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Abstract

This paper develops characterizations of identified sets of structures and structural features

for complete and incomplete models involving continuous and/or discrete variables. Multiple

values of unobserved variables can be associated with particular combinations of observed vari-

ables. This can arise when there are multiple sources of heterogeneity, censored or discrete

endogenous variables, or inequality restrictions on functions of observed and unobserved vari-

ables. The models generalize the class of incomplete instrumental variable (IV) models in which

unobserved variables are single-valued functions of observed variables. Thus the models are re-

ferred to as Generalized IV (GIV) models, but there are important cases in which instrumental

variable restrictions play no significant role. The paper provides the first formal definition of

observational equivalence for incomplete models. The development uses results from random

set theory which guarantee that the characterizations deliver sharp bounds, thereby dispensing

with the need for case-by-case proofs of sharpness. One innovation is the use of random sets

defined on the space of unobserved variables. This allows identification analysis under mean

and quantile independence restrictions on the distributions of unobserved variables conditional

on exogenous variables as well as under a full independence restriction. It leads to a novel

general characterization of identified sets of structural functions when the sole restriction on the

∗This paper is a revised version of a paper initially circulated as CeMMAP working paper CWP43/13 under the
title “Generalized Instrumental Variable Models.” We thank Federico Bugni, Matt Masten, and Francesca Molinari
for detailed comments and discussion. We have benefitted from discussion with participants at seminar and conference
presentations given at Boston College, Chicago, Paris School of Economics, Vanderbilt, the April 2013 conference
on Mathematical Statistics of Partially Identified Objects at Oberwolfach, the 2013 Cowles summer econometrics
conference, Yale, Virginia, Georgetown, Maryland, Johns Hopkins, Toulouse School of Economics, Oxford, Duke,
Illinois, Reading, and Surrey. Financial support from the UK Economic and Social Research Council through a grant
(RES-589-28-0001) to the ESRC Centre for Microdata Methods and Practice (CeMMAP) and from the European
Research Council (ERC) grant ERC-2009-StG-240910-ROMETA is gratefully acknowledged.
†Address: Andrew Chesher, Department of Economics, University College London, Gower Street, London WC1E

6BT, andrew.chesher@ucl.ac.uk.
‡Address: Adam Rosen, Department of Economics, University College London, Gower Street, London WC1E

6BT, adam.rosen@ucl.ac.uk.

1



distribution of unobserved and observed exogenous variables is that they are independently dis-

tributed. Illustrations are presented for a parametric random coefficients linear model and for a

model with an interval censored outcome, in both cases with endogenous explanatory variables,

and for an incomplete nonparametric model of English auctions. Numerous other applications

are indicated.

Keywords: instrumental variables, endogeneity, excess heterogeneity, limited information, set

identification, partial identification, random sets, incomplete models.

JEL classification: C10, C14, C24, C26.

1 Introduction

This paper develops characterizations of identified sets – equivalently sharp bounds – for a wide class

of complete and incomplete structural models admitting general forms of unobserved heterogeneity.1

Multiple values of unobserved variables can be associated with particular combinations of values of

observed endogenous and exogenous variables. This occurs in models admitting multiple sources

of heterogeneity such as random coefficients, in models with discrete or censored outcomes, and in

models in which observed and unobserved variables are constrained by inequality restrictions.

Leading examples of the models studied here are classical single equation instrumental variable

(IV) models such as the linear model (e.g. Wright (1928), Theil (1953), Basmann (1959)) as

well as semiparametric and nonparametric IV models (e.g. Newey and Powell (1989, 2003), and

Chernozhukov and Hansen (2005)) and extensions of these models allowing random coefficients

and/or discrete or censored outcomes. In these IV models there are restrictions on the influence

of certain exogenous variables on the determination of outcomes and restrictions on the extent of

dependence between observed exogenous and unobserved variables. We use the catch-all descriptor

Generalized Instrumental Variable (GIV) models to describe the class of models studied in this

paper. However, our results can also be applied to models in which instrumental variables play no

significant role.

Let Y and Z denote, respectively, observed endogenous and exogenous variables, and let U

denote unobserved heterogeneity. Lower case y, z and u denote realizations of these random vectors

which may be continuous, discrete, or mixed continuous-discrete. The models studied in this paper

place restrictions on a structural function h (y, z, u) mapping the joint support of Y , Z, and U onto

the real line. The structural function defines the combinations of values of Y , Z and U that may

occur through the restriction that h (Y,Z, U) = 0 almost surely. For example, a classical linear IV

model has h(y, z, u) = y1 − αy2 − zβ − u. More examples are given in Section 2.2.

The primary focus of this paper is on identification of structures. A structure (h,GU |Z) comprises

1The terms “sharp bounds” and “identified sets” are used interchangeably throughout. Non-sharp bounds are
referred to as “outer sets”.
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a structural function h coupled with a family of conditional distributions of U given Z:

GU |Z ≡ {GU |Z(·|z) : z ∈ RZ},

where GU |Z(S|z) is the probability that U belongs to set S given Z = z, and RZ is the support

of exogenous Z. Identified sets for structural features, for example a structural function or some

functional of it, are obtained as projections of identified sets of structures.

Level sets of the structural function h(y, z, u) play a central role in the development. Let RU
and RY denote the support of U and Y , respectively. The random set

U (Y,Z;h) ≡ {u ∈ RU : h (Y, Z, u) = 0} (1.1)

has realizations U (y, z;h) which contain all values of U that can give rise to Y = y when Z = z

according to structural function h. The random set

Y (U,Z;h) ≡ {y ∈ RY : h (y, Z, U) = 0} (1.2)

has realizations Y (u, z;h) which contain all values of Y that can occur when U = u and Z = z

according to the structural function h. Complete models require Y (U,Z;h) to be a singleton with

probability one for all admissible h. Incomplete models admit structural functions h such that

Y (U,Z;h) can have cardinality greater than one.2 Models with multiple sources of heterogeneity,

discrete or censored outcomes, or observed and unobserved variables restricted by inequality con-

straints have sets U (Y,Z;h) with realizations which may not be singleton sets. The GIV models

studied here require neither of these sets to be singleton. Consequently, classical rank conditions or

more generally nonparametric completeness conditions are typically not sufficient for point identi-

fication. GIV models are generally partially identifying.

This paper provides characterizations of identified sets of structures and structural features

delivered by GIV models given distributions of observable variables. Examples of the sets obtained

are supplied for particular cases. Previously the question of whether sharp bounds are obtained

has been primarily handled on a case-by-case basis. The usual approach to proving sharpness is

constructive, see for example Chesher (2010, 2013) and Rosen (2012). This approach requires one to

show that every structure in the identified set can deliver the distribution of observed variables. This

is often difficult to accomplish and sometimes, as in the auction model of Haile and Tamer (2003),

it is infeasible. The methodology introduced here is shown to always deliver characterizations of

sharp bounds. It is shown that these sets can be expressed as systems of moment inequalities

2In Chesher and Rosen (2012) we specialize our approach for identification analysis to simultaneous discrete
outcome models, and there define incoherent models in which Y (U,Z;h) can be empty. There we discuss several
ways in which incoherence can be addressed. For further details about incoherence and references to the larger
literature on simultaneous discrete outcome models where this has been a pervasive issue, we refer to that paper.
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and equalities to which recently developed inferential procedures are applicable. See for example

Chesher and Rosen (2013a,b), and Aradillas-Lopez and Rosen (2013) for empirical applications

using treatment effect and simultaneous ordered response models.

The results of this paper are obtained using random set theory, reviewed in Molchanov (2005)

and introduced into econometric identification analysis by Beresteanu, Molchanov, and Molinari

(2011), henceforth BMM11. The analysis there employs the random set Y (U,Z;h) in models

where the identified set can be characterized through a finite number of conditional moment in-

equalities involving an unobservable and possibly infinite-dimensional nuisance function, such as

an equilibrium selection mechanism in econometric models of games. BMM11 provides a novel and

computationally tractable characterization of the identified set in the form of conditional moment

inequalities in which this nuisance function does not appear. In Beresteanu, Molchanov, and Moli-

nari (2012), it is further shown how the random set Y (U,Z;h) can be used to characterize sharp

bounds on the distribution of counterfactual response functions in treatment effect models, such

as those of Balke and Pearl (1997), Manski (1997), and Kitagawa (2009), and extensions thereof.

In another related paper, Galichon and Henry (2011) take an alternative approach using optimal

transportation theory to characterize sharp parameter bounds in parametrically specified incom-

plete models. An innovation in their analysis is the construction of core-determining sets, in their

case subsets of the space on which Y (U,Z;h) is realized, for the purpose of simplifying computation

of the identified set.

Instead of using the random Y level set Y (U,Z;h), the approach taken in this paper uses the

random U -level sets U (Y, Z;h) to characterize identified sets for (h,GU |Z) in structural economet-

ric models. The analysis does not require the existence of a representation of the identified set

through a finite number of conditional moment equalities involving an unknown nuisance function

as required in BMM11. This allows treatment of models with continuous endogenous variables and

independence restrictions on the joint distribution U and Z. Nor does the analysis here require

parametric specification for the structural function or the conditional distributions of unobserved

heterogeneity as required in Galichon and Henry (2011). The use of random U -level sets allows

consideration of a variety of restrictions on unobserved heterogeneity common in structural econo-

metrics, including stochastic independence, conditional mean, conditional quantile, and parametric

restrictions. The results are sufficiently general to allow the use of other restrictions on the distri-

bution of U and Z through application of Theorem 2. In our previous papers employing random set

theory such as Chesher, Rosen, and Smolinski (2013) and Chesher and Rosen (2012), unobserved

U and exogenous Z were required to be independently distributed, and certain outcome variables

were required to be discrete. This paper studies a much broader class of models in which each of

the components of endogenous Y can be continuous, discrete or mixed.

The main result of the paper is as follows. Let θ be a structure, that is, an object with

components which are a structural function h and a collection of conditional distributions GU |Z .

4



Let FY |Z(·|z) denote a conditional distribution of endogenous variables given Z = z. A random

set U (Y,Z;h) is characterized by the collection of random variables that almost surely lie in the

random set. These random variables are called the selections of the random set.3 It is shown

that the identified set of structures delivered by a model given distributions FY |Z(·|z), z ∈ RZ ,

comprises all θ admitted by the model such that for almost every z ∈ RZ , GU |Z(·|z) ∈ GU |Z is the

distribution of one of the selections of U (Y, Z;h) when Y given Z = z has distribution FY |Z(·|z).
Alternative characterizations of this selectionability property deliver alternative characteriza-

tions of the identified set. One such characterization is delivered by Artstein’s (1983) inequality,

characterizing the identified set as those θ admitted by the model such that the inequality

GU |Z(S|z) ≥ P[U (Y, Z;h) ⊆ S|Z = z]

holds for all S in a collection of closed sets Q(h, z) and almost every z ∈ RZ . On the left hand side

is the probability that U has a realization in set S given Z = z. On the right hand side is the con-

ditional probability of the occurrence of one one of the values of Y such that U (Y,Z;h) ⊆ S, under

structural function h. A definition of collections of sets Q(h, z) is provided and conditions are given

under which certain inequalities can be replaced by equalities. Identified sets for structural features

that are functionals of θ are obtained as projections of the identified set for θ. Characterizations

employing the Aumann expectation of random sets U (Y, Z;h) are also provided.

The paper provides other new results, briefly reviewed now.

Observational equivalence. The concept of observational equivalence is formally defined for in-

complete models. While identification analysis for incomplete models has been conducted in other

papers, including some of our own, this appears to be the first formal definition of observational

equivalence for such models. The definition extends the classical definition of observational equiva-

lence, e.g. Koopmans (1949), Koopmans and Reiersøl (1950), Hurwicz (1950), Rothenberg (1971),

Bowden (1973), and Matzkin (2007, 2008) to models admitting structures that may not generate

a single distribution of endogenous variables given other observed variables.4 In complete models

observationally equivalent structures generate common distributions of endogenous outcomes, Y .

In incomplete models structures can generate multiple distributions of outcomes so observational

equivalence is naturally defined in terms of random outcome sets Y (U,Z;h).

Dual level sets. The analysis is based on a key duality result concerning the random level

sets Y (U,Z;h) and U (Y,Z;h). This allows the development of characterizations of observational

equivalence in terms of properties of U (Y,Z;h) rather than Y (U,Z;h). This dual characterization

of observational equivalence makes plain the relationship between the characterizations of identified

3See Definition 1 and Molchanov (2005) for further details.
4Hurwicz (1950) does not explicitly use the term observational equivalence but employs the concept nonethe-

less. In the cited papers Hurwicz (1950) and Matzkin (2007, 2008) both consider observational equivalence from a
nonparametric perspective.
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sets in this paper and those using outcome sets Y (U,Z;h), as in for example BMM11 and Galichon

and Henry (2011). The use of random U -level sets U (Y, Z;h) rather than random Y -level sets

Y (U,Z;h) is what enables characterization of identified sets in models employing a variety of

different restrictions on the distribution of U and Z. It also facilitates projection of identified sets

onto the space in which structural functions are defined.

Projection and distribution free analysis. Theorem 4 Corollary 3 characterizes identified sets

of structural functions in models which restrict unobserved U and exogenous Z to be independently

distributed while placing no restrictions on the marginal distribution of U . This provides a char-

acterization of the identified set for the structural function h that does not make explicit reference

to the distribution of unobserved heterogeneity. Until now such results have not been available.

Conditional moment and quantile restrictions. Sections 5.2 and 5.3 provide new results char-

acterizing identified sets of structures and structural features in econometric models incorporating

conditional moment and conditional quantile restrictions on unobserved heterogeneity. Conditional

mean restrictions on outcome variables Y given exogenous variables can be readily incorporated

in an analysis employing random Y -level sets Y (U,Z;h) using techniques developed in BMM11

and Beresteanu, Molchanov, and Molinari (2012). The approach taken here additionally delivers

identified sets in models featuring conditional moment restrictions on unobserved variables that

may enter structural equations non-separably, that is non-linear moment condition models, that do

not map directly to conditional mean restrictions on outcome variables. The characterizations of

identified sets in models featuring conditional quantile restrictions are also novel.

Core determining sets. The conditional moment inequalities characterizing identified sets com-

prise inequalities concerning the probability of the event U (Y,Z;h) ⊆ S for sufficiently rich col-

lections of non-stochastic sets S defined on the support of U . Such collections are called core

determining sets, and, as previously noted, were first introduced for characterizations involving Y

sets by Galichon and Henry (2011). Here several new results on core-determining sets for char-

acterizations involving U (Y, Z;h) are presented. The results are widely applicable, making use of

the geometry of the random U -level sets U (Y,Z;h). A novel feature of these results is that we

provide conditions whereby some combinations of conditional moment inequalities can be simplified

to conditional moment equalities.5

Applications. The scope of application of the new results is demonstrated in three worked exam-

ples. Section 6.1 applies the results of this paper to obtain a characterization of the sharp identified

set of distributions of valuations in the incomplete model of English auctions studied in Haile and

Tamer (2003). This demonstrates the ability of the methods introduced in this paper to deliver

sharp identified sets in cases where instrumental variable restrictions play no significant role and

where characterizations of sharp identified sets have hitherto been unavailable. In Section 6.2,

5Earlier versions of some of the results on core determining sets appeared in the 2012 version of the CeMMAP
working paper Chesher and Rosen (2012), which concerned models with only discrete endogenous variables. In this
paper we provide more general results covering the broader class of models studied here.
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identified sets are calculated for a single equation random coefficients linear IV model. Other IV

treatments of continuous outcome random coefficient models have employed simultaneous equations

models as in Masten (2014) or complete models that fully specify the mapping from exogenous to

endogenous variables, as in Hoderlein, Holzmann, and Meister (2015). The online materials provide

a characterization of identified sets in a linear model with an interval censored outcome and an

endogenous explanatory variable, an extension of the model studied in Manski and Tamer (2002)

in which explanatory variables are restricted to be exogenous.

