n)
ᵀ)

+

Tr
(
B0
n(F0

n)
ᵀMF̂nUn

)
, (A.26)

where Un = (U1, . . . ,Un)
ᵀ

.

We next prove that the last four terms on the right hand side of (A.26) are oP (npn). Start with

Tr
(
U ᵀ

nMF̂nF
0
n(B0

n)
ᵀ)

. Note that

Tr
(
U ᵀ

nMF̂nF
0
n(B0

n)
ᵀ)

= Tr
(
U ᵀ

nF0
n(B0

n)
ᵀ)− 1

n
Tr
(
U ᵀ

nF̂nF̂
ᵀ

nF0
n(B0

n)
ᵀ
)

(A.27)

using the restriction of F̂ ᵀ

nF̂n/n = Ir. By the conditions B2 and B4, the Cauchy-Schwarz inequality

and some standard arguments, we may show that

Tr
(
U ᵀ

nF0
n(B0

n)
ᵀ)

=
n∑
t=1

pn∑
k=1

utk(f
0
t )

ᵀ
b0
k =

(
n∑
t=1

∥∥f0t ∥∥2
)1/2

 n∑
t=1

∥∥∥∥∥
pn∑
k=1

utkb
0
k

∥∥∥∥∥
2
1/2

= OP (n1/2) ·OP (n3/4p1/2n ) = OP (n5/4p1/2n ). (A.28)

On the other hand, by some similar calculations and using the fact that ‖F̂ ᵀ

nF0
n‖F = OP (n), we can

also prove that

1

n
Tr
(
U ᵀ

nF̂nF̂
ᵀ

nF0
n(B0

n)
ᵀ
)
≤ C

(
n∑
t=1

∥∥f0t ∥∥2
)1/2

 n∑
t=1

∥∥∥∥∥
pn∑
k=1

utkb
0
k

∥∥∥∥∥
2
1/2

= OP (n5/4p1/2n ), (A.29)

where C is a positive constant whose value may change from line to line. By (A.27)–(A.29) and using

the condition of n = o(p2n), we have

Tr
(
U ᵀ

nMF̂nF
0
n(B0

n)
ᵀ)

= OP (n5/4p1/2n ) = oP (npn). (A.30)
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Analogously, we may also show that

Tr
(
B0
n(F0

n)
ᵀMF̂nUn

)
= oP (npn). (A.31)

We next consider Tr
(
U ᵀ

nPF̂nUn
)
. Note that

Tr
(
U ᵀ

nPF̂nUn
)

=
1

n

pn∑
k=1

n∑
t1=1

n∑
t2=1

Tr(f̂t1 f̂
ᵀ

t2
)ut1kut2k

=
1

n

pn∑
k=1

n∑
t1=1

n∑
t2=1

Tr(f̂t1 f̂
ᵀ

t2
)E [ut1kut2k] +

1

n

pn∑
k=1

n∑
t1=1

n∑
t2=1

Tr(f̂t1 f̂
ᵀ

t2
) (ut1kut2k − E [ut1kut2k]) , (A.32)

where we again have used the fact of F̂ ᵀ

nF̂n/n = Ir. For the first term on the right hand side of

(A.32), by the conditions B1 and B4, and the Cauchy-Schwarz inequality, we have∣∣∣∣∣
pn∑
k=1

n∑
t1=1

n∑
t2=1

Tr(f̂t1 f̂
ᵀ

t2
)E [ut1kut2k]

∣∣∣∣∣
≤ Cpn

(
n∑

t1=1

∥∥∥f̂t1∥∥∥2 n∑
t2=1

∥∥∥f̂t2∥∥∥2
)1/2( n∑

t1=1

n∑
t1=1

α3/2(|t1 − t2|)

)1/2

= pn ·OP (n) ·OP (n1/2). (A.33)

For the second term on the right hand side of (A.32), letting u(t1, t2) =
∑pn

k=1 (ut1kut2k − E [ut1kut2k]),

by (3.10) in the condition B4 and the Cauchy-Schwarz inequality again, we have∣∣∣∣∣
n∑

t1=1

n∑
t2=1

Tr(f̂t1 f̂
ᵀ

t2
)

pn∑
k=1

(ut1kut2k − E [ut1kut2k])

∣∣∣∣∣
≤

(
n∑

t1=1

∥∥∥f̂t1∥∥∥2 n∑
t2=1

∥∥∥f̂t2∥∥∥2
)1/2( n∑

t1=1

n∑
t1=1

u2(|t1 − t2|)

