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Abstract 

This paper presents a test for exogeneity of explanatory variables in a nonparametric instrumental 
variables (IV) model whose structural function is identified through a conditional quantile restriction. 
Quantile regression models are increasingly important in applied econometrics.  As with mean-regression 
models, an erroneous assumption that the explanatory variables in a quantile regression model are 
exogenous can lead to highly misleading results.  In addition, a test of exogeneity based on an incorrectly 
specified parametric model can produce misleading results.  This paper presents a test of exogeneity that 
does not assume the structural function belongs to a known finite-dimensional parametric family and does 
not require nonparametric estimation of this function.  The latter property is important because, owing to 
the ill-posed inverse problem, a test based on a nonparametric estimator of the structural function has low 
power.  The test presented here is consistent whenever the structural function differs from the conditional 
quantile function on a set of non-zero probability.  The test has non-trivial power uniformly over a large 
class of structural functions that differ from the conditional quantile function by 1/2( )O n− .  The results of 
Monte Carlo experiments illustrate the usefulness of the test. 
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TESTING EXOGENEITY IN NONPARAMETRIC INSTRUMENTAL VARIABLES MODELS 
IDENTIFIED BY CONDITIONAL QUANTILE RESTRICTIONS 

 
1.  INTRODUCTION 

 Econometric models often contain explanatory variables that may be endogenous.  For example, 

in a wage equation, the observed level of education may be correlated with unobserved ability, thereby 

causing education to be an endogenous explanatory variable.  It is well known that estimation methods for 

models in which all explanatory variables are exogenous do not yield consistent parameter estimates 

when one or more explanatory variables are endogenous.  For example, ordinary least squares does not 

provide consistent estimates of the parameters of a linear model when one or more explanatory variables 

are endogenous.  Instrumental variables estimation is a standard method for obtaining consistent 

estimates. 

 The problem of endogeneity is especially serious in nonparametric estimation.  Because of the ill-

posed inverse problem, nonparametric instrumental variables estimators are typically much less precise 

than nonparametric estimators in the exogenous case.  Therefore, it is especially useful to have methods 

for testing the hypothesis of exogeneity in nonparametric settings.  This paper presents a test of the 

hypothesis of exogeneity of the explanatory variable in a nonparametric quantile regression model.  

 Quantile models are increasingly important in applied econometrics.  Koenker (2005) and 

references therein describe methods for and applications of quantile regression when the explanatory 

variables are exogenous.  Estimators and applications of linear quantile regression models with 

endogenous explanatory variables are described by Amemiya (1982), Powell (1983), Chen and Portnoy 

(1996), Januszewski (2002), Chernozhukov and Hansen (2004, 2006), Ma and Koenker (2006), Blundell 

and Powell (2007), Lee (2007), and Sakata (2007).  Nonparametric methods for quantile regression 

models are discussed by Chesher (2003, 2005, 2007); Chernozhukov and Hansen (2004, 2005, 2006); 

Chernozhukov, Imbens, and Newey (2007); Horowitz and Lee (2007); and Chen and Pouzo (2009, 2012).  

Blundell, Horowitz, and Parey (2015) estimate a nonparametric quantile regression model of demand 

under the hypothesis that price is exogenous and an instrumental variables quantile regression model 

under the hypothesis that price is endogenous. 

 The method presented in this paper consists of testing the conditional moment restriction that 

defines the null hypothesis of exogeneity in a quantile IV model.  This approach does not require 

estimation of the structural function.  An alternative approach is to compare a nonparametric quantile 

estimate of the structural function under exogeneity with an estimate obtained by using nonparametric 

instrumental variables methods.   However, the moment condition that identifies the structural function in 

the presence of endogeneity is a nonlinear integral equation of the first kind, which leads to an ill-posed 

inverse problem (O’Sullivan 1986, Kress 1999).  A consequence of this is that in the presence of one or 
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more endogenous explanatory variables, the rate of convergence of a nonparametric estimator of the 

structural function is typically very slow.  Therefore, a test based on a direct comparison of nonparametric 

estimates obtained with and without assuming exogeneity will have low power.  Accordingly, it is 

desirable to have a test of exogeneity that avoids nonparametric instrumental variables estimation of the 

structural function.  This paper presents such a test. 

 Breunig (2015) and Blundell and Horowitz (2007) have developed tests of exogeneity of the 

explanatory variables in a nonparametric instrumental variables model that is identified through a 

conditional mean restriction.  The test presented here uses ideas and has properties similar to those of 

Blundell’s and Horowitz’s (2007) test.  However, the non-smoothness of quantile estimators presents 

technical issues that are different from and more complicated than those presented by instrumental 

variables models that are identified by conditional mean restrictions.  Therefore, testing exogeneity in a 

quantile regression model requires a separate treatment from testing exogeneity in the conditional mean 

models considered by Breunig (2015) and Blundell and Horowitz (2007).  We use empirical process 

methods to deal with the non-smoothness of quantile estimators.  Such methods are not needed for testing 

exogeneity in conditional mean models.   

 Section 2 of this paper presents the model, null hypothesis to be tested, and test statistic.  Section 

3 describes the asymptotic properties of the test and explains how to compute the critical value in 

applications.  Section 4 presents the results of a Monte Carlo investigation of the finite-sample 

performance of the test.  Section 5 concludes.  The proofs of theorems are in the appendix, which is 

Section 6. 

2.  THE MODEL, NULL HYPOTHESIS, AND TEST STATISTIC 

 This section begins by presenting the model setting that we deal with, the null hypothesis to be 

tested, and issues that are involved in testing the null hypothesis.  Section 2.2 presents the test statistic. 

2.1 The Model and the Null and Alternative Hypotheses 

 Let Y  be a scalar random variable, X  and W  be continuously distributed random scalars or 

vectors, q  be a constant satisfying 0 1q< < , and g  be a structural function that is identified by the 

relation 

(2.1) [ ( ) 0 | ]P Y g X W w q− ≤ = =  

for almost every supp( )w W∈ .  Equivalently, g  is identified by 

(2.2) ( ) ; ( 0 | )Y g X U P U W w q= + ≤ = =  
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for almost every supp( )w W∈ .  In (2.1) and (2.2), Y  is the dependent variable, X  is the explanatory 

variable, and W  is an instrument for X .  The function g  is nonparametric; it is assumed to satisfy mild 

regularity conditions but is otherwise unknown. 

 Define the conditional q -quantile function ( ) ( | )qG x Q Y X x= = , where qQ  denotes the 

conditional q -quantile.  We say that X  is exogenous if ( ) ( )g x G x=  except, possibly, if x  is contained 

in a set of zero probability.  Otherwise, we say that X  is endogenous.  This paper presents a test of the 

null hypothesis, 0H , that X  is exogenous against the alternative hypothesis, 1H , that X  is endogenous.  

It follows from (2.1) and (2.2) that 0H  is equivalent to testing the hypothesis [ ( ) ( )] 1P g X G X= =  or 

[ ( ) 0 | ]P Y G X W w q− ≤ = =  for almost every supp( )w W∈ .  1H  is equivalent to [ ( ) ( )] 1P g X G X= < .  

Under mild conditions, the test presented here rejects 0H  with probability approaching 1 as the sample 

size increases whenever ( ) ( )g x G x≠  on a set of non-zero probability. 

 One possible way of testing 0H  is to estimate g  and G , compute the difference between the two 

estimates in some metric, and reject 0H  if the difference is too large.  To see why this approach is 

unattractive, assume that 2supp( , ) [0,1]X W ⊂ .  This assumption entails no loss of generality if X  and W  

are scalars.  It can always be satisfied by, if necessary, carrying out monotone increasing transformations 

of X  and W .  Then (2.1) is equivalent to the nonlinear integral equation 

(2.3) 
1

0
[ ( ), , ] ( ) 0YXW WF g x x w dx qf w− =∫ , 

where Wf  is the probability density function of w ,  

 
0

( , , ) ( , , )
y

YXW YXWF y x w f u x w du= ∫ , 

and YXWf  is the probability density function of ( , , )Y X W .  Equation (2.3) can be written as the operator 

equation 

(2.4) ( )( ) ( )WT h w qf w= , 

where the operator T  is defined by 

 
1

0
( )( ) [ ( ), , ]YXWT h w F h x x w dx= ∫  

for any function h  for which the integral exists.  Thus, 

 1
Wg qT f−= . 

T  and Wf are unknown but can be estimated consistently using standard methods.  However, 1T − is a 

discontinuous operator (Horowitz and Lee 2007).  Consequently, even if T  were known, g  could not be 
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estimated consistently by replacing Wf  with a consistent estimator.  This is called the ill-posed inverse 

problem and is familiar in the literature on integral equations.  See, for example, Groetsch (1984); Engl, 

Hanke, and Neubauer (1996); and Kress (1999).  Because of the ill-posed inverse problem, the fastest 

possible rate of convergence of an estimator of g  is typically much slower than the usual nonparametric 

rates.  Depending on the details of the distribution of ( , , )Y X W , the rate may be slower than ( )pO n ε−  for 

any 0ε >   (Chen and Reiss 2007, Hall and Horowitz 2005).  Because of the ill-posed inverse problem 

and consequent slow convergence of any estimator of g , a test based on comparing estimates of g  and 

G  will have low power. 