1.1 Plan

The paper proceeds as follows. Section 2 formalizes the GIV model restrictions and provides some

leading examples of GIV models. Section 3 provides our generalization of the classical notion of

observational equivalence, our duality result, and some accompanying formal set identification char-

acterizations, including a widely-applicable construction written in terms of conditional moment

inequalities. Section 4 shows how to use the notion of core-determining sets to exploit the geometric

structure of the random sets U (Y,Z;h) to reduce the collection of conditional moment inequalities

without losing identifying power. Section 5 shows how restrictions on unobserved heterogeneity and

exogenous variables, such as independence, conditional mean, conditional quantile, and parametric

restrictions can then be incorporated to further refine characterization of the identified set. Section

6 demonstrates how the application of our results to IV random coefficient models and incomplete

models of English auctions delivers novel characterizations of sharp bounds in models featuring

multivariate unobserved heterogeneity. Section 7 concludes. All proofs are provided in the Ap-

pendix. Additional results not included in the paper are given in an on-line supplement. Section

C.3 of this supplement further illustrates the set identifying power of GIV models through appli-

cation to a continuous outcome model with an interval-censored endogenous explanatory variable,

providing numerical illustrations of the resulting identified sets.

1.2 Notation

Capital Roman letters A denote point-valued random variables and lower case letters a denote par-

ticular point-valued realizations. For probability measure P, P (·|a) is used to denote the conditional

probability measure given A = a. RA1···Am denotes the joint support of random vectors A1, ..., Am,

RA1|a2 denotes the support of random vector A1 conditional on A2 = a2, qA|B (τ |b) denotes the τ

conditional quantile of A given B = b. A ‖ B means that random vectors A and B are stochastically

independent. ∅ denotes the empty set. Calligraphic font (S) is reserved for sets, and sans serif font

(S) is reserved for collections of sets. The symbol ⊆ indicates nonstrict set inclusion, cl (A) denotes

the closure of A, Ch (S|z) denotes the containment functional of random set U (Y, Z;h) conditional

on Z = z, defined in Section 3.2. The notation F . A indicates that the distribution F of a
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random vector is selectionable with respect to the distribution of random set A, and A = Sel(A)

indicates that random variable A is a selection of random set A, both as defined in Section 3.1.

1 [E ] denotes the indicator function, taking the value 1 if the event E occurs and 0 otherwise. Rm

denotes m dimensional Euclidean space, R1 is abbreviated to R and for any vector v ∈ Rm, ‖v‖
indicates the Euclidean norm: ‖v‖ =

√
v21 + · · ·+ v2m. In order to deal with sets of measure zero

and conditions required to hold almost everywhere, we use the “sup” and “inf” operators to denote

“essential supremum” and “essential infimum” with respect to the underlying measure when these

operators are applied to functions of random variables (e.g. conditional probabilities, expectations,

or quantiles). Thus supz∈Z f (z) denotes the smallest value of c ∈ R such that P [f (Z) > c] = 0

and infz∈Z f (z) denotes the largest value of c ∈ R such that P [f (Z) < c] = 0.

2 GIV Models

This section starts with a formal statement of the restrictions comprising GIV models. Examples

of particular GIV models are then provided.

2.1 GIV Models

The following restrictions are employed.

Restriction A1: (Y,Z, U) are finite dimensional random vectors defined on a probability space

(Ω, L,P), endowed with the Borel sets on Ω. �

Restriction A2: The support of (Y, Z) is a subset of Euclidean space. A collection of conditional

distributions

FY |Z ≡
{
FY |Z (·|z) : z ∈ RZ

}
,

is identified by the sampling process, where for all T ⊆ RY |z, FY |Z (T |z) ≡ P [Y ∈ T |z]. �
Restriction A3: The support of U is a subset of a locally compact second countable Hausdorff

topological space. There is an L-measurable function h (·, ·, ·) : RY ZU → R such that

P [h (Y,Z, U) = 0] = 1,

and there is a collection of conditional distributions

GU |Z ≡
{
GU |Z (·|z) : z ∈ RZ

}
,

where for all S ⊆ RU |z, GU |Z (S|z) ≡ P [U ∈ S|z]. �
Restriction A4: The pair

(
h,GU |Z

)
belongs to a known set of admissible structures M. �

Restriction A5: U (Y,Z;h) is closed almost surely P [·|z], each z ∈ RZ . �

Restriction A6: Y (Z,U ;h) is closed almost surely P [·|z], each z ∈ RZ . �
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Restriction A1 defines the probability space on which (Y,Z, U) reside. Restriction A2 restricts

RY Z to a subset of Euclidean space, and requires that for each z ∈ RZ , FY |Z (·|z) is identified.

Random sampling of observations from P is sufficient, but not required.

The first part of restriction A3 requires thatRU is a subset of a locally compact second countable

Hausdorff space. This is automatically satisfied if RU is a subset of a finite dimensional Euclidean

space, as is the case in the examples we cover in this paper.6 The second part of restriction A3

posits the existence of structural relation h, and provides notation for the collection of conditional

distributions GU |Z of U given Z.

Restriction A4 imposes model M, the collection of admissible structures
(
h,GU |Z

)
. Unlike the

previous restrictions, it is refutable based on knowledge of FY |Z in that it is possible that there is

no
(
h,GU |Z

)
∈M such that P [h (Y,Z, U) = 0] = 1. In such cases the identified set of structures is

empty, indicating model misspecification.

Restrictions A5 and A6 restrict U (Y,Z;h) and Y (Z,U ;h), respectively, to be random closed

sets. The purpose of these restrictions is to enable use of results from random set theory char-

acterizing the distributions of selections of random closed sets.7 These restrictions are satisfied

for example if M specifies that all admissible h are continuous in their first and third arguments,

respectively, but can also hold more generally. A given econometric model can generally be rep-

resented through a variety of different but substantively equivalent structural functions h, and

judicious choice of this function can often be made to ensure these requirements are satisfied.8 See

Section 2.2 for examples.9

Sometimes it is convenient to refer separately to collections of admissible structural functions

and distributions GU |Z . These are defined as the following projections of M.

H ≡
{
h :
(
h,GU |Z

)
∈M for some GU |Z

}
,

GU |Z ≡
{
GU |Z :

(
h,GU |Z

)
∈M for some h

}
.

The model M could, but does not necessarily, consist of the full product space H× GU |Z .

The identifying power of any particular model manifests through three different mechanisms:

(i) restrictions on the class of functions h; (ii) restrictions on the joint distribution of (U,Z), and

6Molchanov (2005) p. 1 notes that the Euclidean space Rd is a generic example of a locally compact second
countable Hausdorff space. Importantly, the requirement of local compactness allows RU to be unbounded, requiring
only that each point in RU has a neighborhood with compact closure, see e.g. Molchanov (2005) p. 388.

7The definition of a selection of a random set is provided in Section 3.
8In many models U is restricted to be continuously distributed, in which case the requirement that h be specified

such that U (y, z;h) is closed is not restrictive, since the difference GU places on any set and its closure is zero.
9Importantly, the realizations of Y (Z,U ;h) and U (Y,Z;h) may be unbounded, as closedness merely requires that

they contain their limit points. Moreover, whether these sets are closed depends on the underlying topological space.
We use the Euclidiean topology on Rd throughout, but in some cases other topological spaces could be used to
establish closedness. For instance, if U (Y,Z;h) can take only a finite number of realizations, then this set is closed
in the discrete topology on {U (Y, z;h) : z ∈ RZ}, see e.g. Sutherland (2009), page 94, Exercise 9.1.
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(iii) the joint distribution of (Y,Z). The first two mechanisms are part of the model specification,

with M comprising the set of structures
(
h,GU |Z

)
deemed admissible for the generation of (Y,Z).

A researcher may restrict these to belong to more or less restrictive classes, parametric, semipara-

metric, or nonparametric. For example, h could be allowed to be any function satisfying some

particular smoothness restrictions, or it could be restricted to a parametric family as in a linear

index model. Likewise GU |Z could be collections of conditional distributions such that E [U |Z] = 0,

or qU |Z (τ |z) = 0, or U ‖ Z, or satisfying parametric restrictions. Various types of restrictions on

GU |Z are considered in Section 5.

The third source of identifying power, the joint distribution of (Y, Z), is identified and hence

left unrestricted. In many models, rank or completeness conditions are invoked to ensure point

identification. We allow for set identification, so such conditions are not required here. Moreover,

in models with nonsingleton sets U (Y, Z;h), as we allow here, such conditions are typically not

sufficient to achieve point identification. If there is“sufficient variation” in the distribution of

(Y,Z) to achieve point identification, such as the usual rank condition in a linear IV model, our

characterizations reduce to a singleton set.

2.2 Examples

Example 1. A binary outcome, threshold crossing GIV model as studied in Chesher (2010) and

Chesher and Rosen (2013b) has the following structural function:

h(y, z, u) = y1 min {u− g (y2, z1) , 0}+ (1− y1) max {u− g (y2, z1) , 0} ,

with U normalized uniformly distributed on [0, 1].10 The corresponding level sets are:

Y (u, z;h) = {(y1, y2) ∈ RY1Y2 : {y1 = 1 ∧ u ≥ g (y2, z1)} ∨ {y1 = 0 ∧ u ≤ g (y2, z1)}} ,

U (y, z;h) =
[0, g (y2, z1)] if y1 = 0,

[g (y2, z1) , 1] if y1 = 1.

Example 2. Multiple discrete choice with endogenous explanatory variables as studied in Chesher,

Rosen, and Smolinski (2013). The structural function is

h(y, z, u) = max
k∈{1,...,M}

πk (y2, z1, uk)− πy1 (y2, z1, uj) ,

where πj (y2, z1, uj) is the utility associated with choice j ∈ J ≡ {1, . . . ,M} and u = (u1, . . . , uM )

is a vector of unobserved preference heterogeneity. Y1 is the outcome or choice variable and Y2 are

10With U continuously distributed conditional on the other variables, P [g (Y2, Z1) = U ] = 0. Up to events of
measure zero, this model is then equivalent one that specifies Y1 = 1 [g (Y2, Z1) > 0].
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endogenous explanatory variables. Z1 are exogenous variables allowed to enter the utility functions

π1, ..., πM , while Z2 are excluded exogenous variables, or instruments. The level sets are thus

Y (u, z;h) =

{(
arg max

j∈J
πj (y2, z1, uj) , y2

)
: y2 ∈ RY2

}
,

U (y, z;h) =

{
u ∈ RU : y1 ∈ arg max

j∈J
πj (y2, z1, uj)

}
.

Example 3. A continuous outcome random coefficients model has structural function

h(y, z, u) = y1 − z1γ − (β2 + u2) y2 − (β1 + u1) . (2.1)

The random coefficients are (β1 + U1) and (β2 + U2), with means β1 and β2, respectively. The

coefficient γ multiplying exogenous variables in h could also be random. The level sets are

Y (u, z;h) = {(z1γ + (β2 + u2) y2 + (β1 + u1) , y2) : y2 ∈ RY2} ,

U (y, z;h) = {u ∈ RU : u1 = y1 − z1γ − β1 − β2y2 − u2y2} . (2.2)

Section 6.2 investigates by way of numerical illustration the identifiying power of instrumental

variables with the single equation structural function 2.1. The example comprises a limited in-

formation single equation instrumental variable model, in contrast to the simultaneous equations

random coefficient model studied by Masten (2014), for which point identification of the marginal

distributions of the random coefficients was established.

Example 4. Interval censored endogenous explanatory variables. Let g (·, ·, ·) : R × Rk × R → R
be increasing in its first argument and strictly increasing and continuous in its third argument such

that

Y1 = g (Y ∗2 , Z1, U) ,

where endogenous variable Y ∗2 ∈ R is interval censored with P [Y2l ≤ Y ∗2 ≤ Y2u] = 1 for observed

variables Y2l, Y2u. No further restriction is placed on the process determining the realizations of

Y2l, Y2u. The structural function is

h(y, z, u) = max {y1 − g (y2u, z1, u) , 0}+ max {g (y2l, z1, u)− y1, 0} ,

with y ≡ (y1, y2l, y2u) and y2l ≤ y2u. The resulting level sets are

Y (u, z;h) = {y ∈ RY : g (y2l, z1, u) ≤ y1 ≤ g (y2u, z1, u) ∧ y2l ≤ y2u} ,

U (y, z;h) =
[
g−1 (y2u, z1, y1) , g

−1 (y2l, z1, y1)
]

,

11



where the function g−1 (·, ·, ·) is the inverse of g (·, ·, ·) with respect to its third argument, so that

for all y2, z1, and u, g−1 (y2, z1, g (y2, z1, u)) = u.

Example 5. Endogenous censoring. Observed Y1 is the minimum of observed Y2 and a partially

observed variable which is a function g(Z,U) of observed and unobserved exogenous variables,

continuous in its second argument, leading to the structural function

h(y, z, u) = y1 −min(g(z, u), y2)

which has level set Y (u, z;h) = {(y1 −min(g(z, u), y2), y2) : y2 ∈ RY2}. If u is scalar and g(z, u)

is monotone increasing in u then the level set U (y, z;h) is:

U (y, z;h) =

{
{g−1(z, y1)} , y1 < y2

[g−1(z, y2),∞) , y1 = y2

where g−1(·, ·) is the inverse of g(·, ·) with respect to its second argument. In an example Y1 is the

amount of perishable fish sold in a day at a stall in a fish market, Y2 is the amount on sale at the

start of the day and g(Z,U) is demand, only observed when it fails to exceed the amount stocked.

The stall owner may choose Y2 having some signal of the value of U thus rendering Y2 endogenous.

Example 6. Endogenous variables measured with error. Observed Y1 is a function, g(Y ∗2 , Z, U1), of

latent endogenous Y ∗2 , exogenous Z and unobserved U1. Observed Y2 = Y ∗2 +U2 where U2 may be

measurement error or transitory variation around a long run level. There is the structural function

h(y, z, u) = y1 − g(y2 − u2, z, u1)

with level sets

Y (u, z;h) = {(y1 − g(y2 − u2, z, u1), y2) : y2 ∈ RY2}

and, if u is scalar and g(·, ·, ·) is monotone increasing in its third argument with inverse function

relative to that argument g−1(·, ·, ·), as in Chernozhukov and Hansen (2005),

U (y, z;h) = {u ∈ RU : u1 = g−1(y2 − u2, z, y1)}.

GIV models have numerous applications and many additional structural econometric models

fall in this class. The examples cited above are limited information instrumental variable models

in which the determination of some endogenous variables is left completely unspecified, which are

our main focus. Nonetheless, the methods of this paper also apply to simultaneous equations and

triangular models, see for instance Chesher and Rosen (2012) for some examples involving discrete

endogenous variables. In addition, by way of example we show in Section 6.1 how the incomplete
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model of English auctions in which bidders have independent private valuations introduced in Haile

and Tamer (2003) can be set up as a GIV model, and we show how the results developed in this

paper produce a characterization of the identified set of valuation distributions.

3 Observational Equivalence and Duality

3.1 Observational Equivalence and Selectionability in Outcome Space

The standard definition of observational equivalence found in the econometrics literature applies in

contexts in which each structure, m ∈M, delivers a single collection of conditional distributions:

PY |Z (m) ≡ {PY |Z (·|z;m) : z ∈ RZ}

where PY |Z (·|z;m) is the conditional distribution of Y given Z = z delivered by structure m.11 Un-

der this definition of observational equivalence, structures m and m′ are observationally equivalent

if PY |Z (m) = PY |Z (m′) almost surely. The point identified collection of conditional distributions

FY |Z plays no role in determining whether structures are observationally equivalent.

In the incomplete models studied in this paper, a particular structure m may generate more than

one collection of conditional distributions. The set of collections of conditional distributions that

can be generated by a structure m is denoted by PY |Z (m). It is possible that collections PY |Z (m)

and PY |Z (m′) generated by distinct structures, m and m′, have some but not all collections of

conditional distributions in common. Observational equivalence of two structures m and m′ may

thus depend on the particular collection of conditional distributions FY |Z under consideration

in identification analysis. This is so because there may be a collection, say F∗Y |Z , which lies in

PY |Z (m) and in PY |Z (m′) and a collection F∗∗Y |Z which lies in PY |Z (m) but not in PY |Z (m′).

Structures m and m′ are observationally equivalent in identification analysis employing F∗Y |Z but

not in identification analysis employing F∗∗Y |Z .

Consequently, in the following development, observational equivalence is defined with respect

to the (identified) collection of distributions FY |Z , and a corresponding notion of potential observa-

tional equivalence, which is a property which two structures can possess irrespective of the collection

of conditional distributions FY |Z under consideration in identification analysis.12 In order to give

formal definitions of these properties we first provide the definition of a selection from a random set

11See for example Koopmans and Reiersøl (1950), Hurwicz (1950), Rothenberg (1971), Bowden (1973), and Matzkin
(2007, 2008).