)1/2

= OP (n) ·OP (np1/2n n1/4) = OP (n9/4p1/2n ). (A.34)

In view of (A.32)–(A.34), we have

Tr
(
U ᵀ

nPF̂nUn
)

= OP (n5/4p1/2n + n1/2pn) = oP (npn). (A.35)
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We finally consider Tr
(
U ᵀ

nPF0
n
Un
)
. By the conditions B1 and B2 as well as the central limit

theorem, we have
1

n

n∑
t=1

f0t (f0t )
ᵀ −ΛF = OP (n−1/2),

which indicates that

Tr
(
U ᵀ

nPF0
n
Un
)

=
1

n

pn∑
k=1

n∑
t1=1

n∑
t2=1

Tr(f0t1Λ
−1
F (f0t2)

ᵀ
)ut1kut2k +OP (n−3/2)

pn∑
k=1

∥∥∥∥∥
n∑

t1=1

f0t1ut1k

∥∥∥∥∥
∥∥∥∥∥

n∑
t2=1

f0t2ut2k

∥∥∥∥∥
=

1

n

pn∑
k=1

n∑
t1=1

n∑
t2=1

Tr(f0t1Λ
−1
F (f0t2)

ᵀ
)ut1kut2k +OP (pnn

1/2)

=
1

n

pn∑
k=1

n∑
t1=1

n∑
t2=1

Tr(f0t1Λ
−1
F (f0t2)

ᵀ
)ut1kut2k + oP (npn), (A.36)

where we have used the result that

max
1≤k≤pn

∥∥∥∥∥
n∑
t=1

f0t utk

∥∥∥∥∥ = OP (n), (A.37)

which can be proved by using the exponential inequality in Lemma 1 and the arguments in Lemmas

2 and 3. Following the arguments in the proof of (A.35), we can similarly show that

1

n

pn∑
k=1

n∑
t1=1

n∑
t2=1

Tr(f0t1Λ
−1
F (f0t2)

ᵀ
)ut1kut2k = OP (n5/4p1/2n + n1/2pn), (A.38)

which together with (A.36), implies that

Tr
(
U ᵀ

nPF0
n
Un
)

= oP (npn). (A.39)

Hence, by (A.30), (A.31), (A.35) and (A.39), we have

1

npn

[
Ln(F̂n)− Ln(F0

n)
]

=
1

npn
Tr
(
MF̂nF

0
n(B0

n)
ᵀ
B0
n(F0

n)
ᵀMF̂n

)
+ oP (1). (A.40)

Define

Σn(B0
n) =

1

pn
(B0

n)
ᵀ
B0
n ⊗ In, dn(F̂n) = vec

(
MF̂nF

0
n

)
/
√
n,

where ⊗ denotes the Kronecker product. It is easy to verify that

1

npn
Tr
(
MF̂nF

0
n(B0

n)
ᵀ
B0
n(F0

n)
ᵀMF̂n

)
= d

ᵀ

n(F̂n)Σn(B0
n)dn(F̂n) + oP (1). (A.41)
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By the condition B3, the smallest eigenvalue of Σn(B0
n) is positive and bounded away from zero.

Therefore we can prove that

0 ≤ d
ᵀ

n(F̂n)Σn(B0
n)dn(F̂n) = oP (1), (A.42)

which leads to (A.22), completing the proof of Lemma 5.

Appendix B: Proofs of the main results

In this appendix, we provide the detailed proofs of the asymptotic results given in Section 3.

Proof of Theorem 1 (i) By the definition of v̂(j), we have for j = 1, 2, . . . , pn + dn,

v̂(j)− v(j) =
1

n

n∑
t=1

m̂2
j(Xtj)−

[ 1

n

n∑
t=1

m̂j(Xtj)
]2
− var

(
mj(Xtj)

)
=

{ 1

n

n∑
t=1

[
m̂2
j(Xtj)−m2

j(Xtj)
]}
−
{[ 1

n

n∑
t=1

m̂j(Xtj)
]2
−
[ 1

n

n∑
t=1

mj(Xtj)
]2}

+

{ 1

n

n∑
t=1

(
m2
j(Xtj)− E[m2

j(Xtj)]
)}
−
{[ 1

n

n∑
t=1

mj(Xtj)
]2
− E2

[
mj(Xtj)