 The test developed here does not require nonparametric estimation of g  and is not affected by 

the ill-posed inverse problem.  Therefore, the “precision” of the test is greater than that of a 

nonparametric estimator of g .  Let n  denote the sample size used for testing.  Under mild conditions, the 

test rejects 0H  with probability approaching 1 as n →∞  whenever ( ) ( )g x G x≠  on a set of non-zero 

probability.  Moreover, like the test of Blundell and Horowitz (2007), the test developed here can detect a 

large class of structural functions g  whose distance from the conditional quantile function G  in a 

suitable metric is 1/ 2( )O n− .  In contrast, the rate of convergence in probability of a nonparametric 

estimator of g  is always slower than 1/ 2( )pO n− .1  

 Throughout the remaining discussion, we use an extended version of (2.1) and (2.2) that allows 

g  to be a function of a vector of endogenous explanatory variables, X , and a set of exogenous 

explanatory variables, Z .  We write this model as 

(2.4) ( , ) ; ( 0 | , )Y g X Z U P U Z z W w q= + ≤ = = =  

for almost every ( , ) supp( , )z w Z W∈ , where Y  and U  are random scalars, X  and W  are random 

variables whose supports are contained in a compact set that we take to be [0,1]p  ( 1p ≥ ), and Z  is a 

random variable whose support is contained in a compact set that we take to be [0,1]r  ( 0r ≥ ).  The 

compactness assumption is not restrictive because it can be satisfied by carrying out monotone increasing 

transformations of any components of X , W , and Z  whose supports are not compact.  If 0r = , then Z  

is not included in (2.4).  W  is an instrument for X .   

The inferential problem is to test the null hypothesis, 0H , that 

(2.5) ( 0 | , )P U X x Z z q≤ = = =  

                                                      
1  Nonparametric estimation and testing of conditional mean and median functions is another setting in which the 
rate of testing is faster than the rate of estimation.  See, for example, Guerre and Lavergne (2002) and Horowitz and 
Spokoiny (2001, 2002). 
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except, possibly, if ( , )x z  belongs to a set of probability 0.  This is equivalent to testing 

[ ( , ) ( , )] 1P g X Z G X Z= =  or [ ( , ) 0 | , ]P Y G X Z Z z W w q− ≤ = = = .  The alternative hypothesis, 1H , is 

that (2.5) does not hold on some set that has non-zero probability or, equivalently, that 

[ ( , ) ( , )] 1P g X Z G X Z= < .  The data, { , , , : 1,..., }i i i iY X Z W i n= , are a simple random sample of 

( , , , )Y X Z W .   

2.2  The Test Statistic 

To form the test statistic, let YXZWf , XZWf , and ZWf , respectively, denote the denote the 

probability density functions of ( , , , )Y X Z W , ( , , )X Z W  and ( , )Z W .  Define 

 ( , , , ) ( , , , )
y

YXZW YXZWF y x z w f u x z w du
−∞

= ∫ . 

Let ( , )G x z  denote the q  conditional quantile of Y :  ( , ) ( | , )qG x z Q Y X x Z z= = = .  Then under 0H , 

(2.6) 
[0,1]

( , ) [ ( , ), , , ] ( , ) 0p YXZW ZWS z w F G x z x z w dx qf z w≡ − =∫  

for almost every ( , ) supp( , )z w Z W∈ .  1H  is equivalent to the statement that (2.6) does not hold on a set 

[0,1]p r+⊂  with non-zero Lebesgue measure.  A test statistic can be based on a sample analog of 

2( , )S z w dzdw∫  , but the resulting rate of testing is slower than 1/ 2n−  due to the need to estimate ZWf  and 

YXZWF  nonparametrically.  The rate 1/ 2n−  can be achieved by carrying out an additional smoothing step.  

To this end, for 1 2, [0,1]pξ ξ ∈  and 1 2, [0,1]rζ ζ ∈ , let 1 1 2 2( , ; , )ξ ζ ξ ζ  denote the kernel of a nonsingular 

integral operator, L , from 2[0,1]p rL +  to itself.  That is, L  is defined by 

(2.7) 2 2 1 1 2 2 1 1 1 1[0,1]
( )( , ) ( , ; , ) ( , )

p r
L d dψ ξ ζ ξ ζ ξ ζ ψ ξ ζ ξ ζ

+
= ∫   

and is nonsingular, where ψ  is a function in 2[0,1]p rL + .  Then 0H  is equivalent to  

2[0,1] [0,1]

(2.8) ( , )

[ ( , ), , , ] ( , , , ) ( , ) ( , , , ) 0p r p rYXZW ZW

S z w

F G x x z w dxd d q f z w d dζ ζ η ζ η ζ η ζ η ζ η ζ η+ +

≡

− =∫ ∫ 

 

for almost every ( , ) supp( , )z w Z W∈ .  1H  is equivalent to the statement that (2.8) does not hold on a set 

[0,1]p r+⊂  with non-zero probability.  The test statistic is based on a sample analog of 2( , )S z w dzdw∫ .  

Basing the test of 0H  on ( , )S z w  avoids the ill-posed inverse problem because ( , )S z w  does not depend 

on g . 
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 To form a sample analog of ( , )S z w , let ( )ˆ ( , )iG x z−  be an estimator of ( , )G x z  based on all the 

data except observation i .  This estimator is described in detail in the next paragraph.  Let ( )I ⋅  denote the 

indicator function.  It follows from (2.8) that 

2[0,1] [0,1]

(2.9) ( , )

[ ( , )] ( , , , )] ( , ; , ) ( , ) ( , ; , ) 0

{ [ ( , )] } ( , ; , )

p r p rYXZW ZW

YXZW

S z w

dxd d dyI y G x f y x z w q f z w d d

E I Y G X Z q Z W z w

ζ η ζ ζ η ζ η ζ η ζ η ζ η+ +

∞

−∞

≡

≤ − =

= ≤ −

∫ ∫ ∫ 



 

The sample analog is of ( , )S z w  is obtained from (2.9) by replacing G  with the estimator ( )ˆ iG − , the 

population expectation YXZWE  with the sample average, and multiplying the resulting expression by 1/2n  

to obtain a random variable that has a non-degenerate limiting distribution.  The resulting scaled sample 

analog is 

(2.10) 1/2 ( )

1

ˆ ˆ( , ) { [ ( , )] } ( , , , )
n

i
n i i i i i

i
S z w n I Y G X Z q Z W z w− −

=
= ≤ −∑  .    

The test statistic is 

 2
[0,1]

ˆ ( , )p rn nS z w dzdwτ += ∫ . 

Under 0H , 

 2( , )S z w dzdw∫ =0, 

so nτ  differs from 0 only due to random sampling errors.  Therefore, 0H  is rejected if nτ  is larger than 

can be explained by random sampling errors.  A method for obtaining the critical value of nτ  is presented 

in Section 3. 

 The estimator ( )ˆ iG −  is a kernel nonparametric quantile regression estimator based on a boundary 

kernel that overcomes edge effects (Gasser and Müller 1979; Gasser, Müller, and Mammitzsch 1985).  A 

boundary kernel with bandwidth 0h >  is a function ( , )hK ⋅ ⋅  with the property that for all [0,1]ξ ∈  and 

some integer 2s ≥  

(2.11) 
1( 1) 1  if 0

( , )
0 if 1 1.

j j
h

j
h u K u du

j s
ξ

ξ
ξ

+− + =
=  ≤ ≤ −∫  
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If h  is small and ξ  is not close to 0 or 1, then we can set ( , ) ( / )hK u K u hξ = , where K  is an “ordinary” 

order s kernel.  If ξ  is close to 1, then we can set ( , ) ( / )hK u K u hξ = , where K  is a bounded, compactly 

supported function satisfying 

(2.12) 
0

1  if 0
( )

0 if 1 1.
j j

u K u du
j s

∞ =
=  ≤ ≤ −∫  

If ξ  is close to 0, we can set ( , ) ( / )hK u K u hξ = − .  There are other ways of overcoming the edge-effect 

problem, but the boundary kernel approach used here works satisfactorily and is simple analytically. Now 

define 

( )( ) ( )
,

1
( , ) ,

p
k k

p h h
k

K x K xξ ξ
=

=∏ , 

where ( )kx  denotes the k ’th component of the vector x .  Define ,r hK  similarly.  Let qρ  be the check 

function:  ( ) [ ( 0)]q y y q I yρ = − ≤ .  The estimator of G  is 

(2.13) ( )
, ,

1

ˆ ( , ) arg inf ( ) ( , ) ( , )
n

i
q i p h j r h ja j

j i

G x z Y a K x X x K z Z zρ−

=
≠

= − − −∑ . 

The test statistic nτ  is obtained by substituting (2.13) into (2.10). 

3.  ASYMPTOTIC PROPERTIES 

 This section presents the asymptotic properties of the test of exogeneity based on nτ  and explains 

how to obtain the critical value of nτ . 

3.1  Regularity Conditions 

This section states the assumptions that are used to obtain the asymptotic properties of nτ .  The 

following notation is used.  For any real 0a > , define [ ]a  as the largest integer less than or equal to a .  

Define ( , )U Y g X Z= −  and ( , )V Y G X Z= − .  Let ⋅  denote the Euclidean metric.  For any vector 

1( ,..., )dx x=x , function ( )f x , and vector of non-negative integers 1( ,..., )dk k=k , define 

1| | ... dk k= + +k  and 

1

| |

1

( ) ( )
... dkk

d

D f f
x x
∂

=
∂ ∂

k
k x x .  
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For a set d⊂   and positive constants ,a M < ∞ , define ( )a
MC   as the class of continuous functions 

:f →  such that af M≤ , where 

 [ ]| | [ ] | | [ ] ,

| ( ) ( ) |max sup | ( ) | max supa a aa a

D f D ff D f −≤ ≤ ′∈ ∈

′−
= +

′−

k k
k

k kx x x

x xx
x x 

 

and derivatives on the boundary of   are one sided.  Let | ( | , )V XZf v x z  denote the probability density 

function of V  conditional on ( , ) ( , )X Z x z= , and let XZf  denote the probability density function of 

( , )X Z  whenever these density functions exist. 

 We make the following assumptions. 