12In our formulation of observational equivalence and characterizations of identified sets, we continue to work with
conditional distributions of endogenous and latent variables, FY (·|z) and GU (·|z), respectively, for almost every
z ∈ RZ . Knowledge of the distribution of Z, FZ , combined with FY (·|z) or GU (·|z) a.e. z ∈ RZ is equivalent to
knowledge of the joint distribution of (Y,Z) denoted FY Z , or that of (U,Z), denoted GUZ , respectively. We show
formally in Appendix B that our characterizations using selectionability conditional on Z = z, a.e. z ∈ RZ , are
indeed equivalent to using analogous selectionability criteria for the joint distributions FY Z or GUZ .
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and the definition of selectionability as given by Molchanov (2005).13 Note that a selection from a

random set is itself a random variable. It can have arbitrary distribution – not necessarily a point

mass – subject to the caveat that it is contained in the given random set with probability one.

Definition 1 Let W andW denote a random vector and random set defined on the same probability

space. W is a selection of W, denoted W ∈ Sel (W), if W ∈ W with probability one. The

distribution FW of random vector W is selectionable with respect to the distribution of random

set W, abbreviated FW 4W, if there exists a random variable W̃ distributed FW and a random set

W̃ with the same distribution as W such that W̃ ∈ Sel
(
W̃
)

.

A given structure
(
h,GU |Z

)
induces a distribution for the random outcome set Y (U,Z;h) condi-

tional on Z = z, for all z ∈ RZ . This is because h (Y,Z, U) = 0 dictates only that Y ∈ Y (U,Z;h),

which is in general insufficient to uniquely determine the conditional distributions FY |Z . The defini-

tion of selectionability of FY |Z (·|z) from the distribution of Y (U,Z;h) given Z = z for almost every

z ∈ RZ characterizes precisely those distributions for which h (Y,Z, U) = 0 can hold with probabil-

ity one for the given
(
h,GU |Z

)
. In other words, these conditional distributions FY |Z (·|z) are exactly

those that can be generated by the structure
(
h,GU |Z

)
, leading to the following definitions.14

Definition 2 Under Restrictions A1-A3, two structures
(
h,GU |Z

)
and

(
h′,G′U |Z

)
are potentially

observationally equivalent if there exists a collection of conditional distributions FY |Z such that

FY |Z (·|z) 4 Y (U, z;h) when U ∼ GU |Z (·|z) and FY |Z (·|z) 4 Y (U, z;h′) when U ∼ G′U |Z (·|z) for

almost every z ∈ RZ . Two structures
(
h,GU |Z

)
and

(
h′,G′U |Z

)
are observationally equivalent

with respect to FY |Z , if FY |Z (·|z) 4 Y (U, z;h) when U ∼ GU |Z (·|z) and FY |Z (·|z) 4 Y (U, z;h′)

when U ∼ G′U |Z (·|z) for almost every z ∈ RZ .

Definition 3 Under Restrictions A1-A4, the identified set of structures
(
h,GU |Z

)
with respect

to the collection of distributions FY |Z are those admissible structures such that the conditional

distributions FY |Z (·|z) ∈ FY |Z are selectionable with respect to the conditional distributions of

random set Y (U, z;h) when U ∼ GU |Z (·|z), a.e. z ∈ RZ :

M∗ ≡
{(
h,GU |Z

)
∈M : FY |Z (·|z) 4 Y (U, z;h) when U ∼ GU |Z (·|z) , a.e. z ∈ RZ

}
. (3.1)

A definition of set identification of structural features follows directly from Definition 3. A

structural feature ψ (·, ·) is any functional of a structure
(
h,GU |Z

)
. Examples include the structural

function h itself, ψ
(
h,GU |Z

)
= h, the distributions of unobserved heterogeneity, ψ

(
h,GU |Z

)
= GU |Z ,

and various counterfactual probabilities.

13Specifically, Definition 2.2 on page 26 and Definition 2.19 on page 34.
14The identified setM∗ in Definition 3 depends upon the collection of conditional distributions FY |Z , although we

do not make this dependence explicit in our notation.
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Definition 4 The identified set of structural features ψ (·, ·) under Restrictions A1-A4 is

Ψ ≡
{
ψ
(
h,GU |Z

)
:
(
h,GU |Z

)
∈M∗

}
.

A variety of different features may be of interest. The identified set of structures M∗ can be

used to ascertain the identified set of any such feature. We thus take the identified set of structures

M∗ as the focus of our analysis, and unless we specify a particular feature of interest, reference to

only the “identified set” without qualification refers to M∗.15

3.2 Observational Equivalence and Selectionability in U-Space

In the previous section, observational equivalence was defined in terms collections of distributions

FY |Z(·|z) selectionable with respect to Y (U,Z;h) conditional on Z = z. Equivalent, and in many

cases more useful, characterizations are now developed in terms of (i) random sets U (Y, Z;h) whose

distribution is determined by the structural function (h) along with a collection of distributions of

outcomes FY |Z and (ii) selectionability relative to these sets of the distributions of unobservables

(GU |Z). These dual representations flow directly from an elementary duality property of the two

types of level sets of structural functions, namely that for all h and z:

u∗ ∈ U (y∗, z;h)⇐⇒ y∗ ∈ Y (u∗, z;h) .

The advantage of this new characterization is that it allows direct imposition of restrictions

on the collection GU |Z admitted by the model M. Such restrictions - for example mean, quantile,

full independence, and parametric restrictions are commonplace in econometrics. Further, for any

structure under consideration, the distributions of the random residual sets to be considered are

entirely determined by the identified distributions of the observed random variables (Y,Z). The

characterization is set out in the following two theorems.

Theorem 1 Let Restrictions A1-A3 hold. Then for any z ∈ RZ , FY |Z (·|z) is selectionable with

respect to the conditional distribution of Y (U,Z;h) given Z = z when U ∼ GU |Z (·|z) if and only

if GU |Z (·|z) is selectionable with respect to the conditional distribution of U (Y, Z;h) given Z = z

when Y ∼ FY |Z (·|z).

Theorem 2 Let Restrictions A1-A3 hold. Then (i) structures
(
h,GU |Z

)
and

(
h∗,G∗U |Z

)
are obser-

vationally equivalent with respect to FY |Z if and only if GU |Z (·|z) and G∗U |Z (·|z) are selectionable

with respect to the conditional (on Z = z) distributions of random sets U (Y,Z;h) and U (Y, Z;h∗),

respectively, a.e. z ∈ RZ ; and (ii) if additionally Restriction A4 holds, then the identified set of

15The identified set of structural features Ψ depends on both M and the conditional distributions FY |Z , but for
ease of notation we suppress this dependence.
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structures
(
h,GU |Z

)
are those elements of M such that GU |Z (·|z) is selectionable with respect to

the conditional (on Z = z) distribution of U (Y,Z;h).

Theorem 2 expresses observational equivalence and the characterization of the identified set of

structures
(
h,GU |Z

)
in terms of selectionability from the conditional distribution of the random

residual set U (Y,Z;h). Any conditions that characterize the set of structures
(
h,GU |Z

)
such

that GU |Z is selectionable with respect to the conditional distribution of U (Y,Z;h) will suffice for

characterization of the identified set.

One such characterization that applies when U (Y,Z;h) is a random closed set uses Artstein’s

Inequality, see e.g. Artstein (1983), Norberg (1992), and Molchanov (2005, Section 1.4.8), which

delivers characterization of the identified set M∗ using the conditional containment functional of

U (Y,Z;h), defined as:

Ch (S|z) ≡ P [U (Y,Z;h) ⊆ S|z] .

Characterization via the containment functional produces an expression for M∗ in the form of

conditional moment inequalities, as given in the following Corollary.

Corollary 1 Under Restrictions A1-A5, the identified set can be written

M∗ ≡
{(
h,GU |Z

)
∈M : ∀S ∈ F (RU ) , Ch (S|z) ≤ GU |Z (S|z) , a.e. z ∈ RZ

}
,

where F (RU ) denotes the collection of all closed subsets of RU .

There are inequalities in this characterization for almost every value of the instrument z ∈ RZ
and for all closed subsets of RU . The next section is concerned with reducing the number of sets

required to characterize M∗.

4 Core Determining Test Sets

We now characterize a collection Q (h, z) of core-determining test sets S for any h, and any z ∈ RZ ,

such that if, for all S in Q (h, z)

Ch (S|z) ≤ GU |Z (S|z) , (4.1)

then the same inequality holds for all S ⊆ RU . This can substantially reduce the number of test

sets required to characterize an identified set.

Galichon and Henry (2011) introduced core-determining sets for identification analysis consid-

ering sets in outcome space and characterizing core-determining sets for incomplete models that

satisfy a certain monotonicity requirement. Here no monotonicity condition is imposed and their

definition is extended by introducing core-determining sets for the characterizations in U -space de-
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veloped in Section 3, and by allowing core-determining sets to be specific to the structural relation

h and covariate value z.16

It is shown that every set in a core determining collection Q (h, z) is a union of realizations of

U (Y,Z;h) that can arise when Y ∼ FY |Z (·|z). Lemma 1 establishes this result. A particular class

of unions can be excluded from the core-determining collection. Theorem 3 defines this class and

sets out the composition of Q (h, z).17

In Corollary 2 conditions are established under which the inequality (4.1) must hold with equality

for particular members of Q (h, z).18 Since much is known about observable implications of models

with conditional moment equalities, this can be helpful for estimation and in determining when

there is point identification.19

To proceed we define U (h, z), the support of the random set U (Y,Z;h) conditional on Z = z,

U∗ (h, z), the collection of sets comprising unions of such sets, and three sub-collections of U∗ (h, z)

associated with a set S ⊆ RU .20 We employ the notation U (Y, z;h) for the union of the sets

U (y, z;h) such that y ∈ Y.

∀Y ⊆ RY |z, U (Y, z;h) ≡
⋃
y∈Y
U (y, z;h)

Definition 5 The conditional support of random set U (Y,Z;h) given Z = z is U (h, z):

U (h, z) ≡
{
U ⊆ RU : ∃y ∈ RY |z such that U = U (y, z;h)

}
and U∗ (h, z) is the collection of all sets that are unions of elements of U (h, z).

U∗ (h, z) ≡
{
U ⊆ RU : ∃Y ⊆ RY |z such that U = U (Y, z;h)

}
For any S ⊆ RU , (h,GU |Z) and z there are the following sub-collections of U (h, z).

US (h, z) ≡ {U ∈ U (h, z) : U ⊆ S}

US (h, z) ≡
{
U ∈ U (h, z) : GU |Z (U ∩ S|z) = ∅

}
16Core-determining sets may also be dependent upon GU|Z (·|z) as set out in Theorem 3 below, but this is not

made explicit in the notation.
17The construction builds on ideas from Chesher, Rosen, and Smolinski (2013), but is much more widely applicable.
18Under these conditions the characterization via inequalities is sharp, but through use of the law of total probability

some of these inequalities can be strengthened to equalities.
19For instance, Tamer (2003) shows that observable implications of a simultaneous binary outcome model con-

stitute conditional moment equalities and inequalities, and proves point identification of parameters through use of
the equalities. Aradillas-Lopez and Rosen (2013) provide conditions for point identification of a subset of model
parameters in a simultaneous ordered entry model that also delivers conditional moment inequalities and equalities.

20The definitions and following analysis are easily extended to cases in which RU|z varies with z.
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U
S

(h, z) ≡ U (h, z) /
(
US (h, z) ∪ US (h, z)

)
The sets US (h, z), US (h, z) and U

S
(h, z) are the sets U ∈ U (h, z) that, respectively: are

contained in S, up to zero measure GU |Z (·|z) do not intersect S, and belong to neither of the first

two collections.

Lemma 1 establishes that, for any (h,GU |Z) and z, to show that the inequality (4.1) holds for

all S ⊆ RU it suffices to show that it holds for all sets S in the collection of unions U∗ (h, z).

Lemma 1 Let Restrictions A1-A3 hold. Let z ∈ RZ , h ∈ H, and S ⊆ RU . Let US (h, z) denote

the union of all sets in US (h, z),

US (h, z) ≡
⋃

U∈US(h,z)

U . (4.2)

If Ch (US (h, z) |z) ≤ GU |Z (US (h, z) |z) , then Ch (S|z) ≤ GU |Z (S|z) .

All sets in the collection of core-determining sets are unions of sets in U (h, z), but not all such

unions lie in the core-determining collection. Theorem 3 defines a collection of core-determining

test sets Q (h, z), which is a refinement of U∗ (h, z).

Theorem 3 Let Restrictions A1-A3 hold. For any (h, z) ∈ H ×RZ , let Q (h, z) ⊆ U∗ (h, z), such

that for any S ∈ U∗ (h, z) with S /∈ Q (h, z), there exist nonempty collections S1, S2 ⊆ US (h, z) with

S1 ∪ S2 = US (h, z) such that

S1 ≡
⋃
T ∈S1

T , S2 ≡
⋃
T ∈S2

T , and GU |Z (S1 ∩ S2|z) = 0, (4.3)

with S1,S2 ∈ Q (h, z). Then Ch (S|z) ≤ GU |Z (S|z) for all S ∈ Q (h, z) implies that Ch (S|z) ≤
GU |Z (S|z) holds for all S ⊆ RU , so that the collection of sets Q (h, z) is core-determining.

Theorem 3 implies that the identified sets of Theorem 2 are the set of structures
(
h,GU |Z

)
that

satisfy the containment functional inequalities of Corollary 1, but with Q (h, z) replacing F (RU ).

All sets in U (h, z) are elements of Q (h, z).

If, as is the case in many models, the sets in U (h, z) are each connected with boundary having

Lebesgue measure zero, and GU |Z (·|z) is absolutely continuous with respect to Lebesgue measure,

then the condition GU |Z (S1 ∩ S2|z) = 0 in (4.3) is implied if the sets S1 and S2 have non-overlapping

interiors. This implication was used in the construction of core-determining sets in Chesher, Rosen,

and Smolinski (2013), in which all elements of U (h, z) were connected.

Example 1 To illustrate the results of Theorem 3 consider the binary outcome IV model in Ex-

ample 1 of Section 2.2 in which

U (h, z) =
{

([0, g (y2, z1)] , [g (y2, z1) , 1]) : y2 ∈ RY2|z
}

.
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In the collection of unions U∗ (h, z) there are three types of unions:

J0(Y2) ≡
⋃

y2∈Y2⊆RY2

[0, g (y2, z1)] =

[
0, max
y2∈Y2

g (y2, z1)

]

J1(Y2) ≡
⋃

y2∈Y2⊆RY2

[g (y2, z1) , 1] =

[
min
y2∈Y2

g (y2, z1) , 1

]

J01(Y ′2,Y ′′2 ) ≡ J0(Y ′2) ∪ J1(Y ′′2 ) =
[
0, g

(
y′2, z1

)]
∪
[
g
(
y′′2 , z1

)
, 1
]

where y′2 ∈ argmax
y2∈Y ′2

g (y2, z1) and y′′2 ∈ argmax
y2∈Y ′′2

g (y2, z1). Any union J01(Y ′2,Y ′′2 ) such that g (y′2, z1) ≥

g (y′′2 , z1) is equal to the unit interval [0, 1]. Such unions can be excluded from Q (h, z) because with

S = [0, 1] the inequality in (4.1) is always satisfied. Any union J01(Y ′2,Y ′′2 ) such that g (y′2, z1) <

g (y′′2 , z1) is not connected and by Theorem 3 can be excluded from Q (h, z). It follows that, in the

binary outcome IV model, Q (h, z) = U (h, z).

The following Corollary sets out cases in which certain of the containment functional inequalities

can be replaced by equalities.

Corollary 2 Define

QE (h, z) ≡ {S ∈ Q (h, z) : ∀y ∈ RY either U (y, z;h) ⊆ S or U (y, z;h) ⊆ cl(Sc)} .

If GU |Z (·|z) is absolutely continuous with respect to Lebesgue measure then, under the conditions

of Theorem 3, the collection of equalities and inequalities

Ch (S|z) = GU |Z (S|z) , all S ∈ QE (h, z) ,

Ch (S|z) ≤ GU |Z (S|z) , all S ∈ QI (h, z) ≡ Q (h, z) \QE (h, z) .

holds if and only if Ch (S|z) ≤ GU |Z (S|z) for all S ∈ Q (h, z).