]}
=: Πnj(1) + Πnj(2) + Πnj(3) + Πnj(4). (B.1)

For Πnj(1), note that

∣∣Πnj(1)
∣∣ =

1

n

n∑
t=1

∣∣m̂2
j(Xtj)−m2

j(Xtj)
∣∣

=
1

n

n∑
t=1

[
m̂j(Xtj)−mj(Xtj)

]2
+

2

n

n∑
t=1

∣∣mj(Xtj)
∣∣∣∣m̂j(Xtj)−mj(Xtj)

∣∣
≤ sup

xj∈Cj

∣∣m̂j(xj)−mj(xj)
∣∣2 + 2cm · sup

xj∈Cj

∣∣m̂j(xj)−mj(xj)
∣∣. (B.2)

By (B.2) and Lemma 4, we readily obtain

P
(∣∣Πnj(1)

∣∣ > δ1
4
n−2(1−θ1)/5

)
≤ 2M2(n) exp

{
−c8n(1−θ1)/5

}
, (B.3)

where M2(n) = M2n
(17+18θ1)/10 and c8 is defined in Lemma 4. Analogously, we can also show that

P
(∣∣Πnj(2)

∣∣ > δ1
4
n−2(1−θ1)/5

)
≤ 2M2(n) exp

{
−c8n(1−θ1)/5

}
. (B.4)
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Using Lemma 1 with Zt = mj(Xtj) or m2
j(Xtj), we may show that

P
(∣∣Πnj(3)

∣∣ > δ1
4
n−2(1−θ1)/5

)
+ P

(∣∣Πnj(4)
∣∣ > δ1

4
n−2(1−θ1)/5

)
= o
(
M2(n) exp

{
−c8n(1−θ1)/5

} )
. (B.5)

Then, by (B.1) and (B.3)–(B.5), we can prove that

P
(∣∣v̂(j)− v(j)

∣∣ > δ1n
−2(1−θ1)/5

)
≤ 5M2(n) exp

{
−c8n(1−θ1)/5

}
, (B.6)

which indicates that

P
(

max
1≤j≤pn+dn

∣∣v̂(j)− v(j)
∣∣ > δ1n

−2(1−θ1)/5
)

≤
pn+dn∑
j=1

P
(∣∣v̂(j)− v(j)

∣∣ > δ1n
−2(1−θ1)/5

)
≤ O

(
(pn + dn)M2(n) exp

{
−c8n(1−θ1)/5

})
. (B.7)

Choosing M(n) = (pn + dn)n(17+18θ1)/10 and δ2 = c8, we can complete the proof of Theorem 1(i).

(ii) By the definition of Ŝ, using the condition that minj∈S v(j) ≥ 2δ1n
−2(1−δ1)/5 and following

the proof of Theorem 1(i), we have

P
(
S ⊂ Ŝ

)
= P

(
min
j∈S

v̂(j) ≥ ρn
)

= P
(

min
j∈S

v̂(j) ≥ δ1n
−2(1−θ1)/5

)
= P

(
min
j∈S

v(j)−min
j∈S

v̂(j) ≤ min
j∈S

v(j)− δ1n−2(1−θ1)/5
)

≥ P
(

min
j∈S

v(j)−min
j∈S

v̂(j) ≤ 2δ1n
−2(1−θ1)/5 − δ1n−2(1−θ1)/5

)
≥ P

(
max
j∈S

∣∣v̂(j)− v(j)
∣∣ ≤ δ1n

−2(1−θ1)/5
)

= 1− P
(

max
j∈S

∣∣v̂(j)− v(j)
∣∣ > δ1n

−2(1−θ1)/5
)

≥ 1−O
(
M(n) exp

{
− δ2n(1−θ1)/5

})
. (B.8)

Then, we complete the proof of (3.3).

The proof of Theorem 1 has been completed. �

Proof of Theorem 2 (i) Recall that wn = (w1, . . . , wqn)
ᵀ

and wo = (wo1, . . . , woqn)
ᵀ

=
[
w

ᵀ

o(1),w
ᵀ

o(2)
]ᵀ

,

where wo(1) is composed of non-zero weights with dimension sn, and wo(2) is composed of zero

weights with dimension (qn − sn). Let Qn(·) be defined as in (2.6) and εn =
√
qn
[
(
√
nχn)−1 + an

]
.