 Assumption 1:  (i) The support of ( , , )X Z W  is 2[0,1] p r+ , where dim( ) dim( )X W p= =  and 

dim( )Z r= .  (ii) ( , , , )Y X Z W  has a probability density function YXZWf  with respect to Lebesgue 

measure.  (iii) There is a finite constant fC  such that | ( , , , ) |YXZW ff y x z w C≤  for all ( , , , )y x z w .  

Moreover, ( , , , ) /YXZWf y x z w y∂ ∂  exists and is continuous and bounded for all ( , , , )y x z w .  (iv) The data 

{ , , , : 1,..., }i i i iY X Z W i n=  are an independent random sample of ( , , , )Y X Z W . 

 Assumption 2:  (i) ( 0 | , )P U Z z W w q≤ = = =  for almost every ( , ) [0,1]p rz w +∈ .  (ii) There is a 

finite constant gC  such that | ( , ) | gg x z C≤  for all ( , ) [0,1]p rx z +∈ .  (iii) Equation (2.4) has a solution 

( , )g x z  that is unique except, possibly, for ( , )x z  in a set of Lebesgue measure zero. 

 Assumption 3:  (i) The probability density function | ( | , )V XZf v X x Z z= =  exists for all v  and 

( , ) supp( , )x z X Z∈ .  Moreover, for all v  in a neighborhood of zero and ( , ) [0,1]p rx z +∈ , 

| ( | , )V XZf v x z δ≥  for some 0δ > , and | ( | , ) /V XZf v x z v∂ ∂  exists and is continuous.  (ii) ( , )XZ XZf x z C≥  

for all ( , ) [0,1]p rx z +∈  and some constant 0XZC > .  (iii) ( , ) ([0,1] )
g

s p r
CG x z C +∈  with 3( ) / 2s p r> +  

and gC  as in assumption 2.  (iv) 2(supp( ) [0,1] )
g

s p r
YXZW Cf C Y +∈ × .  (v) There are a neighborhood v  of 

0v =  and a constant fC  such that | ( [0,1] )
f

s p r
V XZ C vf C +∈ ×  and  ( , ) ([0,1] )

f

s p r
XZ Cf x z C +∈ .   

 Assumption 4:  (i) The kernel hK  satisfies (2.11) for s  as in assumption 3.  (ii) There is a 

constant KC < ∞  such that | ( , ) ( , | /h h KK u K u C u u hξ ξ′ ′− ≤ −  for all u , u′ , and [0,1]ξ ∈ .  (iii) For 

each [0,1]ξ ∈ , ( , )hK u ξ , considered as a function of u , is supported on [( ) / , / ]h h hξ ξ− ∩  for some 

compact interval   that is independent of ξ .  (iv) sup{| ( , ) |: 0, [0,1], }hK u h uξ ξ> ∈ ∈ < ∞ .  (v) The 

bandwidth h  satisfies b
hh C n−=  where 0hC >  is a finite constant and 1 / (2 ) 1 / [3( )]s b p r< < + . 
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 Assumption 5:  (i) The operator L  defined in (2.7) is nonsingular.  (ii)  There is a constant 

C < ∞


 such that  

 
2( )( , , , ) [0,1]

sup | ( , ; , ) |
p rz w

z w C
ζ η

ζ η
+∈

≤


 , 

 
2( )( , , , ) [0,1]

sup | ( , ; , ) / |
p rz w

z w C
ζ η

ζ η ζ
+∈

∂ ∂ ≤


 , 

and 

2( )( , , , ) [0,1]
sup | ( , ; , ) / |

p rz w
z w C

ζ η
ζ η η

+∈
∂ ∂ ≤



 . 

 Assumptions 1 and 2 specify the model and properties of the random variables under 

consideration.  Assumption 2(iii) requires the structural function g  to be identified.  Assumption 3 

establishes smoothness conditions.  Because of the curse of dimensionality, the smoothness of G , |V XZf , 

and XZf  must increase as p r+  increases.  Assumption 4 establishes properties of the kernel function 

and requires the estimator of G  to be undersmoothed.  Undersmoothing prevents the asymptotic bias of 

( )ˆ iG −  from dominating the asymptotic distribution of nτ .  hK  must be a higher-order kernel if 2p r+ ≥ . 

3.2  Asymptotic Properties of the Test Statistic under 0H  

To obtain the asymptotic distribution of nτ  under 0H , let YXZf  denote the probability density 

function of ( , , )Y X Z .  Define 

{1/2

1

[0,1]

( , ) { [ ( , )] } ( , ; , )

[ ( , ), , , ) ( , ; , )
{ [ ( , )] }

[ ( , ), , ]
p

n

n i i i i i
i

YXZW i i i i i
i i i

YXZ i i i i

B n I Y g X Z q Z W

f G X Z X Z w Z w dw
I Y G X Z q

f G X Z X Z

ζ η ζ η

ζ η

−

=
= ≤ −

 
 − ≤ −    

∑

∫





 

and 

1 1 2 2 1 1 2 2( , ; , ) [ ( , ) ( , )]n nR E B Bζ η ζ η ζ η ζ η= . 

Define the operator Ω  on 2 ([0,1] )p rL +  by 

(3.1) 2 2 1 1 2 2 1 1 1 1[0,1]
( )( , ) ( , ; , ) ( , )p r R d dφ ζ η ζ η ζ η φ ζ η ζ η+Ω = ∫ . 
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Let { : 1,2,...}j jω =  denote the eigenvalues of Ω  sorted so that 1 2 ... 0ω ω≥ ≥ ≥ .2  Let 2
1{ : 1,2,...}j jχ =  

denote independent random variables that are distributed as chi-square with one degree of freedom.  The 

following theorem gives the asymptotic distribution of nτ  under 0H . 

 Theorem 1:  Let 0H  be true.  Then under assumptions 1-5, 

2
1

1

d
n j j

j
τ ω χ

∞

=

→ ∑ .    

 Under 0H , G g= , so knowledge of or estimation of g  is not needed to obtain the asymptotic 

distribution of nτ  under 0H .  This observation is used in the next section to obtain the critical value of 

nτ . 

3.3  Obtaining the Critical Value 

The statistic nτ  is not asymptotically pivotal, so its asymptotic distribution cannot be tabulated.  

This section presents a method for obtaining an approximate asymptotic critical value.  The method is 

based on replacing the asymptotic distribution of nτ  with an approximate distribution.  The difference 

between the true and approximate distributions can be made arbitrarily small under both the null 

hypothesis and alternatives.  Moreover, the quantiles of the approximate distribution can be estimated 

consistently as n →∞ .  The approximate 1 α−  critical value of the nτ  test is a consistent estimator of 

the 1 α−  quantile of the approximate distribution.   

We now describe the approximation to the asymptotic distribution of nτ .  Under 0H , nτ  is 

asymptotically distributed as 

2
1

1
j j

j
τ ω χ

∞

=

≡∑ . 

Given any 0ε > , there is an integer Kε < ∞  such that  

2
1

1
0 ( )

K

j j
j

t t
ε

ω χ τ ε
=

 
 < ≤ − ≤ <
 
 
∑P P  . 

uniformly over t .  Define 

2
1

1

K

j j
j

ε

ετ ω χ
=

=∑ . 

                                                      
2  R  is a bounded function under the assumptions of Section 3.1.  Therefore, Ω  is a compact, completely 
continuous operator with discrete eigenvalues. 
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Let zεα  denote the 1 α−  quantile of the distribution of ετ .  Then 0 ( )zεατ α ε< > − <P  .  Thus, using 

zεα  to approximate the asymptotic 1 α−  critical value of nτ  creates an arbitrarily small error in the 

probability that a correct null hypothesis is rejected.  Similarly, use of the approximation creates an 

arbitrarily small change in the power of the nτ  test when the null hypothesis is false.  The approximate 

1 α−  critical value for the nτ  test is a consistent estimator of the 1 α−  quantile of the distribution of ετ .  

Specifically, let ˆ jω  ( 1,2,..., )j Kε=  be a consistent estimator of jω  under 0H .  Then the approximate 

critical value of nτ  is the 1 α−  quantile of the distribution of  

2
1

1

ˆ ˆ
K

n j j
j

ε

τ ω χ
=

=∑ . 

This quantile can be estimated with arbitrary accuracy by simulation. 

In applications, Kε  can be chosen informally by sorting the ˆ jω ’s in decreasing order and plotting 

them as a function of j .  They typically plot as random noise near ˆ 0jω =  when j  is sufficiently large.  

One can choose Kε  to be a value of j  that is near the lower end of the “random noise” range.  The 

rejection probability of the nτ  test is not highly sensitive to Kε , so it is not necessary to attempt precision 

in making the choice.   

 The remainder of this section explains how to obtain the estimated eigenvalues ˆ{ }jω .  Define 

 
[0,1]

( , ; , ) [ ( , ), , , )] ( , ; , )p YXZWX Z f G X Z X Z w Z w dwλ ζ η ζ η= ∫  . 

Because G g=  under 0H ,  

1/2

1

( , ; , )( , ) { [ ( , )] } ( , ; , )
[ ( , ), , ]

n
i i

n i i i i i
YXZ i i i ii

X ZB n I Y G X Z q Z W
f G X Z X Z

λ ζ η
ζ η ζ η−

=

 
= ≤ − − 

 
∑  . 