There are two classes of models in which all members of Q (h, z) belong to QE (h, z), so that

the characterization of the identified set delivered by the Corollary comprises a collection of only

conditional moment equalities, as follows.

1. Models where U (Y,Z;h) is a singleton set with probability one. This includes models with

additive unobservables such as the classical linear IV model, the nonparametric IV model

of Newey and Powell (2003), and IV models with structural function strictly monotone in a

scalar unobservable, for example the quantile IV model studied by Chernozhukov and Hansen

(2005).
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2. Complete models for which Y (U,Z;h) is a singleton with probability one. In such models

for any z and any y 6= y′ the sets U (y, z;h) and U (y′, z;h) have measure zero intersection,

as otherwise the model would produce non-singleton outcome sets Y (U,Z;h) with positive

probability. Since Q (h, z) is a collection of sets that are unions of sets on the support of

U (Y,Z;h) we then have that for all (y, z), any h, and all S ∈ Q (h, z), either U (y, z;h) ⊆ S
or U (y, z;h) ⊆ cl(Sc).

Identified sets that are characterized by systems of moment equalities and inequalities typi-

cally arise when models are incomplete and U (Y,Z;h) is not required to be a singleton set with

probability one. This includes incomplete discrete outcome models, models with high dimensional

unobserved heterogeneity, and models where the relation between outcomes and unobservable vari-

ables is defined by inequalities.

The collection of core-determining sets from Theorem 2 and Corollary 2 may be uncountably

infinite in models with continuous endogenous variables. However, in models in which all endoge-

nous variables are discrete with finite support, the sets QE (h, z) and QI (h, z) are finite. In Chesher

and Rosen (2012) we provide an algorithm based on the characterization of core-determining sets

in Theorem 2 and Corollary 2 to construct the collections QE (h, z) and QI (h, z) in such models.

The precise form and cardinality of Q (h, z) depends on the particular model under considera-

tion. In some cases, such as Example 1 above, this collection is quite small and can be computed

quickly. In other cases the collection can be extremely large, for example in the two examples

studied in Section 6 and that featured in Appendix C, Q (h, z) comprises an uncountable infinity

of tests sets. There is no single catch-all rule for picking out a finite number of sets from this

collection in such cases. Nevertheless, the characterization can be helpful in providing guidance for

intelligently selecting from among different potential collections of test sets in practice. We describe

precisely how we have done this in the examples in Section 6 and in the supplementary material.

5 Identified Sets Under Restrictions on the Distribution of (U,Z)

Theorem 2 provides a characterization of the structures
(
h,GU |Z

)
contained in the identified set

delivered by a modelM and a collection of distributions FY |Z . A key element of econometric models

are restrictions on the conditional distributions of unobserved variables. In this Section we show

how some commonly employed restrictions on admissible collections of conditional distributions

GU |Z refine the characterization of an identified set. The restrictions considered are full stochastic

independence, conditional mean and conditional quantile independence.
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5.1 Stochastic Independence

Restriction SI: For all collections GU |Z of conditional distributions admitted byM, U and Z are

stochastically independent. �

Under Restriction SI conditional distributions GU |Z(·|z) cannot vary with z and we write GU

in place of the collection GU |Z where for all z, GU (·) = GU |Z(·|z).
It follows from Theorem 2 that a structure (h,GU ) ∈ M belongs to M∗ if and only if GU is

selectionable with respect to the conditional distribution of the random set U (Y,Z;h) induced by

FY |Z (·|z) a.e. z ∈ RZ . Four characterizations of such structures are set out in Theorem 4.

Theorem 4 Let Restrictions A1-A5 and SI hold. Then:

M∗ =
{

(h,GU ) ∈M : GU (·) 4 U (Y, z;h) when Y ∼ FY |Z (·|z) , a.e. z ∈ RZ
}

(5.1)

=

{
(h,GU ) ∈M : ∀SI ∈ QI (h, z) , ∀SE ∈ QE (h, z) ,

Ch (SI |z) ≤ GU (SI) , Ch (SE |z) = GU (SE) , a.e. z ∈ RZ

}
(5.2)

If Restriction A6 also holds, then equivalently:

M∗ =
{

(h,GU ) ∈M : FY |Z (·|z) 4 Y (U, z;h) when U ∼ GU (·) , a.e. z ∈ RZ
}

, (5.3)

=

{
(h,GU ) ∈M : ∀K ∈ K (Y) ,

FY |Z (K|z) ≤ GU {Y (U, z;h) ∩ K 6= ∅} , a.e. z ∈ RZ

}
, (5.4)

where K (Y) denotes the collection of compact sets in RY .

Theorem 4 presents alternative representations of the identified set under Restriction SI. Char-

acterizations (5.3) and (5.1) arise directly on application of the restriction to Definition 3.1 and

Theorem 2, respectively. The characterization (5.2) applies Theorem 3 and Corollary 2 to define

the identified set in terms of the conditional containment functional of the random set U (Y,Z;h).

This representation employs core-determining sets to reduce the number of moment conditions in

the characterization, and distinguishes which ones hold as equalities and inequalities.

The characterization (5.4) defines the identified set through conditional moment inequalities

involving the capacity functional of Y (U,Z;h). This delivers the characterizations provided in

Appendix D.2 of BMM11 and in Galichon and Henry (2011) when applied to incomplete models of

games. In general this characterization using random sets in Y -space, RY , requires the inequalities

to hold for all compact sets K ⊂ RY . Simplification is sometimes possible: Galichon and Henry

(2011) provide core-determining sets in RY when a certain monotonicity condition holds; BMM11

Appendix D.3 provides alternative conditions under which some inequalities are redundant.

In many cases, the representation (5.2) will be the simplest to use. This characterization uses

the containment functional of U (Y,Z;h) which has support in U -space. This allows the use of core
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determining sets on RU given by Theorem 3, which is in general a smaller collection of sets than

all compact sets in Y -space. The ability to exploit the structure of sets U (Y,Z;h) for this purpose

is a benefit of working in the space of unobserved heterogeneity. Our construction is based on core

determining sets specific to each (h, z) pair, while the collections of core-determining sets working

in Y -space characterized by Galichon and Henry (2011) under monotonicity are not.

A further difference between characterizations (5.2) and (5.4) is how they incorporate restric-

tions on the distribution of unobserved heterogeneity. Given an admissible distribution GU , use

of characterization (5.4) requires computation of the probability that Y (U, z;h) hits K for each

compact set K. This has typically been achieved by means of simulation from each conjectured

distribution GU , see e.g. Appendix D.2 of BMM11 and Henry, Meango, and Queyranne (2011).

The characterization (5.2) in U -space shows that there is an alternative to simulating draws

from the distribution of unobservables. Computation using (5.2) requires computation of GU (S)

for each conjectured distribution GU and each core-determining set S, which can be done either

by simulation or by numerical integration. The term P [U (Y,Z;h) ⊆ S|z] is the probability of an

event concerning only the observed variables (Y,Z), which is point-identified and can be computed

or estimated directly.

Our characterization of identified sets employing random sets in U -space leads directly to Corol-

lary 3 which characterizes the identified set for the structural function h under Restriction SI, in

the absence of further restrictions on GU .21 This identified set is the projection of the identified

set of structures (h,GU ) onto the space H in which the structural function h is restricted to lie.

Corollary 3 If Restrictions A1-A5 and SI hold, and GU |Z is otherwise unrestricted the identified

set of structural functions h is

H∗ =

{
h ∈ H : ∀S ∈ Q∗ (h) , sup

z∈RZ
Ch (S|z) ≤ inf

z∈RZ
(1− Ch (Sc|z)) ,

}
, (5.5)

where Q∗ (h) is any collection of sets S ⊆ RU such that for all z ∈ RZ , Q (h, z) ⊆ Q∗ (h).

In (5.5) 1 − Ch (Sc|z) = P[U(Y,Z;h) ∩ S 6= ∅|Z = z] is the conditional capacity functional

of U(Y, Z;h) given Z = z. The result is obtained using an upper bound on GU (S) produced by

applying the containment functional inequalities in Theorem 4 to Sc, the complement of S, and

using the monotonicity in S of the containment and capacity functionals of U(Y, Z;h)

This strikingly simple projection result is extremely useful in situations in which GU is not

parametrically specified, allowing information about the structural functions that could have deliv-

ered data without the need to simultaneously understand the various distributions of unobserved

U that, coupled with these structural functions, could have delivered the data. Such a result is rare

21If there are further restrictions on GU (e.g. symmetry) the identified set for the structural function will be a
subset of H∗ defined in Corollary 3.
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in the partial identification literature and a notable benefit coming from working with random sets

defined in the space of unobservables rather than the space of outcomes.

5.2 Mean Independence

Restriction MI: GU |Z comprises all collections GU |Z of conditional distributions for U given Z

satisfying E [U |z] = c, a.e. z ∈ RZ , for some fixed, finite c belonging to a known set C ⊆ RU . �

This restriction limits the collection GU |Z to those containing conditional distributions GU |Z(·|z)
such that E [U |z] is equal to a constant c which does not vary with z. This covers cases where

numerical values are provided for some components of c but not for others. For instance, in a model

with bivariate U , Restriction MI with C = {(c1, c2) : c1 = 0, c2 ∈ R} restricts E [U1|z] = 0, which

could be a normalization, and restricts E [U2|z] to be invariant with respect to z.

Under Restriction MI it is convenient to characterize the selectionability criterion of Theorem

2 using the Aumann expectation.

Definition 6 The Aumann expectation of random set A is

E [A] ≡ cl {E [A] : A ∈ Sel (A) and E [A] <∞}

Molchanov (2005, p. 151). The Aumann expectation of random set A conditional on B = b is

E [A|b] ≡ cl {E [A|b] : A ∈ Sel (A) and E [A|b] <∞} .

A characterization of the identified sets for structural function h and for the structure
(
h,GU |Z

)
under Restriction MI is given in the following Theorem.

Theorem 5 Let Restrictions A1-A5 and MI hold and suppose that (Ω,F ,P) is non-atomic. Then

the identified set for structural function h comprises those functions h such that some c ∈ C is an

element of the Aumann expectation of U (Y,Z;h) conditional on Z = z a.e. z ∈ RZ :

H∗ = {h ∈ H : ∃c ∈ C s.t. for almost every z ∈ RZ , c ∈ E [U (Y,Z;h) |z]} .

The identified set for
(
h,GU |Z

)
is:

M∗ =
{(
h,GU |Z

)
∈M : h ∈ H∗ and GU |Z (·|z) . U (Y,Z;h) conditional on Z = z, a.e. z ∈ RZ

}
,

where by virtue of Restriction MI all structures
(
h,GU |Z

)
∈M∗ ⊆M are such that for some c ∈ C,

E [U |z] = c a.e. z ∈ RZ .

Knowledge of properties of the random set U (Y, Z;h) can be helpful in characterizing its Au-

mann expectation, and consequently in determining whether any particular h is inH∗. For example,
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if U (Y,Z;h) is integrably bounded, that is if

E sup {‖U‖ : U ∈ U (Y,Z;h)} <∞, (5.6)

then from Molchanov (2005, Theorem 2.1.47-iv, p. 171), c ∈ E [U (Y, Z;h) |z] if and only if

inf
v∈RU :‖v‖=1

{
E [m (v,U (Y,Z;h)) |z]− v′c

}
≥ 0, (5.7)

where for any set S,

m (v,S) ≡ sup {v · s : s ∈ S}

denotes the support function of S evaluated at v. BMM11 employed Molchanov (2005, Theo-

rem 2.1.47-iv, p. 171) when using the conditional Aumann expectation of random outcome set

Y (Z,U ;h) to characterize its selections. In our analysis using random sets in U -space the result

simplifies the task of determining whether c ∈ E [U (Y,Z;h) |z] for some c ∈ C.22 If the structural

function h is additively separable in Y , the two representations are equivalent, differing only by a

trivial location shift.

On the other hand, if h is not additively separable in U , the conditional mean restriction MI

cannot generally be written as a conditional mean restriction on Y , and previous identification

results using random sets in Y -space appear inapplicable. Theorem 5 provides a novel characteri-

zation for the identified set in such cases. Furthermore, Theorem 5 does not require U (Y,Z;h) to be

integrably bounded, but only integrable, enabling its application when the support of unobserved

heterogeneity RU is unbounded.

In some commonly occurring models, including all those of Examples 1-5 in Section 2.2, U (Y,Z;h)

is convex with probability one. In such cases the characterization of H∗ can be simplified further

as in the following Corollary. Unlike the simplification afforded by the support function character-

ization (5.7), it does not require that U (Y, Z;h) be integrably bounded.

Corollary 4 Let the restrictions of Theorem 5 hold and suppose U (Y, Z;h) is convex with proba-

bility one. Then

H∗ =

{
h ∈ H : ∃c ∈ C s.t. for almost every z ∈ RZ , E [u (Y,Z) |z] = c,

for some function u : RY Z → RU with P [u (Y, Z) ∈ U (Y,Z;h)] = 1

}
.

Theorem 5 can be generalized to characterize H∗ under more general forms of conditional mean

22For instance, when C = 0, equivalently when E [U |z] = 0 a.e. z ∈ RZ is imposed, the support function inequality
(5.7) implies that the identified set for h are those h ∈ H such that

inf
v∈RU :‖v‖=1

E [m (v,U (Y,Z;h)) |z] ≥ 0.
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restriction as expressed in Restriction MI*.

Restriction MI*: GU |Z comprises all collections GU |Z of conditional distributions for U given Z

such that for some known function d (·, ·) : RU × RZ → Rkd, E [d (U,Z) |z] = c a.e. z ∈ RZ , for

some fixed c belonging to a known set C ⊆ RU , where d (u, z) is continuous in u for all z ∈ RZ . �

Restriction MI* requires that the conditional mean given Z = z of some function d(U,Z)

taking values in Rkd does not vary with respect to z. This restriction can accommodate models that

impose conditional mean restrictions on functions of unobservables U , for example homoskedasticity

restrictions or restrictions on covariances of elements of U . To express the identified set delivered

under restriction MI* define

D (y, z;h) ≡ {d (u, z) : u ∈ U (y, z;h)} .

Then D (Y,Z;h) is a random set of feasible values for d (U,Z) given observed (Y,Z). This set is

closed under the requirement of Restriction MI* that d (·, z) is continuous for each z. The arguments

that deliver Theorem 5 yield the following result.

Corollary 5 Let Restrictions A1-A5 and MI* hold and suppose that (Ω,F ,P) is non-atomic. Then

the identified set for structural function h are those h such that there exists at least one c ∈ C that

is an element of the Aumann expectation of D (Y, Z;h) conditional on Z = z a.e. z ∈ RZ :

H∗ = {h ∈ H : ∃c ∈ C s.t. for almost every z ∈ RZ , c ∈ E [D (Y, Z;h) |z]} .

The identified set for
(
h,GU |Z

)
is:

M∗ =
{(
h,GU |Z

)
∈M : h ∈ H∗ and GU |Z (·|z) . U (Y,Z;h) conditional on Z = z, a.e. z ∈ RZ

}
,

where, by Restriction MI∗, all structures
(
h,GU |Z

)
∈ M∗ ⊆ M are such that for some c ∈ C,

E [d (U,Z) |z] = c, a.e. z ∈ RZ .

5.3 Quantile Independence

Conditional quantile restrictions on the distribution of unobserved U can also be accommodated.

This is illustrated in a simple setting under Restriction IS.

Restriction IS (interval support): U ∈ R and for all (y, z) ∈ RY Z ,

U (y, z;h) = [u (y, z;h) , u (y, z;h)] , (5.8)

where possibly u (y, z;h) = −∞ or u (y, z;h) = +∞, in which case the corresponding endpoint of

the interval (5.8) is open. �
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This restriction requires U to be scalar and the sets U (y, z;h) to be closed intervals. This is a

case that often arises in practice when quantile independence restrictions are employed.

This restriction can be fruitfully applied to GIV models with censored endogenous or exogenous

variables, as we show in a model with interval censored endogenous variables in Section C.1.3 of

the on-line supplement.

The conditional quantile restriction is as follows.

Restriction QI: For some known τ ∈ (0, 1) and some known set C ⊆ R, GU |Z comprises all

collections GU |Z of conditional distributions for U given Z that are continuous in a neighborhood

of their τ -quantile and satisfy the conditional quantile restriction qU |Z (τ |z) = c, a.e. z ∈ RZ for

some c ∈ C. �

Theorem 6 Let Restrictions A1-A5, IS, and QI hold. Then (i) the identified set for structural

function h is

H∗ =

{
h ∈ H : ∃c ∈ C s.t. sup

z∈RZ
FY |Z [u (Y,Z;h) ≤ c|z] ≤ τ ≤ inf

z∈RZ
FY |Z [u (Y,Z;h) ≤ c|z]

}
.