In order to prove the convergence rate in Theorem 2, as in Fan and Peng (2004), it suffices to show

that there exists a sufficiently large constant C > 0 such that

lim
n→∞

P

(
inf
‖u‖=C

Qn(wo + εnu) > Qn(wo)

)
= 1, (B.9)
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where u = (u1, . . . , uqn)
ᵀ
. In fact, (B.9) implies that there exists a minimum ŵn in the ball {wo+εnu :

‖u‖ ≤ C}, such that ‖ŵn −wo‖ = OP (εn).

Observe that

Qn(wo + εnu)−Qn(wo)

=
[
Yn − M̂(wo + εnu)

]ᵀ[
Yn − M̂(wo + εnu)

]
+ n

qn∑
j=1

pλ(|woj + εnuj|)

−
[
Yn − M̂(wo)

]ᵀ[
Yn − M̂(wo)

]
− n

qn∑
j=1

pλ(|woj|)

≥
[
Yn − M̂(wo + εnu)

]ᵀ[
Yn − M̂(wo + εnu)

]
−
[
Yn − M̂(wo)

]ᵀ[
Yn − M̂(wo)

]
+n

sn∑
j=1

pλ(|woj + εnuj|)− n
sn∑
j=1

pλ(|woj|)

= Ξn1 + Ξn2, (B.10)

where

Ξn1 =
[
Yn − M̂(wo + εnu)

]ᵀ[
Yn − M̂(wo + εnu)

]
−
[
Yn − M̂(wo)

]ᵀ[
Yn − M̂(wo)

]
,

Ξn2 = n
sn∑
j=1

[
pλ(|woj + εnuj|)− pλ(|woj|)

]
.

By the definition of M̂(·) in Section 2.1 and some elementary calculations, we have

Ξn1 = −2εnu
ᵀSᵀ

n(Y)
[
Yn − M̂(wo)

]
+ ε2nu

ᵀSᵀ

n(Y)Sn(Y)u

=: Ξn1(1) + Ξn1(2).

Following the proof of Theorem 3.3 in Li, Linton and Lu (2015), we can show that∥∥Sᵀ

n(Y)
[
Yn − M̂(wo)

]∥∥ = OP (
√
nqn),

which indicates that

|Ξn1(1)| = OP (εn
√
nqn) · ‖u‖. (B.11)

We next consider Ξn1(2). By the definition of m∗j(·) in Section 1 and the uniform consistency result

in Theorem 3.1 of Li, Lu and Linton (2012), we have, uniformly for xj and j = 1, 2, . . . , qn,

m̂∗j(xj)−m∗j(xj) = OP (τn + h22), (B.12)
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where τn is defined in Section 3.1. Observe that

Sᵀ

n(Y)Sn(Y) =Mᵀ

nMn +
(
Sn(Y)−Mn

)ᵀ
Mn +Mᵀ

n

(
Sn(Y)−Mn

)
+
(
Sn(Y)−Mn

)ᵀ(
Sn(Y)−Mn

)
,

(B.13)

where Mn =
[
M(1), . . . ,M(qn)

]
and M(j), j = 1, 2, . . . , qn, are defined in Section 2.1. By (3.4) in

the condition A7, there exists a sequence {χ∗n} such that χ∗n = o(χn) and qn = o(
√
nχ∗n). Then, for

any ξ > 0, by Chebyshev’s inequality and following the proof of Lemma 8 in Fan and Peng (2004),

we have

P

(∥∥∥ 1

n
Mᵀ

nMn −Λn

∥∥∥
F
> ξχ∗n

)
≤

E
[∥∥Gᵀ

nGn −Λn

∥∥2
F

]
ξ2n2(χ∗n)2

= O

(
q2n

n(χ∗n)2

)
= o(1).

Hence, we have ∥∥∥∥ 1

n
Mᵀ

nMn −Λn

∥∥∥∥
F

= oP (χ∗n). (B.14)

Equation (B.14) and the fact of χ∗n = o(χn) imply that the smallest eigenvalue ofMᵀ

nMn/n is larger

than χn/2 with probability approaching one. As q2n(τn + h22) = o(χn) in the condition A7, we can

easily prove that the Frobenius norm for the last three matrices on the right hand side of (B.13) tend

to zero with convergence rates faster than χn. Hence, we have

Ξn1(2) ≥ nε2nχn
2
· ‖u‖2 (B.15)

in probability. By (B.11), (B.15) and taking the constant C sufficiently large, Ξn1(1) would be

dominated by Ξn1(2) asymptotically.