An estimator of 1 1 2 2( , ; , )R ζ η ζ η  that is consistent under 0H  can be obtained by replacing unknown 

quantities with estimators on the right-hand side of 

 

2 1 1
1 1 2 2 1 1

2 2
2 2

( , ; , )( , ; , ) { [ ( , )] } ( , ; , )
[ ( , ), , ]

( , , , )( , ; , ) .
[ ( , ), , ]

YXZ

YXZ

X ZR E I Y G X Z q Z W
f G X Z X Z

X ZZ W
f G X Z X Z

λ ζ ηζ η ζ η ζ η

λ ζ ηζ η

 
= ≤ − − 

 

 
× − 
 





 

To do this, let ŶXZWf  and ŶXZf , respectively, be kernel estimators of YXZWf  and YXZf  with bandwidths 

that converge to 0 at the asymptotically optimal rates.  As is well known, ŶXZWf  and ŶXZf  are consistent 

uniformly over the ranges of their arguments.  Define 
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 ( )
[0,1]

ˆˆ ˆ( , ; , ) [ ( , ), , , )] ( , ; , ) ; 1,...,p

i
i i YXZW i i i i iX Z f G X Z X Z w Z w dw i nλ ζ η ζ η−= =∫   

and 

 

1 ( ) 2 1 1
1 1 2 2 1 1 ( )

1

2 2
2 2 ( )

ˆ( , ; , )ˆˆ( , ; , ) { [ ( , )] } ( , ; , ) ˆ ˆ[ ( , ), , ]

ˆ( , ; , )( , ; , ) .ˆ ˆ[ ( , ), , ]

n
i i i

i i i i i i
i YXZ i i i i

i i
i i i

YXZ i i i i

X ZR n I Y G X Z q Z W
f G X Z X Z

X ZZ W
f G X Z X Z

λ ζ η
ζ η ζ η ζ η

λ ζ η
ζ η

− −
−

=

−

  = ≤ − − 
  

  × − 
  

∑ 



 

Let Ω̂  be the operator defined by 

 2 2 1 1 2 2 1 1 1 1
[0,1]

ˆ ˆ( )( , ) ( , ; , ) ( , )
p r

R d dφ ζ η ζ η ζ η φ ζ η ζ η
+

Ω = ∫ , 

Denote the eigenvalues of Ω̂  by ˆ{ : 1,2,...}j jω =  and order them so that 1 2ˆ ˆ ... 0ω ω≥ ≥ ≥ .  The relation 

between the ˆ jω ’s and jω ’s is given by the following theorem. 

 Theorem 2:  Let assumptions 1-5 hold.  Then ˆ (1)j j poω ω− =  as n →∞  for each 1,2,...j =     

To obtain an accurate numerical approximation to the ˆ jω ’s, let ˆ ( , )F x z  denote the 1n×  vector 

whose i ’th component is ( )
1 1 1 1

ˆˆ ˆ{ ( , ; , ) ( , ; , ) / [ ( , ), , ]}i
i i i i YZX i i i iZ W X Z f G X Z X Zζ η λ ζ η −− , and let ϒ  

denote the n n×  diagonal matrix whose ( , )i i  element is ( ) 2ˆ{ [ ( , )] }i
i i iI Y G X Z q−≤ − .  Then 

 1
1 1 2 2 1 1 2 2

ˆ ˆ ˆ( , ; , ) ( , ) ( , )R n F Fζ η ζ η ζ η ζ η− ′= ϒ . 

The computation of the eigenvalues can now be reduced to finding the eigenvalues of a finite-dimensional 

matrix.  To this end, let { : 1,2,...}j jφ =  be a complete, orthonormal basis for 2[0,1]p rL + .  Then 

 
1 1

( , ; , ) ( , ) ( , )jk j k
j k

Z W d Z Wζ η φ ζ η φ
∞ ∞

= =
=∑∑ , 

where 

 2( )[0,1]
( , ; , ) ( , ) ( , )p rjk j kd z w z w dwdzd dζ η φ ζ η φ ζ η+= ∫  , 

and 

 
1 1

ˆ( , ; , ) ( , ) ( , )jk j k
j k

X X a X Zλ ζ η φ ζ η φ
∞ ∞

= =
=∑∑ , 

where 

 2( )[0,1]
ˆ( , ; , ) ( , ) ( , )p rjk j ka z w z w dwdzd dλ ζ η φ ζ η φ ζ η+= ∫ . 
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Approximate ( , ; , )Z W ζ η  and ˆ( , ; , )X Xλ ζ η  by the finite sums 

1 1
( , ; , ) ( , ) ( , )

L L

jk j k
j k

Z W d Z Wζ η φ ζ η φ
= =

Π =∑∑


 

and 

ˆ
1 1

( , ; , ) ( , ) ( , )
L L

jk j k
j k

X Z a X Zλ ζ η φ ζ η φ
= =

Π =∑∑  

for some integer L < ∞ .  Since   and λ̂  are known functions, L  can be chosen to approximate them 

with any desired accuracy.  Let Φ  be the n L×  matrix whose ( , )i j  component is 

1/2 ( )

1

ˆ ˆ{ ( , ) ( , ) / [ ( , ), , ]}
L

i
ij jk k i i jk k i i YXZ i i i i

k
n d Z W a X Z f G X Z X Zφ φ− −

=

Φ = −∑ .   

The eigenvalues of Ω̂  are approximated by those of the L L×  matrix ′Φ ϒΦ .   

3.4  Consistency of the Test against a Fixed Alternative Model 

In this section, it is assumed that 0H  is false.  That is, [ ( , ) ( , )] 1P g X Z G X Z= < .  Define 

(3.2) 2[0,1]
( , ) { [ ( , ), , , ] [ ( , ), , , ]} ( , ; , )p r YXZW YXZWH F G x z x z w F g x z x z w z w dxdwdzζ η ζ η+= −∫  . 

Let zα  denote the 1 α−  quantile of the asymptotic distribution of nτ  under sampling from the null-

hypothesis model ( , ) , ( 0 | , )Y G X Z V P V X Z q= + ≤ = .  The following theorem establishes consistency 

of the nτ  test against a fixed alternative hypothesis. 

 Theorem 3:  Let assumptions 1-5 hold, and suppose that 
2

[0,1]
( , ) 0

p r
H d dζ η ζ η

+
>∫ . 

Then for any α  such that 0 1α< < , 

lim ( ) 1.nn
zατ

→∞
> =P   

 Because   is the kernel of a nonsingular integral operator, the nτ  test is consistent whenever 

( , )g x z  differs from ( , )G x z  on a set of ( , )x z  values whose probability exceeds zero. 

3.5  Asymptotic Distribution under Local Alternatives   

This section obtains the asymptotic distribution of nτ  under the sequence of local alternative 

hypotheses 

(3.3) 1/2[ ( , ) ( , ) | , )P Y G X Z n X Z W w Z z q−≤ + ∆ = = =  
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for almost every ( , ) [0,1]p rw z +∈ , where ∆  is a bounded function on [0,1]p r+ .  Under (3.3) 

(3.4) 1/2( , ) ( , ) ( , )g x z G X Z n x z−= + ∆ , 

and 

 ( , ) ; ( 0 | , )Y g X Z U P U Z z W w q= + ≤ = = =  

for almost every ( , ) [0,1]p rw z +∈ . 

 Let Ω  be the integral operator defined in (3.1), { }jφ  denote the orthornormal eigenfunctions of 

Ω , and { }jω  denote the eigenvalues of Ω  sorted so that 1 2 ...ω ω≥ ≥   Let UXZWf  denote the probability 

density function of ( , , , )U X Z W .  Define 

 2[0,1]
( , ) (0, , , ) ( , ) ( , ; , )p r UXZWf x z w x z z w dxdzdwµ ζ η ζ η+= − ∆∫   

and 

(3.5) 
[0,1]

( , ) ( , )p rj j d dµ µ ζ η φ ζ η ζ η+= ∫ . 

Let 2 2
1{ ( / ) : 1,2,...}j j jχ µ ω =  denote a sequence of independent random variables distributed as non-

central chi-square with one degree of freedom and non-central parameters 2 /j jµ ω . 

 The following theorem gives the asymptotic distribution of nτ  under the sequence of local 

alternatives (3.3)-(3.4). 

 Theorem 4:  Let assumptions 1-5 hold.  Under the sequence of local alternatives (3.3)-(3.4),  

2 2
1

1
( / ).d

n j j j j
j

τ ω χ µ ω
∞

−

→ ∑   

It follows from Theorems 2 and 4 that under (3.3)-(3.4), 

ˆlimsup | ( ) ( ) |n n
n

z zεα ατ τ ε
→∞

> − > ≤P P  

for any 0ε > , where ẑεα  denotes the estimated approximate α -level critical value.  Moreover, 

 lim ( )nn
P zατ α

→∞
> >  

if 2 0jµ >  for at least one j .  In addition, for any 0ε >  

 lim ( ) 1nn
P zατ ε

→∞
> > −  

if 2
jµ  is sufficiently large for at least one j .   
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3.6  Uniform Consistency 

This section shows that for any 0ε > , the nτ  test rejects 0H  with probability exceeding 1 ε−  

uniformly over a set of functions g  whose distance from G  is 1/ 2( )O n− .  This set contains deviations 

from 0H  that cannot be represented as sequences of local alternatives.  Thus, the set is larger than the 

class of local alternatives against which the power of nτ  exceeds 1 ε− .  The practical consequence of this 

result is to define a relatively large class of alternatives against which the nτ  test has high power in large 

samples. 

The following additional notation is used.  Let ⋅  denote the norm in 2[0,1]L .  Define ( , )H ζ η  

as in (3.2).  Define the linear operator T  by 

 2[0,1]
( )( , ) [ ( , ), , , ] ( , ; , ) ( , )p r YXZWT f g x z x z w z w x z dxdwdzψ ζ η ζ η ψ+= ∫   

and the function 

 ( , ) ( , ) ( , )x z g x z G x zπ = − . 

For some finite 0C > , let 
gnC  be the class of functions ( , ) ([0,1] )

g

a p r
Cg x z C +∈  with a p r> + , gC < ∞  

satisfying: 

(i)  There is a function ( , )G x z  such that [ ( , ) | , )P Y G X Z X x Z z q≤ = = =  for almost every 

( , ) [0,1]p rx z +∈ . 

(ii)  Assumption 3 is satisfied with ( , )V Y G X Z= − . 

(iii)  The density function YZXWf  satisfies Assumption 1. 