(5.9)

(ii) If u (Y,Z;h) and u (Y, Z;h) are continuously distributed conditional on Z = z, a.e. z ∈ RZ ,

then an equivalent formulation of H∗ is given by

H∗ =

{
h ∈ H : ∃c ∈ C s.t. sup

z∈RZ
q (τ , z;h) ≤ c ≤ inf

z∈RZ
q (τ , z;h)

}
, (5.10)

where q (τ , z;h) and q (τ , z;h) are the τ -quantiles of respectively u (Y, Z;h) and u (Y,Z;h), (iii) The

identified set for
(
h,GU |Z

)
is:

M∗ =
{(
h,GU |Z

)
∈M : h ∈ H∗ and GU |Z (·|z) . U (Y,Z;h) conditional on Z = z, a.e. z ∈ RZ

}
,

where following from Restriction QI, all structures
(
h,GU |Z

)
∈ M∗ ⊆ M are such that for some

c ∈ C, qU |Z (τ |z) = c, a.e. z ∈ RZ .

Under Restriction QI, the conditional distributions belonging to GU |Z are continuous in a neigh-

borhood of zero and therefore

GU |Z ((−∞, c] |z) = τ ⇔ qU |Z (τ |z) = c.

The inequalities comprising (5.9) then follow from u (Y,Z;h) ≤ U ≤ u (Y, Z;h). These inequalities

also arise on applying the containment functional inequality Ch (S|z) ≤ GU |Z (S|z) to test sets

S = (−∞, c] and S = [c,∞). In the proof of Theorem 6 it is shown that for any h and any c, if
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the containment functional inequalities hold for these two test sets, then an admissible collection

of conditional distributions GU |Z can be found such that they hold for all closed test sets in RU .

From Corollary 1 it follows that the characterization (5.9) is sharp.

The second part of Theorem 6 follows because when u (Y,Z;h) and u (Y,Z;h) are continuous,

the inequalities in (5.9) which involve cumulative distributions FY |Z [·|z] may be inverted. Then H∗

may be equivalently expressed as inequalities involving the lower and upper envelopes, q (τ , z;h)

and q (τ , z;h), respectively, of conditional quantile functions for selections of U (Y, Z;h). Finally, as

was the case for identified setsM∗ using conditional mean restrictions given in Theorem 5, the third

part of Theorem 6 states that the identified set of structures
(
h,GU |Z

)
are elements of H∗ paired

with distributions GU |Z (·|z) that are selectionable with respect to the conditional distribution of

U (Y,Z;h) given Z = z, a.e. z ∈ RZ .

6 Two Applications

This Section illustrates the application of the results of this paper to two particular models, both

admitting multivariate unobserved heterogeneity.

First, identified sets of valuation distributions are characterized for an incomplete model of

English Auctions with independent private values, previously studied by Haile and Tamer (2003),

henceforth HT. The approach of this paper obviates the need for a constructive proof of sharpness,

which, as noted in HT, is difficult to produce in the auction model. The new characterization of

the identified set includes the inequalities derived in HT and refines the HT bounds with additional

inequalities.

Second, identified sets of parameter values are characterized for continuous outcome random

coefficient linear models with endogenous explanatory variables and instrumental variable restric-

tions.

6.1 An Incomplete Model of Auctions

This example revisits the incomplete model of an open outcry English ascending auction introduced

in Haile and Tamer (2003), henceforth HT. In that IPV model M bidders have valuations which

are independent realizations drawn from a common conditional distribution of valuations given

observed auction characteristics Z = z, denoted Az(v) ≡ P[V ≤ v|Z = z]. HT develop pointwise

bounds on Az(v) which hold at each value v.

We show how the model can be set up as a GIV model. Applying Theorem 4 and the results in

Section 3.3 on core determining sets delivers a characterization of the sharp bounds on valuation

distributions supported by the HT model. The HT pointwise bounds appear in this characterization

along with an uncountable infinity of additional inequalities which further restrict the shape of the

distribution function. This resolves the sharpness question raised in the final paragraph of HT.
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The complete analysis given in Chesher and Rosen (2015) is now summarized for the case in which

there is no reserve price and no minimum bid increment.23

Realizations of random variable Y = (Y1, . . . , YM ) are ordered final bids made by M bidders.

Realizations of V = (V1, . . . , VM ) are ordered, continuously distributed, valuations of the bidders.24

Let Ũ ∈ [0, 1]M be M mutually independent uniform variates with Ũ ‖ Z and with order statistics

U = (U1, . . . , UM ). The elements of V , ordered valuations, can be expressed as functions of uniform

order statistics as follows: Vm = A−1z (Um), m ∈ {1, . . . ,M}.
The HT model includes the restrictions: (i) the second highest valuation must be no larger

than the winning bid which implies that almost surely YM ≥ VM−1, and (ii) no one bids more than

their valuation, which implies that the inequality in order statistics Vm ≥ Ym holds almost surely

for all m. Applying the strictly monotone function Az to both sides of these inequalities gives the

structural function of the HT model.25

h(y, z, u) = max{uM−1 −Az(yM ), 0}+
M∑
m=1

max{Az(ym)− um, 0} (6.1)

The vector of M uniform order statistics, U , has constant density function equal to M ! supported

on RU which is the orthoscheme of the unit M -cube in which U1 ≤ · · · ≤ UM , David and Nagaraja

(2003). Let GU (S) denote the probability mass placed by this distribution on a set S ⊆ RU .

Structures in this model are pairs (h,GU ).

The U -level sets of the structural function (6.1) are as follows.

U(y, z;h) =

{
u ∈ RU : (Az(yM ) ≥ uM−1) ∧

M∧
m=1

(Az(ym) ≤ um)

}
(6.2)

Lemma 1 states that core determining test sets which characterize the identified set for Az(·) are

unions of these U -level sets. There is an uncountable infinity of such unions, and in Chesher and

Rosen (2015) we make a selection of unions of such sets, S(y′, y′′M , z;h), of the following form.

S(y′, y′′M , z;h) ≡
⋃

yM∈[y′M ,y
′′
M ]

U((y′1, y
′
2, . . . , yM ), z;h), y′′M ≥ y′M ≥ · · · ≥ y′1 (6.3)

Applied to such sets the containment functional inequality given in (3.8) in Theorem 4 requires

23These restrictions are easily removed as shown in Chesher and Rosen (2015).
24Here and later, in M -element ordered lists, index M identifies the highest value.
25The elements in y and u in (6.2) are values of order statistics satisfying y1 ≤ · · · ≤ yM and u1 ≤ · · · ≤ uM .
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that all valuation distributions, Az, in the identified set satisfy

M !

∫ 1

Az(y′M )

∫ min(uM ,Az(y
′′
M ))

Az(y′M−1)

∫ uM−1

Az(y′M−2)
· · ·
∫ u2

Az(y′1)
duMduM−1duM−2 · · · du1 ≥

P

[(
y′′M ≥ YM ≥ y′M

)
∧

(
M−1∧
m=1

(Ym ≥ y′m)

)
|z

]
(6.4)

for all z, M , and y′ and y′′M such that y′′M ≥ y′M ≥ · · · ≥ y′1. On the left hand side isGU (S(y′, y′′M , z;h));

on the right hand side is the containment functional P[U(Y,Z;h) ⊆ S(y′, y′′M , z;h)|z].26

Particular choices of y′ and y′′M deliver the pointwise bounds in HT. Plugging y′′M = +∞,

y′m = −∞ for m < n and y′m = v for m ≥ n into (6.4) delivers the following inequality.

P[Un ≥ Az(v)|Z = z] ≥ P[Yn ≥ v|z] (6.5)

The marginal distribution of Un, the nth of M uniform order statistics, is Beta(n,M + 1− n). Let

Q(·, n,M) denote the associated quantile function. Transforming both sides of (6.5) expressed in

terms of distribution functions using this quantile function gives

Az(v) ≤ Q(P[Yn ≤ v|z], n,M)

which leads to directly to the pointwise upper bound in Theorem 1 of HT.

Plugging y′′M = v and y′ = (−∞, · · · ,−∞) into (6.4) delivers, after a similar manipulation, the

inequality

Az(v) ≥ Q(P[YM ≤ v|z],M − 1,M)

which leads directly to the pointwise lower bound in Theorem 3 of HT.

The choices of y′ and y′′M in (6.4) used till now deliver pointwise bounds on Az(·), that is,

bounds on the value of the distribution function at a single value of its argument. Other choices of

y′ and y′′M lead to inequalities which restrict values of Az(·) at two or more values of its argument.

For example, plugging y′′M = +∞ and y′ = (−∞, · · · ,−∞, v2, v1) into (6.4) delivers the inequality

1−Az(v1)M −MAz(v2)
M−1 +MAz(v1)Az(v2)

M−1 ≥ P[YM ≥ v1 ∧ YM−1 ≥ v2|z] (6.6)

26These expressions are derived in Chesher and Rosen (2015).
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Table 1: Projections of the identified set onto each parameter axis in turn and value of the param-
eters in the structures that generate probability distributions of Y given Z.

Instrument
Strength

Parameter
Value in

Structures
Lower
bound

Upper
bound

µ1 0 −0.083 0.025

µ2 1 0.955 1.066

d = 1.0 σ11 1 0.881 1.112

σ12 0 −0.036 0.050

σ22 0.25 0.050 0.364

µ1 0 −0.326 0.158

µ2 1 0.797 1.388

d = 0.5 σ11 1 0.811 1.399

σ12 0 −0.189 0.275

σ22 0.25 0.000 1.612

and y′′M = v1, y
′ = (−∞, · · · ,−∞, v2, v2) inserted in (6.4) delivers the following inequality

Az(v1)
M −MAz(v1)Az(v2)

M−1 + (M − 1)Az(v2)
M+

M(1−Az(v1))(Az(v1)M−1 −Az(v2)M−1) ≥

P[v1 ≥ YM ≥ v2 ∧ YM−1 ≥ v2|z] (6.7)

Chesher and Rosen (2015) gives examples of distributions of ordered final bids for which both of

these inequalities are binding. In the examples considered further test sets defined by three points

on the valuation distribution are found to achieve further refinement, though only slightly.

Consideration of all possible choices for y′ and y′′M in the union of U -level sets (6.3) yields

via (6.4) a dense system of inequalities involving values of the conditional distribution function of

valuations at all choices of up to M + 1 values of its arguments. A complete characterization of

the identified set of valuation distributions involves consideration as well of an uncountable infinity

of unions of sets of the form (6.3) so there is no limit to the number of coordinates of valuation

distributions simultaneously constrained by the HT model. The results of this paper applied to this

problem deliver the first complete characterization of the identified set of valuation distributions

delivered by the HT model and reveal its extraordinary complexity.

6.2 An Instrumental Variable Random Coefficients Model

This section employs an instance of the single equation instrumental random coefficient model

of Section 2.2 Example 3. A parametric Gaussian restriction on the distribution of unobserved

heterogeneity is imposed. For ease of illustration, there is a scalar instrumental variable Z subject
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Table 2: Instrument power in the random coefficients model: P[Y2 = y|Z = z].

z
d y −2 −1 0 1 2

−1 .01 .07 .31 .69 .93
1.0 0 .06 .24 .38 .24 .06

+1 .93 .69 .31 .07 .01

−1 .07 .16 .31 .50 .69
0.5 0 .24 .34 .38 .34 .24

+1 .69 .50 .31 .16 .07

to an exclusion restriction and there are no included exogenous variables present.

Y1 = U1 + U2Y2 U ∼ N2(µ,Σ) U ‖ Z ∈ {−2,−1, 0, 1, 2} = RZ .

The corresponding definitions of structural function h and level set U(y, z;h) are:

h(y, z, u) = y1 − u1 − u2y2, U(y, z;h) = {u ∈ R2 : y1 = u1 + u2y2}.

We stay with the notation for U -level sets U((y1, y2), z;h) used elsewhere in the paper even though

in this example, under the restrictions imposed by the IV model, these level sets do not vary with

z, and the structural function is known. In this random coefficients linear model the unknown

parameter vector θ, comprising the unique elements of µ and Σ, affects only the bivariate normal

distribution of U , denoted here by GU (·; θ).
Allowing for additional values of Z or higher dimensional Z, as well as the presence of included

exogenous variables, is conceptually straightforward, with the analysis proceeding as below with

U(y, z;h) as defined in (2.2). If there are random coefficients on additional included variables, then

U(y, z;h) remains a linear manifold on RU , of higher dimension.

Approximations to identified sets delivered by this IV model are calculated using two partic-

ular probability distributions of Y given Z when Y2 is a discrete random variable with support

{−1, 0, 1}.27 In the two cases considered the instrumental variable has different predictive power

for endogenous Y2. The incomplete IV model is shown to be capable of delivering substantial partial

identifying power even in the weaker instrument case.

To illustrate, conditional distributions for Y ≡ (Y1, Y2) given Z are generated using a triangular

structure in which Y2 is delivered by an ordered probit model:

Y2 = −1[d× Z + U3 < −0.5] + 1[d× Z + U3 > 0.5]

27These are approximations because we examine a finite number of the uncountable infinity of inequalities that
characterize the identified set.
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with parameter d equal to 1.0 and 0.5 as we study respectively stronger and weaker instrument

situations and with U∗ ≡ (U1, U2, U3) trivariate Gaussian with mean (0, 1, 0) and variance matrix

S, as follows.

S =

 1 0 0.25

0 0.25 −0.25

0.25 −0.25 1


Core determining test sets for this model comprise certain unions of manifolds:

S(A(−1),A(0),A(1)) ≡
⋃

y2∈{−1,0,1}

 ⋃
y1∈A(y2)

U((y1, y2), z;h)

 (6.8)

defined by sets of values of Y1, denoted A(y2), whose membership may depend on the value y2 of

Y2.

There are uncountably infinitely many unions of the form (6.8) and thus an equivalent number

of conditional moment inequalities characterizing the identified set. Incorporating all of these

inequalities is therefore computationally infeasible. We thus illustrate outer sets based on the

collections of test sets described below.

In the calculations reported here the sets A(y2) are intervals.28 For each integer n define the

sequence (0, b, 2b, . . . , (n− 1)b, 1) where b ≡ n−1, and define a triangular array of intervals:

B(n) ≡



[0, b] [0, 2b] [0, 3b] · · · [0, (n− 1)b] [0, 1]

[b, 2b] [b, 3b] · · · [b, (n− 1)b] [b, 1]

[2b, 3b] · · · [2b, (n− 1)b] [2b, 1]
. . .

...
. . .

...

[(n− 1)b, 1]


.

A collection of n(n + 1)/2 intervals is obtained as the unique elements of this array. This is then

transformed into a collection C(n) of intervals on the real line by replacing [0, 1] with the empty

interval and replacing all others with twice the value of the standard normal quantile function

evaluated at the original endpoints.

The collection of test sets used in our calculations is

{S(A(−1),A(0),A(1)) : A(−1) ∈ C(n),A(0) ∈ C(n),A(1) ∈ C(n)}.

The inclusion of the empty interval in C(n) ensures that within the collection there are some test

28In the complete collection of core determining sets, the sets A(y2) comprise all collections of subsets of the real
line.
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sets defined by a single value of Y2, some defined by each selection of two of the three possible

values of Y2 as well as test sets defined by three values of Y2. There are (n(n+ 1)/2)3 test sets

in this collection. In the calculations reported here n = 9 and the collection of test sets generates

91, 125 inequalities, each having the following form.

GU (S(A(−1),A(0),A(1)); θ) ≥ sup
z∈{−2,−1,0,1,2}

 ∑
y2∈{−1,0,1}

P[Y1 ∈ A(y2) ∧ Y2 = y2|Z = z]


GU (S; θ) is the probability mass placed on a set S by a N2(µ,Σ) probability distribution.29 The

probabilities on the right hand side are calculated using the triangular structure specified earlier.

Table 1 shows projections of the 5 dimensional identified set for θ onto each axis in turn.30 The

IV model is clearly informative about the magnitudes of the 5 parameters, much more so when

d = 1 than when d = 0.5. Why do we see this substantial difference as the coefficient d varies?