For Ξn2, by the condition A8 and Taylor’s expansion for the penalty function, we have

Ξn2 = n
sn∑
j=1

[
pλ(|woj + εnuj|)− pλ(|woj|)

]
= OP (nεnan

√
qn) · ‖u‖+OP (nε2nbn) · ‖u‖2, (B.16)

where w∗oj lies between woj and woj + εnuj. By the condition A8 , Ξn2 would be also dominated by

Ξn1(2) by taking the constant C sufficiently large. We thus complete the proof of (B.9) in view of

(B.10), (B.11), (B.15) and (B.16).

(ii) Let ŵn(1) and ŵn(2) be the estimators of wo(1) and wo(2), respectively. To prove Theorem

2(ii), it suffices to show that for any constant C and any given wn(1) satisfying ‖wn(1)−wo(1)‖ =

OP (εn∗), we have

Qn
([

w
ᵀ

n(1),0
ᵀ]ᵀ)

= min
‖wn(2)‖≤Cεn∗

Qn
([

w
ᵀ

n(1),w
ᵀ

n(2)
]ᵀ)

, (B.17)
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where εn∗ =
√
qn√
nχn

, wn(2) is a (qn− sn)-dimensional vector. By (B.17), Theorem 2(i) and noting that

an = O
(

1√
nχn

)
in the condition A8, it is easy to prove that ŵn(2) = 0.

As in Fan and Li (2001), to prove (B.17), it is sufficient to show that, with probability approaching

one, for any qn-dimensional vector w
ᵀ

n =
[
w

ᵀ

n(1),w
ᵀ

n(2)
]

with wn(1) satisfying ‖wn(1) − wo(1)‖ =

OP (εn∗) and for j = sn + 1, . . . , qn,

∂Qn(wn)

∂wj
> 0, 0 < wj < εn∗, (B.18)

and
∂Qn(wn)

∂wj
< 0, −εn∗ < wj < 0, (B.19)

where w
ᵀ

n(2) = (wsn+1, . . . , wdn).

Note that
∂Qn(wn)

∂wj
=
∂Ln(wn)

∂wj
+ np′λ(|wj|)sgn(wj)

for j = sn + 1, . . . , dn, where

Ln(wn) =
[
Yn − M̂(wn)

]ᵀ[Yn − M̂(wn)
]

and

∂Ln(wn)

∂wj
= Yᵀ

nSn(j)
[
Yn − Sn(Y)wn

]
= Yᵀ

nSn(j)
[
Yn − Sn(Y)wo

]
− Yᵀ

nSn(j)Sn(Y)
(
wn −wo

)
=: Ξn3 + Ξn4.

As in the proof of Theorem 2(i), it is easy to prove that

|Ξn3| = OP

(√
qnnχ

−1
n

)
and |Ξn4| = OP

(√
qnnχ

−1
n

)
, (B.20)

which indicate that
∂Ln(wn)

∂wj
= OP

(√
qnnχ

−1
n

)
. (B.21)

Hence, by (B.21), we have

∂Qn(wn)

∂wj
= OP

(√
qnnχ

−1
n

)
+ np′λ(|wj|)sgn(wj)

= OP

(√
qnnχ

−1
n

)
+ nλ

[
λ−1p′λ(|wj|)sgn(wj)

]
= OP

(√
qnnχ

−1
n

{
1 +

χn
√
nλ

√
qn

[
λ−1p′λ(|wj|)sgn(wj)

]})
. (B.22)
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Since χn
√
nλ√
qn
→∞, we can show that (B.18) and (B.19) hold by using (B.22). We thus complete the

proof of Theorem 2(ii).

(iii) Let ŵ
ᵀ

0(n) = (ŵ
ᵀ

n(1),0
ᵀ
) and ŵj be the estimator of woj for j = 1, 2, . . . , qn. By Theorem

2(ii), we have
∂Qn

(
ŵn

)
∂wj

=
∂Qn

(
ŵ0(n)

)
∂wj

= 0 (B.23)

for j = 1, 2, . . . , sn. By Taylor’s expansion and Theorem 2(ii), we have for j = 1, 2, . . . , sn,

∂Qn
(
ŵ0(n)

)
∂wj

=
∂Qn

(
wo

)
∂wj

+

qn∑
l=1

∂2Qn
(
w∗n
)

∂wj∂wl
(ŵl − wol)

=
∂Qn

(
wo

)
∂wj

+
sn∑
l=1

∂2Qn
(
w∗n
)

∂wj∂wl
(ŵl − wol), (B.24)

where w∗n lies between ŵ0(n) and wo.