(iv)  The function g  satisfies Assumption 2 with ( , )U Y G X Z= − . 

(v)  1/2T n Cπ −≥  

Condition (v) implies that nC  contains alternative models g  such that 1/2( )g G O n−− = .  In addition, 

condition (v) rules out differences between the structural functions under the null and alternative 

hypotheses, ( , ) ( , ) ( , )x z g x z G x zπ = − , that are linear combinations of eigenfunctions of T  associated 

with eigenvalues of T  that converge to zero too rapidly.  Thus, the nτ  test has low power against 

deviations from 0H  that operate through eigenfunctions of T  associated with eigenvalues that converge 

to zero very rapidly.  Such deviations often correspond to highly oscillatory functions that have little 

relevance for economic applications. 

 The following theorem states the result of this section. 
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 Theorem 5:  Let assumptions 1-5 hold.  Then given any 0δ > , any α  such that 0 1α< < , and 

any sufficiently large (but finite) C ,  

 lim inf ( ) 1
nCg

nn g
zατ δ

→∞ ∈
> ≥ −P


 

and  

 ˆlim inf ( ) 1 2
nCg

nn g
zεατ δ

→∞ ∈
> ≥ −P


.      

3.7  Weight functions 

 This section considers the choice of the weight function ( , ; , )z w ζ η .  We show that setting 

1( , ; , ) ( , ) (0, , , )UXZWz w z f x z wζ η ζ=   has certain power advantages over a weight function that does not 

depend on the distribution of ( , , , )U X Z W .  The function 1  is assumed to be the kernel of a non-singular 

integral operator from 2 ([0,1] )rL  to itself.  Horowitz and Lee (2009) present a method for estimating 

(0, , , )UXZWf x z w .  Section 6.2 outlines the extension of Theorems 1-5 to the case of an estimated weight 

function.   

 To start, assume that 0r = , so Z  is not in the model.  Let nfτ  denote the nτ  statistic with weight 

function (0, , )UXWf x w  and nτ 

 denote the statistic with a fixed weight function ( , )w η  that does not 

depend on the distribution of ( , , )U X W .  The arguments of Horowitz and Lee (2009) show that there are 

combinations of density functions UXWf  and local alternative models such that an α -level test based on 

nτ 

 has local power that is arbitrarily close to α , whereas the asymptotic local power of an α -level test 

based on nfτ  is bounded away from and above α .  In contrast, it is not possible for the asymptotic local 

power of the α -level nfτ  test to approach α  while the asymptotic local power of the α -level nτ 

 test 

remains bounded away from and above α . 

 Horowitz and Lee (2009) did not investigate the case of 1r ≥ .  The following theorem extends 

their result to this case. 

 Theorem 6:  Let assumptions 1-5 hold.  Let ( , )x z∆  be the bounded function defined in (3.3)-

(3.4).   Fix the functions ( , ; , )z w ζ η  and 1( , )z ζ , and assume that these functions are bounded and that 

1  is bounded away from 0.  Define 

 ( , ) (0, , , ) ( , ) ( , ; , )UXZWf x z w x z z w dxdzdwµ ζ η ζ η= ∆∫

  

and 
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 1( , ) (0, , , ) ( , ) ( , ) (0, , , )f UXZW UXZWf x z w x z z f z w dxdzdwµ ζ η ζ η= ∆∫  . 

Then 

 (a)  For any 0ε > , there are functions ( , )x z∆  and UXZWf  such that 2
1

/ jj
µ ω ε

∞

=
<∑

 and 

2 2
11

/f jj
Dµ ω

∞

=
≥∑  for some 2

1 0D > .  

 (b)  There is a constant 0D >  such that 
22

fDµ µ≤


.    

Theorem 6(a) implies that there are combinations of density functions UXWf  and local alternative models 

such that an α -level test based on nτ 

 has local power that is arbitrarily close to α , whereas the 

asymptotic local power of an α -level test based on nfτ  is bounded away from and above α .  Theorem 

6(b) implies that it is not possible for the asymptotic local power of the α -level nfτ  test to approach α  

while the asymptotic local power of the α -level nfτ  test remains bounded away from and above α .  

 Theorem 6 does not imply that the power of nfτ  always exceeds that of nτ 

.  Moreover, in finite 

samples, random sampling errors in an estimate of UXZWf  can reduce the power of nfτ  and increase the 

difference between the true and nominal probabilities of rejecting a correct 0H .  Consequently, a weight 

function that does not depend on the sample may be attractive in applications.  Section 4 provides 

illustrations of the finite-sample performances of nfτ  and nτ 

 with two weight functions that do not 

depend on the sample. 

4.  MONTE CARLO EXPERIMENTS 

 This section reports the results of a Monte Carlo investigation of the finite-sample performance of 

the nτ  test.  In the experiments, 1p =  and 0r = , so Z  does not enter the model.  Realizations of 

( , , )X W U  were generated by 

 ( )W ζ= Φ , 

 ( )2
1 11X ρ ζ ρ ξ= Φ + − , 

and  

 2
2 21U ρ ξ ρ ν= + − , 

where Φ  is the (0,1)N  distribution function; ζ , ξ , and ν  are independent random variables with 

(0,1)N  distributions; and 1ρ  and 2ρ  ( 1 20 , 1ρ ρ≤ ≤ ) are constant parameters whose values vary among 
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experiments.  The parameter 1ρ  determines the strength of the instrument W , and 2ρ  determines the 

strength of the correlation between U  and X .  0H  is true if 2 0ρ =  and false otherwise.  Realizations of 

Y  were generated from 

(4.1) 0 1 UY X Uθ θ σ= + + , 

where 0 0θ = , 1 0.5θ = , and 0.1Uσ = .  Experiments were carried out with 1 0.35ρ =  or 0.7 , and 

2 0, 0.1, 0.2ρ = , or 0.3 .  The instrument is stronger when 1 0.7ρ =  than when 1 0.35ρ = , and the 

correlation between X  and U  increases as 2ρ  increases.  The sample size was 750,1000n = , or 2000 , 

depending on the experiment, and the nominal probability of rejecting a correct 0H  was 0.05.  There 

were 2000 Monte Carlo replications per experiment. 

 The kernel function 2 2( ) (15 /16)(1 ) (| | 1)K v v I v= − ≤  was used to compute ( )ˆ iG −  in nτ  and ŶXWf  

in the estimated critical value of nτ  and in the data-dependent weight function.  The rule-of-thumb 

bandwidth of Yu and Jones (1998) was used for ( )ˆ iG −  and ŶXWf  in the critical value of nτ .  Four 

different weight functions ( , )w η  were used in nτ .  One is the data-dependent estimated probability 

density function ˆ ˆ[ ( ), , ]YXWf g wη η  with ĝ  computed using the method of Horowitz and Lee (2009).  The 

bandwidths for ŶXWf  in the Horowitz-Lee estimator were 0.01X Yh h= =  for the X  and Y  directions 

and 0.3Wh =  for the W  direction.  The other weight functions are not data dependent.  The second 

weight function is the infeasible true probability density function [ ( ), , ]YXWf g wη η .  The third and fourth 

weight functions are ( , ) ( )w I wη η= ≤  and ( , ) exp( )w wη η= , respectively.  The third weight function 

was used by Song (2010) and Stute and Zhu (1998).  The fourth was proposed by Bierens (1990).  The 

second weight function is not feasible in applications but provides an indication of the reduction in finite-

sample performance due to random sampling errors in estimating the weight function. 

 The results of the experiments are shown in Table 1 for 1 0.35ρ =  and Table 2 for 1 0.7ρ = .  In 

the tables, nDτ , *
nDτ , nIτ , and nBτ , respectively, denote the nτ  tests with the data-dependent weight 

function, the infeasible weight function, the Song (2010) weight function, and the Bierens (1990) weight 

function.  In what follows, the difference between the empirical and nominal probabilities of rejecting a 

correct 0H  is called the error in the rejection probability or ERP.  The performance of the nBτ  test is 

poor.  It has a large ERP when 2000n < and low power.  The nIτ  test has the best performance over all 

experiments.  Its ERP is low.  Its power is higher than the that of the nBτ  test and only slightly lower than 

the power of the infeasible *
nDτ  test in experiments in which the *

nDτ  test has a low ERP.  The nDτ  test 
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has a relatively high ERP if the instrument is weak ( 1 0.35ρ = ) or n  is small.  The power of the nDτ  test 

is lower than that of the *
nDτ  test.  The relatively poor performance of nDτ  compared to *

nDτ  is a 

consequence of random sampling errors in estimating [ ( ), , ]YXWf g x wη  in nDτ .  In summary, the nIτ  test 

performs particularly well in the Monte Carlo experiments.  It has good power and a low ERP, even with 

moderate sample sizes. 

5.  CONCLUSIONS 

 Endogeneity of explanatory variables is an important problem in applied econometrics.  

Erroneously assuming that explanatory variables are exogenous can lead to highly misleading results.  

This paper has described a test for exogeneity in nonparametric quantile regressions.  The test does not 

use a parametric model, thereby avoiding the possibility of obtaining misleading results due to 

misspecification of the model.  The test also avoids the slow rate of convergence and potentially low 

power associated with the ill-posed inverse problem of nonparametric instrumental variables estimation of 

either mean- or quantile-regression models.  The new test has non-trivial power against alternative 

hypotheses whose “distance” from the null hypothesis of exogeneity is 1/2( )O n− , which is the same as 

the distance possible with tests based on parametric models.  The results of Monte Carlo experiments 

have illustrated the finite-sample performance of the test. 

6.  APPENDIX:  PROOFS OF THEOREMS AND EXTENSION TO AN ESTIMATED WEIGHT 

FUNCTION 

6.1  Proofs of Theorems 1-6 

  Assumptions 1-5 hold throughout this section.  To minimize the complexity of the proofs 

without losing any important elements, assume that 1p =  and 0r = .  The proofs with 1p >  and 0r >  

are identical after replacing quantities for 1p =  and 0r =  with analogous quantities for the more general 

case.  Let YXWf  and YXf , respectively, denote the probability density functions of ( , , )Y X W  and ( , )Y X .  