With the additional restriction that Y2 is exogenous θ ≡ (µ,Σ) is point identified. Therefore, if the

instrumental variable Z were a perfect predictor of Y2 the IV model would be point identifying.31

With d = 1 the instrumental variable is a much better, though not perfect, predictor of Y2. This

can be seen by examining Table 2 which shows the conditional distributions of Y2 given Z for

d ∈ {1.0, 0.5}.
The identified interval for µ2 has width 0.111 when d = 1 and width 0.591 when d = 0.5. In

both cases the sign of µ2 is identified. When the instrument is weaker, the identified interval for

σ22, the variance of the random coefficient on Y2, includes zero. This means that the hypothesis

of an additive scalar unobservable with fixed coefficient on Y2 cannot be refuted. However, with

the stronger instrument zero is excluded from the identified interval, implying that there are no

admissible structures with a fixed coefficient on Y2 in the identified set.

7 Conclusion

This paper provides characterizations of identified sets of structures and structural features for

a very broad class of models. It delivers results for complete and incomplete models and for

partially and point identifying models. The results apply to models in which the inverse of the

structural mapping from unobserved heterogeneity to observed endogenous variables may not be

29These probabilities are calculated as numerical integrals using the integrate function in R, R Core Team (2014).
30Exploratory calculations reveal that the projections are all connected intervals. The projections are calculated as

follows. A measure of the distance of a value of 5-element θ from the identified set is defined such that the measure
is negative for θ in the identified set, zero on the boundary of the set and positive off the set. A value of a parameter
θi = θ∗i is judged inside the projection for θi if the minimum of this measure with respect to θ subject to θi = θ∗i is
nonpositive. Minimization is done using the optim function in R. Endpoints of projection intervals are determined
using the uniroot function in R.

31This is so because if U ‖ Z and Z is a perfect predictor of Y2, then U ‖ Y2.
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unique-valued. Models with discrete and censored endogenous variables fall under this heading, as

do models permitting general forms of multivariate unobserved heterogeneity, such as random coef-

ficient models and models placing inequality constraints on unobserved and endogenous variables.

The results extend the scope of application of instrumental variables for use in structural econo-

metric models, in view of which we have described the class of models covered here as Generalized

Instrumental Variable models. It is straightforward to incorporate instrumental variable restric-

tions involving conditional mean or quantile independence of unobserved variables and instruments

as well as full stochastic independence. However the coverage of the results is wider because in

some of the models to which the results apply instrumental variable restrictions play no significant

role.

The characterizations developed here always deliver sharp bounds, removing the need for case-

by-case constructive proofs of sharpness. This is a great benefit since it is often difficult to formulate

such proofs and the task is sometimes impossible as, for example, is the case in the model of English

auctions of Section 6.1.

Using tools from random set theory, relying in particular on the concept of selectionability, the

classical notion of observational equivalence has been formally extended to models whose structures

may not be required to deliver unique conditional distributions for endogenous variables given ex-

ogenous variables. We have shown that the closely related definition of a model’s identified set

of structures may be equivalently formulated in terms of selectionability criteria in the space of

unobserved heterogeneity. This formulation enables direct incorporation of restrictions on con-

ditional distributions of unobserved heterogeneity, of the sort typically employed in econometric

models, as we demonstrated by characterizing identified sets under stochastic independence, mean

independence, and quantile independence restrictions.

All of the characterizations of identified sets presented in this paper can be expressed as systems

of conditional moment inequalities and equalities. These can be employed for estimation and

inference using a variety of approaches from the recent literature. With a discrete conditioning

variable the identified sets derived in Section 3 can be expressed using unconditional moment

inequality representations, for example as in Chernozhukov, Hong, and Tamer (2007), Beresteanu

and Molinari (2008), Romano and Shaikh (2008a,b), Rosen (2008), Andrews and Guggenberger

(2009), Andrews and Soares (2010), Andrews and Jia-Barwick (2010), Bugni (2010), Canay (2010),

and Romano, Shaikh, and Wolf (2013). With a continuous conditioning variable inference using

conditional moment inequalities can be performed, see for example Andrews and Shi (2013a,b),

Chernozhukov, Lee, and Rosen (2013), Lee, Song, and Whang (2013a,b), Armstrong(2011a,b), and

Chetverikov (2011).

In some models the number of inequality restrictions fully characterizing an identified set can

be very large relative to the sample size. This is a common problem, not unique to the models

considered in this paper, and it is the subject of current research efforts, see for example: Menzel

34



(2009), Chernozhukov, Chetverikov, and Kato (2013) and Andrews and Shi (2015).

The complexity of such characterizations in this paper are a consequence of using complete

characterizations of identified sets, that is sharp bounds, which the methods of this paper always

deliver, rather than outer bounds. Compare for example the relative simplicity and ease of use of

the pointwise bounds on valuation distributions in the English auction model of Section 6.1 and

the complexity of the complete characterization of the identified set of distributions obtained using

the results of this paper. The additional inequalities afforded by the sharp characterization will

generally deliver tighter bounds, and so their use is beneficial. In practice, the benefit of incorpo-

rating additional inequalities must be weighed against computational cost. We have demonstrated

approaches for selecting finite collections of inequalities from the uncountable infinity of those char-

acterizing the identified set in the context of each of our examples. Formal prescriptions for this

task, accounting for the scale of reduction of the resulting set given observable data, as well as for

sampling variation of the moments involved, is beyond the scope of this paper but seems a useful

avenue for future research.
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A Proofs

Proof of Theorem 1. Fix z ∈ RZ and suppose that FY |Z (·|z) is selectionable with respect to the

conditional distribution of Y (U,Z;h) given Z = z. By Restriction A3, U is conditionally distributed

GU |Z (·|z) given Z = z, and thus selectionability implies that there exist random variables Ỹ and Ũ

such that

(i) Ỹ |Z = z ∼ FY |Z (·|z),

(ii) Ũ |Z = z ∼ GU |Z (·|z),

(iii) P
[
Ỹ ∈ Y

(
Ũ , Z;h

)
|Z = z

]
= 1.

By Restriction A3, Ỹ ∈ Y
(
Ũ , Z;h

)
if and only if h

(
Ỹ , Z, Ũ

)
= 0, equivalently Ũ ∈ U

(
Ỹ , Z;h

)
.

Condition (iii) is therefore equivalent to

P
[
Ũ ∈ U

(
Ỹ , Z;h

)
|Z = z

]
= 1. (A.1)
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Thus there exist random variables Ỹ and Ũ satisfying (i) and (ii) such that (A.1) holds, equivalently

such that GU |Z (·|z) is selectionable with respect to the conditional distribution of U (Y, Z;h) given

Z = z. The choice of z was arbitrary, and the argument thus follows for all z ∈ RZ . �

Proof of Theorem 2. This follows directly from application of Theorem 1 to Definitions 2 and

3, respectively. �

Proof of Corollary 1. From the selectionability characterization of M∗ in U -space in Theorem

2, we have that

M∗ =
{

(h,GU ) ∈M : GU (·|z) 4 U (Y, z;h) when Y ∼ FY |Z (·|z) , a.e. z ∈ RZ
}

.

Fix z ∈ RZ and suppose Y ∼ FY |Z (·|z). From Artstein’s Inequality, see Artstein (1983), Norberg

(1992), or Molchanov (2005, Section 1.4.8.), GU (·|z) 4 U (Y, z;h) if and only if

∀K ∈ K (RU ) , GU (K|z) ≤ FY |Z [U (Y, z;h) ∩ K 6= ∅|z] ,

where K (RZ) denotes the collection of all compact sets on RU . By Corollary 1.4.44 of Molchanov

(2005) this is equivalent to

∀S ∈ G (RU ) , GU (S|z) ≤ FY |Z [U (Y, z;h) ∩ S 6= ∅|z] ,

where G (RU ) denotes the collection of all open subsets of RU . Because GU (S|z) = 1−GU (Sc|z)
and

FY |Z [U (Y, z;h) ⊆ Sc|z] = 1− FY |Z [U (Y, z;h) ∩ S 6= ∅|z] ,

this is equivalent to

∀S ∈ G (RU ) , FY |Z [U (Y, z;h) ⊆ Sc|z] ≤ GU (Sc|z) .

The collection of Sc such that S ∈ G (RU ) is precisely the collection of closed sets on RU , F (RU ),

completing the proof. �

Proof of Lemma 1. US (h, z) is a union of sets contained in S, so that US (h, z) ⊆ S and

GU |Z (US (h, z) |z) ≤ GU |Z (S|z) . (A.2)

By supposition we have

Ch (US (h, z) |z) ≤ GU |Z (US (h, z) |z) . (A.3)
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The result then holds because Ch (S|z) = Ch (US (h, z) |z), since

Ch (US (h, z) |z) ≡ P [U (Y,Z;h) ⊆ US (h, z) |Z = z]

=

∫
y∈RY

1 [U (y, z;h) ⊆ US (h, z)] dFY |Z (y|z)

=

∫
y∈RY

1 [U (y, z;h) ⊆ S] dFY |Z (y|z)

= Ch (S|z) ,

where the second line follows by the law of total probability, and the third by the definition of

US (h, z) in (4.2). Combining Ch (US (h, z) |z) = Ch (S|z) with (A.2) and (A.3) completes the

proof. �

Proof of Theorem 3. Fix (h, z). Suppose that

∀U ∈ Q (h, z) , Ch (U|z) ≤ GU |Z (U|z) . (A.4)

Let S ∈ U∗ (h, z) and S /∈ Q (h, z). Since S /∈ Q (h, z) there exist nonempty collections of sets

S1,S2 ∈ US (h, z) with S1 ∪ S2 = US (h, z) such that

S1 ≡
⋃
T ∈S1

T ∈ Q (h, z) , S2 ≡
⋃
T ∈S2

T ∈ Q (h, z) ,

and

GU |Z (S1 ∩ S2|z) = 0. (A.5)

Since S1,S2 ∈ Q (h, z) we also have that

Ch (S1|z) ≤ GU |Z (S1|z) and Ch (S2|z) ≤ GU |Z (S2|z) . (A.6)

Because S1 ∪ S2 = US (h, z),

U (Y, z;h) ⊆ S ⇒ {U (Y, z;h) ⊆ S1 or U (Y, z;h) ⊆ S2} . (A.7)

Using (A.7), (A.6), and (A.5) in sequence we then have

Ch (S|z) ≤ Ch (S1|z) + Ch (S2|z) ≤ GU |Z (S1|z) +GU |Z (S2|z) = GU |Z (S|z) .

Combined with (A.4) this implies Ch (S|z) ≤ GU |Z (S|z) for all S ∈ U∗ (h, z) and hence all S ⊆ RU
by Lemma 1, completing the proof. �
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Proof of Corollary 2. Consider any S ∈ QE (h, z). Then for all y ∈ Y, either U (y, z;h) ⊆ S or

U (y, z;h) ⊆ Sc. Thus

Ch (S|z) + Ch
(
Sc|z

)
= P [U (Y,Z;h) ⊆ S|z] + P

[
U (Y, Z;h) ⊆ Sc|z

]
= 1. (A.8)

The inequalities of Theorem 3 imply that

GU |Z (S|z) ≥ Ch (S|z) and GU |Z
(
Sc|z

)
≥ Ch

(
Sc|z

)
.

Then absolute continuity of GU |Z (·|z) implies that GU |Z (S|z)+GU |Z
(
Sc|z

)
= 1, which taken with

(A.8) implies that both inequalities hold with equality. �

Proof of Theorem 4. Under Restriction SI, GU |Z (·|z) = GU (·) a.e. z ∈ RZ . (5.3) and (5.1)

follow from (3.1) and Theorem 2, respectively, upon substituting GU (·) for GU |Z (·|z). (5.2) follows

from Corollary 2, again by replacing GU |Z (·|z) with GU (·). The equivalence of (5.1) and (5.4) with

GU |Z (·|z) = GU (·) holds by Artstein’s inequality, see e.g. Molchanov (2005, pp. 69-70, Corollary

4.44). �

Proof of Corollary 3. It follows from the main text that for any structure (h,GU ) ∈M∗, h ∈ H∗.
Now consider an arbitrary structural function h ∈ H∗ as defined in the statement of the Corollary.

Then

∀S ∈ Q∗ (h) , sup
z∈RZ

Ch (S|z) ≤ inf
z∈RZ

(1− Ch (Sc|z)) .

By monotonicity of the containment functional in the argument S, and the fact that Ch (S|z) ∈ [0, 1],

it follows that there exists some probability distribution function GU (·) such that:

∀S ∈ Q∗ (h) , sup
z∈RZ

Ch (S|z) ≤ GU (S) ≤ inf
z∈RZ

(1− Ch (Sc|z)) . (A.9)

Since Q (h, z) ⊆ Q∗ (h) a.e. z ∈ RZ , it follows that for almost every z ∈ RZ :

∀S ∈ Q (h, z) , Ch (S|z) ≤ GU (S) .

By Theorem 3 this implies that Ch (S|z) ≤ GU (S) holds for almost every z ∈ RZ and for all sets

S in RU , so that by Corollary 1, (h,GU ) ∈M∗, completing the proof. �

Proof of Theorem 5. Restrictions A3 and A5 guarantee that U (Y,Z;h) is integrable and closed.

In particular integrability holds because by Restriction A3 first GU |Z (S|z) ≡ P [U ∈ S|z] so that,

for some finite c ∈ C, E [U |z] = c a.e. z ∈ RZ , and second P [h (Y,Z, U) = 0] = 1 so that

U ∈ U (Y, Z;h) ≡ {u ∈ RU : h (Y,Z, u) = 0} ,
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implying that U (Y, Z;h) has an integrable selection, namely U . From Definition 6, c ∈ E [U (Y, Z;h) |z]
a.e. z ∈ RZ therefore holds if and only if there exists a random variable Ũ ∈Sel (U (Y ,Z ; h)) such

that E
[
Ũ |z
]

= c a.e. z ∈ RZ , and hence H∗ is the identified set for h. The representation of the

identified set of structures M∗ then follows directly from Theorem 2. �

Proof of Corollary 4. Fix z ∈ RZ . The conditional Aumann expectation E [U (Y, Z;h) |z] is the

set of values for ∫
RY |z

∫
U(y,z;h)

udFU |Y Z (u|y, z) dFY |Z (y|z) ,

such that there exists for each y ∈ RY |z a conditional distribution FU |Y Z (u|y, z) with support on

U (y, z;h). Since each U (y, z;h) is convex, the inner integral∫
U(y,z;h)

udFU |Y Z (u|y, z)

can take any value in U (y, z;h), and hence E [U (Y, Z;h) |z] is the set of values of the form∫
RY |z

u (y, z) dFY |Z (y|z)

for some u (y, z) ∈ U (y, z;h), each y ∈ RY |z. Since the choice of z was arbitrary, this completes

the proof. �

Proof of Corollary 5. Restrictions A3 and A5 and the continuity requirement of Restriction

MI* guarantee that D (Y,Z;h) is integrable and closed. From Definition 6, for any c ∈ C, c ∈
E [D (Y, Z;h) |z] a.e. z ∈ RZ therefore holds if and only if there exists a random variable D .

D (Y, Z;h) such that E [D|z] = c a.e. z ∈ RZ . D . D (Y, Z;h) ensures that

P [D ∈ D (Y,Z;h) |z] = 1, a.e. z ∈ RZ .

Define

Ũ (D,Y, Z;h) ≡ {u ∈ U (Y,Z;h) : D = d (u, Z)} .