Define

Θ
ᵀ

n

(
wo

)
=

[
∂Qn(wo)

∂w1

, . . . ,
∂Qn(wo)

∂wsn

]
and Φn

(
w∗(n)

)
be the sn× sn matrix whose (j, k)-th component is ∂2Qn(w∗(n))

∂wj∂wk
. Then, by (B.24), we

have

ŵn(1)−wo(1) = Φ−1n
(
w∗(n)

)
Θn

(
wo

)
. (B.25)

Following the proof of Theorem 3.3 in Li, Linton and Lu (2015), we can show that

1

n
Θn

(
wo

) P∼ 1

n

n∑
t=1

ξt + ωn, (B.26)

where ωn is defined in Section 3.1. On the other hand, we can also show that

1

n
Φn

(
w∗(n)

) P∼ Λn1 + Ωn, (B.27)

where Λn1 and Ωn are defined in Section 3.1. Letting unt = AnΣ−1/2n ξt, by (B.25)–(B.27), it suffices

to show that
1√
n

n∑
t=1

unt
d−→ N

(
0,A0

)
, (B.28)

which can be proved by using the central limit theorem for the stationary α-mixing sequence. The

proof of Theorem 2(iii) has thus been completed.
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Proof of Theorem 3 (i) The proof is similar to the proof of Theorem 1 in Bai and Ng (2002) and

the proof of Theorem 3.3 in Fan, Liao and Mincheva (2013). By the definition of f̂t, we readily have

V̂
(
f̂t −Hf0t

)
=

1

npn

(
n∑
s=1

pn∑
k=1

f̂s(f
0
s )

ᵀ
b0
kutk +

n∑
s=1

pn∑
k=1

f̂s(f
0
t )

ᵀ
b0
kusk+

n∑
s=1

pn∑
k=1

f̂sE [uskutk] +
n∑
s=1

pn∑
k=1

f̂s {uskutk − E [uskutk]}

)
(B.29)

for any 1 ≤ t ≤ n.

By the conditions B1 and B4, and following the proof of (A.35) in Appendix A, we may show

that uniformly for 1 ≤ t ≤ n,

1

npn

(
n∑
s=1

pn∑
k=1

f̂sE [uskutk]

)
= OP (n−1/2) (B.30)

and
1

npn

(
n∑
s=1

pn∑
k=1

f̂s {uskutk − E [uskutk]}

)
= OP (n1/4p−1/2n ). (B.31)

Noting that
∥∥∥∑n

s=1 f̂s(f
0
s )

ᵀ
∥∥∥ = OP (n) by the condition B2, and maxt ‖

∑pn
k=1 b0

kutk‖ = OP (n1/4p
1/2
n )

by (3.9) in the condition B4, we have

1

npn

(
n∑
s=1

pn∑
k=1

f̂s(f
0
s )

ᵀ
b0
kutk

)
= OP (n1/4p−1/2n ) (B.32)

uniformly for 1 ≤ t ≤ n.

Notice that

max
t

∥∥∥∥∥
n∑
s=1

pn∑
k=1

f̂s(f
0
t )

ᵀ
b0
kusk

∥∥∥∥∥ ≤ max
t

∥∥f0t ∥∥
(

n∑
s=1

∥∥∥f̂s∥∥∥2)1/2
 n∑

s=1

∥∥∥∥∥
pn∑
k=1

b0
kusk

∥∥∥∥∥
2
1/2

= OP (1) ·OP (n1/2) ·OP (n3/4pn),

by using the conditions B2 and B4. Hence, we have

1

npn

(
n∑
s=1

pn∑
k=1

f̂s(f
0
t )

ᵀ
b0
kusk

)
= OP (n1/4p−1/2n ) (B.33)

uniformly for 1 ≤ t ≤ n.
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By the definition of F̂n and following the arguments in the proof of Lemma 5 in Appendix A, we

may show that

V̂ −
(

1

n
F̂ ᵀ

nF0
n

)(
1

pn
(B0

n)
ᵀ
B0
n

)(
1

n
(F0

n)
ᵀF̂n

)
= oP (1). (B.34)

Furthermore, by Lemma 5 again,

1

n
(F0

n)
ᵀ
(F0

n)−
(

1

n
(F0

n)
ᵀF̂n

)(
1

n
F̂ ᵀ

nF0
n

)
= oP (1),

which together with the condition B2, implies that F̂ ᵀ

nF0
n/n is asymptotically invertible. By (B.34)

and noting that (B0
n)

ᵀ
B0
n/pn is positive definite, we may show that V̂ is also asymptotically invertible.