With 1p =  and 0r = , (2.10) becomes 

(6.1) 1/2 ( )

1

ˆ ˆ( ) { [ ( )] } ( , )
n

i
n i i i

i
S w n I Y G X q W w− −

=
= ≤ −∑  , 

( , ; , )X Xλ ζ η  becomes 

 
1

0
( ; ) [ ( ), , ] ( , )YXWX f G X X w w dwλ η η= ∫  ,   

and the test statistic is 
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1 2
0

ˆ ( )n nS w dwτ = ∫ . 

Define 

 1/2
1

1
( ) { [ ( )] } ( , )

n

n i i i
i

S w n I Y g X q W w−

=

= ≤ −∑  , 

 1/2
2

1
( ) { [ ( )] [ ( )]} ( , )

n

n i i i i i
i

S w n I Y G X I Y g X W w−

=

= ≤ − ≤∑  , 

and 

 1/2 ( )
3

1

ˆ( ) { [ ( )] [ ( )]} ( , )
n

i
n i i i i i

i
S w n I Y G X I Y G X W w− −

=

= ≤ − ≤∑  . 

Then 

 
3

1

ˆ ( ) ( )n nj
j

S w S w
=

=∑ . 

 Lemma 1:  As n →∞ , 

 1/2
3

1

( , )( ) { [ ( )] } (1)
[ ( ), ]

n
i

n i i p
YX i ii

X wS w n I Y G X q o
f G X X

λ−

=

= − ≤ − +∑  

uniformly over [0,1]w∈ . 

 Proof:  Write 3 31 32( ) ( ) ( )n n nS w S w S w= + , where 

 31 3 3( ) ( ) [ ( )]n n i nS w S w E S w= − , 

 32 3( ) [ ( )]n i nS w E S w= , 

and iE  denotes the expectation over random variables indexed by i .  It follows from Theorem 2.1 of van 

der Vaart and Wellner (2007) and the consistency and asymptotic Gaussianity of nonparametric quantile 

regression estimators that 

(6.2) 31
[0,1]

sup | ( ) | (1)n p
w

S w o
∈

= . 

Therefore, the lemma follows if 

(6.3) 1/2
32

1

( , )( ) { [ ( )] } (1)
[ ( ), ]

n
i

n i i p
YX i ii

X wS w n I Y G X q o
f G X X

λ−

=

= − ≤ − +∑  

uniformly over [0,1]w∈ .   

 To prove (6.3), observe that 

(6.4) 1/2 ( )
32

1

ˆ( ) { [ ( ), , ] [ ( ), , ]} ( , )
n

i
n YXW YXW

i
S n F G x x w F G x x w w dxdwν ν− −

=

= −∑∫  . 
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A Taylor series expansion yields 

 

( )

2( ) ( )

ˆ{ [ ( ), , ] [ ( ), , ]} ( , )

ˆ ˆ[ ( ), , ][ ( ) ( )] ( , ) .

i
YXW YXW

i i
YXW

F G x x w F G x x w w dxdw

f G x x w G x G x w dxdw O G G

ν

ν

−

− −
∞

−

 = − + − 
 

∫

∫





 

Therefore, 

(6.5) . 1/2 ( )
32

ˆ( ) [ ( ), , ][ ( ) ( )] ( , ) (1)a s i
n YXWS n f G x x w G x G x w dxdw oν ν− −= − − +∫   

Calculations like those in Kong, Linton, and Xia (2010) show that 

 ( )

1

1 1ˆ ( ) ( ) { [ ( )]} ( )
[ ( ), ]

n
ji

j j n
YX j

j i

X x
G x G x q I Y G X K R x

f G x x nh h
−

=
≠

− 
− = − ≤ + 

 
∑ , 

where 

 
3/4

. .

[0,1]

logsup | ( ) | a s s
n

x

nR x O h
nh∈

  = +  
   

. 

Therefore, standard calculations for kernel estimators yield 
( )

3/4
. 1

1

ˆ(6.6) { [ ( ), , ] [ ( ), , ]} ( , )

( , ) log{ [ ( )]} .
[ ( ), ]

i
YXW YXW

n
ja s s

j j
YX j jj

F G x x w F G x x w w dx

X nn q I Y G X O h
f G X X nh

ν

λ ν

−

−

=

−

  = − ≤ + +  
   

∫

∑



 

The lemma follows by substituting (6.6) into (6.4).  Q.E.D. 

 Proof of Theorem 1:  Under 0H , 2 ( ) 0nS w =  and g G= .  Therefore, it follows from Lemma 1 

that 

 
1 3( ) ( ) ( )

( ) (1)

n n n

n p

S S S

B o

η η η

η

= +

= +
 

uniformly over [0,1]η∈ , where 

 1/2

1

( ; )( ) { [ ( )] } ( ; )
[ ( ), ]

n
i

n i i i
YX i ii

XB n I Y G X q W
f G X X

λ η
η η−

=

 
= ≤ − − 

 
∑  . 

Therefore,  

 2 ( )d
n nB dτ η η→ ∫ . 

But 
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1
( ) ( )n j j

j
B bη φ η

∞

=

=∑  

where the jφ ’s are the eigenfunctions of the operator Ω  defined in (3.1) and  

 
1

0
( ) ( )j n jb B dη φ η η= ∫ . 

It follows that 

 
2

2
1/2

1 1

n
jd

n j j
jj j

b
bτ ω

ω

∞

= =

 
 → =
 
 

∑ ∑ . 

The jb ’s are independently distributed as (0, )jN ω .  Therefore, the random variables 2( / )j jb ω  are 

independently distributed as chi-square with one degree of freedom.  Q.E.D. 

 Proof of Theorem 2:  Let 2⋅  denote the 2L  norm and op⋅  denote the operator norm 

 
2

2supop
u

A Au= , 

where A  is an operator on 2[0,1]L .  By Theorem 5.1a of Bhatia, Davis, and McIntosh (1983), it suffices 

to prove that ˆ 0p
op

Ω−Ω →  as n →∞ .  An application of the Cauchy-Schwarz inequality shows that 

 
2

2
1 2 1 2 1 2[0,1]

ˆ ˆ[ ( ; ) ( ; )]
op

R R d dη η η η η ηΩ −Ω ≤ −∫ . 

It follows from uniform consistency of ( )ˆ iG −  for G , ŶXZWf  for YXZWf , and ŶXWf  for YXWf  that 

 1 2 1 2
ˆ( , ) ( , ) (1)pR R oη η η η= +  

uniformly over 2
1 2, [0,1]η η ∈ , where 

 
1 2

1 ( ) 2 1 2
1 2

1

( ; )

( , ) ( , )ˆ{ [ ( )] } ( ; ) ( ; ) .
[ ( ), ] [ ( ), ]

n
i i i

i i i i
YX i i YX i ii

R

X Xn I Y G X q W W
f G X X f G X X

η η

λ η λ η
η η− −

=

  
≡ ≤ − − −  

  
∑



 

 

Arguments like those used to prove lemma 1 show that 1 2 1 2( , ) ( , ) (1)n pR R oη η η η= +  for each 1 2,η η , so  

1 2 1 2
ˆ ( , ) ( , ) (1)n pR R oη η η η= +  as n →∞  for each 1 2,η η .  Therefore, 

 
2

2
1 2 1 2 1 2[0,1]

ˆ[ ( ; ) ( ; )] (1)pR R d d oη η η η η η− =∫  

by the dominated convergence theorem.  Q.E.D. 

 Proof of Theorem 3:  Let 
1 2
0

( ) 0H dη η >∫ .  It suffices to show that 
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 1plim 0n
n

n τ−

→∞
> . 

As n →∞ , 

 1/2 . .
1( ) 0a s

nn S η− →  

and 

 
11/2 .

2 0
( ) { [ ( ), ] [ ( ), ]} ( , ) ( )a s

n YXW YXWn S F G x x F g x x w dxdw Hη η η− → − =∫  . 

by the strong law of large numbers (SLLN).  In addition 

 1/2
3( ) 0p

nn S η− →  

by lemma 1 and the SLLN.  Therefore, 

 
11 2
0

( ) 0p
nn H dτ η η− → >∫ . 

Q.E.D. 

 Proof  of Theorem 4:  By lemma 1 

 
1 2 3

2

ˆ ( ) ( ) ( ) ( )

( ) ( ) (1).

n n n n

n n p

S S S S

B S o

η η η η

η η

= + +

= + +
 

Some algebra shows that 2[ ( )] ( )nE S η µ η=  and 1/2
2[ ( )] ( )nVar S O nη −= .  Therefore, 2 ( ) ( )p

nS η µ η→ , 

 ˆ ( ) ( ) ( ) (1)n n pS B oη η µ η= + + , 

and 

 
1 2
0
[ ( ) ( )]d

n nB dτ η µ η η→ +∫ . 

But 

 
1

( ) ( )n j j
j

B bη φ η
∞

=

=∑  

and 

 
1

( ) ( )j j
j

µ η µ φ η
∞

=

=∑ , 

 where the jφ ’s are the eigenfunctions of the operator Ω  defined in (3.1), the jµ ’s are as defined in 

(3.5), and 

 
1

0
( ) ( )j n jb B dη φ η η= ∫ . 

It follows that 
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2

2
1/2 1/2

1 1
( )

n
j jd

n j j j
j jj j

b
b

µ
τ µ ω

ω ω

∞

= =

 
 → + = +
 
 

∑ ∑ . 