By the definition of D (Y,Z;h), D ∈ D (Y,Z;h) implies that Ũ (D,Y, Z;h) is nonempty. Hence

there exists a random variable Ũ such that with probability one Ũ ∈ Ũ (D,Y, Z;h) ⊆ U (Y,Z;h)

where D = d
(
Ũ , Z

)
. Thus Ũ is a selection of U (Y,Z;h) and E

[
d
(
Ũ , Z

)
|z
]

= d a.e. z ∈ RZ ,

and therefore H∗ is the identified set for h, and the given characterization of M∗ follows. �
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Proof of Theorem 6. Using Corollary 1 and Definition 4 with ψ
(
h,GU |Z

)
= h, the identified set

of structural functions h is

H∗∗ =
{
h ∈ H : ∃GU |Z ∈ GU |Z s.t. ∀S ∈ F (RU ) , Ch (S|z) ≤ GU |Z (S|z) a.e. z ∈ RZ

}
. (A.10)

Consider any h ∈ H∗∗. We wish to show first that h belongs to the set H∗ given in (5.9). Fix

z ∈ RZ and choose c such that GU |Z ((−∞, c] |z) = τ , which can be done by virtue of the continuity

condition of Restriction QI. Then

Ch ((−∞, c] |z) ≤ GU |Z ((−∞, c] |z) = τ , (A.11)

and because of Restriction IS, U (Y, Z;h) = [u (Y,Z;h) , u (Y, Z;h)],

Ch ((−∞, c] |z) = FY |Z [u (Y, Z;h) ≤ c|z] . (A.12)

Now consider S = [c,∞). We have by monotonicity of the containment functional Ch (·|z) and

from Ch (S|z) ≤ GU |Z (S|z) in (A.10) that

Ch ((c,∞) |z) ≤ Ch ([c,∞) |z) ≤ GU |Z ([c,∞) |z) = 1− τ , (A.13)

where the equality holds by continuity of the distribution of U |Z = z in a neighborhood of its τ

quantile. Again using Restriction IS,

Ch ((c,∞) |z) = 1− FY |Z [u (Y,Z;h) ≤ c|z] . (A.14)

Combining this with (A.13) and also using (A.11) and (A.12) above gives

FY |Z [u (Y, Z;h) ≤ c|z] ≤ τ ≤ FY |Z [u (Y,Z;h) ≤ c|z] . (A.15)

The choice of z was arbitrary and so we have that the above holds a.e. z ∈ RZ , implying that

h ∈ H∗.
Now consider any h ∈ H∗. We wish to show that h ∈ H∗∗. It suffices to show that for any such

h under consideration there exists a collection of conditional distributions GU |Z such that for almost

every z ∈ RZ (1) GU |Z (·|z) has τ -quantile equal to c, and (2) ∀S ∈ F (RU ), Ch (S|z) ≤ GU |Z (S|z).
To do so we fix an arbitrary z ∈ RZ and construct GU |Z (·|z) such that (1) and (2) hold. Namely

let GU |Z (·|z) be such that for each S ∈ F (RU ),

GU |Z (S|z) = λ (z)Ch (S|z) + (1− λ (z)) (1− Ch (Sc|z)) , (A.16)
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where λ (z) is chosen to satisfy

λ (z)FY |Z [u (Y,Z;h) ≤ c|z] + (1− λ (z))FY |Z [u (Y, Z;h) ≤ c|z] = τ . (A.17)

The left hand side of equation (A.17) is precisely (A.16) with S = (−∞, c]. Because h ∈ H∗, (A.15)

holds, which guarantees that λ (z) ∈ [0, 1]. (A.17) and (A.16) deliver

GU |Z ((−∞, c] |z) = τ ,

so that (1) holds. Moreover, it easy to verify that for any S,

Ch (S|z) ≤ 1− Ch (Sc|z) ,

since Ch (·|z) is the conditional containment functional of U (Y,Z;h) and 1 − Ch (Sc|z) is the

conditional capacity functional of U (Y, Z;h). Hence Ch (S|z) ≤GU |Z (S|z). Thus (2) holds, and

since the choice z was arbitrary, h ∈ H∗∗ as desired. This verifies claim (i) of the Theorem.

Claim (ii) of the Theorem holds because with u (Y,Z;h) and u (Y, Z;h) continuously distributed

given Z = z, a.e. z ∈ RZ , their conditional quantile functions are invertible at τ . Thus for any

z ∈ RZ ,

q (τ , z;h) ≤ c ≤ q (τ , z;h)⇔ FY |Z [u (Y, Z;h) ≤ c|z] ≤ τ ≤ FY |Z [u (Y, Z;h) ≤ c|z] .

Claim (iii) of the Theorem follows directly from Theorem 2. �
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B Equivalence of Selectionability of Conditional and Joint Distri-

butions

In this section we prove that selectionability statements in the main text required for observational

equivalence and characterization of identified sets conditional on Z = z for almost every z ∈ RZ are

in fact equivalent to unconditional selectionability statements inclusive of Z. Intuitively this holds

because knowledge of a conditional distribution of a random set or random vector given Z = z, a.e.

z ∈ RZ , is logically equivalent to knowledge of the joint distribution of that given random vector

or random set and Z.

Proposition 1 (i) FY |Z (·|z) 4 Y (U,Z;h) |Z = z a.e. z ∈ RZ if and only if FY Z (·) 4 Y (U,Z;h)×
{Z}. (ii) GU |Z (·|z) 4 U (Y,Z;h) |Z = z a.e. z ∈ RZ if and only if GUZ (·) 4 U (Y, Z;h)× {Z}.

Proof of Proposition 1. Note that since the choice of z in the above Theorem is arbitrary the

statement holds because

P
[(
Ỹ , Z

)
∈ Y (U,Z;h)× {Z}

]
=

∫
z∈RZ

P
[(
Ỹ , Z

)
∈ Y

(
Ũ , Z;h

)
× {Z}|Z = z

]
dFZ (z)

=

∫
z∈RZ

P
[
Ỹ ∈ Y

(
Ũ , Z;h

)
|Z = z

]
dFZ (z) ,

which is equal to one if and only if P
[
Ỹ ∈ Y

(
Ũ , Z;h

)
|Z = z

]
= 1 for almost every z ∈ RZ .

By identical reasoning, GU |Z (·|z) is selectionable with respect to the conditional distribution of

U (Y,Z;h) given Z = z for almost every z ∈ RZ if and only if GUZ (·) is selectionable with respect

to the distribution of U (Y, Z;h)× {Z}. �

C A Model with an Interval Censored Endogenous Variable

In this Section, Example 4 from Section 2.2 is studied in detail. This is a generalization of a

single equation model with an interval censored exogenous variable studied in Manski and Tamer

(2002).1 As in Manski and Tamer (2002), there is no restriction on the censoring process, but there

are three main differences in the models we consider. First, the models here allow the interval

censored explanatory variable as well as the endpoints of the censoring interval to be endogenous.

Second, there is no analog of Manski and Tamer’s (2002) Assumption MI, which stipulates that

the conditional mean of the outcome variable given the censored variable and its observed interval

1Models allowing censored outcome variables with uncensored endogenous explanatory variables with sufficient
conditions for point identification include those of Hong and Tamer (2003) and Khan and Tamer (2009).
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endpoints does not vary with the values of the interval endpoints.2 Third, Manski and Tamer (2002)

focused exclusively on conditional mean restrictions when considering continuous outcomes. Here

we consider the identifying power of conditional quantile and stochastic independence restriction in

addition to conditional mean restrictions on the conditional distribution of unobservable U given

exogenous variables Z. We provide numerical illustrations of identified sets delivered by particular

data generating structures for several cases. Application of our results ensures sharpness of the

the resulting bound characterizations directly, under all the different sets of restrictions considered,

without need for constructive proofs of sharpness.

C.1 Identified Sets

The continuously distributed outcome of interest, Y1, is determined by realizations of endogenous

Y ∗2 ∈ R, exogenous Z = (Z1, Z2) ∈ Rkz , and unobserved U ∈ R with strictly monotone distribution

function Λ (·), such that

Y1 = g (Y ∗2 , Z1, U) , (C.1)

where the function g (·, ·, ·) is increasing in its first argument, and strictly increasing in its third

argument.3 The endogenous variable Y ∗2 is not observed, but there are observed variables Y2l, Y2u

such that

Y ∗2 = Y2l +W × (Y2u − Y2l) , (C.2)

for some unobserved variable W ∈ [0, 1]. There is no restriction on the distribution of W on the

unit interval, and no restriction on its stochastic relation to observed variables. Together (U,W )

comprise a two-dimensional vector of unobserved heterogeneity.

Since there is no restriction on the censoring process, it is convenient to suppress the unobserved

variable W by replacing (C.2) with the equivalent formulation

P [Y2l ≤ Y ∗2 ≤ Y2u] = 1. (C.3)

The researcher observes realizations of (Y1, Y2l, Y2u, Z) under conditions which identify their joint

distribution.

2This assumption, through use of the law of iterated expectations, plays a role in their analysis by establishing
a direct relation between the expected value of outcome Y given the observed interval endpoints, and its expected
value conditional on the unobserved censored variable.

3It is important to note here that Λ (·) is the marginal distribution of U . At this point no restrictions have been
placed on the joint distribution of (U,Z), so that for any z ∈ RU , the conditional distribution of U |Z = z need not
be Λ (·). It is straightforward to allow g (y∗2 , z1, u) monotone increasing or decreasing in y∗2 for all (z1, u). Indeed, it
is also possible for the model specification to allow some functions g that are monotone increasing and others that
are monotone decreasing in y∗2 for all (z1, u), but the restriction that g (y∗2 , z1, u) is monotone increasing in y∗2 is
maintained here to simplify the exposition.

3



The structural function

h (y, z, u) = max{g (y2l, z1, u)− y1, 0}+ max{y1 − g (y2u, z1, u) , 0}

and P [h (Y,Z, U) = 0] = 1 is equivalent to equations (C.1) and (C.3). The level sets in Y -space

and U -space, respectively, are

Y (u, z;h) = {y = (y1, y2l, y2u) ∈ RY : g (y2l, z1, u) ≤ y1 ≤ g (y2u, z1, u)} ,

and

U (y, z;h) =
[
g−1 (y2u, z1, y1) , g

−1 (y2l, z1, y1)
]

, (C.4)

where g−1 denotes the inverse of g in its last argument.

In most of the following development and in the numerical illustrations the function h is further

restricted by imposing a linear index structure on g (y∗2, z, u), thus:

g (y∗2, z, u) = βy∗2 + z1γ + u, (C.5)

with the first element of z1 normalized to one. With this restriction in place the functions g and h

are parameterized by (β, γ′) ∈ Rdim(z1)+1.

The identified sets delivered by this model are now obtained under alternative restrictions on

the collection of conditional distributions GU |Z . In each case it is shown how the identified sets can

be characterized as a system of conditional moment inequalities that can be used as a basis for

estimation and inference.

C.1.1 Stochastic Independence

Consider the restriction U ‖ Z. Using Theorem 3 the identified set is characterized as the admissible

structures (h,Λ) such that the inequalities

P [U (Y, Z;h) ⊆ S|z] ≤ GU (S) (C.6)

hold for all sets S ∈ Q (h, z), where Q (h, z) is the collection of intervals that can be formed as

unions of sets of the form
[
g−1 (y2u, z1, y1) , g

−1 (y2l, z1, y1)
]
. Here GU (S) is the probability mass

placed on a set S by the distribution of U which has cumulative distribution function Λ(·).
If the components of Y are continuously distributed with rich support the collection of required

test sets may comprise all intervals on R.4 Unless g has very restricted structure, the conditions for

4If the support of Y1 is limited, application of Theorem 3 may indicate that not all intervals on R need be considered
as test sets. This smaller collection of core-determining sets will differ for different (h, z). A characterization based
on all intervals, although employing more test sets than necessary, has the advantage of being invariant to (h, z).
Both characterizations - that using the core determining sets of Theorem 3, and that using all closed intervals on R
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(C.6) to hold with equality will in general not be satisfied for any test set S, and hence QE (h, z) = ∅
and QI (h, z) = Q (h, z) is the collection of all intervals on R, which is henceforth denoted

Q ≡
{

[a, b] ∈ R2 : a ≤ b
}

.

It follows from Theorem 4 that the identified set of structures (h,Λ) admitted by a model M
embodying the restrictions so far introduced is as follows.

M∗ = {(h,Λ) ∈M : ∀ [u∗, u
∗] ∈ Q, P [U (Y, Z;h) ⊆ [u∗, u

∗] |z] ≤ Λ (u∗)− Λ (u∗) , a.e. z ∈ RZ}

The containment functional inequality in this characterization can be written

P
[
u∗ ≤ g−1 (Y2u, Z1, Y1) ∧ g−1 (Y2l, Z1, Y1) ≤ u∗|z

]
≤ Λ (u∗)− Λ (u∗) ,

equivalently, using monotonicity of g (y2, z1, u) in its third argument, as follows.

P [g (Y2u, Z1, u∗) ≤ Y1 ≤ g (Y2l, Z1, u
∗) |z] ≤ Λ (u∗)− Λ (u∗) (C.7)

With the added linear index restriction from (C.5) this produces the following representation for the

identified set, where the modelM defines a collection of admissible parameters β, γ and distribution

functions Λ (·).

M∗ =

{
(β, γ,Λ) ∈M : ∀ [u∗, u

∗] ∈ Q,

P [u∗ + βY2u ≤ Y1 − Z1γ ≤ u∗ + βY2l|z] ≤ Λ (u∗)− Λ (u∗) , a.e. z ∈ RZ

}
(C.8)

In some of the calculations reported later Λ (·) is restricted to be the distribution function of a

N(0, σ2) random variable. In this case Λ (u∗)−Λ (u∗) in (C.8) is replaced by Φ
(
σ−1u∗

)
−Φ

(
σ−1u∗

)
and M is the admissible parameter space for (β, γ′, σ). Using (C.8) the identified set is then as

follows.

M∗ =

{
θ ∈ Θ : ∀ [u∗, u

∗] ∈ Q,

P [u∗ + βY2u ≤ Y1 − Z1γ ≤ u∗ + βY2l|z] ≤ Φ
(
σ−1u∗

)
− Φ

(
σ−1u∗

)
, a.e. z ∈ RZ

}
(C.9)

Equivalently, the change of variables t∗ = Φ
(
σ−1u∗

)
and t∗ ≡ Φ

(
σ−1u∗

)
can be employed to

- define the same identified set and deliver sharp bounds.
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produce the following representation.

M∗ =

{
θ ∈ Θ : ∀ [t∗, t

∗] ⊆ [0, 1] ,

P
[
t∗ ≤ Φ

(
Y1−βY2u−Z1γ

σ

)
∧ Φ

(
Y1−βY2l−Z1γ

σ

)
≤ t∗|z

]
≤ t∗ − t∗, a.e. z ∈ RZ

}
(C.10)

Under the stochastic independence restriction, U ‖ Z, and with no further restriction on the

distribution function of U , applying Corollary 3 gives the identified set for the parameters θ ≡ (β, γ′)

alone. This involves the containment and capacity functionals of the random set U (Y,Z;h). For

the case considered here the containment functional for sets S = [u∗, u
∗] is

Ch (S|z) = P [u∗ + βY2u ≤ Y1 − Z1γ ≤ u∗ + βY2l|z]

and the capacity functional is

1− Ch (Sc|z) = P [u∗ + βY2l ≤ Y1 − Z1γ ≤ u∗ + βY2u|z]

where the structural function h is characterized by the parameter vector θ.

Define

G (θ, u∗, u
∗) ≡ sup

z∈RZ
P [u∗ + βY2u ≤ Y1 − Z1γ ≤ u∗ + βY2l|z]

G (θ, u∗, u
∗) ≡ inf

z∈RZ
P [u∗ + βY2l ≤ Y1 − Z1γ ≤ u∗ + βY2u|z]

and let Θ denote parameter values admitted by modelM. Applying Corollary 3, the identified set

for parameters θ is as follows.

Θ∗ =
{
θ ∈ Θ : ∀ [u∗, u

∗] ∈ Q, G (θ, u∗, u
∗) ≤ G (θ, u∗, u

∗)
}

(C.11)

Equivalent to (C.11), the identified set for θ are those θ ∈ Θ satisfying the moment inequality

representation:

E [m1 (θ;Y,Z, u∗, u
∗) |z]− E

[
m2 (θ;Y, Z, u∗, u

∗) |z′
]
≤ 0,

all u∗, u
∗ ∈ R s.t. u∗ ≤ u∗, a.e. z, z′ ∈ RZ ×RZ ,

where

m1 (θ;Y, Z, u∗, u
∗) ≡ 1 [u∗ + βY2u ≤ Y1 − Z1γ ≤ u∗ + βY2l] ,

m2 (θ;Y, Z, u∗, u
∗) ≡ 1 [u∗ + βY2l ≤ Y1 − Z1γ ≤ u∗ + βY2u] .
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C.1.2 Mean Independence

Now consider the case in which the linear index restriction (C.5) is retained and the stochastic

independence restriction U ‖ Z is replaced by the mean independence restriction E [U |Z = z] = 0

a.e. z ∈ RZ . This is Restriction MI of Section 5 with C = {0}.
The random set U (Y, Z;h) in this model is the interval

U (Y, Z;h) = [Y1 − Z1γ − βY2u, Y1 − Z1γ − βY2l] ,

rendering application of Theorem 5 and Corollary 4 particularly simple. This is because there

exists a function u (·, ·) satisfying the conditions of Corollary 4, namely that (i) E [u (Y,Z) |z] = 0

a.e. z ∈ RZ , and (ii) P [u (Y, Z) ∈ U (Y, Z;h)] = 1 if and only if

E [Y1 − Z1γ − βY2u|z] ≤ 0 ≤ E [Y1 − Z1γ − βY2l|z] a.e. z ∈ RZ .