We can then complete the proof of (3.12) in Theorem 3(i) by using this fact and (B.29)–(B.33).

(ii) Let

η∗tk,f = Yt −m∗k,f (f̃ 0
tk) = Yt − E

[
Yt|f̃ 0

tk

]
,

where f̃ 0
tk = er(k)Hf0t is defined as in Section 2.2. Given the r×r matrix H,

{(
η∗tk,f , f̃

0
tk

)
, k = 1, · · · , r

}
is a stationary α-mixing process over t which satisfies the condition B1. Note that

m̂∗k,f (zk)− m̃∗k,f (zk) =
[
m̂∗k,f (zk)−m∗k,f (zk)

]
−
[
m̃∗k,f (zk)−m∗k,f (zk)

]
=

∑n
t=1K

(
f̂tk−zk
h3

) [
Yt −m∗k,f (zk)

]∑n
t=1K

(
f̂tk−zk
h3

) −
∑n

t=1K
( f̃0tk−zk

h3

) [
Yt −m∗k,f (zk)

]
∑n

t=1K
( f̃0tk−zk

h3

)
=

∑n
t=1K

(
f̂tk−zk
h3

)
η∗tk,f∑n

t=1K
(
f̂tk−zk
h3

) −
∑n

t=1K
( f̃0tk−zk

h3

)
η∗tk,f∑n

t=1K
( f̃0tk−zk

h3

)
+

∑n
t=1K

(
f̂tk−zk
h3

)
∆tk,m∑n

t=1K
(
f̂tk−zk
h3

) −
∑n

t=1K
( f̃0tk−zk

h3

)
∆tk,m∑n

t=1K
( f̃0tk−zk

h3

)


=: Γn1(zk) + Γn2(zk), (B.35)

where ∆tk,m = m∗k,f (f̃
0
tk)−m∗k,f (zk).

We first consider the uniform convergence for Γn1(zk). It is easy to show that

Γn1(zk) =

∑n
t=1K

(
f̂tk−zk
h3

)
η∗tk,f∑n

t=1K
(
f̂tk−zk
h3

) −
∑n

t=1K
( f̃0tk−zk

h3

)
η∗tk,f∑n

t=1K
(
f̂tk−zk
h3

)
+

∑n
t=1K

( f̃0tk−zk
h3

)
η∗tk,f∑n

t=1K
(
f̂tk−zk
h3

) −
∑n

t=1K
( f̃0tk−zk

h3

)
η∗tk,f∑n

t=1K
( f̃0tk−zk

h3

)


=: Γn1,1(zk) + Γn1,2(zk). (B.36)
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Following the arguments in the proof of Lemma 3, we may prove

max
1≤k≤r

sup
zk∈F∗

k

∣∣∣∣∣ 1

nh3

n∑
t=1

K
( f̃ 0

tk − zk
h3

)
η∗tk,f

∣∣∣∣∣ = OP

(√
log n/(nh3)

)
. (B.37)

By (3.11) and (3.12) in Theorem 3(i), we have

max
1≤k≤r

sup
zk∈F∗

k

∣∣∣∣∣ 1

nh3

n∑
t=1

K
( f̂tk − zk

h3

)
− 1

nh3

n∑
t=1

K
( f̃ 0

tk − zk
h3

)∣∣∣∣∣ = OP

(
n−1/2h−13 + n1/4p−1/2n h−13

)
.