The jb ’s are independently distributed as (0, )jN ω , and the jµ ’s are non-stochastic.  Therefore, the 

random variables 
2

1/2 1/2
j j

j j

b µ

ω ω

 
 +
 
 

 are independently distributed as non-central chi-square with one degree 

of freedom and non-central parameter 2 /j jµ ω .  Q.E.D. 

 Proof of Theorem 5:  Define 

 *
2 ( ) { [ ( ) [ ( )]} ( , )nS E I Y G X I Y g X Wη η= ≤ − ≤  , 

 1/2 *
3 2( ) ( ) ( )n n nD S n Sη η η= + , 

and 

 ( ) ( ) ( )n n nS S Dη η η= − . 

Then 

 

1 2 2

1/2

1

1/2

1

( ) ( ) [ ( ) ( )]

{ [ ( )] ( , ) [ ( )] ( , )}

[ ( , ) ( , )].

n n n n

n

i i i
i

n

i
i

S S S ES

n I Y G X W EI Y G X W

n q W E W

η η η η

η η

η η

−

=

−

=

= + −

= ≤ − ≤

− −

∑

∑



 

 

 

It follows from lemma (2.13) of Pakes and Pollard (1989) and Theorem 7.21 of Pollard (1984) that ( )nS η  

and nS  are bounded in probability uniformly over [0,1]η∈ .   

Note that 2
n nSτ = .  Use the inequality 2 2 20.5 ( )a b b a≥ − −  with na S=  and nb D=  to obtain 

 
22( ) 0.5n n nP z P D S zα ατ  > ≥ − > 

 
 . 

Because (1)n pS O= , for each 0ε >  there is Mε < ∞  such that for all M Mε> , 
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( )

2 2 22 2

2 22

2

0.5 0.5 ,

0.5 ,

0.5 .

n n n n n

n n n

n

P D S z P D z S S M

P D z S S M

P D z M

α α

α

α ε

   − < = < + ≤   
   

 + < + > 
 

≤ < + ≤ +

  

 

 

Therefore, 

(6.7) ( )2( ) 0.5n nP z P D z Mα ατ > ≥ > + . 

 Now 1/2 *
3 2n n nD S n S= + , and * 1/2

2 ( )n pS T o nπ −= + .  By 2 2 20.5 ( )a b b a≥ − −  with na D=  and 

1/2 *
2nb n S= , 

 

22 2*
2 3

22
3

0.5

0.5 (1).

n n n

n p

D n S S

n T S oπ

≥ −

= − +

. 

But 2
3 (1)n pS O=  by lemma 1.  Therefore, 

(6.8) 2 20.5 (1)n pD n T Oπ≥ + . 

Substituting (6.8) into (6.7) yields 

 ( )2( ) 0.25n nP z P n T z Mα ατ π ξ> ≥ + > +  

for some random variable (1)n pOξ = .  The theorem follows by letting C  in the definition of nC  be 

sufficiently large.  Q.E.D. 

 Proof of Theorem 6: 

 Part (a):  We construct an example in which 2µ ε<


 and 
2

1fµ = .  To simplify the 

discussion, assume that G  is known and does not have to be estimated, and set 1p r= = .  Define 

 1/2
1

1
( , ) { [ ( , )] } ( , ) (0, , , )

n

nf i i i i UXZW i i
i

B n I Y g X Z q Z f Z Wζ η ζ η−

=
= ≤ −∑

 , 

 1/2

1
( , ) { [ ( , )] } ( , ; , )

n

n i i i i i
i

B n I Y g X Z q Z Wζ η ζ η−

=
= ≤ −∑





 , 

1 1 2 2 1 1 2 2( , ; , ) [ ( , ) ( , )]nf nf nfR E B Bζ η ζ η ζ η ζ η=   , and 1 1 2 2 1 1 2 2( , ; , ) [ ( , ) ( , )]n n nR E B Bζ η ζ η ζ η ζ η=
  

   .  Also, 

define the operators fΩ  and Ω


  on 2
2 ([0,1] )L  by 
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 22 2 1 1 2 2 1 1 1 1[0,1]
( )( , ) ( , ; , ) ( , )f fR d dϑ ζ η ζ η ζ η ϑ ζ η ζ ηΩ = ∫   

and 

 22 2 1 1 2 2 1 1 1 1[0,1]
( )( , ) ( , ; , ) ( , )R d dϑ ζ η ζ η ζ η ϑ ζ η ζ ηΩ = ∫ 

  . 

Let {( , ); 1,2,...}jf jf jω ψ =   and {( , ); 1,2,...}j j jω ψ =
 

   denote the eigenvalues and eigenvectors of fΩ  

and Ω


 , respectively, sorted in decreasing order of the eigenvalues.  Define 

 3 1[0,1]
( , ) (0, , , ) ( , ) ( , ) (0, , , )f UXZW UXZWf x z w x z z f z w dxdzdwµ ζ η ζ η= − ∆∫

 , 

 3[0,1]
( , ) (0, , , ) ( , ) ( , ; , )UXZWf x z w x z z w dxdzdwµ ζ η ζ η= − ∆∫


 , 

 2[0,1]
( , ) ( , )jf f jf d dµ µ ζ η ψ ζ η ζ η= ∫   , 

and 

 2[0,1]
( , ) ( , )j j d dµ µ ζ η ψ ζ η ζ η= ∫  

  . 

Arguments identical to those used to prove Theorem 4 but with a known G  show that under the sequence 

of local alternative hypotheses (3.3)-(3.4), 

 2 2
1

1
( / )d

nf jf j jf jf
j

τ ω χ µ ω
∞

−

→ ∑    

and 

 2 2
1

1
( / )d

n j j j j
j

τ ω χ µ ω
∞

−

→ ∑   

   

as n →∞ . 

 To establish part (a), it suffices to show that for any fixed function  , UXZWf  and ∆  can be 

chosen so that 
22

1/f jfjµ ω∞
=∑   is bounded away from 0 and 

22
1/ jjµ ω∞
=∑

 

  is arbitrarily close to 0. 

 To do this, assume that Z  is independent of ( , , )U X W  so that 

 (0, , , ) ( ) (0, , )UZXW Z UXWf x z w f z f X W= , 

where Zf  and UXWf , respectively, are the probability density functions of Z  and ( , , )U X W .  For 

[0,1]v∈ , define 1( ) 1vφ =  and 1/2
1( ) 2 cos( )j v j vφ π−
+ =  for 1j ≥ .  Define 

 2

1 if 1 or 

 otherwise.j j

j m

e
λ −

== 


 

Let 
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 1/2
1 1

1
(0, , ) 1 ( ) ( )UXW j j j

j
f x w x wλ φ φ

∞

+ +
=

= +∑ . 

Then 

 

2
1 1 2 2 1 1 1 2 1 2

1 2 1 1 1 2
1

( , ; , ) (1 ) [ ( , ) ( , ) ( ) ] [ (0, , ) (0, , ]

(1 ) ( , ) 1 ( ) ( ) ,

f Z Z W UXW UXW

j j j
j

R q q E Z Z f Z E f W f W

q q Q

ζ η ζ η ζ ζ η η

ζ ζ λ φ η φ η
∞

+ +
=

= −

 
= − + 

  
∑



 

 

where 

 2
1 2 1 1 2 2( , ) [ ( , ) ( , ) ( ) ]Z ZQ E Z Z f Zζ ζ ζ ζ=   . 

Let { : 1,2,...}k kν =  denote the eigenvalues of the integral operator whose kernel is 1 2( , )Q ζ ζ .  Then the 

eigenvalues of fΩ  are { : , 1,2,...}j k j kλ ν = .  Let 

 0( , ) ( ) ( )Z mx z D z xφ∆ = ∆ , 

for some 1m ≥ , where 0 0D >  is a constant and 2 ([0,1])Z L∆ ∈  is a bounded function.  Then 

 
1 2

0 10
( , ) ( ) ( , ) ( ) ( )f m Z ZD z f z z dzµ ζ η φ η ζ= − ∆∫

 , 

and 

 

21 12 2 2
0 10 0

2
1

( , ) ( ) ( )

.

f Z ZD z f z z dz d

D

µ ζ ζ = ∆  

≡

∫ ∫


 

Moreover, 2
1 0D >  for any m  because 1  is the kernel of a non-singular integral operator.   

 We now show that m  can be chosen so that 2µ


 is arbitrarily close to 0.  To do this, observe 

that ( , ; , )z w ζ η  has the Fourier representation 

 
, , , 1

( , ; , ) ( ) ( ) ( ) ( )jkst j k s t
j k s t

z w h z wζ η φ φ φ ζ φ η
∞

=
= ∑ , 

where { : , , , 1,2,...}jksth j k s t =  are constants.  Then 

 0
, , 1

( , ) ( ) ( )j jmst s t
j s t

D b hµ ζ η φ ζ φ η
∞

=
= − ∑



 , 

where 

 
1

0
( ) ( ) ( )j Z Z jb f z z z dzφ= ∆∫ . 
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The jb ’s are Fourier coefficients of ( ) ( )Z Zf z z∆ , so 2
1 j bj b c∞
=

=∑  for some bc < ∞ .  Therefore, by the 

Cauchy-Schwarz inequality 

 

2
2 2

0
, 1 1

2 2
0

, , 1
.

j jmst
s t j

b jmst
j s t

D b h

c D h

µ
∞ ∞

= =

∞

=

 
 =
 
 

≤

∑ ∑

∑



 

Because  is bounded, m  can be chosen so that  

 2 2
0

, , 1
/ ( )jmst b

j s t
h c Dε

∞

=
<∑  

for any 0ε > .  With this m , 2µ ε<


, which establishes part (a). 

 Part (b):  We have 

 
3[0,1]

( , ) (0, , , ) ( , ) ( , ; , )UXZWf x z w x z z w dxdzdwµ ζ η ζ η= − ∆∫


 . 