Thus, applying Corollary 4, the identified set for θ ≡ (β, γ′), where as before Θ denotes values

admitted by model M, is

Θ∗ =
{
θ ∈ Θ : E (θ) ≤ 0 ≤ E (θ)

}
,

where

E (θ) ≡ sup
z∈RZ

E [Y1 − Z1γ − βY2u|z] , E (θ) ≡ inf
z∈RZ

E [Y1 − Z1γ − βY2l|z] .

C.1.3 Quantile Independence

Consider the case in which the linear index restriction (C.5) is coupled with the restriction qU |Z (τ |z) =

0, a.e z ∈ RZ for some specified value of τ . This is Restriction QI of Section 5.3 with C = {0}.
As before under the linear index restriction (C.5) there is

U (Y,Z;h) = [Y1 − Z1γ − βY2u, Y1 − Z1γ − βY2l] ,

and the structural function h is determined by θ ≡ (β, γ′). As in Section C.1.2 the parameter space

and identified set for θ are denoted by Θ and Θ∗, respectively. Applying Theorem 6 the identified

set of values of θ is

Θ∗ =

{
θ ∈ Θ : sup

z∈RZ
FY |Z [Y1 ≤ Z1γ + βY2l|z] ≤ τ ≤ inf

z∈RZ
FY |Z [Y1 ≤ Z1γ + βY2u|z]

}
, (C.12)
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equivalently,

Θ∗ =

{
θ ∈ Θ : sup

z∈RZ

(
qVθ|Z (τ |z)− z1γ

)
≤ 0 ≤ inf

z∈RZ

(
qVθ|Z (τ |z)− z1γ

)}
,

where Vθ≡ Y1 − βY2u and Vθ ≡ Y1 − βY2l. The identified set of structures M∗ is then pairs of

structural functions h parameterized by θ ∈ Θ∗ coupled with collections of conditional distributions

GU |Z satisfying the required conditional quantile restriction, and such that GU |Z (·|z) is selectionable

with respect to U (Y, Z;h) conditional on Z = z, a.e. z ∈ RZ .

Using (C.12) the identified set Θ∗ can be characterized via the moment inequalities

E [m1 (θ;Y,Z) |z] ≤ 0, a.e. z ∈ RZ
E [m2 (θ;Y,Z) |z] ≤ 0, a.e. z ∈ RZ

where

m1 (θ;Y,Z) ≡ 1 [Y1 ≤ Z1γ + βY2l]− τ

m2 (θ;Y,Z) ≡ τ − 1 [Y1 ≤ Z1γ + βY2u] .

C.2 Numerical Illustrations

In this Section we provide illustrations of identified sets obtained for the interval censored endoge-

nous variable model with the linear index restriction of (C.5). We first consider the identified set

obtained under the restriction that U ∼ N (0, σ) and U ‖ Z, i.e. the Gaussian unobservable case

above with identified set given by (C.9).

To generate probability distributions FY |Z for observable variables (Y,Z) we employ a triangular

Gaussian structure as follows.

Y1 = γ0 + γ1Y
∗
2 + U ,

Y ∗2 = δ0 + δ1Z + V .

with (U, V ) ‖ Z, RZ = {−1, 1}, and[
U

V

]
∼ N

([
0

0

]
,

[
σ11 σ1v

σ1v σvv

])
.

In this model there are no exogenous covariates Z1 so Z = Z2. The binary support of Z simplifies

the calculations. Richer support would provide greater identifying power, equivalently smaller
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c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13
DGP1 −∞ −1.15 −0.67 −0.32 0.00 0.32 0.67 1.15 +∞ - - - -
DGP2 −∞ −1.38 −0.97 −0.67 −0.43 −0.21 0.00 0.21 0.43 0.67 0.97 1.38 +∞

Table 1: Endpoints of censoring process intervals in DGP1 and DGP2.

identified sets.

We specify a censoring process that reveals to which one of a collection of mutually exclusive

intervals a realization of Y ∗2 belongs. Such censoring processes are common in practice, for instance

when interval bands are used to record income in surveys. We specify a sequence of J intervals,

I1, I2, . . . , IJ with Ij ≡ (cj , cj+1] and cj < cj+1 for all j ∈ {1, . . . , J}. The censoring process is such

that

∀j ∈ {1, . . . , J}, (Y2l, Y2u) = (cj , cj+1)⇔ Y ∗2 ∈ Ij .

The researcher observes realizations of (Y1, Y2l, Y2u, Z) through a process such that their joint

distribution is identified.

In the first set of examples we work with probability distributions generated by two structures

denoted DGP1 and DGP2, both with parameter values

γ0 = 0, γ1 = 1, δ0 = 0, δ1 = 1, σ11 = 0.5, σ1v = 0.25, σvv = 0.5, (C.13)

and interval censoring endpoints c1, ..., cJ listed in Table 1. In DGP1, Y ∗2 is censored into 8 intervals

Ij = (cj , cj+1] with endpoints given by the normal quantile function evaluated at 9 equally spaced

values in [0, 1], inclusive of 0 and 1. In DGP2, Y ∗2 is censored into 12 such intervals with endpoints

given by the normal quantile function evaluated at 13 equally spaced values.

The distribution of Y ≡ (Y1, Y2l, Y2u) conditional on Z is easily obtained as the product of the

conditional distribution of (Y2l, Y2u) given Y1 and Z and the distribution of Y1 given Z. Combining

these probabilities and the inequalities of (C.9), the conditional containment functional for random

set U (Y,Z;h) applied to test set S = [u∗, u
∗] is given by

Cθ ([u∗, u
∗] |z) =

∑
j

P [g1cj+1 + u∗ ≤ Y1 − g0 ≤ g1cj + u∗|z, [Y2l, Y2u) = Ij ] ∗ P [[Y2l, Y2u) = Ij |z] ,

(C.14)

where θ = (g0, g1, s) is used to denote generic parameter values for (γ0, γ1, σ11). Cθ replaces Ch

for the containment functional, since in this model the structural function h is a known function of

θ.5 The identified set of structures
(
h,GU |Z

)
is completely determined by the identified set for θ,

5Computational details for the conditional containment probability Cθ ([u∗, u
∗] |z) are provided in Appendix C.3.
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which, following (C.10), is given by

Θ∗ =

{
θ ∈ Θ : ∀ [t∗, t

∗] ⊆ [0, 1] ,

Cθ
([
sΦ−1 (t∗) , sΦ

−1 (t∗)
]
|z
)
≤ t∗ − t∗, a.e. z ∈ RZ

}
. (C.15)

The set Θ∗ comprises parameter values (g0, g1, s) such that the given conditional containment

functional inequality holds for almost every z and all intervals [t∗, t
∗] ⊆ [0, 1]. This collection of

test sets is uncountable. For the purpose of illustration we used various combinations of collections

QM of intervals from the full set of all possible [t∗, t
∗] ⊆ [0, 1]. Each collection of intervals QM

comprises the super-diagonal elements of the following (M + 1) × (M + 1) array of intervals with

the interval [0, 1] excluded. Here m ≡ 1/M and there are M(M + 1)/2− 1 intervals in QM .

[0, 0] [0,m] [0, 2m] [0, 3m] · · · · · · · · · [0, 1]

− [m,m] [m, 2m] [m, 3m] · · · · · · · · · [m, 1]

− − [2m, 2m] [2m, 3m] · · · · · · · · · [2m, 1]

− − − [3m, 3m]
. . .

...
...

...
...

...
. . .

...

− − − − [(M − 1)m, (M − 1)m] [(M − 1)m, 1]

− − − − − [1, 1]


The inequalities of (C.15) applied to the intervals of any collections of test sets QM defines an

outer region for the identified set, with larger collections of test sets providing successively better

approximations of the identified set.

Figure 1 shows perspective plots of three dimensional outer regions for (g0, g1, s). Outer regions

using M ∈ {5, 7, 9} are noticeably smaller than those using only M = 5.6 There was a noticeable

reduction in the size of the outer region in moving from M = 5 to M = {5, 7}, but hardly any

change on including also the inequalities obtained with M = 9. Thus, only the outer regions

obtained using M = 5 and M ∈ {5, 7, 9} are shown. Figure 2 shows two dimensional projections of

the outer region using M ∈ {5, 7, 9} for each pair of the three parameter components. The surfaces

of these sets were drawn as convex hulls of those points found to lie inside the outer regions and

projections considered.7 We have no proof of the convexity of the outer regions in general, but

careful investigation of points found to lie in the outer regions strongly suggests that in the cases

considered the sets are convex.

Figure 3 shows perspective plots of outer regions for DGP2 employing 12 bins for the censoring

6The notation M ∈ {m1,m2, ...,mR} corresponds to the use of test sets Qm1 ∪ Qm2 · · · ∪ · · · ∪ QmR .
7Perspective plots were produced using the TetGenConvexHull function available via the TetGenLink package in

Mathematica 9, Wolfram Research, Inc. (2012). The projections below were drawn using Mathematica’s ConvexHull
function.
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Figure 1: Outer regions for parameters (g0, g1, s) for DGP1 with 8 bins using the 14 inequalities
generated with M = 5 (left pane) and the 85 inequalities generated with M ∈ {5, 7, 9} (right pane).
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of Y ∗2 and M ∈ {5, 7, 9}. Compared to Figure 1, this outer region is smaller, as expected given the

finer granularity of intervals with 12 rather than 8 bins. Figure 4 shows two dimensional projections

for this outer region, again projecting onto each pair of parameter components. These projections

further illustrate the extent of the reduction in the size of the outer region for DGP2 relative to

DGP1.

The second set of numerical illustrations employs the same triangular Gaussian error structure

for our DGPs with parameter values as specified in (C.13). However, we consider two alternative

censoring processes, where Y ∗2 is again observed only to lie in one of a fixed set of bins, but where

now these bins are set to be of a fixed width. We consider fixed bins, first with width 0.4:

. . . . . . , (−0.8,−0.4], (−0.4, 0.0], (0, 0.4], (0.4, 0.8], . . . . . .

and then of width 0.2:

. . . . . . , (−0.4,−0.2], (−0.2, 0.0], (0, 0.2], (0.2, 0.4], . . . . . .

With this censoring structure in place, we now compare the identifying power of alternative
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Figure 2: Outer region projections for DGP1 onto the (g0, g1), (g0, s), and (g1, s) planes, respec-
tively, with 8 bins using inequalities generated with M ∈ {5, 7, 9}. The red point marks the data
generating value.
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Figure 3: Outer region for DGP2 with 12 bins calculated using inequalities generated with M ∈
{5, 7, 9}. Dashed green lines intersect at the data generating value of the parameters.
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Figure 4: Outer region projections for DGP2 onto the (g0, g1), (g0, s), and (g1, s) planes, respec-
tively, with 12 bins using inequalities generated with M ∈ {5, 7, 9}. The red point marks the data
generating value.
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restrictions on unobserved heterogeneity, in both cases imposing the linear functional form

Y1 = γ0 + γ1Y
∗
2 + U .

We again consider the parametric Gaussian restriction on unobserved heterogeneity that U ∼
N (0, σ) and U ‖ Z, and compare to the alternative restriction imposing only knowledge that

qU |Z (0.5|z) = 0, a.e. z ∈ RZ . This semiparametric specification has no scale parameter s, so we

focus attention on the implied identified set for (γ0, γ1).

Figure 5 below illustrates the identified sets obtained for bin widths 0.4 (top panels) and 0.2

(bottom panels), as well as for δ1 = 1 (left panels) and δ1 = 1.5 (right panels). In the triangular

structure employed to generate the actual distributions FY |Z the parameter δ1 is the coefficient

multiplying the instrument Z in the equation determining the value of the censored endogenous

variable Y ∗2 . With a higher value of δ1 the value of this variable as well as the censoring points is

more sensitive with respect to the instrument Z. As we might expect, identified sets when δ1 = 1.5

are smaller than those for the case δ1 = 1, as are sets obtained when the bin width is only 0.2

rather than 0.4.

Identified sets obtained from a model imposing independent Gaussian unobservable U (in light

blue) are naturally contained in those obtained from a model only imposing the less restrictive

zero conditional quantile restriction (in dark blue). However, the difference between the identified

sets obtained under these different restrictions is not so great, at least under the particular data

generating structures employed. In these cases, the use of the weaker conditional quantile restriction

does not seem to lose much in the way of identifying power relative to the Gaussian distributional

restriction.

A partial explanation for this observation may be the fixed-width binning setup. Indeed, under

this censoring process with the given triangular data-generating structure, it can be shown that un-

der a distribution-free independence restriction - that is U ‖ Z with the distribution of U otherwise

unrestricted except for a zero median location normalization - the identified set is identical to that

obtained under the conditional median restriction alone. This is not generally the case. For other

censoring processes (not reported here) the identified set under the distribution-free independence

restriction is a strict subset of that obtained under only the conditional quantile restriction.

C.3 Computational Details for Numerical Illustrations

In this Section we describe computation of the conditional containment functional Cθ ([u∗, u
∗] |z)

in (C.14). Computations were carried out in Mathematica 9.

Given the structure specified for DGP1 and DGP2 in Section C.2, the conditional distribution
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Figure 5: Identified sets for (γ0, γ1). The top panels display sets for bins of width 0.4 and the
bottom panels display sets for bins of width 0.2. In the panels on the left δ1 = 1 and on the right
δ1 = 1.5. The dark blue lines indicate boundaries of identified sets obtained with the conditional
quantile restriction qU |Z(τ |z) = 0, while the inner light blue lines indicate boundaries of identified
sets when U is restricted to be Gaussian, independent of Z.
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of Y ∗2 given Y1 = y1 and Z = z is for any (y1, z)

N

(
a (z) +

σ1v + γ1σvv
σ11 + 2γ1σ1v + γ21σvv

(y1 − (γ0 + γ1a (z))) , σvv −
(σ1v + γ1σvv)

2

σ11 + 2γ1σ1v + γ21σvv

)
,

where a (z) ≡ δ0 + δ1z. From this it follows that the conditional (discrete) distribution of (Y2l, Y2u)

given Y1 and Z is:

P [[Y2l, Y2u) = Ij |y1, z] = Φ

cj+1 −
(
a(z) + σ1v+γ1σvv

σ11+2γ1σ1v+γ21σvv
(y1 − (γ0 + γ1a(z)))

)
√
σvv − (σ1v+γ1σvv)

2

σ11+2γ1σ1v+γ21σvv



− Φ

cj −
(
a(z) + σ1v+γ1σvv

σ11+2γ1σ1v+γ21σvv
(y1 − (γ0 + γ1a(z)))

)
√
σvv − (σ1v+γ1σvv)

2

σ11+2γ1σ1v+γ21σvv

 .

The distribution of Y1 given Z = z is

Y1|Z = z ∼ N
(
γ0 + γ1a(z), σ11 + 2γ1σ1v + γ21σvv

)
. (C.16)

The conditional containment functional can thus be written

Cθ ([u∗, u
∗] |z) =

∑
j

P[(g0 + g1cj+1 + u∗ ≤ Y1 ≤ g0 + g1cj + u∗) ∧ (Y2, Y3) = Ij |z]

=
∑
j

max

{
0,

∫ γ0+γ1cj+u
∗

γ0+γ1cj+1+u∗

fY1|Z (y1|z)× P [[Y2l, Y2u) = Ij |y1, z] dy1

}
.

where fY1|Z (·|z) is the normal probability density function with mean and variance given in (C.16).

In the calculations performed in Mathematica we used the following equivalent formulation

employing a single numerical integration for computation of Cθ ([u∗, u
∗] |z).

Cθ ([u∗, u
∗] |z) ≡∫ ∞

−∞

∑
j

1[g0 + g1cj+1 + u∗ < y1 < g0 + g1cj + u∗]× fY1|Z (y1|z)× P [[Y2l, Y2u) = Ij |y1, z]

 dy1.
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