(B.38)

By (B.37), (B.38) and the condition B5(ii), we readily have

max
1≤k≤r

sup
zk∈F∗

k

|Γn1,2(zk)| = OP

(
n−1h

−3/2
3 (log n)1/2 + n−1/4h

−3/2
3 p−1/2n (log n)1/2

)
= oP

(
n−1/2

)
. (B.39)

By the condition B5(i), we apply Taylor’s expansion to the kernel function:

K
( f̂tk − zk

h3

)
−K

( f̃ 0
tk − zk
h3

)
=
f̂tk − f̃ 0

tk

h3
K ′
( f̃ ∗tk − zk

h3

)
,

where f̃ ∗tk lies between f̃ 0
tk and f̂tk. Using the above expansion, (B.29) and (B.31)–(B.33), we have

max
1≤k≤r

sup
zk∈F∗

k

∣∣∣∣∣ 1

nh3

n∑
t=1

η∗tk,fK
( f̂tk − zk
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∗
tk,fK

′
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h3

)∣∣∣∣∣+ oP
(
n−1/2

)
. (B.40)

By the conditions B1 and B4, for κn = [nγ0 ], we have∑
|s−t|>κn

E [uskutk] = O
(
θ
3κn/4
0

)
, 0 < θ0 < 1,
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which implies that
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1≤k≤r
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(
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, (B.41)

where we have used (3.12) in Theorem 3(i) and the condition B5(ii). By (B.38), (B.40) and (B.41),

we may prove that

max
1≤k≤r

sup
zk∈F∗

k

|Γn1,1(zk)| = oP
(
n−1/2

)
. (B.42)

By (B.36), (B.39) and (B.42), we readily have

max
1≤k≤r

sup
zk∈F∗

k

|Γn1(zk)| = oP
(
n−1/2

)
. (B.43)

On the other hand, using Taylor’s expansion for m∗k,f (·) and following the arguments in the proofs

of (B.39) and (B.42), we may also show that

max
1≤k≤r

sup
zk∈F∗

k

|Γn2(zk)| = oP
(
n−1/2

)
, (B.44)

which, together with (B.43), completes the proof of Theorem 3(ii).
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[8] Bühlmann, P., van de Geer, S., 2011. Statistics for High-Dimensional Data: Methods, Theory and

Applications. Springer Series in Statistics, Springer.

[9] Chen, J., Li, D., Linton, O., Lu, Z., 2015. Semiparametric dynamic portfolio choice with multiple

conditioning variables. Forthcoming in Journal of Econometrics.

[10] Cheng, X., Hansen, B., 2015. Forecasting with factor-augmented regression: a frequentist model aver-

aging approach. Journal of Econometrics 186, 280–293.

[11] Claeskens, G., Hjort, N., 2008. Model Selection and Model Averaging. Cambridge University Press.

[12] Chamberlain, G., Rothschild, M., 1983. Arbitrage, factor structure and mean-variance analysis in large

asset markets. Econometrica 51, 1305–1324.

[13] Fama, E., French, K., 1992. The cross-section of expected stock returns. Journal of Finance 47, 427–465.

[14] Fan, J., Feng, Y., Song, R., 2011. Nonparametic independence screening in sparse ultra-high dimensional

additive models. Journal of the American Statistical Association 116, 544–557.

[15] Fan, J., Gijbels, I., 1996. Local Polynomial Modelling and Its Applications. Chapman and Hall, London.

[16] Fan, J., Li, R., 2001. Variable selection via nonconcave penalized likelihood and its oracle properties.

Journal of the American Statistical Association 96, 1348–1360.

[17] Fan, J., Liao, Y., Mincheva, M., 2013. Large covariance estimation by thresholding principal orthogonal

complements (with discussions). Journal of the Royal Statistical Society: Series B 75, 603–680.

49



[18] Fan, J., Lv, J., 2008. Sure independence screening for ultrahigh dimensional feature space (with dis-

cussion). Journal of the Royal Statistical Society Series B 70, 849–911.

[19] Fan, J., Ma, Y., Dai, W., 2014. Nonparametric independence screening in sparse ultra-high dimensional

varying coefficient models. Forthcoming in Journal of the American Statistical Association.

[20] Fan, J., Peng, H., 2004. Nonconcave penalized likelihood with a diverging number of parameters. Annals

of Statistics 32, 928–961.

[21] Frank, I. E., Friedman, J. H., 1993. A statistical view of some chemometrics regression tools. Techno-

metrics 35, 109–148.

[22] Fu, W., 1998. Penalized regression: the bridge versus LASSO. Journal of Computational and Graphical

Statistics 7, 397–416.

[23] Green, P., Silverman, B., 1994. Nonparametric Regression and Generalized Linear Models: A Roughness

Penalty Approach. Chapman and Hall/CRC.
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