By the Cauchy-Schwarz inequality,  

2 2 2

2

2
2 2

[0,1] [0,1] [0,1] [0,1]

2

[0,1] [0,1]

(0, , , ) ( , ) ( , ; , )

(6.9) (0, , , ) ( , )

UXZW

UXZW

f x z w x z dx dzdw z w dzdw d d

C f x z w x z dx dzdw

µ ζ η ζ η
     ≤ ∆ ×         

 ≤ ∆  

∫ ∫ ∫ ∫

∫ ∫








 

for some constant C < ∞


.  Under assumption 2(ii), ( , )x z∆  is bounded from below, say by c∆ > −∞ , so 

it can be assumed without loss of generality that ( , ) 0x z∆ ≥  for all ( , ) [0,1]p rx z +∈ .  (If 0c∆ < , replace 

( , )x z∆  by ( , )x z c∆∆ −  and ( , )G x z  by ( , )G x z c∆+ .  This is a normalization that has no effect on model 

(3.4) because G  is nonparametric.)  By the boundedness of ( , )x z∆  from above, and of 1( , )z ζ  from 

below, 
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2

4

5

2

[0,1] [0,1]

[0,1]

[0,1]

1 1

(0, , , ) ( , )

(0, , , ) ( , ) (0, , , ) ( , )

(0, , , ) ( , ) (0, , , ) ( , )

(0, , , ) ( , ) (0, , , ) (

UXZW

UXZW UXZW

UXZW UXZW

UXZW UXZW

f x z w x z dx dzdw

f x z w x z f z w z dxd dzdw

f x z w x z f z w z dxd dzdwd

C f x z w x z f z w

η η η

η η η ζ

η

 ∆  

= ∆ ∆

= ∆ ∆

≤ ∆

∫ ∫

∫

∫



5

2

[0,1]

1 [0,1]

2
1

, )

| ( , ) |

(6.10)

f

f

z dxd dzdwd

C d d

C

ζ η ζ

µ ζ η ζ η

µ

=

≤

∫

∫ 

 

for some finite constant 1C < ∞ , where the last line follows from the Cauchy-Schwarz inequality.  

Theorem 6(b) follows from substituting (6.10) into (6.9).  Q.E.D. 

 6.2  Extension of Theorems 1-5 to the case of an estimated weight function 

 Let ˆ ( , )W η  be an estimator of the weight function ˆ ( , )W η .  The test statistic with the estimated 

weight function, 1p = , and 0r =  is 

 
1 2
0

( )n nS w dwτ = ∫


, 

where 

 1/2 ( )

1

ˆ ˆ( ) { [ ( ) ] ( , )
n

i
n i i i

i
S w n I Y G X q W w− −

=
= − −∑



 . 

Define 

 1/2
4

1

ˆ( ) { [ ( )] }[ ( , ) ( , )]
n

n i i i i
i

S w n I Y g X q W w W w−

=

= ≤ − −∑   , 

 1/2
5

1

ˆ( ) { [ ( )] [ ( )]}[ ( , ) ( , )]
n

n i i i i i i
i

S w n I Y G X I Y g X W w W w−

=

= ≤ − ≤ −∑   , 

and 

 1/2 ( )
6

1

ˆ ˆ( ) { [ ( )] [ ( )]}[ ( , ) ( , )]
n

i
n i i i i i i

i
S w n I Y G X I Y G X W w W w− −

=

= ≤ − ≤ −∑   . 

Then  
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6

1
( ) ( )n nj

j
S w S w

=

=∑


. 

 Under assumptions 1-5 of Section 3.1 and assumptions 6-7 below, it follows from lemma A.3 of 

Horowitz and Lee (2009) that 4 ( ) (1)n pS w o=  uniformly over [0,1]w∈ .  Methods like those used to prove 

lemma 1 show that 6 ( ) (1)n pS w o=  uniformly over [0,1]w∈ .  Under 0H , 5 ( ) 0nS w = , so the use of an 

estimated weight function does not affect Theorems 1 and 2.  Theorem 3 is also unaffected because it is 

concerned with the behavior of 1
nn τ−  as n →∞ , and 1/2

5 ( ) 0p
nn S w− →  uniformly over [0,1]w∈  as 

n →∞ .  In addition, 5 ( ) (1)n pS w o=  uniformly over [0,1]w∈  under the sequence of local alternatives 

(3.3)-(3.4).  Therefore, Theorem 4 is unaffected by estimation of  . 

 Now consider Theorem 5.  For any function ( , )wδ η , define  

 *
5 ( , ) { [ ( ) [ ( )]} ( , )nS E I Y G X I Y g X Wδ η δ η= ≤ − ≤ . 

Let 

 1/2 * 1/2 *
3 2 5 6

ˆ( ) ( ) ( ) [ ( , ) ( , ), ] ( )n n n n nD S n S n S W W Sη η η η η η η= + + − +  , 

and 

 ( ) ( ) ( )n n nS S Dη η η= − . 

As before, 

 
22( ) 0.5n n nP z P D S zα ατ  > ≥ − > 

 
 . 

Arguments like those used to prove theorem 5 and lemma 1 combined with 6 ( ) (1)n pS oη =  uniformly 

over [0,1]η∈  show that 
2

(1)n pS O= .  Therefore, as in the proof of Theorem 5, 

 ( )22 20.5 0.5n n nP D S z P D z Mα α ε − < ≤ < + ≤ + 
 

  

and 

(6.11) ( )2( ) 0.5n nP z P D z Mα ατ > ≥ > +  

for any sufficiently large M .  But  

 ( )*
5

ˆ ˆ( , )nS Oη π− = ⋅ −     

and, under assumption 7(ii) below, ˆ / (1)pT oπ π⋅ − =  .  Therefore, ( )*
5

ˆ( , )n pS o Tπ− ⋅ =  .  Now 

use 2 2 20.5 ( )a b b a≥ − −  with na D=  and 1/2 * 1/2 *
2 5n nb n S n S= +  to obtain, 
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22 2* *

2 5 3 60.5n n n n nD n S S S S≥ + − + . 

But 1/2 * 1/2
2 ( ) ( )( ) (1)n pn S n T oη π η= + , 0Tπ > , 3 (1)n pS O= , and 6 (1)n pS o= .  Therefore, 

(6.12) 2 2 (1)n pD Cn T Oπ≥ +  

for all sufficiently large C .  The theorem follows by substituting (6.12) into (6.11).  Q.E.D. 

 The following are the additional assumptions needed to accommodate an estimated weight 

function. 

 Assumption 6:   

 (i) 2 2 1 1 2 2 2 2( , ) [0,1]sup | ( , ; , ) ( , ; , ) | ( , ) ( , )p r z w z w C z w z wζ η ζ η ζ η+∈ − ≤ −


   for each 

( , ) [0,1]p rz w +∈ , where 2 2 2 2( , ) ( , )z w z w−  is the Euclidean distance between 2 2( , )z w  and 1 1( , )z w . 

 (ii)  ( , ; , ) ([0,1] )p r
Cz w Cν +⋅ ⋅ ∈


  for each ( , ) [0,1]p rz w +∈  and some ( ) / 2p rν > + . 

 Assumption 7:   

 (i)  2( )( , , , ) [0,1]
ˆsup | ( , ; , ) ( , ; , ) | (1)p r pz w z w z w oζ η ζ η ζ η+∈ − =   as n →∞ . 

 (ii)  ˆsup / (1)
nCg pT oπ π∈ ⋅ − =   as n →∞ . 

 (iii)  With probability approaching 1 as n →∞ , 2( )( , , , ) [0,1]
ˆsup | ( , ; , ) |p rz w z w Cζ η ζ η+∈ ≤



 , 

  2 2 1 1 2 2 2 2( , ) [0,1]
ˆ ˆsup | ( , ; , ) ( , ; , ) | ( , ) ( , )p r z w z w C z w z wζ η ζ η ζ η+∈ − ≤ −



  , 

and for each ( , ) [0,1]p rz w +∈ , ( , ; , ) ([0,1] )p r
Cz w Cν +⋅ ⋅ ∈


  for some ( ) / 2p rν > + . 
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TABLE 1:  RESULTS OF MONTE CARLO EXPERIMENTS WITH 1 0.35ρ =  
 
 

  Empirical Probability of 
  Rejecting 0H  

n  2ρ  nDτ  *
nDτ  nIτ  nBτ  

750 0 0.093 0.073 0.056 0.074 
 0.1 0.108 0.136 0.104 0.098 
 0.2 0.194 0.334 0.279 0.184 
 0.3 0.384 0.640 0.542 0.350 
      

1000 0 0.072 0.067 0.053 0.072 
 0.1 0.123 0.168 0.124 0.114 
 0.2 0.226 0.416 0.328 0.230 
 0.3 0.524 0.782 0.690 0.420 
      

2000 0 0.062 0.056 0.046 0.054 
 0.1 0.162 0.252 0.205 0.147 
 0.2 0.483 0.697 0.608 0.384 
 0.3 0.860 0.968 0.926 0.731 
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TABLE 2:  RESULTS OF MONTE CARLO EXPERIMENTS WITH 1 0.7ρ =  
 
 

  Empirical Probability of 
  Rejecting 0H  

n  2ρ  nDτ  *
nDτ  nIτ  nBτ  

      
750 0 0.063 0.048 0.050 0.098 

 0.1 0.217 0.240 0.212 0.164 
 0.2 0.640 0.757 0.660 0.410 
 0.3 0.952 0.982 0.958 0.721 
      

1000 0 0.057 0.048 0.054 0.086 
 0.1 0.262 0.312 0.269 0.177 
 0.2 0.610 0.861 0.794 0.511 
 0.3 0.991 1.000 0.993 0.854 
      

2000 0 0.054 0.044 0.049 0.056 
 0.1 0.488 0.582 0.516 0.288 
 0.2 0.980 0.996 0.985 0.840 
 0.3 1.000 1.000 1.000 0.996 
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